
Writing R Extensions
Version 4.1.0 (2021-05-18)

R Core Team

This manual is for R, version 4.1.0 (2021-05-18).

Copyright c© 1999–2021 R Core Team

Permission is granted to make and distribute verbatim copies of this manual
provided the copyright notice and this permission notice are preserved on all
copies.

Permission is granted to copy and distribute modified versions of this manual
under the conditions for verbatim copying, provided that the entire resulting
derived work is distributed under the terms of a permission notice identical to
this one.

Permission is granted to copy and distribute translations of this manual into
another language, under the above conditions for modified versions, except that
this permission notice may be stated in a translation approved by the R Core
Team.

i

Table of Contents

Acknowledgements . 1

1 Creating R packages . 2
1.1 Package structure . 3

1.1.1 The DESCRIPTION file . 4
1.1.2 Licensing . 9
1.1.3 Package Dependencies . 11

1.1.3.1 Suggested packages . 13
1.1.4 The INDEX file . 14
1.1.5 Package subdirectories . 15
1.1.6 Data in packages . 19
1.1.7 Non-R scripts in packages . 20
1.1.8 Specifying URLs . 21

1.2 Configure and cleanup . 22
1.2.1 Using Makevars . 26

1.2.1.1 OpenMP support . 30
1.2.1.2 Using pthreads . 32
1.2.1.3 Compiling in sub-directories . 33

1.2.2 Configure example . 33
1.2.3 Using F9x code . 35
1.2.4 Using C++ code . 36

1.3 Checking and building packages . 38
1.3.1 Checking packages . 39
1.3.2 Building package tarballs . 42
1.3.3 Building binary packages . 44

1.4 Writing package vignettes . 45
1.4.1 Encodings and vignettes . 47
1.4.2 Non-Sweave vignettes . 48

1.5 Package namespaces . 49
1.5.1 Specifying imports and exports . 49
1.5.2 Registering S3 methods . 51
1.5.3 Load hooks . 51
1.5.4 useDynLib . 52
1.5.5 An example . 54
1.5.6 Namespaces with S4 classes and methods 55

1.6 Writing portable packages . 56
1.6.1 PDF size . 66
1.6.2 Check timing . 67
1.6.3 Encoding issues . 67
1.6.4 Portable C and C++ code . 69

1.6.4.1 Common symbols . 74
1.6.5 Binary distribution . 75

1.7 Diagnostic messages . 75

ii

1.8 Internationalization . 77
1.8.1 C-level messages . 77
1.8.2 R messages . 77
1.8.3 Preparing translations . 78

1.9 CITATION files . 78
1.10 Package types . 79

1.10.1 Frontend . 80
1.11 Services . 80

2 Writing R documentation files 81
2.1 Rd format . 81

2.1.1 Documenting functions . 82
2.1.2 Documenting data sets . 87
2.1.3 Documenting S4 classes and methods . 88
2.1.4 Documenting packages . 89

2.2 Sectioning . 89
2.3 Marking text . 89
2.4 Lists and tables . 92
2.5 Cross-references . 92
2.6 Mathematics . 93
2.7 Figures . 94
2.8 Insertions . 95
2.9 Indices . 95
2.10 Platform-specific documentation . 96
2.11 Conditional text . 96
2.12 Dynamic pages . 96
2.13 User-defined macros . 98
2.14 Encoding . 99
2.15 Processing documentation files . 99
2.16 Editing Rd files . 100

3 Tidying and profiling R code 101
3.1 Tidying R code . 101
3.2 Profiling R code for speed . 101
3.3 Profiling R code for memory use . 103

3.3.1 Memory statistics from Rprof . 104
3.3.2 Tracking memory allocations . 104
3.3.3 Tracing copies of an object . 104

3.4 Profiling compiled code . 105
3.4.1 Linux . 105

3.4.1.1 sprof . 105
3.4.1.2 oprofile and operf . 106

3.4.2 Solaris . 109
3.4.3 macOS . 109

iii

4 Debugging . 110
4.1 Browsing . 110
4.2 Debugging R code . 111
4.3 Checking memory access . 115

4.3.1 Using gctorture . 115
4.3.2 Using valgrind . 116
4.3.3 Using the Address Sanitizer . 118

4.3.3.1 Using the Leak Sanitizer . 120
4.3.4 Using the Undefined Behaviour Sanitizer 120
4.3.5 Other analyses with ‘clang’ . 121
4.3.6 Other analyses with ‘gcc’ . 122
4.3.7 Using ‘Dr. Memory’ . 122
4.3.8 Fortran array bounds checking . 122

4.4 Debugging compiled code . 122
4.4.1 Finding entry points in dynamically loaded code 124
4.4.2 Inspecting R objects when debugging . 124
4.4.3 Debugging on macOS . 126

4.5 Using Link-time Optimization . 127

5 System and foreign language interfaces 129
5.1 Operating system access . 129
5.2 Interface functions .C and .Fortran . 129
5.3 dyn.load and dyn.unload . 131
5.4 Registering native routines . 133

5.4.1 Speed considerations . 136
5.4.2 Example: converting a package to use registration 138
5.4.3 Linking to native routines in other packages 141

5.5 Creating shared objects . 142
5.6 Interfacing C++ code . 143

5.6.1 External C++ code . 145
5.7 Fortran I/O . 146
5.8 Linking to other packages . 146

5.8.1 Unix-alikes . 147
5.8.2 Windows . 148

5.9 Handling R objects in C . 148
5.9.1 Handling the effects of garbage collection 150
5.9.2 Allocating storage . 152
5.9.3 Details of R types . 153
5.9.4 Attributes . 154
5.9.5 Classes . 156
5.9.6 Handling lists . 156
5.9.7 Handling character data . 157
5.9.8 Finding and setting variables . 157
5.9.9 Some convenience functions . 158

5.9.9.1 Semi-internal convenience functions 159
5.9.10 Named objects and copying . 159

5.10 Interface functions .Call and .External . 160
5.10.1 Calling .Call . 160

iv

5.10.2 Calling .External . 161
5.10.3 Missing and special values . 163

5.11 Evaluating R expressions from C . 163
5.11.1 Zero-finding . 165
5.11.2 Calculating numerical derivatives . 167

5.12 Parsing R code from C . 169
5.12.1 Accessing source references . 171

5.13 External pointers and weak references . 171
5.13.1 An example . 172

5.14 Vector accessor functions . 173
5.15 Character encoding issues . 174

6 The R API: entry points for C code 175
6.1 Memory allocation . 175

6.1.1 Transient storage allocation . 176
6.1.2 User-controlled memory . 176

6.2 Error signaling . 177
6.2.1 Error signaling from Fortran . 177

6.3 Random number generation . 177
6.4 Missing and IEEE special values . 178
6.5 Printing . 178

6.5.1 Printing from Fortran . 179
6.6 Calling C from Fortran and vice versa . 179

6.6.1 Fortran character strings . 180
6.6.2 Fortran LOGICAL . 183
6.6.3 Passing functions . 183

6.7 Numerical analysis subroutines . 184
6.7.1 Distribution functions . 184
6.7.2 Mathematical functions . 185
6.7.3 Numerical Utilities . 186
6.7.4 Mathematical constants . 188

6.8 Optimization . 189
6.9 Integration . 190
6.10 Utility functions . 191
6.11 Re-encoding . 193
6.12 Condition handling and cleanup code . 194
6.13 Allowing interrupts . 195
6.14 Platform and version information . 195
6.15 Inlining C functions . 196
6.16 Controlling visibility . 196
6.17 Using these functions in your own C code . 197
6.18 Organization of header files . 198

7 Generic functions and methods 200
7.1 Adding new generics . 201

v

8 Linking GUIs and other front-ends to R 202
8.1 Embedding R under Unix-alikes . 202

8.1.1 Compiling against the R library . 204
8.1.2 Setting R callbacks . 205
8.1.3 Registering symbols . 208
8.1.4 Meshing event loops . 208
8.1.5 Threading issues . 209

8.2 Embedding R under Windows . 210
8.2.1 Using (D)COM . 210
8.2.2 Calling R.dll directly . 210
8.2.3 Finding R HOME . 213

Function and variable index . 215

Concept index . 219

1

Acknowledgements

The contributions to early versions of this manual by Saikat DebRoy (who wrote the first
draft of a guide to using .Call and .External) and Adrian Trapletti (who provided infor-
mation on the C++ interface) are gratefully acknowledged.

2

1 Creating R packages

Packages provide a mechanism for loading optional code, data and documentation as needed.
The R distribution itself includes about 30 packages.

In the following, we assume that you know the library() command, including its
lib.loc argument, and we also assume basic knowledge of the R CMD INSTALL utility. Oth-
erwise, please look at R’s help pages on

?library

?INSTALL

before reading on.

For packages which contain code to be compiled, a computing environment including
a number of tools is assumed; the “R Installation and Administration” manual describes
what is needed for each OS.

Once a source package is created, it must be installed by the command R CMD INSTALL.
See Section “Add-on-packages” in R Installation and Administration.

Other types of extensions are supported (but rare): See Section 1.10 [Package types],
page 79.

Some notes on terminology complete this introduction. These will help with the reading
of this manual, and also in describing concepts accurately when asking for help.

A package is a directory of files which extend R, a source package (the master files of a
package), or a tarball containing the files of a source package, or an installed package, the
result of running R CMD INSTALL on a source package. On some platforms (notably macOS
and Windows) there are also binary packages, a zip file or tarball containing the files of an
installed package which can be unpacked rather than installing from sources.

A package is not1 a library. The latter is used in two senses in R documentation.

• A directory into which packages are installed, e.g. /usr/lib/R/library: in that sense
it is sometimes referred to as a library directory or library tree (since the library is a
directory which contains packages as directories, which themselves contain directories).

• That used by the operating system, as a shared, dynamic or static library or (especially
on Windows) a DLL, where the second L stands for ‘library’. Installed packages may
contain compiled code in what is known on Unix-alikes as a shared object and on
Windows as a DLL. The concept of a shared library (dynamic library on macOS) as
a collection of compiled code to which a package might link is also used, especially
for R itself on some platforms. On most platforms these concepts are interchangeable
(shared objects and DLLs can both be loaded into the R process and be linked against),
but macOS distinguishes between shared objects (extension .so) and dynamic libraries
(extension .dylib).

There are a number of well-defined operations on source packages.

• The most common is installation which takes a source package and installs it in a
library using R CMD INSTALL or install.packages.

1 although this is a persistent mis-usage. It seems to stem from S, whose analogues of R’s packages were
officially known as library sections and later as chapters, but almost always referred to as libraries.

Chapter 1: Creating R packages 3

• Source packages can be built. This involves taking a source directory and creating a
tarball ready for distribution, including cleaning it up and creating PDF documenta-
tion from any vignettes it may contain. Source packages (and most often tarballs) can
be checked, when a test installation is done and tested (including running its exam-
ples); also, the contents of the package are tested in various ways for consistency and
portability.

• Compilation is not a correct term for a package. Installing a source package which
contains C, C++ or Fortran code will involve compiling that code. There is also the
possibility of ‘byte’ compiling the R code in a package (using the facilities of package
compiler): nowadays this is enabled by default for all packages. So compiling a package
may come to mean byte-compiling its R code.

• It used to be unambiguous to talk about loading an installed package using library(),
but since the advent of package namespaces this has been less clear: people now of-
ten talk about loading the package’s namespace and then attaching the package so
it becomes visible on the search path. Function library performs both steps, but a
package’s namespace can be loaded without the package being attached (for example
by calls like splines::ns).

The concept of lazy loading of code or data is mentioned at several points. This is part
of the installation, always selected for R code but optional for data. When used the R
objects of the package are created at installation time and stored in a database in the R

directory of the installed package, being loaded into the session at first use. This makes the
R session start up faster and use less (virtual) memory. (For technical details, see Section
“Lazy loading” in R Internals.)

CRAN is a network of WWW sites holding the R distributions and contributed code,
especially R packages. Users of R are encouraged to join in the collaborative project and to
submit their own packages to CRAN: current instructions are linked from https://CRAN.

R-project.org/banner.shtml#submitting.

1.1 Package structure

The sources of an R package consist of a subdirectory containing the files DESCRIPTION

and NAMESPACE, and the subdirectories R, data, demo, exec, inst, man, po, src, tests,
tools and vignettes (some of which can be missing, but which should not be empty).
The package subdirectory may also contain files INDEX, configure, cleanup, LICENSE,
LICENCE and NEWS. Other files such as INSTALL (for non-standard installation instructions),
README/README.md2, or ChangeLog will be ignored by R, but may be useful to end users.
The utility R CMD build may add files in a build directory (but this should not be used for
other purposes).

Except where specifically mentioned,3 packages should not contain Unix-style ‘hidden’
files/directories (that is, those whose name starts with a dot).

2 This seems to be commonly used for a file in ‘markdown’ format. Be aware that most users of R will
not know that, nor know how to view such a file: platforms such as macOS and Windows do not have
a default viewer set in their file associations. The CRAN package web pages render such files in HTML:
the converter used expects the file to be encoded in UTF-8.

3 currently, top-level files .Rbuildignore and .Rinstignore, and vignettes/.install_extras.

https://CRAN.R-project.org/banner.shtml#submitting
https://CRAN.R-project.org/banner.shtml#submitting

Chapter 1: Creating R packages 4

The DESCRIPTION and INDEX files are described in the subsections below. The NAMESPACE
file is described in the section on Section 1.5 [Package namespaces], page 49.

The optional files configure and cleanup are (Bourne) shell scripts which are, re-
spectively, executed before and (if option --clean was given) after installation on Unix-
alikes, see Section 1.2 [Configure and cleanup], page 22. The analogues on Windows are
configure.win and cleanup.win.

For the conventions for files NEWS and ChangeLog in the GNU project see https://www.
gnu.org/prep/standards/standards.html#Documentation.

The package subdirectory should be given the same name as the package. Because
some file systems (e.g., those on Windows and by default on macOS) are not case-sensitive,
to maintain portability it is strongly recommended that case distinctions not be used to
distinguish different packages. For example, if you have a package named foo, do not also
create a package named Foo.

To ensure that file names are valid across file systems and supported operating systems,
the ASCII control characters as well as the characters ‘"’, ‘*’, ‘:’, ‘/’, ‘<’, ‘>’, ‘?’, ‘\’,
and ‘|’ are not allowed in file names. In addition, files with names ‘con’, ‘prn’, ‘aux’,
‘clock$’, ‘nul’, ‘com1’ to ‘com9’, and ‘lpt1’ to ‘lpt9’ after conversion to lower case and
stripping possible “extensions” (e.g., ‘lpt5.foo.bar’), are disallowed. Also, file names in
the same directory must not differ only by case (see the previous paragraph). In addition,
the basenames of ‘.Rd’ files may be used in URLs and so must be ASCII and not contain %.
For maximal portability filenames should only contain only ASCII characters not excluded
already (that is A-Za-z0-9._!#$%&+,;=@^(){}’[] — we exclude space as many utilities
do not accept spaces in file paths): non-English alphabetic characters cannot be guaranteed
to be supported in all locales. It would be good practice to avoid the shell metacharacters
(){}’[]$~: ~ is also used as part of ‘8.3’ filenames on Windows. In addition, packages
are normally distributed as tarballs, and these have a limit on path lengths: for maximal
portability 100 bytes.

A source package if possible should not contain binary executable files: they are not
portable, and a security risk if they are of the appropriate architecture. R CMD check will
warn about them4 unless they are listed (one filepath per line) in a file BinaryFiles at the
top level of the package. Note that CRAN will not accept submissions containing binary
files even if they are listed.

The R function package.skeleton can help to create the structure for a new package:
see its help page for details.

1.1.1 The DESCRIPTION file

The DESCRIPTION file contains basic information about the package in the following format:

4 false positives are possible, but only a handful have been seen so far.

https://www.gnu.org/prep/standards/standards.html#Documentation
https://www.gnu.org/prep/standards/standards.html#Documentation

Chapter 1: Creating R packages 5

� �
Package: pkgname

Version: 0.5-1

Date: 2015-01-01

Title: My First Collection of Functions

Authors@R: c(person("Joe", "Developer", role = c("aut", "cre"),

email = "Joe.Developer@some.domain.net"),

person("Pat", "Developer", role = "aut"),

person("A.", "User", role = "ctb",

email = "A.User@whereever.net"))

Author: Joe Developer [aut, cre],

Pat Developer [aut],

A. User [ctb]

Maintainer: Joe Developer <Joe.Developer@some.domain.net>

Depends: R (>= 3.1.0), nlme

Suggests: MASS

Description: A (one paragraph) description of what

the package does and why it may be useful.

License: GPL (>= 2)

URL: https://www.r-project.org, http://www.another.url

BugReports: https://pkgname.bugtracker.url
 	
The format is that of a version of a ‘Debian Control File’ (see the help for ‘read.dcf’ and
https://www.debian.org/doc/debian-policy/ch-controlfields.html: R does not re-
quire encoding in UTF-8 and does not support comments starting with ‘#’). Fields start
with an ASCII name immediately followed by a colon: the value starts after the colon and
a space. Continuation lines (for example, for descriptions longer than one line) start with
a space or tab. Field names are case-sensitive: all those used by R are capitalized.

For maximal portability, the DESCRIPTION file should be written entirely in ASCII — if
this is not possible it must contain an ‘Encoding’ field (see below).

Several optional fields take logical values: these can be specified as ‘yes’, ‘true’, ‘no’ or
‘false’: capitalized values are also accepted.

The ‘Package’, ‘Version’, ‘License’, ‘Description’, ‘Title’, ‘Author’, and
‘Maintainer’ fields are mandatory, all other fields are optional. Fields ‘Author’ and
‘Maintainer’ can be auto-generated from ‘Authors@R’, and may be omitted if the latter is
provided: however if they are not ASCII we recommend that they are provided.

The mandatory ‘Package’ field gives the name of the package. This should contain only
(ASCII) letters, numbers and dot, have at least two characters and start with a letter and
not end in a dot. If it needs explaining, this should be done in the ‘Description’ field (and
not the ‘Title’ field).

The mandatory ‘Version’ field gives the version of the package. This is a sequence of at
least two (and usually three) non-negative integers separated by single ‘.’ or ‘-’ characters.
The canonical form is as shown in the example, and a version such as ‘0.01’ or ‘0.01.0’
will be handled as if it were ‘0.1-0’. It is not a decimal number, so for example 0.9 < 0.75

since 9 < 75.

The mandatory ‘License’ field is discussed in the next subsection.

The mandatory ‘Title’ field should give a short description of the package. Some
package listings may truncate the title to 65 characters. It should use title case (that is, use
capitals for the principal words: tools::toTitleCase can help you with this), not use any
markup, not have any continuation lines, and not end in a period (unless part of . . .). Do

https://www.debian.org/doc/debian-policy/ch-controlfields.html

Chapter 1: Creating R packages 6

not repeat the package name: it is often used prefixed by the name. Refer to other packages
and external software in single quotes, and to book titles (and similar) in double quotes.

The mandatory ‘Description’ field should give a comprehensive description of what the
package does. One can use several (complete) sentences, but only one paragraph. It should
be intelligible to all the intended readership (e.g. for a CRAN package to all CRAN users).
It is good practice not to start with the package name, ‘This package’ or similar. As with
the ‘Title’ field, double quotes should be used for quotations (including titles of books and
articles), and single quotes for non-English usage, including names of other packages and
external software. This field should also be used for explaining the package name if nec-
essary. URLs should be enclosed in angle brackets, e.g. ‘<https://www.r-project.org>’:
see also Section 1.1.8 [Specifying URLs], page 21.

The mandatory ‘Author’ field describes who wrote the package. It is a plain text field
intended for human readers, but not for automatic processing (such as extracting the email
addresses of all listed contributors: for that use ‘Authors@R’). Note that all significant
contributors must be included: if you wrote an R wrapper for the work of others included
in the src directory, you are not the sole (and maybe not even the main) author.

The mandatory ‘Maintainer’ field should give a single name followed by a valid (RFC
2822) email address in angle brackets. It should not end in a period or comma. This field
is what is reported by the maintainer function and used by bug.report. For a CRAN

package it should be a person, not a mailing list and not a corporate entity: do ensure that
it is valid and will remain valid for the lifetime of the package.

Note that the display name (the part before the address in angle brackets) should be
enclosed in double quotes if it contains non-alphanumeric characters such as comma or
period. (The current standard, RFC 5322, allows periods but RFC 2822 did not.)

Both ‘Author’ and ‘Maintainer’ fields can be omitted if a suitable ‘Authors@R’ field
is given. This field can be used to provide a refined and machine-readable description of
the package “authors” (in particular specifying their precise roles), via suitable R code. It
should create an object of class "person", by either a call to person or a series of calls (one
per “author”) concatenated by c(): see the example DESCRIPTION file above. The roles
can include ‘"aut"’ (author) for full authors, ‘"cre"’ (creator) for the package maintainer,
and ‘"ctb"’ (contributor) for other contributors, ‘"cph"’ (copyright holder, which should be
the legal name for an institution or corporate body), among others. See ?person for more
information. Note that no role is assumed by default. Auto-generated package citation
information takes advantage of this specification. The ‘Author’ and ‘Maintainer’ fields are
auto-generated from it if needed when building5 or installing.

An optional ‘Copyright’ field can be used where the copyright holder(s) are not the
authors. If necessary, this can refer to an installed file: the convention is to use file
inst/COPYRIGHTS.

The optional ‘Date’ field gives the release date of the current version of the package.
It is strongly recommended6 to use the ‘yyyy-mm-dd’ format conforming to the ISO 8601
standard.

The ‘Depends’, ‘Imports’, ‘Suggests’, ‘Enhances’, ‘LinkingTo’ and
‘Additional_repositories’ fields are discussed in a later subsection.

5 at least if this is done in a locale which matches the package encoding.
6 and required by CRAN, so checked by R CMD check --as-cran.

Chapter 1: Creating R packages 7

Dependencies external to the R system should be listed in the ‘SystemRequirements’
field, possibly amplified in a separate README file. This includes specifying a non-default
C++ standard and the need for GNU make.

The ‘URL’ field may give a list of URLs separated by commas or whitespace, for example
the homepage of the author or a page where additional material describing the software can
be found. These URLs are converted to active hyperlinks in CRAN package listings. See
Section 1.1.8 [Specifying URLs], page 21.

The ‘BugReports’ field may contain a single URL to which bug reports about the package
should be submitted. This URL will be used by bug.report instead of sending an email
to the maintainer. A browser is opened for a ‘http://’ or ‘https://’ URL. To specify
another email address for bug reports, use ‘Contact’ instead: however bug.report will try
to extract an email address (preferably from a ‘mailto:’ URL or enclosed in angle brackets)
from ‘BugReports’.

Base and recommended packages (i.e., packages contained in the R source distribution
or available from CRAN and recommended to be included in every binary distribution of R)
have a ‘Priority’ field with value ‘base’ or ‘recommended’, respectively. These priorities
must not be used by other packages.

A ‘Collate’ field can be used for controlling the collation order for the R code files
in a package when these are processed for package installation. The default is to collate
according to the ‘C’ locale. If present, the collate specification must list all R code files
in the package (taking possible OS-specific subdirectories into account, see Section 1.1.5
[Package subdirectories], page 15) as a whitespace separated list of file paths relative to
the R subdirectory. Paths containing white space or quotes need to be quoted. An OS-
specific collation field (‘Collate.unix’ or ‘Collate.windows’) will be used in preference to
‘Collate’.

The ‘LazyData’ logical field controls whether the R datasets use lazy-loading. A
‘LazyLoad’ field was used in versions prior to 2.14.0, but now is ignored.

The ‘KeepSource’ logical field controls if the package code is sourced using keep.source
= TRUE or FALSE: it might be needed exceptionally for a package designed to always be used
with keep.source = TRUE.

The ‘ByteCompile’ logical field controls if the package R code is to be byte-compiled on
installation: the default is to byte-compile. This can be overridden by installing with flag
--no-byte-compile.

The ‘UseLTO’ logical field is used on a Unix-alike to indicate if source code in the package
is to be compiled with Link-Time Optimization (see Section 4.5 [Using Link-time Optimiza-
tion], page 127) if R was installed with --enable-lto (default true) or --enable-lto=R

(default false). This can be overridden by by the flags --use-LTO and --no-use-LTO. LTO
is said to give most size and performance improvements for large and complex (heavily
templated) C++ projects.

The ‘StagedInstall’ logical field controls if package installation is ‘staged’, that is done
to a temporary location and moved to the final location when successfully completed. This
field was introduced in R 3.6.0 and it true by default: it is considered to be a temporary
measure which may be withdrawn in future.

The ‘ZipData’ logical field has been ignored since R 2.13.0.

Chapter 1: Creating R packages 8

The ‘Biarch’ logical field is used on Windows to select the INSTALL option --force-

biarch for this package.

The ‘BuildVignettes’ logical field can be set to a false value to stop R CMD build from
attempting to build the vignettes, as well as preventing7 R CMD check from testing this.
This should only be used exceptionally, for example if the PDFs include large figures which
are not part of the package sources (and hence only in packages which do not have an Open
Source license).

The ‘VignetteBuilder’ field names (in a comma-separated list) packages that provide
an engine for building vignettes. These may include the current package, or ones listed
in ‘Depends’, ‘Suggests’ or ‘Imports’. The utils package is always implicitly appended.
See Section 1.4.2 [Non-Sweave vignettes], page 48, for details. Note that if, for exam-
ple, a vignette has engine ‘knitr::rmarkdown’, then knitr (https://CRAN.R-project.
org/package=knitr) provides the engine but both knitr and rmarkdown (https://CRAN.
R-project.org/package=rmarkdown) are needed for using it, so both these packages need
to be in the ‘VignetteBuilder’ field and at least suggested (as rmarkdown is only sug-
gested by knitr, and hence not available automatically along with it). Many packages us-
ing knitr (https://CRAN.R-project.org/package=knitr) also need the package formatR
(https://CRAN.R-project.org/package=formatR) which it suggests and so the user pack-
age needs to do so too and include this in ‘VignetteBuilder’.

If the DESCRIPTION file is not entirely in ASCII it should contain an ‘Encoding’ field
specifying an encoding. This is used as the encoding of the DESCRIPTION file itself and
of the R and NAMESPACE files, and as the default encoding of .Rd files. The examples are
assumed to be in this encoding when running R CMD check, and it is used for the encoding
of the CITATION file. Only encoding names latin1, latin2 and UTF-8 are known to be
portable. (Do not specify an encoding unless one is actually needed: doing so makes the
package less portable. If a package has a specified encoding, you should run R CMD build

etc in a locale using that encoding.)

The ‘NeedsCompilation’ field should be set to "yes" if the package contains native code
which needs to be compiled, otherwise "no" (when the package could be installed from
source on any platform without additional tools). This is used by install.packages(type

= "both") in R >= 2.15.2 on platforms where binary packages are the norm: it is normally
set by R CMD build or the repository assuming compilation is required if and only if the
package has a src directory.

The ‘OS_type’ field specifies the OS(es) for which the package is intended. If present, it
should be one of unix or windows, and indicates that the package can only be installed on
a platform with ‘.Platform$OS.type’ having that value.

The ‘Type’ field specifies the type of the package: see Section 1.10 [Package types],
page 79.

One can add subject classifications for the content of the package using the fields
‘Classification/ACM’ or ‘Classification/ACM-2012’ (using the Computing Classifica-
tion System of the Association for Computing Machinery, https://www.acm.org/

publications/class-2012; the former refers to the 1998 version), ‘Classification/JEL’
(the Journal of Economic Literature Classification System, https://www.aeaweb.org/

7 But it is checked for Open Source packages by R CMD check --as-cran.

https://CRAN.R-project.org/package=knitr
https://CRAN.R-project.org/package=knitr
https://CRAN.R-project.org/package=rmarkdown
https://CRAN.R-project.org/package=rmarkdown
https://CRAN.R-project.org/package=knitr
https://CRAN.R-project.org/package=formatR
https://CRAN.R-project.org/package=formatR
https://www.acm.org/publications/class-2012
https://www.acm.org/publications/class-2012
https://www.aeaweb.org/econlit/jelCodes.php
https://www.aeaweb.org/econlit/jelCodes.php

Chapter 1: Creating R packages 9

econlit/jelCodes.php, or ‘Classification/MSC’ or ‘Classification/MSC-2010’ (the
Mathematics Subject Classification of the American Mathematical Society, https://
mathscinet.ams.org/msc/msc2010.html; the former refers to the 2000 version). The sub-
ject classifications should be comma-separated lists of the respective classification codes,
e.g., ‘Classification/ACM: G.4, H.2.8, I.5.1’.

A ‘Language’ field can be used to indicate if the package documentation is not in
English: this should be a comma-separated list of standard (not private use or grandfa-
thered) IETF language tags as currently defined by RFC 5646 (https://tools.ietf.org/
html/rfc5646, see also https://en.wikipedia.org/wiki/IETF_language_tag), i.e., use
language subtags which in essence are 2-letter ISO 639-1 (https://en.wikipedia.org/
wiki/ISO_639-1) or 3-letter ISO 639-3 (https://en.wikipedia.org/wiki/ISO_639-3)
language codes.

An ‘RdMacros’ field can be used to hold a comma-separated list of packages from which
the current package will import Rd macro definitions. These package should also be listed in
‘Imports’ (or ‘Depends’). The macros in these packages will be imported after the system
macros, in the order listed in the ‘RdMacros’ field, before any macro definitions in the
current package are loaded. Macro definitions in individual .Rd files in the man directory
are loaded last, and are local to later parts of that file. In case of duplicates, the last
loaded definition will be used.8 Both R CMD Rd2pdf and R CMD Rdconv have an optional flag
--RdMacros=pkglist. The option is also a comma-separated list of package names, and
has priority over the value given in DESCRIPTION. Packages using Rd macros should depend
on R 3.2.0 or later.

Note: There should be no ‘Built’ or ‘Packaged’ fields, as these are added by
the package management tools.

There is no restriction on the use of other fields not mentioned here (but using other
capitalizations of these field names would cause confusion). Fields Note, Contact (for con-
tacting the authors/developers9) and MailingList are in common use. Some repositories
(including CRAN and R-forge) add their own fields.

1.1.2 Licensing

Licensing for a package which might be distributed is an important but potentially complex
subject.

It is very important that you include license information! Otherwise, it may not even be
legally correct for others to distribute copies of the package, let alone use it.

The package management tools use the concept of ‘free or open source software’ (FOSS,
e.g., https://en.wikipedia.org/wiki/FOSS) licenses: the idea being that some users of
R and its packages want to restrict themselves to such software. Others need to ensure
that there are no restrictions stopping them using a package, e.g. forbidding commercial or
military use. It is a central tenet of FOSS software that there are no restrictions on users
nor usage.

Do not use the ‘License’ field for information on copyright holders: if needed, use a
‘Copyright’ field.

8 Duplicate definitions may trigger a warning: see Section 2.13 [User-defined macros], page 98.
9 bug.report will try to extract an email address from a Contact field if there is no BugReports field.

https://www.aeaweb.org/econlit/jelCodes.php
https://www.aeaweb.org/econlit/jelCodes.php
https://mathscinet.ams.org/msc/msc2010.html
https://mathscinet.ams.org/msc/msc2010.html
https://tools.ietf.org/html/rfc5646
https://tools.ietf.org/html/rfc5646
https://en.wikipedia.org/wiki/IETF_language_tag
https://en.wikipedia.org/wiki/ISO_639-1
https://en.wikipedia.org/wiki/ISO_639-1
https://en.wikipedia.org/wiki/ISO_639-3
https://en.wikipedia.org/wiki/FOSS

Chapter 1: Creating R packages 10

The mandatory ‘License’ field in the DESCRIPTION file should specify the license of the
package in a standardized form. Alternatives are indicated via vertical bars. Individual
specifications must be one of

• One of the “standard” short specifications

GPL-2 GPL-3 LGPL-2 LGPL-2.1 LGPL-3 AGPL-3 Artistic-2.0

BSD_2_clause BSD_3_clause MIT

as made available via https://www.R-project.org/Licenses/ and contained in sub-
directory share/licenses of the R source or home directory.

• The names or abbreviations of other licenses contained in the license data base in file
share/licenses/license.db in the R source or home directory, possibly (for ver-
sioned licenses) followed by a version restriction of the form ‘(op v)’ with ‘op’ one
of the comparison operators ‘<’, ‘<=’, ‘>’, ‘>=’, ‘==’, or ‘!=’ and ‘v’ a numeric version
specification (strings of non-negative integers separated by ‘.’), possibly combined via
‘,’ (see below for an example). For versioned licenses, one can also specify the name
followed by the version, or combine an existing abbreviation and the version with a ‘-’.

Abbreviations GPL and LGPL are ambiguous and usually10 taken to mean any version
of the license: but it is better not to use them.

• One of the strings ‘file LICENSE’ or ‘file LICENCE’ referring to a file named LICENSE

or LICENCE in the package (source and installation) top-level directory.

• The string ‘Unlimited’, meaning that there are no restrictions on distribution or use
other than those imposed by relevant laws (including copyright laws).

If a package license restricts a base license (where permitted, e.g., using GPL-3 or AGPL-
3 with an attribution clause), the additional terms should be placed in file LICENSE (or
LICENCE), and the string ‘+ file LICENSE’ (or ‘+ file LICENCE’, respectively) should be
appended to the corresponding individual license specification. Note that several commonly
used licenses do not permit restrictions: this includes GPL-2 and hence any specification
which includes it.

Examples of standardized specifications include

License: GPL-2

License: LGPL (>= 2.0, < 3) | Mozilla Public License

License: GPL-2 | file LICENCE

License: GPL (>= 2) | BSD_3_clause + file LICENSE

License: Artistic-2.0 | AGPL-3 + file LICENSE

Please note in particular that “Public domain” is not a valid license, since it is not recognized
in some jurisdictions.

Please ensure that the license you choose also covers any dependencies (including system
dependencies) of your package: it is particularly important that any restrictions on the use
of such dependencies are evident to people reading your DESCRIPTION file.

Fields ‘License_is_FOSS’ and ‘License_restricts_use’ may be added by repositories
where information cannot be computed from the name of the license. ‘License_is_FOSS:
yes’ is used for licenses which are known to be FOSS, and ‘License_restricts_use’ can

10 CRAN expands them to e.g. GPL-2 | GPL-3.

https://www.R-project.org/Licenses/

Chapter 1: Creating R packages 11

have values ‘yes’ or ‘no’ if the LICENSE file is known to restrict users or usage, or known
not to. These are used by, e.g., the available.packages filters.

The optional file LICENSE/LICENCE contains a copy of the license of the package. To
avoid any confusion only include such a file if it is referred to in the ‘License’ field of the
DESCRIPTION file.

Whereas you should feel free to include a license file in your source distribution, please
do not arrange to install yet another copy of the GNU COPYING or COPYING.LIB files but
refer to the copies on https://www.R-project.org/Licenses/ and included in the R dis-
tribution (in directory share/licenses). Since files named LICENSE or LICENCE will be
installed, do not use these names for standard license files. To include comments about the
licensing rather than the body of a license, use a file named something like LICENSE.note.

A few “standard” licenses are rather license templates which need additional information
to be completed via ‘+ file LICENSE’.

1.1.3 Package Dependencies

The ‘Depends’ field gives a comma-separated list of package names which this package
depends on. Those packages will be attached before the current package when library

or require is called. Each package name may be optionally followed by a comment in
parentheses specifying a version requirement. The comment should contain a comparison
operator, whitespace and a valid version number, e.g. ‘MASS (>= 3.1-20)’.

The ‘Depends’ field can also specify a dependence on a certain version of R — e.g., if the
package works only with R version 4.0.0 or later, include ‘R (>= 4.0)’ in the ‘Depends’ field.
(As here, trailing zeroes can be dropped and it is recommended that they are.) You can
also require a certain SVN revision for R-devel or R-patched, e.g. ‘R (>= 2.14.0), R (>=

r56550)’ requires a version later than R-devel of late July 2011 (including released versions
of 2.14.0).

It makes no sense to declare a dependence on R without a version specification, nor on
the package base: this is an R package and package base is always available.

A package or ‘R’ can appear more than once in the ‘Depends’ field, for example to give
upper and lower bounds on acceptable versions.

It is inadvisable to use a dependence on R with patchlevel (the third digit) other than
zero. Doing so with packages which others depend on will cause the other packages to
become unusable under earlier versions in the series, and e.g. versions 4.x.1 are widely used
throughout the Northern Hemisphere academic year.

Both library and the R package checking facilities use this field: hence it is an error
to use improper syntax or misuse the ‘Depends’ field for comments on other software that
might be needed. The R INSTALL facilities check if the version of R used is recent enough
for the package being installed, and the list of packages which is specified will be attached
(after checking version requirements) before the current package.

The ‘Imports’ field lists packages whose namespaces are imported from (as specified in
the NAMESPACE file) but which do not need to be attached. Namespaces accessed by the ‘::’
and ‘:::’ operators must be listed here, or in ‘Suggests’ or ‘Enhances’ (see below). Ideally
this field will include all the standard packages that are used, and it is important to include
S4-using packages (as their class definitions can change and the DESCRIPTION file is used to
decide which packages to re-install when this happens). Packages declared in the ‘Depends’

https://www.R-project.org/Licenses/

Chapter 1: Creating R packages 12

field should not also be in the ‘Imports’ field. Version requirements can be specified and
are checked when the namespace is loaded.

The ‘Suggests’ field uses the same syntax as ‘Depends’ and lists packages that are
not necessarily needed. This includes packages used only in examples, tests or vignettes
(see Section 1.4 [Writing package vignettes], page 45), and packages loaded in the body
of functions. E.g., suppose an example11 from package foo uses a dataset from package
bar. Then it is not necessary to have bar use foo unless one wants to execute all the
examples/tests/vignettes: it is useful to have bar, but not necessary. Version requirements
can be specified but should be checked by the code which uses the package.

Finally, the ‘Enhances’ field lists packages “enhanced” by the package at hand, e.g., by
providing methods for classes from these packages, or ways to handle objects from these
packages (so several packages have ‘Enhances: chron’ because they can handle datetime ob-
jects from chron (https://CRAN.R-project.org/package=chron) even though they prefer
R’s native datetime functions). Version requirements can be specified, but are currently not
used. Such packages cannot be required to check the package: any tests which use them
must be conditional on the presence of the package. (If your tests use e.g. a dataset from
another package it should be in ‘Suggests’ and not ‘Enhances’.)

The general rules are

• A package should be listed in only one of these fields.

• Packages whose namespace only is needed to load the package using library(pkgname)
should be listed in the ‘Imports’ field and not in the ‘Depends’ field. Packages listed
in import or importFrom directives in the NAMESPACE file should almost always be in
‘Imports’ and not ‘Depends’.

• Packages that need to be attached to successfully load the package using
library(pkgname) must be listed in the ‘Depends’ field.

• All packages that are needed12 to successfully run R CMD check on the package must be
listed in one of ‘Depends’ or ‘Suggests’ or ‘Imports’. Packages used to run examples or
tests conditionally (e.g. via if(require(pkgname))) should be listed in ‘Suggests’ or
‘Enhances’. (This allows checkers to ensure that all the packages needed for a complete
check are installed.)

• Packages needed to use datasets from the package should be in ‘Imports’: this includes
those needed to define S4 classes used.

In particular, packages providing “only” data for examples or vignettes should be listed in
‘Suggests’ rather than ‘Depends’ in order to make lean installations possible.

Version dependencies in the ‘Depends’ and ‘Imports’ fields are used by library when
it loads the package, and install.packages checks versions for the ‘Depends’, ‘Imports’
and (for dependencies = TRUE) ‘Suggests’ fields.

11 even one wrapped in \donttest.
12 This includes all packages directly called by library and require calls, as well as data obtained via

data(theirdata, package = "somepkg") calls: R CMD check will warn about all of these. But there are
subtler uses which it may not detect: e.g. if package A uses package B and makes use of functionality in
package B which uses package C which package B suggests or enhances, then package C needs to be in the
‘Suggests’ list for package A. Nor will undeclared uses in included files be reported, nor unconditional
uses of packages listed under ‘Enhances’. R CMD check --as-cran will detect more of the subtler uses.

https://CRAN.R-project.org/package=chron

Chapter 1: Creating R packages 13

It is important that the information in these fields is complete and accurate: it is for
example used to compute which packages depend on an updated package and which packages
can safely be installed in parallel.

This scheme was developed before all packages had namespaces (R 2.14.0 in October
2011), and good practice changed once that was in place.

Field ‘Depends’ should nowadays be used rarely, only for packages which are intended to
be put on the search path to make their facilities available to the end user (and not to the
package itself): for example it makes sense that a user of package latticeExtra (https://
CRAN.R-project.org/package=latticeExtra) would want the functions of package lattice
(https://CRAN.R-project.org/package=lattice) made available.

Almost always packages mentioned in ‘Depends’ should also be imported from in the
NAMESPACE file: this ensures that any needed parts of those packages are available when
some other package imports the current package.

The ‘Imports’ field should not contain packages which are not imported from (via the
NAMESPACE file or :: or ::: operators), as all the packages listed in that field need to be
installed for the current package to be installed. (This is checked by R CMD check.)

R code in the package should call library or require only exceptionally. Such calls are
never needed for packages listed in ‘Depends’ as they will already be on the search path. It
used to be common practice to use require calls for packages listed in ‘Suggests’ in func-
tions which used their functionality, but nowadays it is better to access such functionality
via :: calls.

A package that wishes to make use of header files in other packages to compile its
C/C++ code needs to declare them as a comma-separated list in the field ‘LinkingTo’ in
the DESCRIPTION file. For example

LinkingTo: link1, link2

The ‘LinkingTo’ field can have a version requirement which is checked at installation.

Specifying a package in ‘LinkingTo’ suffices if these are C/C++ headers containing source
code or static linking is done at installation: the packages do not need to be (and usually
should not be) listed in the ‘Depends’ or ‘Imports’ fields. This includes CRAN package
BH (https://CRAN.R-project.org/package=BH) and almost all users of RcppArmadillo
(https://CRAN.R-project.org/package=RcppArmadillo) and RcppEigen (https://
CRAN.R-project.org/package=RcppEigen). Note that ‘LinkingTo’ applies only to instal-
lation: if a packages wishes to use headers to compile code in tests or vignettes the package
providing them needs to be listed in ‘Suggests’ or perhaps ‘Depends’.

For another use of ‘LinkingTo’ see Section 5.4.3 [Linking to native routines in other
packages], page 141.

The ‘Additional_repositories’ field is a comma-separated list of repository URLs
where the packages named in the other fields may be found. It is currently used by R CMD

check to check that the packages can be found, at least as source packages (which can be
installed on any platform).

1.1.3.1 Suggested packages

Note that someone wanting to run the examples/tests/vignettes may not have a suggested
package available (and it may not even be possible to install it for that platform). The

https://CRAN.R-project.org/package=latticeExtra
https://CRAN.R-project.org/package=latticeExtra
https://CRAN.R-project.org/package=lattice
https://CRAN.R-project.org/package=lattice
https://CRAN.R-project.org/package=BH
https://CRAN.R-project.org/package=RcppArmadillo
https://CRAN.R-project.org/package=RcppArmadillo
https://CRAN.R-project.org/package=RcppEigen
https://CRAN.R-project.org/package=RcppEigen

Chapter 1: Creating R packages 14

recommendation used to be to make their use conditional via if(require("pkgname")):
this is OK if that conditioning is done in examples/tests/vignettes, although using
if(requireNamespace("pkgname")) is preferred, if possible.

However, using require for conditioning in package code is not good practice as it alters
the search path for the rest of the session and relies on functions in that package not being
masked by other require or library calls. It is better practice to use code like

if (requireNamespace("rgl", quietly = TRUE)) {

rgl::plot3d(...)

} else {

do something else not involving rgl.

}

Note the use of rgl:: as that object would not necessarily be visible (and if it is, it need not
be the one from that namespace: plot3d occurs in several other packages). If the intention
is to give an error if the suggested package is not available, simply use e.g. rgl::plot3d.

If the conditional code produces print output, function withAutoprint can be useful.

Note that the recommendation to use suggested packages conditionally in tests does also
apply to packages used to manage test suites: a notorious example was testthat (https://
CRAN.R-project.org/package=testthat) which in version 1.0.0 contained illegal C++ code
and hence could not be installed on standards-compliant platforms.

Some people have assumed that a ‘recommended’ package in ‘Suggests’ can safely be
used unconditionally, but this is not so. (R can be installed without recommended packages,
and which packages are ‘recommended’ may change.)

As noted above, packages in ‘Enhances’ must be used conditionally and hence objects
within them should always be accessed via ::.

On most systems, R CMD check can be run with only those packages declared in ‘Depends’
and ‘Imports’ by setting environment variable _R_CHECK_DEPENDS_ONLY_=true, whereas
setting _R_CHECK_SUGGESTS_ONLY_=true also allows suggested packages, but not those in
‘Enhances’ nor those not mentioned in the DESCRIPTION file. It is recommended that a
package is checked with each of these set, as well as with neither.

WARNING: Be extremely careful if you do things which would be run at installation
time depending on whether suggested packages are available or not—this includes top-level
code in R code files, .onLoad functions and the definitions of S4 classes and methods. The
problem is that once a namespace of a suggested package is loaded, references to it may
be captured in the installed package (most commonly in S4 methods), but the suggested
package may not be available when the installed package is used (which especially for binary
packages might be on a different machine). Even worse, the problems might not be confined
to your package, for the namespaces of your suggested packages will also be loaded whenever
any package which imports yours is installed and so may be captured there.

1.1.4 The INDEX file

The optional file INDEX contains a line for each sufficiently interesting object in the package,
giving its name and a description (functions such as print methods not usually called explic-
itly might not be included). Normally this file is missing and the corresponding informa-
tion is automatically generated from the documentation sources (using tools::Rdindex())
when installing from source.

https://CRAN.R-project.org/package=testthat
https://CRAN.R-project.org/package=testthat

Chapter 1: Creating R packages 15

The file is part of the information given by library(help = pkgname).

Rather than editing this file, it is preferable to put customized information about the
package into an overview help page (see Section 2.1.4 [Documenting packages], page 89)
and/or a vignette (see Section 1.4 [Writing package vignettes], page 45).

1.1.5 Package subdirectories

The R subdirectory contains R code files, only. The code files to be installed must start
with an ASCII (lower or upper case) letter or digit and have one of the extensions13 .R, .S,
.q, .r, or .s. We recommend using .R, as this extension seems to be not used by any other
software. It should be possible to read in the files using source(), so R objects must be
created by assignments. Note that there need be no connection between the name of the
file and the R objects created by it. Ideally, the R code files should only directly assign
R objects and definitely should not call functions with side effects such as require and
options. If computations are required to create objects these can use code ‘earlier’ in the
package (see the ‘Collate’ field) plus functions in the ‘Depends’ packages provided that the
objects created do not depend on those packages except via namespace imports.

Extreme care is needed if top-level computations are made to depend on availability or
not of other packages. In particular this applies to setMethods and setClass calls.

Two exceptions are allowed: if the R subdirectory contains a file sysdata.rda (a
saved image of one or more R objects: please use suitable compression as suggested by
tools::resaveRdaFiles, and see also the ‘SysDataCompression’ DESCRIPTION field.)
this will be lazy-loaded into the namespace environment – this is intended for system
datasets that are not intended to be user-accessible via data. Also, files ending in ‘.in’
will be allowed in the R directory to allow a configure script to generate suitable files.

Only ASCII characters (and the control characters tab, formfeed, LF and CR) should be
used in code files. Other characters are accepted in comments14, but then the comments
may not be readable in e.g. a UTF-8 locale. Non-ASCII characters in object names will
normally15 fail when the package is installed. Any byte will be allowed in a quoted character
string but ‘\uxxxx’ escapes should be used for non-ASCII characters. However, non-ASCII

character strings may not be usable in some locales and may display incorrectly in others.

Various R functions in a package can be used to initialize and clean up. See Section 1.5.3
[Load hooks], page 51.

The man subdirectory should contain (only) documentation files for the objects in the
package in R documentation (Rd) format. The documentation filenames must start with
an ASCII (lower or upper case) letter or digit and have the extension .Rd (the default) or
.rd. Further, the names must be valid in ‘file://’ URLs, which means16 they must be
entirely ASCII and not contain ‘%’. See Chapter 2 [Writing R documentation files], page 81,
for more information. Note that all user-level objects in a package should be documented;

13 Extensions .S and .s arise from code originally written for S(-PLUS), but are commonly used for
assembler code. Extension .q was used for S, which at one time was tentatively called QPE.

14 but they should be in the encoding declared in the DESCRIPTION file.
15 This is true for OSes which implement the ‘C’ locale: Windows’ idea of the ‘C’ locale uses the WinAnsi

charset.
16 More precisely, they can contain the English alphanumeric characters and the symbols ‘$ - _ . + ! ’ (

) , ; = &’.

Chapter 1: Creating R packages 16

if a package pkg contains user-level objects which are for “internal” use only, it should
provide a file pkg-internal.Rd which documents all such objects, and clearly states that
these are not meant to be called by the user. See e.g. the sources for package grid in
the R distribution. Note that packages which use internal objects extensively should not
export those objects from their namespace, when they do not need to be documented (see
Section 1.5 [Package namespaces], page 49).

Having a man directory containing no documentation files may give an installation error.

The man subdirectory may contain a subdirectory named macros; this will contain source
for user-defined Rd macros. (See Section 2.13 [User-defined macros], page 98.) These use the
Rd format, but may not contain anything but macro definitions, comments and whitespace.

The R and man subdirectories may contain OS-specific subdirectories named unix or
windows.

The sources and headers for the compiled code are in src, plus optionally a file Makevars
or Makefile. When a package is installed using R CMD INSTALL, make is used to control
compilation and linking into a shared object for loading into R. There are default make

variables and rules for this (determined when R is configured and recorded in R_HOME/etcR_

ARCH/Makeconf), providing support for C, C++, fixed- or free-form Fortran, Objective C
and Objective C++17 with associated extensions .c, .cc or .cpp, .f, .f90 or .f95, .m, and
.mm, respectively. We recommend using .h for headers, also for C++18 or Fortran 9x include
files. (Use of extension .C for C++ is no longer supported.) Files in the src directory should
not be hidden (start with a dot), and hidden files will under some versions of R be ignored.

It is not portable (and may not be possible at all) to mix all these languages in a single
package. Because R itself uses it, we know that C and fixed-form Fortran can be used
together, and mixing C, C++ and Fortran usually work for the platform’s native compilers.

If your code needs to depend on the platform there are certain defines which can used
in C or C++. On all Windows builds (even 64-bit ones) ‘_WIN32’ will be defined: on 64-bit
Windows builds also ‘_WIN64’. On macOS ‘__APPLE__’ is defined19; for an ‘Apple Silicon’
platform, test for both ‘__APPLE__’ and ‘__arm64__’.

The default rules can be tweaked by setting macros20 in a file src/Makevars (see
Section 1.2.1 [Using Makevars], page 26). Note that this mechanism should be general
enough to eliminate the need for a package-specific src/Makefile. If such a file is to be
distributed, considerable care is needed to make it general enough to work on all R plat-
forms. If it has any targets at all, it should have an appropriate first target named ‘all’ and
a (possibly empty) target ‘clean’ which removes all files generated by running make (to be
used by ‘R CMD INSTALL --clean’ and ‘R CMD INSTALL --preclean’). There are platform-
specific file names on Windows: src/Makevars.win takes precedence over src/Makevars
and src/Makefile.win must be used. Some make programs require makefiles to have a
complete final line, including a newline.

17 either or both of which may not be supported on particular platforms
18 Using .hpp is not guaranteed to be portable.
19 There is also ‘__APPLE_CC__’, but that indicates a compiler with Apple-specific features not the OS,

although for historical reasons is is defined by LLVM clang. It is used in Rinlinedfuns.h.
20 the POSIX terminology, called ‘make variables’ by GNU make.

Chapter 1: Creating R packages 17

A few packages use the src directory for purposes other than making a shared
object (e.g. to create executables). Such packages should have files src/Makefile and
src/Makefile.win (unless intended for only Unix-alikes or only Windows).

In very special cases packages may create binary files other than the shared objects/DLLs
in the src directory. Such files will not be installed in a multi-architecture setting since R

CMD INSTALL --libs-only is used to merge multiple sub-architectures and it only copies
shared objects/DLLs. If a package wants to install other binaries (for example executable
programs), it should provide an R script src/install.libs.R which will be run as part of
the installation in the src build directory instead of copying the shared objects/DLLs. The
script is run in a separate R environment containing the following variables: R_PACKAGE_

NAME (the name of the package), R_PACKAGE_SOURCE (the path to the source directory of
the package), R_PACKAGE_DIR (the path of the target installation directory of the package),
R_ARCH (the arch-dependent part of the path, often empty), SHLIB_EXT (the extension of
shared objects) and WINDOWS (TRUE on Windows, FALSE elsewhere). Something close to the
default behavior could be replicated with the following src/install.libs.R file:

files <- Sys.glob(paste0("*", SHLIB_EXT))

dest <- file.path(R_PACKAGE_DIR, paste0(’libs’, R_ARCH))

dir.create(dest, recursive = TRUE, showWarnings = FALSE)

file.copy(files, dest, overwrite = TRUE)

if(file.exists("symbols.rds"))

file.copy("symbols.rds", dest, overwrite = TRUE)

On the other hand, executable programs could be installed along the lines of

execs <- c("one", "two", "three")

if(WINDOWS) execs <- paste0(execs, ".exe")

if (any(file.exists(execs))) {

dest <- file.path(R_PACKAGE_DIR, paste0(’bin’, R_ARCH))

dir.create(dest, recursive = TRUE, showWarnings = FALSE)

file.copy(execs, dest, overwrite = TRUE)

}

Note the use of architecture-specific subdirectories of bin where needed.

The data subdirectory is for data files: See Section 1.1.6 [Data in packages], page 19.

The demo subdirectory is for R scripts (for running via demo()) that demonstrate some
of the functionality of the package. Demos may be interactive and are not checked automat-
ically, so if testing is desired use code in the tests directory to achieve this. The script files
must start with a (lower or upper case) letter and have one of the extensions .R or .r. If
present, the demo subdirectory should also have a 00Index file with one line for each demo,
giving its name and a description separated by a tab or at least three spaces. (This index
file is not generated automatically.) Note that a demo does not have a specified encoding
and so should be an ASCII file (see Section 1.6.3 [Encoding issues], page 67). Function
demo() will use the package encoding if there is one, but this is mainly useful for non-ASCII

comments.

The contents of the inst subdirectory will be copied recursively to the installation
directory. Subdirectories of inst should not interfere with those used by R (currently, R,
data, demo, exec, libs, man, help, html and Meta, and earlier versions used latex, R-ex).
The copying of the inst happens after src is built so its Makefile can create files to be

Chapter 1: Creating R packages 18

installed. To exclude files from being installed, one can specify a list of exclude patterns
in file .Rinstignore in the top-level source directory. These patterns should be Perl-like
regular expressions (see the help for regexp in R for the precise details), one per line, to
be matched case-insensitively against the file and directory paths, e.g. doc/.*[.]png$ will
exclude all PNG files in inst/doc based on the extension.

Note that with the exceptions of INDEX, LICENSE/LICENCE and NEWS, information files
at the top level of the package will not be installed and so not be known to users of
Windows and macOS compiled packages (and not seen by those who use R CMD INSTALL

or install.packages() on the tarball). So any information files you wish an end user to
see should be included in inst. Note that if the named exceptions also occur in inst, the
version in inst will be that seen in the installed package.

Things you might like to add to inst are a CITATION file for use by the citation

function, and a NEWS.Rd file for use by the news function. See its help page for the specific
format restrictions of the NEWS.Rd file.

Another file sometimes needed in inst is AUTHORS or COPYRIGHTS to specify the authors
or copyright holders when this is too complex to put in the DESCRIPTION file.

Subdirectory tests is for additional package-specific test code, similar to the specific
tests that come with the R distribution. Test code can either be provided directly in a
.R (or .r as from R 3.4.0) file, or via a .Rin file containing code which in turn creates
the corresponding .R file (e.g., by collecting all function objects in the package and then
calling them with the strangest arguments). The results of running a .R file are written
to a .Rout file. If there is a corresponding21 .Rout.save file, these two are compared,
with differences being reported but not causing an error. The directory tests is copied
to the check area, and the tests are run with the copy as the working directory and with
R_LIBS set to ensure that the copy of the package installed during testing will be found
by library(pkg_name). Note that the package-specific tests are run in a vanilla R session
without setting the random-number seed, so tests which use random numbers will need to
set the seed to obtain reproducible results (and it can be helpful to do so in all cases, to
avoid occasional failures when tests are run).

If directory tests has a subdirectory Examples containing a file pkg-Ex.Rout.save,
this is compared to the output file for running the examples when the latter are checked.
Reference output should be produced without having the --timings option set (and note
that --as-cran sets it).

If reference output is included for examples, tests or vignettes do make sure that it is fully
reproducible, as it will be compared verbatim to that produced in a check run, unless the
‘IGNORE_RDIFF’ markup is used. Things which trip up maintainers include displayed version
numbers from loading other packages, printing numerical results to an unreproducibly high
precision and printing timings. Another trap is small values which are in fact rounding
error from zero: consider using zapsmall.

Subdirectory exec could contain additional executable scripts the package needs, typi-
cally scripts for interpreters such as the shell, Perl, or Tcl. NB: only files (and not directo-
ries) under exec are installed (and those with names starting with a dot are ignored), and

21 The best way to generate such a file is to copy the .Rout from a successful run of R CMD check. If you want
to generate it separately, do run R with options --vanilla --no-echo and with environment variable
LANGUAGE=en set to get messages in English. Be careful not to use output with the option --timings

(and note that --as-cran sets it).

Chapter 1: Creating R packages 19

they are all marked as executable (mode 755, moderated by ‘umask’) on POSIX platforms.
Note too that this is not suitable for executable programs since some platforms (including
Windows) support multiple architectures using the same installed package directory.

Subdirectory po is used for files related to localization: see Section 1.8 [Internationaliza-
tion], page 77.

Subdirectory tools is the preferred place for auxiliary files needed during configuration,
and also for sources need to re-create scripts (e.g. M4 files for autoconf).

1.1.6 Data in packages

The data subdirectory is for data files, either to be made available via lazy-loading or for
loading using data(). (The choice is made by the ‘LazyData’ field in the DESCRIPTION file:
the default is not to do so.) It should not be used for other data files needed by the package,
and the convention has grown up to use directory inst/extdata for such files.

Data files can have one of three types as indicated by their extension: plain R code
(.R or .r), tables (.tab, .txt, or .csv, see ?data for the file formats, and note that .csv
is not the standard22 CSV format), or save() images (.RData or .rda). The files should
not be hidden (have names starting with a dot). Note that R code should be if possible
“self-sufficient” and not make use of extra functionality provided by the package, so that
the data file can also be used without having to load the package or its namespace: it should
run as silently as possible and not change the search() path by attaching packages or other
environments.

Images (extensions .RData23 or .rda) can contain references to the namespaces of pack-
ages that were used to create them. Preferably there should be no such references in data
files, and in any case they should only be to packages listed in the Depends and Imports

fields, as otherwise it may be impossible to install the package. To check for such references,
load all the images into a vanilla R session, run str() on all the datasets, and look at the
output of loadedNamespaces().

Particular care is needed where a dataset or one of its components is of an S4 class,
especially if the class is defined in a different package. First, the package containing the
class definition has to be available to do useful things with the dataset, so that package
must be listed in Imports or Depends (even if this gives a check warning about unused
imports). Second, the definition of an S4 class can change, and often is unnoticed when in
a package with a different author. So it may be wiser to use the .R form and use that to
create the dataset object when needed (loading package namespaces but not attaching them
by using requireNamespace(pkg, quietly = TRUE) and using pkg:: to refer to objects in
the namespace).

If you are not using ‘LazyData’ and either your data files are large or e.g., you use
data/foo.R scripts to produce your data, loading your namespace, you can speed up in-
stallation by providing a file datalist in the data subdirectory. This should have one
line per topic that data() will find, in the format ‘foo’ if data(foo) provides ‘foo’, or
‘foo: bar bah’ if data(foo) provides ‘bar’ and ‘bah’. R CMD build will automatically add
a datalist file to data directories of over 1Mb, using the function tools::add_datalist.

22 e.g. https://tools.ietf.org/html/rfc4180.
23 People who have trouble with case are advised to use .rda as a common error is to refer to abc.RData

as abc.Rdata!

https://tools.ietf.org/html/rfc4180

Chapter 1: Creating R packages 20

Tables (.tab, .txt, or .csv files) can be compressed by gzip, bzip2 or xz, optionally
with additional extension .gz, .bz2 or .xz.

If your package is to be distributed, do consider the resource implications of large datasets
for your users: they can make packages very slow to download and use up unwelcome
amounts of storage space, as well as taking many seconds to load. It is normally best
to distribute large datasets as .rda images prepared by save(, compress = TRUE) (the
default). Using bzip2 or xz compression will usually reduce the size of both the package
tarball and the installed package, in some cases by a factor of two or more.

Package tools has a couple of functions to help with data images: checkRdaFiles reports
on the way the image was saved, and resaveRdaFiles will re-save with a different type of
compression, including choosing the best type for that particular image.

Many packages using ‘LazyData’ will benefit from using a form of compression other
than gzip in the installed lazy-loading database. This can be selected by the --data-

compress option to R CMD INSTALL or by using the ‘LazyDataCompression’ field in the
DESCRIPTION file. Useful values are bzip2, xz and the default, gzip: value none is also
accepted. The only way to discover which is best is to try them all and look at the size of
the pkgname/data/Rdata.rdb file. A function to do that (quoting sizes in KB) is

CheckLazyDataCompression <- function(pkg)

{

pkg_name <- sub("_.*", "", pkg)

lib <- tempfile(); dir.create(lib)

zs <- c("gzip", "bzip2", "xz")

res <- integer(3); names(res) <- zs

for (z in zs) {

opts <- c(paste0("--data-compress=", z),

"--no-libs", "--no-help", "--no-demo", "--no-exec", "--no-test-load")

install.packages(pkg, lib, INSTALL_opts = opts, repos = NULL, quiet = TRUE)

res[z] <- file.size(file.path(lib, pkg_name, "data", "Rdata.rdb"))

}

ceiling(res/1024)

}

(applied to a source package without any ‘LazyDataCompression’ field). R CMD check

will warn if it finds a pkgname/data/Rdata.rdb file of more than 5MB without
‘LazyDataCompression’ being set. If you see that, run CheckLazyDataCompression()

and set the field – to gzip in the unlikely event24 that is the best choice.

The analogue for sysdata.rda is field ‘SysDataCompression’: the default is xz for files
bigger than 1MB otherwise gzip.

Lazy-loading is not supported for very large datasets (those which when serialized exceed
2GB, the limit for the format on 32-bit platforms).

1.1.7 Non-R scripts in packages

Code which needs to be compiled (C, C++, Fortran . . .) is included in the src subdirectory
and discussed elsewhere in this document.

24 For all the CRAN packages tested, either gz or bzip2 provided a very substantial reduction in installed
size.

Chapter 1: Creating R packages 21

Subdirectory exec could be used for scripts for interpreters such as the
shell, BUGS, JavaScript, Matlab, Perl, php (amap (https://CRAN.R-project.
org/package=amap)), Python or Tcl (Simile (https://CRAN.R-project.org/
package=Simile)), or even R. However, it seems more common to use the inst

directory, for example WriteXLS/inst/Perl, NMF/inst/m-files, RnavGraph/inst/tcl,
RProtoBuf/inst/python and emdbook/inst/BUGS and gridSVG/inst/js.

Java code is a special case: except for very small programs, .java files should be byte-
compiled (to a .class file) and distributed as part of a .jar file: the conventional location
for the .jar file(s) is inst/java. It is desirable (and required under an Open Source license)
to make the Java source files available: this is best done in a top-level java directory in the
package—the source files should not be installed.

If your package requires one of these interpreters or an extension then this should be
declared in the ‘SystemRequirements’ field of its DESCRIPTION file. (Users of Java most
often do so via rJava (https://CRAN.R-project.org/package=rJava), when depending
on/importing that suffices unless there is a version requirement on Java code in the package.)

Windows and Mac users should be aware that the Tcl extensions ‘BWidget’ and ‘Tktable’
(which have sometimes been included in the Windows25 and macOS R installers) are exten-
sions and do need to be declared (and that ‘Tktable’ is less widely available than it used
to be, including not in the main repositories for major Linux distributions).

‘BWidget’ needs to be installed by the user on other OSes. This is fairly easy to do: first
find the Tcl search path:

library(tcltk)

strsplit(tclvalue(’auto_path’), " ")[[1]]

then download the sources from https://sourceforge.net/projects/tcllib/files/

BWidget/ and in a terminal run something like

tar xf bwidget-1.9.14.tar.gz

sudo mv bwidget-1.9.14 /usr/local/lib

substituting a location on the Tcl search path for /usr/local/lib if needed. (If no location
on that search path is writeable, you will need to add one each time BWidget is to be used
with tcltk::addTclPath().)

To (silently) test for the presence of ‘Tktable’ one can use

library(tcltk)

have_tktable <- !isFALSE(suppressWarnings(tclRequire(’Tktable’)))

1.1.8 Specifying URLs

URLs in many places in the package documentation will be converted to clickable hyperlinks
in at least some of their renderings. So care is needed that their forms are correct and
portable.

The full URL should be given, including the scheme (often ‘http://’ or ‘https://’) and
a final ‘/’ for references to directories.

Spaces in URLs are not portable and how they are handled does vary by HTTP server
and by client. There should be no space in the host part of an ‘http://’ URL, and spaces
in the remainder should be encoded, with each space replaced by ‘%20’.

25 ‘BWidget’ still is on Windows but ‘Tktable’ was not in R 4.0.0.

https://CRAN.R-project.org/package=amap
https://CRAN.R-project.org/package=amap
https://CRAN.R-project.org/package=Simile
https://CRAN.R-project.org/package=Simile
https://CRAN.R-project.org/package=rJava
https://sourceforge.net/projects/tcllib/files/BWidget/
https://sourceforge.net/projects/tcllib/files/BWidget/

Chapter 1: Creating R packages 22

Other characters may benefit from being encoded: see the help on URLencode().

The canonical URL for a CRAN package is

https://cran.r-project.org/package=pkgname

and not a version starting ‘https://cran.r-project.org/web/packages/pkgname’.

1.2 Configure and cleanup

Note that most of this section is specific to Unix-alikes: see the comments later on about
the Windows port of R.

If your package needs some system-dependent configuration before installation you can
include an executable (Bourne26 shell script configure in your package which (if present)
is executed by R CMD INSTALL before any other action is performed. This can be a script
created by the Autoconf mechanism, but may also be a script written by yourself. Use
this to detect if any nonstandard libraries are present such that corresponding code in the
package can be disabled at install time rather than giving error messages when the package
is compiled or used. To summarize, the full power of Autoconf is available for your extension
package (including variable substitution, searching for libraries, etc.).

A configure script is run in an environment which has all the environment variables
set for an R session (see R_HOME/etc/Renviron) plus R_PACKAGE_NAME (the name of the
package), R_PACKAGE_DIR (the path of the target installation directory of the package, a
temporary location for staged installs) and R_ARCH (the arch-dependent part of the path,
often empty).

Under a Unix-alike only, an executable (Bourne shell) script cleanup is executed as
the last thing by R CMD INSTALL if option --clean was given, and by R CMD build when
preparing the package for building from its source.

As an example consider we want to use functionality provided by a (C or Fortran)
library foo. Using Autoconf, we can create a configure script which checks for the library,
sets variable HAVE_FOO to TRUE if it was found and to FALSE otherwise, and then substitutes
this value into output files (by replacing instances of ‘@HAVE_FOO@’ in input files with the
value of HAVE_FOO). For example, if a function named bar is to be made available by linking
against library foo (i.e., using -lfoo), one could use

AC_CHECK_LIB(foo, fun, [HAVE_FOO=TRUE], [HAVE_FOO=FALSE])

AC_SUBST(HAVE_FOO)

......

AC_CONFIG_FILES([foo.R])

AC_OUTPUT

26 The script should only assume a POSIX-compliant /bin/sh – see https://pubs.opengroup.org/

onlinepubs/9699919799/utilities/V3_chap02.html. In particular bash extensions must not be used,
and not all R platforms have a bash command, let alone one at /bin/bash. All known shells used with
R support the use of backticks, but not all support ‘$(cmd)’. However, real-world shells are not fully
POSIX-compliant and omissions and idiosyncrasies need to be worked around—which Autoconf will do
for you. Arithmetic expansion is a known issue: see https://www.gnu.org/software/autoconf/manual/
autoconf.html#Portable-Shell for this and others. Some checks can be done by the checkbashisms

Perl script at https://sourceforge.net/projects/checkbaskisms/files, also available in most Linux
distributions in a package named either ‘devscripts’ or ‘devscripts-checkbashisms’: a possibly later
version can be extracted from Debian sources such as the most recent tar.xz in https://deb.debian.

org/debian/pool/main/d/devscripts/.

https://pubs.opengroup.org/onlinepubs/9699919799/utilities/V3_chap02.html
https://pubs.opengroup.org/onlinepubs/9699919799/utilities/V3_chap02.html
https://www.gnu.org/software/autoconf/manual/autoconf.html#Portable-Shell
https://www.gnu.org/software/autoconf/manual/autoconf.html#Portable-Shell
https://sourceforge.net/projects/checkbaskisms/files
https://deb.debian.org/debian/pool/main/d/devscripts/
https://deb.debian.org/debian/pool/main/d/devscripts/

Chapter 1: Creating R packages 23

in configure.ac (assuming Autoconf 2.50 or later).

The definition of the respective R function in foo.R.in could be

foo <- function(x) {

if(!@HAVE_FOO@)

stop("Sorry, library ’foo’ is not available")

...

From this file configure creates the actual R source file foo.R looking like

foo <- function(x) {

if(!FALSE)

stop("Sorry, library ’foo’ is not available")

...

if library foo was not found (with the desired functionality). In this case, the above R code
effectively disables the function.

One could also use different file fragments for available and missing functionality, respec-
tively.

You will very likely need to ensure that the same C compiler and compiler flags are used
in the configure tests as when compiling R or your package. Under a Unix-alike, you
can achieve this by including the following fragment early in configure.ac (before calling
AC_PROG_CC or anything which calls it)

: ${R_HOME=‘R RHOME‘}

if test -z "${R_HOME}"; then

echo "could not determine R_HOME"

exit 1

fi

CC=‘"${R_HOME}/bin/R" CMD config CC‘

CFLAGS=‘"${R_HOME}/bin/R" CMD config CFLAGS‘

CPPFLAGS=‘"${R_HOME}/bin/R" CMD config CPPFLAGS‘

(Using ‘${R_HOME}/bin/R’ rather than just ‘R’ is necessary in order to use the correct version
of R when running the script as part of R CMD INSTALL, and the quotes since ‘${R_HOME}’
might contain spaces.)

If your code does load checks (for example, to check for an entry point in a library or to
run code) then you will also need

LDFLAGS=‘"${R_HOME}/bin/R" CMD config LDFLAGS‘

Packages written with C++ need to pick up the details for the C++ compiler and switch
the current language to C++ by something like

CXX=‘"${R_HOME}/bin/R" CMD config CXX‘

if test -z "$CXX"; then

AC_MSG_ERROR([No C++ compiler is available])

fi

CXXFLAGS=‘"${R_HOME}/bin/R" CMD config CXXFLAGS‘

CPPFLAGS=‘"${R_HOME}/bin/R" CMD config CPPFLAGS‘

AC_LANG(C++)

The latter is important, as for example C headers may not be available to C++ programs or
may not be written to avoid C++ name-mangling. Note that an R installation is not required

Chapter 1: Creating R packages 24

to have a C++ compiler so ‘CXX’ may be empty. If the package specifies a non-default C++
standard, use the config variable names (such as CXX17) appropriate to the standard, but
still set CXX and CXXFLAGS.

You can use R CMD config to get the value of the basic configuration variables, and also
the header and library flags necessary for linking a front-end executable program against
R, see R CMD config --help for details. If you do, it is essential that you use both the
command and the appropriate flags, so that for example ‘CC’ must always be used with
‘CFLAGS’ and (for code to be linked into a shared library) ‘CPICFLAGS’. For Fortran, be
careful to use ‘FC FFLAGS FPICFLAGS’ for fixed-form Fortran and ‘FC FCFLAGS FPICFLAGS’
for free-form Fortran.

To check for an external BLAS library using the AX_BLAS macro from the official Auto-
conf Macro Archive27, one can use

FC=‘"${R_HOME}/bin/R" CMD config FC‘

FCLAGS=‘"${R_HOME}/bin/R" CMD config FFLAGS‘

AC_PROG_FC

FLIBS=‘"${R_HOME}/bin/R" CMD config FLIBS‘

AX_BLAS([], AC_MSG_ERROR([could not find your BLAS library], 1))

Note that FLIBS as determined by R must be used to ensure that Fortran code works
on all R platforms.

N.B.: If the configure script creates files, e.g. src/Makevars, you do need a cleanup

script to remove them. Otherwise R CMD build may ship the files that are created. For
example, package RODBC (https://CRAN.R-project.org/package=RODBC) has

#!/bin/sh

rm -f config.* src/Makevars src/config.h

As this example shows, configure often creates working files such as config.log.

If your configure script needs auxiliary files, it is recommended that you ship them in a
tools directory (as R itself does).

You should bear in mind that the configure script will not be used on Windows systems.
If your package is to be made publicly available, please give enough information for a
user on a non-Unix-alike platform to configure it manually, or provide a configure.win

script to be used on that platform. (Optionally, there can be a cleanup.win script. Both
should be shell scripts to be executed by ash, which is a minimal version of Bourne-style
sh.) When configure.win is run the environment variables R_HOME (which uses ‘/’ as
the file separator), R_ARCH and R_ARCH_BIN will be set. Use R_ARCH to decide if this is
a 64-bit build (its value there is ‘/x64’) and to install DLLs to the correct place (${R_
HOME}/libs${R_ARCH}). Use R_ARCH_BIN to find the correct place under the bin directory,
e.g. ${R_HOME}/bin${R_ARCH_BIN}/Rscript.exe.

In some rare circumstances, the configuration and cleanup scripts need to know the
location into which the package is being installed. An example of this is a package that
uses C code and creates two shared object/DLLs. Usually, the object that is dynamically
loaded by R is linked against the second, dependent, object. On some systems, we can

27 https://www.gnu.org/software/autoconf-archive/ax_blas.html. If you include macros from that
archive you need to arrange for them to be included in the package sources for use by autoreconf.

https://CRAN.R-project.org/package=RODBC
https://www.gnu.org/software/autoconf-archive/ax_blas.html

Chapter 1: Creating R packages 25

add the location of this dependent object to the object that is dynamically loaded by R.
This means that each user does not have to set the value of the LD_LIBRARY_PATH (or
equivalent) environment variable, but that the secondary object is automatically resolved.
Another example is when a package installs support files that are required at run time, and
their location is substituted into an R data structure at installation time. The names of the
top-level library directory (i.e., specifiable via the ‘-l’ argument) and the directory of the
package itself are made available to the installation scripts via the two shell/environment
variables R_LIBRARY_DIR and R_PACKAGE_DIR. Additionally, the name of the package (e.g.
‘survival’ or ‘MASS’) being installed is available from the environment variable R_PACKAGE_
NAME. (Currently the value of R_PACKAGE_DIR is always ${R_LIBRARY_DIR}/${R_PACKAGE_
NAME}, but this used not to be the case when versioned installs were allowed. Its main use
is in configure.win scripts for the installation path of external software’s DLLs.) Note
that the value of R_PACKAGE_DIR may contain spaces and other shell-unfriendly characters,
and so should be quoted in makefiles and configure scripts.

One of the more tricky tasks can be to find the headers and libraries of external soft-
ware. One tool which is increasingly available on Unix-alikes (but not by default28 on
macOS) to do this is pkg-config. The configure script will need to test for the presence
of the command itself29 (see for example package Cairo (https://CRAN.R-project.org/
package=Cairo)), and if present it can be asked if the software is installed, of a suitable
version and for compilation/linking flags by e.g.

$ pkg-config --exists ’QtCore >= 4.0.0’ # check the status

$ pkg-config --modversion QtCore

4.8.7

$ pkg-config --cflags QtCore

-DQT_SHARED -I/usr/include/QtCore

$ pkg-config --libs QtCore

-lQtCore

$ pkg-config --static --libs QtCore

-lQtCore -lpthread -lz -lm -ldl -lgthread-2.0 -pthread -lglib-2.0 -lrt

Note that pkg-config --libs gives the information required to link against the default
version30 of that library (usually the dynamic one), and pkg-config --static --libs may
be needed if the static library is to be used.

Static libraries are commonly used on macOS (and Windows) to facilitate bundling
external software with binary distributions of packages. This means that portable (source)
packages need to allow for this. It is not safe to just use pkg-config --static --libs,
as that will often include further libraries that are not necessarily installed on the user’s
system (or maybe only the versioned library such as libjbig.so.2.1 is installed and not
libjbig.so which would be needed to use -ljbig often included in pkg-config --static

--libs libtiff-4).

28 but it is available on the machines used to produce the CRAN binary packages: however as Apple does
not ship .pc files for its system libraries such as ‘zlib’, it may well not find information on these.

29 It is not wise to check the version of pkg-config as it is sometimes a link to pkgconf, a separate project
with a different version series.

30 but not all projects get this right when only a static library is installed, so it is often necessary to try in
turn pkg-config --libs and pkg-config --static --libs.

https://CRAN.R-project.org/package=Cairo
https://CRAN.R-project.org/package=Cairo

Chapter 1: Creating R packages 26

Sometimes the name by which the software is known to pkg-config is not what one
might expect (e.g. ‘gtk+-2.0’ even for 2.22). To get a complete list use

pkg-config --list-all | sort

If using Autoconf it is good practice to include all the Autoconf sources in the the package
(and required for an Open Source package and tested by R CMD check --as-cran). This
will include the file configure.ac31 in the top-level directory of the package. If extensions
written in m4 are needed, these should be included under the directory tools and included
in configure.ac via e.g.,

m4_include([tools/ax_pthread.m4])

One source of such extensions is the ‘Autoconf Archive’ (https://www.gnu.org/software/
autoconf-archive/. It is not safe to assume this is installed on users’ machines, so the
extension should be shipped with the package (taking care to comply with its licence).

1.2.1 Using Makevars

Sometimes writing your own configure script can be avoided by supplying a file Makevars:
also one of the most common uses of a configure script is to make Makevars from
Makevars.in.

A Makevars file is a makefile and is used as one of several makefiles by R CMD SHLIB (which
is called by R CMD INSTALL to compile code in the src directory). It should be written if at
all possible in a portable style, in particular (except for Makevars.win) without the use of
GNU extensions.

The most common use of a Makevars file is to set additional preprocessor options (for
example include paths and definitions) for C/C++ files via PKG_CPPFLAGS, and additional
compiler flags by setting PKG_CFLAGS, PKG_CXXFLAGS or PKG_FFLAGS, for C, C++ or Fortran
respectively (see Section 5.5 [Creating shared objects], page 142).

N.B.: Include paths are preprocessor options, not compiler options, and must be set in
PKG_CPPFLAGS as otherwise platform-specific paths (e.g. ‘-I/usr/local/include’) will take
precedence. PKG_CPPFLAGS should contain ‘-I’, ‘-D’, ‘-U’ and (where supported) ‘-include’
and ‘-pthread’ options: everything else should be a compiler flag. The order of flags
matters, and using ‘-I’ in PKG_CFLAGS or PKG_CXXFLAGS has led to hard-to-debug platform-
specific errors.

Makevars can also be used to set flags for the linker, for example ‘-L’ and ‘-l’ options,
via PKG_LIBS.

When writing a Makevars file for a package you intend to distribute, take care to ensure
that it is not specific to your compiler: flags such as -O2 -Wall -pedantic (and all other
-W flags: for the Oracle compilers these are used to pass arguments to compiler phases) are
all specific to GCC.

Also, do not set variables such as CPPFLAGS, CFLAGS etc.: these should be settable by
users (sites) through appropriate personal (site-wide) Makevars files. See Section “Cus-
tomizing package compilation” in R Installation and Administration,

There are some macros32 which are set whilst configuring the building of R itself and
are stored in R_HOME/etcR_ARCH/Makeconf. That makefile is included as a Makefile after

31 a decade ago Autoconf used configure.in: this is still accepted but should be renamed and autoreconf

as used by R CMD check --as-cran will report as such.
32 in POSIX parlance: GNU make calls these ‘make variables’.

https://www.gnu.org/software/autoconf-archive/
https://www.gnu.org/software/autoconf-archive/

Chapter 1: Creating R packages 27

Makevars[.win], and the macros it defines can be used in macro assignments and make
command lines in the latter. These include

FLIBS A macro containing the set of libraries need to link Fortran code. This may
need to be included in PKG_LIBS: it will normally be included automatically if
the package contains Fortran source files in the src directory.

BLAS_LIBS

A macro containing the BLAS libraries used when building R. This may need
to be included in PKG_LIBS. Beware that if it is empty then the R executable
will contain all the double-precision and double-complex BLAS routines, but
no single-precision nor complex routines. If BLAS_LIBS is included, then FLIBS

also needs to be33 included following it, as most BLAS libraries are written at
least partially in Fortran.

LAPACK_LIBS

A macro containing the LAPACK libraries (and paths where appropriate) used
when building R. This may need to be included in PKG_LIBS. It may point
to a dynamic library libRlapack which contains the main double-precision
LAPACK routines as well as those double-complex LAPACK routines needed
to build R, or it may point to an external LAPACK library, or may be empty
if an external BLAS library also contains LAPACK.

[libRlapack includes all the double-precision LAPACK routines which
were current in 2003: a list of which routines are included is in file
src/modules/lapack/README. Note that an external LAPACK/BLAS library
need not do so, as some were ‘deprecated’ (and not compiled by default) in
LAPACK 3.6.0 in late 2015.]

For portability, the macros BLAS_LIBS and FLIBS should always be included
after LAPACK_LIBS (and in that order).

SAFE_FFLAGS

A macro containing flags which are needed to circumvent over-optimization of
FORTRAN code: it is might be ‘-g -O2 -ffloat-store’ or ‘-g -O2 -msse2

-mfpmath=sse’ on ‘ix86’ platforms using gfortran. Note that this is not an
additional flag to be used as part of PKG_FFLAGS, but a replacement for FFLAGS.
See the example later in this section.

Setting certain macros in Makevars will prevent R CMD SHLIB setting them: in particular
if Makevars sets ‘OBJECTS’ it will not be set on the make command line. This can be useful
in conjunction with implicit rules to allow other types of source code to be compiled and
included in the shared object. It can also be used to control the set of files which are
compiled, either by excluding some files in src or including some files in subdirectories. For
example

OBJECTS = 4dfp/endianio.o 4dfp/Getifh.o R4dfp-object.o

Note that Makevars should not normally contain targets, as it is included before the de-
fault makefile and make will call the first target, intended to be all in the default makefile.

33 at least on Unix-alikes: the Windows build currently resolves such dependencies to a static Fortran
library when Rblas.dll is built. Also, not if USE_FC_TO_LINK is used.

Chapter 1: Creating R packages 28

If you really need to circumvent that, use a suitable (phony) target all before any actual
targets in Makevars.[win]: for example package fastICA (https://CRAN.R-project.org/
package=fastICA) used to have

PKG_LIBS = @BLAS_LIBS@

SLAMC_FFLAGS=$(R_XTRA_FFLAGS) $(FPICFLAGS) $(SHLIB_FFLAGS) $(SAFE_FFLAGS)

all: $(SHLIB)

slamc.o: slamc.f

$(FC) $(SLAMC_FFLAGS) -c -o slamc.o slamc.f

needed to ensure that the LAPACK routines find some constants without infinite looping.
The Windows equivalent was

all: $(SHLIB)

slamc.o: slamc.f

$(FC) $(SAFE_FFLAGS) -c -o slamc.o slamc.f

(since the other macros are all empty on that platform, and R’s internal BLAS was not
used). Note that the first target in Makevars will be called, but for back-compatibility it is
best named all.

If you want to create and then link to a library, say using code in a subdirectory, use
something like

.PHONY: all mylibs

all: $(SHLIB)

$(SHLIB): mylibs

mylibs:

(cd subdir; $(MAKE))

Be careful to create all the necessary dependencies, as there is no guarantee that the de-
pendencies of all will be run in a particular order (and some of the CRAN build machines
use multiple CPUs and parallel makes). In particular,

all: mylibs

does not suffice. GNU make does allow the construct

.NOTPARALLEL: all

all: mylibs $(SHLIB)

but that is not portable. dmake and pmake allow the similar .NO_PARALLEL, also not
portable: some variants of pmake accept .NOTPARALLEL as an alias for .NO_PARALLEL.

Note that on Windows it is required that Makevars[.win] does create a DLL: this is
needed as it is the only reliable way to ensure that building a DLL succeeded. If you want
to use the src directory for some purpose other than building a DLL, use a Makefile.win

file.

It is sometimes useful to have a target ‘clean’ in Makevars or Makevars.win: this will
be used by R CMD build to clean up (a copy of) the package sources. When it is run by

https://CRAN.R-project.org/package=fastICA
https://CRAN.R-project.org/package=fastICA

Chapter 1: Creating R packages 29

build it will have fewer macros set, in particular not $(SHLIB), nor $(OBJECTS) unless set
in the file itself. It would also be possible to add tasks to the target ‘shlib-clean’ which
is run by R CMD INSTALL and R CMD SHLIB with options --clean and --preclean.

If you want to run R code in Makevars, e.g. to find configuration information, please do
ensure that you use the correct copy of R or Rscript: there might not be one in the path
at all, or it might be the wrong version or architecture. The correct way to do this is via

"$(R_HOME)/bin$(R_ARCH_BIN)/Rscript" filename

"$(R_HOME)/bin$(R_ARCH_BIN)/Rscript" -e ’R expression’

where $(R_ARCH_BIN) is only needed currently on Windows.

Environment or make variables can be used to select different macros for 32- and 64-bit
code, for example (GNU make syntax, allowed on Windows)

ifeq "$(WIN)" "64"

PKG_LIBS = value for 64-bit Windows

else

PKG_LIBS = value for 32-bit Windows

endif

On Windows there is normally a choice between linking to an import library or directly
to a DLL. Where possible, the latter is much more reliable: import libraries are tied to a
specific toolchain, and in particular on 64-bit Windows two different conventions have been
commonly used. So for example instead of

PKG_LIBS = -L$(XML_DIR)/lib -lxml2

one can use

PKG_LIBS = -L$(XML_DIR)/bin -lxml2

since on Windows -lxxx will look in turn for

libxxx.dll.a

xxx.dll.a

libxxx.a

xxx.lib

libxxx.dll

xxx.dll

where the first and second are conventionally import libraries, the third and fourth often
static libraries (with .lib intended for Visual C++), but might be import libraries. See for
example https://sourceware.org/binutils/docs-2.20/ld/WIN32.html#WIN32.

The fly in the ointment is that the DLL might not be named libxxx.dll, and in fact
on 32-bit Windows there is a libxml2.dll whereas on one build for 64-bit Windows the
DLL is called libxml2-2.dll. Using import libraries can cover over these differences but
can cause equal difficulties.

If static libraries are available they can save a lot of problems with run-time finding of
DLLs, especially when binary packages are to be distributed and even more when these
support both architectures. Where using DLLs is unavoidable we normally arrange (via
configure.win) to ship them in the same directory as the package DLL.

https://sourceware.org/binutils/docs-2.20/ld/WIN32.html#WIN32

Chapter 1: Creating R packages 30

1.2.1.1 OpenMP support

There is some support for packages which wish to use OpenMP34. The make macros

SHLIB_OPENMP_CFLAGS

SHLIB_OPENMP_CXXFLAGS

SHLIB_OPENMP_FFLAGS

are available for use in src/Makevars or src/Makevars.win. Include the appropriate macro
in PKG_CFLAGS, PKG_CXXFLAGS and so on, and also in PKG_LIBS (but see below for Fortran).
C/C++ code that needs to be conditioned on the use of OpenMP can be used inside #ifdef
_OPENMP: note that some toolchains used for R (including Apple’s for macOS and some
others using clang35) have no OpenMP support at all, not even omp.h.

For example, a package with C code written for OpenMP should have in src/Makevars

the lines

PKG_CFLAGS = $(SHLIB_OPENMP_CFLAGS)

PKG_LIBS = $(SHLIB_OPENMP_CFLAGS)

Note that the macro SHLIB_OPENMP_CXXFLAGS applies to the default C++ compiler and
not necessarily to the C++17/20 compiler: users of the latter should do their own configure

checks. If you do use your own checks, make sure that OpenMP support is complete by
compiling and linking an OpenMP-using program: on some platforms the runtime library
is optional and on others that library depends on other optional libraries.

Some care is needed when compilers are from different families which may use different
OpenMP runtimes (e.g. clang vs GCC including gfortran, although it is often possible
to use the clang runtime with GCC but not vice versa: however gfortran >= 9 may
generate calls not in the clang runtime). For a package with Fortran code using OpenMP
the appropriate lines are

PKG_FFLAGS = $(SHLIB_OPENMP_FFLAGS)

PKG_LIBS = $(SHLIB_OPENMP_CFLAGS)

as the C compiler will be used to link the package code. There are platforms on which this
does not work for some OpenMP-using code and installation will fail. Since R >= 3.6.2 the
best alternative for a package with only Fortran sources using OpenMP is to use

USE_FC_TO_LINK =

PKG_FFLAGS = $(SHLIB_OPENMP_FFLAGS)

PKG_LIBS = $(SHLIB_OPENMP_FFLAGS)

in src/Makevars or src/Makevars.win. Note however, that when this is used $(FLIBS)

should not be included in PKG_LIBS since it is for linking Fortran-compiled code by the C
compiler.

Common platforms may inline all OpenMP calls and so tolerate the omission of the
OpenMP flag from PKG_LIBS, but this usually results in an installation failure with a
different compiler or compilation flags. So cross-check that e.g. -fopenmp appears in the
linking line in the installation logs.

34 https://www.openmp.org/, https://en.wikipedia.org/wiki/OpenMP, https://hpc.llnl.gov/

openmp-tutorial
35 Default builds of clang 3.8.0 and later have support for OpenMP, but the libomp run-time library may

not be installed.

https://www.openmp.org/
https://en.wikipedia.org/wiki/OpenMP
https://hpc.llnl.gov/openmp-tutorial
https://hpc.llnl.gov/openmp-tutorial

Chapter 1: Creating R packages 31

It is not portable to use OpenMP with more than one of C, C++ and Fortran in a single
package since it is not uncommon that the compilers are of different families.

For portability, any C/C++ code using the omp_* functions should include the omp.h

header: some compilers (but not all) include it when OpenMP mode is switched on (e.g.
via flag -fopenmp).

There is nothing36 to say what version of OpenMP is supported: version 4.0 (and much
of 4.5 or 5.0) is supported by recent versions of the Linux (GCC >= 4.9.1), Windows and
Solaris platforms, but portable packages cannot assume that end users have recent versions.
Apple builds of clang on macOS have no OpenMP support. https://www.openmp.org/

resources/openmp-compilers-tools/ gives some idea of what compilers support what
versions.

Rarely, using OpenMP with clang on Linux generates calls in libatomic, resulting in
loading messages like

undefined symbol: __atomic_compare_exchange

undefined symbol: __atomic_load

The workaround is to link with -latomic (having checked it exists).

The performance of OpenMP varies substantially between platforms. The Windows
implementation has substantial overheads, so is only beneficial if quite substantial tasks are
run in parallel. Also, on Windows new threads are started with the default37 FPU control
word, so computations done on OpenMP threads will not make use of extended-precision
arithmetic which is the default for the main process.

Do not include these macros unless your code does make use of OpenMP (possibly for
C++ via included external headers): this can result in the OpenMP runtime being linked
in, threads being started,

Calling any of the R API from threaded code is ‘for experts only’ and strongly discour-
aged. Many functions in the R API modify internal R data structures and might corrupt
these data structures if called simultaneously from multiple threads. Most R API functions
can signal errors, which must only happen on the R main thread. Also, external libraries
(e.g. LAPACK) may not be thread-safe.

Packages are not standard-alone programs, and an R process could contain more than
one OpenMP-enabled package as well as other components (for example, an optimized
BLAS) making use of OpenMP. So careful consideration needs to be given to resource
usage. OpenMP works with parallel regions, and for most implementations the default is to
use as many threads as ‘CPUs’ for such regions. Parallel regions can be nested, although it
is common to use only a single thread below the first level. The correctness of the detected
number of ‘CPUs’ and the assumption that the R process is entitled to use them all are
both dubious assumptions. One way to limit resources is to limit the overall number of
threads available to OpenMP in the R process: this can be done via environment variable
OMP_THREAD_LIMIT, where implemented.38 Alternatively, the number of threads per region

36 In most implementations the _OPENMP macro has value a date which can be mapped to an OpenMP
version: for example, value 201307 is the date of version 4.0 (July 2013). However this may be used to
denote the latest version which is partially supported, not that which is fully implemented.

37 Windows default, not MinGW-w64 default.
38 Which it was at the time of writing with GCC, Oracle, Intel and Clang compilers. The count may

include the thread running the main process.

https://www.openmp.org/resources/openmp-compilers-tools/
https://www.openmp.org/resources/openmp-compilers-tools/

Chapter 1: Creating R packages 32

can be limited by the environment variable OMP_NUM_THREADS or API call omp_set_num_
threads, or, better, for the regions in your code as part of their specification. E.g. R
uses39

#pragma omp parallel for num_threads(nthreads) ...

That way you only control your own code and not that of other OpenMP users.

Note that setting environment variables to control OpenMP is implementation-
dependent and may need to be done outside the R process or before any use of OpenMP
(which might be by another process or R itself). Also, implementation-specific variables
such as KMP_THREAD_LIMIT might take precedence.

1.2.1.2 Using pthreads

There is no direct support for the POSIX threads (more commonly known as pthreads):
by the time we considered adding it several packages were using it unconditionally so it
seems that nowadays it is universally available on POSIX operating systems (hence not
Windows).

For reasonably recent versions of gcc and clang the correct specification is

PKG_CPPFLAGS = -pthread

PKG_LIBS = -pthread

(and the plural version is also accepted on some systems/versions). For other platforms the
specification is

PKG_CPPFLAGS = -D_REENTRANT

PKG_LIBS = -lpthread

(and note that the library name is singular). This is what -pthread does on all known
current platforms (although earlier versions of OpenBSD used a different library name).

For a tutorial see https://hpc-tutorials.llnl.gov/posix/.

POSIX threads are not normally used on Windows, which has its own native concepts
of threads. However, there are two projects implementing pthreads on top of Windows,
pthreads-w32 and winpthreads (part of the MinGW-w64 project).

Whether Windows toolchains implement pthreads is up to the toolchain provider. A
make variable SHLIB_PTHREAD_FLAGS is available for use in src/Makevars.win: this should
be included in both PKG_CPPFLAGS (or the Fortran compiler flags) and PKG_LIBS.

The presence of a working pthreads implementation cannot be unambiguously deter-
mined without testing for yourself: however, that ‘_REENTRANT’ is defined40 in C/C++ code
is a good indication.

Note that not all pthreads implementations are equivalent as parts are optional (see
https://pubs.opengroup.org/onlinepubs/009695399/basedefs/pthread.h.html): for
example, macOS lacks the ‘Barriers’ option.

See also the comments on thread-safety and performance under OpenMP: on all known
R platforms OpenMP is implemented via pthreads and the known performance issues are
in the latter.

39 Be careful not to declare nthreads as const int: the Oracle compiler requires it to be ‘an lvalue’.
40 some Windows toolchains had the typo ‘_REENTRANCE’ instead.

https://hpc-tutorials.llnl.gov/posix/
https://pubs.opengroup.org/onlinepubs/009695399/basedefs/pthread.h.html

Chapter 1: Creating R packages 33

1.2.1.3 Compiling in sub-directories

Package authors fairly often want to organize code in sub-directories of src, for example if
they are including a separate piece of external software to which this is an R interface.

One simple way is simply to set OBJECTS to be all the objects that need to be com-
piled, including in sub-directories. For example, CRAN package RSiena (https://CRAN.
R-project.org/package=RSiena) has

SOURCES = $(wildcard data/*.cpp network/*.cpp utils/*.cpp model/*.cpp model/*/*.cpp model/*/*/*.cpp)

OBJECTS = siena07utilities.o siena07internals.o siena07setup.o siena07models.o $(SOURCES:.cpp=.o)

One problem with that approach is that unless GNU make extensions are used, the source
files need to be listed and kept up-to-date. As in the following from CRAN package lossDev
(https://CRAN.R-project.org/package=lossDev):

OBJECTS.samplers = samplers/ExpandableArray.o samplers/Knots.o \

samplers/RJumpSpline.o samplers/RJumpSplineFactory.o \

samplers/RealSlicerOV.o samplers/SliceFactoryOV.o samplers/MNorm.o

OBJECTS.distributions = distributions/DSpline.o \

distributions/DChisqrOV.o distributions/DTOV.o \

distributions/DNormOV.o distributions/DUnifOV.o distributions/RScalarDist.o

OBJECTS.root = RJump.o

OBJECTS = $(OBJECTS.samplers) $(OBJECTS.distributions) $(OBJECTS.root)

Where the subdirectory is self-contained code with a suitable makefile, the best approach
is something like

PKG_LIBS = -LCsdp/lib -lsdp $(LAPACK_LIBS) $(BLAS_LIBS) $(FLIBS)

$(SHLIB): Csdp/lib/libsdp.a

Csdp/lib/libsdp.a:

@(cd Csdp/lib && $(MAKE) libsdp.a \

CC="$(CC)" CFLAGS="$(CFLAGS) $(CPICFLAGS)" AR="$(AR)" RANLIB="$(RANLIB)")

Note the quotes: the macros can contain spaces, e.g. CC = "gcc -m64 -std=gnu99". Several
authors have forgotten about parallel makes: the static library in the subdirectory must be
made before the shared object ($(SHLIB)) and so the latter must depend on the former.
Others forget the need41 for position-independent code.

We really do not recommend using src/Makefile instead of src/Makevars, and as the
example above shows, it is not necessary.

1.2.2 Configure example

It may be helpful to give an extended example of using a configure script to create a
src/Makevars file: this is based on that in the RODBC (https://CRAN.R-project.org/
package=RODBC) package.

The configure.ac file follows: configure is created from this by running autoconf in
the top-level package directory (containing configure.ac).

AC_INIT([RODBC], 1.1.8) dnl package name, version

dnl A user-specifiable option

41 A few OSes (AIX, Windows) do not need special flags for such code, but most do—although compilers
will often generate PIC code when not asked to do so.

https://CRAN.R-project.org/package=RSiena
https://CRAN.R-project.org/package=RSiena
https://CRAN.R-project.org/package=lossDev
https://CRAN.R-project.org/package=lossDev
https://CRAN.R-project.org/package=RODBC
https://CRAN.R-project.org/package=RODBC

Chapter 1: Creating R packages 34

odbc_mgr=""

AC_ARG_WITH([odbc-manager],

AC_HELP_STRING([--with-odbc-manager=MGR],

[specify the ODBC manager, e.g. odbc or iodbc]),

[odbc_mgr=$withval])

if test "$odbc_mgr" = "odbc" ; then

AC_PATH_PROGS(ODBC_CONFIG, odbc_config)

fi

dnl Select an optional include path, from a configure option

dnl or from an environment variable.

AC_ARG_WITH([odbc-include],

AC_HELP_STRING([--with-odbc-include=INCLUDE_PATH],

[the location of ODBC header files]),

[odbc_include_path=$withval])

RODBC_CPPFLAGS="-I."

if test [-n "$odbc_include_path"] ; then

RODBC_CPPFLAGS="-I. -I${odbc_include_path}"

else

if test [-n "${ODBC_INCLUDE}"] ; then

RODBC_CPPFLAGS="-I. -I${ODBC_INCLUDE}"

fi

fi

dnl ditto for a library path

AC_ARG_WITH([odbc-lib],

AC_HELP_STRING([--with-odbc-lib=LIB_PATH],

[the location of ODBC libraries]),

[odbc_lib_path=$withval])

if test [-n "$odbc_lib_path"] ; then

LIBS="-L$odbc_lib_path ${LIBS}"

else

if test [-n "${ODBC_LIBS}"] ; then

LIBS="-L${ODBC_LIBS} ${LIBS}"

else

if test -n "${ODBC_CONFIG}"; then

odbc_lib_path=‘odbc_config --libs | sed s/-lodbc//‘

LIBS="${odbc_lib_path} ${LIBS}"

fi

fi

fi

dnl Now find the compiler and compiler flags to use

: ${R_HOME=‘R RHOME‘}

if test -z "${R_HOME}"; then

echo "could not determine R_HOME"

exit 1

fi

CC=‘"${R_HOME}/bin/R" CMD config CC‘

CFLAGS=‘"${R_HOME}/bin/R" CMD config CFLAGS‘

CPPFLAGS=‘"${R_HOME}/bin/R" CMD config CPPFLAGS‘

if test -n "${ODBC_CONFIG}"; then

RODBC_CPPFLAGS=‘odbc_config --cflags‘

fi

CPPFLAGS="${CPPFLAGS} ${RODBC_CPPFLAGS}"

Chapter 1: Creating R packages 35

dnl Check the headers can be found

AC_CHECK_HEADERS(sql.h sqlext.h)

if test "${ac_cv_header_sql_h}" = no ||

test "${ac_cv_header_sqlext_h}" = no; then

AC_MSG_ERROR("ODBC headers sql.h and sqlext.h not found")

fi

dnl search for a library containing an ODBC function

if test [-n "${odbc_mgr}"] ; then

AC_SEARCH_LIBS(SQLTables, ${odbc_mgr}, ,

AC_MSG_ERROR("ODBC driver manager ${odbc_mgr} not found"))

else

AC_SEARCH_LIBS(SQLTables, odbc odbc32 iodbc, ,

AC_MSG_ERROR("no ODBC driver manager found"))

fi

dnl for 64-bit ODBC need SQL[U]LEN, and it is unclear where they are defined.

AC_CHECK_TYPES([SQLLEN, SQLULEN], , , [# include <sql.h>])

dnl for unixODBC header

AC_CHECK_SIZEOF(long, 4)

dnl substitute RODBC_CPPFLAGS and LIBS

AC_SUBST(RODBC_CPPFLAGS)

AC_SUBST(LIBS)

AC_CONFIG_HEADERS([src/config.h])

dnl and do substitution in the src/Makevars.in and src/config.h

AC_CONFIG_FILES([src/Makevars])

AC_OUTPUT

where src/Makevars.in would be simply

PKG_CPPFLAGS = @RODBC_CPPFLAGS@

PKG_LIBS = @LIBS@

A user can then be advised to specify the location of the ODBC driver manager files by
options like (lines broken for easier reading)

R CMD INSTALL \

--configure-args=’--with-odbc-include=/opt/local/include \

--with-odbc-lib=/opt/local/lib --with-odbc-manager=iodbc’ \

RODBC

or by setting the environment variables ODBC_INCLUDE and ODBC_LIBS.

1.2.3 Using F9x code

R assumes that source files with extension .f are fixed-form Fortran 90 (which includes
Fortran 77), and passes them to the compiler specified by macro ‘FC’. On known platforms
the Fortran compiler will also accept free-form Fortran 90/95 code with extension .f90 or
.f95, but those are not used by R itself so this is not required.

The same compiler is used42 for both fixed-form and free-form Fortran code (with differ-
ent file extensions and possibly different flags). Macro PKG_FFLAGS can be used for package-
specific flags: for the un-encountered case that both are included in a single package and
that different flags are needed for the two forms, macro PKG_FCFLAGS is also available for
free-form Fortran.

42 for versions of R since 3.6.0.

Chapter 1: Creating R packages 36

The code used to build R allows a ‘Fortran 90’ compiler to be selected as ‘FC’, so
platforms might be encountered which only support Fortran 90. However, Fortran 95 is
widely supported.

Some compilers specified by ‘FC’ will accept Fortran 2003, 2008 or 2018 code: such code
should still use file extension .f90 or .f95. Most platforms use gfortran where you may
need to include -std=f2003, -std=f2008 or (from version 8) -std=f2018 in PKG_FFLAGS or
PKG_FCFLAGS: the default is ‘GNU Fortran’, Fortran 95 with non-standard extensions. The
Oracle f95 compiler ‘accepts some Fortran 2003/8 features’ (search for ‘Oracle Developer
Studio 12.6: Fortran User’s Guide’ and look for Â§4.6). Intel Fortran has full Fortran 2008
support from version 17.0, and some 2018 support in version 16.0 and more in version 19.0.

Modern versions of Fortran support modules, whereby compiling one source file creates a
module file which is then included in others. (Module files typically have a .mod extension:
they do depend on the compiler used and so should never be included in a package.) This
creates a dependence which make will not know about and often causes installation with a
parallel make to fail. Thus it is necessary to add explicit dependencies to src/Makevars to
tell make the constraints on the order of compilation. For example, if file iface.f90 creates
a module ‘iface’ used by files cmi.f90 and dmi.f90 then src/Makevars needs to contain
something like

cmi.o dmi.o: iface.o

Note that it is not portable (although some platforms do accept it) to define a module of
the same name in multiple source files.

1.2.4 Using C++ code

R can be built without a C++ compiler although one is available (but not necessarily in-
stalled) on all known R platforms. As from R 4.0.0 a C++ compiler will be selected only if
it conforms to the 2011 standard (‘C++11’). A minor update43 (‘C++14’) was published in
December 2014 and will be used by default as from R 4.1.0 if supported. Further revisions
‘C++17’ (in December 2017), and ‘C++20’ (with many new features in December 2020) have
been published since.

What standard a C++ compiler aims to support can be hard to determine: the value44

of __cplusplus may help but some compilers use it to denote a standard which is partially
supported and some the latest standard which is (almost) fully supported.

The webpage https://en.cppreference.com/w/cpp/compiler_support gives some
information on which compilers are known to support recent C++ features.

Different versions of R have specified different minimum C++ standards, so for maximal
portability a package should specify the standard it requires. In order to specify C++11
code in a package, Makevars file (or Makevars.win on Windows) should include the line

CXX_STD = CXX11

Compilation and linking will then be done with the C++11 compiler (if any).

43 Some changes are linked from https://isocpp.org/std/standing-documents/

sd-6-sg10-feature-test-recommendations: there were also additional deprecations.
44 Values 201103L, 201402L and 201703L are most commonly used for C++11, C++14 and C++17 respectively,

but some compilers set 1L. At the time of writing there was no official value for C++20, but some compilers
are using 202002L, others 201703L.

https://en.cppreference.com/w/cpp/compiler_support
https://isocpp.org/std/standing-documents/sd-6-sg10-feature-test-recommendations
https://isocpp.org/std/standing-documents/sd-6-sg10-feature-test-recommendations

Chapter 1: Creating R packages 37

Packages without a src/Makevars or src/Makefile file may specify that they require
C++11 for code in the src directory by including ‘C++11’ in the ‘SystemRequirements’ field
of the DESCRIPTION file, e.g.

SystemRequirements: C++11

If a package does have a src/Makevars[.win] file then setting the make variable
‘CXX_STD’ is preferred, as it allows R CMD SHLIB to work correctly in the package’s src

directory.

If a package using C++ has a configure script it is essential that it selects the correct
C++ standard, via something like

CXX11=‘"${R_HOME}/bin/R" CMD config CXX11‘

if test -z "$CXX11"; then

AC_MSG_ERROR([No C++11 compiler is available])

fi

CXX11STD=‘"${R_HOME}/bin/R" CMD config CXX11STD‘

CXX="${CXX11} ${CXX11STD}"

CXXFLAGS=‘"${R_HOME}/bin/R" CMD config CXX11FLAGS‘

AC_LANG(C++)

if C++11 was specified, but using CXX instead of CXX11 if no standard was specified.

If you want to compile C++ code in a subdirectory, make sure you pass down the macros
to specify the appropriate compiler, e.g. in src/Makevars

sublibs:

@(cd libs && $(MAKE) \

CXX="$(CXX11) $(CXX11STD)" CXXFLAGS="$(CXX11FLAGS) $(CXX11PICFLAGS)")

Note that the mechanisms described here specify C++11 for code compiled by R CMD

SHLIB as used by default by R CMD INSTALL. They do not necessarily apply if there is a
src/Makefile file, nor to compilation done in vignettes or via other packages.

Support for a C++14 compiler (where available) has been in R since version 3.4.0. Similar
considerations to C++11 apply, with the variables associated with the C++14 compiler using
the prefix ‘CXX14’ instead of ‘CXX11’. For example, to use C++14 code in a package, the
package’s Makevars file (or Makevars.win on Windows) should include the line

CXX_STD = CXX14

Essentially complete C++14 support is available from GCC 5, LLVM clang 3.4 and
currently-used versions of Apple clang.

Code needing C++14 features can check for their presence via ‘SD-6 feature tests’45. Such
a check could be

#include <memory> // header where this is defined

#if defined(__cpp_lib_make_unique) && (__cpp_lib_make_unique >= 201304)

using std::make_unique;

#else

// your emulation

45 See https://isocpp.org/std/standing-documents/sd-6-sg10-feature-test-recommendations or
https://en.cppreference.com/w/cpp/experimental/feature_test. It seems a reasonable assumption
that any compiler promising some C++14 conformance will provide these—e.g. g++ 4.9.x did but 4.8.5
did not.

https://isocpp.org/std/standing-documents/sd-6-sg10-feature-test-recommendations
https://en.cppreference.com/w/cpp/experimental/feature_test

Chapter 1: Creating R packages 38

#endif

Note that Windows builds prior to R 4.0.0 used g++ 4.9.x which had only partial C++14
support, and the flag to obtain that support was not included in the default Windows build
of R — one could try something like

CXX14="$(BINPREF)g++ $(M_ARCH)"

CXX14FLAGS="-O2 -Wall"

CXX14STD=-std=gnu1y

in HOME/.R/Makevars.win. The g++ version used from R 4.0.0 supports C++14 with flag
-std=gnu14 and for back-compatibility -std=gnu1y.

C++17 (as from R 3.4.0) and C++20 (as from R 4.0.0) can be specified in an analogous
way (replacing 14 by 17 or 20) but compiler/OS support is platform-dependent. Some
C++17 and C++20 support is available with the default builds of R on macOS and Windows
as from R 4.0.0. Much of g++’s support for C++17 needs version 7 or later: that is more
recent than some still-current Linux distributions and the OpenCSW compilers for Solaris.

Note that C++17 or C++20 ‘support’ does not mean complete support: use feature tests
as well as resources such as https://en.cppreference.com/w/cpp/compiler_support,
https://gcc.gnu.org/projects/cxx-status.html and https://libcxx.llvm.org/

docs/Cxx1zStatus.html to see if the features you want to use are widely implemented.

A requirement of C++17 or later should always be declared in the ‘SystemRequirements’
field (as well as in src/Makevars or src/Makefile) so this is shown on the package’s
summary pages on CRAN or similar.

1.3 Checking and building packages

Before using these tools, please check that your package can be installed. R CMD check will
inter alia do this, but you may get more detailed error messages doing the install directly.

If your package specifies an encoding in its DESCRIPTION file, you should run these tools
in a locale which makes use of that encoding: they may not work at all or may work
incorrectly in other locales (although UTF-8 locales will most likely work).

Note: R CMD check and R CMD build run R processes with --vanilla in which
none of the user’s startup files are read. If you need R_LIBS set (to find packages
in a non-standard library) you can set it in the environment: also you can use the
check and build environment files (as specified by the environment variables R_
CHECK_ENVIRON and R_BUILD_ENVIRON; if unset, files46 ~/.R/check.Renviron

and ~/.R/build.Renviron are used) to set environment variables when using
these utilities.

Note to Windows users: R CMD build may make use of the Windows toolset
(see the “R Installation and Administration” manual) if present and in your
path, and it is required for packages which need it to install (including those
with configure.win or cleanup.win scripts or a src directory) and e.g. need
vignettes built.

You may need to set the environment variable TMPDIR to point to a suitable
writable directory with a path not containing spaces – use forward slashes for

46 On systems which use sub-architectures, architecture-specific versions such as ~/.R/check.Renviron.i386
take precedence.

https://en.cppreference.com/w/cpp/compiler_support
https://gcc.gnu.org/projects/cxx-status.html
https://libcxx.llvm.org/docs/Cxx1zStatus.html
https://libcxx.llvm.org/docs/Cxx1zStatus.html

Chapter 1: Creating R packages 39

the separators. Also, the directory needs to be on a case-honouring file system
(some network-mounted file systems are not).

1.3.1 Checking packages

Using R CMD check, the R package checker, one can test whether source R packages work
correctly. It can be run on one or more directories, or compressed package tar archives
with extension .tar.gz, .tgz, .tar.bz2 or .tar.xz.

It is strongly recommended that the final checks are run on a tar archive prepared by R

CMD build.

This runs a series of checks, including

1. The package is installed. This will warn about missing cross-references and duplicate
aliases in help files.

2. The file names are checked to be valid across file systems and supported operating
system platforms.

3. The files and directories are checked for sufficient permissions (Unix-alikes only).

4. The files are checked for binary executables, using a suitable version of file if avail-
able47. (There may be rare false positives.)

5. The DESCRIPTION file is checked for completeness, and some of its entries for correct-
ness. Unless installation tests are skipped, checking is aborted if the package dependen-
cies cannot be resolved at run time. (You may need to set R_LIBS in the environment if
dependent packages are in a separate library tree.) One check is that the package name
is not that of a standard package, nor one of the defunct standard packages (‘ctest’,
‘eda’, ‘lqs’, ‘mle’, ‘modreg’, ‘mva’, ‘nls’, ‘stepfun’ and ‘ts’). Another check is that all
packages mentioned in library or requires or from which the NAMESPACE file imports
or are called via :: or ::: are listed (in ‘Depends’, ‘Imports’, ‘Suggests’): this is not
an exhaustive check of the actual imports.

6. Available index information (in particular, for demos and vignettes) is checked for
completeness.

7. The package subdirectories are checked for suitable file names and for not being empty.
The checks on file names are controlled by the option --check-subdirs=value. This
defaults to ‘default’, which runs the checks only if checking a tarball: the default can
be overridden by specifying the value as ‘yes’ or ‘no’. Further, the check on the src

directory is only run if the package does not contain a configure script (which corre-
sponds to the value ‘yes-maybe’) and there is no src/Makefile or src/Makefile.in.

To allow a configure script to generate suitable files, files ending in ‘.in’ will be
allowed in the R directory.

A warning is given for directory names that look like R package check directories –
many packages have been submitted to CRAN containing these.

8. The R files are checked for syntax errors. Bytes which are non-ASCII are reported as
warnings, but these should be regarded as errors unless it is known that the package
will always be used in the same locale.

47 A suitable file.exe is part of the Windows toolset: it checks for gfile if a suitable file is not found:
the latter is available in the OpenCSW collection for Solaris at https://www.opencsw.org/. The source
repository is http://ftp.astron.com/pub/file/.

https://www.opencsw.org/
http://ftp.astron.com/pub/file/

Chapter 1: Creating R packages 40

9. It is checked that the package can be loaded, first with the usual default packages and
then only with package base already loaded. It is checked that the namespace can
be loaded in an empty session with only the base namespace loaded. (Namespaces
and packages can be loaded very early in the session, before the default packages are
available, so packages should work then.)

10. The R files are checked for correct calls to library.dynam. Package startup functions
are checked for correct argument lists and (incorrect) calls to functions which modify
the search path or inappropriately generate messages. The R code is checked for pos-
sible problems using codetools (https://CRAN.R-project.org/package=codetools).
In addition, it is checked whether S3 methods have all the arguments of the correspond-
ing generic, and whether the final argument of replacement functions is called ‘value’.
All foreign function calls (.C, .Fortran, .Call and .External calls) are tested to
see if they have a PACKAGE argument, and if not, whether the appropriate DLL might
be deduced from the namespace of the package. Any other calls are reported. (The
check is generous, and users may want to supplement this by examining the output of
tools::checkFF("mypkg", verbose=TRUE), especially if the intention were to always
use a PACKAGE argument)

11. The Rd files are checked for correct syntax and metadata, including the presence of
the mandatory fields (\name, \alias, \title and \description). The Rd name and
title are checked for being non-empty, and there is a check for missing cross-references
(links).

12. A check is made for missing documentation entries, such as undocumented user-level
objects in the package.

13. Documentation for functions, data sets, and S4 classes is checked for consistency with
the corresponding code.

14. It is checked whether all function arguments given in \usage sections of Rd files are
documented in the corresponding \arguments section.

15. The data directory is checked for non-ASCII characters and for the use of reasonable
levels of compression.

16. C, C++ and Fortran source and header files48 are tested for portable (LF-only) line
endings. If there is a Makefile or Makefile.in or Makevars or Makevars.in file
under the src directory, it is checked for portable line endings and the correct use of
‘$(BLAS_LIBS)’ and ‘$(LAPACK_LIBS)’

Compiled code is checked for symbols corresponding to functions which might termi-
nate R or write to stdout/stderr instead of the console. Note that the latter might
give false positives in that the symbols might be pulled in with external libraries and
could never be called. Windows49 users should note that the Fortran and C++ runtime
libraries are examples of such external libraries.

17. Some checks are made of the contents of the inst/doc directory. These always in-
clude checking for files that look like leftovers, and if suitable tools (such as qpdf) are
available, checking that the PDF documentation is of minimal size.

48 An exception is made for subdirectories with names starting ‘win’ or ‘Win’.
49 on most other platforms such runtime libraries are dynamic, but static libraries are currently used on

Windows because the toolchain is not a standard part of the OS.

https://CRAN.R-project.org/package=codetools

Chapter 1: Creating R packages 41

18. The examples provided by the package’s documentation are run. (see Chapter 2 [Writ-
ing R documentation files], page 81, for information on using \examples to create
executable example code.) If there is a file tests/Examples/pkg-Ex.Rout.save, the
output of running the examples is compared to that file.

Of course, released packages should be able to run at least their own examples. Each
example is run in a ‘clean’ environment (so earlier examples cannot be assumed to have
been run), and with the variables T and F redefined to generate an error unless they
are set in the example: See Section “Logical vectors” in An Introduction to R.

19. If the package sources contain a tests directory then the tests specified in that directory
are run. (Typically they will consist of a set of .R source files and target output
files .Rout.save.) Please note that the comparison will be done in the end user’s
locale, so the target output files should be ASCII if at all possible. (The command
line option --test-dir=foo may be used to specify tests in a non-standard location.
For example, unusually slow tests could be placed in inst/slowTests and then R CMD

check --test-dir=inst/slowTests would be used to run them. Other names that
have been suggested are, for example, inst/testWithOracle for tests that require
Oracle to be installed, inst/randomTests for tests which use random values and may
occasionally fail by chance, etc.)

20. The code in package vignettes (see Section 1.4 [Writing package vignettes], page 45) is
executed, and the vignette PDFs re-made from their sources as a check of completeness
of the sources (unless there is a ‘BuildVignettes’ field in the package’s DESCRIPTION
file with a false value). If there is a target output file .Rout.save in the vignette
source directory, the output from running the code in that vignette is compared with
the target output file and any differences are reported (but not recorded in the log file).
(If the vignette sources are in the deprecated location inst/doc, do mark such target
output files to not be installed in .Rinstignore.)

If there is an error50 in executing the R code in vignette foo.ext, a log file foo.ext.log
is created in the check directory. The vignette PDFs are re-made in a copy of the
package sources in the vign_test subdirectory of the check directory, so for further
information on errors look in directory pkgname/vign_test/vignettes. (It is only
retained if there are errors or if environment variable _R_CHECK_CLEAN_VIGN_TEST_ is
set to a false value.)

21. The PDF version of the package’s manual is created (to check that the Rd files can be
converted successfully). This needs LATEX and suitable fonts and LATEX packages to be
installed. See Section “Making the manuals” in R Installation and Administration.

All these tests are run with collation set to the C locale, and for the examples and tests
with environment variable LANGUAGE=en: this is to minimize differences between platforms.

Use R CMD check --help to obtain more information about the usage of the R package
checker. A subset of the checking steps can be selected by adding command-line options.
It also allows customization by setting environment variables _R_CHECK_*_ as described in
Section “Tools” in R Internals: a set of these customizations similar to those used by CRAN

can be selected by the option --as-cran (which works best if Internet access is available).
Some Windows users may need to set environment variable R_WIN_NO_JUNCTIONS to a

50 or if option --use-valgrind is used or environment variable _R_CHECK_ALWAYS_LOG_VIGNETTE_OUTPUT_

is set to a true value or if there are differences from a target output file

Chapter 1: Creating R packages 42

non-empty value. The test of cyclic declarations51in DESCRIPTION files needs repositories
(including CRAN) set: do this in ~/.Rprofile, by e.g.

options(repos = c(CRAN="https://cran.r-project.org"))

One check customization which can be revealing is

_R_CHECK_CODETOOLS_PROFILE_="suppressLocalUnused=FALSE"

which reports unused local assignments. Not only does this point out computations which
are unnecessary because their results are unused, it also can uncover errors. (Two such are
to intend to update an object by assigning a value but mistype its name or assign in the
wrong scope, for example using <- where <<- was intended.) This can give false positives,
most commonly because of non-standard evaluation for formulae and because the intention
is to return objects in the environment of a function for later use.

Complete checking of a package which contains a file README.md needs a reasonably
current version of pandoc installed: see https://pandoc.org/installing.html.

You do need to ensure that the package is checked in a suitable locale if it contains
non-ASCII characters. Such packages are likely to fail some of the checks in a C locale, and
R CMD check will warn if it spots the problem. You should be able to check any package
in a UTF-8 locale (if one is available). Beware that although a C locale is rarely used at a
console, it may be the default if logging in remotely or for batch jobs.

Multiple sub-architectures: On systems which support multiple sub-
architectures (principally Windows), R CMD check will install and check a
package which contains compiled code under all available sub-architectures.
(Use option --force-multiarch to force this for packages without compiled
code, which are otherwise only checked under the main sub-architecture.)
This will run the loading tests, examples and tests directory under each
installed sub-architecture in turn, and give an error if any fail. Where
environment variables (including perhaps PATH) need to be set differently for
each sub-architecture, these can be set in architecture-specific files such as
R_HOME/etc/i386/Renviron.site.

An alternative approach is to use R CMD check --no-multiarch to check the
primary sub-architecture, and then to use something like R --arch=x86_64

CMD check --extra-arch or (Windows) /path/to/R/bin/x64/Rcmd check

--extra-arch to run for each additional sub-architecture just the checks52

which differ by sub-architecture. (This approach is required for packages
which are installed by R CMD INSTALL --merge-multiarch.)

Where packages need additional commands to install all the sub-architectures
these can be supplied by e.g. --install-args=--force-biarch.

1.3.2 Building package tarballs

Packages may be distributed in source form as “tarballs” (.tar.gz files) or in binary form.
The source form can be installed on all platforms with suitable tools and is the usual

51 For example, in early 2014 gdata (https://CRAN.R-project.org/package=gdata) declared ‘Imports:
gtools’ and gtools (https://CRAN.R-project.org/package=gtools) declared ‘Imports: gdata’.

52 loading, examples, tests, running vignette code

https://pandoc.org/installing.html
https://CRAN.R-project.org/package=gdata
https://CRAN.R-project.org/package=gtools

Chapter 1: Creating R packages 43

form for Unix-like systems; the binary form is platform-specific, and is the more common
distribution form for the Windows and macOS platforms.

Using R CMD build, the R package builder, one can build R package tarballs from their
sources (for example, for subsequent release). It is recommended that packages are built for
release by the current release version of R or ‘r-patched’, to avoid inadvertently picking
up new features of a development version of R.

Prior to actually building the package in the standard gzipped tar file format, a few
diagnostic checks and cleanups are performed. In particular, it is tested whether object
indices exist and can be assumed to be up-to-date, and C, C++ and Fortran source files
and relevant makefiles in a src directory are tested and converted to LF line-endings if
necessary.

Run-time checks whether the package works correctly should be performed using R CMD

check prior to invoking the final build procedure.

To exclude files from being put into the package, one can specify a list of exclude patterns
in file .Rbuildignore in the top-level source directory. These patterns should be Perl-like
regular expressions (see the help for regexp in R for the precise details), one per line, to
be matched case-insensitively against the file and directory names relative to the top-level
package source directory. In addition, directories from source control systems53 or from
eclipse54, directories with names check, chm, or ending .Rcheck or Old or old and files
GNUMakefile55, Read-and-delete-me or with base names starting with ‘.#’, or starting and
ending with ‘#’, or ending in ‘~’, ‘.bak’ or ‘.swp’, are excluded by default56. In addition,
same-package tarballs (from previous builds) and their binary forms will be excluded from
the top-level directory, as well as those files in the R, demo and man directories which are
flagged by R CMD check as having invalid names.

Use R CMD build --help to obtain more information about the usage of the R package
builder.

Unless R CMD build is invoked with the --no-build-vignettes option (or the package’s
DESCRIPTION contains ‘BuildVignettes: no’ or similar), it will attempt to (re)build the
vignettes (see Section 1.4 [Writing package vignettes], page 45) in the package. To do so
it installs the current package into a temporary library tree, but any dependent packages
need to be installed in an available library tree (see the Note: at the top of this section).

Similarly, if the .Rd documentation files contain any \Sexpr macros (see Section 2.12
[Dynamic pages], page 96), the package will be temporarily installed to execute them.
Post-execution binary copies of those pages containing build-time macros will be saved in
build/partial.rdb. If there are any install-time or render-time macros, a .pdf version
of the package manual will be built and installed in the build subdirectory. (This allows
CRAN or other repositories to display the manual even if they are unable to install the
package.) This can be suppressed by the option --no-manual or if package’s DESCRIPTION
contains ‘BuildManual: no’ or similar.

53 called CVS or .svn or .arch-ids or .bzr or .git (but not files called .git) or .hg.
54 called .metadata.
55 which is an error: GNU make uses GNUmakefile.
56 see tools:::.hidden_file_exclusions and tools:::get_exclude_patterns() for further excluded

files and file patterns, respectively.

Chapter 1: Creating R packages 44

One of the checks that R CMD build runs is for empty source directories. These are in
most (but not all) cases unintentional, if they are intentional use the option --keep-empty-

dirs (or set the environment variable _R_BUILD_KEEP_EMPTY_DIRS_ to ‘TRUE’, or have a
‘BuildKeepEmpty’ field with a true value in the DESCRIPTION file).

The --resave-data option allows saved images (.rda and .RData files) in the data

directory to be optimized for size. It will also compress tabular files and convert .R files to
saved images. It can take values no, gzip (the default if this option is not supplied, which
can be changed by setting the environment variable _R_BUILD_RESAVE_DATA_) and best

(equivalent to giving it without a value), which chooses the most effective compression.
Using best adds a dependence on R (>= 2.10) to the DESCRIPTION file if bzip2 or xz com-
pression is selected for any of the files. If this is thought undesirable, --resave-data=gzip
(which is the default if that option is not supplied) will do what compression it can with
gzip. A package can control how its data is resaved by supplying a ‘BuildResaveData’
field (with one of the values given earlier in this paragraph) in its DESCRIPTION file.

The --compact-vignettes option will run tools::compactPDF over the PDF files in
inst/doc (and its subdirectories) to losslessly compress them. This is not enabled by
default (it can be selected by environment variable _R_BUILD_COMPACT_VIGNETTES_) and
needs qpdf (http://qpdf.sourceforge.net/) to be available.

It can be useful to run R CMD check --check-subdirs=yes on the built tarball as a final
check on the contents.

Where a non-POSIX file system is in use which does not utilize execute permissions,
some care is needed with permissions. This applies on Windows and to e.g. FAT-formatted
drives and SMB-mounted file systems on other OSes. The ‘mode’ of the file recorded in the
tarball will be whatever file.info() returns. On Windows this will record only directories
as having execute permission and on other OSes it is likely that all files have reported ‘mode’
0777. A particular issue is packages being built on Windows which are intended to contain
executable scripts such as configure and cleanup: R CMD build ensures those two are
recorded with execute permission.

Directory build of the package sources is reserved for use by R CMD build: it contains
information which may not easily be created when the package is installed, including index
information on the vignettes and, rarely, information on the help pages and perhaps a copy
of the PDF reference manual (see above).

1.3.3 Building binary packages

Binary packages are compressed copies of installed versions of packages. They contain
compiled shared libraries rather than C, C++ or Fortran source code, and the R functions
are included in their installed form. The format and filename are platform-specific; for
example, a binary package for Windows is usually supplied as a .zip file, and for the
macOS platform the default binary package file extension is .tgz.

The recommended method of building binary packages is to use

R CMD INSTALL --build pkg where pkg is either the name of a source tarball (in the
usual .tar.gz format) or the location of the directory of the package source to be built.
This operates by first installing the package and then packing the installed binaries into the
appropriate binary package file for the particular platform.

http://qpdf.sourceforge.net/

Chapter 1: Creating R packages 45

By default, R CMD INSTALL --build will attempt to install the package into the default
library tree for the local installation of R. This has two implications:

• If the installation is successful, it will overwrite any existing installation of the same
package.

• The default library tree must have write permission; if not, the package will not install
and the binary will not be created.

To prevent changes to the present working installation or to provide an install location with
write access, create a suitably located directory with write access and use the -l option to
build the package in the chosen location. The usage is then

R CMD INSTALL -l location --build pkg

where location is the chosen directory with write access. The package will be installed as
a subdirectory of location, and the package binary will be created in the current directory.

Other options for R CMD INSTALL can be found using R CMD INSTALL --help, and
platform-specific details for special cases are discussed in the platform-specific FAQs.

Finally, at least one web-based service is available for building binary packages from
(checked) source code: WinBuilder (see https://win-builder.R-project.org/) is able
to build Windows binaries. Note that this is intended for developers on other platforms
who do not have access to Windows but wish to provide binaries for the Windows platform.

1.4 Writing package vignettes

In addition to the help files in Rd format, R packages allow the inclusion of documents
in arbitrary other formats. The standard location for these is subdirectory inst/doc of
a source package, the contents will be copied to subdirectory doc when the package is in-
stalled. Pointers from package help indices to the installed documents are automatically
created. Documents in inst/doc can be in arbitrary format, however we strongly recom-
mend providing them in PDF format, so users on almost all platforms can easily read them.
To ensure that they can be accessed from a browser (as an HTML index is provided), the
file names should start with an ASCII letter and be comprised entirely of ASCII letters or
digits or hyphen or underscore.

A special case is package vignettes. Vignettes are documents in PDF or HTML format
obtained from plain-text literate source files from which R knows how to extract R code and
create output (in PDF/HTML or intermediate LATEX). Vignette engines do this work, using
“tangle” and “weave” functions respectively. Sweave, provided by the R distribution, is
the default engine. Other vignette engines besides Sweave are supported; see Section 1.4.2
[Non-Sweave vignettes], page 48.

Package vignettes have their sources in subdirectory vignettes of the package sources.
Note that the location of the vignette sources only affects R CMD build and R CMD check: the
tarball built by R CMD build includes in inst/doc the components intended to be installed.

Sweave vignette sources are normally given the file extension .Rnw or .Rtex, but for
historical reasons extensions57 .Snw and .Stex are also recognized. Sweave allows the
integration of LATEX documents: see the Sweave help page in R and the Sweave vignette in
package utils for details on the source document format.

57 and to avoid problems with case-insensitive file systems, lower-case versions of all these extensions.

https://win-builder.R-project.org/

Chapter 1: Creating R packages 46

Package vignettes are tested by R CMD check by executing all R code chunks they contain
(except those marked for non-evaluation, e.g., with option eval=FALSE for Sweave). The
R working directory for all vignette tests in R CMD check is a copy of the vignette source
directory. Make sure all files needed to run the R code in the vignette (data sets, . . .) are
accessible by either placing them in the inst/doc hierarchy of the source package or by
using calls to system.file(). All other files needed to re-make the vignettes (such as LATEX
style files, BibTEX input files and files for any figures not created by running the code in
the vignette) must be in the vignette source directory. R CMD check will check that vignette
production has succeeded by comparing modification times of output files in inst/doc with
the source in vignettes.

R CMD build will automatically58 create the (PDF or HTML versions of the) vignettes in
inst/doc for distribution with the package sources. By including the vignette outputs in
the package sources it is not necessary that these can be re-built at install time, i.e., the
package author can use private R packages, screen snapshots and LATEX extensions which
are only available on their machine.59

By default R CMD build will run Sweave on all Sweave vignette source files in vignettes.
If Makefile is found in the vignette source directory, then R CMD build will try to run make

after the Sweave runs, otherwise texi2pdf is run on each .tex file produced.

The first target in the Makefile should take care of both creation of PDF/HTML files
and cleaning up afterwards (including after Sweave), i.e., delete all files that shall not appear
in the final package archive. Note that if the make step runs R it needs to be careful to
respect the environment values of R_LIBS and R_HOME60. Finally, if there is a Makefile and
it has a ‘clean:’ target, make clean is run.

All the usual caveats about including a Makefile apply. It must be portable (no GNU

extensions), use LF line endings and must work correctly with a parallel make: too many
authors have written things like

BAD EXAMPLE

all: pdf clean

pdf: ABC-intro.pdf ABC-details.pdf

%.pdf: %.tex

texi2dvi --pdf $*

clean:

rm *.tex ABC-details-*.pdf

which will start removing the source files whilst pdflatex is working.

Metadata lines can be placed in the source file, preferably in LATEX comments in the
preamble. One such is a \VignetteIndexEntry of the form

%\VignetteIndexEntry{Using Animal}

58 unless inhibited by using ‘BuildVignettes: no’ in the DESCRIPTION file.
59 provided the conditions of the package’s license are met: many, including CRAN, see the omission of

source components as incompatible with an Open Source license.
60 R_HOME/bin is prepended to the PATH so that references to R or Rscript in the Makefile do make use of

the currently running version of R.

Chapter 1: Creating R packages 47

Others you may see are \VignettePackage (currently ignored), \VignetteDepends

and \VignetteKeyword (which replaced \VignetteKeywords). These are processed at
package installation time to create the saved data frame Meta/vignette.rds, but only
the \VignetteIndexEntry and \VignetteKeyword statements are currently used. The
\VignetteEngine statement is described in Section 1.4.2 [Non-Sweave vignettes], page 48.

At install time an HTML index for all vignettes in the package is automatically created
from the \VignetteIndexEntry statements unless a file index.html exists in directory
inst/doc. This index is linked from the HTML help index for the package. If you do supply
a inst/doc/index.html file it should contain relative links only to files under the installed
doc directory, or perhaps (not really an index) to HTML help files or to the DESCRIPTION

file, and be valid HTML as confirmed via the W3C Markup Validation Service (https://
validator.w3.org) or Validator.nu (https://validator.nu/).

Sweave/Stangle allows the document to specify the split=TRUE option to create a single
R file for each code chunk: this will not work for vignettes where it is assumed that each
vignette source generates a single file with the vignette extension replaced by .R.

Do watch that PDFs are not too large – one in a CRAN package was 72MB! This is
usually caused by the inclusion of overly detailed figures, which will not render well in
PDF viewers. Sometimes it is much better to generate fairly high resolution bitmap (PNG,
JPEG) figures and include those in the PDF document.

When R CMD build builds the vignettes, it copies these and the vignette sources from
directory vignettes to inst/doc. To install any other files from the vignettes direc-
tory, include a file vignettes/.install_extras which specifies these as Perl-like regular
expressions on one or more lines. (See the description of the .Rinstignore file for full
details.)

1.4.1 Encodings and vignettes

Vignettes will in general include descriptive text, R input, R output and figures, LATEX
include files and bibliographic references. As any of these may contain non-ASCII characters,
the handling of encodings can become very complicated.

The vignette source file should be written in ASCII or contain a declaration of the
encoding (see below). This applies even to comments within the source file, since vignette
engines process comments to look for options and metadata lines. When an engine’s weave
and tangle functions are called on the vignette source, it will be converted to the encoding
of the current R session.

Stangle() will produce an R code file in the current locale’s encoding: for a non-ASCII

vignette what that is is recorded in a comment at the top of the file.

Sweave() will produce a .tex file in the current encoding, or in UTF-8 if that is declared.
Non-ASCII encodings need to be declared to LATEX via a line like

\usepackage[utf8]{inputenc}

(It is also possible to use the more recent ‘inputenx’ LATEX package.) For files where this line
is not needed (e.g. chapters included within the body of a larger document, or non-Sweave
vignettes), the encoding may be declared using a comment like

%\VignetteEncoding{UTF-8}

If the encoding is UTF-8, this can also be declared using the declaration

%\SweaveUTF8

https://validator.w3.org
https://validator.w3.org
https://validator.nu/

Chapter 1: Creating R packages 48

If no declaration is given in the vignette, it will be assumed to be in the encoding declared
for the package. If there is no encoding declared in either place, then it is an error to use
non-ASCII characters in the vignette.

In any case, be aware that LATEX may require the ‘usepackage’ declaration.

Sweave() will also parse and evaluate the R code in each chunk. The R output will also
be in the current locale (or UTF-8 if so declared), and should be covered by the ‘inputenc’
declaration. One thing people often forget is that the R output may not be ASCII even for
ASCII R sources, for many possible reasons. One common one is the use of ‘fancy’ quotes:
see the R help on sQuote: note carefully that it is not portable to declare UTF-8 or CP1252
to cover such quotes, as their encoding will depend on the locale used to run Sweave():
this can be circumvented by setting options(useFancyQuotes="UTF-8") in the vignette.

The final issue is the encoding of figures – this applies only to PDF figures and not PNG
etc. The PDF figures will contain declarations for their encoding, but the Sweave option
pdf.encoding may need to be set appropriately: see the help for the pdf() graphics device.

As a real example of the complexities, consider the fortunes (https://CRAN.R-project.
org/package=fortunes) package version ‘1.4-0’. That package did not have a declared
encoding, and its vignette was in ASCII. However, the data it displays are read from a
UTF-8 CSV file and will be assumed to be in the current encoding, so fortunes.tex will
be in UTF-8 in any locale. Had read.table been told the data were UTF-8, fortunes.tex
would have been in the locale’s encoding.

1.4.2 Non-Sweave vignettes

Vignettes in formats other than Sweave are supported via “vignette engines”. For example
knitr (https://CRAN.R-project.org/package=knitr) version 1.1 or later can create .tex
files from a variation on Sweave format, and .html files from a variation on “markdown”
format. These engines replace the Sweave() function with other functions to convert vi-
gnette source files into LATEX files for processing into .pdf, or directly into .pdf or .html
files. The Stangle() function is replaced with a function that extracts the R source from
a vignette.

R recognizes non-Sweave vignettes using filename extensions specified by the engine. For
example, the knitr (https://CRAN.R-project.org/package=knitr) package supports the
extension .Rmd (standing for “R markdown”). The user indicates the vignette engine within
the vignette source using a \VignetteEngine line, for example

%\VignetteEngine{knitr::knitr}

This specifies the name of a package and an engine to use in place of Sweave in processing
the vignette. As Sweave is the only engine supplied with the R distribution, the package
providing any other engine must be specified in the ‘VignetteBuilder’ field of the package
DESCRIPTION file, and also specified in the ‘Suggests’, ‘Imports’ or ‘Depends’ field (since
its namespace must be available to build or check your package). If more than one package
is specified as a builder, they will be searched in the order given there. The utils package is
always implicitly appended to the list of builder packages, but may be included earlier to
change the search order.

Note that a package with non-Sweave vignettes should always have a ‘VignetteBuilder’
field in the DESCRIPTION file, since this is how R CMD check recognizes that there are vi-
gnettes to be checked: packages listed there are required when the package is checked.

https://CRAN.R-project.org/package=fortunes
https://CRAN.R-project.org/package=fortunes
https://CRAN.R-project.org/package=knitr
https://CRAN.R-project.org/package=knitr

Chapter 1: Creating R packages 49

The vignette engine can produce .tex, .pdf, or .html files as output. If it produces
.tex files, R will call texi2pdf to convert them to .pdf for display to the user (unless there
is a Makefile in the vignettes directory).

Package writers who would like to supply vignette engines need to register those engines
in the package .onLoad function. For example, that function could make the call

tools::vignetteEngine("knitr", weave = vweave, tangle = vtangle,

pattern = "[.]Rmd$", package = "knitr")

(The actual registration in knitr (https://CRAN.R-project.org/package=knitr) is more
complicated, because it supports other input formats.) See the ?tools::vignetteEngine

help topic for details on engine registration.

1.5 Package namespaces

R has a namespace management system for code in packages. This system allows the
package writer to specify which variables in the package should be exported to make them
available to package users, and which variables should be imported from other packages.

The namespace for a package is specified by the NAMESPACE file in the top level package
directory. This file contains namespace directives describing the imports and exports of the
namespace. Additional directives register any shared objects to be loaded and any S3-style
methods that are provided. Note that although the file looks like R code (and often has
R-style comments) it is not processed as R code. Only very simple conditional processing
of if statements is implemented.

Packages are loaded and attached to the search path by calling library or require.
Only the exported variables are placed in the attached frame. Loading a package that
imports variables from other packages will cause these other packages to be loaded as well
(unless they have already been loaded), but they will not be placed on the search path
by these implicit loads. Thus code in the package can only depend on objects in its own
namespace and its imports (including the base namespace) being visible61.

Namespaces are sealed once they are loaded. Sealing means that imports and exports
cannot be changed and that internal variable bindings cannot be changed. Sealing allows
a simpler implementation strategy for the namespace mechanism and allows code analysis
and compilation tools to accurately identify the definition corresponding to a global variable
reference in a function body.

The namespace controls the search strategy for variables used by functions in the package.
If not found locally, R searches the package namespace first, then the imports, then the base
namespace and then the normal search path (so the base namespace precedes the normal
search rather than being at the end of it).

1.5.1 Specifying imports and exports

Exports are specified using the export directive in the NAMESPACE file. A directive of the
form

export(f, g)

61 Note that lazy-loaded datasets are not in the package’s namespace so need to be accessed via ::, e.g.
survival::survexp.us.

https://CRAN.R-project.org/package=knitr

Chapter 1: Creating R packages 50

specifies that the variables f and g are to be exported. (Note that variable names may be
quoted, and reserved words and non-standard names such as [<-.fractions must be.)

For packages with many variables to export it may be more convenient to specify the
names to export with a regular expression using exportPattern. The directive

exportPattern("^[^\\.]")

exports all variables that do not start with a period. However, such broad patterns are
not recommended for production code: it is better to list all exports or use narrowly-
defined groups. (This pattern applies to S4 classes.) Beware of patterns which include
names starting with a period: some of these are internal-only variables and should never be
exported, e.g. ‘.__S3MethodsTable__.’ (and loading excludes known cases).

Packages implicitly import the base namespace. Variables exported from other pack-
ages with namespaces need to be imported explicitly using the directives import and
importFrom. The import directive imports all exported variables from the specified pack-
age(s). Thus the directives

import(foo, bar)

specifies that all exported variables in the packages foo and bar are to be imported. If only
some of the exported variables from a package are needed, then they can be imported using
importFrom. The directive

importFrom(foo, f, g)

specifies that the exported variables f and g of the package foo are to be imported. Using
importFrom selectively rather than import is good practice and recommended notably when
importing from packages with more than a dozen exports and especially from those written
by others (so what they export can change in future).

To import every symbol from a package but for a few exceptions, pass the except

argument to import. The directive

import(foo, except=c(bar, baz))

imports every symbol from foo except bar and baz. The value of except should eval-
uate to something coercible to a character vector, after substituting each symbol for its
corresponding string.

It is possible to export variables from a namespace which it has imported from other
namespaces: this has to be done explicitly and not via exportPattern.

If a package only needs a few objects from another package it can use a fully qualified
variable reference in the code instead of a formal import. A fully qualified reference to the
function f in package foo is of the form foo::f. This is slightly less efficient than a formal
import and also loses the advantage of recording all dependencies in the NAMESPACE file
(but they still need to be recorded in the DESCRIPTION file). Evaluating foo::f will cause
package foo to be loaded, but not attached, if it was not loaded already—this can be an
advantage in delaying the loading of a rarely used package.

Using foo:::f instead of foo::f allows access to unexported objects. This is generally
not recommended, as the semantics of unexported objects may be changed by the package
author in routine maintenance.

Chapter 1: Creating R packages 51

1.5.2 Registering S3 methods

The standard method for S3-style UseMethod dispatching might fail to locate methods
defined in a package that is imported but not attached to the search path. To ensure
that these methods are available the packages defining the methods should ensure that the
generics are imported and register the methods using S3method directives. If a package
defines a function print.foo intended to be used as a print method for class foo, then
the directive

S3method(print, foo)

ensures that the method is registered and available for UseMethod dispatch, and the function
print.foo does not need to be exported. Since the generic print is defined in base it does
not need to be imported explicitly.

(Note that function and class names may be quoted, and reserved words and non-
standard names such as [<- and function must be.)

It is possible to specify a third argument to S3method, the function to be used as the
method, for example

S3method(print, check_so_symbols, .print.via.format)

when print.check_so_symbols is not needed.

As from R 3.6.0 one can also use S3method() directives to perform delayed registration.
With

if(getRversion() >= "3.6.0") {

S3method(pkg::gen, cls)

}

function gen.cls will get registered as an S3 method for class cls and generic gen from
package pkg only when the namespace of pkg is loaded. This can be employed to deal
with situations where the method is not “immediately” needed, and having to pre-load
the namespace of pkg (and all its strong dependencies) in order to perform immediate
registration is considered too onerous.

1.5.3 Load hooks

There are a number of hooks called as packages are loaded, attached, detached, and un-
loaded. See help(".onLoad") for more details.

Since loading and attaching are distinct operations, separate hooks are provided for each.
These hook functions are called .onLoad and .onAttach. They both take arguments62

libname and pkgname; they should be defined in the namespace but not exported.

Packages can use a .onDetach or .Last.lib function (provided the latter is exported
from the namespace) when detach is called on the package. It is called with a single
argument, the full path to the installed package. There is also a hook .onUnload which is
called when the namespace is unloaded (via a call to unloadNamespace, perhaps called by
detach(unload = TRUE)) with argument the full path to the installed package’s directory.
Functions .onUnload and .onDetach should be defined in the namespace and not exported,
but .Last.lib does need to be exported.

62 they will be called with two unnamed arguments, in that order.

Chapter 1: Creating R packages 52

Packages are not likely to need .onAttach (except perhaps for a start-up banner); code
to set options and load shared objects should be placed in a .onLoad function, or use made
of the useDynLib directive described next.

User-level hooks are also available: see the help on function setHook.

These hooks are often used incorrectly. People forget to export .Last.lib. Compiled
code should be loaded in .onLoad (or via a useDynLb directive: see below) and unloaded in
.onUnload. Do remember that a package’s namespace can be loaded without the namespace
being attached (e.g. by pkgname::fun) and that a package can be detached and re-attached
whilst its namespace remains loaded.

1.5.4 useDynLib

A NAMESPACE file can contain one or more useDynLib directives which allows shared objects
that need to be loaded.63 The directive

useDynLib(foo)

registers the shared object foo64 for loading with library.dynam. Loading of registered
object(s) occurs after the package code has been loaded and before running the load hook
function. Packages that would only need a load hook function to load a shared object can
use the useDynLib directive instead.

The useDynLib directive also accepts the names of the native routines that are to be
used in R via the .C, .Call, .Fortran and .External interface functions. These are given
as additional arguments to the directive, for example,

useDynLib(foo, myRoutine, myOtherRoutine)

By specifying these names in the useDynLib directive, the native symbols are resolved
when the package is loaded and R variables identifying these symbols are added to the
package’s namespace with these names. These can be used in the .C, .Call, .Fortran
and .External calls in place of the name of the routine and the PACKAGE argument. For
instance, we can call the routine myRoutine from R with the code

.Call(myRoutine, x, y)

rather than

.Call("myRoutine", x, y, PACKAGE = "foo")

There are at least two benefits to this approach. Firstly, the symbol lookup is done just
once for each symbol rather than each time the routine is invoked. Secondly, this removes
any ambiguity in resolving symbols that might be present in more than one DLL. However,
this approach is nowadays deprecated in favour of supplying registration information (see
below).

In some circumstances, there will already be an R variable in the package with the
same name as a native symbol. For example, we may have an R function in the package
named myRoutine. In this case, it is necessary to map the native symbol to a different R
variable name. This can be done in the useDynLib directive by using named arguments.

63 NB: this will only be read in all versions of R if the package contains R code in a R directory.
64 Note that this is the basename of the shared object, and the appropriate extension (.so or .dll) will be

added.

Chapter 1: Creating R packages 53

For instance, to map the native symbol name myRoutine to the R variable myRoutine_sym,
we would use

useDynLib(foo, myRoutine_sym = myRoutine, myOtherRoutine)

We could then call that routine from R using the command

.Call(myRoutine_sym, x, y)

Symbols without explicit names are assigned to the R variable with that name.

In some cases, it may be preferable not to create R variables in the package’s namespace
that identify the native routines. It may be too costly to compute these for many routines
when the package is loaded if many of these routines are not likely to be used. In this case,
one can still perform the symbol resolution correctly using the DLL, but do this each time
the routine is called. Given a reference to the DLL as an R variable, say dll, we can call
the routine myRoutine using the expression

.Call(dll$myRoutine, x, y)

The $ operator resolves the routine with the given name in the DLL using a call to
getNativeSymbol. This is the same computation as above where we resolve the symbol
when the package is loaded. The only difference is that this is done each time in the case
of dll$myRoutine.

In order to use this dynamic approach (e.g., dll$myRoutine), one needs the reference
to the DLL as an R variable in the package. The DLL can be assigned to a variable by
using the variable = dllName format used above for mapping symbols to R variables. For
example, if we wanted to assign the DLL reference for the DLL foo in the example above
to the variable myDLL, we would use the following directive in the NAMESPACE file:

myDLL = useDynLib(foo, myRoutine_sym = myRoutine, myOtherRoutine)

Then, the R variable myDLL is in the package’s namespace and available for calls such as
myDLL$dynRoutine to access routines that are not explicitly resolved at load time.

If the package has registration information (see Section 5.4 [Registering native routines],
page 133), then we can use that directly rather than specifying the list of symbols again in
the useDynLib directive in the NAMESPACE file. Each routine in the registration information
is specified by giving a name by which the routine is to be specified along with the address
of the routine and any information about the number and type of the parameters. Using
the .registration argument of useDynLib, we can instruct the namespace mechanism to
create R variables for these symbols. For example, suppose we have the following registration
information for a DLL named myDLL:

static R_NativePrimitiveArgType foo_t[] = {

REALSXP, INTSXP, STRSXP, LGLSXP

};

static const R_CMethodDef cMethods[] = {

{"foo", (DL_FUNC) &foo, 4, foo_t},

{"bar_sym", (DL_FUNC) &bar, 0},

{NULL, NULL, 0, NULL}

};

static const R_CallMethodDef callMethods[] = {

Chapter 1: Creating R packages 54

{"R_call_sym", (DL_FUNC) &R_call, 4},

{"R_version_sym", (DL_FUNC) &R_version, 0},

{NULL, NULL, 0}

};

Then, the directive in the NAMESPACE file

useDynLib(myDLL, .registration = TRUE)

causes the DLL to be loaded and also for the R variables foo, bar_sym, R_call_sym and
R_version_sym to be defined in the package’s namespace.

Note that the names for the R variables are taken from the entry in the registration
information and do not need to be the same as the name of the native routine. This allows
the creator of the registration information to map the native symbols to non-conflicting
variable names in R, e.g. R_version to R_version_sym for use in an R function such as

R_version <- function()

{

.Call(R_version_sym)

}

Using argument .fixes allows an automatic prefix to be added to the registered sym-
bols, which can be useful when working with an existing package. For example, package
KernSmooth (https://CRAN.R-project.org/package=KernSmooth) has

useDynLib(KernSmooth, .registration = TRUE, .fixes = "F_")

which makes the R variables corresponding to the Fortran symbols F_bkde and so on, and
so avoid clashes with R code in the namespace.

NB: Using these arguments for a package which does not register native symbols merely
slows down the package loading (although many CRAN packages have done so). Once sym-
bols are registered, check that the corresponding R variables are not accidentally exported
by a pattern in the NAMESPACE file.

1.5.5 An example

As an example consider two packages named foo and bar. The R code for package foo in
file foo.R is� �

x <- 1

f <- function(y) c(x,y)

foo <- function(x) .Call("foo", x, PACKAGE="foo")

print.foo <- function(x, ...) cat("<a foo>\n")
 	
Some C code defines a C function compiled into DLL foo (with an appropriate extension).
The NAMESPACE file for this package is� �

useDynLib(foo)

export(f, foo)

S3method(print, foo)
 	
The second package bar has code file bar.R

https://CRAN.R-project.org/package=KernSmooth

Chapter 1: Creating R packages 55

� �
c <- function(...) sum(...)

g <- function(y) f(c(y, 7))

h <- function(y) y+9
 	
and NAMESPACE file� �

import(foo)

export(g, h)
 	
Calling library(bar) loads bar and attaches its exports to the search path. Package foo
is also loaded but not attached to the search path. A call to g produces

> g(6)

[1] 1 13

This is consistent with the definitions of c in the two settings: in bar the function c is
defined to be equivalent to sum, but in foo the variable c refers to the standard function c

in base.

1.5.6 Namespaces with S4 classes and methods

Some additional steps are needed for packages which make use of formal (S4-style) classes
and methods (unless these are purely used internally). The package should have Depends:
methods in its DESCRIPTION and import(methods) or importFrom(methods, ...) plus
any classes and methods which are to be exported need to be declared in the NAMESPACE

file. For example, the stats4 package has

export(mle) # exporting methods implicitly exports the generic

importFrom("stats", approx, optim, pchisq, predict, qchisq, qnorm, spline)

For these, we define methods or (AIC, BIC, nobs) an implicit generic:

importFrom("stats", AIC, BIC, coef, confint, logLik, nobs, profile,

update, vcov)

exportClasses(mle, profile.mle, summary.mle)

All methods for imported generics:

exportMethods(coef, confint, logLik, plot, profile, summary,

show, update, vcov)

implicit generics which do not have any methods here

export(AIC, BIC, nobs)

All S4 classes to be used outside the package need to be listed in an exportClasses directive.
Alternatively, they can be specified using exportClassPattern65 in the same style as for
exportPattern. To export methods for generics from other packages an exportMethods

directive can be used.

Note that exporting methods on a generic in the namespace will also export the generic,
and exporting a generic in the namespace will also export its methods. If the generic
function is not local to this package, either because it was imported as a generic function
or because the non-generic version has been made generic solely to add S4 methods to it
(as for functions such as coef in the example above), it can be declared via either or both

65 This defaults to the same pattern as exportPattern: use something like exportClassPattern("^$") to
override this.

Chapter 1: Creating R packages 56

of export or exportMethods, but the latter is clearer (and is used in the stats4 example
above). In particular, for primitive functions there is no generic function, so export would
export the primitive, which makes no sense. On the other hand, if the generic is local to
this package, it is more natural to export the function itself using export(), and this must
be done if an implicit generic is created without setting any methods for it (as is the case
for AIC in stats4).

A non-local generic function is only exported to ensure that calls to the function will
dispatch the methods from this package (and that is not done or required when the methods
are for primitive functions). For this reason, you do not need to document such implicitly
created generic functions, and undoc in package tools will not report them.

If a package uses S4 classes and methods exported from another package, but does not
import the entire namespace of the other package66, it needs to import the classes and
methods explicitly, with directives

importClassesFrom(package, ...)

importMethodsFrom(package, ...)

listing the classes and functions with methods respectively. Suppose we had two small
packages A and B with B using A. Then they could have NAMESPACE files� �

export(f1, ng1)

exportMethods("[")

exportClasses(c1)
 	
and � �

importFrom(A, ng1)

importClassesFrom(A, c1)

importMethodsFrom(A, f1)

export(f4, f5)

exportMethods(f6, "[")

exportClasses(c1, c2)
 	
respectively.

Note that importMethodsFrom will also import any generics defined in the namespace
on those methods.

It is important if you export S4 methods that the corresponding generics are available.
You may for example need to import coef from stats to make visible a function to be
converted into its implicit generic. But it is better practice to make use of the generics
exported by stats4 as this enables multiple packages to unambiguously set methods on
those generics.

1.6 Writing portable packages

This section contains advice on writing packages to be used on multiple platforms or for
distribution (for example to be submitted to a package repository such as CRAN).

66 if it does, there will be opaque warnings about replacing imports if the classes/methods are also imported.

Chapter 1: Creating R packages 57

Portable packages should have simple file names: use only alphanumeric ASCII characters
and period (.), and avoid those names not allowed under Windows (see Section 1.1 [Package
structure], page 3).

Many of the graphics devices are platform-specific: even X11() (aka x11()) which al-
though emulated on Windows may not be available on a Unix-alike (and is not the preferred
screen device on OS X). It is rarely necessary for package code or examples to open a new
device, but if essential,67 use dev.new().

Use R CMD build to make the release .tar.gz file.

R CMD check provides a basic set of checks, but often further problems emerge when
people try to install and use packages submitted to CRAN – many of these involve compiled
code. Here are some further checks that you can do to make your package more portable.

• If your package has a configure script, provide a configure.win script to be used on
Windows (an empty file if no actions are needed).

• If your package has a Makevars or Makefile file, make sure that you use only portable
make features. Such files should be LF-terminated68 (including the final line of the
file) and not make use of GNU extensions. (The POSIX specification is available
at https://pubs.opengroup.org/onlinepubs/9699919799/utilities/make.

html; anything not documented there should be regarded as an extension to be avoided.
Further advice can be found at https://www.gnu.org/software/autoconf/manual/
autoconf.html#Portable-Make.) Commonly misused GNU extensions are condi-
tional inclusions (ifeq and the like), ${shell ...}, ${wildcard ...} and similar,
and the use of +=69 and :=. Also, the use of $< other than in implicit rules is a GNU
extension, as is the $^ macro. As is the use of .PHONY (some other makes ignore it).
Unfortunately makefiles which use GNU extensions often run on other platforms but
do not have the intended results.

The use of ${shell ...} can be avoided by using backticks, e.g.

PKG_CPPFLAGS = ‘gsl-config --cflags‘

which works in all versions of make known70 to be used with R.

If you really must require GNU make, declare it in the DESCRIPTION file by

SystemRequirements: GNU make

and ensure that you use the value of environment variable MAKE (and not just make) in
your scripts. (On some platforms GNU make is available under a name such as gmake,
and there SystemRequirements is used to set MAKE.)

If you only need GNU make for parts of the package which are rarely needed (for
example to create bibliography files under vignettes), use a file called GNUmakefile

rather than Makefile as GNU make (only) will use the former.

67 People use dev.new() to open a device at a particular size: that is not portable but using
dev.new(noRStudioGD = TRUE) helps.

68 Solaris make does not accept CRLF-terminated Makefiles; Solaris warns about and some other makes
ignore incomplete final lines.

69 This was apparently introduced in SunOS 4, and is available elsewhere provided it is surrounded by
spaces.

70 GNU make, BSD make and other variants of pmake in FreeBSD, NetBSD and formerly in macOS, AT&T
make as implemented on Solaris and ‘Distributed Make’ (dmake), part of Oracle Developer Studio and
available in other versions including from Apache OpenOffice.

https://pubs.opengroup.org/onlinepubs/9699919799/utilities/make.html
https://pubs.opengroup.org/onlinepubs/9699919799/utilities/make.html
https://www.gnu.org/software/autoconf/manual/autoconf.html#Portable-Make
https://www.gnu.org/software/autoconf/manual/autoconf.html#Portable-Make

Chapter 1: Creating R packages 58

macOS has used GNU make for many years (it previously used BSD make), but the
version has been frozen at 3.81 (from 2006).

Since the only viable make for Windows is GNU make, it is permissible to use GNU
extensions in files Makevars.win or Makefile.win.

• If you use src/Makevars to compile code in a subdirectory, ensure that you have
followed all the advice above. In particular

• Anticipate a parallel make. See Section 1.2.1 [Using Makevars], page 26.

• Pass macros down to the makefile in the subdirectory, including all the needed
compiler flags (including PIC and visibility flags). If they are used in the sub-
directory’s Makefile, this includes macros ‘AR’ and ‘RANLIB’. See Section 1.2.1.3
[Compiling in sub-directories], page 33, which has a C example. A C++ example:

pkg/libpkg.a:

(cd pkg && $(MAKE) -f make_pkg libpkg.a \

CXX="$(CXX)" CXXFLAGS="$(CXXFLAGS) $(CXXPICFLAGS) $(C_VISIBILITY)" \

AR="$(AR)" RANLIB="$(RANLIB)")

• Ensure that cleanup will be performed by R CMD build, for example in a cleanup

script or a ‘clean’ target.

• If your package uses a src/Makefile file to compile code to be linked into R, ensure
that it uses exactly the same compiler and flag settings that R uses when compiling
such code: people often forget ‘PIC’ flags. If R CMD config is used, this needs something
like (for C++)

RBIN = ‘"${R_HOME}/bin/R"‘

CXX = ‘"${RBIN}" CMD config CXX‘

CXXFLAGS = ‘"${RBIN}" CMD config CXXFLAGS‘ ‘"${RBIN}" CMD config CXXPICFLAGS‘

• Names of source files including = (such as src/complex_Sig=gen.c) will confuse some
make programs and should be avoided.

• Bash extensions also need to be avoided in shell scripts, including expressions in Make-
files (which are passed to the shell for processing). Some R platforms use strict71

Bourne shells: the previous R toolset on Windows72 and some Unix-alike OSes use ash
(https://en.wikipedia.org/wiki/Almquist_shell), a ‘slim’ shell with few builtins
or variants such as dash. Beware of assuming that all the POSIX command-line util-
ities are available, especially on Windows where only a subset (which has changed by
version of Rtools) is provided for use with R. One particular issue is the use of echo,
for which two behaviours are allowed (https://pubs.opengroup.org/onlinepubs/
9699919799/utilities/echo.html) and both have occurred as defaults on R plat-
forms: portable applications should use neither -n (as the first argument) nor escape
sequences. The recommended replacement for echo -n is the command printf. An-
other common issue is the construction

export FOO=value

which is bash-specific (first set the variable then export it by name).

71 For example, test options -a and -e are not portable, and not supported in the AT&T Bourne shell
used on Solaris 10/11, even though they are in the POSIX standard. Nor does Solaris support ‘$(cmd)’.

72 as from R 4.0.0 the default is bash.

https://en.wikipedia.org/wiki/Almquist_shell
https://pubs.opengroup.org/onlinepubs/9699919799/utilities/echo.html
https://pubs.opengroup.org/onlinepubs/9699919799/utilities/echo.html

Chapter 1: Creating R packages 59

Using test -e (or [-e]) in shell scripts is not fully portable73: -f is normally what
is intended. Flags -a and -o are nowadays declared obsolescent by POSIX and should
not be used.

Use of ‘brace expansion’, e.g.,

rm -f src/*.{o,so,d}

is not portable.

The -o flag for set in shell scripts is optional in POSIX and not supported on all the
platforms R is used on.

The variable ‘OSTYPE’ is shell-specific and its values are rather unpredictable and may
include a version such as ‘darwin19.0’: ‘uname‘ is often what is intended (with com-
mon values ‘Darwin’, ‘Linux’ and ‘SunOS’).

On macOS Catalina which shell /bin/sh invokes is user- and platform-dependent: it
might be bash version 3.2, dash or zsh (for new accounts it is zsh, for accounts ported
from an earlier version it is usually bash).

• Make use of the abilities of your compilers to check the standards-conformance of your
code. For example, gcc and gfortran74 can be used with options -Wall -pedantic

to alert you to potential problems. This is particularly important for C++, where
g++ -Wall -pedantic will alert you to the use of some of the GNU extensions which
fail to compile on most other C++ compilers. If R was not configured accordingly,
one can achieve this via personal Makevars files. See Section “Customizing package
compilation” in R Installation and Administration,

Portable C++ code needs to follow the 2011 standard or to specify C+14/17/20 where
available (which is not the case on all R platforms). Currently C++14 code is a little
less portable than C++11 and C++17/20 support is patchy across R platforms.

If using Fortran with the GNU compiler, use the flags -std=f95 -Wall -pedantic

which reject most GNU extensions and features from later standards. (Although R
only requires Fortran 90, gfortran does not have a way to specify that standard.)

R has tested that DOUBLE COMPLEX works and so is preferred to COMPLEX*16. (One can
also use something like COMPLEX(KIND=KIND(0.0D0)).)

The use of Fortran types such as REAL(KIND=8) is very far from portable. According of
the standards this merely enumerates different supported types, so DOUBLE PRECISION

might be REAL(KIND=3) (and is on an actual compiler). Even if for a particular compiler
the value indicates the size in bytes, which values are supported is platform-specific —
for example gfortran supports values of 4 and 8 on all current platforms and 10 and
16 on a few (but not for example on ‘arm’ CPUs).

Not all common R platforms conform to the expected standards, e.g. C99 for C code.
One common area of problems is the *printf functions where Windows does not
support %lld, %Lf and similar formats (and has its own formats such as %I64d for
64-bit integers). It is very rare to need to output such types, and 64-bit integers can
usually be converted to doubles for output. However, the C11 standard (section 7.8.1)

73 it was not in the Bourne shell, and is not supported by Solaris 10.
74 http://fortranwiki.org/fortran/show/Modernizing+Old+Fortran may help explain some of the

warnings from gfortran -Wall -pedantic.

http://fortranwiki.org/fortran/show/Modernizing+Old+Fortran

Chapter 1: Creating R packages 60

includes PRIxNNmacros75 in C header inttypes.h (for example PRId64) so the portable
approach is to test for these and if not available provide emulations in the package.

As from macOS 11 (late 2020), its C compiler sets the flag -Werror=implicit-

function-declaration by default which forces stricter conformance to C99.
This can be used on other platforms with gcc or clang. If your package has a
(autoconf-generated) configure script, try installing it whilst using this flag,
and read through the config.log file — compilation warnings and errors can lead
to features which are present not being detected. (If possible do this on several
platforms.)

• R CMD check performs some checks for non-portable compiler/linker flags in
src/Makevars. However, it cannot check the meaning of such flags, and some
are commonly accepted but with compiler-specific meanings. There are other
non-portable flags which are not checked, nor are src/Makefile files and makefiles in
sub-directories. As a comment in the code says

It is hard to think of anything apart from -I* and -D* that is safe for
general use . . .

although -pthread is pretty close to portable. (Option -U is portable but little use
on the command line as it will only cancel built-in defines (not portable) and those
defined earlier on the command line (R does not use any).)

People have used configure to customize src/Makevars, including for specific com-
pilers. This is unsafe for several reasons. First, unintended compilers might meet the
check—for example, several compilers other than GCC identify themselves as ‘GCC’
whilst being only partially conformant. Second, future versions of compilers may be-
have differently (including updates to quite old series) so for example -Werror (and
specializations) can make a package non-installable under a future version. Third, using
flags to suppress diagnostic messages can hide important information for debugging on
a platform not tested by the package maintainer. (R CMD check can optionally report
on unsafe flags which were used.)

Avoid the use of -march and especially -march=native. This allows the compiler to
generate code that will only run on a particular class of CPUs (that of the compiling
machine for ‘native’). People assume this is a ‘minimum’ CPU specification, but
that is not how it is documented for gcc (it is accepted by clang but apparently it is
undocumented what precisely it does, and it can be accepted and may be ignored for
other compilers). (For personal use -mtune is safer, but still not portable enough to be
used in a public package.) Not even gcc supports ‘native’ for all CPUs, and it can do
surprising things if it finds a CPU released later than its version.

• Do be very careful with passing arguments between R, C and Fortran code. In par-
ticular, long in C will be 32-bit on some R platforms (including 64-bit Windows), but
64-bit on most modern Unix and Linux platforms. It is rather unlikely that the use
of long in C code has been thought through: if you need a longer type than int you
should use a configure test for a C99/C++11 type such as int_fast64_t (and failing

75 These are optional because the corresponding types are, but must be provided if the types are.

Chapter 1: Creating R packages 61

that, long long76) and typedef your own type, or use another suitable type (such as
size_t, but beware that is unsigned and ssize_t is not portable).

It is not safe to assume that long and pointer types are the same size, and they are
not on 64-bit Windows. If you need to convert pointers to and from integers use the
C99/C++11 integer types intptr_t and uintptr_t (in the headers <stdint.h> and
<cstdint>: they are not required to be implemented by the standards but are used in
C code by R itself).

Note that integer in Fortran corresponds to int in C on all R platforms.

• Under no circumstances should your compiled code ever call abort or exit77: these
terminate the user’s R process, quite possibly losing all unsaved work. One usage
that could call abort is the assert macro in C or C++ functions, which should never
be active in production code. The normal way to ensure that is to define the macro
NDEBUG, and R CMD INSTALL does so as part of the compilation flags. If you wish to
use assert during development. you can include -UNDEBUG in PKG_CPPFLAGS. Note
that your own src/Makefile or makefiles in sub-directories may also need to define
NDEBUG.

This applies not only to your own code but to any external software you compile in or
link to.

• Compiled code should not write to stdout or stderr and C++ and Fortran I/O should
not be used. As with the previous item such calls may come from external software
and may never be called, but package authors are often mistaken about that.

• Compiled code should not call the system random number generators such as rand,
drand48 and random78, but rather use the interfaces to R’s RNGs described in
Section 6.3 [Random numbers], page 177. In particular, if more than one package
initializes the system RNG (e.g. via srand), they will interfere with each other.

Nor should the C++11 random number library be used, nor any other third-party
random number generators such as those in GSL.

• Errors in memory allocation and reading/writing outside arrays are very common
causes of crashes (e.g., segfaults) on some machines. See Section 4.3 [Checking memory
access], page 115, for tools which can be used to look for this.

• Many platforms will allow unsatisfied entry points in compiled code, but will crash the
application (here R) if they are ever used. Some (notably Windows) will not. Looking
at the output of

nm -pg mypkg.so

and checking if any of the symbols marked U is unexpected is a good way to avoid this.

• Linkers have a lot of freedom in how to resolve entry points in dynamically-loaded
code, so the results may differ by platform. One area that has caused grief is packages
including copies of standard system software such as libz (especially those already
linked into R). In the case in point, entry point gzgets was sometimes resolved against

76 but note that long long is not a standard C++98 type, and C++ compilers for earlier versions of R set
up for strict C++98 conformance will reject it. C++11 (the default since R 3.6.2) includes long long.

77 or where supported the variants _Exit and _exit.
78 This and srandom are in any case not portable. They are in POSIX but not in the C99 standard, and

not available on Windows.

Chapter 1: Creating R packages 62

the old version compiled into the package, sometimes against the copy compiled into R
and sometimes against the system dynamic library. The only safe solution is to rename
the entry points in the copy in the package. We have even seen problems with entry
point name myprintf, which is a system entry point79 on some Linux systems.

• Conflicts between symbols in DLLs are handled in very platform-specific ways. Good
ways to avoid trouble are to make as many symbols as possible static (check with nm

-pg), and to use names which are clearly tied to your package (which also helps users
if anything does go wrong). Note that symbol names starting with R_ are regarded as
part of R’s namespace and should not be used in packages.

• It is good practice for DLLs to register their symbols (see Section 5.4 [Registering
native routines], page 133), restrict visibility (see Section 6.16 [Controlling visibility],
page 196) and not allow symbol search (see Section 5.4 [Registering native routines],
page 133). It should be possible for a DLL to have only one visible symbol, R_init_
pkgname, on suitable platforms80, which would completely avoid symbol conflicts.

• It is not portable to call compiled code in R or other packages via .Internal, .C,
.Fortran, .Call or .External, since such interfaces are subject to change without
notice and will probably result in your code terminating the R process.

• Do not use (hard or symbolic) file links in your package sources. Where possible R CMD

build will replace them by copies.

• If you do not yourself have a Windows system, consider submitting your source package
to WinBuilder (https://win-builder.r-project.org/) before distribution.

• It is bad practice for package code to alter the search path using library, require or
attach and this often does not work as intended. For alternatives, see Section 1.1.3.1
[Suggested packages], page 13, and with.

• Examples can be run interactively via example as well as in batch mode when checking.
So they should behave appropriately in both scenarios, conditioning by interactive()

the parts which need an operator or observer. For instance, progress bars81 are only
appropriate in interactive use, as is displaying help pages or calling View() (see below).

• Be careful with the order of entries in macros such as PKG_LIBS. Some linkers will
re-order the entries, and behaviour can differ between dynamic and static libraries.
Generally -L options should precede82 the libraries (typically specified by -l options)
to be found from those directories, and libraries are searched once in the order they
are specified. Not all linkers allow a space after -L .

• Care is needed with the use of LinkingTo. This puts one or more directories on the in-
clude search path ahead of system headers but (prior to R 3.4.0) after those specified in
the CPPFLAGS macro of the R build (which normally includes -I/usr/local/include,
but most platforms ignore that and include it with the system headers).

Any confusion would be avoided by having LinkingTo headers in a directory named
after the package. In any case, name conflicts of headers and directories under package
include directories should be avoided, both between packages and between a package
and system and third-party software.

79 in libselinux.
80 At least Linux and Windows, but not macOS.
81 except perhaps the simplest kind as used by download.file() in non-interactive use.
82 Whereas the GNU linker reorders so -L options are processed first, the Solaris one does not.

https://win-builder.r-project.org/

Chapter 1: Creating R packages 63

• The ar utility is often used in makefiles to make static libraries. Its modifier u is defined
by POSIX but is disabled in GNU ar on some recent Linux distributions which use
‘deterministic mode’. The safest way to make a static library is to first remove any
existing file of that name then use ar -cr and then ranlib if needed (which is system-
dependent: on most systems83 ar always maintains a symbol table). The POSIX
standard says options should be preceded by a hyphen (as in -cr), although most OSes
accept them without. Note that on some systems ar -cr must have at least one file
specified.

• Some people have a need to set a locale. Locale names are not portable, and e.g.
‘fr_FR.utf8’ is commonly used on Linux but not accepted on either Solaris or macOS.
‘fr_FR.UTF-8’ is more portable, being accepted on recent Linux, AIX, FreeBSD, macOS
and Solaris (at least). However, some Linux distributions micro-package, so locales
defined by glibc (including these examples) may not be installed.

• Avoid spaces in file names, not least as they can cause difficulties for external tools. An
example was a package with a knitr (https://CRAN.R-project.org/package=knitr)
vignette that used spaces in plot names: this caused some versions of pandoc to fail
with a baffling error message.

Non-ASCII filenames can also cause problems (particularly in non-UTF-8 locales).

• Take care in naming LATEX macros (also known as ‘commands’) in vignette sources:
if these are also defined in a future version of one of the LATEX packages used there
will be a fatal error. One instance in 2021 was package ‘hyperref’ newly defining ‘\C’,
‘\F’, ‘\G’, ‘\U’ and ‘\textapprox’. If you are confident that your definitions will be the
only ones relevant you can use ‘\renewcommand’ but it is better to use names clearly
associated with your package.

• Make sure that any version requirement for Java code is both declared in the
‘SystemRequirements’ field84 and tested at runtime (not least as the Java installation
when the package is installed might not be the same as when the package is run and
will not be for binary packages). Java 8 is available for fewer platforms than Java
7, and Java 11 for fewer still (at the time of writing, only ‘x86_64’ Linux, macOS,
64-bit Windows and 64-bit Solaris 11 from Oracle; Linux on several CPUs, Intel-based
macOS, 32- and 64-bit Windows and AIX from from https://adoptopenjdk.net

and ‘arm64’ macOS from Zulu – several OSes provide builds of OpenJDK including
FreeBSD and most Linux distributions).

When specifying a minimum Java version please use the official version names, which
are (confusingly)

1.1 1.2 1.3 1.4 5.0 6 7 8 9 10 11 12 13 14 15 (announced 16 17)

and as from 2018 a year.month scheme such as ‘18.9’ is also in use.

A suitable test for Java at least version 8 for packages using rJava (https://CRAN.
R-project.org/package=rJava) would be something like

.jinit()

jv <- .jcall("java/lang/System", "S", "getProperty", "java.runtime.version")

83 some versions of macOS did not.
84 If a Java interpreter is required directly (not via rJava (https://CRAN.R-project.org/package=rJava))

this must be declared and its presence tested like any other external command.

https://CRAN.R-project.org/package=knitr
https://adoptopenjdk.net
https://CRAN.R-project.org/package=rJava
https://CRAN.R-project.org/package=rJava
https://CRAN.R-project.org/package=rJava

Chapter 1: Creating R packages 64

if(substr(jv, 1L, 2L) == "1.") {

jvn <- as.numeric(paste0(strsplit(jv, "[.]")[[1L]][1:2], collapse = "."))

if(jvn < 1.8) stop("Java >= 8 is needed for this package but not available")

}

Java 9 changed the format of this string (which used to be something like
‘1.8.0_162-b12’); Java 11 gives jv as ‘11+28’ whereas Java 10.0.2 gave ‘10.0.2+10’.
(https://openjdk.java.net/jeps/322 details the current scheme. Note that it is
necessary to allow for pre-releases like ‘11-ea+22’.)

Note too that the compiler used to produce a jar can impose a minimum Java version,
often resulting in an arcane message like

java.lang.UnsupportedClassVersionError: ... Unsupported major.minor version 52.0

(Where https://en.wikipedia.org/wiki/Java_class_file maps class-file version
numbers to Java versions.) Compile with something like javac -target 1.6 to ensure
this is avoided. (As from Java 8, javac defaults to compiling for Java 8. Versions
as old as ‘1.6’ are already deprecated and will give a warning with Java 10’s javac.)
Note this also applies to packages distributing (or even downloading) compiled Java
code produced by others, so their requirements need to be checked (they are often not
documented accurately) and accounted for. It should be possible to check the class-file
version via command-line utility javap, if necessary after extracting the .class files
from a .jar archive.

Some packages have stated a requirement on a particular JDK, but a package should
only be requiring a JRE unless providing its own Java interface.

Java 8 is still in widespread use (and may remain so because of licence changes, although
Oracle will end its support even for personal use at the end of 2020), but Java 7 was
the latest provided by Oracle for several platforms.

• A package with a hard-to-satisfy system requirement is by definition not portable,
annoyingly so if this is not declared in the ‘SystemRequirements’ field. The most
common example is the use of pandoc, which is only available for a very limited range
of platforms (and has onerous requirements to install from source) and has capabilities85

that vary by build but are not documented. Some recent versions of pandoc for macOS
do not work on R’s target of High Sierra (and this too was undocumented): at the time
of writing the latest that did was ‘2.7.3’.

Usage of external commands should always be conditional on a test for presence (per-
haps using Sys.which), as well as declared in the ‘SystemRequirements’ field. A pack-
age should pass its checks without warnings nor errors without the external command
being present.

An external command can be a (possibly optional) requirement for an imported or
suggested package but needed for examples, tests or vignettes in the package itself.
Such usages should always be declared and conditional.

Interpreters for scripting languages such as Perl, Python and Ruby need to be de-
clared as system requirements and used conditionally: for example macOS 10.16 was
announced not to have them (but released as macOS 11 with them). Python 2 has
passed end-of-life and been removed from some major distributions.

85 For example, the ability to handle ‘https://’ URLs, which even the build in some major Linux distri-
butions in 2020 did not possess (and some of those builds were of far-from-current versions).

https://openjdk.java.net/jeps/322
https://en.wikipedia.org/wiki/Java_class_file

Chapter 1: Creating R packages 65

Command cmake is not commonly installed, and where it is, it might not
be on the path. In particular, the most common location on macOS is
/Applications/CMake.app/Contents/bin/cmake and that should be looked for if it
is not on the path.

• Be sure to use portable encoding names: none of utf8, mac and macroman is portable.
See the help for file for more details.

• Do not invoke R by plain R, Rscript or (on Windows) Rterm in your examples, tests,
vignettes, makefiles or other scripts. As pointed out in several places earlier in this
manual, use something like

"$(R_HOME)/bin/Rscript"

"$(R_HOME)/bin$(R_ARCH_BIN)/Rterm"

with appropriate quotes (as, although not recommended, R_HOME can contain spaces).

• Do not use R_HOME in makefiles except when passing them to the shell. Specifically, do
not use R_HOME in the argument to include, as R_HOME can contain spaces. Quoting
the argument to include does not help. GNU make’s include accepts spaces when
escaped using backslashes (GNU make syntax required):

WARNING: requires GNU make (allowed on Windows)

sp =

sp +=

sq = $(subst $(sp),\ ,$1)

include $(call sq,${R_HOME}/etc${R_ARCH}/Makeconf)

A portable and the recommended way to avoid the problem of spaces in ${R_HOME} is
using option -f of make. This is easy to do with recursive invocation of make, which is
also the only usual situation when R_HOME is needed in the argument for include.

$(MAKE) -f "${R_HOME}/etc${R_ARCH}/Makeconf" -f Makefile.inner

Do be careful in what your tests (and examples) actually test. Bad practice seen in
distributed packages include:

• It is not reasonable to test the time taken by a command: you cannot know how
fast or how heavily loaded an R platform might be. At best you can test a ratio
of times, and even that is fraught with difficulties and not advisable: for example,
the garbage collector may trigger at unpredictable times following heuristics that may
change without notice.

• Do not test the exact format of R messages (from R itself or from other packages):
They change, and they can be translated.

Packages have even tested the exact format of system error messages, which are
platform-dependent and perhaps locale-dependent.

• If you use functions such as View, remember that in testing there is no one to look at
the output. It is better to use something like one of

if(interactive()) View(obj) else print(head(obj))

if(interactive()) View(obj) else str(obj)

• Be careful when comparing file paths. There can be multiple paths to a single file, and
some of these can be very long character strings. If possible canonicalize paths before
comparisons, but study ?normalizePath to be aware of the pitfalls.

Chapter 1: Creating R packages 66

• Only test the accuracy of results if you have done a formal error analysis. Things such
as checking that probabilities numerically sum to one are silly: numerical tests should
always have a tolerance. That the tests on your platform achieve a particular tolerance
says little about other platforms. R is configured by default to make use of long doubles
where available, but they may not be available or be too slow for routine use. Most R
platforms use ‘ix86’ or ‘x86_64’ CPUs: these may use extended precision registers on
some but not all of their FPU instructions. Thus the achieved precision can depend
on the compiler version and optimization flags—our experience is that 32-bit builds
tend to be less precise than 64-bit ones. But not all platforms use those CPUs, and
not all86 which use them configure them to allow the use of extended precision. In
particular, current ARM CPUs do not have extended precision nor long doubles, and
clang currently has long double the same as double on all ARM CPUs. On the other
hand some CPUs have higher-precision modes which may be used for long double,
notably 64-bit PowerPC and Sparc.

If you must try to establish a tolerance empirically, configure and build R with
--disable-long-double and use appropriate compiler flags (such as -ffloat-store
and -fexcess-precision=standard for gcc, depending on the CPU type87) to
mitigate the effects of extended-precision calculations.

Tests which involve random inputs or non-deterministic algorithms should normally set
a seed or be tested for many seeds.

• Tests should use options(warn = 1) as reporting

There were 22 warnings (use warnings() to see them)

is pointless, especially for automated checking systems.

1.6.1 PDF size

There are a several tools available to reduce the size of PDF files: often the size can be
reduced substantially with no or minimal loss in quality. Not only do large files take up
space: they can stress the PDF viewer and take many minutes to print (if they can be
printed at all).

qpdf (http://qpdf.sourceforge.net/) can compress losslessly. It is fairly readily
available (e.g. it has binaries for Windows and packages in Debian/Ubuntu/Fedora, and
is installed as part of the CRAN macOS distribution of R). R CMD build has an option to
run qpdf over PDF files under inst/doc and replace them if at least 10Kb and 10% is
saved. The full path to the qpdf command can be supplied as environment variable R_QPDF
(and is on the CRAN binary of R for macOS). It seems MiKTeX does not use PDF object
compression and so qpdf can reduce considerably the files it outputs: MiKTeX’s defaults
can be overridden by code in the preamble of an Sweave or LATEX file — see how this is
done for the R reference manual at https://svn.r-project.org/R/trunk/doc/manual/
refman.top. (Although earlier versions of qpdf are supported, versions 6.0.0 and later in
some cases achieve considerably better compression.)

Other tools can reduce the size of PDFs containing bitmap images at excessively high
resolution. These are often best re-generated (for example Sweave defaults to 300 ppi, and

86 Not doing so is the default on Windows, overridden for the R executables. It is also the default on some
Solaris compilers.

87 These are not needed for the default compiler settings on ‘x86_64’ but are likely to be needed on ‘ix86’.

http://qpdf.sourceforge.net/
https://svn.r-project.org/R/trunk/doc/manual/refman.top
https://svn.r-project.org/R/trunk/doc/manual/refman.top

Chapter 1: Creating R packages 67

100–150 is more appropriate for a package manual). These tools include Adobe Acrobat
(not Reader), Apple’s Preview88 and Ghostscript (which converts PDF to PDF by

ps2pdf options -dAutoRotatePages=/None -dPrinted=false in.pdf out.pdf

and suitable options might be

-dPDFSETTINGS=/ebook

-dPDFSETTINGS=/screen

See https://www.ghostscript.com/doc/current/VectorDevices.htm for more such and
consider all the options for image downsampling). There have been examples in CRAN pack-
ages for which current versions of Ghostscript produced much bigger reductions than earlier
ones (e.g. at the upgrade from 9.50 to 9.52 in March 2020).

We come across occasionally large PDF files containing excessively complicated figures
using PDF vector graphics: such figures are often best redesigned or failing that, output as
PNG files.

Option --compact-vignettes to R CMD build defaults to value ‘qpdf’: use ‘both’ to
try harder to reduce the size, provided you have Ghostscript available (see the help for
tools::compactPDF).

1.6.2 Check timing

There are several ways to find out where time is being spent in the check process. Start by
setting the environment variable _R_CHECK_TIMINGS_ to ‘0’. This will report the total CPU
times (not Windows) and elapsed times for installation and running examples, tests and
vignettes, under each sub-architecture if appropriate. For tests and vignettes, it reports the
time for each as well as the total.

Setting _R_CHECK_TIMINGS_ to a positive value sets a threshold (in seconds elapsed time)
for reporting timings.

If you need to look in more detail at the timings for examples, use option --timings

to R CMD check (this is set by --as-cran). This adds a summary to the check output
for all the examples with CPU or elapsed time of more than 5 seconds. It produces a file
mypkg.Rcheck/mypkg-Ex.timings containing timings for each help file: it is a tab-delimited
file which can be read into R for further analysis.

Timings for the tests and vignette runs are given at the bottom of the corresponding log
file: note that log files for successful vignette runs are only retained if environment variable
_R_CHECK_ALWAYS_LOG_VIGNETTE_OUTPUT_ is set to a true value.

1.6.3 Encoding issues

Care is needed if your package contains non-ASCII text, and in particular if it is intended to
be used in more than one locale. It is possible to mark the encoding used in the DESCRIPTION
file and in .Rd files, as discussed elsewhere in this manual.

First, consider carefully if you really need non-ASCII text. Many users of R will only be
able to view correctly text in their native language group (e.g. Western European, Eastern
European, Simplified Chinese) and ASCII.89. Other characters may not be rendered at all,

88 Select ‘Save as’, and select ‘Reduce file size’ from the ‘Quartz filter’ menu’: this can be accessed in other
ways, for example by Automator.

89 except perhaps some special characters such as backslash and hash which may be taken over for currency
symbols.

https://www.ghostscript.com/doc/current/VectorDevices.htm

Chapter 1: Creating R packages 68

rendered incorrectly, or cause your R code to give an error. For .Rd documentation, marking
the encoding and including ASCII transliterations is likely to do a reasonable job. The set
of characters which is commonly supported is wider than it used to be around 2000, but
non-Latin alphabets (Greek, Russian, Georgian, . . .) are still often problematic and those
with double-width characters (Chinese, Japanese, Korean, emoji) often need specialist fonts
to render correctly.

Several CRAN packages have messages in their R code in French (and a few in German).
A better way to tackle this is to use the internationalization facilities discussed elsewhere
in this manual.

Function showNonASCIIfile in package tools can help in finding non-ASCII bytes in
files.

There is a portable way to have arbitrary text in character strings (only) in your R
code, which is to supply them in Unicode as ‘\uxxxx’ escapes. If there are any characters
not in the current encoding the parser will encode the character string as UTF-8 and mark
it as such. This applies also to character strings in datasets: they can be prepared using
‘\uxxxx’ escapes or encoded in UTF-8 in a UTF-8 locale, or even converted to UTF-8 via
iconv(). If you do this, make sure you have ‘R (>= 2.10)’ (or later) in the ‘Depends’ field
of the DESCRIPTION file.

R sessions running in non-UTF-8 locales will if possible re-encode such strings for display
(and this is done by RGui on Windows, for example). Suitable fonts will need to be selected
or made available90 both for the console/terminal and graphics devices such as ‘X11()’ and
‘windows()’. Using ‘postscript’ or ‘pdf’ will choose a default 8-bit encoding depending
on the language of the UTF-8 locale, and your users would need to be told how to select
the ‘encoding’ argument.

Note that the previous two paragraphs only apply to character strings in R code. Non-
ASCII characters are particularly prevalent in comments (in the R code of the package,
in examples, tests, vignettes and even in the NAMESPACE file) but should be avoided there.
Most commonly people use the Windows extensions to Latin-1 (often directional single and
double quotes, ellipsis, bullet and en and em dashes) which are not supported in strict
Latin-1 locales nor in CJK locales on Windows. A surprisingly common misuse is to use a
right quote in ‘don’t’ instead of the correct apostrophe.

If you want to run R CMD check on a Unix-alike over a package that sets a package
encoding in its DESCRIPTION file and do not use a UTF-8 locale you may need to specify
a suitable locale via environment variable R_ENCODING_LOCALES. The default is equivalent
to the value

"latin1=en_US:latin2=pl_PL:UTF-8=en_US.UTF-8:latin9=fr_FR.iso885915@euro"

(which is appropriate for a system based on glibc: macOS requires latin9=fr_

FR.ISO8859-15) except that if the current locale is UTF-8 then the package code is
translated to UTF-8 for syntax checking, so it is strongly recommended to check in a
UTF-8 locale.

90 Typically on a Unix-alike this is done by telling fontconfig where to find suitable fonts to select glyphs
from.

Chapter 1: Creating R packages 69

1.6.4 Portable C and C++ code

Writing portable C and C++ code is mainly a matter of observing the standards (C99, C++11
or where declared C++14/17/20) and testing that extensions (such as POSIX functions) are
supported.

C++ standards: From version 3.6.0 (3.6.2 on Windows), R defaulted to C++11 where
available91; R 4.1.0 defaults to C++14 (where available). However, in earlier versions the
default standard was that of the compiler used, often C++98 or C++14, and the default
is likely to change in future. For maximal portability a package should either specify a
standard (see Section 1.2.4 [Using C++ code], page 36) or be tested under all of C++11,
C++98 and C++14. (Specifying C++14 or later will limit portability.)

Note that the ‘TR1’ C++ extensions are not part of any of these standards and the
<tr1/name> headers are not supplied by some of the compilers used for R, including on
macOS. (Use the C++11 versions instead.)

Note too that the POSIX standards only require recently-defined functions to be de-
clared if certain macros are defined with large enough values, and on some compiler/OS
combinations92 they are not declared otherwise. So you may need to include something like
one of93

#define _XOPEN_SOURCE 600

or

#ifdef __GLIBC__

define _POSIX_C_SOURCE 200809L

#endif

before any headers. (strdup, strncasecmp and strnlen are such functions.)

However, some common errors are worth pointing out here. It can be helpful to look
up functions at https://www.cplusplus.com/reference/ or https://en.cppreference.
com/w/ and compare what is defined in the various standards.

More care is needed for functions such as mallinfo which are not specified by any of
these standards—hopefully the man page on your system will tell you so. Searching on-
line for such pages for various OSes (preferably at least Linux, macOS and Solaris, and
the FreeBSD manual pages at https://www.freebsd.org/cgi/man.cgi allow you to se-
lect many OSes94) should reveal useful information but a configure script is likely to be
needed to check availability and functionality.

Both the compiler and OS (via system header files, which may differ by architecture even
for nominally the same OS) affect the compilability of C/C++ code. Compilers from the
GCC, clang, Intel and Oracle Developer Studio suites are routinely used with R, and both
clang and Oracle have more than one implementation of C++ headers and library. The

91 which it is on all known platforms, and is required as from R 4.0.0
92 This is seen on Linux, Solaris and FreeBSD, although each has other ways to turn on all extensions,

e.g. defining _GNU_SOURCE, __EXTENSIONS__ or _BSD_SOURCE: the GCC compilers by default define _GNU_
SOURCE unless a strict standard such as -std=c99 is used. On macOS extensions are declared unless one
of these macros is given too small a value.

93 Solaris 10 does not recognize this value of _POSIX_C_SOURCE, nor values of _XOPEN_SOURCE beyond 600
(700 corresponds to POSIX 2008). Further, the value of 500 is not allowed in C99 mode, R’s default for
C code.

94 ‘SunOS 5.10’ is the most current for Solaris.

https://www.cplusplus.com/reference/
https://en.cppreference.com/w/
https://en.cppreference.com/w/
https://www.freebsd.org/cgi/man.cgi

Chapter 1: Creating R packages 70

range of possibilities makes comprehensive empirical checking impossible, and regrettably
compilers are patchy at best on warning about non-standard code.

• Mathematical functions such as sqrt are defined in C++11 for floating-point arguments:
float, double, long double and possibly more. The standard specifies what happens
with an argument of integer type but this is not always implemented, resulting in a
report of ‘overloading ambiguity’: this is commonly seen on Solaris, but for pow also
seen on macOS (and other platforms using clang++).

A not-uncommonly-seen problem is to mistakenly call floor(x/y) or ceil(x/y) for
int arguments x and y. Since x/y does integer division, the result is of type int and
‘overloading ambiguity’ may be reported. Some people have (pointlessly) called floor

and ceil on arguments of integer type, which may have an ‘overloading ambiguity’.

A surprising common misuse is things like pow(10, -3): this should be the con-
stant 1e-3. Note that there are constants such as M_SQRT2 defined in Rmath.h95 for
sqrt(2.0), frequently mis-coded as sqrt(2).

• Function fabs is defined only for floating-point types, except in C++11 which has
overloads for std::fabs in <cmath> for integer types. Function abs is defined in C99’s
<stdlib.h> for int and in C++’s <cstdlib> for integer types, overloaded in <cmath>

for floating-point types. C++11 has additional overloads for std::abs in <cmath> for
integer types. The effect of calling abs with a floating-point type is implementation-
specific: it may truncate to an integer. For clarity and to avoid compiler warnings, use
abs for integer types and fabs for double values.

• It is an error (and make little sense, although has been seen) to call macros/functions
isnan, isinf and isfinite for integer arguments: a few compilers give a compilation
error. Function finite is obsolete, and some compilers will warn about its use.

• The GNU C/C++ compilers support a large number of non-portable extensions. For
example, INFINITY (which is a float value in C99 and C++11), for which R provides
the portable double value R_PosInf (and R_NegInf for -INFINITY). And NAN96 is just
one NaN float value: for use with R, NA_REAL is often what is intended, but R_NaN is
also available.

Some (but not all) extensions are listed at https://gcc.gnu.org/onlinedocs/

gcc/C-Extensions.html and https://gcc.gnu.org/onlinedocs/gcc/

C_002b_002b-Extensions.html.

Other GNU extensions which have bitten package writers is the use of non-portable
characters such as ‘$’ in identifiers and use of C++ headers under ext.

The GNU Fortran compiler also supports a large number of non-portable extensions, the
most commonly encountered one being ISNAN97. Some are listed at https://gcc.gnu.
org/onlinedocs/gfortran/Extensions-implemented-in-GNU-Fortran.html. One
that frequently catches package writers is that it allows out-of-order declarations: in
standard-conformant Fortran variables must be declared (explicitly or implicitly) before
use in other declarations such as dimensions.

95 often taken from the toolchain’s headers.
96 also part of C++11 and later.
97 There is a portable way to do this in Fortran 2003 (ieee_is_nan() in module ieee_arithmetic), but

ironically that is not supported in the versions 4.x of GNU Fortran. A pretty robust alternative is to
test if(my_var /= my_var).

https://gcc.gnu.org/onlinedocs/gcc/C-Extensions.html
https://gcc.gnu.org/onlinedocs/gcc/C-Extensions.html
https://gcc.gnu.org/onlinedocs/gcc/C_002b_002b-Extensions.html
https://gcc.gnu.org/onlinedocs/gcc/C_002b_002b-Extensions.html
https://gcc.gnu.org/onlinedocs/gfortran/Extensions-implemented-in-GNU-Fortran.html
https://gcc.gnu.org/onlinedocs/gfortran/Extensions-implemented-in-GNU-Fortran.html

Chapter 1: Creating R packages 71

GNU Fortran 10 and later give a compilation error for the previously widespread prac-
tice of passing a Fortran array element where an array is expected, or a scalar instead
of a length-one array. See https://gcc.gnu.org/gcc-10/porting_to.html.

• Including C-style headers in C++ code is not portable. Including the legacy header98

math.h in C++ code may conflict with cmath which may be included by other headers.
In C++11, functions like sqrt and isnan are defined for double arguments in math.h

and for a range of types including double in cmath. Similar issues have been seen
for stdlib.h and cstdlib. Including the C++ header first used to be a sufficient
workaround but for some 2016 compilers only one could be included.

• Be careful to include the headers which define the functions you use. Some compil-
ers/OSes include other system headers in their headers which are not required by the
standards, and so code may compile on such systems and not on others. (A prominent
example is the C++ header <random> which is indirectly included by <algorithm> by
g++. Another issue is the C header <time.h> which is included by other headers on
Linux and Windows but not macOS nor Solaris.)

Note that malloc, calloc, realloc and free are defined by C99 in the header
stdlib.h and (in the std:: namespace) by C++ header cstdlib. Some earlier im-
plementations used a header malloc.h, but that is not portable and does not exist on
macOS.

This also applies to types such as ssize_t. The POSIX standards say that is declared
in headers unistd.h and sys/types.h, and the latter is often included indirectly by
other headers on some but not all systems.

Similarly for constants: for example SIZE_MAX is defined in stdint.h alongside size_t.

• Some headers are not portable: we have just mentioned malloc.h and often CRAN

submissions attempt to use endian.h. The latter is a glibc extension: some OSs have
machine/endian.h or sys/endian.h but some have neither.

• Use #include "my.h" not #include <my.h> for headers in your package. The second
form is intended for system headers and the search order for such headers is platform-
dependent (and may not include the current directory). For extra safety, name headers
in a way that cannot be confused with a system header so not, for example, types.h.

• For C++ code, be careful to specify namespaces where needed. Many functions are
defined by the standards to be in the std namespace, but g++ puts many such also in
the C++ main namespace. One way to do so is to use declarations such as

using std::floor;

but it is usually preferable to use explicit namespace prefixes in the code.

Examples seen in CRAN packages include

abs acos atan bind calloc ceil div exp fabs floor fmod free log malloc

memcpy memset pow printf qsort round sin sprintf sqrt strcmp strcpy

strerror strlen strncmp strtol tan trunc

This problem is less common than it used to be, but in 2019 clang did not have bind
in the main namespace.

98 which often is the same as the header included by the C compiler, but some compilers have wrappers
for some of the C headers.

https://gcc.gnu.org/gcc-10/porting_to.html

Chapter 1: Creating R packages 72

• Some C++ compilers refuse to compile constructs such as

if(ptr > 0) {}

which compares a pointer to the integer 0. This could just use if(ptr) (pointer
addresses cannot be negative) but if needed pointers can be tested against nullptr

(C++11) or NULL.

• Macros defined by the compiler/OS can cause problems. Identifiers starting with an
underscore followed by an upper-case letter or another underscore are reserved for
system macros and should not be used in portable code (including not as guards in
C/C++ headers). Other macros, typically upper-case, may be defined by the compiler
or system headers and can cause problems. The most common issue involves the names
of the Intel CPU registers such as CS, DS, ES, FS, GS and SS (and more with longer
abbreviations99) defined on i586/x64 Solaris in <sys/regset.h> and often included
indirectly by <stdlib.h> and other core headers. Further examples are ERR, VERSION,
LITTLE_ENDIAN, zero and I (which is defined in Solaris’ <complex.h> as a compiler
intrinsic for the imaginary unit). Some of these can be avoided by defining _POSIX_C_

SOURCE before including any system headers, but it is better to only use all-upper-case
names which have a unique prefix such as the package name.

• typedefs in OS headers can conflict with those in the package: examples include
ulong on several OSes, index_t and single on Solaris and thread using clang++ from
version 9. (Note that these may conflict with other uses as identifiers, e.g. defining a
C++ function called single.) The POSIX standard reserves (in Â§2.2.2) all identifiers
ending in _t.

• Some compilers do not allow a space between -D and the macro to be defined. Similarly
for -U.

• If you use OpenMP, check carefully that you have followed the advice in the subsection
on Section 1.2.1.1 [OpenMP support], page 30. In particular, any use of OpenMP in
C/C++ code will need to use

#ifdef _OPENMP

include <omp.h>

#endif

Any use of OpenMP functions, e.g. omp_set_num_threads, also needs to be condi-
tioned. To avoid incessant warnings such as

warning: ignoring #pragma omp parallel [-Wunknown-pragmas]

uses of such pragmas should also be conditioned (or commented out if they are used in
code in a package not enabling OpenMP on any platform).

Do not hardcode -lgomp: not only is that specific to the GCC family of compilers,
using the correct linker flag often sets up the run-time path to the library.

• Package authors commonly assume things are part of C/C++ when they are not: the
most common example is POSIX function strdup. The most common C library on
Linux, glibc, will hide the declarations of such extensions unless a ‘feature-test macro’
is defined before (almost) any system header is included. So for strdup you need

#define _POSIX_C_SOURCE 200809L

99 including EAX, EBP, EBX, ECX, EDI,EDX, EFL, EIP, ESI and ESP .

Chapter 1: Creating R packages 73

...

#include <string.h>

...

strdup call(s)

where the appropriate value can be found by man strdup on Linux. (Use of
strncasecmp is similar.)

However, modes of gcc with ‘GNU EXTENSIONS’ (which are the default, either
-std=gnu99 or -std=gnu11) declare enough macros to ensure that missing declara-
tions are rarely seen.

This applies also to constants such as M_PI and M_LN2, which are part of the X/Open
standard: to use these define _XOPEN_SOURCE before including any headers, or include
the R header Rmath.h.

• Using alloca portably is tricky: it is neither an ISO C/C++ nor a POSIX function.
An adequately portable preamble is

#ifdef __GNUC__

/* Includes GCC, clang and Intel compilers */

undef alloca

define alloca(x) __builtin_alloca((x))

#elif defined(__sun) || defined(_AIX)

/* this is necessary (and sufficient) for Solaris 10 and AIX 6: */

include <alloca.h>

#endif

• Compiler writers feel free to implement features from later standards than the one spec-
ified, so for example they may implement or warn on C++14/17/20 features. Portable
code will not use such features – it can be hard to know what they are but the most
common warnings are

’register’ storage class specifier is deprecated and incompatible with C++17

ISO C++11 does not allow conversion from string literal to ’char *’

(where conversion should be to const char *). Keyword register was not mentioned
in C++98, deprecated in C++11 and removed in C++17.

There are quite a lot of other C++98 features deprecated in C++11 and removed in
C++17, and clang 9 and later warn about them. Examples include bind1st/bind2nd
(use std::bind or lambdas100) std::auto_ptr (replaced by std::unique_ptr),
std:;mem_fun_ref and std::ptr_fun.

• Be careful about including C headers in C++ code. Issues include

• Use of the register storage class specifier (see the previous item).

• The C99 keyword restrict is not part of101 any C++ standard and is rejected by
some C++ compilers.

• Inclusion by such headers of C-style headers such as math.h (see above).

The most portable way to interface to other software with a C API is to use C code
(which can normally be mixed with C++ code in a package).

100 https://stackoverflow.com/questions/32739018/a-replacement-for-stdbind2nd
101 it is allowed but ignored in system headers.

https://stackoverflow.com/questions/32739018/a-replacement-for-stdbind2nd

Chapter 1: Creating R packages 74

• reinterpret_cast in C++ is not safe for pointers: for example the types may have
different alignment requirements. Use memcpy to copy the contents to a fresh variable
of the destination type.

• Avoid platform-specific code if at all possible, but if you need to test for a platform
ensure that all platforms are covered. For example, __unix__ is not defined on all
Unix-alikes, in particular not on macOS. A reasonably portable way to condition code
for a Unix-alike is

#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))

#endif

but

#ifdef _WIN32

// Windows-specific code

#else

// Unix-alike code

#endif

would be better. For a Unix-alike it is much better to use configure to test for the
functionality needed than make assumptions about OSes (and people all too frequently
forget R is used on platforms other than Linux, Windows and macOS — and some
forget macOS).

• Headers in subdirectories are often not portable. For C++, this includes bits/, tr1/
and tr2/, none of which exist on macOS (and ext/ exists there but with different
content from g++-based platforms). Header bits/stdc++.h is both not portable and
not recommended for end-user code even on platforms which include it.

Some additional information for C++ is available at https://journal.r-project.org/
archive/2011-2/RJournal_2011-2_Plummer.pdf by Martyn Plummer.

1.6.4.1 Common symbols

Most OSes (including all those commonly used for R) have the concept of ‘tentative defi-
nitions’ where global C variables are defined without an initializer. Traditionally the linker
resolves all tentative definitions of the same variable in different object files to the same
object, or to a non-tentative definition. However, gcc 10102 and clang 11103 have changed
their default so that tentative definitions cannot be merged and the linker will give an error
if the same variable is defined in more than one object file. To avoid this, all but one of the
C source files should declare the variable extern — which means that any such variables
included in header files need to be declared extern. A commonly used idiom (including by
R itself) is to define all global variables as extern in a header, say globals.h (and nowhere
else), and then in one (and one only) source file use

#define extern

include "globals.h"

#undef extern

102 see https://gcc.gnu.org/gcc-10/porting_to.html.
103 See https://prereleases.llvm.org/11.0.0/rc2/tools/clang/docs/ReleaseNotes.html#

modified-compiler-flags.

https://journal.r-project.org/archive/2011-2/RJournal_2011-2_Plummer.pdf
https://journal.r-project.org/archive/2011-2/RJournal_2011-2_Plummer.pdf
https://gcc.gnu.org/gcc-10/porting_to.html
https://prereleases.llvm.org/11.0.0/rc2/tools/clang/docs/ReleaseNotes.html#modified-compiler-flags
https://prereleases.llvm.org/11.0.0/rc2/tools/clang/docs/ReleaseNotes.html#modified-compiler-flags

Chapter 1: Creating R packages 75

A cleaner approach is not to have global variables at all, but to place in a single file
common variables (declared static) followed by all the functions which make use of them:
this may result in more efficient code.

The ‘modern’ behaviour can be seen104 by using compiler flag -fno-common as part of
‘CFLAGS’ in earlier versions of gcc and clang.

-fno-common is said to be particularly beneficial for ARM cpus.

This is not pertinent to C++ which does not permit tentative definitions.

1.6.5 Binary distribution

If you want to distribute a binary version of a package on Windows or macOS, there are
further checks you need to do to check it is portable: it is all too easy to depend on external
software on your own machine that other users will not have.

For Windows, check what other DLLs your package’s DLL depends on (‘imports’ from
in the DLL tools’ parlance). A convenient GUI-based tool to do so is ‘Dependency Walker’
(https://www.dependencywalker.com/) for both 32-bit and 64-bit DLLs – note that this
will report as missing links to R’s own DLLs such as R.dll and Rblas.dll. The command-
line tool objdump in the appropriate toolchain will also reveal what DLLs are imported
from. If you use a toolchain other than one provided by the R developers or use your own
makefiles, watch out in particular for dependencies on the toolchain’s runtime DLLs such
as libgfortran, libstdc++ and libgcc_s.

For macOS, using R CMD otool -L on the package’s shared object(s) in the libs di-
rectory will show what they depend on: watch for any dependencies in /usr/local/lib

or /usr/local/gfortran/lib, notably libgfortran.?.dylib and libquadmath.0.dylib.
(For ways to fix these, see Section “Building binary-packages” in R Installation and Ad-
ministration.)

Many people (including the CRAN package repository) will not accept source packages
containing binary files as the latter are a security risk. If you want to distribute a source
package which needs external software on Windows or macOS, options include

• To arrange for installation of the package to download the additional software from a
URL, as e.g. package Cairo (https://CRAN.R-project.org/package=Cairo) does.

• (For CRAN.) To negotiate with Uwe Ligges to host the additional components on
WinBuilder, and write a configure.win file to install them.

Be aware that license requirements you may require you to supply the sources for the
additional components (and will if your package has a GPL-like license).

1.7 Diagnostic messages

Diagnostic messages can be made available for translation, so it is important to write them
in a consistent style. Using the tools described in the next section to extract all the messages
can give a useful overview of your consistency (or lack of it). Some guidelines follow.

• Messages are sentence fragments, and not viewed in isolation. So it is conventional not
to capitalize the first word and not to end with a period (or other punctuation).

104 In principle this could depend on the OS, but has been checked on Linux and macOS.

https://www.dependencywalker.com/
https://CRAN.R-project.org/package=Cairo

Chapter 1: Creating R packages 76

• Try not to split up messages into small pieces. In C error messages use a single format
string containing all English words in the messages.

In R error messages do not construct a message with paste (such messages will not be
translated) but via multiple arguments to stop or warning, or via gettextf.

• Do not use colloquialisms such as “can’t” and “don’t”.

• Conventionally single quotation marks are used for quotations such as

’ord’ must be a positive integer, at most the number of knots

and double quotation marks when referring to an R character string or a class, such as

’format’ must be "normal" or "short" - using "normal"

Since ASCII does not contain directional quotation marks, it is best to use ‘’’ and let the
translator (including automatic translation) use directional quotations where available.
The range of quotation styles is immense: unfortunately we cannot reproduce them in
a portable texinfo document. But as a taster, some languages use ‘up’ and ‘down’
(comma) quotes rather than left or right quotes, and some use guillemets (and some
use what Adobe calls ‘guillemotleft’ to start and others use it to end).

In R messages it is also possible to use sQuote or dQuote as in

stop(gettextf("object must be of class %s or %s",

dQuote("manova"), dQuote("maov")),

domain = NA)

• Occasionally messages need to be singular or plural (and in other languages there may
be no such concept or several plural forms – Slovenian has four). So avoid constructions
such as was once used in library

if((length(nopkgs) > 0) && !missing(lib.loc)) {

if(length(nopkgs) > 1)

warning("libraries ",

paste(sQuote(nopkgs), collapse = ", "),

" contain no packages")

else

warning("library ", paste(sQuote(nopkgs)),

" contains no package")

}

and was replaced by

if((length(nopkgs) > 0) && !missing(lib.loc)) {

pkglist <- paste(sQuote(nopkgs), collapse = ", ")

msg <- sprintf(ngettext(length(nopkgs),

"library %s contains no packages",

"libraries %s contain no packages",

domain = "R-base"),

pkglist)

warning(msg, domain=NA)

}

Note that it is much better to have complete clauses as here, since in another language
one might need to say ‘There is no package in library %s’ or ‘There are no packages in
libraries %s’.

Chapter 1: Creating R packages 77

1.8 Internationalization

There are mechanisms to translate the R- and C-level error and warning messages. There
are only available if R is compiled with NLS support (which is requested by configure

option --enable-nls, the default).

The procedures make use of msgfmt and xgettext which are part of GNU gettext and
this will need to be installed: Windows users can find pre-compiled binaries at https://
www.stats.ox.ac.uk/pub/Rtools/goodies/gettext-tools.zip.

1.8.1 C-level messages

The process of enabling translations is

• In a header file that will be included in all the C (or C++ or Objective C/C++) files
containing messages that should be translated, declare

#include <R.h> /* to include Rconfig.h */

#ifdef ENABLE_NLS

#include <libintl.h>

#define _(String) dgettext ("pkg", String)

/* replace pkg as appropriate */

#else

#define _(String) (String)

#endif

• For each message that should be translated, wrap it in _(...), for example

error(_("’ord’ must be a positive integer"));

If you want to use different messages for singular and plural forms, you need to add

#ifndef ENABLE_NLS

#define dngettext(pkg, String, StringP, N) (N > 1 ? StringP : String)

#endif

and mark strings by

dngettext("pkg", <singular string>, <plural string>, n)

• In the package’s src directory run

xgettext --keyword=_ -o pkg.pot *.c

The file src/pkg.pot is the template file, and conventionally this is shipped as
po/pkg.pot.

1.8.2 R messages

Mechanisms are also available to support the automatic translation of R stop, warning and
message messages. They make use of message catalogs in the same way as C-level messages,
but using domain R-pkg rather than pkg. Translation of character strings inside stop,
warning and message calls is automatically enabled, as well as other messages enclosed in
calls to gettext or gettextf. (To suppress this, use argument domain=NA.)

Tools to prepare the R-pkg.pot file are provided in package tools: xgettext2pot will
prepare a file from all strings occurring inside gettext/gettextf, stop, warning and
message calls. Some of these are likely to be spurious and so the file is likely to need

https://www.stats.ox.ac.uk/pub/Rtools/goodies/gettext-tools.zip
https://www.stats.ox.ac.uk/pub/Rtools/goodies/gettext-tools.zip

Chapter 1: Creating R packages 78

manual editing. xgettext extracts the actual calls and so is more useful when tidying up
error messages.

The R function ngettext provides an interface to the C function of the same name:
see example in the previous section. It is safest to use domain="R-pkg" explicitly in calls
to ngettext, and necessary for earlier versions of R unless they are calls directly from a
function in the package.

1.8.3 Preparing translations

Once the template files have been created, translations can be made. Conventional trans-
lations have file extension .po and are placed in the po subdirectory of the package with a
name that is either ‘ll.po’ or ‘R-ll.po’ for translations of the C and R messages respec-
tively to language with code ‘ll’.

See Section “Localization of messages” in R Installation and Administration, for details
of language codes.

There is an R function, update_pkg_po in package tools, to automate much of the
maintenance of message translations. See its help for what it does in detail.

If this is called on a package with no existing translations, it creates the directory
pkgdir/po, creates a template file of R messages, pkgdir/po/R-pkg.pot, within it, cre-
ates the ‘en@quot’ translation and installs that. (The ‘en@quot’ pseudo-language interprets
quotes in their directional forms in suitable (e.g. UTF-8) locales.)

If the package has C source files in its src directory that are marked for translation, use

touch pkgdir/po/pkg.pot

to create a dummy template file, then call update_pkg_po again (this can also be done
before it is called for the first time).

When translations to new languages are added in the pkgdir/po directory, running the
same command will check and then install the translations.

If the package sources are updated, the same command will update the template files,
merge the changes into the translation .po files and then installed the updated transla-
tions. You will often see that merging marks translations as ‘fuzzy’ and this is reported in
the coverage statistics. As fuzzy translations are not used, this is an indication that the
translation files need human attention.

The merged translations are run through tools::checkPofile to check that C-style
formats are used correctly: if not the mismatches are reported and the broken translations
are not installed.

This function needs the GNU gettext-tools installed and on the path: see its help
page.

1.9 CITATION files

An installed file named CITATION will be used by the citation() function. (It should be
in the inst subdirectory of the package sources.)

The CITATION file is parsed as R code (in the package’s declared encoding, or in ASCII

if none is declared). If no such file is present, citation auto-generates citation information
from the package DESCRIPTION metadata, and an example of what that would look like as a

Chapter 1: Creating R packages 79

CITATION file can be seen in recommended package nlme (https://CRAN.R-project.org/
package=nlme) (see below): recommended packages boot (https://CRAN.R-project.
org/package=boot), cluster (https://CRAN.R-project.org/package=cluster) and
mgcv (https://CRAN.R-project.org/package=mgcv) have further examples.

A CITATION file will contain calls to function bibentry.

Here is that for nlme (https://CRAN.R-project.org/package=nlme):

year <- sub("-.*", "", meta$Date)

note <- sprintf("R package version %s", meta$Version)

bibentry(bibtype = "Manual",

title = "{nlme}: Linear and Nonlinear Mixed Effects Models",

author = c(person("Jose", "Pinheiro"),

person("Douglas", "Bates"),

person("Saikat", "DebRoy"),

person("Deepayan", "Sarkar"),

person("R Core Team")),

year = year,

note = note,

url = "https://CRAN.R-project.org/package=nlme")

Note the way that information that may need to be updated is picked up from object
meta, a parsed version of the DESCRIPTION file – it is tempting to hardcode such information,
but it normally then gets outdated. See ?bibentry for further details of the information
which can be provided.

In case a bibentry contains LATEX markup (e.g., for accented characters or mathematical
symbols), it may be necessary to provide a text representation to be used for printing via
the textVersion argument to bibentry. E.g., earlier versions of nlme (https://CRAN.
R-project.org/package=nlme) additionally used

textVersion =

paste0("Jose Pinheiro, Douglas Bates, Saikat DebRoy,",

"Deepayan Sarkar and the R Core Team (",

year,

"). nlme: Linear and Nonlinear Mixed Effects Models. ",

note, ".")

The CITATION file should itself produce no output when source-d.

It is desirable (and essential for CRAN) that the CITATION file does not contain calls to
functions such as packageDescription which assume the package is installed in a library
tree on the package search path.

1.10 Package types

The DESCRIPTION file has an optional field Type which if missing is assumed to be ‘Package’,
the sort of extension discussed so far in this chapter. Currently one other type is recognized;
there used also to be a ‘Translation’ type.

https://CRAN.R-project.org/package=nlme
https://CRAN.R-project.org/package=nlme
https://CRAN.R-project.org/package=boot
https://CRAN.R-project.org/package=boot
https://CRAN.R-project.org/package=cluster
https://CRAN.R-project.org/package=mgcv
https://CRAN.R-project.org/package=nlme
https://CRAN.R-project.org/package=nlme
https://CRAN.R-project.org/package=nlme

Chapter 1: Creating R packages 80

1.10.1 Frontend

This is a rather general mechanism, designed for adding new front-ends such as the former
gnomeGUI package (see the Archive area on CRAN). If a configure file is found in the
top-level directory of the package it is executed, and then if a Makefile is found (often
generated by configure), make is called. If R CMD INSTALL --clean is used make clean is
called. No other action is taken.

R CMD build can package up this type of extension, but R CMD check will check the type
and skip it.

Many packages of this type need write permission for the R installation directory.

1.11 Services

Several members of the R project have set up services to assist those writing R packages,
particularly those intended for public distribution.

win-builder.r-project.org (https://win-builder.r-project.org) offers the automated
preparation of (32/64-bit) Windows binaries from well-tested source packages.

R-Forge (R-Forge.r-project.org (https://R-Forge.r-project.org)) and RForge
(www.rforge.net (https://www.rforge.net)) are similar services with similar names.
Both provide source-code management through SVN, daily building and checking, mailing
lists and a repository that can be accessed via install.packages (they can be selected
by setRepositories and the GUI menus that use it). Package developers have the
opportunity to present their work on the basis of project websites or news announcements.
Mailing lists, forums or wikis provide useRs with convenient instruments for discussions
and for exchanging information between developers and/or interested useRs.

https://win-builder.r-project.org
https://R-Forge.r-project.org
https://www.rforge.net

81

2 Writing R documentation files

2.1 Rd format

R objects are documented in files written in “R documentation” (Rd) format, a simple
markup language much of which closely resembles (La)TEX, which can be processed into a
variety of formats, including LATEX, HTML and plain text. The translation is carried out
by functions in the tools package called by the script Rdconv in R_HOME/bin and by the
installation scripts for packages.

The R distribution contains more than 1300 such files which can be found in the
src/library/pkg/man directories of the R source tree, where pkg stands for one of the
standard packages which are included in the R distribution.

As an example, let us look at a simplified version of src/library/base/man/load.Rd
which documents the R function load.� �

% File src/library/base/man/load.Rd

\name{load}

\alias{load}

\title{Reload Saved Datasets}

\description{

Reload the datasets written to a file with the function

\code{save}.

}

\usage{

load(file, envir = parent.frame())

}

\arguments{

\item{file}{a connection or a character string giving the

name of the file to load.}

\item{envir}{the environment where the data should be

loaded.}

}

\seealso{

\code{\link{save}}.

}

\examples{

save all data

save(list = ls(), file= "all.RData")

restore the saved values to the current environment

load("all.RData")

restore the saved values to the workspace

load("all.RData", .GlobalEnv)

}

\keyword{file}
 	
An Rd file consists of three parts. The header gives basic information about the name of

the file, the topics documented, a title, a short textual description and R usage information
for the objects documented. The body gives further information (for example, on the
function’s arguments and return value, as in the above example). Finally, there is an
optional footer with keyword information. The header is mandatory.

Chapter 2: Writing R documentation files 82

Information is given within a series of sections with standard names (and user-defined
sections are also allowed). Unless otherwise specified1 these should occur only once in an
Rd file (in any order), and the processing software will retain only the first occurrence of a
standard section in the file, with a warning.

See “Guidelines for Rd files” (https://developer.r-project.org/Rds.html) for
guidelines for writing documentation in Rd format which should be useful for package
writers. The R generic function prompt is used to construct a bare-bones Rd file ready for
manual editing. Methods are defined for documenting functions (which fill in the proper
function and argument names) and data frames. There are also functions promptData,
promptPackage, promptClass, and promptMethods for other types of Rd file.

The general syntax of Rd files is summarized below. For a detailed technical discussion of
current Rd syntax, see “Parsing Rd files” (https://developer.r-project.org/parseRd.
pdf).

Rd files consist of four types of text input. The most common is LATEX-like, with the
backslash used as a prefix on markup (e.g. \alias), and braces used to indicate arguments
(e.g. {load}). The least common type of text is ‘verbatim’ text, where no markup other
than the comment marker (%) is processed. There is also a rare variant of ‘verbatim’ text
(used in \eqn, \deqn, \figure, and \newcommand) where comment markers need not be
escaped. The final type is R-like, intended for R code, but allowing some embedded macros.
Quoted strings within R-like text are handled specially: regular character escapes such as
\n may be entered as-is. Only markup starting with \l (e.g. \link) or \v (e.g. \var) will
be recognized within quoted strings. The rarely used vertical tab \v must be entered as
\\v.

Each macro defines the input type for its argument. For example, the file initially uses
LATEX-like syntax, and this is also used in the \description section, but the \usage section
uses R-like syntax, and the \alias macro uses ‘verbatim’ syntax. Comments run from a
percent symbol % to the end of the line in all types of text except the rare ‘verbatim’ variant
(as on the first line of the load example).

Because backslashes, braces and percent symbols have special meaning, to enter them
into text sometimes requires escapes using a backslash. In general balanced braces do not
need to be escaped, but percent symbols always do, except in the ‘verbatim’ variant. For the
complete list of macros and rules for escapes, see “Parsing Rd files” (https://developer.
r-project.org/parseRd.pdf).

2.1.1 Documenting functions

The basic markup commands used for documenting R objects (in particular, functions) are
given in this subsection.

\name{name}

name typically2 is the basename of the Rd file containing the documentation.
It is the “name” of the Rd object represented by the file and has to be unique
in a package. To avoid problems with indexing the package manual, it may
not contain ‘!’ ‘|’ nor ‘@’, and to avoid possible problems with the HTML help

1 e.g. \alias, \keyword and \note sections.
2 There can be exceptions: for example Rd files are not allowed to start with a dot, and have to be uniquely

named on a case-insensitive file system.

https://developer.r-project.org/Rds.html
https://developer.r-project.org/parseRd.pdf
https://developer.r-project.org/parseRd.pdf
https://developer.r-project.org/parseRd.pdf
https://developer.r-project.org/parseRd.pdf

Chapter 2: Writing R documentation files 83

system it should not contain ‘/’ nor a space. (LATEX special characters are
allowed, but may not be collated correctly in the index.) There can only be
one \name entry in a file, and it must not contain any markup. Entries in the
package manual will be in alphabetic3 order of the \name entries.

\alias{topic}

The \alias sections specify all “topics” the file documents. This information is
collected into index data bases for lookup by the on-line (plain text and HTML)
help systems. The topic can contain spaces, but (for historical reasons) leading
and trailing spaces will be stripped. Percent and left brace need to be escaped
by a backslash.

There may be several \alias entries. Quite often it is convenient to document
several R objects in one file. For example, file Normal.Rd documents the density,
distribution function, quantile function and generation of random variates for
the normal distribution, and hence starts with

\name{Normal}

\alias{Normal}

\alias{dnorm}

\alias{pnorm}

\alias{qnorm}

\alias{rnorm}

Also, it is often convenient to have several different ways to refer to an R object,
and an \alias does not need to be the name of an object.

Note that the \name is not necessarily a topic documented, and if so desired it
needs to have an explicit \alias entry (as in this example).

\title{Title}

Title information for the Rd file. This should be capitalized and not end in a
period; try to limit its length to at most 65 characters for widest compatibility.

Markup is supported in the text, but use of characters other than English text
and punctuation (e.g., ‘<’) may limit portability.

There must be one (and only one) \title section in a help file.

\description{...}

A short description of what the function(s) do(es) (one paragraph, a few lines
only). (If a description is too long and cannot easily be shortened, the file
probably tries to document too much at once.) This is mandatory except for
package-overview files.

\usage{fun(arg1, arg2, ...)}

One or more lines showing the synopsis of the function(s) and variables docu-
mented in the file. These are set in typewriter font. This is an R-like command.

The usage information specified should match the function definition exactly
(such that automatic checking for consistency between code and documentation
is possible).

3 in the current locale, and with special treatment for LATEX special characters and with any
‘pkgname-package’ topic moved to the top of the list.

Chapter 2: Writing R documentation files 84

To indicate that a function can be used in several different ways, depending on
the named arguments specified, use section \details. E.g., abline.Rd contains

\details{

Typical usages are

\preformatted{abline(a, b, ...)

......

}

Use \method{generic}{class} to indicate the name of an S3 method for the
generic function generic for objects inheriting from class "class". In the
printed versions, this will come out as generic (reflecting the understanding
that methods should not be invoked directly but via method dispatch), but
codoc() and other QC tools always have access to the full name.

For example, print.ts.Rd contains

\usage{

\method{print}{ts}(x, calendar, \dots)

}

which will print as

Usage:

S3 method for class ’ts’:

print(x, calendar, ...)

Usage for replacement functions should be given in the style of dim(x) <- value

rather than explicitly indicating the name of the replacement function ("dim<-"
in the above). Similarly, one can use \method{generic}{class}(arglist)

<- value to indicate the usage of an S3 replacement method for the generic
replacement function "generic<-" for objects inheriting from class "class".

Usage for S3 methods for extracting or replacing parts of an object, S3 meth-
ods for members of the Ops group, and S3 methods for user-defined (binary)
infix operators (‘%xxx%’) follows the above rules, using the appropriate function
names. E.g., Extract.factor.Rd contains

\usage{

\method{[}{factor}(x, \dots, drop = FALSE)

\method{[[}{factor}(x, \dots)

\method{[}{factor}(x, \dots) <- value

}

which will print as

Usage:

S3 method for class ’factor’:

x[..., drop = FALSE]

S3 method for class ’factor’:

x[[...]]

S3 replacement method for class ’factor’:

x[...] <- value

\S3method is accepted as an alternative to \method.

Chapter 2: Writing R documentation files 85

\arguments{...}

Description of the function’s arguments, using an entry of the form

\item{arg_i}{Description of arg_i.}

for each element of the argument list. (Note that there is no whitespace between
the three parts of the entry.) There may be optional text outside the \item

entries, for example to give general information about groups of parameters.

\details{...}

A detailed if possible precise description of the functionality provided, extending
the basic information in the \description slot.

\value{...}

Description of the function’s return value.

If a list with multiple values is returned, you can use entries of the form

\item{comp_i}{Description of comp_i.}

for each component of the list returned. Optional text may precede4 this list
(see for example the help for rle). Note that \value is implicitly a \describe

environment, so that environment should not be used for listing components,
just individual \item{}{} entries.

\references{...}

A section with references to the literature. Use \url{} or \href{}{} for web
pointers, and \doi{} for DOIs (this needs R >= 3.3, see Section 2.13 [User-
defined macros], page 98, for more info).

\note{...}

Use this for a special note you want to have pointed out. Multiple \note

sections are allowed, but might be confusing to the end users.

For example, pie.Rd contains

\note{

Pie charts are a very bad way of displaying information.

The eye is good at judging linear measures and bad at

judging relative areas.

......

}

\author{...}

Information about the author(s) of the Rd file. Use \email{} without ex-
tra delimiters (such as ‘()’ or ‘< >’) to specify email addresses, or \url{} or
\href{}{} for web pointers.

\seealso{...}

Pointers to related R objects, using \code{\link{...}} to refer to them (\code
is the correct markup for R object names, and \link produces hyperlinks in
output formats which support this. See Section 2.3 [Marking text], page 89,
and Section 2.5 [Cross-references], page 92).

4 Text between or after list items is discouraged.

Chapter 2: Writing R documentation files 86

\examples{...}

Examples of how to use the function. Code in this section is set in typewriter
font without reformatting and is run by example() unless marked otherwise
(see below).

Examples are not only useful for documentation purposes, but also provide
test code used for diagnostic checking of R code. By default, text inside
\examples{} will be displayed in the output of the help page and run by
example() and by R CMD check. You can use \dontrun{} for text that should
only be shown, but not run, and \dontshow{} for extra commands for testing
that should not be shown to users, but will be run by example(). (Previously
this was called \testonly, and that is still accepted.)

Text inside \dontrun{} is ‘verbatim’, but the other parts of the \examples

section are R-like text.

For example,

x <- runif(10) # Shown and run.
\dontrun{plot(x)} # Only shown.
\dontshow{log(x)} # Only run.

Thus, example code not included in \dontrun must be executable! In addition,
it should not use any system-specific features or require special facilities (such
as Internet access or write permission to specific directories). Text included in
\dontrun is indicated by comments in the processed help files: it need not be
valid R code but the escapes must still be used for %, \ and unpaired braces as
in other ‘verbatim’ text.

Example code must be capable of being run by example, which uses source.
This means that it should not access stdin, e.g. to scan() data from the
example file.

Data needed for making the examples executable can be obtained by random
number generation (for example, x <- rnorm(100)), or by using standard data
sets listed by data() (see ?data for more info).

Finally, there is \donttest, used (at the beginning of a separate line) to mark
code that should be run by example() but not by R CMD check (by default:
the option --run-donttest can be used). This should be needed only occa-
sionally but can be used for code which might fail in circumstances that are
hard to test for, for example in some locales. (Use e.g. capabilities() or
nzchar(Sys.which("someprogram")) to test for features needed in the ex-
amples wherever possible, and you can also use try() or tryCatch(). Use
interactive() to condition examples which need someone to interact with.)
Note that code included in \donttest must be correct R code, and any pack-
ages used should be declared in the DESCRIPTION file. It is good practice to
include a comment in the \donttest section explaining why it is needed.

Output from code between comments

IGNORE_RDIFF_BEGIN

IGNORE_RDIFF_END

is ignored when comparing check output to reference output (a -Ex.Rout.save

file). This markup can also be used for scripts under tests.

Chapter 2: Writing R documentation files 87

\keyword{key}

There can be zero or more \keyword sections per file. Each \keyword section
should specify a single keyword, preferably one of the standard keywords as
listed in file KEYWORDS in the R documentation directory (default R_HOME/doc).
Use e.g. RShowDoc("KEYWORDS") to inspect the standard keywords from within
R. There can be more than one \keyword entry if the R object being docu-
mented falls into more than one category, or none.

Do strongly consider using \concept (see Section 2.9 [Indices], page 95) instead
of \keyword if you are about to use more than very few non-standard keywords.

The special keyword ‘internal’ marks a page of internal objects that are
not part of the package’s API. If the help page for object foo has keyword
‘internal’, then help(foo) gives this help page, but foo is excluded from sev-
eral object indices, including the alphabetical list of objects in the HTML help
system.

help.search() can search by keyword, including user-defined values: however
the ‘Search Engine & Keywords’ HTML page accessed via help.start() pro-
vides single-click access only to a pre-defined list of keywords.

2.1.2 Documenting data sets

The structure of Rd files which document R data sets is slightly different. Sections such as
\arguments and \value are not needed but the format and source of the data should be
explained.

As an example, let us look at src/library/datasets/man/rivers.Rd which documents
the standard R data set rivers.� �

\name{rivers}

\docType{data}

\alias{rivers}

\title{Lengths of Major North American Rivers}

\description{

This data set gives the lengths (in miles) of 141 \dQuote{major}

rivers in North America, as compiled by the US Geological

Survey.

}

\usage{rivers}

\format{A vector containing 141 observations.}

\source{World Almanac and Book of Facts, 1975, page 406.}

\references{

McNeil, D. R. (1977) \emph{Interactive Data Analysis}.

New York: Wiley.

}

\keyword{datasets}
 	
This uses the following additional markup commands.

\docType{...}

Indicates the “type” of the documentation object. Always ‘data’ for data sets,
and ‘package’ for pkg-package.Rd overview files. Documentation for S4 meth-
ods and classes uses ‘methods’ (from promptMethods()) and ‘class’ (from
promptClass()).

Chapter 2: Writing R documentation files 88

\format{...}

A description of the format of the data set (as a vector, matrix, data frame,
time series, . . .). For matrices and data frames this should give a description
of each column, preferably as a list or table. See Section 2.4 [Lists and tables],
page 92, for more information.

\source{...}

Details of the original source (a reference or URL, see Section 1.1.8 [Specifying
URLs], page 21). In addition, section \references could give secondary sources
and usages.

Note also that when documenting data set bar,

• The \usage entry is always bar or (for packages which do not use lazy-loading of data)
data(bar). (In particular, only document a single data object per Rd file.)

• The \keyword entry should always be ‘datasets’.

If bar is a data frame, documenting it as a data set can be initiated via prompt(bar).
Otherwise, the promptData function may be used.

2.1.3 Documenting S4 classes and methods

There are special ways to use the ‘?’ operator, namely ‘class?topic’ and ‘methods?topic’,
to access documentation for S4 classes and methods, respectively. This mechanism depends
on conventions for the topic names used in \alias entries. The topic names for S4 classes
and methods respectively are of the form

class-class

generic,signature_list-method

where signature list contains the names of the classes in the signature of the method (with-
out quotes) separated by ‘,’ (without whitespace), with ‘ANY’ used for arguments without an
explicit specification. E.g., ‘genericFunction-class’ is the topic name for documentation
for the S4 class "genericFunction", and ‘coerce,ANY,NULL-method’ is the topic name for
documentation for the S4 method for coerce for signature c("ANY", "NULL").

Skeletons of documentation for S4 classes and methods can be generated by using the
functions promptClass() and promptMethods() from package methods. If it is necessary
or desired to provide an explicit function declaration (in a \usage section) for an S4 method
(e.g., if it has “surprising arguments” to be mentioned explicitly), one can use the special
markup

\S4method{generic}{signature_list}(argument_list)

(e.g., ‘\S4method{coerce}{ANY,NULL}(from, to)’).

To make full use of the potential of the on-line documentation system, all user-visible
S4 classes and methods in a package should at least have a suitable \alias entry in one of
the package’s Rd files. If a package has methods for a function defined originally somewhere
else, and does not change the underlying default method for the function, the package is
responsible for documenting the methods it creates, but not for the function itself or the
default method.

An S4 replacement method is documented in the same way as an S3 one: see the de-
scription of \method in Section 2.1.1 [Documenting functions], page 82.

Chapter 2: Writing R documentation files 89

See help("Documentation", package = "methods") for more information on using and
creating on-line documentation for S4 classes and methods.

2.1.4 Documenting packages

Packages may have an overview help page with an \alias pkgname-package, e.g.
‘utils-package’ for the utils package, when package?pkgname will open that help page.
If a topic named pkgname does not exist in another Rd file, it is helpful to use this as an
additional \alias.

Skeletons of documentation for a package can be generated using the function
promptPackage(). If the final = LIBS argument is used, then the Rd file will be generated
in final form, containing the information that would be produced up to library(help

= pkgname). Otherwise (the default) comments will be inserted giving suggestions for
content.

Apart from the mandatory \name and \title and the pkgname-package alias, the only
requirement for the package overview page is that it include a \docType{package} state-
ment. All other content is optional. We suggest that it should be a short overview, to give
a reader unfamiliar with the package enough information to get started. More extensive
documentation is better placed into a package vignette (see Section 1.4 [Writing package
vignettes], page 45) and referenced from this page, or into individual man pages for the
functions, datasets, or classes.

2.2 Sectioning

To begin a new paragraph or leave a blank line in an example, just insert an empty line (as
in (La)TEX). To break a line, use \cr.

In addition to the predefined sections (such as \description{}, \value{}, etc.), you
can “define” arbitrary ones by \section{section_title}{...}. For example

\section{Warning}{

You must not call this function unless ...

}

For consistency with the pre-assigned sections, the section name (the first argument to
\section) should be capitalized (but not all upper case). Whitespace between the first and
second braced expressions is not allowed. Markup (e.g. \code) within the section title may
cause problems with the latex conversion (depending on the version of macro packages such
as ‘hyperref’) and so should be avoided.

The \subsection macro takes arguments in the same format as \section, but is used
within a section, so it may be used to nest subsections within sections or other subsections.
There is no predefined limit on the nesting level, but formatting is not designed for more
than 3 levels (i.e. subsections within subsections within sections).

Note that additional named sections are always inserted at a fixed position in the output
(before \note, \seealso and the examples), no matter where they appear in the input (but
in the same order amongst themselves as in the input).

2.3 Marking text

The following logical markup commands are available for emphasizing or quoting text.

Chapter 2: Writing R documentation files 90

\emph{text}

\strong{text}

Emphasize text using italic and bold font if possible; \strong is regarded as
stronger (more emphatic).

\bold{text}

Set text in bold font where possible.

\sQuote{text}

\dQuote{text}

Portably single or double quote text (without hard-wiring the characters used
for quotation marks).

Each of the above commands takes LATEX-like input, so other macros may be used within
text.

The following logical markup commands are available for indicating specific kinds of
text. Except as noted, these take ‘verbatim’ text input, and so other macros may not be
used within them. Some characters will need to be escaped (see Section 2.8 [Insertions],
page 95).

\code{text}

Indicate text that is a literal example of a piece of an R program, e.g., a fragment
of R code or the name of an R object. Text is entered in R-like syntax, and
displayed using typewriter font where possible. Macros \var and \link are
interpreted within text.

\preformatted{text}

Indicate text that is a literal example of a piece of a program. Text is dis-
played using typewriter font where possible. Formatting, e.g. line breaks, is
preserved. (Note that this includes a line break after the initial {, so typically
text should start on the same line as the command.)

Due to limitations in LATEX as of this writing, this macro may not be nested
within other markup macros other than \dQuote and \sQuote, as errors or bad
formatting may result.

\kbd{keyboard-characters}

Indicate keyboard input, using slanted typewriter font if possible, so users
can distinguish the characters they are supposed to type from computer output.
Text is entered ‘verbatim’.

\samp{text}

Indicate text that is a literal example of a sequence of characters, entered ‘ver-
batim’. No wrapping or reformatting will occur. Displayed using typewriter

font where possible.

\verb{text}

Indicate text that is a literal example of a sequence of characters, with no
interpretation of e.g. \var, but which will be included within word-wrapped
text. Displayed using typewriter font if possible.

\pkg{package_name}

Indicate the name of an R package. LATEX-like.

Chapter 2: Writing R documentation files 91

\file{file_name}

Indicate the name of a file. Text is LATEX-like, so backslash needs to be escaped.
Displayed using a distinct font where possible.

\email{email_address}

Indicate an electronic mail address. LATEX-like, will be rendered as a hyperlink
in HTML and PDF conversion. Displayed using typewriter font where possible.

\url{uniform_resource_locator}

Indicate a uniform resource locator (URL) for the World Wide Web. The argu-
ment is handled as ‘verbatim’ text (with percent and braces escaped by back-
slash), and rendered as a hyperlink in HTML and PDF conversion. Linefeeds
are removed, and leading and trailing whitespace5 is removed. See Section 1.1.8
[Specifying URLs], page 21.

Displayed using typewriter font where possible.

\href{uniform_resource_locator}{text}

Indicate a hyperlink to the World Wide Web. The first argument is handled as
‘verbatim’ text (with percent and braces escaped by backslash) and is used as
the URL in the hyperlink, with the second argument of LATEX-like text displayed
to the user. Linefeeds are removed from the first argument, and leading and
trailing whitespace is removed.

Note that RFC3986-encoded URLs (e.g. using ‘%28VS.85%29’ in place of
‘(VS.85)’) may not work correctly in versions of R before 3.1.3 and are best
avoided—use URLdecode() to decode them.

\var{metasyntactic_variable}

Indicate a metasyntactic variable. In some cases this will be rendered distinctly,
e.g. in italic, but not in all6. LATEX-like.

\env{environment_variable}

Indicate an environment variable. ‘Verbatim’. Displayed using typewriter

font where possible

\option{option}

Indicate a command-line option. ‘Verbatim’. Displayed using typewriter font
where possible.

\command{command_name}

Indicate the name of a command. LATEX-like, so \var is interpreted. Displayed
using typewriter font where possible.

\dfn{term}

Indicate the introductory or defining use of a term. LATEX-like.

\cite{reference}

Indicate a reference without a direct cross-reference via \link (see Section 2.5
[Cross-references], page 92), such as the name of a book. LATEX-like.

5 as defined by the R function trimws.
6 Currently it is rendered differently only in HTML conversions, and LATEX conversion outside ‘\usage’

and ‘\examples’ environments.

Chapter 2: Writing R documentation files 92

\acronym{acronym}

Indicate an acronym (an abbreviation written in all capital letters), such as
GNU. LATEX-like.

2.4 Lists and tables

The \itemize and \enumerate commands take a single argument, within which there may
be one or more \item commands. The text following each \item is formatted as one or
more paragraphs, suitably indented and with the first paragraph marked with a bullet point
(\itemize) or a number (\enumerate).

Note that unlike argument lists, \item in these formats is followed by a space and the
text (not enclosed in braces). For example

\enumerate{

\item A database consists of one or more records, each with one or

more named fields.

\item Regular lines start with a non-whitespace character.

\item Records are separated by one or more empty lines.

}

\itemize and \enumerate commands may be nested.

The \describe command is similar to \itemize but allows initial labels to be specified.
Each \item takes two arguments, the label and the body of the item, in exactly the same
way as an argument or value \item. \describe commands are mapped to <DL> lists in
HTML and \description lists in LATEX.

The \tabular command takes two arguments. The first gives for each of the columns
the required alignment (‘l’ for left-justification, ‘r’ for right-justification or ‘c’ for centring.)
The second argument consists of an arbitrary number of lines separated by \cr, and with
fields separated by \tab. For example:

\tabular{rlll}{

[,1] \tab Ozone \tab numeric \tab Ozone (ppb)\cr

[,2] \tab Solar.R \tab numeric \tab Solar R (lang)\cr

[,3] \tab Wind \tab numeric \tab Wind (mph)\cr

[,4] \tab Temp \tab numeric \tab Temperature (degrees F)\cr

[,5] \tab Month \tab numeric \tab Month (1--12)\cr

[,6] \tab Day \tab numeric \tab Day of month (1--31)

}

There must be the same number of fields on each line as there are alignments in the first
argument, and they must be non-empty (but can contain only spaces). (There is no white-
space between \tabular and the first argument, nor between the two arguments.)

2.5 Cross-references

The markup \link{foo} (usually in the combination \code{\link{foo}}) produces a hy-
perlink to the help for foo. Here foo is a topic, that is the argument of \alias markup
in another Rd file (possibly in another package). Hyperlinks are supported in some of the
formats to which Rd files are converted, for example HTML and PDF, but ignored in others,
e.g. the text format.

Chapter 2: Writing R documentation files 93

One main usage of \link is in the \seealso section of the help page, see Section 2.1
[Rd format], page 81.

Note that whereas leading and trailing spaces are stripped when extracting a topic from
a \alias, they are not stripped when looking up the topic of a \link.

You can specify a link to a different topic than its name by \link[=dest]{name}

which links to topic dest with name name. This can be used to refer to the documentation
for S3/4 classes, for example \code{"\link[=abc-class]{abc}"} would be a way
to refer to the documentation of an S4 class "abc" defined in your package, and
\code{"\link[=terms.object]{terms}"} to the S3 "terms" class (in package stats). To
make these easy to read in the source file, \code{"\linkS4class{abc}"} expands to the
form given above.

There are two other forms with an optional argument, specified as \link[pkg]{foo}

and \link[pkg:bar]{foo}, to link to topics foo and bar respectively in the package pkg .
They are currently only used in HTML help (and ignored for hyperlinks in LATEX conversions
of help pages). One should be careful about topics containing special characters (such as
arithmetic operators) as they may result in unresolvable links, and preferably use a safer
alias in the same help page.

Historically (before R version 4.1.0), links of the form \link[pkg]{foo} and
\link[pkg:bar]{foo} used to be interpreted as links to files foo.html and bar.html

in package pkg , respectively. For this reason, the HTML help system looks for file
foo.html in package pkg if it does not find topic foo, and then searches for the
topic in other installed packages. To test that links work both with both old and new
systems, the pre-4.1.0 behaviour can be restored by setting the environment variable
_R_HELP_LINKS_TO_TOPICS_=false.

Packages referred to by these ‘other forms’ should be declared in the DESCRIPTION file,
in the ‘Depends’, ‘Imports’, ‘Suggests’ or ‘Enhances’ fields.

2.6 Mathematics

Mathematical formulae should be set beautifully for printed documentation yet we still
want something useful for text and HTML online help. To this end, the two commands
\eqn{latex}{ascii} and \deqn{latex}{ascii} are used. Whereas \eqn is used for “in-
line” formulae (corresponding to TEX’s $...$), \deqn gives “displayed equations” (as in
LATEX’s displaymath environment, or TEX’s $$...$$). Both arguments are treated as
‘verbatim’ text.

Both commands can also be used as \eqn{latexascii} (only one argument) which then
is used for both latex and ascii. No whitespace is allowed between command and the first
argument, nor between the first and second arguments.

The following example is from Poisson.Rd:

\deqn{p(x) = \frac{\lambda^x e^{-\lambda}}{x!}}{%

p(x) = \lambda^x exp(-\lambda)/x!}

for \eqn{x = 0, 1, 2, \ldots}.

For the LATEX manual, this becomes

Chapter 2: Writing R documentation files 94

� �
p(x) = λx

e−λ

x!

for x = 0, 1, 2,
 	
For text on-line help we get� �

p(x) = lambda^x exp(-lambda)/x!

for x = 0, 1, 2,
 	
Greek letters (both cases) will be rendered in HTML if preceded by a backslash, \dots

and \ldots will be rendered as ellipses and \sqrt, \ge and \le as mathematical symbols.

Note that only basic LATEX can be used, there being no provision to specify LATEX style
files such as the AMS extensions.

2.7 Figures

To include figures in help pages, use the \figure markup. There are three forms.

The two commonly used simple forms are \figure{filename} and
\figure{filename}{alternate text}. This will include a copy of the figure in
either HTML or LATEX output. In text output, the alternate text will be displayed instead.
(When the second argument is omitted, the filename will be used.) Both the filename and
the alternate text will be parsed verbatim, and should not include special characters that
are significant in HTML or LATEX.

The expert form is \figure{filename}{options: string}. (The word ‘options:’
must be typed exactly as shown and followed by at least one space.) In this form, the
string is copied into the HTML img tag as attributes following the src attribute, or into
the second argument of the \Figure macro in LATEX, which by default is used as options
to an \includegraphics call. As it is unlikely that any single string would suffice for both
display modes, the expert form would normally be wrapped in conditionals. It is up to the
author to make sure that legal HTML/LATEX is used. For example, to include a logo in both
HTML (using the simple form) and LATEX (using the expert form), the following could be
used:

\if{html}{\figure{Rlogo.svg}{options: width=100 alt="R logo"}}

\if{latex}{\figure{Rlogo.pdf}{options: width=0.5in}}

The files containing the figures should be stored in the directory man/figures. Files
with extensions .jpg, .jpeg, .pdf, .png and .svg from that directory will be copied to the
help/figures directory at install time. (Figures in PDF format will not display in most
HTML browsers, but might be the best choice in reference manuals.) Specify the filename
relative to man/figures in the \figure directive.

Chapter 2: Writing R documentation files 95

2.8 Insertions

Use \R for the R system itself. Use \dots for the dots in function argument lists ‘...’,
and \ldots for ellipsis dots in ordinary text.7 These can be followed by {}, and should be
unless followed by whitespace.

After an unescaped ‘%’, you can put your own comments regarding the help text. The
rest of the line (but not the newline at the end) will be completely disregarded. Therefore,
you can also use it to make part of the “help” invisible.

You can produce a backslash (‘\’) by escaping it by another backslash. (Note that \cr
is used for generating line breaks.)

The “comment” character ‘%’ and unpaired braces8 almost always need to be escaped by
‘\’, and ‘\\’ can be used for backslash and needs to be when there are two or more adjacent
backslashes. In R-like code quoted strings are handled slightly differently; see “Parsing
Rd files” (https://developer.r-project.org/parseRd.pdf) for details – in particular
braces should not be escaped in quoted strings.

All of ‘% { } \’ should be escaped in LATEX-like text.

Text which might need to be represented differently in different encodings should be
marked by \enc, e.g. \enc{Jöreskog}{Joreskog} (with no whitespace between the braces)
where the first argument will be used where encodings are allowed and the second should be
ASCII (and is used for e.g. the text conversion in locales that cannot represent the encoded
form). (This is intended to be used for individual words, not whole sentences or paragraphs.)

2.9 Indices

The \alias command (see Section 2.1.1 [Documenting functions], page 82) is used to specify
the “topics” documented, which should include all R objects in a package such as functions
and variables, data sets, and S4 classes and methods (see Section 2.1.3 [Documenting S4
classes and methods], page 88). The on-line help system searches the index data base
consisting of all alias topics.

In addition, it is possible to provide “concept index entries” using \concept, which can
be used for help.search() lookups. E.g., file cor.test.Rd in the standard package stats
contains

\concept{Kendall correlation coefficient}

\concept{Pearson correlation coefficient}

\concept{Spearman correlation coefficient}

so that e.g. ??Spearman will succeed in finding the help page for the test for association
between paired samples using Spearman’s ρ.

(Note that help.search() only uses “sections” of documentation objects with no addi-
tional markup.)

Each \concept entry should give a single index term (word or phrase), and not use any
Rd markup.

7 There is only a fine distinction between \dots and \ldots. It is technically incorrect to use \ldots in
code blocks and tools::checkRd will warn about this—on the other hand the current converters treat
them the same way in code blocks, and elsewhere apart from the small distinction between the two in
LATEX.

8 See the examples section in the file Paren.Rd for an example.

https://developer.r-project.org/parseRd.pdf
https://developer.r-project.org/parseRd.pdf

Chapter 2: Writing R documentation files 96

If you want to cross reference such items from other help files via \link, you need to
use \alias and not \concept.

2.10 Platform-specific documentation

Sometimes the documentation needs to differ by platform. Currently two OS-specific options
are available, ‘unix’ and ‘windows’, and lines in the help source file can be enclosed in

#ifdef OS

...

#endif

or

#ifndef OS

...

#endif

for OS-specific inclusion or exclusion. Such blocks should not be nested, and should be
entirely within a block (that, is between the opening and closing brace of a section or item),
or at top-level contain one or more complete sections.

If the differences between platforms are extensive or the R objects documented are
only relevant to one platform, platform-specific Rd files can be put in a unix or windows

subdirectory.

2.11 Conditional text

Occasionally the best content for one output format is different from the best content for an-
other. For this situation, the \if{format}{text} or \ifelse{format}{text}{alternate}
markup is used. Here format is a comma separated list of formats in which the text should
be rendered. The alternate will be rendered if the format does not match. Both text and
alternate may be any sequence of text and markup.

Currently the following formats are recognized: example, html, latex and text. These
select output for the corresponding targets. (Note that example refers to extracted example
code rather than the displayed example in some other format.) Also accepted are TRUE

(matching all formats) and FALSE (matching no formats). These could be the output of the
\Sexpr macro (see Section 2.12 [Dynamic pages], page 96).

The \out{literal} macro would usually be used within the text part of
\if{format}{text}. It causes the renderer to output the literal text exactly, with no
attempt to escape special characters. For example, use the following to output the markup
necessary to display the Greek letter in LATEX or HTML, and the text string alpha in other
formats:

\ifelse{latex}{\out{α}}{\ifelse{html}{\out{α}}{alpha}}

2.12 Dynamic pages

Two macros supporting dynamically generated man pages are \Sexpr and \RdOpts. These
are modelled after Sweave, and are intended to contain executable R expressions in the Rd
file.

Chapter 2: Writing R documentation files 97

The main argument to \Sexpr must be valid R code that can be executed. It may also
take options in square brackets before the main argument. Depending on the options, the
code may be executed at package build time, package install time, or man page rendering
time.

The options follow the same format as in Sweave, but different options are supported.
Currently the allowed options and their defaults are:

• eval=TRUE Whether the R code should be evaluated.

• echo=FALSE Whether the R code should be echoed. If TRUE, a display will be given in
a preformatted block. For example, \Sexpr[echo=TRUE]{ x <- 1 } will be displayed
as

> x <- 1

• keep.source=TRUE Whether to keep the author’s formatting when displaying the code,
or throw it away and use a deparsed version.

• results=text How should the results be displayed? The possibilities are:

− results=text Apply as.character() to the result of the code, and insert it as a
text element.

− results=verbatim Print the results of the code just as if it was executed at the
console, and include the printed results verbatim. (Invisible results will not print.)

− results=rd The result is assumed to be a character vector containing markup to
be passed to parse_Rd(), with the result inserted in place. This could be used to
insert computed aliases, for instance. parse_Rd() is called first with fragment =

FALSE to allow a single Rd section macro to be inserted. If that fails, it is called
again with fragment = TRUE, the older behavior.

− results=hide Insert no output.

• strip.white=TRUE Remove leading and trailing white space from each line of output
if strip.white=TRUE. With strip.white=all, also remove blank lines.

• stage=install Control when this macro is run. Possible values are

− stage=build The macro is run when building a source tarball.

− stage=install The macro is run when installing from source.

− stage=render The macro is run when displaying the help page.

Conditionals such as #ifdef (see Section 2.10 [Platform-specific sections], page 96) are
applied after the build macros but before the install macros. In some situations
(e.g. installing directly from a source directory without a tarball, or building a binary
package) the above description is not literally accurate, but authors can rely on the
sequence being build, #ifdef, install, render, with all stages executed.

Code is only run once in each stage, so a \Sexpr[results=rd] macro can output an
\Sexpr macro designed for a later stage, but not for the current one or any earlier
stage.

• width, height, fig These options are currently allowed but ignored.

The \RdOpts macro is used to set new defaults for options to apply to following uses of
\Sexpr.

For more details, see the online document “Parsing Rd files” (https://developer.
r-project.org/parseRd.pdf).

https://developer.r-project.org/parseRd.pdf
https://developer.r-project.org/parseRd.pdf

Chapter 2: Writing R documentation files 98

2.13 User-defined macros

The \newcommand and \renewcommand macros allow new macros to be defined within an
Rd file. These are similar but not identical to the same-named LATEX macros.

They each take two arguments which are parsed verbatim. The first is the name of
the new macro including the initial backslash, and the second is the macro definition. As
in LATEX, \newcommand requires that the new macro not have been previously defined,
whereas \renewcommand allows existing macros (including all built-in ones) to be replaced.
(This test is disabled by default, but may be enabled by setting the environment variable
_WARN_DUPLICATE_RD_MACROS_ to a true value.)

Also as in LATEX, the new macro may be defined to take arguments, and numeric place-
holders such as #1 are used in the macro definition. However, unlike LATEX, the number
of arguments is determined automatically from the highest placeholder number seen in the
macro definition. For example, a macro definition containing #1 and #3 (but no other place-
holders) will define a three argument macro (whose second argument will be ignored). As
in LATEX, at most 9 arguments may be defined. If the # character is followed by a non-digit
it will have no special significance. All arguments to user-defined macros will be parsed as
verbatim text, and simple text-substitution will be used to replace the place-holders, after
which the replacement text will be parsed.

A number of macros are defined in the file share/Rd/macros/system.Rd of the R source
or home directory, and these will normally be available in all .Rd files. For example, that
file contains the definition

\newcommand{\PR}{\Sexpr[results=rd]{tools:::Rd_expr_PR(#1)}}

which defines \PR to be a single argument macro; then code (typically used in the NEWS.Rd
file) like

\PR{1234}

will expand to

\Sexpr[results=rd]{tools:::Rd_expr_PR(1234)}

when parsed.

Some macros that might be of general use are:

\CRANpkg{pkg}

A package on CRAN

\sspace A single space (used after a period that does not end a sentence).

\doi{numbers}

A digital object identifier (DOI).

See the system.Rd file in share/Rd/macros for more details and macro defini-
tions, including macros \packageTitle, \packageDescription, \packageAuthor,
\packageMaintainer, \packageDESCRIPTION and \packageIndices.

Packages may also define their own common macros; these would be stored in an .Rd

file in man/macros in the package source and will be installed into help/macros when the
package is installed. A package may also use the macros from a different package by listing
the other package in the ‘RdMacros’ field in the DESCRIPTION file.

Chapter 2: Writing R documentation files 99

2.14 Encoding

Rd files are text files and so it is impossible to deduce the encoding they are written in
unless ASCII: files with 8-bit characters could be UTF-8, Latin-1, Latin-9, KOI8-R, EUC-
JP, etc. So an \encoding{} section must be used to specify the encoding if it is not ASCII.
(The \encoding{} section must be on a line by itself, and in particular one containing no
non-ASCII characters. The encoding declared in the DESCRIPTION file will be used if none is
declared in the file.) The Rd files are converted to UTF-8 before parsing and so the preferred
encoding for the files themselves is now UTF-8.

Wherever possible, avoid non-ASCII chars in Rd files, and even symbols such as ‘<’, ‘>’,
‘$’, ‘^’, ‘&’, ‘|’, ‘@’, ‘~’, and ‘*’ outside ‘verbatim’ environments (since they may disappear
in fonts designed to render text). (Function showNonASCIIfile in package tools can help
in finding non-ASCII bytes in the files.)

For convenience, encoding names ‘latin1’ and ‘latin2’ are always recognized: these and
‘UTF-8’ are likely to work fairly widely. However, this does not mean that all characters in
UTF-8 will be recognized, and the coverage of non-Latin characters9 is fairly low. Using
LATEX inputenx (see ?Rd2pdf in R) will give greater coverage of UTF-8.

The \enc command (see Section 2.8 [Insertions], page 95) can be used to provide translit-
erations which will be used in conversions that do not support the declared encoding.

The LATEX conversion converts the file to UTF-8 from the declared encoding, and includes
a

\inputencoding{utf8}

command, and this needs to be matched by a suitable invocation of the
\usepackage{inputenc} command. The R utility R CMD Rd2pdf looks at the
converted code and includes the encodings used: it might for example use

\usepackage[utf8]{inputenc}

(Use of utf8 as an encoding requires LATEX dated 2003/12/01 or later. Also, the use of
Cyrillic characters in ‘UTF-8’ appears to also need ‘\usepackage[T2A]{fontenc}’, and R

CMD Rd2pdf includes this conditionally on the file t2aenc.def being present and environ-
ment variable _R_CYRILLIC_TEX_ being set.)

Note that this mechanism works best with Latin letters: the coverage of UTF-8 in LATEX
is quite low.

2.15 Processing documentation files

There are several commands to process Rd files from the system command line.

Using R CMD Rdconv one can convert R documentation format to other formats, or extract
the executable examples for run-time testing. The currently supported conversions are to
plain text, HTML and LATEX as well as extraction of the examples.

R CMD Rd2pdf generates PDF output from documentation in Rd files, which can be speci-
fied either explicitly or by the path to a directory with the sources of a package. In the latter

9 R 2.9.0 added support for UTF-8 Cyrillic characters in LATEX, but on some OSes this will need Cyrillic
support added to LATEX, so environment variable _R_CYRILLIC_TEX_ may need to be set to a non-empty
value to enable this.

Chapter 2: Writing R documentation files 100

case, a reference manual for all documented objects in the package is created, including the
information in the DESCRIPTION files.

R CMD Sweave and R CMD Stangle process vignette-like documentation files (e.g. Sweave
vignettes with extension ‘.Snw’ or ‘.Rnw’, or other non-Sweave vignettes). R CMD Stangle

is used to extract the R code fragments.

The exact usage and a detailed list of available options for all of these commands can
be obtained by running R CMD command --help, e.g., R CMD Rdconv --help. All available
commands can be listed using R --help (or Rcmd --help under Windows).

All of these work under Windows. You may need to have installed the the tools to build
packages from source as described in the “R Installation and Administration” manual,
although typically all that is needed is a LATEX installation.

2.16 Editing Rd files

It can be very helpful to prepare .Rd files using a editor which knows about their syntax
and will highlight commands, indent to show the structure and detect mis-matched braces,
and so on.

The system most commonly used for this is some version of Emacs (including XEmacs)
with the ESS package (https://ESS.R-project.org/: it is often is installed with Emacs

but may need to be loaded, or even installed, separately).

Another is the Eclipse IDE with the Stat-ET plugin (https://projects.eclipse.org/
projects/science.statet), and (onWindows only) Tinn-R (https://sourceforge.net/
projects/tinn-r/).

People have also used LATEX mode in a editor, as .Rd files are rather similar to LATEX
files.

Some R front-ends provide editing support for .Rd files, for example RStudio (https://
www.rstudio.com/).

https://ESS.R-project.org/
https://projects.eclipse.org/projects/science.statet
https://projects.eclipse.org/projects/science.statet
https://sourceforge.net/projects/tinn-r/
https://sourceforge.net/projects/tinn-r/
https://www.rstudio.com/
https://www.rstudio.com/

101

3 Tidying and profiling R code

R code which is worth preserving in a package and perhaps making available for others
to use is worth documenting, tidying up and perhaps optimizing. The last two of these
activities are the subject of this chapter.

3.1 Tidying R code

R treats function code loaded from packages and code entered by users differently. By
default code entered by users has the source code stored internally, and when the function
is listed, the original source is reproduced. Loading code from a package (by default)
discards the source code, and the function listing is re-created from the parse tree of the
function.

Normally keeping the source code is a good idea, and in particular it avoids comments
being removed from the source. However, we can make use of the ability to re-create a
function listing from its parse tree to produce a tidy version of the function, for example
with consistent indentation and spaces around operators. If the original source does not
follow the standard format this tidied version can be much easier to read.

We can subvert the keeping of source in two ways.

1. The option keep.source can be set to FALSE before the code is loaded into R.

2. The stored source code can be removed by calling the removeSource() function, for
example by

myfun <- removeSource(myfun)

In each case if we then list the function we will get the standard layout.

Suppose we have a file of functions myfuns.R that we want to tidy up. Create a file
tidy.R containing

source("myfuns.R", keep.source = FALSE)

dump(ls(all.names = TRUE), file = "new.myfuns.R")

and run R with this as the source file, for example by R --vanilla < tidy.R or by pasting
into an R session. Then the file new.myfuns.R will contain the functions in alphabetical
order in the standard layout. Warning: comments in your functions will be lost.

The standard format provides a good starting point for further tidying. Although the
deparsing cannot do so, we recommend the consistent use of the preferred assignment oper-
ator ‘<-’ (rather than ‘=’) for assignment. Many package authors use a version of Emacs (on
a Unix-alike or Windows) to edit R code, using the ESS[S] mode of the ESS Emacs package.
See Section “R coding standards” in R Internals for style options within the ESS[S] mode
recommended for the source code of R itself.

3.2 Profiling R code for speed

It is possible to profile R code on Windows and most1 Unix-alike versions of R.

The command Rprof is used to control profiling, and its help page can be consulted for
full details. Profiling works by recording at fixed intervals2 (by default every 20 msecs) which

1 R has to be built to enable this, but the option --enable-R-profiling is the default.
2 For Unix-alikes these are intervals of CPU time, and for Windows of elapsed time.

Chapter 3: Tidying and profiling R code 102

line in which R function is being used, and recording the results in a file (default Rprof.out
in the working directory). Then the function summaryRprof or the command-line utility R

CMD Rprof Rprof.out can be used to summarize the activity.

As an example, consider the following code (from Venables & Ripley, 2002, pp. 225–6).

library(MASS); library(boot)

storm.fm <- nls(Time ~ b*Viscosity/(Wt - c), stormer,

start = c(b=30.401, c=2.2183))

st <- cbind(stormer, fit=fitted(storm.fm))

storm.bf <- function(rs, i) {

st$Time <- st$fit + rs[i]

tmp <- nls(Time ~ (b * Viscosity)/(Wt - c), st,

start = coef(storm.fm))

tmpmgetAllPars()

}

rs <- scale(resid(storm.fm), scale = FALSE) # remove the mean

Rprof("boot.out")

storm.boot <- boot(rs, storm.bf, R = 4999) # slow enough to profile

Rprof(NULL)

Having run this we can summarize the results by

R CMD Rprof boot.out

Each sample represents 0.02 seconds.

Total run time: 22.52 seconds.

Total seconds: time spent in function and callees.

Self seconds: time spent in function alone.

% total % self

total seconds self seconds name

100.0 25.22 0.2 0.04 "boot"

99.8 25.18 0.6 0.16 "statistic"

96.3 24.30 4.0 1.02 "nls"

33.9 8.56 2.2 0.56 "<Anonymous>"

32.4 8.18 1.4 0.36 "eval"

31.8 8.02 1.4 0.34 ".Call"

28.6 7.22 0.0 0.00 "eval.parent"

28.5 7.18 0.3 0.08 "model.frame"

28.1 7.10 3.5 0.88 "model.frame.default"

17.4 4.38 0.7 0.18 "sapply"

15.0 3.78 3.2 0.80 "nlsModel"

12.5 3.16 1.8 0.46 "lapply"

12.3 3.10 2.7 0.68 "assign"

...

Chapter 3: Tidying and profiling R code 103

% self % total

self seconds total seconds name

5.7 1.44 7.5 1.88 "inherits"

4.0 1.02 96.3 24.30 "nls"

3.6 0.92 3.6 0.92 "$"

3.5 0.88 28.1 7.10 "model.frame.default"

3.2 0.80 15.0 3.78 "nlsModel"

2.8 0.70 9.8 2.46 "qr.coef"

2.7 0.68 12.3 3.10 "assign"

2.5 0.64 2.5 0.64 ".Fortran"

2.5 0.62 7.1 1.80 "qr.default"

2.2 0.56 33.9 8.56 "<Anonymous>"

2.1 0.54 5.9 1.48 "unlist"

2.1 0.52 7.9 2.00 "FUN"

...

This often produces surprising results and can be used to identify bottlenecks or pieces of
R code that could benefit from being replaced by compiled code.

Two warnings: profiling does impose a small performance penalty, and the output files
can be very large if long runs are profiled at the default sampling interval.

Profiling short runs can sometimes give misleading results. R from time to time performs
garbage collection to reclaim unused memory, and this takes an appreciable amount of time
which profiling will charge to whichever function happens to provoke it. It may be useful
to compare profiling code immediately after a call to gc() with a profiling run without a
preceding call to gc.

More detailed analysis of the output can be achieved by the tools in the CRAN pack-
ages proftools (https://CRAN.R-project.org/package=proftools) and profr (https://
CRAN.R-project.org/package=profr): in particular these allow call graphs to be studied.

3.3 Profiling R code for memory use

Measuring memory use in R code is useful either when the code takes more memory than is
conveniently available or when memory allocation and copying of objects is responsible for
slow code. There are three ways to profile memory use over time in R code. The second and
third require R to have been compiled with --enable-memory-profiling, which is not the
default, but is currently used for the macOS and Windows binary distributions. All can be
misleading, for different reasons.

In understanding the memory profiles it is useful to know a little more about R’s memory
allocation. Looking at the results of gc() shows a division of memory into Vcells used
to store the contents of vectors and Ncells used to store everything else, including all the
administrative overhead for vectors such as type and length information. In fact the vector
contents are divided into two pools. Memory for small vectors (by default 128 bytes or
less) is obtained in large chunks and then parcelled out by R; memory for larger vectors is
obtained directly from the operating system.

Some memory allocation is obvious in interpreted code, for example,

y <- x + 1

allocates memory for a new vector y. Other memory allocation is less obvious and occurs
because R is forced to make good on its promise of ‘call-by-value’ argument passing. When
an argument is passed to a function it is not immediately copied. Copying occurs (if

https://CRAN.R-project.org/package=proftools
https://CRAN.R-project.org/package=profr
https://CRAN.R-project.org/package=profr

Chapter 3: Tidying and profiling R code 104

necessary) only when the argument is modified. This can lead to surprising memory use.
For example, in the ‘survey’ package we have

print.svycoxph <- function (x, ...)

{

print(x$survey.design, varnames = FALSE, design.summaries = FALSE, ...)

x$call <- x$printcall

NextMethod()

}

It may not be obvious that the assignment to x$call will cause the entire object x to be
copied. This copying to preserve the call-by-value illusion is usually done by the internal C
function duplicate.

The main reason that memory-use profiling is difficult is garbage collection. Memory is
allocated at well-defined times in an R program, but is freed whenever the garbage collector
happens to run.

3.3.1 Memory statistics from Rprof

The sampling profiler Rprof described in the previous section can be given the option
memory.profiling=TRUE. It then writes out the total R memory allocation in small vectors,
large vectors, and cons cells or nodes at each sampling interval. It also writes out the number
of calls to the internal function duplicate, which is called to copy R objects. summaryRprof
provides summaries of this information. The main reason that this can be misleading is
that the memory use is attributed to the function running at the end of the sampling
interval. A second reason is that garbage collection can make the amount of memory in
use decrease, so a function appears to use little memory. Running under gctorture helps
with both problems: it slows down the code to effectively increase the sampling frequency
and it makes each garbage collection release a smaller amount of memory. Changing the
memory limits with mem.limits() may also be useful, to see how the code would run under
different memory conditions.

3.3.2 Tracking memory allocations

The second method of memory profiling uses a memory-allocation profiler, Rprofmem(),
which writes out a stack trace to an output file every time a large vector is allocated (with
a user-specified threshold for ‘large’) or a new page of memory is allocated for the R heap.
Summary functions for this output are still being designed.

Running the example from the previous section with

> Rprofmem("boot.memprof",threshold=1000)

> storm.boot <- boot(rs, storm.bf, R = 4999)

> Rprofmem(NULL)

shows that apart from some initial and final work in boot there are no vector allocations
over 1000 bytes.

3.3.3 Tracing copies of an object

The third method of memory profiling involves tracing copies made of a specific (presumably
large) R object. Calling tracemem on an object marks it so that a message is printed to
standard output when the object is copied via duplicate or coercion to another type, or
when a new object of the same size is created in arithmetic operations. The main reason

Chapter 3: Tidying and profiling R code 105

that this can be misleading is that copying of subsets or components of an object is not
tracked. It may be helpful to use tracemem on these components.

In the example above we can run tracemem on the data frame st

> tracemem(st)

[1] "<0x9abd5e0>"

> storm.boot <- boot(rs, storm.bf, R = 4)

memtrace[0x9abd5e0->0x92a6d08]: statistic boot

memtrace[0x92a6d08->0x92a6d80]: $<-.data.frame $<- statistic boot

memtrace[0x92a6d80->0x92a6df8]: $<-.data.frame $<- statistic boot

memtrace[0x9abd5e0->0x9271318]: statistic boot

memtrace[0x9271318->0x9271390]: $<-.data.frame $<- statistic boot

memtrace[0x9271390->0x9271408]: $<-.data.frame $<- statistic boot

memtrace[0x9abd5e0->0x914f558]: statistic boot

memtrace[0x914f558->0x914f5f8]: $<-.data.frame $<- statistic boot

memtrace[0x914f5f8->0x914f670]: $<-.data.frame $<- statistic boot

memtrace[0x9abd5e0->0x972cbf0]: statistic boot

memtrace[0x972cbf0->0x972cc68]: $<-.data.frame $<- statistic boot

memtrace[0x972cc68->0x972cd08]: $<-.data.frame $<- statistic boot

memtrace[0x9abd5e0->0x98ead98]: statistic boot

memtrace[0x98ead98->0x98eae10]: $<-.data.frame $<- statistic boot

memtrace[0x98eae10->0x98eae88]: $<-.data.frame $<- statistic boot

The object is duplicated fifteen times, three times for each of the R+1 calls to storm.bf.
This is surprising, since none of the duplications happen inside nls. Stepping through
storm.bf in the debugger shows that all three happen in the line

st$Time <- st$fit + rs[i]

Data frames are slower than matrices and this is an example of why. Using
tracemem(st$Viscosity) does not reveal any additional copying.

3.4 Profiling compiled code

Profiling compiled code is highly system-specific, but this section contains some hints
gleaned from various R users. Some methods need to be different for a compiled exe-
cutable and for dynamic/shared libraries/objects as used by R packages. We know of no
good way to profile DLLs on Windows.

This chapter is based on reports from users and the information may not be current.

3.4.1 Linux

Options include using sprof for a shared object, and oprofile (see https://oprofile.

sourceforge.io/news/) and perf (see https://perf.wiki.kernel.org/index.php/

Tutorial) for any executable or shared object.

3.4.1.1 sprof

You can select shared objects to be profiled with sprof by setting the environment variable
LD_PROFILE. For example

% setenv LD_PROFILE /path/to/R_HOME/library/stats/libs/stats.so

R

... run the boot example

% sprof /path/to/R_HOME/library/stats/libs/stats.so \

/var/tmp/path/to/R_HOME/library/stats/libs/stats.so.profile

https://oprofile.sourceforge.io/news/
https://oprofile.sourceforge.io/news/
https://perf.wiki.kernel.org/index.php/Tutorial
https://perf.wiki.kernel.org/index.php/Tutorial

Chapter 3: Tidying and profiling R code 106

Flat profile:

Each sample counts as 0.01 seconds.

% cumulative self self total

time seconds seconds calls us/call us/call name

76.19 0.32 0.32 0 0.00 numeric_deriv

16.67 0.39 0.07 0 0.00 nls_iter

7.14 0.42 0.03 0 0.00 getListElement

rm /var/tmp/path/to/R_HOME/library/stats/libs/stats.so.profile

... to clean up ...

It is possible that root access is needed to create the directories used for the profile data.

3.4.1.2 oprofile and operf

The oprofile project has two modes of operation. In what is now called ‘legacy’ mode, it is
uses a daemon to collect information on a process (see below). Since version 0.9.8 (August
2012), the preferred mode is to use operf, so we discuss that first. The modes differ in how
the profiling data is collected: it is analysed by tools such as opreport and oppannote in
both.

Here is an example on x86_64 Linux using R 3.0.2. File pvec.R contains the part of the
examples from pvec in package parallel:

library(parallel)

N <- 1e6

dates <- sprintf(’%04d-%02d-%02d’, as.integer(2000+rnorm(N)),

as.integer(runif(N, 1, 12)), as.integer(runif(N, 1, 28)))

system.time(a <- as.POSIXct(dates, format = "%Y-%m-%d"))

with timings from the final step

user system elapsed

0.371 0.237 0.612

R-level profiling by Rprof shows

self.time self.pct total.time total.pct

"strptime" 1.70 41.06 1.70 41.06

"as.POSIXct.POSIXlt" 1.40 33.82 1.42 34.30

"sprintf" 0.74 17.87 0.98 23.67

...

so the conversion from character to POSIXlt takes most of the time.

This can be run under operf and analysed by

operf R -f pvec.R

opreport

opreport -l /path/to/R_HOME/bin/exec/R

opannotate --source /path/to/R_HOME/bin/exec/R

And for the system time

opreport -l /lib64/libc.so.6

Chapter 3: Tidying and profiling R code 107

The first report shows where (which library etc) the time was spent:

CPU_CLK_UNHALT...|

samples| %|

166761 99.9161 Rdev

CPU_CLK_UNHALT...|

samples| %|

70586 42.3276 no-vmlinux

56963 34.1585 libc-2.16.so

36922 22.1407 R

1584 0.9499 stats.so

624 0.3742 libm-2.16.so

...

The rest of the output is voluminous, and only extracts are shown below.

Most of the time within R is spent in

samples % image name symbol name

10397 28.5123 R R_gc_internal

5683 15.5848 R do_sprintf

3036 8.3258 R do_asPOSIXct

2427 6.6557 R do_strptime

2421 6.6392 R Rf_mkCharLenCE

1480 4.0587 R w_strptime_internal

1202 3.2963 R Rf_qnorm5

1165 3.1948 R unif_rand

675 1.8511 R mktime0

617 1.6920 R makelt

617 1.6920 R validate_tm

584 1.6015 R day_of_the_week

...

opannotate shows that 31% of the time in R is spent in memory.c, 21% in datetime.c and
7% in Rstrptime.h. The analysis for libc showed that calls to wcsftime dominated, so
those calls were cached for R 3.0.3: the time spent in no-vmlinux (the kernel) was reduced
dramatically.

On platforms which support it, call graphs can be produced by opcontrol --callgraph

if collected via operf --callgraph.

The profiling data is by default stored in sub-directory oprofile_data of the current
directory, which can be removed at the end of the session.

Another example, from sm (https://CRAN.R-project.org/package=sm) version 2.2-
5.4. The example for sm.variogram took a long time:

system.time(example(sm.variogram))

...

user system elapsed

5.543 3.202 8.785

https://CRAN.R-project.org/package=sm

Chapter 3: Tidying and profiling R code 108

including a lot of system time. Profiling just the slow part, the second plot, showed

samples| %|

381845 99.9885 R

CPU_CLK_UNHALT...|

samples| %|

187484 49.0995 sm.so

169627 44.4230 no-vmlinux

12636 3.3092 libgfortran.so.3.0.0

6455 1.6905 R

so the system time was almost all in the Linux kernel. It is possible to dig deeper if you
have a matching uncompressed kernel with debug symbols to specify via --vmlinux: we
did not.

In ‘legacy’ mode oprofile works by running a daemon which collects information. The
daemon must be started as root, e.g.

% su

% opcontrol --no-vmlinux

% (optional, some platforms) opcontrol --callgraph=5

% opcontrol --start

% exit

Then as a user

% R

... run the boot example

% opcontrol --dump

% opreport -l /path/to/R_HOME/library/stats/libs/stats.so

...

samples % symbol name

1623 75.5939 anonymous symbol from section .plt

349 16.2552 numeric_deriv

113 5.2632 nls_iter

62 2.8878 getListElement

% opreport -l /path/to/R_HOME/bin/exec/R

...

samples % symbol name

76052 11.9912 Rf_eval

54670 8.6198 Rf_findVarInFrame3

37814 5.9622 Rf_allocVector

31489 4.9649 Rf_duplicate

28221 4.4496 Rf_protect

26485 4.1759 Rf_cons

23650 3.7289 Rf_matchArgs

21088 3.3250 Rf_findFun

19995 3.1526 findVarLocInFrame

14871 2.3447 Rf_evalList

Chapter 3: Tidying and profiling R code 109

13794 2.1749 R_Newhashpjw

13522 2.1320 R_gc_internal

...

Shutting down the profiler and clearing the records needs to be done as root.

3.4.2 Solaris

On 64-bit (only) Solaris, the standard profiling tool gprof collects information from shared
objects compiled with -pg.

3.4.3 macOS

Developers have recommended sample (or Sampler.app, which is a GUI version), Shark
(in version of Xcode up to those for Snow Leopard), and Instruments (part of Xcode, see
https://help.apple.com/instruments/mac/current).

https://help.apple.com/instruments/mac/current

110

4 Debugging

This chapter covers the debugging of R extensions, starting with the ways to get useful
error information and moving on to how to deal with errors that crash R.

4.1 Browsing

Most of the R-level debugging facilities are based around the built-in browser. This can
be used directly by inserting a call to browser() into the code of a function (for example,
using fix(my_function)). When code execution reaches that point in the function, control
returns to the R console with a special prompt. For example

> fix(summary.data.frame) ## insert browser() call after for() loop

> summary(women)

Called from: summary.data.frame(women)

Browse[1]> ls()

[1] "digits" "i" "lbs" "lw" "maxsum" "nm" "nr" "nv"

[9] "object" "sms" "z"

Browse[1]> maxsum

[1] 7

Browse[1]>

height weight

Min. :58.0 Min. :115.0

1st Qu.:61.5 1st Qu.:124.5

Median :65.0 Median :135.0

Mean :65.0 Mean :136.7

3rd Qu.:68.5 3rd Qu.:148.0

Max. :72.0 Max. :164.0

> rm(summary.data.frame)

At the browser prompt one can enter any R expression, so for example ls() lists the objects
in the current frame, and entering the name of an object will1 print it. The following
commands are also accepted

• n

Enter ‘step-through’ mode. In this mode, hitting return executes the next line of code
(more precisely one line and any continuation lines). Typing c will continue to the end
of the current context, e.g. to the end of the current loop or function.

• c

In normal mode, this quits the browser and continues execution, and just return works
in the same way. cont is a synonym.

• where

This prints the call stack. For example

> summary(women)

Called from: summary.data.frame(women)

1 With the exceptions of the commands listed below: an object of such a name can be printed via an
explicit call to print.

Chapter 4: Debugging 111

Browse[1]> where

where 1: summary.data.frame(women)

where 2: summary(women)

Browse[1]>

• Q

Quit both the browser and the current expression, and return to the top-level prompt.

Errors in code executed at the browser prompt will normally return control to the browser
prompt. Objects can be altered by assignment, and will keep their changed values when
the browser is exited. If really necessary, objects can be assigned to the workspace from the
browser prompt (by using <<- if the name is not already in scope).

4.2 Debugging R code

Suppose your R program gives an error message. The first thing to find out is what R was
doing at the time of the error, and the most useful tool is traceback(). We suggest that
this is run whenever the cause of the error is not immediately obvious. Errors are often
reported to the R mailing lists as being in some package when traceback() would show
that the error was being reported by some other package or base R. Here is an example
from the regression suite.

> success <- c(13,12,11,14,14,11,13,11,12)

> failure <- c(0,0,0,0,0,0,0,2,2)

> resp <- cbind(success, failure)

> predictor <- c(0, 5^(0:7))

> glm(resp ~ 0+predictor, family = binomial(link="log"))

Error: no valid set of coefficients has been found: please supply starting values

> traceback()

3: stop("no valid set of coefficients has been found: please supply

starting values", call. = FALSE)

2: glm.fit(x = X, y = Y, weights = weights, start = start, etastart = etastart,

mustart = mustart, offset = offset, family = family, control = control,

intercept = attr(mt, "intercept") > 0)

1: glm(resp ~ 0 + predictor, family = binomial(link ="log"))

The calls to the active frames are given in reverse order (starting with the innermost).
So we see the error message comes from an explicit check in glm.fit. (traceback()
shows you all the lines of the function calls, which can be limited by setting option

"deparse.max.lines".)

Sometimes the traceback will indicate that the error was detected inside compiled code,
for example (from ?nls)

Error in nls(y ~ a + b * x, start = list(a = 0.12345, b = 0.54321), trace = TRUE) :

step factor 0.000488281 reduced below ’minFactor’ of 0.000976563

> traceback()

2: .Call(R_nls_iter, m, ctrl, trace)

1: nls(y ~ a + b * x, start = list(a = 0.12345, b = 0.54321), trace = TRUE)

This will be the case if the innermost call is to .C, .Fortran, .Call, .External or
.Internal, but as it is also possible for such code to evaluate R expressions, this need
not be the innermost call, as in

> traceback()

9: gm(a, b, x)

Chapter 4: Debugging 112

8: .Call(R_numeric_deriv, expr, theta, rho, dir)

7: numericDeriv(form[[3]], names(ind), env)

6: getRHS()

5: assign("rhs", getRHS(), envir = thisEnv)

4: assign("resid", .swts * (lhs - assign("rhs", getRHS(), envir = thisEnv)),

envir = thisEnv)

3: function (newPars)

{

setPars(newPars)

assign("resid", .swts * (lhs - assign("rhs", getRHS(), envir = thisEnv)),

envir = thisEnv)

assign("dev", sum(resid^2), envir = thisEnv)

assign("QR", qr(.swts * attr(rhs, "gradient")), envir = thisEnv)

return(QR$rank < min(dim(QR$qr)))

}(c(-0.00760232418963883, 1.00119632515036))

2: .Call(R_nls_iter, m, ctrl, trace)

1: nls(yeps ~ gm(a, b, x), start = list(a = 0.12345, b = 0.54321))

Occasionally traceback() does not help, and this can be the case if S4 method dispatch
is involved. Consider the following example

> xyd <- new("xyloc", x=runif(20), y=runif(20))

Error in as.environment(pkg) : no item called "package:S4nswv"

on the search list

Error in initialize(value, ...) : S language method selection got

an error when called from internal dispatch for function ’initialize’

> traceback()

2: initialize(value, ...)

1: new("xyloc", x = runif(20), y = runif(20))

which does not help much, as there is no call to as.environment in initialize (and the
note “called from internal dispatch” tells us so). In this case we searched the R sources for
the quoted call, which occurred in only one place, methods:::.asEnvironmentPackage. So
now we knew where the error was occurring. (This was an unusually opaque example.)

The error message

evaluation nested too deeply: infinite recursion / options(expressions=)?

can be hard to handle with the default value (5000). Unless you know that there actually
is deep recursion going on, it can help to set something like

options(expressions=500)

and re-run the example showing the error.

Sometimes there is warning that clearly is the precursor to some later error, but it is not
obvious where it is coming from. Setting options(warn = 2) (which turns warnings into
errors) can help here.

Once we have located the error, we have some choices. One way to proceed is to find
out more about what was happening at the time of the crash by looking a post-mortem
dump. To do so, set options(error=dump.frames) and run the code again. Then invoke
debugger() and explore the dump. Continuing our example:

> options(error = dump.frames)

> glm(resp ~ 0 + predictor, family = binomial(link ="log"))

Error: no valid set of coefficients has been found: please supply starting values

Chapter 4: Debugging 113

which is the same as before, but an object called last.dump has appeared in the workspace.
(Such objects can be large, so remove it when it is no longer needed.) We can examine this
at a later time by calling the function debugger.

> debugger()

Message: Error: no valid set of coefficients has been found: please supply starting values

Available environments had calls:

1: glm(resp ~ 0 + predictor, family = binomial(link = "log"))

2: glm.fit(x = X, y = Y, weights = weights, start = start, etastart = etastart, mus

3: stop("no valid set of coefficients has been found: please supply starting values

Enter an environment number, or 0 to exit Selection:

which gives the same sequence of calls as traceback, but in outer-first order and with only
the first line of the call, truncated to the current width. However, we can now examine in
more detail what was happening at the time of the error. Selecting an environment opens
the browser in that frame. So we select the function call which spawned the error message,
and explore some of the variables (and execute two function calls).

Enter an environment number, or 0 to exit Selection: 2

Browsing in the environment with call:

glm.fit(x = X, y = Y, weights = weights, start = start, etas

Called from: debugger.look(ind)

Browse[1]> ls()

[1] "aic" "boundary" "coefold" "control" "conv"

[6] "dev" "dev.resids" "devold" "EMPTY" "eta"

[11] "etastart" "family" "fit" "good" "intercept"

[16] "iter" "linkinv" "mu" "mu.eta" "mu.eta.val"

[21] "mustart" "n" "ngoodobs" "nobs" "nvars"

[26] "offset" "start" "valideta" "validmu" "variance"

[31] "varmu" "w" "weights" "x" "xnames"

[36] "y" "ynames" "z"

Browse[1]> eta

1 2 3 4 5

0.000000e+00 -2.235357e-06 -1.117679e-05 -5.588393e-05 -2.794197e-04

6 7 8 9

-1.397098e-03 -6.985492e-03 -3.492746e-02 -1.746373e-01

Browse[1]> valideta(eta)

[1] TRUE

Browse[1]> mu

1 2 3 4 5 6 7 8

1.0000000 0.9999978 0.9999888 0.9999441 0.9997206 0.9986039 0.9930389 0.9656755

9

0.8397616

Browse[1]> validmu(mu)

[1] FALSE

Browse[1]> c

Available environments had calls:

1: glm(resp ~ 0 + predictor, family = binomial(link = "log"))

2: glm.fit(x = X, y = Y, weights = weights, start = start, etastart = etastart

3: stop("no valid set of coefficients has been found: please supply starting v

Enter an environment number, or 0 to exit Selection: 0

> rm(last.dump)

Because last.dump can be looked at later or even in another R session, post-mortem
debugging is possible even for batch usage of R. We do need to arrange for the dump to be
saved: this can be done either using the command-line flag --save to save the workspace
at the end of the run, or via a setting such as

Chapter 4: Debugging 114

> options(error = quote({dump.frames(to.file=TRUE); q()}))

See the help on dump.frames for further options and a worked example.

An alternative error action is to use the function recover():

> options(error = recover)

> glm(resp ~ 0 + predictor, family = binomial(link = "log"))

Error: no valid set of coefficients has been found: please supply starting values

Enter a frame number, or 0 to exit

1: glm(resp ~ 0 + predictor, family = binomial(link = "log"))

2: glm.fit(x = X, y = Y, weights = weights, start = start, etastart = etastart

Selection:

which is very similar to dump.frames. However, we can examine the state of the program
directly, without dumping and re-loading the dump. As its help page says, recover can
be routinely used as the error action in place of dump.calls and dump.frames, since it
behaves like dump.frames in non-interactive use.

Post-mortem debugging is good for finding out exactly what went wrong, but not nec-
essarily why. An alternative approach is to take a closer look at what was happening just
before the error, and a good way to do that is to use debug. This inserts a call to the
browser at the beginning of the function, starting in step-through mode. So in our example
we could use

> debug(glm.fit)

> glm(resp ~ 0 + predictor, family = binomial(link ="log"))

debugging in: glm.fit(x = X, y = Y, weights = weights, start = start, etastart = etastart,

mustart = mustart, offset = offset, family = family, control = control,

intercept = attr(mt, "intercept") > 0)

debug: {

lists the whole function

Browse[1]>

debug: x <- as.matrix(x)

...

Browse[1]> start

[1] -2.235357e-06

debug: eta <- drop(x %*% start)

Browse[1]> eta

1 2 3 4 5

0.000000e+00 -2.235357e-06 -1.117679e-05 -5.588393e-05 -2.794197e-04

6 7 8 9

-1.397098e-03 -6.985492e-03 -3.492746e-02 -1.746373e-01

Browse[1]>

debug: mu <- linkinv(eta <- eta + offset)

Browse[1]> mu

1 2 3 4 5 6 7 8

1.0000000 0.9999978 0.9999888 0.9999441 0.9997206 0.9986039 0.9930389 0.9656755

9

0.8397616

(The prompt Browse[1]> indicates that this is the first level of browsing: it is possible to
step into another function that is itself being debugged or contains a call to browser().)

debug can be used for hidden functions and S3 methods by e.g. debug(stats:::predict.Arima).
(It cannot be used for S4 methods, but an alternative is given on the help page for debug.)
Sometimes you want to debug a function defined inside another function, e.g. the function

Chapter 4: Debugging 115

arimafn defined inside arima. To do so, set debug on the outer function (here arima) and
step through it until the inner function has been defined. Then call debug on the inner
function (and use c to get out of step-through mode in the outer function).

To remove debugging of a function, call undebug with the argument previously given to
debug; debugging otherwise lasts for the rest of the R session (or until the function is edited
or otherwise replaced).

trace can be used to temporarily insert debugging code into a function, for example
to insert a call to browser() just before the point of the error. To return to our running
example

first get a numbered listing of the expressions of the function

> page(as.list(body(glm.fit)), method="print")

> trace(glm.fit, browser, at=22)

Tracing function "glm.fit" in package "stats"

[1] "glm.fit"

> glm(resp ~ 0 + predictor, family = binomial(link ="log"))

Tracing glm.fit(x = X, y = Y, weights = weights, start = start,

etastart = etastart, step 22

Called from: eval(expr, envir, enclos)

Browse[1]> n

and single-step from here.

> untrace(glm.fit)

For your own functions, it may be as easy to use fix to insert temporary code, but
trace can help with functions in a namespace (as can fixInNamespace). Alternatively,
use trace(,edit=TRUE) to insert code visually.

4.3 Checking memory access

Errors in memory allocation and reading/writing outside arrays are very common causes of
crashes (e.g., segfaults) on some machines. Often the crash appears long after the invalid
memory access: in particular damage to the structures which R itself has allocated may
only become apparent at the next garbage collection (or even at later garbage collections
after objects have been deleted).

Note that memory access errors may be seen with LAPACK, BLAS, OpenMP and Java-
using packages: some at least of these seem to be intentional, and some are related to
passing characters to Fortran.

Some of these tools can detect mismatched allocation and deallocation. C++ program-
mers should note that memory allocated by new [] must be freed by delete [], other uses
of new by delete, and memory allocated by malloc, calloc and realloc by free. Some
platforms will tolerate mismatches (perhaps with memory leaks) but others will segfault.

4.3.1 Using gctorture

We can help to detect memory problems in R objects earlier by running garbage collection
as often as possible. This is achieved by gctorture(TRUE), which as described on its help
page

Chapter 4: Debugging 116

Provokes garbage collection on (nearly) every memory allocation. Intended to
ferret out memory protection bugs. Also makes R run very slowly, unfortu-
nately.

The reference to ‘memory protection’ is to missing C-level calls to PROTECT/UNPROTECT
(see Section 5.9.1 [Garbage Collection], page 150) which if missing allow R objects to be
garbage-collected when they are still in use. But it can also help with other memory-related
errors.

Normally running under gctorture(TRUE) will just produce a crash earlier in the R
program, hopefully close to the actual cause. See the next section for how to decipher such
crashes.

It is possible to run all the examples, tests and vignettes covered by R CMD check under
gctorture(TRUE) by using the option --use-gct.

The function gctorture2 provides more refined control over the GC torture process.
Its arguments step, wait and inhibit_release are documented on its help page. Envi-
ronment variables can also be used at the start of the R session to turn on GC torture:
R_GCTORTURE corresponds to the step argument to gctorture2, R_GCTORTURE_WAIT to
wait, and R_GCTORTURE_INHIBIT_RELEASE to inhibit_release.

If R is configured with --enable-strict-barrier then a variety of tests for the integrity
of the write barrier are enabled. In addition tests to help detect protect issues are enabled:

• All GCs are full GCs.

• New nodes in small node pages are marked as NEWSXP on creation.

• After a GC all free nodes that are not of type NEWSXP are marked as type FREESXP and
their previous type is recorded.

• Most calls to accessor functions check their SEXP inputs and SEXP outputs and signal
an error if a FREESXP is found. The address of the node and the old type are included
in the error message.

R CMD check --use-gct can be set to use gctorture2(n) rather than gctorture(TRUE)

by setting environment variable _R_CHECK_GCT_N_ to a positive integer value to be used as
n.

Used with a debugger and with gctorture or gctorture2 this mechanism can be helpful
in isolating memory protect problems.

4.3.2 Using valgrind

If you have access to Linux on a common CPU type or supported versions of macOS or
Solaris you can use valgrind (https://www.valgrind.org/, pronounced to rhyme with
‘tinned’) to check for possible problems. To run some examples under valgrind use some-
thing like

R -d valgrind --vanilla < mypkg-Ex.R

R -d "valgrind --tool=memcheck --leak-check=full" --vanilla < mypkg-Ex.R

where mypkg-Ex.R is a set of examples, e.g. the file created in mypkg.Rcheck by R CMD

check. Occasionally this reports memory reads of ‘uninitialised values’ that are the result
of compiler optimization, so can be worth checking under an unoptimized compile: for
maximal information use a build with debugging symbols. We know there will be some
small memory leaks from readline and R itself — these are memory areas that are in use

https://www.valgrind.org/

Chapter 4: Debugging 117

right up to the end of the R session. Expect this to run around 20x slower than without
valgrind, and in some cases much slower than that. Several versions of valgrind were not
happy with some optimized BLASes that use CPU-specific instructions so you may need to
build a version of R specifically to use with valgrind.

On platforms where valgrind is installed you can build a version of R with extra in-
strumentation to help valgrind detect errors in the use of memory allocated from the R
heap. The configure option is --with-valgrind-instrumentation=level, where level
is 0, 1 or 2. Level 0 is the default and does not add anything. Level 1 will detect some
uses2 of uninitialised memory and has little impact on speed (compared to level 0). Level
2 will detect many other memory-use bugs3 but make R much slower when running under
valgrind. Using this in conjunction with gctorture can be even more effective (and even
slower).

An example of valgrind output is

==12539== Invalid read of size 4

==12539== at 0x1CDF6CBE: csc_compTr (Mutils.c:273)

==12539== by 0x1CE07E1E: tsc_transpose (dtCMatrix.c:25)

==12539== by 0x80A67A7: do_dotcall (dotcode.c:858)

==12539== by 0x80CACE2: Rf_eval (eval.c:400)

==12539== by 0x80CB5AF: R_execClosure (eval.c:658)

==12539== by 0x80CB98E: R_execMethod (eval.c:760)

==12539== by 0x1B93DEFA: R_standardGeneric (methods_list_dispatch.c:624)

==12539== by 0x810262E: do_standardGeneric (objects.c:1012)

==12539== by 0x80CAD23: Rf_eval (eval.c:403)

==12539== by 0x80CB2F0: Rf_applyClosure (eval.c:573)

==12539== by 0x80CADCC: Rf_eval (eval.c:414)

==12539== by 0x80CAA03: Rf_eval (eval.c:362)

==12539== Address 0x1C0D2EA8 is 280 bytes inside a block of size 1996 alloc’d

==12539== at 0x1B9008D1: malloc (vg_replace_malloc.c:149)

==12539== by 0x80F1B34: GetNewPage (memory.c:610)

==12539== by 0x80F7515: Rf_allocVector (memory.c:1915)

...

This example is from an instrumented version of R, while tracking down a bug in the Matrix
(https://CRAN.R-project.org/package=Matrix) package in 2006. The first line indicates
that R has tried to read 4 bytes from a memory address that it does not have access to.
This is followed by a C stack trace showing where the error occurred. Next is a description
of the memory that was accessed. It is inside a block allocated by malloc, called from
GetNewPage, that is, in the internal R heap. Since this memory all belongs to R, valgrind
would not (and did not) detect the problem in an uninstrumented build of R. In this exam-
ple the stack trace was enough to isolate and fix the bug, which was in tsc_transpose, and
in this example running under gctorture() did not provide any additional information.

valgrind is good at spotting the use of uninitialized values: use option --track-

origins=yes to show where these originated from. What it cannot detect is the misuse
of arrays allocated on the stack: this includes C automatic variables and some4 Fortran
arrays.

2 Those in some numeric, logical, integer, raw, complex vectors and in memory allocated by R_alloc.
3 including using the data sections of R vectors after they are freed.
4 small fixed-size arrays by default in gfortran, for example.

https://CRAN.R-project.org/package=Matrix
https://CRAN.R-project.org/package=Matrix

Chapter 4: Debugging 118

It is possible to run all the examples, tests and vignettes covered by R CMD check under
valgrind by using the option --use-valgrind. If you do this you will need to select the
valgrind options some other way, for example by having a ~/.valgrindrc file containing

--leak-check=full

--track-origins=yes

or setting the environment variable VALGRIND_OPTS.

On macOS you may need to ensure that debugging symbols are made available (so
valgrind reports line numbers in files). This can usually be done with the valgrind option
--dsymutil=yes to ask for the symbols to be dumped when the .so file is loaded. This will
not work where packages are installed into a system area (such as the R.framework) and
can be slow. Installing packages with R CMD INSTALL --dsym installs the dumped symbols.
(This can also be done by setting environment variable PKG_MAKE_DSYM to a non-empty
value before the INSTALL.)

This section has described the use of memtest, the default (and most useful) of
valgrind’s tools. There are others described in its documentation: helgrind can be
useful for threaded programs.

4.3.3 Using the Address Sanitizer

AddressSanitizer (‘ASan’) is a tool with similar aims to the memory checker in
valgrind. It is available with suitable builds5 of gcc and clang on common Linux
and macOS platforms. See https://clang.llvm.org/docs/UsersManual.html#

controlling-code-generation, https://clang.llvm.org/docs/AddressSanitizer.

html and https://github.com/google/sanitizers.

More thorough checks of C++ code are done if the C++ library has been ‘annotated’: at
the time of writing this applied to std::vector in libc++ for use with clang and gives
rise to ‘container-overflow’6 reports.

It requires code to have been compiled and linked with -fsanitize=address and com-
piling with -fno-omit-frame-pointer will give more legible reports. It has a runtime
penalty of 2–3x, extended compilation times and uses substantially more memory, often
1–2GB, at run time. On 64-bit platforms it reserves (but does not allocate) 16–20TB of
virtual memory: restrictive shell settings can cause problems.

By comparison with valgrind, ASan can detect misuse of stack and global variables but
not the use of uninitialized memory.

Recent versions return symbolic addresses for the location of the error provided
llvm-symbolizer7 is on the path: if it is available but not on the path or has been
renamed8, one can use an environment variable, e.g.

ASAN_SYMBOLIZER_PATH=/path/to/llvm-symbolizer

5 currently on Linux and macOS (including the builds from Xcode 7 and later), with some support for
Solaris. On some platforms the runtime library, libasan, needs to be installed separately, and for checking
C++ you may also need libubsan.

6 see https://llvm.org/devmtg/2014-04/PDFs/LightningTalks/EuroLLVM%202014%20--%20container%20overflow.
pdf.

7 part of the LLVM project and in distributed in llvm RPMs and .debs on Linux. It is not currently
shipped by Apple.

8 as Ubuntu has been said to do.

https://clang.llvm.org/docs/UsersManual.html#controlling-code-generation
https://clang.llvm.org/docs/UsersManual.html#controlling-code-generation
https://clang.llvm.org/docs/AddressSanitizer.html
https://clang.llvm.org/docs/AddressSanitizer.html
https://github.com/google/sanitizers
https://llvm.org/devmtg/2014-04/PDFs/LightningTalks/EuroLLVM%202014%20--%20container%20overflow.pdf
https://llvm.org/devmtg/2014-04/PDFs/LightningTalks/EuroLLVM%202014%20--%20container%20overflow.pdf

Chapter 4: Debugging 119

An alternative is to pipe the output through asan_symbolize.py9 and perhaps then (for
compiled C++ code) c++filt. (On macOS, you may need to run dsymutil to get line-
number reports.)

The simplest way to make use of this is to build a version of R with something like

CC="gcc -std=gnu99 -fsanitize=address"

CFLAGS="-fno-omit-frame-pointer -g -O2 -Wall -pedantic -mtune=native"

which will ensure that the libasan run-time library is compiled into the R executable.
However this check can be enabled on a per-package basis by using a ~/.R/Makevars file
like

CC = gcc -std=gnu99 -fsanitize=address -fno-omit-frame-pointer

CXX = g++ -fsanitize=address -fno-omit-frame-pointer

FC = gfortran -fsanitize=address

(Note that -fsanitize=address has to be part of the compiler specification to ensure
it is used for linking. These settings will not be honoured by packages which ignore
~/.R/Makevars.) It will be necessary to build R with

MAIN_LDFLAGS = -fsanitize=address

to link the runtime libraries into the R executable if it was not specified as part of ‘CC’ when
R was built. (For some builds without OpenMP, -pthread is also required.)

For options available via the environment variable ASAN_OPTIONS see https://github.
com/google/sanitizers/wiki/AddressSanitizerFlags. With gcc additional control is
available via the --param flag: see its man page.

For more detailed information on an error, R can be run under a debugger with a
breakpoint set before the address sanitizer report is produced: for gdb or lldb you could
use

break __asan_report_error

(See https://github.com/google/sanitizers/wiki/AddressSanitizerAndDebugger.)

More recent versions10 added the flag -fsanitize-address-use-after-scope: see
https://github.com/google/sanitizers/wiki/AddressSanitizerUseAfterScope.

One of the checks done by ASan is that malloc/free and in C++ new/delete and
new[]/delete[] are used consistently (rather than say free being used to dealloc memory
allocated by new[]). This matters on some systems but not all: unfortunately on some
of those where it does not matter, system libraries11 are not consistent. The check can be
suppressed by including ‘alloc_dealloc_mismatch=0’ in ASAN_OPTIONS.

ASan also checks system calls and sometimes reports can refer to problems in the system
software and not the package nor R. A couple of reports have been of ‘heap-use-after-free’
errors in the X11 libraries called from Tcl/Tk.

9 installed on some Linux systems as asan_symbolize, and obtainable from https://github.com/

llvm/llvm-project/blob/main/compiler-rt/lib/asan/scripts/asan_symbolize.py: it makes use of
llvm-symbolizer if available.

10 including gcc 7.1 and clang 4.0.0: for gcc it is implied by -fsanitize=address.
11 for example, X11/GL libraries on Linux, seen when checking package rgl (https://CRAN.R-project.

org/package=rgl) and some others using it—a workaround is to set environment variable RGL_USE_

NULL=true.

https://github.com/google/sanitizers/wiki/AddressSanitizerFlags
https://github.com/google/sanitizers/wiki/AddressSanitizerFlags
https://github.com/google/sanitizers/wiki/AddressSanitizerAndDebugger
https://github.com/google/sanitizers/wiki/AddressSanitizerUseAfterScope
https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/asan/scripts/asan_symbolize.py
https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/asan/scripts/asan_symbolize.py
https://CRAN.R-project.org/package=rgl
https://CRAN.R-project.org/package=rgl

Chapter 4: Debugging 120

4.3.3.1 Using the Leak Sanitizer

For x86_64 Linux there is a leak sanitizer, ‘LSan’: see https://github.com/google/

sanitizers/wiki/AddressSanitizerLeakSanitizer. This is available on recent versions
of gcc and clang, and where available is compiled in as part of ASan.

One way to invoke this from an ASan-enabled build is by the environment variable

ASAN_OPTIONS=’detect_leaks=1’

However, this was made the default as from clang 3.5 and gcc 5.1.0.

When LSan is enabled, leaks give the process a failure error status (by default 23). For
an R package this means the R process, and as the parser retains some memory to the end
of the process, if R itself was built against ASan all runs will have a failure error status
(which may include running R as part of building R itself).

To disable this, allocation-mismatch checking and some strict C++ checking use

setenv ASAN_OPTIONS ’alloc_dealloc_mismatch=0:detect_leaks=0:detect_odr_violation=0’

LSan also has a ‘stand-alone’ mode where it is compiled in using -fsanitize=leak and
avoids the run-time overhead of ASan.

4.3.4 Using the Undefined Behaviour Sanitizer

‘Undefined behaviour’ is where the language standard does not require particular behaviour
from the compiler. Examples include division by zero (where for doubles R requires the
ISO/IEC 60559 behaviour but C/C++ do not), use of zero-length arrays, shifts too far for
signed types (e.g. int x, y; y = x << 31;), out-of-range coercion, invalid C++ casts and mis-
alignment. Not uncommon examples of out-of-range coercion in R packages are attempts
to coerce a NaN or infinity to type int or NA_INTEGER to an unsigned type such as size_t.
Also common is y[x - 1] forgetting that x might be NA_INTEGER.

‘UBSanitizer’ is a tool for C/C++ source code selected by -fsanitize=undefined in
suitable builds12 of clang and GCC. Its (main) runtime library is linked into each package’s
DLL, so it is less often needed to be included in MAIN_LDFLAGS.

This sanitizer can be combined with the Address Sanitizer by -fsanitize=undefined,address
(where both are supported).

Finer control of what is checked can be achieved by other options.

For clang see https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html#

ubsan-checks. The current set is (on a single line):

-fsanitize=alignment,bool,bounds,builtin,enum,float-cast-overflow,

float-divide-by-zero,function,implicit-unsigned-integer-truncation,

implicit-signed-integer-truncation,implicit-integer-sign-change,

integer-divide-by-zero,nonnull-attribute,null,object-size,

pointer-overflow,return,returns-nonnull-attribute,shift,

signed-integer-overflow,unreachable,unsigned-integer-overflow,

unsigned-shift-base,vla-bound,vptr

(plus the more specific versions shift-base and shift-exponent) a subset of which could
be combined with address, or use something like

-fsanitize=undefined -fno-sanitize=float-divide-by-zero

12 On some platforms the runtime library, libubsan, needs to be installed separately.

https://github.com/google/sanitizers/wiki/AddressSanitizerLeakSanitizer
https://github.com/google/sanitizers/wiki/AddressSanitizerLeakSanitizer
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html#ubsan-checks
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html#ubsan-checks

Chapter 4: Debugging 121

Options function, return and vptr apply only to C++: to use vptr its run-time library
needs to be linked into the main R executable by building the latter with something like

MAIN_LD="clang++ -fsanitize=undefined"

Option float-divide-by-zero is undesirable for use with R which allow such divisions as
part of IEC 60559 arithmetic, and in versions of clang since June 2019 it is no longer part
of -fsanitize=undefined.

For GCC see https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.

html (or the manual for your version of GCC, installed or via https://gcc.gnu.org/

onlinedocs/: look for ‘Program Instrumentation Options’) for the options supported by
GCC: 10 supported

-fsanitize=alignment,bool,bounds,builtin,enum,integer-divide-by-zero,

nonnull-attribute,null,object-size,pointer-overflow,return,

returns-nonnull-attribute,shift,signed-integer-overflow,

unreachable,vla-bound,vptr

plus the more specific versions shift-base and shift-exponent and non-default options

bound-strict,float-cast-overflow,float-divide-by-zero

where float-divide-by-zero is not desirable for R uses and bounds-strict is an exten-
sion of bounds.

Other useful flags include

-no-fsanitize-recover

which causes the first report to be fatal (it always is for the unreachable and return

suboptions). For more detailed information on where the runtime error occurs, using

setenv UBSAN_OPTIONS ’print_stacktrace=1’

will include a traceback in the report. Beyond that, R can be run under a debugger with a
breakpoint set before the sanitizer report is produced: for gdb or lldb you could use

break __ubsan_handle_float_cast_overflow

break __ubsan_handle_float_cast_overflow_abort

or similar (there are handlers for each type of undefined behaviour).

There are also the compiler flags -fcatch-undefined-behavior and -ftrapv, said to
be more reliable in clang than gcc.

For more details on the topic see https://blog.regehr.org/archives/213 and
https://blog.llvm.org/2011/05/what-every-c-programmer-should-know.html

(which has 3 parts).

It may or may not be possible to build R itself with -fsanitize=undefined: problems
have been seen with OpenMP-using code with gcc but there has been success with clang.

4.3.5 Other analyses with ‘clang’

Recent versions of clang on ‘x86_64’ Linux have ‘ThreadSanitizer’ (https://github.
com/google/sanitizers/wiki#threadsanitizer), a ‘data race detector for C/C++ pro-
grams’, and ‘MemorySanitizer’ (https://clang.llvm.org/docs/MemorySanitizer.
html, https://github.com/google/sanitizers) for the detection of uninitialized mem-
ory. Both are based on and provide similar functionality to tools in valgrind.

clang has a ‘Static Analyzer’ which can be run on the source files during compilation:
see https://clang-analyzer.llvm.org/.

https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/
https://gcc.gnu.org/onlinedocs/
https://blog.regehr.org/archives/213
https://blog.llvm.org/2011/05/what-every-c-programmer-should-know.html
https://github.com/google/sanitizers/wiki#threadsanitizer
https://github.com/google/sanitizers/wiki#threadsanitizer
https://clang.llvm.org/docs/MemorySanitizer.html
https://clang.llvm.org/docs/MemorySanitizer.html
https://github.com/google/sanitizers
https://clang-analyzer.llvm.org/

Chapter 4: Debugging 122

4.3.6 Other analyses with ‘gcc’

GCC 10 introduced a new flag -fanalyzer which does static analysis during compilation,
currently for C code. It is regarded as experimental and it may slow down computation
considerably when problems are found (and use many GB of resident memory). There is
some overlap with problems detected by the Undefined Behaviour sanitizer, but some issues
are only reported by this tool and as it is a static analysis, it does not rely on code paths
being exercised.

See https://gcc.gnu.org/onlinedocs/gcc-10.1.0/gcc/Static-Analyzer-Options.
html (or the documentation for your version of gcc if later) and https://developers.

redhat.com/blog/2020/03/26/static-analysis-in-gcc-10/

4.3.7 Using ‘Dr. Memory’

‘Dr. Memory’ from https://drmemory.org/ is a memory checker for (currently) 32-bit
Windows, Linux and macOS with similar aims to valgrind. It works with unmodified
executables13 and detects memory access errors, uninitialized reads and memory leaks.

4.3.8 Fortran array bounds checking

Most of the Fortran compilers used with R allow code to be compiled with checking of array
bounds: for example gfortran has option -fbounds-check and Oracle Developer Studio
has -C. This will give an error when the upper or lower bound is exceeded, e.g.

At line 97 of file .../src/appl/dqrdc2.f

Fortran runtime error: Index ’1’ of dimension 1 of array ’x’ above upper bound of 0

One does need to be aware that lazy programmers often specify Fortran dimensions as
1 rather than * or a real bound and these will be reported (as may * dimensions)

It is easy to arrange to use this check on just the code in your package: add to
~/.R/Makevars something like (for gfortran)

FFLAGS = -g -O2 -mtune=native -fbounds-check

when you run R CMD check.

This may report errors with the way that Fortran character variables are passed, par-
ticularly when Fortran subroutines are called from C code and character lengths are not
passed (see Section 6.6.1 [Fortran character strings], page 180).

4.4 Debugging compiled code

Sooner or later programmers will be faced with the need to debug compiled code loaded
into R. This section is geared to platforms using gdb with code compiled by gcc, but similar
things are possible with other debuggers such as lldb (https://lldb.llvm.org/, used on
macOS) and Sun’s dbx: some debuggers have graphical front-ends available.

Consider first ‘crashes’, that is when R terminated unexpectedly with an illegal memory
access (a ‘segfault’ or ‘bus error’), illegal instruction or similar. Unix-alike versions of R use
a signal handler which aims to give some basic information. For example

*** caught segfault ***

address 0x20000028, cause ’memory not mapped’

13 but works better if inlining and frame pointer optimizations are disabled.

https://gcc.gnu.org/onlinedocs/gcc-10.1.0/gcc/Static-Analyzer-Options.html
https://gcc.gnu.org/onlinedocs/gcc-10.1.0/gcc/Static-Analyzer-Options.html
https://developers.redhat.com/blog/2020/03/26/static-analysis-in-gcc-10/
https://developers.redhat.com/blog/2020/03/26/static-analysis-in-gcc-10/
https://drmemory.org/
https://lldb.llvm.org/

Chapter 4: Debugging 123

Traceback:

1: .identC(class1[[1]], class2)

2: possibleExtends(class(sloti), classi, ClassDef2 = getClassDef(classi,

where = where))

3: validObject(t(cu))

4: stopifnot(validObject(cu <- as(tu, "dtCMatrix")), validObject(t(cu)),

validObject(t(tu)))

Possible actions:

1: abort (with core dump)

2: normal R exit

3: exit R without saving workspace

4: exit R saving workspace

Selection: 3

Since the R process may be damaged, the only really safe options are the first or third.
(Note that a core dump is only produced where enabled: a common default in a shell is to
limit its size to 0, thereby disabling it.)

A fairly common cause of such crashes is a package which uses .C or .Fortran and writes
beyond (at either end) one of the arguments it is passed. There is a good way to detect this:
using options(CBoundsCheck = TRUE) (which can be selected via the environment variable
R_C_BOUNDS_CHECK=yes) changes the way .C and .Fortran work to check if the compiled
code writes in the 64 bytes at either end of an argument.

Another cause of a ‘crash’ is to overrun the C stack. R tries to track that in its own
code, but it may happen in third-party compiled code. For modern POSIX-compliant OSes
R can safely catch that and return to the top-level prompt, so one gets something like

> .C("aaa")

Error: segfault from C stack overflow

>

However, C stack overflows are fatal under Windows and normally defeat attempts at
debugging on that platform. Further, the size of the stack is set when R is compiled on
Windows, whereas on POSIX OSes it can be set in the shell from which R is launched.

If you have a crash which gives a core dump you can use something like

gdb /path/to/R/bin/exec/R core.12345

to examine the core dump. If core dumps are disabled or to catch errors that do not generate
a dump one can run R directly under a debugger by for example

$ R -d gdb --vanilla

...

gdb> run

at which point R will run normally, and hopefully the debugger will catch the error and
return to its prompt. This can also be used to catch infinite loops or interrupt very long-
running code. For a simple example

> for(i in 1:1e7) x <- rnorm(100)

[hit Ctrl-C]

Chapter 4: Debugging 124

Program received signal SIGINT, Interrupt.

0x00397682 in _int_free () from /lib/tls/libc.so.6

(gdb) where

#0 0x00397682 in _int_free () from /lib/tls/libc.so.6

#1 0x00397eba in free () from /lib/tls/libc.so.6

#2 0xb7cf2551 in R_gc_internal (size_needed=313)

at /users/ripley/R/svn/R-devel/src/main/memory.c:743

#3 0xb7cf3617 in Rf_allocVector (type=13, length=626)

at /users/ripley/R/svn/R-devel/src/main/memory.c:1906

#4 0xb7c3f6d3 in PutRNGstate ()

at /users/ripley/R/svn/R-devel/src/main/RNG.c:351

#5 0xb7d6c0a5 in do_random2 (call=0x94bf7d4, op=0x92580e8, args=0x9698f98,

rho=0x9698f28) at /users/ripley/R/svn/R-devel/src/main/random.c:183

...

In many cases it is possible to attach a debugger to a running process: this is helpful if
an alternative front-end is in use or to investigate a task that seems to be taking far too
long. This is done by something like

gdb -p pid

where pid is the id of the R executable or front-end process and can be found from within
a running R process by calling Sys.getpid() or from a process monitor. This stops the
process so its state can be examined: use continue to resume execution.

Some “tricks” worth knowing follow:

4.4.1 Finding entry points in dynamically loaded code

Under most compilation environments, compiled code dynamically loaded into R cannot
have breakpoints set within it until it is loaded. To use a symbolic debugger on such
dynamically loaded code under Unix-alikes use

• Call the debugger on the R executable, for example by R -d gdb.

• Start R.

• At the R prompt, use dyn.load or library to load your shared object.

• Send an interrupt signal. This will put you back to the debugger prompt.

• Set the breakpoints in your code.

• Continue execution of R by typing signal 0RET.

Under Windows signals may not be able to be used, and if so the procedure is more
complicated. See the rw-FAQ.

4.4.2 Inspecting R objects when debugging

The key to inspecting R objects from compiled code is the function PrintValue(SEXP s)

which uses the normal R printing mechanisms to print the R object pointed to by s, or the
safer version R_PV(SEXP s) which will only print ‘objects’.

One way to make use of PrintValue is to insert suitable calls into the code to be
debugged.

Chapter 4: Debugging 125

Another way is to call R_PV from the symbolic debugger. (PrintValue is hidden as
Rf_PrintValue.) For example, from gdb we can use

(gdb) p R_PV(ab)

using the object ab from the convolution example, if we have placed a suitable breakpoint
in the convolution C code.

To examine an arbitrary R object we need to work a little harder. For example, let

R> DF <- data.frame(a = 1:3, b = 4:6)

By setting a breakpoint at do_get and typing get("DF") at the R prompt, one can find
out the address in memory of DF, for example

Value returned is $1 = (SEXPREC *) 0x40583e1c

(gdb) p *$1

$2 = {

sxpinfo = {type = 19, obj = 1, named = 1, gp = 0,

mark = 0, debug = 0, trace = 0, = 0},

attrib = 0x40583e80,

u = {

vecsxp = {

length = 2,

type = {c = 0x40634700 "0>X@D>X@0>X@", i = 0x40634700,

f = 0x40634700, z = 0x40634700, s = 0x40634700},

truelength = 1075851272,

},

primsxp = {offset = 2},

symsxp = {pname = 0x2, value = 0x40634700, internal = 0x40203008},

listsxp = {carval = 0x2, cdrval = 0x40634700, tagval = 0x40203008},

envsxp = {frame = 0x2, enclos = 0x40634700},

closxp = {formals = 0x2, body = 0x40634700, env = 0x40203008},

promsxp = {value = 0x2, expr = 0x40634700, env = 0x40203008}

}

}

(Debugger output reformatted for better legibility).

Using R_PV() one can “inspect” the values of the various elements of the SEXP, for
example,

(gdb) p R_PV($1->attrib)

$names

[1] "a" "b"

$row.names

[1] "1" "2" "3"

$class

[1] "data.frame"

$3 = void

Chapter 4: Debugging 126

To find out where exactly the corresponding information is stored, one needs to go
“deeper”:

(gdb) set $a = $1->attrib

(gdb) p $a->u.listsxp.tagval->u.symsxp.pname->u.vecsxp.type.c

$4 = 0x405d40e8 "names"

(gdb) p $a->u.listsxp.carval->u.vecsxp.type.s[1]->u.vecsxp.type.c

$5 = 0x40634378 "b"

(gdb) p $1->u.vecsxp.type.s[0]->u.vecsxp.type.i[0]

$6 = 1

(gdb) p $1->u.vecsxp.type.s[1]->u.vecsxp.type.i[1]

$7 = 5

Another alternative is the R_inspect function which shows the low-level structure of the
objects recursively (addresses differ from the above as this example is created on another
machine):

(gdb) p R_inspect($1)

@100954d18 19 VECSXP g0c2 [OBJ,NAM(2),ATT] (len=2, tl=0)

@100954d50 13 INTSXP g0c2 [NAM(2)] (len=3, tl=0) 1,2,3

@100954d88 13 INTSXP g0c2 [NAM(2)] (len=3, tl=0) 4,5,6

ATTRIB:

@102a70140 02 LISTSXP g0c0 []

TAG: @10083c478 01 SYMSXP g0c0 [MARK,NAM(2),gp=0x4000] "names"

@100954dc0 16 STRSXP g0c2 [NAM(2)] (len=2, tl=0)

@10099df28 09 CHARSXP g0c1 [MARK,gp=0x21] "a"

@10095e518 09 CHARSXP g0c1 [MARK,gp=0x21] "b"

TAG: @100859e60 01 SYMSXP g0c0 [MARK,NAM(2),gp=0x4000] "row.names"

@102a6f868 13 INTSXP g0c1 [NAM(2)] (len=2, tl=1) -2147483648,-3

TAG: @10083c948 01 SYMSXP g0c0 [MARK,gp=0x4000] "class"

@102a6f838 16 STRSXP g0c1 [NAM(2)] (len=1, tl=1)

@1008c6d48 09 CHARSXP g0c2 [MARK,gp=0x21,ATT] "data.frame"

In general the representation of each object follows the format:
@<address> <type-nr> <type-name> <gc-info> [<flags>] ...

For a more fine-grained control over the depth of the recursion and the output of vectors
R_inspect3 takes additional two character() parameters: maximum depth and the maximal
number of elements that will be printed for scalar vectors. The defaults in R_inspect are
currently -1 (no limit) and 5 respectively.

4.4.3 Debugging on macOS

To debug code in a package it is easiest to unpack it in a directory and install it with

R CMD INSTALL --dsym pkgname

as macOS does not store debugging symbols in the .so file. (It is not necessary to have R
built with debugging symbols, although compiling the package should be done including -g

in CFLAGS / CXXFLAGS / FCFLAGS as appropriate.)

Security measures may prevent running a CRAN binary distribution of R under lldb or
attaching this as a debugger (https://cran.r-project.org/bin/macosx/RMacOSX-FAQ.
html#I-cannot-attach-debugger-to-R), although both were possible on High Sierra in

https://cran.r-project.org/bin/macosx/RMacOSX-FAQ.html#I-cannot-attach-debugger-to-R
https://cran.r-project.org/bin/macosx/RMacOSX-FAQ.html#I-cannot-attach-debugger-to-R

Chapter 4: Debugging 127

mid-2020. This can also affect locally compiled builds, where attaching to an interactive
R session under Big Sur worked in late 2020 after giving permission via a popup-up. (To
debug in what Apple deems a non-interactive session, e.g. logged in remotely, see man

DevToolsSecurity.)

Debugging a local build of R on macOS can raise additional hurdles as environment
variables such as DYLD_FALLBACK_LIBRARY_PATH are not usually passed through14 the lldb
process, resulting in messages like

R -d lldb

...

(lldb) run

Process 16828 launched: ’/path/to/bin/exec/R’ (x86_64)

dyld: Library not loaded: libR.dylib

Referenced from: /path/to/bin/exec/R

A quick workaround is to symlink the dylibs under R_HOME/lib to somewhere where they
will be found such as the current working directory. It would be possible to do as the
distribution does15 and use install_name_tool, but that would have to be done for all the
dylibs including those in packages.

It may be simplest to attach the debugger to a running process (see above). Specifically,
run R and when it is at the prompt just before a command that is to be debugged, at a
terminal

pw -ef | grep exec/R

identify the pid pid for the next command

lldb -p pid

(lldb) continue

and then return to the R console.

For non-interactive use, one may need lldb --batch.

4.5 Using Link-time Optimization

Where supported, link time optimization provides a comprehensive way to check the consis-
tency of calls between Fortran files or between C and Fortran. Use this via R CMD INSTALL

--use-LTO.

To set up support on a Unix-alike, See Section “Link-Time Optimization” in R Instal-
lation and Administration. On Linux using GCC without building R with LTO support, it
should suffice to set

LTO_OPT = -flto

LTO_FC_OPT = -flto

AR = gcc-ar

NM = gcc-nm

in a personal (or site) Makevars file: See Section “Customizing package compilation” in
R Installation and Administration,

14 By default as a security measure: see man dyld.
15 See https://svn.r-project.org/R-dev-web/trunk/CRAN/QA/Simon/R-build/fixpathR:

‘@executable_path’ could be used rather than absolute paths.

https://svn.r-project.org/R-dev-web/trunk/CRAN/QA/Simon/R-build/fixpathR

Chapter 4: Debugging 128

For Windows, first edit file etc/${R_ARCH}/Makeconf to give LTO_OPT the value -flto

or do so in a personal/site Makevars file; see also file src/gnuwin32/README.compilation
in the sources.

For example:

boot.f:61: warning: type of ’ddot’ does not match original declaration [-Wlto-type-mismatch]

y(j,i)=ddot(p,x(j,1),n,b(1,j,i),1)

crq.f:1023: note: return value type mismatch

where the package author forgot to declare

double precision ddot

external ddot

in boot.f. That package had its own copy of ddot: to detect misuse of the one in R’s
BLAS library would have needed R configured with --enable-lto=check.

Further examples:

rkpk2.f:77:5: warning: type of ’dstup’ does not match original declaration [-Wlto-type-mismatch]

*info, wk)

rkpk1.f:2565:5: note: type mismatch in parameter 14

subroutine dstup (s, lds, nobs, nnull, qraux, jpvt, y, q, ldqr,

rkpk1.f:2565:5: note: ’dstup’ was previously declared here

where the fourteenth argument dum was missing in the call.

reg.f:78:33: warning: type of ’dqrdc’ does not match original declaration [-Wlto-type-mismatch]

call dqrdc (sr, nobs, nobs, nnull, wk, dum, dum, 0)

dstup.f:20: note: ’dqrdc’ was previously declared here

call dqrdc (s, lds, nobs, nnull, qraux, jpvt, work, 1)

dqrdc is a LINPACK routine from R, jpvt is an integer array and work is a double precision
one so dum cannot match both. (If --enable-lto=check had been used the comparison
would have been with the definition in R.)

For Fortran files all in the package, most inconsistencies can be detected by concatenating
the Fortran files and compiling the result, sometimes with clearer diagnostics than provided
by LTO. For our last two examples this gives

all.f:2966:72:

*info, work1)

1

Warning: Missing actual argument for argument ’dum’ at (1)

and

all.f:1663:72:

*ipvtwk), wk(ikwk), wk(iwork1), wk(iwork2), info)

1

Warning: Type mismatch in argument ’jpvt’ at (1); passed REAL(8) to INTEGER(4)

129

5 System and foreign language interfaces

5.1 Operating system access

Access to operating system functions is via the R functions system and system2. The details
will differ by platform (see the on-line help), and about all that can safely be assumed is
that the first argument will be a string command that will be passed for execution (not
necessarily by a shell) and the second argument to system will be internal which if true
will collect the output of the command into an R character vector.

On POSIX-compliant OSes these commands pass a command-line to a shell: Windows
is not POSIX-compliant and there is a separate function shell to do so.

The function system.time is available for timing. Timing on child processes is only
available on Unix-alikes, and may not be reliable there.

5.2 Interface functions .C and .Fortran

These two functions provide an interface to compiled code that has been linked into R, either
at build time or via dyn.load (see Section 5.3 [dyn.load and dyn.unload], page 131). They
are primarily intended for compiled C and Fortran code respectively, but the .C function
can be used with other languages which can generate C interfaces, for example C++ (see
Section 5.6 [Interfacing C++ code], page 143).

The first argument to each function is a character string specifying the symbol name
as known1 to C or Fortran, that is the function or subroutine name. (That the symbol is
loaded can be tested by, for example, is.loaded("cg"). Use the name you pass to .C or
.Fortran rather than the translated symbol name.)

There can be up to 65 further arguments giving R objects to be passed to compiled code.
Normally these are copied before being passed in, and copied again to an R list object when
the compiled code returns. If the arguments are given names, these are used as names for
the components in the returned list object (but not passed to the compiled code).

The following table gives the mapping between the modes of R atomic vectors and the
types of arguments to a C function or Fortran subroutine.

R storage mode C type Fortran type
logical int * INTEGER

integer int * INTEGER

double double * DOUBLE PRECISION

complex Rcomplex * DOUBLE COMPLEX

character char ** CHARACTER(255)

raw unsigned char * none

On all R platforms int and INTEGER are 32-bit. Code ported from S-PLUS (which uses
long * for logical and integer) will not work on all 64-bit platforms (although it may
appear to work on some, including Windows). Note also that if your compiled code is a
mixture of C functions and Fortran subprograms the argument types must match as given
in the table above.

1 possibly after some platform-specific translation, e.g. adding leading or trailing underscores.

Chapter 5: System and foreign language interfaces 130

C type Rcomplex is a structure with double members r and i defined in the header file
R_ext/Complex.h included by R.h. (On most platforms this is stored in a way compatible
with the C99 double complex type: however, it may not be possible to pass Rcomplex to
a C99 function expecting a double complex argument. Nor need it be compatible with a
C++ complex type. Moreover, the compatibility can depend on the optimization level set
for the compiler.)

Only a single character string of fixed length can be passed to or from Fortran (the
length is not passed), and the success of this is compiler-dependent: its use was formally
deprecated in 2019. Other R objects can be passed to .C, but it is much better to use one
of the other interfaces.

It is possible to pass numeric vectors of storage mode double to C as float * or to For-
tran as REAL by setting the attribute Csingle, most conveniently by using the R functions
as.single, single or mode. This is intended only to be used to aid interfacing existing C
or Fortran code.

Logical values are sent as 0 (FALSE), 1 (TRUE) or INT_MIN = -2147483648 (NA, but only
if NAOK is true), and the compiled code should return one of these three values. (Non-zero
values other than INT_MIN are mapped to TRUE.) Note that the use of int * for Fortran
logical is not guaranteed to be portable (although people have gotten away with it for many
years): it is better to pass integers and convert to/from Fortran logical in a Fortran wrapper.

Unless formal argument NAOK is true, all the other arguments are checked for missing
values NA and for the IEEE special values NaN, Inf and -Inf, and the presence of any of
these generates an error. If it is true, these values are passed unchecked.

Argument PACKAGE confines the search for the symbol name to a specific shared object
(or use "base" for code compiled into R). Its use is highly desirable, as there is no way to
avoid two package writers using the same symbol name, and such name clashes are normally
sufficient to cause R to crash. (If it is not present and the call is from the body of a function
defined in a package namespace, the shared object loaded by the first (if any) useDynLib
directive will be used.)

Note that the compiled code should not return anything except through its arguments:
C functions should be of type void and Fortran subprograms should be subroutines.

To fix ideas, let us consider a very simple example which convolves two finite sequences.
(This is hard to do fast in interpreted R code, but easy in C code.) We could do this using
.C by

void convolve(double *a, int *na, double *b, int *nb, double *ab)

{

int nab = *na + *nb - 1;

for(int i = 0; i < nab; i++)

ab[i] = 0.0;

for(int i = 0; i < *na; i++)

for(int j = 0; j < *nb; j++)

ab[i + j] += a[i] * b[j];

}

called from R by

Chapter 5: System and foreign language interfaces 131

conv <- function(a, b)

.C("convolve",

as.double(a),

as.integer(length(a)),

as.double(b),

as.integer(length(b)),

ab = double(length(a) + length(b) - 1))$ab

Note that we take care to coerce all the arguments to the correct R storage mode before
calling .C; mistakes in matching the types can lead to wrong results or hard-to-catch errors.

Special care is needed in handling character vector arguments in C (or C++). On entry
the contents of the elements are duplicated and assigned to the elements of a char ** array,
and on exit the elements of the C array are copied to create new elements of a character
vector. This means that the contents of the character strings of the char ** array can be
changed, including to \0 to shorten the string, but the strings cannot be lengthened. It is
possible2 to allocate a new string via R_alloc and replace an entry in the char ** array by
the new string. However, when character vectors are used other than in a read-only way,
the .Call interface is much to be preferred.

Passing character strings to Fortran code needs even more care, is deprecated and should
be avoided where possible. Only the first element of the character vector is passed in, as
a fixed-length (255) character array. Up to 255 characters are passed back to a length-
one character vector. How well this works (or even if it works at all) depends on the C
and Fortran compilers on each platform (including on their options). Often what is being
passed to Fortran is one of a small set of possible values (a factor in R terms) which could
alternatively be passed as an integer code: similarly Fortran code that wants to generate
diagnostic messages could pass an integer code to a C or R wrapper which would convert
it to a character string.

It is possible to pass some R objects other than atomic vectors via .C, but this is
only supported for historical compatibility: use the .Call or .External interfaces for
such objects. Any C/C++ code that includes Rinternals.h should be called via .Call or
.External.

5.3 dyn.load and dyn.unload

Compiled code to be used with R is loaded as a shared object (Unix-alikes including macOS,
see Section 5.5 [Creating shared objects], page 142, for more information) or DLL (Win-
dows).

The shared object/DLL is loaded by dyn.load and unloaded by dyn.unload. Unloading
is not normally necessary and is not safe in general, but it is needed to allow the DLL to
be re-built on some platforms, including Windows. Unloading a DLL and then re-loading
a DLL of the same name may not work: Solaris uses the first version loaded. A DLL that
registers C finalizers, but fails to unregister them when unloaded, may cause R to crash
after unloading.

The first argument to both functions is a character string giving the path to the object.
Programmers should not assume a specific file extension for the object/DLL (such as .so)
but use a construction like

2 Note that this is then not checked for over-runs by option CBoundsCheck = TRUE.

Chapter 5: System and foreign language interfaces 132

file.path(path1, path2, paste0("mylib", .Platform$dynlib.ext))

for platform independence. On Unix-alike systems the path supplied to dyn.load can be
an absolute path, one relative to the current directory or, if it starts with ‘~’, relative to
the user’s home directory.

Loading is most often done automatically based on the useDynLib() declaration in the
NAMESPACE file, but may be done explicitly via a call to library.dynam. This has the form

library.dynam("libname", package, lib.loc)

where libname is the object/DLL name with the extension omitted. Note that the first
argument, chname, should not be package since this will not work if the package is installed
under another name.

Under some Unix-alike systems there is a choice of how the symbols are resolved when
the object is loaded, governed by the arguments local and now. Only use these if really nec-
essary: in particular using now=FALSE and then calling an unresolved symbol will terminate
R unceremoniously.

R provides a way of executing some code automatically when a object/DLL is either
loaded or unloaded. This can be used, for example, to register native routines with R’s
dynamic symbol mechanism, initialize some data in the native code, or initialize a third
party library. On loading a DLL, R will look for a routine within that DLL named R_init_

lib where lib is the name of the DLL file with the extension removed. For example, in the
command

library.dynam("mylib", package, lib.loc)

R looks for the symbol named R_init_mylib. Similarly, when unloading the object, R looks
for a routine named R_unload_lib, e.g., R_unload_mylib. In either case, if the routine is
present, R will invoke it and pass it a single argument describing the DLL. This is a value
of type DllInfo which is defined in the Rdynload.h file in the R_ext directory.

Note that there are some implicit restrictions on this mechanism as the basename of the
DLL needs to be both a valid file name and valid as part of a C entry point (e.g. it cannot
contain ‘.’): for portable code it is best to confine DLL names to be ASCII alphanumeric
plus underscore. If entry point R_init_lib is not found it is also looked for with ‘.’ replaced
by ‘_’.

The following example shows templates for the initialization and unload routines for the
mylib DLL.

Chapter 5: System and foreign language interfaces 133

� �
#include <R_ext/Rdynload.h>

void

R_init_mylib(DllInfo *info)

{

/* Register routines,

allocate resources. */

}

void

R_unload_mylib(DllInfo *info)

{

/* Release resources. */

}
 	
If a shared object/DLL is loaded more than once the most recent version is used.3 More

generally, if the same symbol name appears in several shared objects, the most recently
loaded occurrence is used. The PACKAGE argument and registration (see the next section)
provide good ways to avoid any ambiguity in which occurrence is meant.

On Unix-alikes the paths used to resolve dynamically linked dependent libraries are fixed
(for security reasons) when the process is launched, so dyn.load will only look for such
libraries in the locations set by the R shell script (via etc/ldpaths) and in the OS-specific
defaults.

Windows allows more control (and less security) over where dependent DLLs are looked
for. On all versions this includes the PATH environment variable, but with lowest priority:
note that it does not include the directory from which the DLL was loaded. It is possible
to add a single path with quite high priority via the DLLpath argument to dyn.load. This
is (by default) used by library.dynam to include the package’s libs/i386 or libs/x64

directory in the DLL search path.

5.4 Registering native routines

By ‘native’ routine, we mean an entry point in compiled code.

In calls to .C, .Call, .Fortran and .External, R must locate the specified native
routine by looking in the appropriate shared object/DLL. By default, R uses the operating-
system-specific dynamic loader to lookup the symbol in all4 loaded DLLs and the R ex-
ecutable or libraries it is linked to. Alternatively, the author of the DLL can explicitly
register routines with R and use a single, platform-independent mechanism for finding the
routines in the DLL. One can use this registration mechanism to provide additional infor-
mation about a routine, including the number and type of the arguments, and also make it
available to R programmers under a different name.

3 Strictly this is OS-specific, but no exceptions have been seen for many years.
4 For calls from within a namespace the search is confined to the DLL loaded for that package.

Chapter 5: System and foreign language interfaces 134

Registering routines has two main advantages: it provides a faster5 way to find the
address of the entry point via tables stored in the DLL at compilation time, and it provides
a run-time check that the entry point is called with the right number of arguments and,
optionally, the right argument types.

To register routines with R, one calls the C routine R_registerRoutines. This is
typically done when the DLL is first loaded within the initialization routine R_init_dll

name described in Section 5.3 [dyn.load and dyn.unload], page 131. R_registerRoutines

takes 5 arguments. The first is the DllInfo object passed by R to the initialization routine.
This is where R stores the information about the methods. The remaining 4 arguments are
arrays describing the routines for each of the 4 different interfaces: .C, .Call, .Fortran
and .External. Each argument is a NULL-terminated array of the element types given in
the following table:

.C R_CMethodDef

.Call R_CallMethodDef

.Fortran R_FortranMethodDef

.External R_ExternalMethodDef

Currently, the R_ExternalMethodDef type is the same as R_CallMethodDef type and
contains fields for the name of the routine by which it can be accessed in R, a pointer to
the actual native symbol (i.e., the routine itself), and the number of arguments the routine
expects to be passed from R. For example, if we had a routine named myCall defined as

SEXP myCall(SEXP a, SEXP b, SEXP c);

we would describe this as

static const R_CallMethodDef callMethods[] = {

{"myCall", (DL_FUNC) &myCall, 3},

{NULL, NULL, 0}

};

along with any other routines for the .Call interface. For routines with a variable number of
arguments invoked via the .External interface, one specifies -1 for the number of arguments
which tells R not to check the actual number passed.

Routines for use with the .C and .Fortran interfaces are described with similar data
structures, which have one optional additional field for describing the type of each argument.
If specified, this field should be an array with the SEXP types describing the expected
type of each argument of the routine. (Technically, the elements of the types array are
of type R_NativePrimitiveArgType which is just an unsigned integer.) The R types and
corresponding type identifiers are provided in the following table:

numeric REALSXP

integer INTSXP

logical LGLSXP

single SINGLESXP

character STRSXP

list VECSXP

5 For unregistered entry points the OS’s dlsym routine is used to find addresses. Its performance varies
considerably by OS and even in the best case it will need to search a much larger symbol table than,
say, the table of .Call entry points.

Chapter 5: System and foreign language interfaces 135

Consider a C routine, myC, declared as

void myC(double *x, int *n, char **names, int *status);

We would register it as

static R_NativePrimitiveArgType myC_type[] = {

REALSXP, INTSXP, STRSXP, LGLSXP

};

static const R_CMethodDef cMethods[] = {

{"myC", (DL_FUNC) &myC, 4, myC_type},

{NULL, NULL, 0, NULL}

};

If registering types, check carefully that the number of types matches the number of
arguments: as the type array (here myC_type) is passed as a pointer in C, the registration
mechanism cannot check this for you.

Note that .Fortran entry points are mapped to lowercase, so registration should use
lowercase only.

Having created the arrays describing each routine, the last step is to actually register
them with R. We do this by calling R_registerRoutines. For example, if we have the
descriptions above for the routines accessed by the .C and .Call we would use the following
code:

void

R_init_myLib(DllInfo *info)

{

R_registerRoutines(info, cMethods, callMethods, NULL, NULL);

}

This routine will be invoked when R loads the shared object/DLL named myLib. The
last two arguments in the call to R_registerRoutines are for the routines accessed by
.Fortran and .External interfaces. In our example, these are given as NULL since we have
no routines of these types.

When R unloads a shared object/DLL, its registrations are removed. There is no other
facility for unregistering a symbol.

Examples of registering routines can be found in the different packages in the R source
tree (e.g., stats and graphics). Also, there is a brief, high-level introduction in R News
(volume 1/3, September 2001, pages 20–23, https://www.r-project.org/doc/Rnews/

Rnews_2001-3.pdf).

Once routines are registered, they can be referred to as R objects if this is arranged in
the useDynLib call in the package’s NAMESPACE file (see Section 1.5.4 [useDynLib], page 52).
So for example the stats package has

Refer to all C/Fortran routines by their name prefixed by C_

useDynLib(stats, .registration = TRUE, .fixes = "C_")

in its NAMESPACE file, and then ansari.test’s default methods can contain

pansari <- function(q, m, n)

.C(C_pansari, as.integer(length(q)), p = as.double(q),

as.integer(m), as.integer(n))$p

https://www.r-project.org/doc/Rnews/Rnews_2001-3.pdf
https://www.r-project.org/doc/Rnews/Rnews_2001-3.pdf

Chapter 5: System and foreign language interfaces 136

This avoids the overhead of looking up an entry point each time it is used, and ensures that
the entry point in the package is the one used (without a PACKAGE = "pkg" argument).

R_init_ routines are often of the form

void attribute_visible R_init_mypkg(DllInfo *dll)

{

R_registerRoutines(dll, CEntries, CallEntries, FortEntries,

ExternalEntries);

R_useDynamicSymbols(dll, FALSE);

R_forceSymbols(dll, TRUE);

...

}

The R_useDynamicSymbols call says the DLL is not to be searched for entry points specified
by character strings so .C etc calls will only find registered symbols: the R_forceSymbols

call only allows .C etc calls which specify entry points by R objects such as C_pansari (and
not by character strings). Each provides some protection against accidentally finding your
entry points when people supply a character string without a package, and avoids slowing
down such searches. (For the visibility attribute see Section 6.16 [Controlling visibility],
page 196.)

In more detail, if a package mypkg contains entry points reg and unreg and the first is
registered as a 0-argument .Call routine, we could use (from code in the package)

.Call("reg")

.Call("unreg")

Without or with registration, these will both work. If R_init_mypkg calls R_

useDynamicSymbols(dll, FALSE), only the first will work. If in addition to registration
the NAMESPACE file contains

useDynLib(mypkg, .registration = TRUE, .fixes = "C_")

then we can call .Call(C_reg). Finally, if R_init_mypkg also calls R_forceSymbols(dll,
TRUE), only .Call(C_reg) will work (and not .Call("reg")). This is usually what we
want: it ensures that all of our own .Call calls go directly to the intended code in our pack-
age and that no one else accidentally finds our entry points. (Should someone need to call our
code from outside the package, for example for debugging, they can use .Call(mypkg:::C_
reg).)

5.4.1 Speed considerations

Sometimes registering native routines or using a PACKAGE argument can make a large dif-
ference. The results can depend quite markedly on the OS (and even if it is 32- or 64-bit),
on the version of R and what else is loaded into R at the time.

To fix ideas, first consider x86_64 OS 10.7 and R 2.15.2. A simple .Call function might
be

foo <- function(x) .Call("foo", x)

with C code

Chapter 5: System and foreign language interfaces 137

#include <Rinternals.h>

SEXP foo(SEXP x)

{

return x;

}

If we compile with by R CMD SHLIB foo.c, load the code by dyn.load("foo.so") and
run foo(pi) it took around 22 microseconds (us). Specifying the DLL by

foo2 <- function(x) .Call("foo", x, PACKAGE = "foo")

reduced the time to 1.7 us.

Now consider making these functions part of a package whose NAMESPACE file uses
useDynlib(foo). This immediately reduces the running time as "foo" will be prefer-
entially looked for foo.dll. Without specifying PACKAGE it took about 5 us (it needs to
fathom out the appropriate DLL each time it is invoked but it does not need to search all
DLLs), and with the PACKAGE argument it is again about 1.7 us.

Next suppose the package has registered the native routine foo. Then foo() still has to
find the appropriate DLL but can get to the entry point in the DLL faster, in about 4.2 us.
And foo2() now takes about 1 us. If we register the symbols in the NAMESPACE file and use

foo3 <- function(x) .Call(C_foo, x)

then the address for the native routine is looked up just once when the package is loaded,
and foo3(pi) takes about 0.8 us.

Versions using .C() rather than .Call() took about 0.2 us longer.

These are all quite small differences, but C routines are not uncommonly invoked millions
of times for run times of a few microseconds each, and those doing such things may wish to
be aware of the differences.

On Linux and Solaris there is a smaller overhead in looking up symbols.

Symbol lookup on Windows used to be far slower, so R maintains a small cache. If
the cache is currently empty enough that the symbol can be stored in the cache then the
performance is similar to Linux and Solaris: if not it may be slower. R’s own code always
uses registered symbols and so these never contribute to the cache: however many other
packages do rely on symbol lookup.

In more recent versions of R all the standard packages register native symbols and do
not allow symbol search, so in a new session foo() can only look in foo.so and may
be as fast as foo2(). This will no longer apply when many contributed packages are
loaded, and generally those last loaded are searched first. For example, consider R 3.3.2 on
x86 64 Linux. In an empty R session, both foo() and foo2() took about 0.75 us; how-
ever after packages igraph (https://CRAN.R-project.org/package=igraph) and spatstat
(https://CRAN.R-project.org/package=spatstat) had been loaded (which loaded an-
other 12 DLLs), foo() took 3.6 us but foo2() still took about 0.80 us. Using registration
in a package reduced this to 0.55 us and foo3() took 0.40 us, times which were unchanged
when further packages were loaded.

https://CRAN.R-project.org/package=igraph
https://CRAN.R-project.org/package=spatstat
https://CRAN.R-project.org/package=spatstat

Chapter 5: System and foreign language interfaces 138

5.4.2 Example: converting a package to use registration

The splines package was converted to use symbol registration in 2001, but we can use it as
an example6 of what needs to be done for a small package.

• Find the relevant entry points. This is somewhat OS-specific, but something like the
following should be possible at the OS command-line

nm -g /path/to/splines.so | grep " T "

0000000000002670 T _spline_basis

0000000000001ec0 T _spline_value

This indicates that there are two relevant entry points. (They may or may not have
a leading underscore, as here. Fortran entry points will have a trailing underscore.)
Check in the R code that they are called by the package and how: in this case they are
used by .Call.

Alternatively, examine the package’s R code for all .C, .Fortran, .Call and .External

calls.

• Construct the registration table. First write skeleton registration code, conventionally
in file src/init.c (or at the end of the only C source file in the package: if included
in a C++ file the ‘R_init’ function would need to be declared extern "C"):

#include <stdlib.h> // for NULL

#include <R_ext/Rdynload.h>

#define CALLDEF(name, n) {#name, (DL_FUNC) &name, n}

static const R_CallMethodDef R_CallDef[] = {

CALLDEF(spline_basis, ?),

CALLDEF(spline_value, ?),

{NULL, NULL, 0}

};

void R_init_splines(DllInfo *dll)

{

R_registerRoutines(dll, NULL, R_CallDef, NULL, NULL);

}

and then replace the ? in the skeleton with the actual numbers of arguments. You will
need to add declarations (also known as ‘prototypes’) of the functions unless appending
to the only C source file. Some packages will already have these in a header file, or you
could create one and include it in init.c, for example splines.h containing

#include <Rinternals.h> // for SEXP

extern SEXP spline_basis(SEXP knots, SEXP order, SEXP xvals, SEXP derivs);

extern SEXP spline_value(SEXP knots, SEXP coeff, SEXP order, SEXP x, SEXP deriv);

Tools are available to extract declarations, at least for C and C++ code: see the help
file for package_native_routine_registration_skeleton in package tools. Here we
could have used

cproto -I/path/to/R/include -e splines.c

6 Because it is a standard package, one would need to rename it before attempting to reproduce the
account here.

Chapter 5: System and foreign language interfaces 139

For examples of registering other types of calls, see packages graphics and stats. In
particular, when registering entry points for .Fortran one needs declarations as if
called from C, such as

#include <R_ext/RS.h>

void F77_NAME(supsmu)(int *n, double *x, double *y,

double *w, int *iper, double *span, double *alpha,

double *smo, double *sc, double *edf);

gfortran 8.4, 9.2 and later can help generate such prototypes with its flag -fc-

prototypes-external (although one will need to replace the hard-coded trailing un-
derscore with the F77_NAME macro).

One can get away with inaccurate argument lists in the declarations: it is easy to specify
the arguments for .Call (all SEXP) and .External (one SEXP) and as the arguments
for .C and .Fortran are all pointers, specifying them as void * suffices. (For most
platforms one can omit all the arguments, although link-time optimization will warn.)

Using -fc-prototypes-external will give a prototype using int_least32_t *lgl for
Fortran LOGICAL LGL, but this is not portable and traditionally it has been assumed
that the C/C++ equivalent was int *lgl. If adding a declaration just to register a
.Fortran call, the most portable version is void *lgl.

• (Optional but highly recommended.) Restrict .Call etc to use the symbols you chose
to register by editing src/init.c to contain

void R_init_splines(DllInfo *dll)

{

R_registerRoutines(dll, NULL, R_CallDef, NULL, NULL);

R_useDynamicSymbols(dll, FALSE);

}

A skeleton for the steps so far can be made using package_native_routine_

registration_skeleton in package tools. This will optionally create declarations based
on the usage in the R code.

The remaining steps are optional but recommended.

• Edit the NAMESPACE file to create R objects for the registered symbols:

useDynLib(splines, .registration = TRUE, .fixes = "C_")

• Find all the relevant calls in the R code and edit them to use the R objects. This
entailed changing the lines

temp <- .Call("spline_basis", knots, ord, x, derivs, PACKAGE = "splines")

y[accept] <- .Call("spline_value", knots, coeff, ord, x[accept], deriv, PACKAGE = "splines")

y = .Call("spline_value", knots, coef(object), ord, x, deriv, PACKAGE = "splines")

to

temp <- .Call(C_spline_basis, knots, ord, x, derivs)

y[accept] <- .Call(C_spline_value, knots, coeff, ord, x[accept], deriv)

y = .Call(C_spline_value, knots, coef(object), ord, x, deriv)

Check that there is no exportPattern directive which unintentionally exports the
newly created R objects.

• Restrict .Call to use the R symbols by editing src/init.c to contain

Chapter 5: System and foreign language interfaces 140

void R_init_splines(DllInfo *dll)

{

R_registerRoutines(dll, NULL, R_CallDef, NULL, NULL);

R_useDynamicSymbols(dll, FALSE);

R_forceSymbols(dll, TRUE);

}

• Consider visibility. On some OSes we can hide entry points from the loader, which pre-
cludes any possible name clashes and calling them accidentally (usually with incorrect
arguments and crashing the R process). If we repeat the first step we now see

nm -g /path/to/splines.so | grep " T "

0000000000002e00 T _R_init_splines

00000000000025e0 T _spline_basis

0000000000001e20 T _spline_value

If there were any entry points not intended to be used by the package we should try to
avoid exporting them, for example by making them static. Now that the two relevant
entry points are only accessed via the registration table, we can hide them. There are
two ways to do so on some Unix-alikes. We can hide individual entry points via

#include <R_ext/Visibility.h>

SEXP attribute_hidden

spline_basis(SEXP knots, SEXP order, SEXP xvals, SEXP derivs)

...

SEXP attribute_hidden

spline_value(SEXP knots, SEXP coeff, SEXP order, SEXP x, SEXP deriv)

...

Alternatively, we can change the default visibility for all C symbols by including

PKG_CFLAGS = $(C_VISIBILITY)

in src/Makevars, and then we need to allow registration by declaring R_init_splines
to be visible:

#include <R_ext/Visibility.h>

void attribute_visible

R_init_splines(DllInfo *dll)

...

See Section 6.16 [Controlling visibility], page 196, for more details, including using
Fortran code and ways to restrict visibility on Windows.

• We end up with a file src/init.c containing

Chapter 5: System and foreign language interfaces 141

� �
#include <stdlib.h>

#include <R_ext/Rdynload.h>

#include <R_ext/Visibility.h> // optional

#include "splines.h"

#define CALLDEF(name, n) {#name, (DL_FUNC) &name, n}

static const R_CallMethodDef R_CallDef[] = {

CALLDEF(spline_basis, 4),

CALLDEF(spline_value, 5),

{NULL, NULL, 0}

};

void

attribute_visible // optional

R_init_splines(DllInfo *dll)

{

R_registerRoutines(dll, NULL, R_CallDef, NULL, NULL);

R_useDynamicSymbols(dll, FALSE);

R_forceSymbols(dll, TRUE);

}
 	
5.4.3 Linking to native routines in other packages

In addition to registering C routines to be called by R, it can at times be useful for one
package to make some of its C routines available to be called by C code in another package.
The interface consists of two routines declared in header R_ext/Rdynload.h as

void R_RegisterCCallable(const char *package, const char *name,

DL_FUNC fptr);

DL_FUNC R_GetCCallable(const char *package, const char *name);

A package packA that wants to make a C routine myCfun available to C code in other
packages would include the call

R_RegisterCCallable("packA", "myCfun", myCfun);

in its initialization function R_init_packA. A package packB that wants to use this routine
would retrieve the function pointer with a call of the form

p_myCfun = R_GetCCallable("packA", "myCfun");

The author of packB is responsible for ensuring that p_myCfun has an appropriate dec-
laration. In the future R may provide some automated tools to simplify exporting larger
numbers of routines.

A package that wishes to make use of header files in other packages needs to declare
them as a comma-separated list in the field ‘LinkingTo’ in the DESCRIPTION file. This then
arranges for the include directories in the installed linked-to packages to be added to the
include paths for C and C++ code.

Chapter 5: System and foreign language interfaces 142

It must specify7 ‘Imports’ or ‘Depends’ of those packages, for they have to be loaded8

prior to this one (so the path to their compiled code has been registered).

CRAN examples of the use of this mechanism include coxme (https://CRAN.
R-project.org/package=coxme) linking to bdsmatrix (https://CRAN.R-project.
org/package=bdsmatrix) and xts (https://CRAN.R-project.org/package=xts) linking
to zoo (https://CRAN.R-project.org/package=zoo).

5.5 Creating shared objects

Shared objects for loading into R can be created using R CMD SHLIB. This accepts as argu-
ments a list of files which must be object files (with extension .o) or sources for C, C++,
Fortran, Objective C or Objective C++ (with extensions .c, .cc or .cpp, .f (fixed-form
Fortran), .f90 or .f95 (free-form), .m, and .mm or .M, respectively), or commands to be
passed to the linker. See R CMD SHLIB --help (or the R help for SHLIB) for usage infor-
mation. Note that files intended for the Fortran pre-processor with extension .F are not
accepted.

If compiling the source files does not work “out of the box”, you can specify additional
flags by setting some of the variables PKG_CPPFLAGS (for the C/C++ preprocessor, mainly
‘-I’, ‘-D’ and ‘-U’ flags), PKG_CFLAGS, PKG_CXXFLAGS, PKG_FFLAGS, PKG_OBJCFLAGS, and
PKG_OBJCXXFLAGS (for the C, C++, Fortran, Objective C, and Objective C++ compilers,
respectively) in the file Makevars in the compilation directory (or, of course, create the
object files directly from the command line). Similarly, variable PKG_LIBS in Makevars can
be used for additional ‘-l’ and ‘-L’ flags to be passed to the linker when building the shared
object. (Supplying linker commands as arguments to R CMD SHLIB will take precedence over
PKG_LIBS in Makevars.)

It is possible to arrange to include compiled code from other languages by setting the
macro ‘OBJECTS’ in file Makevars, together with suitable rules to make the objects.

Flags that are already set (for example in file etcR_ARCH/Makeconf) can be overridden
by the environment variable MAKEFLAGS (at least for systems using a POSIX-compliant
make), as in (Bourne shell syntax)

MAKEFLAGS="CFLAGS=-O3" R CMD SHLIB *.c

It is also possible to set such variables in personal Makevars files, which are read after
the local Makevars and the system makefiles or in a site-wide Makevars.site file. See
Section “Customizing package compilation” in R Installation and Administration,

Note that as R CMD SHLIB uses Make, it will not remake a shared object just because the
flags have changed, and if test.c and test.f both exist in the current directory

R CMD SHLIB test.f

will compile test.c!

If the src subdirectory of an add-on package contains source code with one of the
extensions listed above or a file Makevars but not a file Makefile, R CMD INSTALL creates a
shared object (for loading into R through useDynlib in the NAMESPACE, or in the .onLoad
function of the package) using the R CMD SHLIB mechanism. If file Makevars exists it is read
first, then the system makefile and then any personal Makevars files.

7 whether or not ‘LinkingTo’ is used.
8 so there needs to be a corresponding import or importFrom entry in the NAMESPACE file.

https://CRAN.R-project.org/package=coxme
https://CRAN.R-project.org/package=coxme
https://CRAN.R-project.org/package=bdsmatrix
https://CRAN.R-project.org/package=bdsmatrix
https://CRAN.R-project.org/package=xts
https://CRAN.R-project.org/package=zoo

Chapter 5: System and foreign language interfaces 143

If the src subdirectory of package contains a file Makefile, this is used by R CMD INSTALL

in place of the R CMD SHLIB mechanism. make is called with makefiles R_HOME/etcR_

ARCH/Makeconf, src/Makefile and any personal Makevars files (in that order). The first
target found in src/Makefile is used.

It is better to make use of a Makevars file rather than a Makefile: the latter should be
needed only exceptionally.

Under Windows the same commands work, but Makevars.win will be used in pref-
erence to Makevars, and only src/Makefile.win will be used by R CMD INSTALL with
src/Makefile being ignored. For past experiences of building DLLs with a variety of
compilers, see file ‘README.packages’. Under Windows you can supply an exports defini-
tions file called dllname-win.def: otherwise all entry points in objects (but not libraries)
supplied to R CMD SHLIB will be exported from the DLL. An example is stats-win.def for
the stats package: a CRAN example in package fastICA (https://CRAN.R-project.org/
package=fastICA).

If you feel tempted to read the source code and subvert these mechanisms, please resist.
Far too much developer time has been wasted in chasing down errors caused by failures to
follow this documentation, and even more by package authors demanding explanations as
to why their packages no longer work. In particular, undocumented environment or make
variables are not for use by package writers and are subject to change without notice.

5.6 Interfacing C++ code

Suppose we have the following hypothetical C++ library, consisting of the two files X.h and
X.cpp, and implementing the two classes X and Y which we want to use in R.� �

// X.h

class X {

public: X (); ~X ();

};

class Y {

public: Y (); ~Y ();

};
 	

https://CRAN.R-project.org/package=fastICA
https://CRAN.R-project.org/package=fastICA

Chapter 5: System and foreign language interfaces 144

� �
// X.cpp

#include <R.h>

#include "X.h"

static Y y;

X::X() { REprintf("constructor X\n"); }

X::~X() { REprintf("destructor X\n"); }

Y::Y() { REprintf("constructor Y\n"); }

Y::~Y() { REprintf("destructor Y\n"); }
 	
To use with R, the only thing we have to do is writing a wrapper function and ensuring

that the function is enclosed in

extern "C" {

}

For example,� �
// X_main.cpp:

#include "X.h"

extern "C" {

void X_main () {

X x;

}

} // extern "C"
 	
Compiling and linking should be done with the C++ compiler-linker (rather than the C

compiler-linker or the linker itself); otherwise, the C++ initialization code (and hence the
constructor of the static variable Y) are not called. On a properly configured system, one
can simply use

R CMD SHLIB X.cpp X_main.cpp

to create the shared object, typically X.so (the file name extension may be different on your
platform). Now starting R yields

R version 2.14.1 Patched (2012-01-16 r58124)

Copyright (C) 2012 The R Foundation for Statistical Computing

...

Type "q()" to quit R.

Chapter 5: System and foreign language interfaces 145

R> dyn.load(paste("X", .Platform$dynlib.ext, sep = ""))

constructor Y

R> .C("X_main")

constructor X

destructor X

list()

R> q()

Save workspace image? [y/n/c]: y

destructor Y

The R for Windows FAQ (rw-FAQ) contains details of how to compile this example under
Windows.

Earlier versions of this example used C++ iostreams: this is best avoided. There is no
guarantee that the output will appear in the R console, and indeed it will not on the R for
Windows console. Use R code or the C entry points (see Section 6.5 [Printing], page 178)
for all I/O if at all possible. Examples have been seen where merely loading a DLL that
contained calls to C++ I/O upset R’s own C I/O (for example by resetting buffers on open
files).

Most R header files can be included within C++ programs but they should not be included
within an extern "C" block (as they include system headers9).

Legacy header S.h cannot be used with C++.

5.6.1 External C++ code

Quite a lot of external C++ software is header-only (e.g. most of the Boost ‘libraries’ includ-
ing all those supplied by package BH (https://CRAN.R-project.org/package=BH), and
most of Armadillo as supplied by package RcppArmadillo (https://CRAN.R-project.org/
package=RcppArmadillo)) and so is compiled when an R package which uses it is installed.
This causes few problems.

A small number of external libraries used in R packages have a C++ interface to a library
of compiled code, e.g. packages rgdal (https://CRAN.R-project.org/package=rgdal) and
rjags (https://CRAN.R-project.org/package=rjags). This raises many more problems!
The C++ interface uses name-mangling and the ABI10 may depend on the compiler, version
and even C++ defines11, so requires the package C++ code to be compiled in exactly the
same way as the library (and what that was is often undocumented). Examples include use
of g++ vs clang++ or Solaris’ CC, and the two ABIs available for C++11 in g++ with different
defaults for GCC 4.9 and 5.x in some Linux distributions.

Even fewer external libraries use C++ internally but present a C interface, such as rgeos
(https://CRAN.R-project.org/package=rgeos). These require the C++ runtime library
to be linked into the package’s shared object/DLL, and this is best done by including a
dummy C++ file in the package sources.

There is a recent trend to link to the C++ interfaces offered by C software such as hdf5,
pcre and ImageMagick. Their C interfaces are much preferred for portability (and can be

9 Even including C system headers in such a block has caused compilation errors.
10 https://en.wikipedia.org/wiki/Application_binary_interface.
11 For example, ‘_GLIBCXX_USE_CXX11_ABI’ in g++ 5.1 and later: https://gcc.gnu.org/onlinedocs/

libstdc++/manual/using_dual_abi.html.

https://CRAN.R-project.org/package=BH
https://CRAN.R-project.org/package=RcppArmadillo
https://CRAN.R-project.org/package=RcppArmadillo
https://CRAN.R-project.org/package=rgdal
https://CRAN.R-project.org/package=rjags
https://CRAN.R-project.org/package=rgeos
https://CRAN.R-project.org/package=rgeos
https://en.wikipedia.org/wiki/Application_binary_interface
https://gcc.gnu.org/onlinedocs/libstdc++/manual/using_dual_abi.html
https://gcc.gnu.org/onlinedocs/libstdc++/manual/using_dual_abi.html

Chapter 5: System and foreign language interfaces 146

used from C++ code). Also, the C++ interfaces are often optional in the software build
or packaged separately and so users installing from package sources are far less likely to
already have them installed.

5.7 Fortran I/O

We have already warned against the use of C++ iostreams not least because output is not
guaranteed to appear on the R console, and this warning applies equally to Fortran output
to units * and 6. See Section 6.5.1 [Printing from Fortran], page 179, which describes
workarounds.

In the past most Fortran compilers implemented I/O on top of the C I/O system and
so the two interworked successfully. This was true of g77, but it is less true of gfortran
as used in gcc 4 and later. In particular, any package that makes use of Fortran I/O will
when compiled on Windows interfere with C I/O: when the Fortran I/O support code is
initialized (typically when the package is loaded) the C stdout and stderr are switched
to LF line endings. (Function init in file src/modules/lapack/init_win.c shows how to
mitigate this. In a package this would look something like

#ifdef _WIN32

include <fcntl.h>

#endif

void R_init_mypkgname(DllInfo *dll)

{

// Native symbol registration calls

#ifdef _WIN32

// gfortran I/O initialization sets these to _O_BINARY

setmode(1, _O_TEXT); /* stdout */

setmode(2, _O_TEXT); /* stderr */

#endif

}

in the file used for native symbol registration.)

5.8 Linking to other packages

It is not in general possible to link a DLL in package packA to a DLL provided by pack-
age packB (for the security reasons mentioned in Section 5.3 [dyn.load and dyn.unload],
page 131, and also because some platforms distinguish between shared objects and dynamic
libraries), but it is on Windows.

Note that there can be tricky versioning issues here, as package packB could be re-
installed after package packA — it is desirable that the API provided by package packB
remains backwards-compatible.

Shipping a static library in package packB for other packages to link to avoids most of
the difficulties.

Chapter 5: System and foreign language interfaces 147

5.8.1 Unix-alikes

It is possible to link a shared object in package packA to a library provided by package
packB under limited circumstances on a Unix-alike OS. There are severe portability issues,
so this is not recommended for a distributed package.

This is easiest if packB provides a static library packB/lib/libpackB.a. (Note using
directory lib rather than libs is conventional, and architecture-specific sub-directories may
be needed and are assumed in the sample code below. The code in the static library will
need to be compiled with PIC flags on platforms where it matters.) Then as the code from
package packB is incorporated when package packA is installed, we only need to find the
static library at install time for package packA. The only issue is to find package packB,
and for that we can ask R by something like (long lines broken for display here)

PKGB_PATH=‘echo ’library(packB);

cat(system.file("lib", package="packB", mustWork=TRUE))’ \

| "${R_HOME}/bin/R" --vanilla --no-echo‘

PKG_LIBS="$(PKGB_PATH)$(R_ARCH)/libpackB.a"

For a dynamic library packB/lib/libpackB.so (packB/lib/libpackB.dylib on
macOS: note that you cannot link to a shared object, .so, on that platform) we could use

PKGB_PATH=‘echo ’library(packB);

cat(system.file("lib", package="packB", mustWork=TRUE))’ \

| "${R_HOME}/bin/R" --vanilla --no-echo‘

PKG_LIBS=-L"$(PKGB_PATH)$(R_ARCH)" -lpackB

This will work for installation, but very likely not when package packB is loaded, as the path
to package packB’s lib directory is not in the ld.so12 search path. You can arrange to put
it there before R is launched by setting (on some platforms) LD_RUN_PATH or LD_LIBRARY_
PATH or adding to the ld.so cache (see man ldconfig). On platforms that support it,
the path to the directory containing the dynamic library can be hardcoded at install time
(which assumes that the location of package packB will not be changed nor the package
updated to a changed API). On systems with the gcc or clang and the GNU linker (e.g.
Linux) and some others this can be done by e.g.

PKGB_PATH=‘echo ’library(packB);

cat(system.file("lib", package="packB", mustWork=TRUE)))’ \

| "${R_HOME}/bin/R" --vanilla --no-echo‘

PKG_LIBS=-L"$(PKGB_PATH)$(R_ARCH)" -Wl,-rpath,"$(PKGB_PATH)$(R_ARCH)" -lpackB

Some other systems (e.g. Solaris with its native linker) use -Rdir rather than -rpath,dir

(and this is accepted by the compiler as well as the linker).

It may be possible to figure out what is required semi-automatically from the result of
R CMD libtool --config (look for ‘hardcode’).

Making headers provided by package packB available to the code to be compiled in
package packA can be done by the LinkingTo mechanism (see Section 5.4 [Registering
native routines], page 133).

12 dyld on macOS, and DYLD_LIBRARY_PATHS below.

Chapter 5: System and foreign language interfaces 148

5.8.2 Windows

Suppose package packA wants to make use of compiled code provided by packB in DLL
packB/libs/exB.dll, possibly the package’s DLL packB/libs/packB.dll. (This can be
extended to linking to more than one package in a similar way.) There are three issues to
be addressed:

• Making headers provided by package packB available to the code to be compiled in
package packA.

This is done by the LinkingTomechanism (see Section 5.4 [Registering native routines],
page 133).

• preparing packA.dll to link to packB/libs/exB.dll.

This needs an entry in Makevars.win of the form

PKG_LIBS= -L<something> -lexB

and one possibility is that <something> is the path to the installed pkgB/libs directory.
To find that we need to ask R where it is by something like

PKGB_PATH=‘echo ’library(packB);

cat(system.file("libs", package="packB", mustWork=TRUE))’ \

| rterm --vanilla --no-echo‘

PKG_LIBS= -L"$(PKGB_PATH)$(R_ARCH)" -lexB

Another possibility is to use an import library, shipping with package packA an exports
file exB.def. Then Makevars.win could contain

PKG_LIBS= -L. -lexB

all: $(SHLIB) before

before: libexB.dll.a

libexB.dll.a: exB.def

and then installing package packA will make and use the import library for exB.dll.
(One way to prepare the exports file is to use pexports.exe.)

• loading packA.dll which depends on exB.dll.

If exB.dll was used by package packB (because it is in fact packB.dll or packB.dll
depends on it) and packB has been loaded before packA, then nothing more needs to
be done as exB.dll will already be loaded into the R executable. (This is the most
common scenario.)

More generally, we can use the DLLpath argument to library.dynam to ensure that
exB.dll is found, for example by setting

library.dynam("packA", pkg, lib,

DLLpath = system.file("libs", package="packB"))

Note that DLLpath can only set one path, and so for linking to two or more packages
you would need to resort to setting environment variable PATH.

5.9 Handling R objects in C

Using C code to speed up the execution of an R function is often very fruitful. Traditionally
this has been done via the .C function in R. However, if a user wants to write C code using

Chapter 5: System and foreign language interfaces 149

internal R data structures, then that can be done using the .Call and .External functions.
The syntax for the calling function in R in each case is similar to that of .C, but the two
functions have different C interfaces. Generally the .Call interface is simpler to use, but
.External is a little more general.

A call to .Call is very similar to .C, for example

.Call("convolve2", a, b)

The first argument should be a character string giving a C symbol name of code that has
already been loaded into R. Up to 65 R objects can passed as arguments. The C side of the
interface is

#include <R.h>

#include <Rinternals.h>

SEXP convolve2(SEXP a, SEXP b)

...

A call to .External is almost identical

.External("convolveE", a, b)

but the C side of the interface is different, having only one argument

#include <R.h>

#include <Rinternals.h>

SEXP convolveE(SEXP args)

...

Here args is a LISTSXP, a Lisp-style pairlist from which the arguments can be extracted.

In each case the R objects are available for manipulation via a set of functions and macros
defined in the header file Rinternals.h or some S-compatibility macros13 See Section 5.10
[Interface functions .Call and .External], page 160, for details on .Call and .External.

Before you decide to use .Call or .External, you should look at other alternatives.
First, consider working in interpreted R code; if this is fast enough, this is normally the
best option. You should also see if using .C is enough. If the task to be performed in
C is simple enough involving only atomic vectors and requiring no call to R, .C suffices.
A great deal of useful code was written using just .C before .Call and .External were
available. These interfaces allow much more control, but they also impose much greater
responsibilities so need to be used with care. Neither .Call nor .External copy their
arguments: you should treat arguments you receive through these interfaces as read-only.

To handle R objects from within C code we use the macros and functions that have been
used to implement the core parts of R. A public14 subset of these is defined in the header
file Rinternals.h in the directory R_INCLUDE_DIR (default R_HOME/include) that should
be available on any R installation.

A substantial amount of R, including the standard packages, is implemented using the
functions and macros described here, so the R source code provides a rich source of examples
and “how to do it”: do make use of the source code for inspirational examples.

13 That is, similar to those defined in S version 4 from the 1990s: these are not kept up to date and are
not recommended for new projects.

14 see Chapter 6 [The R API], page 175: note that these are not all part of the API.

Chapter 5: System and foreign language interfaces 150

It is necessary to know something about how R objects are handled in C code. All the
R objects you will deal with will be handled with the type SEXP15, which is a pointer to a
structure with typedef SEXPREC. Think of this structure as a variant type that can handle
all the usual types of R objects, that is vectors of various modes, functions, environments,
language objects and so on. The details are given later in this section and in Section “R
Internal Structures” in R Internals, but for most purposes the programmer does not need to
know them. Think rather of a model such as that used by Visual Basic, in which R objects
are handed around in C code (as they are in interpreted R code) as the variant type, and
the appropriate part is extracted for, for example, numerical calculations, only when it is
needed. As in interpreted R code, much use is made of coercion to force the variant object
to the right type.

5.9.1 Handling the effects of garbage collection

We need to know a little about the way R handles memory allocation. The memory allocated
for R objects is not freed by the user; instead, the memory is from time to time garbage
collected. That is, some or all of the allocated memory not being used is freed or marked
as re-usable.

The R object types are represented by a C structure defined by a typedef SEXPREC in
Rinternals.h. It contains several things among which are pointers to data blocks and to
other SEXPRECs. A SEXP is simply a pointer to a SEXPREC.

If you create an R object in your C code, you must tell R that you are using the object
by using the PROTECT macro on a pointer to the object. This tells R that the object is in
use so it is not destroyed during garbage collection. Notice that it is the object which is
protected, not the pointer variable. It is a common mistake to believe that if you invoked
PROTECT(p) at some point then p is protected from then on, but that is not true once a
new object is assigned to p.

Protecting an R object automatically protects all the R objects pointed to in the corre-
sponding SEXPREC, for example all elements of a protected list are automatically protected.

The programmer is solely responsible for housekeeping the calls to PROTECT. There is
a corresponding macro UNPROTECT that takes as argument an int giving the number of
objects to unprotect when they are no longer needed. The protection mechanism is stack-
based, so UNPROTECT(n) unprotects the last n objects which were protected. The calls to
PROTECT and UNPROTECT must balance when the user’s code returns and should balance
in all functions. R will warn about "stack imbalance in .Call" (or .External) if the
housekeeping is wrong.

Here is a small example of creating an R numeric vector in C code:

15 SEXP is an acronym for S imple EXPression, common in LISP-like language syntaxes.

Chapter 5: System and foreign language interfaces 151

#include <R.h>

#include <Rinternals.h>

SEXP ab;

....

ab = PROTECT(allocVector(REALSXP, 2));

REAL(ab)[0] = 123.45;

REAL(ab)[1] = 67.89;

UNPROTECT(1);

Now, the reader may ask how the R object could possibly get removed during those
manipulations, as it is just our C code that is running. As it happens, we can do without
the protection in this example, but in general we do not know (nor want to know) what is
hiding behind the R macros and functions we use, and any of them might cause memory to
be allocated, hence garbage collection and hence our object ab to be removed. It is usually
wise to err on the side of caution and assume that any of the R macros and functions might
remove the object.

In some cases it is necessary to keep better track of whether protection is really needed.
Be particularly aware of situations where a large number of objects are generated. The
pointer protection stack has a fixed size (default 10,000) and can become full. It is not a
good idea then to just PROTECT everything in sight and UNPROTECT several thousand objects
at the end. It will almost invariably be possible to either assign the objects as part of
another object (which automatically protects them) or unprotect them immediately after
use.

There is a less-used macro UNPROTECT_PTR(s) that unprotects the object pointed to by
the SEXP s, even if it is not the top item on the pointer protection stack. This macro was
introduced for use in the parser, where the code interfacing with the R heap is generated
and the generator cannot be configured to insert proper calls to PROTECT and UNPROTECT.
However, UNPROTECT_PTR is dangerous to use in combination with UNPROTECT when the
same object has been protected multiple times. It has been superseded by multi-set based
functions R_PreserveInMSet and R_ReleaseFromMSet, which protect objects in a multi-
set created by R_NewPreciousMSet and typically itself protected using PROTECT. These
functions should not be needed outside parsers.

Sometimes an object is changed (for example duplicated, coerced or grown) yet the
current value needs to be protected. For these cases PROTECT_WITH_INDEX saves an index
of the protection location that can be used to replace the protected value using REPROTECT.
For example (from the internal code for optim)

PROTECT_INDEX ipx;

....

PROTECT_WITH_INDEX(s = eval(OS->R_fcall, OS->R_env), &ipx);

REPROTECT(s = coerceVector(s, REALSXP), ipx);

Note that it is dangerous to mix UNPROTECT_PTR also with PROTECT_WITH_INDEX, as the
former changes the protection locations of objects that were protected after the one being
unprotected.

Chapter 5: System and foreign language interfaces 152

There is another way to avoid the effects of garbage collection: a call to R_

PreserveObject adds an object to an internal list of objects not to be collects, and a
subsequent call to R_ReleaseObject removes it from that list. This provides a way for
objects which are not returned as part of R objects to be protected across calls to compiled
code: on the other hand it becomes the user’s responsibility to release them when they are
no longer needed (and this often requires the use of a finalizer). It is less efficient than the
normal protection mechanism, and should be used sparingly.

For functions from packages as well as R to safely co-operate in protecting objects,
certain rules have to be followed:

• Pointer-protection balance. Calls to PROTECT and UNPROTECT should balance in each
function. A function may only call UNPROTECT or REPROTECT on objects it has itself
protected. Note that the pointer protection stack balance is restored automatically on
non-local transfer of control (See Section 6.12 [Condition handling and cleanup code],
page 194.), as if a call to UNPROTECT was invoked with the right argument.

• Caller protection. It is the responsibility of the caller that all arguments passed to a
function are protected and will stay protected for the whole execution of the callee.
Typically this is achieved by PROTECT and UNPROTECT calls.

• Protecting return values. Any R objects returned from a function are unprotected (the
callee must maintain pointer-protection balance), and hence should be protected imme-
diately by the caller. To be safe against future code changes, assume that any R object
returned from any function may need protection. Note that even when conceptually
returning an existing protected object, that object may be duplicated.

• All functions/macros allocate. To be safe against future code changes, assume that
any function or macro may allocate and hence garbage collector may run and destroy
unprotected objects.

It is always safe and recommended to follow those rules. In fact, several R functions and
macros protect their own arguments and some functions do not allocate or do not allocate
when used in a certain way, but that is subject to change, so relying on that may be fragile.
PROTECT and PROTECT_WITH_INDEX can be safely called with unprotected arguments and
UNPROTECT does not allocate.

5.9.2 Allocating storage

For many purposes it is sufficient to allocate R objects and manipulate those. There are
quite a few allocXxx functions defined in Rinternals.h—you may want to explore them.

One that is commonly used is allocVector, the C-level equivalent of R-level vector()
and its wrappers such as integer() and character(). One distinction is that whereas the
R functions always initialize the elements of the vector, allocVector only does so for lists,
expressions and character vectors (the cases where the elements are themselves R objects).

If storage is required for C objects during the calculations this is best allocating by calling
R_alloc; see Section 6.1 [Memory allocation], page 175. All of these memory allocation
routines do their own error-checking, so the programmer may assume that they will raise
an error and not return if the memory cannot be allocated.

Chapter 5: System and foreign language interfaces 153

5.9.3 Details of R types

Users of the Rinternals.h macros will need to know how the R types are known internally.
The different R data types are represented in C by SEXPTYPE. Some of these are familiar
from R and some are internal data types. The usual R object modes are given in the table.

SEXPTYPE R equivalent
REALSXP numeric with storage mode double
INTSXP integer
CPLXSXP complex
LGLSXP logical
STRSXP character
VECSXP list (generic vector)
LISTSXP pairlist
DOTSXP a ‘...’ object
NILSXP NULL
SYMSXP name/symbol
CLOSXP function or function closure
ENVSXP environment

Among the important internal SEXPTYPEs are LANGSXP, CHARSXP, PROMSXP, etc. (N.B.:
although it is possible to return objects of internal types, it is unsafe to do so as assumptions
are made about how they are handled which may be violated at user-level evaluation.) More
details are given in Section “R Internal Structures” in R Internals.

Unless you are very sure about the type of the arguments, the code should check the
data types. Sometimes it may also be necessary to check data types of objects created by
evaluating an R expression in the C code. You can use functions like isReal, isInteger
and isString to do type checking. See the header file Rinternals.h for definitions of other
such functions. All of these take a SEXP as argument and return 1 or 0 to indicate TRUE
or FALSE.

What happens if the SEXP is not of the correct type? Sometimes you have no other
option except to generate an error. You can use the function error for this. It is usually
better to coerce the object to the correct type. For example, if you find that an SEXP is of
the type INTEGER, but you need a REAL object, you can change the type by using

newSexp = PROTECT(coerceVector(oldSexp, REALSXP));

Protection is needed as a new object is created; the object formerly pointed to by the SEXP
is still protected but now unused.16

All the coercion functions do their own error-checking, and generate NAs with a warning
or stop with an error as appropriate.

Note that these coercion functions are not the same as calling as.numeric (and so on)
in R code, as they do not dispatch on the class of the object. Thus it is normally preferable
to do the coercion in the calling R code.

So far we have only seen how to create and coerce R objects from C code, and how to
extract the numeric data from numeric R vectors. These can suffice to take us a long way

16 If no coercion was required, coerceVector would have passed the old object through unchanged.

Chapter 5: System and foreign language interfaces 154

in interfacing R objects to numerical algorithms, but we may need to know a little more to
create useful return objects.

5.9.4 Attributes

Many R objects have attributes: some of the most useful are classes and the dim and
dimnames that mark objects as matrices or arrays. It can also be helpful to work with the
names attribute of vectors.

To illustrate this, let us write code to take the outer product of two vectors (which outer

and %o% already do). As usual the R code is simple

out <- function(x, y)

{

storage.mode(x) <- storage.mode(y) <- "double"

.Call("out", x, y)

}

where we expect x and y to be numeric vectors (possibly integer), possibly with names.
This time we do the coercion in the calling R code.

C code to do the computations is

#include <R.h>

#include <Rinternals.h>

SEXP out(SEXP x, SEXP y)

{

int nx = length(x), ny = length(y);

SEXP ans = PROTECT(allocMatrix(REALSXP, nx, ny));

double *rx = REAL(x), *ry = REAL(y), *rans = REAL(ans);

for(int i = 0; i < nx; i++) {

double tmp = rx[i];

for(int j = 0; j < ny; j++)

rans[i + nx*j] = tmp * ry[j];

}

UNPROTECT(1);

return ans;

}

Note the way REAL is used: as it is a function call it can be considerably faster to store the
result and index that.

However, we would like to set the dimnames of the result. We can use

#include <R.h>

#include <Rinternals.h>

Chapter 5: System and foreign language interfaces 155

SEXP out(SEXP x, SEXP y)

{

int nx = length(x), ny = length(y);

SEXP ans = PROTECT(allocMatrix(REALSXP, nx, ny));

double *rx = REAL(x), *ry = REAL(y), *rans = REAL(ans);

for(int i = 0; i < nx; i++) {

double tmp = rx[i];

for(int j = 0; j < ny; j++)

rans[i + nx*j] = tmp * ry[j];

}

SEXP dimnames = PROTECT(allocVector(VECSXP, 2));

SET_VECTOR_ELT(dimnames, 0, getAttrib(x, R_NamesSymbol));

SET_VECTOR_ELT(dimnames, 1, getAttrib(y, R_NamesSymbol));

setAttrib(ans, R_DimNamesSymbol, dimnames);

UNPROTECT(2);

return ans;

}

This example introduces several new features. The getAttrib and setAttrib functions
get and set individual attributes. Their second argument is a SEXP defining the name in
the symbol table of the attribute we want; these and many such symbols are defined in the
header file Rinternals.h.

There are shortcuts here too: the functions namesgets, dimgets and dimnamesgets are
the internal versions of the default methods of names<-, dim<- and dimnames<- (for vectors
and arrays), and there are functions such as GetMatrixDimnames and GetArrayDimnames.

What happens if we want to add an attribute that is not pre-defined? We need to add a
symbol for it via a call to install. Suppose for illustration we wanted to add an attribute
"version" with value 3.0. We could use

SEXP version;

version = PROTECT(allocVector(REALSXP, 1));

REAL(version)[0] = 3.0;

setAttrib(ans, install("version"), version);

UNPROTECT(1);

Using install when it is not needed is harmless and provides a simple way to retrieve
the symbol from the symbol table if it is already installed. However, the lookup takes a
non-trivial amount of time, so consider code such as

static SEXP VerSymbol = NULL;

...

if (VerSymbol == NULL) VerSymbol = install("version");

if it is to be done frequently.

This example can be simplified by another convenience function:

Chapter 5: System and foreign language interfaces 156

SEXP version = PROTECT(ScalarReal(3.0));

setAttrib(ans, install("version"), version);

UNPROTECT(1);

5.9.5 Classes

In R the class is just the attribute named "class" so it can be handled as such, but there
is a shortcut classgets. Suppose we want to give the return value in our example the class
"mat". We can use

#include <R.h>

#include <Rinternals.h>

....

SEXP ans, dim, dimnames, class;

....

class = PROTECT(allocVector(STRSXP, 1));

SET_STRING_ELT(class, 0, mkChar("mat"));

classgets(ans, class);

UNPROTECT(4);

return ans;

}

As the value is a character vector, we have to know how to create that from a C character
array, which we do using the function mkChar.

5.9.6 Handling lists

Some care is needed with lists, as R moved early on from using LISP-like lists (now called
“pairlists”) to S-like generic vectors. As a result, the appropriate test for an object of mode
list is isNewList, and we need allocVector(VECSXP, n) and not allocList(n).

List elements can be retrieved or set by direct access to the elements of the generic
vector. Suppose we have a list object

a <- list(f = 1, g = 2, h = 3)

Then we can access a$g as a[[2]] by

double g;

....

g = REAL(VECTOR_ELT(a, 1))[0];

This can rapidly become tedious, and the following function (based on one in package
stats) is very useful:

/* get the list element named str, or return NULL */

SEXP getListElement(SEXP list, const char *str)

{

SEXP elmt = R_NilValue, names = getAttrib(list, R_NamesSymbol);

Chapter 5: System and foreign language interfaces 157

for (int i = 0; i < length(list); i++)

if(strcmp(CHAR(STRING_ELT(names, i)), str) == 0) {

elmt = VECTOR_ELT(list, i);

break;

}

return elmt;

}

and enables us to say

double g;

g = REAL(getListElement(a, "g"))[0];

5.9.7 Handling character data

R character vectors are stored as STRSXPs, a vector type like VECSXP where every element
is of type CHARSXP. The CHARSXP elements of STRSXPs are accessed using STRING_ELT and
SET_STRING_ELT.

CHARSXPs are read-only objects and must never be modified. In particular, the C-style
string contained in a CHARSXP should be treated as read-only and for this reason the CHAR

function used to access the character data of a CHARSXP returns (const char *) (this also
allows compilers to issue warnings about improper use). Since CHARSXPs are immutable,
the same CHARSXP can be shared by any STRSXP needing an element representing the same
string. R maintains a global cache of CHARSXPs so that there is only ever one CHARSXP

representing a given string in memory.

You can obtain a CHARSXP by calling mkChar and providing a nul-terminated C-style
string. This function will return a pre-existing CHARSXP if one with a matching string
already exists, otherwise it will create a new one and add it to the cache before returning it
to you. The variant mkCharLen can be used to create a CHARSXP from part of a buffer and
will ensure null-termination.

Note that R character strings are restricted to 2^31 - 1 bytes, and hence so should the
input to mkChar be (C allows longer strings on 64-bit platforms).

5.9.8 Finding and setting variables

It will be usual that all the R objects needed in our C computations are passed as arguments
to .Call or .External, but it is possible to find the values of R objects from within the C
given their names. The following code is the equivalent of get(name, envir = rho).

SEXP getvar(SEXP name, SEXP rho)

{

SEXP ans;

if(!isString(name) || length(name) != 1)

error("name is not a single string");

if(!isEnvironment(rho))

error("rho should be an environment");

ans = findVar(installChar(STRING_ELT(name, 0)), rho);

Rprintf("first value is %f\n", REAL(ans)[0]);

return R_NilValue;

}

Chapter 5: System and foreign language interfaces 158

The main work is done by findVar, but to use it we need to install name as a name in
the symbol table. As we wanted the value for internal use, we return NULL.

Similar functions with syntax

void defineVar(SEXP symbol, SEXP value, SEXP rho)

void setVar(SEXP symbol, SEXP value, SEXP rho)

can be used to assign values to R variables. defineVar creates a new binding or changes
the value of an existing binding in the specified environment frame; it is the analogue of
assign(symbol, value, envir = rho, inherits = FALSE), but unlike assign, defineVar
does not make a copy of the object value.17 setVar searches for an existing binding for
symbol in rho or its enclosing environments. If a binding is found, its value is changed to
value. Otherwise, a new binding with the specified value is created in the global environ-
ment. This corresponds to assign(symbol, value, envir = rho, inherits = TRUE).

At times it may also be useful to create a new environment frame in C code. R_NewEnv
is a C version of the R function new.env:

SEXP R_NewEnv(SEXP enclos, int hash, ins size)

5.9.9 Some convenience functions

Some operations are done so frequently that there are convenience functions to handle them.
(All these are provided via the header file Rinternals.h.)

Suppose we wanted to pass a single logical argument ignore_quotes: we could use

int ign = asLogical(ignore_quotes);

if(ign == NA_LOGICAL) error("’ignore_quotes’ must be TRUE or FALSE");

which will do any coercion needed (at least from a vector argument), and return NA_LOGICAL

if the value passed was NA or coercion failed. There are also asInteger, asReal and
asComplex. The function asChar returns a CHARSXP. All of these functions ignore any
elements of an input vector after the first.

To return a length-one real vector we can use

double x;

...

return ScalarReal(x);

and there are versions of this for all the atomic vector types (those for a length-one character
vector being ScalarString with argument a CHARSXP and mkString with argument const
char *).

Some of the isXXXX functions differ from their apparent R-level counterparts: for ex-
ample isVector is true for any atomic vector type (isVectorAtomic) and for lists and
expressions (isVectorList) (with no check on attributes). isMatrix is a test of a length-2
"dim" attribute.

There are a series of small macros/functions to help construct pairlists and language
objects (whose internal structures just differ by SEXPTYPE). Function CONS(u, v) is the
basic building block: it constructs a pairlist from u followed by v (which is a pairlist or

17 You can assign a copy of the object in the environment frame rho using defineVar(symbol,

duplicate(value), rho)).

Chapter 5: System and foreign language interfaces 159

R_NilValue). LCONS is a variant that constructs a language object. Functions list1 to
list6 construct a pairlist from one to six items, and lang1 to lang6 do the same for a
language object (a function to call plus zero to five arguments). Functions elt and lastElt

find the ith element and the last element of a pairlist, and nthcdr returns a pointer to the
nth position in the pairlist (whose CAR is the nth item).

Functions str2type and type2str map R length-one character strings to and from
SEXPTYPE numbers, and type2char maps numbers to C character strings.

5.9.9.1 Semi-internal convenience functions

There is quite a collection of functions that may be used in your C code if you are willing to
adapt to rare “API” changes. These typically contain “workhorses” of their R counterparts.

Functions any_duplicated and any_duplicated3 are fast versions of R’s
any(duplicated(.)).

Function R_compute_identical corresponds to R’s identical function.

5.9.10 Named objects and copying

[The NAMED mechanism has been replaced by reference counting.]

When assignments are done in R such as

x <- 1:10

y <- x

the named object is not necessarily copied, so after those two assignments y and x are bound
to the same SEXPREC (the structure a SEXP points to). This means that any code which
alters one of them has to make a copy before modifying the copy if the usual R semantics
are to apply. Note that whereas .C and .Fortran do copy their arguments (unless the
dangerous dup = FALSE is used), .Call and .External do not. So duplicate is commonly
called on arguments to .Call before modifying them.

However, at least some of this copying is unneeded. In the first assignment shown, x <-

1:10, R first creates an object with value 1:10 and then assigns it to x but if x is modified
no copy is necessary as the temporary object with value 1:10 cannot be referred to again.
R distinguishes between named and unnamed objects via a field in a SEXPREC that can be
accessed via the macros NAMED and SET_NAMED. This can take values

0 The object is not bound to any symbol

1 The object has been bound to exactly one symbol

>= 2 The object has potentially been bound to two or more symbols, and one should
act as if another variable is currently bound to this value. The maximal value
is NAMEDMAX.

Note the past tenses: R does not do currently do full reference counting and there may
currently be fewer bindings.

It is safe to modify the value of any SEXP for which NAMED(foo) is zero, and if NAMED(foo)
is two or more, the value should be duplicated (via a call to duplicate) before any modifi-
cation. Note that it is the responsibility of the author of the code making the modification
to do the duplication, even if it is x whose value is being modified after y <- x.

Chapter 5: System and foreign language interfaces 160

The case NAMED(foo) == 1 allows some optimization, but it can be ignored (and dupli-
cation done whenever NAMED(foo) > 0). (This optimization is not currently usable in user
code.) It is intended for use within replacement functions. Suppose we used

x <- 1:10

foo(x) <- 3

which is computed as

x <- 1:10

x <- "foo<-"(x, 3)

Then inside "foo<-" the object pointing to the current value of x will have NAMED(foo) as
one, and it would be safe to modify it as the only symbol bound to it is x and that will be
rebound immediately. (Provided the remaining code in "foo<-" make no reference to x,
and no one is going to attempt a direct call such as y <- "foo<-"(x).)

This mechanism is to be replaced in R 4.0.0. To support future changes, package code
should use the macros MAYBE_REFERENCED, MAYBE_SHARED, and MARK_NOT_MUTABLE. These
currently correspond to

MAYBE_REFERENCED(x)

NAMED(x) > 0

MAYBE_SHARED(x)

NAMED(x) > 1

MARK_NOT_MUTABLE(x)

SET_NAMED(x, NAMEDMAX)

5.10 Interface functions .Call and .External

In this section we consider the details of the R/C interfaces.

These two interfaces have almost the same functionality. .Call is based on the interface
of the same name in S version 4, and .External is based on R’s .Internal. .External is
more complex but allows a variable number of arguments.

5.10.1 Calling .Call

Let us convert our finite convolution example to use .Call. The calling function in R is

conv <- function(a, b) .Call("convolve2", a, b)

which could hardly be simpler, but as we shall see all the type coercion is transferred to the
C code, which is

Chapter 5: System and foreign language interfaces 161

#include <R.h>

#include <Rinternals.h>

SEXP convolve2(SEXP a, SEXP b)

{

int na, nb, nab;

double *xa, *xb, *xab;

SEXP ab;

a = PROTECT(coerceVector(a, REALSXP));

b = PROTECT(coerceVector(b, REALSXP));

na = length(a); nb = length(b); nab = na + nb - 1;

ab = PROTECT(allocVector(REALSXP, nab));

xa = REAL(a); xb = REAL(b); xab = REAL(ab);

for(int i = 0; i < nab; i++) xab[i] = 0.0;

for(int i = 0; i < na; i++)

for(int j = 0; j < nb; j++) xab[i + j] += xa[i] * xb[j];

UNPROTECT(3);

return ab;

}

5.10.2 Calling .External

We can use the same example to illustrate .External. The R code changes only by replacing
.Call by .External

conv <- function(a, b) .External("convolveE", a, b)

but the main change is how the arguments are passed to the C code, this time as a single
SEXP. The only change to the C code is how we handle the arguments.

#include <R.h>

#include <Rinternals.h>

SEXP convolveE(SEXP args)

{

int i, j, na, nb, nab;

double *xa, *xb, *xab;

SEXP a, b, ab;

a = PROTECT(coerceVector(CADR(args), REALSXP));

b = PROTECT(coerceVector(CADDR(args), REALSXP));

...

}

Once again we do not need to protect the arguments, as in the R side of the interface they
are objects that are already in use. The macros

first = CADR(args);

second = CADDR(args);

third = CADDDR(args);

fourth = CAD4R(args);

Chapter 5: System and foreign language interfaces 162

provide convenient ways to access the first four arguments. More generally we can use the
CDR and CAR macros as in

args = CDR(args); a = CAR(args);

args = CDR(args); b = CAR(args);

which clearly allows us to extract an unlimited number of arguments (whereas .Call has a
limit, albeit at 65 not a small one).

More usefully, the .External interface provides an easy way to handle calls with a
variable number of arguments, as length(args) will give the number of arguments supplied
(of which the first is ignored). We may need to know the names (‘tags’) given to the actual
arguments, which we can by using the TAG macro and using something like the following
example, that prints the names and the first value of its arguments if they are vector types.

SEXP showArgs(SEXP args)

{

args = CDR(args); /* skip ’name’ */

for(int i = 0; args != R_NilValue; i++, args = CDR(args)) {

const char *name =

isNull(TAG(args)) ? "" : CHAR(PRINTNAME(TAG(args)));

SEXP el = CAR(args);

if (length(el) == 0) {

Rprintf("[%d] ’%s’ R type, length 0\n", i+1, name);

continue;

}

switch(TYPEOF(el)) {

case REALSXP:

Rprintf("[%d] ’%s’ %f\n", i+1, name, REAL(el)[0]);

break;

case LGLSXP:

case INTSXP:

Rprintf("[%d] ’%s’ %d\n", i+1, name, INTEGER(el)[0]);

break;

case CPLXSXP:

{

Rcomplex cpl = COMPLEX(el)[0];

Rprintf("[%d] ’%s’ %f + %fi\n", i+1, name, cpl.r, cpl.i);

}

break;

case STRSXP:

Rprintf("[%d] ’%s’ %s\n", i+1, name,

CHAR(STRING_ELT(el, 0)));

break;

default:

Rprintf("[%d] ’%s’ R type\n", i+1, name);

}

}

return R_NilValue;

}

Chapter 5: System and foreign language interfaces 163

This can be called by the wrapper function

showArgs <- function(...) invisible(.External("showArgs", ...))

Note that this style of programming is convenient but not necessary, as an alternative style
is

showArgs1 <- function(...) invisible(.Call("showArgs1", list(...)))

The (very similar) C code is in the scripts.

5.10.3 Missing and special values

One piece of error-checking the .C call does (unless NAOK is true) is to check for missing (NA)
and IEEE special values (Inf, -Inf and NaN) and give an error if any are found. With the
.Call interface these will be passed to our code. In this example the special values are no
problem, as IEC60559 arithmetic will handle them correctly. In the current implementation
this is also true of NA as it is a type of NaN, but it is unwise to rely on such details. Thus
we will re-write the code to handle NAs using macros defined in R_ext/Arith.h included by
R.h.

The code changes are the same in any of the versions of convolve2 or convolveE:

...

for(int i = 0; i < na; i++)

for(int j = 0; j < nb; j++)

if(ISNA(xa[i]) || ISNA(xb[j]) || ISNA(xab[i + j]))

xab[i + j] = NA_REAL;

else

xab[i + j] += xa[i] * xb[j];

...

Note that the ISNA macro, and the similar macros ISNAN (which checks for NaN or NA)
and R_FINITE (which is false for NA and all the special values), only apply to numeric values
of type double. Missingness of integers, logicals and character strings can be tested by
equality to the constants NA_INTEGER, NA_LOGICAL and NA_STRING. These and NA_REAL

can be used to set elements of R vectors to NA.

The constants R_NaN, R_PosInf and R_NegInf can be used to set doubles to the special
values.

5.11 Evaluating R expressions from C

The main function we will use is

SEXP eval(SEXP expr, SEXP rho);

the equivalent of the interpreted R code eval(expr, envir = rho) (so rho must be an
environment), although we can also make use of findVar, defineVar and findFun (which
restricts the search to functions).

To see how this might be applied, here is a simplified internal version of lapply for
expressions, used as

a <- list(a = 1:5, b = rnorm(10), test = runif(100))

.Call("lapply", a, quote(sum(x)), new.env())

Chapter 5: System and foreign language interfaces 164

with C code

SEXP lapply(SEXP list, SEXP expr, SEXP rho)

{

int n = length(list);

SEXP ans;

if(!isNewList(list)) error("’list’ must be a list");

if(!isEnvironment(rho)) error("’rho’ should be an environment");

ans = PROTECT(allocVector(VECSXP, n));

for(int i = 0; i < n; i++) {

defineVar(install("x"), VECTOR_ELT(list, i), rho);

SET_VECTOR_ELT(ans, i, eval(expr, rho));

}

setAttrib(ans, R_NamesSymbol, getAttrib(list, R_NamesSymbol));

UNPROTECT(1);

return ans;

}

It would be closer to lapply if we could pass in a function rather than an expression. One
way to do this is via interpreted R code as in the next example, but it is possible (if somewhat
obscure) to do this in C code. The following is based on the code in src/main/optimize.c.

SEXP lapply2(SEXP list, SEXP fn, SEXP rho)

{

int n = length(list);

SEXP R_fcall, ans;

if(!isNewList(list)) error("’list’ must be a list");

if(!isFunction(fn)) error("’fn’ must be a function");

if(!isEnvironment(rho)) error("’rho’ should be an environment");

R_fcall = PROTECT(lang2(fn, R_NilValue));

ans = PROTECT(allocVector(VECSXP, n));

for(int i = 0; i < n; i++) {

SETCADR(R_fcall, VECTOR_ELT(list, i));

SET_VECTOR_ELT(ans, i, eval(R_fcall, rho));

}

setAttrib(ans, R_NamesSymbol, getAttrib(list, R_NamesSymbol));

UNPROTECT(2);

return ans;

}

used by

.Call("lapply2", a, sum, new.env())

Function lang2 creates an executable pairlist of two elements, but this will only be clear to
those with a knowledge of a LISP-like language.

As a more comprehensive example of constructing an R call in C code and evaluating,
consider the following fragment of printAttributes in src/main/print.c.

/* Need to construct a call to

Chapter 5: System and foreign language interfaces 165

print(CAR(a), digits=digits)

based on the R_print structure, then eval(call, env).

See do_docall for the template for this sort of thing.

*/

SEXP s, t;

t = s = PROTECT(allocList(3));

SET_TYPEOF(s, LANGSXP);

SETCAR(t, install("print")); t = CDR(t);

SETCAR(t, CAR(a)); t = CDR(t);

SETCAR(t, ScalarInteger(digits));

SET_TAG(t, install("digits"));

eval(s, env);

UNPROTECT(1);

At this point CAR(a) is the R object to be printed, the current attribute. There are three
steps: the call is constructed as a pairlist of length 3, the list is filled in, and the expression
represented by the pairlist is evaluated.

A pairlist is quite distinct from a generic vector list, the only user-visible form of list in
R. A pairlist is a linked list (with CDR(t) computing the next entry), with items (accessed
by CAR(t)) and names or tags (set by SET_TAG). In this call there are to be three items, a
symbol (pointing to the function to be called) and two argument values, the first unnamed
and the second named. Setting the type to LANGSXPmakes this a call which can be evaluated.

Customarily, the evaluation environment is passed from the calling R code (see rho

above). In special cases it is possible that the C code may need to obtain the current
evaluation environment which can be done via R_GetCurrentEnv() function.

5.11.1 Zero-finding

In this section we re-work the example of Becker, Chambers & Wilks (1988, pp.~205–10)
on finding a zero of a univariate function. The R code and an example are

zero <- function(f, guesses, tol = 1e-7) {

f.check <- function(x) {

x <- f(x)

if(!is.numeric(x)) stop("Need a numeric result")

as.double(x)

}

.Call("zero", body(f.check), as.double(guesses), as.double(tol),

new.env())

}

cube1 <- function(x) (x^2 + 1) * (x - 1.5)

zero(cube1, c(0, 5))

where this time we do the coercion and error-checking in the R code. The C code is

Chapter 5: System and foreign language interfaces 166

SEXP mkans(double x)

{

// no need for PROTECT() here, as REAL(.) does not allocate:

SEXP ans = allocVector(REALSXP, 1);

REAL(ans)[0] = x;

return ans;

}

double feval(double x, SEXP f, SEXP rho)

{

// a version with (too) much PROTECT()ion .. "better safe than sorry"

SEXP symbol, value;

PROTECT(symbol = install("x"));

PROTECT(value = mkans(x));

defineVar(symbol, value, rho);

UNPROTECT(2);

return(REAL(eval(f, rho))[0]);

}

SEXP zero(SEXP f, SEXP guesses, SEXP stol, SEXP rho)

{

double x0 = REAL(guesses)[0], x1 = REAL(guesses)[1],

tol = REAL(stol)[0];

double f0, f1, fc, xc;

if(tol <= 0.0) error("non-positive tol value");

f0 = feval(x0, f, rho); f1 = feval(x1, f, rho);

if(f0 == 0.0) return mkans(x0);

if(f1 == 0.0) return mkans(x1);

if(f0*f1 > 0.0) error("x[0] and x[1] have the same sign");

for(;;) {

xc = 0.5*(x0+x1);

if(fabs(x0-x1) < tol) return mkans(xc);

fc = feval(xc, f, rho);

if(fc == 0) return mkans(xc);

if(f0*fc > 0.0) {

x0 = xc; f0 = fc;

} else {

x1 = xc; f1 = fc;

}

}

}

Chapter 5: System and foreign language interfaces 167

5.11.2 Calculating numerical derivatives

We will use a longer example (by Saikat DebRoy) to illustrate the use of evaluation and
.External. This calculates numerical derivatives, something that could be done as effec-
tively in interpreted R code but may be needed as part of a larger C calculation.

An interpreted R version and an example are

numeric.deriv <- function(expr, theta, rho=sys.frame(sys.parent()))

{

eps <- sqrt(.Machine$double.eps)

ans <- eval(substitute(expr), rho)

grad <- matrix(, length(ans), length(theta),

dimnames=list(NULL, theta))

for (i in seq_along(theta)) {

old <- get(theta[i], envir=rho)

delta <- eps * max(1, abs(old))

assign(theta[i], old+delta, envir=rho)

ans1 <- eval(substitute(expr), rho)

assign(theta[i], old, envir=rho)

grad[, i] <- (ans1 - ans)/delta

}

attr(ans, "gradient") <- grad

ans

}

omega <- 1:5; x <- 1; y <- 2

numeric.deriv(sin(omega*x*y), c("x", "y"))

where expr is an expression, theta a character vector of variable names and rho the envi-
ronment to be used.

For the compiled version the call from R will be

.External("numeric_deriv", expr, theta, rho)

with example usage

.External("numeric_deriv", quote(sin(omega*x*y)),

c("x", "y"), .GlobalEnv)

Note the need to quote the expression to stop it being evaluated in the caller.

Here is the complete C code which we will explain section by section.

#include <R.h> /* for DOUBLE_EPS */

#include <Rinternals.h>

SEXP numeric_deriv(SEXP args)

{

SEXP theta, expr, rho, ans, ans1, gradient, par, dimnames;

double tt, xx, delta, eps = sqrt(DOUBLE_EPS), *rgr, *rans;

int i, start;

Chapter 5: System and foreign language interfaces 168

expr = CADR(args);

if(!isString(theta = CADDR(args)))

error("theta should be of type character");

if(!isEnvironment(rho = CADDDR(args)))

error("rho should be an environment");

ans = PROTECT(coerceVector(eval(expr, rho), REALSXP));

gradient = PROTECT(allocMatrix(REALSXP, LENGTH(ans), LENGTH(theta)));

rgr = REAL(gradient); rans = REAL(ans);

for(i = 0, start = 0; i < LENGTH(theta); i++, start += LENGTH(ans)) {

par = PROTECT(findVar(installChar(STRING_ELT(theta, i)), rho));

tt = REAL(par)[0];

xx = fabs(tt);

delta = (xx < 1) ? eps : xx*eps;

REAL(par)[0] += delta;

ans1 = PROTECT(coerceVector(eval(expr, rho), REALSXP));

for(int j = 0; j < LENGTH(ans); j++)

rgr[j + start] = (REAL(ans1)[j] - rans[j])/delta;

REAL(par)[0] = tt;

UNPROTECT(2); /* par, ans1 */

}

dimnames = PROTECT(allocVector(VECSXP, 2));

SET_VECTOR_ELT(dimnames, 1, theta);

dimnamesgets(gradient, dimnames);

setAttrib(ans, install("gradient"), gradient);

UNPROTECT(3); /* ans gradient dimnames */

return ans;

}

The code to handle the arguments is

expr = CADR(args);

if(!isString(theta = CADDR(args)))

error("theta should be of type character");

if(!isEnvironment(rho = CADDDR(args)))

error("rho should be an environment");

Note that we check for correct types of theta and rho but do not check the type of expr.
That is because eval can handle many types of R objects other than EXPRSXP. There is no
useful coercion we can do, so we stop with an error message if the arguments are not of the
correct mode.

The first step in the code is to evaluate the expression in the environment rho, by

ans = PROTECT(coerceVector(eval(expr, rho), REALSXP));

We then allocate space for the calculated derivative by

gradient = PROTECT(allocMatrix(REALSXP, LENGTH(ans), LENGTH(theta)));

Chapter 5: System and foreign language interfaces 169

The first argument to allocMatrix gives the SEXPTYPE of the matrix: here we want it to
be REALSXP. The other two arguments are the numbers of rows and columns. (Note that
LENGTH is intended to be used for vectors: length is more generally applicable.)

for(i = 0, start = 0; i < LENGTH(theta); i++, start += LENGTH(ans)) {

par = PROTECT(findVar(installChar(STRING_ELT(theta, i)), rho));

Here, we are entering a for loop. We loop through each of the variables. In the for loop, we
first create a symbol corresponding to the i’th element of the STRSXP theta. Here, STRING_
ELT(theta, i) accesses the i’th element of the STRSXP theta. Macro CHAR() extracts the
actual character representation18 of it: it returns a pointer. We then install the name and
use findVar to find its value.

tt = REAL(par)[0];

xx = fabs(tt);

delta = (xx < 1) ? eps : xx*eps;

REAL(par)[0] += delta;

ans1 = PROTECT(coerceVector(eval(expr, rho), REALSXP));

We first extract the real value of the parameter, then calculate delta, the increment to be
used for approximating the numerical derivative. Then we change the value stored in par

(in environment rho) by delta and evaluate expr in environment rho again. Because we
are directly dealing with original R memory locations here, R does the evaluation for the
changed parameter value.

for(int j = 0; j < LENGTH(ans); j++)

rgr[j + start] = (REAL(ans1)[j] - rans[j])/delta;

REAL(par)[0] = tt;

UNPROTECT(2);

}

Now, we compute the i’th column of the gradient matrix. Note how it is accessed: R stores
matrices by column (like Fortran).

dimnames = PROTECT(allocVector(VECSXP, 2));

SET_VECTOR_ELT(dimnames, 1, theta);

dimnamesgets(gradient, dimnames);

setAttrib(ans, install("gradient"), gradient);

UNPROTECT(3);

return ans;

}

First we add column names to the gradient matrix. This is done by allocating a list (a
VECSXP) whose first element, the row names, is NULL (the default) and the second element,
the column names, is set as theta. This list is then assigned as the attribute having the
symbol R_DimNamesSymbol. Finally we set the gradient matrix as the gradient attribute of
ans, unprotect the remaining protected locations and return the answer ans.

5.12 Parsing R code from C

Suppose an R extension want to accept an R expression from the user and evaluate it.
The previous section covered evaluation, but the expression will be entered as text and

18 see Section 5.15 [Character encoding issues], page 174, for why this might not be what is required.

Chapter 5: System and foreign language interfaces 170

needs to be parsed first. A small part of R’s parse interface is declared in header file
R_ext/Parse.h19.

An example of the usage can be found in the (example) Windows package windlgs
included in the R source tree. The essential part is

#include <R.h>

#include <Rinternals.h>

#include <R_ext/Parse.h>

SEXP menu_ttest3()

{

char cmd[256];

SEXP cmdSexp, cmdexpr, ans = R_NilValue;

ParseStatus status;

...

if(done == 1) {

cmdSexp = PROTECT(allocVector(STRSXP, 1));

SET_STRING_ELT(cmdSexp, 0, mkChar(cmd));

cmdexpr = PROTECT(R_ParseVector(cmdSexp, -1, &status, R_NilValue));

if (status != PARSE_OK) {

UNPROTECT(2);

error("invalid call %s", cmd);

}

/* Loop is needed here as EXPSEXP will be of length > 1 */

for(int i = 0; i < length(cmdexpr); i++)

ans = eval(VECTOR_ELT(cmdexpr, i), R_GlobalEnv);

UNPROTECT(2);

}

return ans;

}

Note that a single line of text may give rise to more than one R expression.

R_ParseVector is essentially the code used to implement parse(text=) at R level. The
first argument is a character vector (corresponding to text) and the second the maximal
number of expressions to parse (corresponding to n). The third argument is a pointer to a
variable of an enumeration type, and it is normal (as parse does) to regard all values other
than PARSE_OK as an error. Other values which might be returned are PARSE_INCOMPLETE

(an incomplete expression was found) and PARSE_ERROR (a syntax error), in both cases the
value returned being R_NilValue. The fourth argument is a length one character vector to
be used as a filename in error messages, a srcfile object or the R NULL object (as in the
example above). If a srcfile object was used, a srcref attribute would be attached to
the result, containing a list of srcref objects of the same length as the expression, to allow
it to be echoed with its original formatting.

19 This is only guaranteed to show the current interface: it is liable to change.

Chapter 5: System and foreign language interfaces 171

5.12.1 Accessing source references

The source references added by the parser are recorded by R’s evaluator as it evaluates
code. Two functions make these available to debuggers running C code:

SEXP R_GetCurrentSrcref(int skip);

This function checks R_Srcref and the current evaluation stack for entries that contain
source reference information. The skip argument tells how many source references to skip
before returning the SEXP of the srcref object, counting from the top of the stack. If skip
< 0, abs(skip) locations are counted up from the bottom of the stack. If too few or no
source references are found, NULL is returned.

SEXP R_GetSrcFilename(SEXP srcref);

This function extracts the filename from the source reference for display, returning a
length 1 character vector containing the filename. If no name is found, "" is returned.

5.13 External pointers and weak references

The SEXPTYPEs EXTPTRSXP and WEAKREFSXP can be encountered at R level, but are created
in C code.

External pointer SEXPs are intended to handle references to C structures such as ‘han-
dles’, and are used for this purpose in package RODBC (https://CRAN.R-project.org/
package=RODBC) for example. They are unusual in their copying semantics in that when an
R object is copied, the external pointer object is not duplicated. (For this reason external
pointers should only be used as part of an object with normal semantics, for example an
attribute or an element of a list.)

An external pointer is created by

SEXP R_MakeExternalPtr(void *p, SEXP tag, SEXP prot);

where p is the pointer (and hence this cannot portably be a function pointer), and tag and
prot are references to ordinary R objects which will remain in existence (be protected from
garbage collection) for the lifetime of the external pointer object. A useful convention is to
use the tag field for some form of type identification and the prot field for protecting the
memory that the external pointer represents, if that memory is allocated from the R heap.
Both tag and prot can be R_NilValue, and often are.

An alternative way to create an external pointer from a function pointer is

typedef void * (*R_DL_FUNC)();

SEXP R_MakeExternalPtrFn(R_DL_FUNC p, SEXP tag, SEXP prot);

The elements of an external pointer can be accessed and set via

void *R_ExternalPtrAddr(SEXP s);

DL_FUNC R_ExternalPtrAddrFn(SEXP s);

SEXP R_ExternalPtrTag(SEXP s);

SEXP R_ExternalPtrProtected(SEXP s);

void R_ClearExternalPtr(SEXP s);

void R_SetExternalPtrAddr(SEXP s, void *p);

void R_SetExternalPtrTag(SEXP s, SEXP tag);

void R_SetExternalPtrProtected(SEXP s, SEXP p);

Clearing a pointer sets its value to the C NULL pointer.

https://CRAN.R-project.org/package=RODBC
https://CRAN.R-project.org/package=RODBC

Chapter 5: System and foreign language interfaces 172

An external pointer object can have a finalizer, a piece of code to be run when the
object is garbage collected. This can be R code or C code, and the various interfaces are,
respectively.

void R_RegisterFinalizerEx(SEXP s, SEXP fun, Rboolean onexit);

typedef void (*R_CFinalizer_t)(SEXP);

void R_RegisterCFinalizerEx(SEXP s, R_CFinalizer_t fun, Rboolean onexit);

The R function indicated by fun should be a function of a single argument, the object to
be finalized. R does not perform a garbage collection when shutting down, and the onexit
argument of the extended forms can be used to ask that the finalizer be run during a normal
shutdown of the R session. It is suggested that it is good practice to clear the pointer on
finalization.

The only R level function for interacting with external pointers is reg.finalizer which
can be used to set a finalizer.

It is probably not a good idea to allow an external pointer to be saved and then reloaded,
but if this happens the pointer will be set to the C NULL pointer.

Finalizers can be run at many places in the code base and much of it, including the R
interpreter, is not re-entrant. So great care is needed in choosing the code to be run in a
finalizer. Finalizers are marked to be run at garbage collection but only run at a somewhat
safe point thereafter.

Weak references are used to allow the programmer to maintain information on entities
without preventing the garbage collection of the entities once they become unreachable.

A weak reference contains a key and a value. The value is reachable is if it either
reachable directly or via weak references with reachable keys. Once a value is determined
to be unreachable during garbage collection, the key and value are set to R_NilValue and
the finalizer will be run later in the garbage collection.

Weak reference objects are created by one of

SEXP R_MakeWeakRef(SEXP key, SEXP val, SEXP fin, Rboolean onexit);

SEXP R_MakeWeakRefC(SEXP key, SEXP val, R_CFinalizer_t fin,

Rboolean onexit);

where the R or C finalizer are specified in exactly the same way as for an external pointer
object (whose finalization interface is implemented via weak references).

The parts can be accessed via

SEXP R_WeakRefKey(SEXP w);

SEXP R_WeakRefValue(SEXP w);

void R_RunWeakRefFinalizer(SEXP w);

A toy example of the use of weak references can be found at https://homepage.stat.
uiowa.edu/~luke/R/references/weakfinex.html, but that is used to add finalizers to
external pointers which can now be done more directly. At the time of writing no CRAN or
Bioconductor package uses weak references.

5.13.1 An example

Package RODBC (https://CRAN.R-project.org/package=RODBC) uses external pointers
to maintain its channels, connections to databases. There can be several connections open

https://homepage.stat.uiowa.edu/~luke/R/references/weakfinex.html
https://homepage.stat.uiowa.edu/~luke/R/references/weakfinex.html
https://CRAN.R-project.org/package=RODBC

Chapter 5: System and foreign language interfaces 173

at once, and the status information for each is stored in a C structure (pointed to by
thisHandle in the code extract below) that is returned via an external pointer as part of
the RODBC ‘channel’ (as the "handle_ptr" attribute). The external pointer is created by

SEXP ans, ptr;

ans = PROTECT(allocVector(INTSXP, 1));

ptr = R_MakeExternalPtr(thisHandle, install("RODBC_channel"), R_NilValue);

PROTECT(ptr);

R_RegisterCFinalizerEx(ptr, chanFinalizer, TRUE);

...

/* return the channel no */

INTEGER(ans)[0] = nChannels;

/* and the connection string as an attribute */

setAttrib(ans, install("connection.string"), constr);

setAttrib(ans, install("handle_ptr"), ptr);

UNPROTECT(3);

return ans;

Note the symbol given to identify the usage of the external pointer, and the use of the
finalizer. Since the final argument when registering the finalizer is TRUE, the finalizer will
be run at the end of the R session (unless it crashes). This is used to close and clean up
the connection to the database. The finalizer code is simply

static void chanFinalizer(SEXP ptr)

{

if(!R_ExternalPtrAddr(ptr)) return;

inRODBCClose(R_ExternalPtrAddr(ptr));

R_ClearExternalPtr(ptr); /* not really needed */

}

Clearing the pointer and checking for a NULL pointer avoids any possibility of attempting
to close an already-closed channel.

R’s connections provide another example of using external pointers, in that case purely
to be able to use a finalizer to close and destroy the connection if it is no longer is use.

5.14 Vector accessor functions

The vector accessors like REAL and INTEGER and VECTOR_ELT are functions when used in R
extensions. (For efficiency they may be macros or inline functions when used in the R source
code, apart from SET_STRING_ELT and SET_VECTOR_ELT which are always functions.)

The accessor functions check that they are being used on an appropriate type of SEXP.

If efficiency is essential, the internal versions of the accessors can be obtained by defining
‘USE_RINTERNALS’ before including Rinternals.h. If you find it necessary to do so, please
do test that your code compiles without ‘USE_RINTERNALS’ defined, as this provides a stricter
test that the accessors have been used correctly. Also be prepared to adjust your code should
R internals change. Note too that the use of ‘USE_RINTERNALS’ when the header is included
in C++ code is not supported: doing so may use C99 features which are not necessarily
supported by the C++ compiler. Nor is use with Rdefines.h supported.

The accessor functions, and other functions in the R API, are also subject to change
to support the ‘ALTREP’ project (https://svn.r-project.org/R/branches/ALTREP/

https://svn.r-project.org/R/branches/ALTREP/ALTREP.html

Chapter 5: System and foreign language interfaces 174

ALTREP.html). Code that does not define ‘USE_RINTERNALS’ should not be affected by
these changes, but code that does define ‘USE_RINTERNALS’ may need to be adjusted.

5.15 Character encoding issues

CHARSXPs can be marked as coming from a known encoding (Latin-1 or UTF-8). This is
mainly intended for human-readable output, and most packages can just treat such CHARSXPs
as a whole. However, if they need to be interpreted as characters or output at C level then it
would normally be correct to ensure that they are converted to the encoding of the current
locale: this can be done by accessing the data in the CHARSXP by translateChar rather
than by CHAR. If re-encoding is needed this allocates memory with R_alloc which thus
persists to the end of the .Call/.External call unless vmaxset is used (see Section 6.1.1
[Transient storage allocation], page 176).

There is a similar function translateCharUTF8 which converts to UTF-8: this has the
advantage that a faithful translation is almost always possible (whereas only a few languages
can be represented in the encoding of the current locale unless that is UTF-8).

Both translateChar and translateCharUTF8 will translate any input, using escapes
such as ‘<A9>’ and ‘<U+0093>’ to represent untranslatable parts of the input.

There is a public interface to the encoding marked on CHARSXPs via

typedef enum {CE_NATIVE, CE_UTF8, CE_LATIN1, CE_BYTES, CE_SYMBOL, CE_ANY} cetype_t;

cetype_t getCharCE(SEXP);

SEXP mkCharCE(const char *, cetype_t);

Only CE_UTF8 and CE_LATIN1 are marked on CHARSXPs (and so Rf_getCharCE will only
return one of the first three), and these should only be used on non-ASCII strings. Value
CE_BYTES is used to make CHARSXPs which should be regarded as a set of bytes and not
translated. Value CE_SYMBOL is used internally to indicate Adobe Symbol encoding. Value
CE_ANY is used to indicate a character string that will not need re-encoding – this is used
for character strings known to be in ASCII, and can also be used as an input parameter
where the intention is that the string is treated as a series of bytes. (See the comments
under mkChar about the length of input allowed.)

Function

const char *reEnc(const char *x, cetype_t ce_in, cetype_t ce_out,

int subst);

can be used to re-encode character strings: like translateChar it returns a string allocated
by R_alloc. This can translate from CE_SYMBOL to CE_UTF8, but not conversely. Argument
subst controls what to do with untranslatable characters or invalid input: this is done
byte-by-byte with 1 indicates to output hex of the form <a0>, and 2 to replace by ., with
any other value causing the byte to produce no output.

There is also

SEXP mkCharLenCE(const char *, size_t, cetype_t);

to create marked character strings of a given length.

https://svn.r-project.org/R/branches/ALTREP/ALTREP.html
https://svn.r-project.org/R/branches/ALTREP/ALTREP.html

175

6 The R API: entry points for C code

There are a large number of entry points in the R executable/DLL that can be called from
C code (and some that can be called from Fortran code). Only those documented here are
stable enough that they will only be changed with considerable notice.

The recommended procedure to use these is to include the header file R.h in your C code
by

#include <R.h>

This will include several other header files from the directory R_INCLUDE_DIR/R_ext, and
there are other header files there that can be included too, but many of the features they
contain should be regarded as undocumented and unstable.

Most of these header files, including all those included by R.h, can be used from C++
code.

Note: Because R re-maps many of its external names to avoid clashes with user
code, it is essential to include the appropriate header files when using these
entry points.

This remapping can cause problems1, and can be eliminated by defining R_NO_REMAP and
prepending ‘Rf_’ to all the function names used from Rinternals.h and R_ext/Error.h.
These problems can usually be avoided by including other headers (such as system headers
and those for external software used by the package) before R.h.

We can classify the entry points as

API Entry points which are documented in this manual and declared in an installed
header file. These can be used in distributed packages and will only be changed
after deprecation.

public Entry points declared in an installed header file that are exported on all R
platforms but are not documented and subject to change without notice.

private Entry points that are used when building R and exported on all R platforms
but are not declared in the installed header files. Do not use these in distributed
code.

hidden Entry points that are where possible (Windows and some modern Unix-alike
compilers/loaders when using R as a shared library) not exported.

6.1 Memory allocation

There are two types of memory allocation available to the C programmer, one in which R
manages the clean-up and the other in which user has full control (and responsibility).

These functions are declared in header R_exts/RS.h which is included by R.h.

1 Known problems are redefining LENGTH, error, length, vector and warning

Chapter 6: The R API: entry points for C code 176

6.1.1 Transient storage allocation

Here R will reclaim the memory at the end of the call to .C, .Call or .External. Use

char *R_alloc(size_t n, int size)

which allocates n units of size bytes each. A typical usage (from package stats) is

x = (int *) R_alloc(nrows(merge)+2, sizeof(int));

(size_t is defined in stddef.h which the header defining R_alloc includes.)

There is a similar call, S_alloc (for compatibility with older versions of S) which zeroes
the memory allocated,

char *S_alloc(long n, int size)

and

char *S_realloc(char *p, long new, long old, int size)

which changes the allocation size from old to new units, and zeroes the additional units.

For compatibility with current versions of S, header S.h (only) defines wrapper macros
equivalent to

type* Salloc(long n, int type)

type* Srealloc(char *p, long new, long old, int type)

This memory is taken from the heap, and released at the end of the .C, .Call or
.External call. Users can also manage it, by noting the current position with a call to
vmaxget and subsequently clearing memory allocated by a call to vmaxset. An example
might be

void *vmax = vmaxget()

// a loop involving the use of R_alloc at each iteration

vmaxset(vmax)

This is only recommended for experts.

Note that this memory will be freed on error or user interrupt (if allowed: see Section 6.13
[Allowing interrupts], page 195).

The memory returned is only guaranteed to be aligned as required for double pointers:
take precautions if casting to a pointer which needs more. There is also

long double *R_allocLD(size_t n)

which is guaranteed to have the 16-byte alignment needed for long double pointers on some
platforms.

These functions should only be used in code called by .C etc, never from front-ends.
They are not thread-safe.

6.1.2 User-controlled memory

The other form of memory allocation is an interface to malloc, the interface providing R
error signaling. This memory lasts until freed by the user and is additional to the memory
allocated for the R workspace.

The interface functions are

type* Calloc(size_t n, type)

type* Realloc(any *p, size_t n, type)

void Free(any *p)

Chapter 6: The R API: entry points for C code 177

providing analogues of calloc, realloc and free. If there is an error during allocation it
is handled by R, so if these routines return the memory has been successfully allocated or
freed. Free will set the pointer p to NULL. (Some but not all versions of S do so.)

Users should arrange to Free this memory when no longer needed, including on error or
user interrupt. This can often be done most conveniently from an on.exit action in the
calling R function – see pwilcox for an example.

Do not assume that memory allocated by Calloc/Realloc comes from the same pool
as used by malloc: in particular do not use free or strdup with it.

Memory obtained by these functions should be aligned in the same way as malloc, that
is ‘suitably aligned for any kind of variable’.

These entry points need to be prefixed by R_ if STRICT_R_HEADERS has been defined.

6.2 Error signaling

The basic error signaling routines are the equivalents of stop and warning in R code, and
use the same interface.

void error(const char * format, ...);

void warning(const char * format, ...);

These have the same call sequences as calls to printf, but in the simplest case can be
called with a single character string argument giving the error message. (Don’t do this if
the string contains ‘%’ or might otherwise be interpreted as a format.)

If STRICT_R_HEADERS is not defined there is also an S-compatibility interface which uses
calls of the form

PROBLEM ERROR

MESSAGE WARN

PROBLEM RECOVER(NULL_ENTRY)

MESSAGE WARNING(NULL_ENTRY)

the last two being the forms available in all S versions. Here ‘......’ is a set of arguments to
printf, so can be a string or a format string followed by arguments separated by commas.

6.2.1 Error signaling from Fortran

There are two interface function provided to call error and warning from Fortran code, in
each case with a simple character string argument. They are defined as

subroutine rexit(message)

subroutine rwarn(message)

Messages of more than 255 characters are truncated, with a warning.

6.3 Random number generation

The interface to R’s internal random number generation routines is

double unif_rand();

double norm_rand();

double exp_rand();

double R_unif_index(double);

Chapter 6: The R API: entry points for C code 178

giving one uniform, normal or exponential pseudo-random variate. However, before these
are used, the user must call

GetRNGstate();

and after all the required variates have been generated, call

PutRNGstate();

These essentially read in (or create) .Random.seed and write it out after use.

File S.h defines seed_in and seed_out for S-compatibility rather than GetRNGstate

and PutRNGstate. These take a long * argument which is ignored.

The random number generator is private to R; there is no way to select the kind of RNG
or set the seed except by evaluating calls to the R functions.

The C code behind R’s rxxx functions can be accessed by including the header file
Rmath.h; See Section 6.7.1 [Distribution functions], page 184. Those calls generate a single
variate and should also be enclosed in calls to GetRNGstate and PutRNGstate.

6.4 Missing and IEEE special values

A set of functions is provided to test for NA, Inf, -Inf and NaN. These functions are accessed
via macros:

ISNA(x) True for R’s NA only
ISNAN(x) True for R’s NA and IEEE NaN

R_FINITE(x) False for Inf, -Inf, NA, NaN

and via function R_IsNaN which is true for NaN but not NA.

Do use R_FINITE rather than isfinite or finite; the latter is often mendacious and
isfinite is only available on a some platforms, on which R_FINITE is a macro expanding
to isfinite.

Currently in C code ISNAN is a macro calling isnan. (Since this gives problems on some
C++ systems, if the R headers is called from C++ code a function call is used.)

You can check for Inf or -Inf by testing equality to R_PosInf or R_NegInf, and set
(but not test) an NA as NA_REAL.

All of the above apply to double variables only. For integer variables there is a variable
accessed by the macro NA_INTEGER which can used to set or test for missingness.

6.5 Printing

The most useful function for printing from a C routine compiled into R is Rprintf. This is
used in exactly the same way as printf, but is guaranteed to write to R’s output (which
might be a GUI console rather than a file, and can be re-directed by sink). It is wise to write
complete lines (including the "\n") before returning to R. It is defined in R_ext/Print.h.

The function REprintf is similar but writes on the error stream (stderr) which may or
may not be different from the standard output stream.

Functions Rvprintf and REvprintf are analogues using the vprintf interface. Because
that is a C992 interface, they are only defined by R_ext/Print.h in C++ code if the macro

2 also part of C++11.

Chapter 6: The R API: entry points for C code 179

R_USE_C99_IN_CXX is defined when it is included or, as from R 4.0.0, a C++11 compiler is
used.

Another circumstance when it may be important to use these functions is when us-
ing parallel computation on a cluster of computational nodes, as their output will be re-
directed/logged appropriately.

6.5.1 Printing from Fortran

On many systems Fortran write and print statements can be used, but the output may
not interleave well with that of C, and may be invisible on GUI interfaces. They are not
portable and best avoided.

Some subroutines are provided to ease the output of information from Fortran code.

subroutine dblepr(label, nchar, data, ndata)

subroutine realpr(label, nchar, data, ndata)

subroutine intpr (label, nchar, data, ndata)

and from R 4.0.0,

subroutine labelpr(label, nchar)

subroutine dblepr1(label, nchar, var)

subroutine realpr1(label, nchar, var)

subroutine intpr1 (label, nchar, var)

Here label is a character label of up to 255 characters, nchar is its length (which can be -1
if the whole label is to be used), data is an array of length at least ndata of the appropriate
type (double precision, real and integer respectively) and var is a (scalar) variable.
These routines print the label on one line and then print data or var as if it were an R
vector on subsequent line(s). Note that some compilers will give an error or warning unless
data is an array: others will accept a scalar when ndata has value one or zero. NB: There
is no check on the type of data or var, so using real (including a real constant) instead of
double precision will give incorrect answers.

intpr works with zero ndata so can be used to print a label in earlier versions of R.

6.6 Calling C from Fortran and vice versa

Naming conventions for symbols generated by Fortran differ by platform: it is not safe to
assume that Fortran names appear to C with a trailing underscore. To help cover up the
platform-specific differences there is a set of macros3 that should be used.

F77_SUB(name)

to define a function in C to be called from Fortran

F77_NAME(name)

to declare a Fortran routine in C before use

F77_CALL(name)

to call a Fortran routine from C

F77_COMDECL(name)

to declare a Fortran common block in C

3 The ‘F77_’ in the names is historical and dates back to usage in S.

Chapter 6: The R API: entry points for C code 180

F77_COM(name)

to access a Fortran common block from C

On most current platforms these are all the same, but it is unwise to rely on this.
Note that names containing underscores were not legal in Fortran 77, and are not portably
handled by the above macros. (Also, all Fortran names for use by R are lower case, but
this is not enforced by the macros.)

For example, suppose we want to call R’s normal random numbers from Fortran. We
need a C wrapper along the lines of

#include <R.h>

void F77_SUB(rndstart)(void) { GetRNGstate(); }

void F77_SUB(rndend)(void) { PutRNGstate(); }

double F77_SUB(normrnd)(void) { return norm_rand(); }

to be called from Fortran as in

subroutine testit()

double precision normrnd, x

call rndstart()

x = normrnd()

call dblepr("X was", 5, x, 1)

call rndend()

end

Note that this is not guaranteed to be portable, for the return conventions might not be
compatible between the C and Fortran compilers used. (Passing values via arguments is
safer.)

The standard packages, for example stats, are a rich source of further examples.

Where supported, link time optimization provides a reliable way to check the consistency
of calls to C from Fortran or vice versa. See Section 4.5 [Using Link-time Optimization],
page 127. One place where this occurs is the registration of .Fortran calls in C code (see
Section 5.4 [Registering native routines], page 133). For example

init.c:10:13: warning: type of ’vsom_’ does not match original

declaration [-Wlto-type-mismatch]

extern void F77_NAME(vsom)(void *, void *, void *, void *,

void *, void *, void *, void *, void *);

vsom.f90:20:33: note: type mismatch in parameter 9

subroutine vsom(neurons,dt,dtrows,dtcols,xdim,ydim,alpha,train)

vsom.f90:20:33: note: ’vsom’ was previously declared here

shows that a subroutine has been registered with 9 arguments (as that is what the
.Fortran call used) but only has 8.

6.6.1 Fortran character strings

Passing character strings from C to Fortran or vice versa is not portable, but can be done
with care. The internal representations are different: a character array in C (or C++) is nul-
terminated so its length can be computed by strlen. Fortran character arrays are typically
stored as an array of bytes and a length. This matters when passing strings from C to

Chapter 6: The R API: entry points for C code 181

Fortran or vice versa: in many cases one has been able to get away with passing the string
but not the length. However, in 2019 this changed for gfortran, starting with version 9 but
backported to versions 7 and 8. Several months later, gfortran 9.2 introduced an option

-ftail-call-workaround

and made it the current default but said it might be withdrawn in future.

Suppose we want a function to report a message from Fortran to R’s console (one could
use labelpr, or intpr with dummy data, but this might be the basis of a custom reporting
function). Suppose the equivalent in Fortran would be

subroutine rmsg(msg)

character*(*) msg

print *.msg

end

in file rmsg.f. Using gfortran 9.2 and later we can extract the C view by

gfortran -c -fc-prototypes-external rmsg.f

which gives

void rmsg_ (char *msg, size_t msg_len);

(where size_t applies to version 8 and later). We could re-write that portably in C as

#define USE_FC_LEN_T

#include <Rconfig.h> // included by R.h, so define USE_FC_LEN_T early

void F77_NAME(rmsg)(char *msg, FC_LEN_T msg_len)

{

char cmsg[msg_len+1];

strncpy(cmsg, msg, msg_len);

cmsg[msg_len] = ’\0’; // nul-terminate the string, to be sure

// do something with ’cmsg’

}

in code depending on R(>= 3.6.2). For earlier versions of R we could just assume that
msg is nul-terminated (not guaranteed, but people have been getting away with it for many
years), so the complete C side might be

#define USE_FC_LEN_T

#include <Rconfig.h>

#ifdef FC_LEN_T

void F77_NAME(rmsg)(char *msg, FC_LEN_T msg_len)

{

char cmsg[msg_len+1];

strncpy(cmsg, msg, msg_len);

cmsg[msg_len] = ’\0’;

// do something with ’cmsg’

}

#else

void F77_NAME(rmsg)(char *msg)

{

Chapter 6: The R API: entry points for C code 182

// do something with ’msg’

}

#endif

An alternative is to use Fortran 2003 features to set up the Fortran routine to pass a
C-compatible character string. We could use something like

module cfuncs

use iso_c_binding, only: c_char, c_null_char

interface

subroutine cmsg(msg) bind(C, name = ’cmsg’)

use iso_c_binding, only: c_char

character(kind = c_char):: msg(*)

end subroutine cmsg

end interface

end module

subroutine rmsg(msg)

use cfuncs

character(*) msg

call cmsg(msg//c_null_char) ! need to concatenate a nul terminator

end subroutine rmsg

where the C side is simply

void cmsg(const char *msg)

{

// do something with nul-terminated string ’msg’

}

Passing a variable-length string from C to Fortran is trickier, but
https://software.intel.com/content/www/us/en/develop/documentation/

fortran-compiler-oneapi-dev-guide-and-reference/top/compiler-reference/

mixed-language-programming/standard-tools-for-interoperability/bind.html

provides a recipe. However, all the uses in BLAS and LAPACK are of a single character,
and for these we can write a wrapper in Fortran along the lines of

subroutine c_dgemm(transa, transb, m, n, k, alpha,

+ a, lda, b, ldb, beta, c, ldc)

+ bind(C, name = ’Cdgemm’)

use iso_c_binding, only : c_char, c_int, c_double

character(c_char):: transa, transb

integer(c_int):: m, n, k, lda, ldb, ldc

real(c_double):: alpha, beta, a(lda,*), b(ldb,*), c(ldc,*)

call dgemm(transa, transb, m, n, k, alpha,

+ a, lda, b, ldb, beta, c, ldc)

end subroutine c_dgemm

which is then called from C with declaration

void

Cdgemm(const char *transa, const char *transb, const int *m,

const int *n, const int *k, const double *alpha,

https://software.intel.com/content/www/us/en/develop/documentation/fortran-compiler-oneapi-dev-guide-and-reference/top/compiler-reference/mixed-language-programming/standard-tools-for-interoperability/bind.html
https://software.intel.com/content/www/us/en/develop/documentation/fortran-compiler-oneapi-dev-guide-and-reference/top/compiler-reference/mixed-language-programming/standard-tools-for-interoperability/bind.html
https://software.intel.com/content/www/us/en/develop/documentation/fortran-compiler-oneapi-dev-guide-and-reference/top/compiler-reference/mixed-language-programming/standard-tools-for-interoperability/bind.html

Chapter 6: The R API: entry points for C code 183

const double *a, const int *lda, const double *b, const int *ldb,

const double *beta, double *c, const int *ldc);

Alternatively, do as R does as from version 3.6.2 and pass the character length(s) from C
to Fortran. A portable way to do this is

// before any R headers, or define in PKG_CPPFLAGS

#define USE_FC_LEN_T

#include <Rconfig.h>

#include <R_ext/BLAS.h>

#ifndef FCONE

define FCONE

#endif

...

F77_CALL(dgemm)("N", "T", &nrx, &ncy, &ncx, &one, x,

&nrx, y, &nry, &zero, z, &nrx FCONE FCONE);

(Note there is no comma before or between the FCONE invocations.) It is strongly rec-
ommended that packages which call from C/C++ BLAS/LAPACK routines with character
arguments adopt this approach.

6.6.2 Fortran LOGICAL

Passing Fortran LOGICAL variables to/from C/C++ is potentially compiler-dependent.
Fortran compilers have long used a 32-bit integer type so it is pretty portable to use int *

on the C/C++ side. However, recent versions of gfortran via the option -fc-prototypes-

external say the C equivalent is int_least32_t *: ‘Link-Time Optimization’ will report
int * as a mismatch. It is possible to use iso_c_binding in Fortran to map LOGICAL
variables to the C99 type _Bool, but it is usually simpler to pass integers to and fro.

6.6.3 Passing functions

A number of packages call C functions passed as arguments to Fortran code along the lines
of

c subroutine fcn(m,n,x,fvec,iflag)

c integer m,n,iflag

c double precision x(n),fvec(m)

...

subroutine lmdif(fcn, ...

where the C declaration and call are

void fcn_lmdif(int *m, int *n, double *par, double *fvec, int *iflag);

void F77_NAME(lmdif)(void (*fcn_lmdif)(int *m, int *n, double *par,

double *fvec, int *iflag), ...

F77_CALL(lmdif)(&fcn_lmdif, ...

This works on most platforms but depends on the C and Fortran compilers agreeing on
calling conventions: this have been seen to fail. The most portable solution seems to be to
convert the Fortran code to C, perhaps using f2c.

Chapter 6: The R API: entry points for C code 184

6.7 Numerical analysis subroutines

R contains a large number of mathematical functions for its own use, for example numerical
linear algebra computations and special functions.

The header files R_ext/BLAS.h, R_ext/Lapack.h and R_ext/Linpack.h contains dec-
larations of the BLAS, LAPACK and LINPACK linear algebra functions included in R.
These are expressed as calls to Fortran subroutines, and they will also be usable from users’
Fortran code. Although not part of the official API, this set of subroutines is unlikely to
change (but might be supplemented).

The header file Rmath.h lists many other functions that are available and documented
in the following subsections. Many of these are C interfaces to the code behind R functions,
so the R function documentation may give further details.

6.7.1 Distribution functions

The routines used to calculate densities, cumulative distribution functions and quantile
functions for the standard statistical distributions are available as entry points.

The arguments for the entry points follow the pattern of those for the normal distribution:

double dnorm(double x, double mu, double sigma, int give_log);

double pnorm(double x, double mu, double sigma, int lower_tail,

int give_log);

double qnorm(double p, double mu, double sigma, int lower_tail,

int log_p);

double rnorm(double mu, double sigma);

That is, the first argument gives the position for the density and CDF and probability
for the quantile function, followed by the distribution’s parameters. Argument lower tail
should be TRUE (or 1) for normal use, but can be FALSE (or 0) if the probability of the upper
tail is desired or specified.

Finally, give log should be non-zero if the result is required on log scale, and log p should
be non-zero if p has been specified on log scale.

Note that you directly get the cumulative (or “integrated”) hazard function, H(t) =
− log(1− F (t)), by using

- pdist(t, ..., /*lower_tail = */ FALSE, /* give_log = */ TRUE)

or shorter (and more cryptic) - pdist(t, ..., 0, 1).

The random-variate generation routine rnorm returns one normal variate. See Section 6.3
[Random numbers], page 177, for the protocol in using the random-variate routines.

Note that these argument sequences are (apart from the names and that rnorm has no n)
mainly the same as the corresponding R functions of the same name, so the documentation
of the R functions can be used. Note that the exponential and gamma distributions are
parametrized by scale rather than rate.

For reference, the following table gives the basic name (to be prefixed by ‘d’, ‘p’, ‘q’ or
‘r’ apart from the exceptions noted) and distribution-specific arguments for the complete
set of distributions.

beta beta a, b
non-central beta nbeta a, b, ncp

Chapter 6: The R API: entry points for C code 185

binomial binom n, p
Cauchy cauchy location, scale
chi-squared chisq df

non-central chi-squared nchisq df, ncp
exponential exp scale (and not rate)
F f n1, n2
non-central F nf n1, n2, ncp
gamma gamma shape, scale
geometric geom p

hypergeometric hyper NR, NB, n
logistic logis location, scale
lognormal lnorm logmean, logsd
negative binomial nbinom size, prob
normal norm mu, sigma
Poisson pois lambda

Student’s t t n

non-central t nt df, delta
Studentized range tukey (*) rr, cc, df
uniform unif a, b
Weibull weibull shape, scale
Wilcoxon rank sum wilcox m, n
Wilcoxon signed rank signrank n

Entries marked with an asterisk only have ‘p’ and ‘q’ functions available, and none of the
non-central distributions have ‘r’ functions. After a call to dwilcox, pwilcox or qwilcox
the function wilcox_free() should be called, and similarly for the signed rank functions.

(If remapping is suppressed, the Normal distribution names are Rf_dnorm4, Rf_pnorm5
and Rf_qnorm5.)

For the negative binomial distribution (‘nbinom’), in addition to the (size, prob)

parametrization, the alternative (size, mu) parametrization is provided as well by func-
tions ‘[dpqr]nbinom_mu()’, see ?NegBinomial in R.

Functions dpois_raw(x, *) and dbinom_raw(x, *) are versions of the Poisson and bi-
nomial probability mass functions which work continuously in x, whereas dbinom(x,*) and
dpois(x,*) only return non zero values for integer x.

double dbinom_raw(double x, double n, double p, double q, int give_log)

double dpois_raw (double x, double lambda, int give_log)

Note that dbinom_raw() gets both p and q = 1 − p which may be advantageous when
one of them is close to 1.

6.7.2 Mathematical functions

[Function]double gammafn (double x)
[Function]double lgammafn (double x)
[Function]double digamma (double x)
[Function]double trigamma (double x)
[Function]double tetragamma (double x)
[Function]double pentagamma (double x)

Chapter 6: The R API: entry points for C code 186

[Function]double psigamma (double x, double deriv)
The Gamma function, the natural logarithm of its absolute value and first four deriva-
tives and the n-th derivative of Psi, the digamma function, which is the derivative of
lgammafn. In other words, digamma(x) is the same as psigamma(x,0), trigamma(x)
== psigamma(x,1), etc.

[Function]double beta (double a, double b)
[Function]double lbeta (double a, double b)

The (complete) Beta function and its natural logarithm.

[Function]double choose (double n, double k)
[Function]double lchoose (double n, double k)

The number of combinations of k items chosen from from n and the natural logarithm
of its absolute value, generalized to arbitrary real n. k is rounded to the nearest integer
(with a warning if needed).

[Function]double bessel_i (double x, double nu, double expo)
[Function]double bessel_j (double x, double nu)
[Function]double bessel_k (double x, double nu, double expo)
[Function]double bessel_y (double x, double nu)

Bessel functions of types I, J, K and Y with index nu. For bessel_i and bessel_k

there is the option to return exp(-x) I(x; nu) or exp(x) K(x; nu) if expo is 2. (Use
expo == 1 for unscaled values.)

6.7.3 Numerical Utilities

There are a few other numerical utility functions available as entry points.

[Function]double R_pow (double x, double y)
[Function]double R_pow_di (double x, int i)

R_pow(x, y) and R_pow_di(x, i) compute x^y and x^i, respectively using R_FINITE
checks and returning the proper result (the same as R) for the cases where x, y or i
are 0 or missing or infinite or NaN.

[Function]double log1p (double x)
Computes log(1 + x) (log 1 plus x), accurately even for small x, i.e., |x| � 1.

This should be provided by your platform, in which case it is not included in Rmath.h,
but is (probably) in math.h which Rmath.h includes (except under C++, so it may
not be declared for C++98).

[Function]double log1pmx (double x)
Computes log(1 + x) - x (log 1 plus x minus x), accurately even for small x, i.e.,
|x| � 1.

[Function]double log1pexp (double x)
Computes log(1 + exp(x)) (log 1 plus exp), accurately, notably for large x, e.g.,
x > 720.

[Function]double log1mexp (double x)
Computes log(1 - exp(-x)) (log 1 minus exp), accurately, carefully for two regions
of x, optimally cutting off at log 2 (= 0.693147..), using ((-x) > -M_LN2 ? log(-

expm1(-x)) : log1p(-exp(-x))).

Chapter 6: The R API: entry points for C code 187

[Function]double expm1 (double x)
Computes exp(x) - 1 (exp x minus 1), accurately even for small x, i.e., |x| � 1.

This should be provided by your platform, in which case it is not included in Rmath.h,
but is (probably) in math.h which Rmath.h includes (except under C++, so it may
not be declared for C++98).

[Function]double lgamma1p (double x)
Computes log(gamma(x + 1)) (log(gamma(1 plus x))), accurately even for small x,
i.e., 0 < x < 0.5.

[Function]double cospi (double x)
Computes cos(pi * x) (where pi is 3.14159...), accurately, notably for half integer
x.

This might be provided by your platform4, in which case it is not included in Rmath.h,
but is in math.h which Rmath.h includes. (Ensure that neither math.h nor cmath is
included before Rmath.h or define

#define __STDC_WANT_IEC_60559_FUNCS_EXT__ 1

before the first inclusion.)

[Function]double sinpi (double x)
Computes sin(pi * x) accurately, notably for (half) integer x.

This might be provided by your platform, in which case it is not included in Rmath.h,
but is in math.h which Rmath.h includes (but see the comments for cospi).

[Function]double tanpi (double x)
Computes tan(pi * x) accurately, notably for (half) integer x.

This might be provided by your platform, in which case it is not included in Rmath.h,
but is in math.h which Rmath.h includes (but see the comments for cospi).

[Function]double logspace_add (double logx, double logy)
[Function]double logspace_sub (double logx, double logy)
[Function]double logspace_sum (const double* logx, int n)

Compute the log of a sum or difference from logs of terms, i.e., “x + y” as log

(exp(logx) + exp(logy)) and “x - y” as log (exp(logx) - exp(logy)), and “sum i
x[i]” as log (sum[i = 1:n exp(logx[i])]) without causing unnecessary overflows or
throwing away too much accuracy.

[Function]int imax2 (int x, int y)
[Function]int imin2 (int x, int y)
[Function]double fmax2 (double x, double y)
[Function]double fmin2 (double x, double y)

Return the larger (max) or smaller (min) of two integer or double numbers, respec-
tively. Note that fmax2 and fmin2 differ from C99/C++11’s fmax and fmin when one
of the arguments is a NaN: these versions return NaN.

4 It is an optional C11 extension.

Chapter 6: The R API: entry points for C code 188

[Function]double sign (double x)
Compute the signum function, where sign(x) is 1, 0, or −1, when x is positive, 0, or
negative, respectively, and NaN if x is a NaN.

[Function]double fsign (double x, double y)
Performs “transfer of sign” and is defined as |x| ∗ sign(y).

[Function]double fprec (double x, double digits)
Returns the value of x rounded to digits decimal digits (after the decimal point).

This is the function used by R’s signif().

[Function]double fround (double x, double digits)
Returns the value of x rounded to digits significant decimal digits.

This is the function used by R’s round(). (Note that C99/C++11 provide a round

function but C++98 need not.)

[Function]double ftrunc (double x)
Returns the value of x truncated (to an integer value) towards zero.

6.7.4 Mathematical constants

R has a set of commonly used mathematical constants encompassing constants defined by
POSIX and usually5 found in math.h (but maybe not in the C++ header cmath) and contains
further ones that are used in statistical computations. These are defined to (at least) 30
digits accuracy in Rmath.h. The following definitions use ln(x) for the natural logarithm
(log(x) in R).

Name Definition (ln = log) round(value, 7)
M_E e 2.7182818
M_LOG2E log2(e) 1.4426950
M_LOG10E log10(e) 0.4342945
M_LN2 ln(2) 0.6931472
M_LN10 ln(10) 2.3025851
M_PI π 3.1415927
M_PI_2 π/2 1.5707963
M_PI_4 π/4 0.7853982
M_1_PI 1/π 0.3183099
M_2_PI 2/π 0.6366198
M_2_SQRTPI 2/sqrt(π) 1.1283792
M_SQRT2 sqrt(2) 1.4142136
M_SQRT1_2 1/sqrt(2) 0.7071068
M_SQRT_3 sqrt(3) 1.7320508
M_SQRT_32 sqrt(32) 5.6568542
M_LOG10_2 log10(2) 0.3010300
M_2PI 2π 6.2831853
M_SQRT_PI sqrt(π) 1.7724539
M_1_SQRT_2PI 1/sqrt(2π) 0.3989423

5 but see the second paragraph of see Section 1.6.4 [Portable C and C++ code], page 69.

Chapter 6: The R API: entry points for C code 189

M_SQRT_2dPI sqrt(2/π) 0.7978846
M_LN_SQRT_PI ln(sqrt(π)) 0.5723649
M_LN_SQRT_2PI ln(sqrt(2π)) 0.9189385
M_LN_SQRT_PId2 ln(sqrt(π/2)) 0.2257914

There are a set of constants (PI, DOUBLE_EPS) (and so on) defined (unless STRICT_R_

HEADERS is defined) in the included header R_ext/Constants.h, mainly for compatibility
with S.

Further, the included header R_ext/Boolean.h has enumeration constants TRUE and
FALSE of type Rboolean in order to provide a way of using “logical” variables in C consis-
tently. This can conflict with other software: for example it conflicts with the headers in
IJG’s jpeg-9 (but not earlier versions).

6.8 Optimization

The C code underlying optim can be accessed directly. The user needs to supply a function
to compute the function to be minimized, of the type

typedef double optimfn(int n, double *par, void *ex);

where the first argument is the number of parameters in the second argument. The third
argument is a pointer passed down from the calling routine, normally used to carry auxiliary
information.

Some of the methods also require a gradient function

typedef void optimgr(int n, double *par, double *gr, void *ex);

which passes back the gradient in the gr argument. No function is provided for finite-
differencing, nor for approximating the Hessian at the result.

The interfaces (defined in header R_ext/Applic.h) are

• Nelder Mead:

void nmmin(int n, double *xin, double *x, double *Fmin, optimfn fn,

int *fail, double abstol, double intol, void *ex,

double alpha, double beta, double gamma, int trace,

int *fncount, int maxit);

• BFGS:

void vmmin(int n, double *x, double *Fmin,

optimfn fn, optimgr gr, int maxit, int trace,

int *mask, double abstol, double reltol, int nREPORT,

void *ex, int *fncount, int *grcount, int *fail);

• Conjugate gradients:

void cgmin(int n, double *xin, double *x, double *Fmin,

optimfn fn, optimgr gr, int *fail, double abstol,

double intol, void *ex, int type, int trace,

int *fncount, int *grcount, int maxit);

• Limited-memory BFGS with bounds:

void lbfgsb(int n, int lmm, double *x, double *lower,

double *upper, int *nbd, double *Fmin, optimfn fn,

optimgr gr, int *fail, void *ex, double factr,

Chapter 6: The R API: entry points for C code 190

double pgtol, int *fncount, int *grcount,

int maxit, char *msg, int trace, int nREPORT);

• Simulated annealing:

void samin(int n, double *x, double *Fmin, optimfn fn, int maxit,

int tmax, double temp, int trace, void *ex);

Many of the arguments are common to the various methods. n is the number of parameters,
x or xin is the starting parameters on entry and x the final parameters on exit, with final
value returned in Fmin. Most of the other parameters can be found from the help page for
optim: see the source code src/appl/lbfgsb.c for the values of nbd, which specifies which
bounds are to be used.

6.9 Integration

The C code underlying integrate can be accessed directly. The user needs to supply a
vectorizing C function to compute the function to be integrated, of the type

typedef void integr_fn(double *x, int n, void *ex);

where x[] is both input and output and has length n, i.e., a C function, say fn, of type
integr_fn must basically do for(i in 1:n) x[i] := f(x[i], ex). The vectorization re-
quirement can be used to speed up the integrand instead of calling it n times. Note that
in the current implementation built on QUADPACK, n will be either 15 or 21. The ex ar-
gument is a pointer passed down from the calling routine, normally used to carry auxiliary
information.

There are interfaces (defined in header R_ext/Applic.h) for integrals over finite and
infinite intervals (or “ranges” or “integration boundaries”).

• Finite:

void Rdqags(integr_fn f, void *ex, double *a, double *b,

double *epsabs, double *epsrel,

double *result, double *abserr, int *neval, int *ier,

int *limit, int *lenw, int *last,

int *iwork, double *work);

• Infinite:

void Rdqagi(integr_fn f, void *ex, double *bound, int *inf,

double *epsabs, double *epsrel,

double *result, double *abserr, int *neval, int *ier,

int *limit, int *lenw, int *last,

int *iwork, double *work);

Only the 3rd and 4th argument differ for the two integrators; for the finite range integral
using Rdqags, a and b are the integration interval bounds, whereas for an infinite range
integral using Rdqagi, bound is the finite bound of the integration (if the integral is not
doubly-infinite) and inf is a code indicating the kind of integration range,

inf = 1 corresponds to (bound, +Inf),

inf = -1 corresponds to (-Inf, bound),

inf = 2 corresponds to (-Inf, +Inf),

Chapter 6: The R API: entry points for C code 191

f and ex define the integrand function, see above; epsabs and epsrel specify the ab-
solute and relative accuracy requested, result, abserr and last are the output com-
ponents value, abs.err and subdivisions of the R function integrate, where neval

gives the number of integrand function evaluations, and the error code ier is translated
to R’s integrate() $ message, look at that function definition. limit corresponds to
integrate(..., subdivisions = *). It seems you should always define the two work ar-
rays and the length of the second one as

lenw = 4 * limit;

iwork = (int *) R_alloc(limit, sizeof(int));

work = (double *) R_alloc(lenw, sizeof(double));

The comments in the source code in src/appl/integrate.c give more details, partic-
ularly about reasons for failure (ier >= 1).

6.10 Utility functions

R has a fairly comprehensive set of sort routines which are made available to users’ C code.
The following is declared in header file Rinternals.h.

[Function]void R_orderVector (int* indx, int n, SEXP arglist, Rboolean
nalast, Rboolean decreasing)

[Function]void R_orderVector1 (int* indx, int n, SEXP x, Rboolean nalast,
Rboolean decreasing)

R_orderVector() corresponds to R’s order(..., na.last, decreasing).
More specifically, indx <- order(x, y, na.last, decreasing) corresponds to
R_orderVector(indx, n, Rf_lang2(x, y), nalast, decreasing) and for three
vectors, Rf_lang3(x,y,z) is used as arglist.

Both R_orderVector and R_orderVector1 assume the vector indx to be allocated
to length ≥ n. On return, indx[] contains a permutation of 0:(n-1), i.e., 0-based C
indices (and not 1-based R indices, as R’s order()).

When ordering only one vector, R_orderVector1 is faster and corresponds (but is
0-based) to R’s indx <- order(x, na.last, decreasing). It was added in R 3.3.0.

All other sort routines are declared in header file R_ext/Utils.h (included by R.h) and
include the following.

[Function]void R_isort (int* x, int n)
[Function]void R_rsort (double* x, int n)
[Function]void R_csort (Rcomplex* x, int n)
[Function]void rsort_with_index (double* x, int* index, int n)

The first three sort integer, real (double) and complex data respectively. (Complex
numbers are sorted by the real part first then the imaginary part.) NAs are sorted
last.

rsort_with_index sorts on x, and applies the same permutation to index. NAs are
sorted last.

[Function]void revsort (double* x, int* index, int n)
Is similar to rsort_with_index but sorts into decreasing order, and NAs are not
handled.

Chapter 6: The R API: entry points for C code 192

[Function]void iPsort (int* x, int n, int k)
[Function]void rPsort (double* x, int n, int k)
[Function]void cPsort (Rcomplex* x, int n, int k)

These all provide (very) partial sorting: they permute x so that x[k] is in the correct
place with smaller values to the left, larger ones to the right.

[Function]void R_qsort (double *v, size t i, size t j)
[Function]void R_qsort_I (double *v, int *I, int i, int j)
[Function]void R_qsort_int (int *iv, size t i, size t j)
[Function]void R_qsort_int_I (int *iv, int *I, int i, int j)

These routines sort v[i:j] or iv[i:j] (using 1-indexing, i.e., v[1] is the first el-
ement) calling the quicksort algorithm as used by R’s sort(v, method = "quick")

and documented on the help page for the R function sort. The ..._I() versions
also return the sort.index() vector in I. Note that the ordering is not stable, so
tied values may be permuted.

Note that NAs are not handled (explicitly) and you should use different sorting func-
tions if NAs can be present.

[Function]subroutine qsort4 (double precision v, integer indx, integer ii,
integer jj)

[Function]subroutine qsort3 (double precision v, integer ii, integer jj)
The Fortran interface routines for sorting double precision vectors are qsort3 and
qsort4, equivalent to R_qsort and R_qsort_I, respectively.

[Function]void R_max_col (double* matrix, int* nr, int* nc, int* maxes, int*
ties_meth)

Given the nr by nc matrix matrix in column-major (“Fortran”) order, R_max_col()
returns in maxes[i-1] the column number of the maximal element in the i-th row
(the same as R’s max.col() function). In the case of ties (multiple maxima), *ties_
meth is an integer code in 1:3 determining the method: 1 = “random”, 2 = “first”
and 3 = “last”. See R’s help page ?max.col.

[Function]int findInterval (double* xt, int n, double x, Rboolean
rightmost_closed, Rboolean all_inside, int ilo, int* mflag)

[Function]int findInterval2(double* xt, int n, double x, Rboolean
rightmost_closed, Rboolean all_inside, Rboolean left_open, int
ilo, int* mflag)

Given the ordered vector xt of length n, return the interval or index of x in xt[],
typically max(i; 1 ≤ i ≤ n & xt[i] ≤ x) where we use 1-indexing as in R and Fortran
(but not C). If rightmost closed is true, also returns n−1 if x equals xt[n]. If all inside
is not 0, the result is coerced to lie in 1:(n-1) even when x is outside the xt[] range.
On return, *mflag equals −1 if x < xt[1], +1 if x >= xt[n], and 0 otherwise.

The algorithm is particularly fast when ilo is set to the last result of findInterval()
and x is a value of a sequence which is increasing or decreasing for subsequent calls.

findInterval2() is a generalization of findInterval(), with an extra Rboolean

argument left open. Setting left_open = TRUE basically replaces all left-closed right-
open intervals [s by left-open ones (s, see the help page of R function findInterval

for details.

Chapter 6: The R API: entry points for C code 193

There is also an F77_CALL(interv)() version of findInterval() with the same
arguments, but all pointers.

A system-independent interface to produce the name of a temporary file is provided as

[Function]char * R_tmpnam (const char *prefix, const char *tmpdir)
[Function]char * R_tmpnam2 (const char *prefix, const char *tmpdir, const

char *fileext)
[Function]void R_free_tmpnam (char *name)

Return a pathname for a temporary file with name beginning with prefix and ending
with fileext in directory tmpdir. A NULL prefix or extension is replaced by "". Note
that the return value is dynamically allocated and should be freed using R_free_

tmpnam when no longer needed (unlike the system call tmpnam). Freeing the result
using free is no longer recommended.

There is also the internal function used to expand file names in several R functions, and
called directly by path.expand.

[Function]const char * R_ExpandFileName (const char *fn)
Expand a path name fn by replacing a leading tilde by the user’s home directory (if
defined). The precise meaning is platform-specific; it will usually be taken from the
environment variable HOME if this is defined.

For historical reasons there are Fortran interfaces to functions D1MACH and I1MACH. These
can be called from C code as e.g. F77_CALL(d1mach)(4). Note that these are emulations
of the original functions by Fox, Hall and Schryer on NetLib at https://www.netlib.org/
slatec/src/ for IEC 60559 arithmetic (required by R).

6.11 Re-encoding

R has its own C-level interface to the encoding conversion capabilities provided by iconv

because there are incompatibilities between the declarations in different implementations of
iconv.

These are declared in header file R_ext/Riconv.h.

[Function]void * Riconv_open (const char *to, const char *from)
Set up a pointer to an encoding object to be used to convert between two encodings: ""

indicates the current locale.

[Function]size_t Riconv (void *cd, const char **inbuf, size t *inbytesleft,
char **outbuf, size t *outbytesleft)

Convert as much as possible of inbuf to outbuf. Initially the size_t variables indicate
the number of bytes available in the buffers, and they are updated (and the char pointers
are updated to point to the next free byte in the buffer). The return value is the number
of characters converted, or (size_t)-1 (beware: size_t is usually an unsigned type). It
should be safe to assume that an error condition sets errno to one of E2BIG (the output
buffer is full), EILSEQ (the input cannot be converted, and might be invalid in the encoding
specified) or EINVAL (the input does not end with a complete multi-byte character).

[Function]int Riconv_close (void * cd)
Free the resources of an encoding object.

https://www.netlib.org/slatec/src/
https://www.netlib.org/slatec/src/

Chapter 6: The R API: entry points for C code 194

6.12 Condition handling and cleanup code

Three functions are available for establishing condition handlers from within C code:

#include <Rinternals.h>

SEXP R_tryCatchError(SEXP (*fun)(void *data), void *data,

SEXP (*hndlr)(SEXP cond, void *hdata), void *hdata);

SEXP R_tryCatch(SEXP (*fun)(void *data), void *data,

SEXP,

SEXP (*hndlr)(SEXP cond, void *hdata), void *hdata,

void (*clean)(void *cdata), void *cdata);

SEXP R_withCallingErrorHandler(SEXP (*fun)(void *data), void *data,

SEXP (*hndlr)(SEXP cond, void *hdata), void *hdata)

R_tryCatchError establishes an exiting handler for conditions inheriting form class
error.

R_tryCatch can be used to establish a handler for other conditions and to register a
cleanup action. The conditions to be handled are specified as a character vector (STRSXP).
A NULL pointer can be passed as fun or clean if condition handling or cleanup are not
needed.

These are currently implemented using the R-level tryCatch mechanism so are subject
to some overhead.

R_withCallingErrorHandler establishes a calling handler for conditions inheriting form
class error. It establishes the handler without calling back into R and will therefore be
more efficient.

The function R_UnwindProtect can be used to ensure that a cleanup action takes place
on ordinary return as well as on a non-local transfer of control, which R implements as a
longjmp.

SEXP R_UnwindProtect(SEXP (*fun)(void *data), void *data,

void (*clean)(void *data, Rboolean jump), void *cdata,

SEXP cont);

R_UnwindProtect can be used in two ways. The simper usage, suitable for use in C code,
passes NULL for the cont argument. R_UnwindProtect will call fun(data). If fun returns
a value, then R_UnwindProtect calls clean(cleandata, FALSE) before returning the value
returned by fun. If fun executes a non-local transfer of control, then clean(cleandata,

TRUE) is called, and the non-local transfer of control is resumed.

The second use pattern, suitable to support C++ stack unwinding, uses two additional
functions:

SEXP R_MakeUnwindCont();

void NORET R_ContinueUnwind(SEXP cont);

R_MakeUnwindCont allocates a continuation token cont to pass to R_UnwindProtect.
This token should be protected with PROTECT before calling R_UnwindProtect. When the
clean function is called with jump == TRUE, indicating that R is executing a non-local
transfer of control, it can throw a C++ exception to a C++ catch outside the C++ code to

Chapter 6: The R API: entry points for C code 195

be unwound, and then use the continuation token in the a call R_ContinueUnwind(cont)
to resume the non-local transfer of control within R.

6.13 Allowing interrupts

No part of R can be interrupted whilst running long computations in compiled code, so
programmers should make provision for the code to be interrupted at suitable points by
calling from C

#include <R_ext/Utils.h>

void R_CheckUserInterrupt(void);

and from Fortran

subroutine rchkusr()

These check if the user has requested an interrupt, and if so branch to R’s error signaling
functions.

Note that it is possible that the code behind one of the entry points defined here if called
from your C or Fortran code could be interruptible or generate an error and so not return
to your code.

6.14 Platform and version information

The header files define USING_R, which can be used to test if the code is indeed being used
with R.

Header file Rconfig.h (included by R.h) is used to define platform-specific macros that
are mainly for use in other header files. The macro WORDS_BIGENDIAN is defined on big-
endian6 systems (e.g. most OSes on Sparc and PowerPC hardware) and not on little-endian
systems (nowadays all the commoner R platforms). It can be useful when manipulating
binary files. NB: these macros apply only to the C compiler used to build R, not necessarily
to another C or C++ compiler.

Header file Rversion.h (not included by R.h) defines a macro R_VERSION giving the
version number encoded as an integer, plus a macro R_Version to do the encoding. This
can be used to test if the version of R is late enough, or to include back-compatibility
features. For protection against very old versions of R which did not have this macro, use
a construction such as

#if defined(R_VERSION) && R_VERSION >= R_Version(3, 1, 0)

...

#endif

More detailed information is available in the macros R_MAJOR, R_MINOR, R_YEAR, R_MONTH
and R_DAY: see the header file Rversion.h for their format. Note that the minor version
includes the patchlevel (as in ‘2.2’).

Packages which use alloca need to ensure it is defined: as it is part of neither C nor
POSIX there is no standard way to do so. One can use

#include <Rconfig.h> // for HAVE_ALLOCA_H

6 https://en.wikipedia.org/wiki/Endianness.

https://en.wikipedia.org/wiki/Endianness

Chapter 6: The R API: entry points for C code 196

#ifdef __GNUC__

// this covers gcc, clang, icc

undef alloca

define alloca(x) __builtin_alloca((x))

#elif defined(HAVE_ALLOCA_H)

// needed for native compilers on Solaris and AIX

include <alloca.h>

#endif

(and this should be included before standard C headers such as stdlib.h, since on some
platforms these include malloc.h which may have a conflicting definition), which suffices
for known R platforms.

6.15 Inlining C functions

The C99 keyword inline should be recognized by all compilers nowadays used to build
R. Portable code which might be used with earlier versions of R can be written using the
macro R_INLINE (defined in file Rconfig.h included by R.h), as for example from package
cluster (https://CRAN.R-project.org/package=cluster)

#include <R.h>

static R_INLINE int ind_2(int l, int j)

{

...

}

Be aware that using inlining with functions in more than one compilation unit is al-
most impossible to do portably, see https://www.greenend.org.uk/rjk/tech/inline.

html, so this usage is for static functions as in the example. All the R configure code has
checked is that R_INLINE can be used in a single C file with the compiler used to build R.
We recommend that packages making extensive use of inlining include their own configure
code.

6.16 Controlling visibility

Header R_ext/Visibility.h has some definitions for controlling the visibility of entry
points. These are only effective when ‘HAVE_VISIBILITY_ATTRIBUTE’ is defined –
this is checked when R is configured and recorded in header Rconfig.h (included by
R_ext/Visibility.h). It is often defined on modern Unix-alikes with a recent compiler7,
but not supported on macOS nor Windows. Minimizing the visibility of symbols in a
shared library will both speed up its loading (unlikely to be significant) and reduce the
possibility of linking to other entry points of the same name.

C/C++ entry points prefixed by attribute_hidden will not be visible in the shared
object. There is no comparable mechanism for Fortran entry points, but there is a more
comprehensive scheme used by, for example package stats. Most compilers which allow con-
trol of visibility will allow control of visibility for all symbols via a flag, and where known the

7 It is defined by the Intel compilers, but also hides unsatisfied references and so cannot be used with R.
It is not supported by the AIX nor Solaris compilers.

https://CRAN.R-project.org/package=cluster
https://www.greenend.org.uk/rjk/tech/inline.html
https://www.greenend.org.uk/rjk/tech/inline.html

Chapter 6: The R API: entry points for C code 197

flag is encapsulated in the macros ‘C_VISIBILITY’, ‘CXX_VISIBILITY’8 and ‘F_VISIBILITY’
for C, C++ and Fortran compilers.9 These are defined in etc/Makeconf and so available for
normal compilation of package code. For example, src/Makevars could include some of

PKG_CFLAGS=$(C_VISIBILITY)

PKG_CXXFLAGS=$(CXX_VISIBILITY)

PKG_FFLAGS=$(F_VISIBILITY)

This would end up with no visible entry points, which would be pointless. However, the
effect of the flags can be overridden by using the attribute_visible prefix. A shared object
which registers its entry points needs only for have one visible entry point, its initializer, so
for example package stats has

void attribute_visible R_init_stats(DllInfo *dll)

{

R_registerRoutines(dll, CEntries, CallEntries, FortEntries, NULL);

R_useDynamicSymbols(dll, FALSE);

...

}

Because the ‘C_VISIBILITY’ mechanism is only useful in conjunction with
attribute_visible, it is not enabled unless ‘HAVE_VISIBILITY_ATTRIBUTE’ is defined.
The usual visibility flag is -fvisibility=hidden: some compilers also support
-fvisibility-inlines-hidden which can be used by overriding ‘C_VISIBILITY’ and
‘CXX_VISIBILITY’ in config.site when building R, or editing etc/Makeconf in the R
installation.

Note that configure only checks that visibility attributes and flags are accepted, not
that they actually hide symbols.

The visibility mechanism is not available on Windows, but there is an equally
effective way to control which entry points are visible, by supplying a definitions file
pkgnme/src/pkgname-win.def: only entry points listed in that file will be visible. Again
using stats as an example, it has

LIBRARY stats.dll

EXPORTS

R_init_stats

6.17 Using these functions in your own C code

It is possible to build Mathlib, the R set of mathematical functions documented in Rmath.h,
as a standalone library libRmath under both Unix-alikes and Windows. (This includes the
functions documented in Section 6.7 [Numerical analysis subroutines], page 184, as from
that header file.)

The library is not built automatically when R is installed, but can be built in the
directory src/nmath/standalone in the R sources: see the file README there. To use the
code in your own C program include

#define MATHLIB_STANDALONE

#include <Rmath.h>

8 This applies to the compiler for the default C++ dialect (currently C++11) and not necessarily to other
dialects.

9 In some cases Fortran compilers accept the flag but do not actually hide their symbols.

Chapter 6: The R API: entry points for C code 198

and link against ‘-lRmath’ (and perhaps ‘-lm’). There is an example file test.c.

A little care is needed to use the random-number routines. You will need to supply the
uniform random number generator

double unif_rand(void)

or use the one supplied (and with a dynamic library or DLL you will have to use the one
supplied, which is the Marsaglia-multicarry with an entry points

set_seed(unsigned int, unsigned int)

to set its seeds and

get_seed(unsigned int *, unsigned int *)

to read the seeds).

6.18 Organization of header files

The header files which R installs are in directory R_INCLUDE_DIR (default R_HOME/include).
This currently includes

R.h includes many other files
S.h different version for code ported from S
Rinternals.h definitions for using R’s internal structures
Rdefines.h macros for an S-like interface to the above (no

longer maintained)

Rmath.h standalone math library
Rversion.h R version information
Rinterface.h for add-on front-ends (Unix-alikes only)
Rembedded.h for add-on front-ends
R_ext/Applic.h optimization and integration
R_ext/BLAS.h C definitions for BLAS routines
R_ext/Callbacks.h C (and R function) top-level task handlers
R_ext/GetX11Image.h X11Image interface used by package trkplot
R_ext/Lapack.h C definitions for some LAPACK routines
R_ext/Linpack.h C definitions for some LINPACK routines, not

all of which are included in R

R_ext/Parse.h a small part of R’s parse interface: not part of
the stable API.

R_ext/RStartup.h for add-on front-ends
R_ext/Rdynload.h needed to register compiled code in packages
R_ext/R-ftp-http.h interface to internal method of download.file
R_ext/Riconv.h interface to iconv

R_ext/Visibility.h definitions controlling visibility
R_ext/eventloop.h for add-on front-ends and for packages that need

to share in the R event loops (not Windows)

The following headers are included by R.h:

Rconfig.h configuration info that is made available
R_ext/Arith.h handling for NAs, NaNs, Inf/-Inf
R_ext/Boolean.h TRUE/FALSE type
R_ext/Complex.h C typedefs for R’s complex

Chapter 6: The R API: entry points for C code 199

R_ext/Constants.h constants
R_ext/Error.h error signaling
R_ext/Memory.h memory allocation
R_ext/Print.h Rprintf and variations.
R_ext/RS.h definitions common to R.h and S.h, including

F77_CALL etc.

R_ext/Random.h random number generation
R_ext/Utils.h sorting and other utilities
R_ext/libextern.h definitions for exports from R.dll on Windows.

The graphics systems are exposed in headers R_ext/GraphicsEngine.h, R_

ext/GraphicsDevice.h (which it includes) and R_ext/QuartzDevice.h. Facilities for
defining custom connection implementations are provided in R_ext/Connections.h, but
make sure you consult the file before use.

Let us re-iterate the advice to include system headers before the R header files, especially
Rinternals.h (included by Rdefines.h) and Rmath.h, which redefine names which may
be used in system headers (fewer if ‘R_NO_REMAP’ is defined, or ‘R_NO_REMAP_RMATH’ for
Rmath.h).

200

7 Generic functions and methods

R programmers will often want to add methods for existing generic functions, and may
want to add new generic functions or make existing functions generic. In this chapter we
give guidelines for doing so, with examples of the problems caused by not adhering to them.

This chapter only covers the ‘informal’ class system copied from S3, and not with the
S4 (formal) methods of package methods.

First, a caveat : a function named gen.cl will be invoked by the generic gen for class
cl, so do not name functions in this style unless they are intended to be methods.

The key function for methods is NextMethod, which dispatches the next method. It is
quite typical for a method function to make a few changes to its arguments, dispatch to the
next method, receive the results and modify them a little. An example is

t.data.frame <- function(x)

{

x <- as.matrix(x)

NextMethod("t")

}

Note that the example above works because there is a next method, the default method,
not that a new method is selected when the class is changed.

Any method a programmer writes may be invoked from another method by NextMethod,
with the arguments appropriate to the previous method. Further, the programmer cannot
predict which method NextMethod will pick (it might be one not yet dreamt of), and the
end user calling the generic needs to be able to pass arguments to the next method. For
this to work

A method must have all the arguments of the generic, including ... if the
generic does.

It is a grave misunderstanding to think that a method needs only to accept the arguments
it needs. The original S version of predict.lm did not have a ... argument, although
predict did. It soon became clear that predict.glm needed an argument dispersion

to handle over-dispersion. As predict.lm had neither a dispersion nor a ... argument,
NextMethod could no longer be used. (The legacy, two direct calls to predict.lm, lives
on in predict.glm in R, which is based on the workaround for S3 written by Venables &
Ripley.)

Further, the user is entitled to use positional matching when calling the generic, and the
arguments to a method called by UseMethod are those of the call to the generic. Thus

A method must have arguments in exactly the same order as the generic.

To see the scale of this problem, consider the generic function scale, defined as

scale <- function (x, center = TRUE, scale = TRUE)

UseMethod("scale")

Suppose an unthinking package writer created methods such as

scale.foo <- function(x, scale = FALSE, ...) { }

Then for x of class "foo" the calls

scale(x, , TRUE)

scale(x, scale = TRUE)

Chapter 7: Generic functions and methods 201

would do most likely do different things, to the justifiable consternation of the end user.

To add a further twist, which default is used when a user calls scale(x) in our example?
What if

scale.bar <- function(x, center, scale = TRUE) NextMethod("scale")

and x has class c("bar", "foo")? It is the default specified in the method that is used,
but the default specified in the generic may be the one the user sees. This leads to the
recommendation:

If the generic specifies defaults, all methods should use the same defaults.

An easy way to follow these recommendations is to always keep generics simple, e.g.

scale <- function(x, ...) UseMethod("scale")

Only add parameters and defaults to the generic if they make sense in all possible
methods implementing it.

7.1 Adding new generics

When creating a new generic function, bear in mind that its argument list will be the
maximal set of arguments for methods, including those written elsewhere years later. So
choosing a good set of arguments may well be an important design issue, and there need to
be good arguments not to include a ... argument.

If a ... argument is supplied, some thought should be given to its position in the
argument sequence. Arguments which follow ...must be named in calls to the function, and
they must be named in full (partial matching is suppressed after ...). Formal arguments
before ... can be partially matched, and so may ‘swallow’ actual arguments intended for
.... Although it is commonplace to make the ... argument the last one, that is not always
the right choice.

Sometimes package writers want to make generic a function in the base package, and
request a change in R. This may be justifiable, but making a function generic with the old
definition as the default method does have a small performance cost. It is never necessary,
as a package can take over a function in the base package and make it generic by something
like

foo <- function(object, ...) UseMethod("foo")

foo.default <- function(object, ...) base::foo(object)

Earlier versions of this manual suggested assigning foo.default <- base::foo. This is not
a good idea, as it captures the base function at the time of installation and it might be
changed as R is patched or updated.

The same idea can be applied for functions in other packages.

202

8 Linking GUIs and other front-ends to R

There are a number of ways to build front-ends to R: we take this to mean a GUI or other
application that has the ability to submit commands to R and perhaps to receive results
back (not necessarily in a text format). There are other routes besides those described here,
for example the package Rserve (https://CRAN.R-project.org/package=Rserve) (from
CRAN, see also https://www.rforge.net/Rserve/) and connections to Java in ‘JRI’ (part
of the rJava (https://CRAN.R-project.org/package=rJava) package on CRAN).

Note that the APIs described in this chapter are only intended to be used in an alternative
front-end: they are not part of the API made available for R packages and can be dangerous
to use in a conventional package (although packages may contain alternative front-ends).
Conversely some of the functions from the API (such as R_alloc) should not be used in
front-ends.

8.1 Embedding R under Unix-alikes

R can be built as a shared library1 if configured with --enable-R-shlib. This shared
library can be used to run R from alternative front-end programs. We will assume this has
been done for the rest of this section. Also, it can be built as a static library if configured
with --enable-R-static-lib, and that can be used in a very similar way (at least on
Linux: on other platforms one needs to ensure that all the symbols exported by libR.a are
linked into the front-end).

The command-line R front-end, R_HOME/bin/exec/R, is one such example, and the for-
mer GNOME (see package gnomeGUI on CRAN’s ‘Archive’ area) and macOS consoles are
others. The source for R_HOME/bin/exec/R is in file src/main/Rmain.c and is very simple

int Rf_initialize_R(int ac, char **av); /* in ../unix/system.c */

void Rf_mainloop(); /* in main.c */

extern int R_running_as_main_program; /* in ../unix/system.c */

int main(int ac, char **av)

{

R_running_as_main_program = 1;

Rf_initialize_R(ac, av);

Rf_mainloop(); /* does not return */

return 0;

}

indeed, misleadingly simple. Remember that R_HOME/bin/exec/R is run from a shell script
R_HOME/bin/R which sets up the environment for the executable, and this is used for

• Setting R_HOME and checking it is valid, as well as the path R_SHARE_DIR and R_DOC_DIR

to the installed share and doc directory trees. Also setting R_ARCH if needed.

• Setting LD_LIBRARY_PATH to include the directories used in linking R. This
is recorded as the default setting of R_LD_LIBRARY_PATH in the shell script
R_HOME/etcR_ARCH/ldpaths.

1 In the parlance of macOS this is a dynamic library, and is the normal way to build R on that platform.

https://CRAN.R-project.org/package=Rserve
https://www.rforge.net/Rserve/
https://CRAN.R-project.org/package=rJava

Chapter 8: Linking GUIs and other front-ends to R 203

• Processing some of the arguments, for example to run R under a debugger and to
launch alternative front-ends to provide GUIs.

The first two of these can be achieved for your front-end by running it via R CMD. So, for
example

R CMD /usr/local/lib/R/bin/exec/R

R CMD exec/R

will both work in a standard R installation. (R CMD looks first for executables in R_HOME/bin.
These command-lines need modification if a sub-architecture is in use.) If you do not want to
run your front-end in this way, you need to ensure that R_HOME is set and LD_LIBRARY_PATH

is suitable. (The latter might well be, but modern Unix/Linux systems do not normally
include /usr/local/lib (/usr/local/lib64 on some architectures), and R does look there
for system components.)

The other senses in which this example is too simple are that all the internal defaults
are used and that control is handed over to the R main loop. There are a number of small
examples2 in the tests/Embedding directory. These make use of Rf_initEmbeddedR in
src/main/Rembedded.c, and essentially use

#include <Rembedded.h>

int main(int ac, char **av)

{

/* do some setup */

Rf_initEmbeddedR(argc, argv);

/* do some more setup */

/* submit some code to R, which is done interactively via

run_Rmainloop();

A possible substitute for a pseudo-console is

R_ReplDLLinit();

while(R_ReplDLLdo1() > 0) {

/* add user actions here if desired */

}

*/

Rf_endEmbeddedR(0);

/* final tidying up after R is shutdown */

return 0;

}

If you do not want to pass R arguments, you can fake an argv array, for example by

char *argv[]= {"REmbeddedPostgres", "--silent"};

Rf_initEmbeddedR(sizeof(argv)/sizeof(argv[0]), argv);

2 but these are not part of the automated test procedures and so little tested.

Chapter 8: Linking GUIs and other front-ends to R 204

However, to make a GUI we usually do want to run run_Rmainloop after setting up
various parts of R to talk to our GUI, and arranging for our GUI callbacks to be called
during the R mainloop.

One issue to watch is that on some platforms Rf_initEmbeddedR and Rf_endEmbeddedR

change the settings of the FPU (e.g. to allow errors to be trapped and to make use of
extended precision registers).

The standard code sets up a session temporary directory in the usual way, unless R_

TempDir is set to a non-NULL value before Rf_initEmbeddedR is called. In that case the
value is assumed to contain an existing writable directory (no check is done), and it is not
cleaned up when R is shut down.

Rf_initEmbeddedR sets R to be in interactive mode: you can set R_Interactive (defined
in Rinterface.h) subsequently to change this.

Note that R expects to be run with the locale category ‘LC_NUMERIC’ set to its default
value of C, and so should not be embedded into an application which changes that.

It is the user’s responsibility to attempt to initialize only once. To protect the R inter-
preter, Rf_initialize_R will exit the process if re-initialization is attempted.

8.1.1 Compiling against the R library

Suitable flags to compile and link against the R (shared or static) library can be found by

R CMD config --cppflags

R CMD config --ldflags

(These apply only to an uninstalled copy or a standard install.)

If R is installed, pkg-config is available and neither sub-architectures nor a macOS
framework have been used, alternatives for a shared R library are

pkg-config --cflags libR

pkg-config --libs libR

and for a static R library

pkg-config --cflags libR

pkg-config --static --libs libR

(This may work for an installed OS framework if pkg-config is taught where to look for
libR.pc: it is installed inside the framework.)

However, a more comprehensive way is to set up a Makefile to compile the front-end.
Suppose file myfe.c is to be compiled to myfe. A suitable Makefile might be

WARNING: does not work when ${R_HOME} contains spaces

include ${R_HOME}/etc${R_ARCH}/Makeconf

all: myfe

The following is not needed, but avoids PIC flags.

myfe.o: myfe.c

$(CC) $(ALL_CPPFLAGS) $(CFLAGS) -c myfe.c -o $@

replace $(LIBR) $(LIBS) by $(STATIC_LIBR) if R was build with a static libR

myfe: myfe.o

$(MAIN_LINK) -o $@ myfe.o $(LIBR) $(LIBS)

Chapter 8: Linking GUIs and other front-ends to R 205

invoked as

R CMD make

R CMD myfe

Even though not recommended, ${R_HOME} may contain spaces. In that case, it cannot
be passed as an argument to include in the makefile. Instead, one can instruct make

using the -f option to include Makeconf, for example via recursive invocation of make, see
Section 1.6 [Writing portable packages], page 56.

all:

$(MAKE) -f "${R_HOME}/etc${R_ARCH}/Makeconf" -f Makefile.inner

Additional flags which $(MAIN_LINK) includes are, amongst others, those to select
OpenMP and --export-dynamic for the GNU linker on some platforms. In principle
$(LIBS) is not needed when using a shared R library as libR is linked against those li-
braries, but some platforms need the executable also linked against them.

8.1.2 Setting R callbacks

For Unix-alikes there is a public header file Rinterface.h that makes it possible to change
the standard callbacks used by R in a documented way. This defines pointers (if R_

INTERFACE_PTRS is defined)

extern void (*ptr_R_Suicide)(const char *);

extern void (*ptr_R_ShowMessage)(const char *);

extern int (*ptr_R_ReadConsole)(const char *, unsigned char *, int, int);

extern void (*ptr_R_WriteConsole)(const char *, int);

extern void (*ptr_R_WriteConsoleEx)(const char *, int, int);

extern void (*ptr_R_ResetConsole)();

extern void (*ptr_R_FlushConsole)();

extern void (*ptr_R_ClearerrConsole)();

extern void (*ptr_R_Busy)(int);

extern void (*ptr_R_CleanUp)(SA_TYPE, int, int);

extern int (*ptr_R_ShowFiles)(int, const char **, const char **,

const char *, Rboolean, const char *);

extern int (*ptr_R_ChooseFile)(int, char *, int);

extern int (*ptr_R_EditFile)(const char *);

extern void (*ptr_R_loadhistory)(SEXP, SEXP, SEXP, SEXP);

extern void (*ptr_R_savehistory)(SEXP, SEXP, SEXP, SEXP);

extern void (*ptr_R_addhistory)(SEXP, SEXP, SEXP, SEXP);

extern int (*ptr_R_EditFiles)(int, const char **, const char **, const char *);

extern SEXP (*ptr_do_selectlist)(SEXP, SEXP, SEXP, SEXP);

extern SEXP (*ptr_do_dataentry)(SEXP, SEXP, SEXP, SEXP);

extern SEXP (*ptr_do_dataviewer)(SEXP, SEXP, SEXP, SEXP);

extern void (*ptr_R_ProcessEvents)();

which allow standard R callbacks to be redirected to your GUI. What these do is generally
documented in the file src/unix/system.txt.

[Function]void R_ShowMessage (char *message)
This should display the message, which may have multiple lines: it should be brought
to the user’s attention immediately.

Chapter 8: Linking GUIs and other front-ends to R 206

[Function]void R_Busy (int which)
This function invokes actions (such as change of cursor) when R embarks on an
extended computation (which=1) and when such a state terminates (which=0).

[Function]int R_ReadConsole (const char *prompt, unsigned char *buf, int
buflen, int hist)

[Function]void R_WriteConsole (const char *buf, int buflen)
[Function]void R_WriteConsoleEx (const char *buf, int buflen, int otype)
[Function]void R_ResetConsole ()
[Function]void R_FlushConsole ()
[Function]void R_ClearErrConsole ()

These functions interact with a console.

R_ReadConsole prints the given prompt at the console and then does a fgets(3)–like
operation, transferring up to buflen characters into the buffer buf. The last two bytes
should be set to ‘"\n\0"’ to preserve sanity. If hist is non-zero, then the line should
be added to any command history which is being maintained. The return value is 0
is no input is available and >0 otherwise.

R_WriteConsoleEx writes the given buffer to the console, otype specifies the output
type (regular output or warning/error). Call to R_WriteConsole(buf, buflen) is
equivalent to R_WriteConsoleEx(buf, buflen, 0). To ensure backward compatibil-
ity of the callbacks, ptr_R_WriteConsoleEx is used only if ptr_R_WriteConsole is
set to NULL. To ensure that stdout() and stderr() connections point to the console,
set the corresponding files to NULL via

R_Outputfile = NULL;

R_Consolefile = NULL;

R_ResetConsole is called when the system is reset after an error. R_FlushConsole is
called to flush any pending output to the system console. R_ClearerrConsole clears
any errors associated with reading from the console.

[Function]int R_ShowFiles (int nfile, const char **file, const char
**headers, const char *wtitle, Rboolean del, const char *pager)

This function is used to display the contents of files.

[Function]int R_ChooseFile (int new, char *buf, int len)
Choose a file and return its name in buf of length len. Return value is 0 for success,
> 0 otherwise.

[Function]int R_EditFile (const char *buf)
Send a file to an editor window.

[Function]int R_EditFiles (int nfile, const char **file, const char **title,
const char *editor)

Send nfile files to an editor, with titles possibly to be used for the editor window(s).

[Function]SEXP R_loadhistory (SEXP, SEXP, SEXP, SEXP);
[Function]SEXP R_savehistory (SEXP, SEXP, SEXP, SEXP);
[Function]SEXP R_addhistory (SEXP, SEXP, SEXP, SEXP);

.Internal functions for loadhistory, savehistory and timestamp.

Chapter 8: Linking GUIs and other front-ends to R 207

If the console has no history mechanism these can be as simple as

SEXP R_loadhistory (SEXP call, SEXP op, SEXP args, SEXP env)

{

errorcall(call, "loadhistory is not implemented");

return R_NilValue;

}

SEXP R_savehistory (SEXP call, SEXP op , SEXP args, SEXP env)

{

errorcall(call, "savehistory is not implemented");

return R_NilValue;

}

SEXP R_addhistory (SEXP call, SEXP op , SEXP args, SEXP env)

{

return R_NilValue;

}

The R_addhistory function should return silently if no history mechanism is present,
as a user may be calling timestamp purely to write the time stamp to the console.

[Function]void R_Suicide (const char *message)
This should abort R as rapidly as possible, displaying the message. A possible imple-
mentation is

void R_Suicide (const char *message)

{

char pp[1024];

snprintf(pp, 1024, "Fatal error: %s\n", message);

R_ShowMessage(pp);

R_CleanUp(SA_SUICIDE, 2, 0);

}

[Function]void R_CleanUp (SA TYPE saveact, int status, int RunLast)
This function invokes any actions which occur at system termination. It needs to be
quite complex:

#include <Rinterface.h>

#include <Rembedded.h> /* for Rf_KillAllDevices */

void R_CleanUp (SA_TYPE saveact, int status, int RunLast)

{

if(saveact == SA_DEFAULT) saveact = SaveAction;

if(saveact == SA_SAVEASK) {

/* ask what to do and set saveact */

}

switch (saveact) {

case SA_SAVE:

if(runLast) R_dot_Last();

if(R_DirtyImage) R_SaveGlobalEnv();

/* save the console history in R_HistoryFile */

break;

Chapter 8: Linking GUIs and other front-ends to R 208

case SA_NOSAVE:

if(runLast) R_dot_Last();

break;

case SA_SUICIDE:

default:

break;

}

R_RunExitFinalizers();

/* clean up after the editor e.g. CleanEd() */

R_CleanTempDir();

/* close all the graphics devices */

if(saveact != SA_SUICIDE) Rf_KillAllDevices();

fpu_setup(FALSE);

exit(status);

}

These callbacks should never be changed in a running R session (and hence cannot be
called from an extension package).

[Function]SEXP R_dataentry (SEXP, SEXP, SEXP, SEXP);
[Function]SEXP R_dataviewer (SEXP, SEXP, SEXP, SEXP);
[Function]SEXP R_selectlist (SEXP, SEXP, SEXP, SEXP);

.External functions for dataentry (and edit on matrices and data frames), View
and select.list. These can be changed if they are not currently in use.

8.1.3 Registering symbols

An application embedding R needs a different way of registering symbols because it is not
a dynamic library loaded by R as would be the case with a package. Therefore R reserves
a special DllInfo entry for the embedding application such that it can register symbols to
be used with .C, .Call etc. This entry can be obtained by calling getEmbeddingDllInfo,
so a typical use is

DllInfo *info = R_getEmbeddingDllInfo();

R_registerRoutines(info, cMethods, callMethods, NULL, NULL);

The native routines defined by cMethods and callMethods should be present in the
embedding application. See Section 5.4 [Registering native routines], page 133, for details
on registering symbols in general.

8.1.4 Meshing event loops

One of the most difficult issues in interfacing R to a front-end is the handling of event loops,
at least if a single thread is used. R uses events and timers for

• Running X11 windows such as the graphics device and data editor, and interacting
with them (e.g., using locator()).

Chapter 8: Linking GUIs and other front-ends to R 209

• Supporting Tcl/Tk events for the tcltk package (for at least the X11 version of Tk).

• Preparing input.

• Timing operations, for example for profiling R code and Sys.sleep().

• Interrupts, where permitted.

Specifically, the Unix-alike command-line version of R runs separate event loops for

• Preparing input at the console command-line, in file src/unix/sys-unix.c.

• Waiting for a response from a socket in the internal functions underlying FTP and
HTTP transfers in download.file() and for direct socket access, in files src/

modules/internet/nanoftp.c, src/modules/internet/nanohttp.c and src/

modules/internet/Rsock.c

• Mouse and window events when displaying the X11-based dataentry window, in file
src/modules/X11/dataentry.c. This is regarded as modal, and no other events are
serviced whilst it is active.

There is a protocol for adding event handlers to the first two types of event loops, using
types and functions declared in the header R_ext/eventloop.h and described in comments
in file src/unix/sys-std.c. It is possible to add (or remove) an input handler for events
on a particular file descriptor, or to set a polling interval (via R_wait_usec) and a function
to be called periodically via R_PolledEvents: the polling mechanism is used by the tcltk
package.

It is not intended that these facilities are used by packages, but if they are needed
exceptionally, the package should ensure that it cleans up and removes its handlers when
its namespace is unloaded. Note that the header sys/select.h is needed3: users should
check this is available and define HAVE_SYS_SELECT_H before including R_ext/eventloop.h.
(It is often the case that another header will include sys/select.h before eventloop.h is
processed, but this should not be relied on.)

An alternative front-end needs both to make provision for other R events whilst waiting
for input, and to ensure that it is not frozen out during events of the second type. The
ability to add a polled handler as R_timeout_handler is used by the tcltk package.

8.1.5 Threading issues

Embedded R is designed to be run in the main thread, and all the testing is done in that
context. There is a potential issue with the stack-checking mechanism where threads are
involved. This uses two variables declared in Rinterface.h (if CSTACK_DEFNS is defined)
as

extern uintptr_t R_CStackLimit; /* C stack limit */

extern uintptr_t R_CStackStart; /* Initial stack address */

Note that uintptr_t is an optional C99 type for which a substitute is defined in R, so your
code needs to define HAVE_UINTPTR_T appropriately. To do so, test if the type is defined in
C header stdint.h or C++ header cstdint and if so include the header and define HAVE_

UINTPTR_T before including Rinterface.h. (For C code one can simply include Rconfig.h,
possibly via R.h, and for C++11 code Rinterface.h will include the header cstdint.)

3 At least according to POSIX 2004 and later. Earlier standards prescribed sys/time.h:
R_ext/eventloop.h will include it if HAVE_SYS_TIME_H is defined.

Chapter 8: Linking GUIs and other front-ends to R 210

These will be set4 when Rf_initialize_R is called, to values appropriate to the main
thread. Stack-checking can be disabled by setting R_CStackLimit = (uintptr_t)-1 im-
mediately after Rf_initialize_R is called, but it is better to if possible set appropriate
values. (What these are and how to determine them are OS-specific, and the stack size
limit may differ for secondary threads. If you have a choice of stack size, at least 10Mb is
recommended.)

You may also want to consider how signals are handled: R sets signal handlers for several
signals, including SIGINT, SIGSEGV, SIGPIPE, SIGUSR1 and SIGUSR2, but these can all be
suppressed by setting the variable R_SignalHandlers (declared in Rinterface.h) to 0.

Note that these variables must not be changed by an R package: a package should not
call R internals which makes use of the stack-checking mechanism on a secondary thread.

8.2 Embedding R under Windows

All Windows interfaces to R call entry points in the DLL R.dll, directly or indirectly.
Simpler applications may find it easier to use the indirect route via (D)COM.

8.2.1 Using (D)COM

(D)COM is a standard Windows mechanism used for communication between Windows
applications. One application (here R) is run as COM server which offers services to clients,
here the front-end calling application. The services are described in a ‘Type Library’ and
are (more or less) language-independent, so the calling application can be written in C or
C++ or Visual Basic or Perl or Python and so on. The ‘D’ in (D)COM refers to ‘distributed’,
as the client and server can be running on different machines.

The basic R distribution is not a (D)COM server, but two addons are currently available
that interface directly with R and provide a (D)COM server:

• There is a (D)COM server called StatConnector written by Thomas Baier available
via https://www.autstat.com/, which works with R packages to support transfer of
data to and from R and remote execution of R commands, as well as embedding of an
R graphics window.

Recent versions have usage restrictions.

8.2.2 Calling R.dll directly

The R DLL is mainly written in C and has _cdecl entry points. Calling it directly will be
tricky except from C code (or C++ with a little care).

There is a version of the Unix-alike interface calling

int Rf_initEmbeddedR(int ac, char **av);

void Rf_endEmbeddedR(int fatal);

which is an entry point in R.dll. Examples of its use (and a suitable Makefile.win) can
be found in the tests/Embedding directory of the sources. You may need to ensure that
R_HOME/bin is in your PATH so the R DLLs are found.

4 at least on platforms where the values are available, that is having getrlimit and on Linux or having
sysctl supporting KERN_USRSTACK, including FreeBSD and macOS.

https://www.autstat.com/

Chapter 8: Linking GUIs and other front-ends to R 211

Examples of calling R.dll directly are provided in the directory src/gnuwin32/

front-ends, including a simple command-line front end rtest.c whose code is

#define Win32

#include <windows.h>

#include <stdio.h>

#include <Rversion.h>

#define LibExtern __declspec(dllimport) extern

#include <Rembedded.h>

#include <R_ext/RStartup.h>

/* for askok and askyesnocancel */

#include <graphapp.h>

/* for signal-handling code */

#include <psignal.h>

/* simple input, simple output */

/* This version blocks all events: a real one needs to call ProcessEvents

frequently. See rterm.c and ../system.c for one approach using

a separate thread for input.

*/

int myReadConsole(const char *prompt, char *buf, int len, int addtohistory)

{

fputs(prompt, stdout);

fflush(stdout);

if(fgets(buf, len, stdin)) return 1; else return 0;

}

void myWriteConsole(const char *buf, int len)

{

printf("%s", buf);

}

void myCallBack(void)

{

/* called during i/o, eval, graphics in ProcessEvents */

}

void myBusy(int which)

{

/* set a busy cursor ... if which = 1, unset if which = 0 */

}

static void my_onintr(int sig) { UserBreak = 1; }

int main (int argc, char **argv)

{

structRstart rp;

Rstart Rp = &rp;

char Rversion[25], *RHome;

sprintf(Rversion, "%s.%s", R_MAJOR, R_MINOR);

if(strcmp(getDLLVersion(), Rversion) != 0) {

fprintf(stderr, "Error: R.DLL version does not match\n");

exit(1);

}

R_setStartTime();

Chapter 8: Linking GUIs and other front-ends to R 212

R_DefParams(Rp);

if((RHome = get_R_HOME()) == NULL) {

fprintf(stderr, "R_HOME must be set in the environment or Registry\n");

exit(1);

}

Rp->rhome = RHome;

Rp->home = getRUser();

Rp->CharacterMode = LinkDLL;

Rp->ReadConsole = myReadConsole;

Rp->WriteConsole = myWriteConsole;

Rp->CallBack = myCallBack;

Rp->ShowMessage = askok;

Rp->YesNoCancel = askyesnocancel;

Rp->Busy = myBusy;

Rp->R_Quiet = TRUE; /* Default is FALSE */

Rp->R_Interactive = FALSE; /* Default is TRUE */

Rp->RestoreAction = SA_RESTORE;

Rp->SaveAction = SA_NOSAVE;

R_SetParams(Rp);

R_set_command_line_arguments(argc, argv);

FlushConsoleInputBuffer(GetStdHandle(STD_INPUT_HANDLE));

signal(SIGBREAK, my_onintr);

GA_initapp(0, 0);

readconsolecfg();

setup_Rmainloop();

#ifdef SIMPLE_CASE

run_Rmainloop();

#else

R_ReplDLLinit();

while(R_ReplDLLdo1() > 0) {

/* add user actions here if desired */

}

/* only get here on EOF (not q()) */

#endif

Rf_endEmbeddedR(0);

return 0;

}

The ideas are

• Check that the front-end and the linked R.dll match – other front-ends may allow a
looser match.

• Find and set the R home directory and the user’s home directory. The former
may be available from the Windows Registry: it will be in HKEY_LOCAL_

MACHINE\Software\R-core\R\InstallPath from an administrative install and
HKEY_CURRENT_USER\Software\R-core\R\InstallPath otherwise, if selected during
installation (as it is by default).

• Define startup conditions and callbacks via the Rstart structure. R_DefParams sets
the defaults, and R_SetParams sets updated values.

• Record the command-line arguments used by R_set_command_line_arguments for use
by the R function commandArgs().

• Set up the signal handler and the basic user interface.

Chapter 8: Linking GUIs and other front-ends to R 213

• Run the main R loop, possibly with our actions intermeshed.

• Arrange to clean up.

An underlying theme is the need to keep the GUI ‘alive’, and this has not been done
in this example. The R callback R_ProcessEvents needs to be called frequently to ensure
that Windows events in R windows are handled expeditiously. Conversely, R needs to allow
the GUI code (which is running in the same process) to update itself as needed – two ways
are provided to allow this:

• R_ProcessEvents calls the callback registered by Rp->callback. A version of this is
used to run package Tcl/Tk for tcltk under Windows, for the code is

void R_ProcessEvents(void)

{

while (peekevent()) doevent(); /* Windows events for GraphApp */

if (UserBreak) { UserBreak = FALSE; onintr(); }

R_CallBackHook();

if(R_tcldo) R_tcldo();

}

• The mainloop can be split up to allow the calling application to take some action
after each line of input has been dealt with: see the alternative code below #ifdef

SIMPLE_CASE.

It may be that no R GraphApp windows need to be considered, although these include
pagers, the windows() graphics device, the R data and script editors and various popups
such as choose.file() and select.list(). It would be possible to replace all of these,
but it seems easier to allow GraphApp to handle most of them.

It is possible to run R in a GUI in a single thread (as RGui.exe shows) but it will
normally be easier5 to use multiple threads.

Note that R’s own front ends use a stack size of 10Mb, whereas MinGW executables
default to 2Mb, and Visual C++ ones to 1Mb. The latter stack sizes are too small for a
number of R applications, so general-purpose front-ends should use a larger stack size.

8.2.3 Finding R HOME

Both applications which embed R and those which use a system call to invoke R (as
Rscript.exe, Rterm.exe or R.exe) need to be able to find the R bin directory. The
simplest way to do so is the ask the user to set an environment variable R_HOME and use
that, but naive users may be flummoxed as to how to do so or what value to use.

The R for Windows installers have for a long time allowed the value of R_HOME to be
recorded in the Windows Registry: this is optional but selected by default. Where it is
recorded has changed over the years to allow for multiple versions of R to be installed at
once, and to allow 32- and 64-bit versions of R to be installed on the same machine.

The basic Registry location is Software\R-core\R. For an administrative install this is
under HKEY_LOCAL_MACHINE and on a 64-bit OS HKEY_LOCAL_MACHINE\Software\R-core\R

is by default redirected for a 32-bit application, so a 32-bit application will see the infor-
mation for the last 32-bit install, and a 64-bit application that for the last 64-bit install.

5 An attempt to use only threads in the late 1990s failed to work correctly under Windows 95, the
predominant version of Windows at that time.

Chapter 8: Linking GUIs and other front-ends to R 214

For a personal install, the information is under HKEY_CURRENT_USER\Software\R-core\R
which is seen by both 32-bit and 64-bit applications and so records the last install of
either architecture. To circumvent this, there are locations Software\R-core\R32 and
Software\R-core\R64 which always refer to one architecture.

When R is installed and recording is not disabled then two string values are written
at that location for keys InstallPath and Current Version, and these keys are removed
when R is uninstalled. To allow information about other installed versions to be retained,
there is also a key named something like 3.0.0 or 3.0.0 patched or 3.1.0 Pre-release

with a value for InstallPath.

So a comprehensive algorithm to search for R_HOME is something like

• Decide which of personal or administrative installs should have precedence. There
are arguments both ways: we find that with roaming profiles that HKEY_CURRENT_

USER\Software often gets reverted to an earlier version. Do the following for one or
both of HKEY_CURRENT_USER and HKEY_LOCAL_MACHINE.

• If the desired architecture is known, look in Software\R-core\R32 or
Software\R-core\R64, and if that does not exist or the architecture is immaterial, in
Software\R-core\R.

• If key InstallPath exists then this is R_HOME (recorded using backslashes). If it does
not, look for version-specific keys like 2.11.0 alpha, pick the latest (which is of itself
a complicated algorithm as 2.11.0 patched > 2.11.0 > 2.11.0 alpha > 2.8.1) and
use its value for InstallPath.

215

Function and variable index

.

.C . 129

.Call . 149, 160

.External . 149, 161

.Fortran . 129

.Last.lib . 51

.onAttach . 51

.onDetach . 51

.onLoad . 51

.onUnload . 51

.Random.seed . 177

\
\acronym . 92
\alias . 83
\arguments . 85
\author . 85
\bold . 90
\cite . 91
\code . 90
\command . 91
\concept . 95
\cr . 89
\CRANpkg{pkg} . 98
\deqn . 93
\describe . 92
\description . 83
\details . 85
\dfn . 91
\doi{numbers} . 98
\dontrun . 86
\dontshow . 86
\dots . 95
\dQuote . 90
\email . 91
\emph . 90
\enc . 95
\enumerate . 92
\env . 91
\eqn . 93
\examples . 85
\figure . 94
\file . 91
\format . 88
\href . 91
\if . 96
\ifelse . 96
\itemize . 92
\kbd . 90
\keyword . 86
\ldots . 95
\link . 92
\method . 84

\name . 82
\newcommand . 98
\note . 85
\option . 91
\out . 96
\packageAuthor . 98
\packageDescription . 98
\packageDESCRIPTION . 98
\packageIndices . 98
\packageMaintainer . 98
\packageTitle . 98
\pkg . 90
\preformatted . 90
\RdOpts . 96
\references . 85
\renewcommand . 98
\R . 95
\S3method . 84
\samp . 90
\section . 89
\seealso . 85
\Sexpr . 96
\source . 88
\sQuote . 90
\sspace . 98
\strong . 90
\tabular . 92
\title . 83
\url . 91
\usage . 83
\value . 85
\var . 91
\verb . 90

A
allocVector . 152
AUTHORS . 18

B
bessel_i . 186
bessel_j . 186
bessel_k . 186
bessel_y . 186
beta . 186
BLAS_LIBS . 27
browser . 110

Function and variable index 216

C
Calloc . 176
CAR . 162
CDR . 162
cgmin . 189
choose . 186
CITATION . 18, 78
COPYRIGHTS . 6, 18
cospi . 187
cPsort . 192

D
debug . 114
debugger . 113
defineVar . 158
digamma . 185
dump.frames . 112
duplicate . 159
dyn.load . 131
dyn.unload . 131

E
exp_rand . 177
expm1 . 187
export . 49
exportClasses . 55
exportClassPattern . 55
exportMethods . 55
exportPattern . 50, 55

F
FALSE . 189
findInterval . 192
findInterval2(double* . 192
findVar . 158
FLIBS . 27
fmax2 . 187
fmin2 . 187
fprec . 188
Free . 176
fround . 188
fsign . 188
ftrunc . 188

G
gammafn . 185
gctorture . 115
getAttrib . 155
getCharCE . 174
GetRNGstate . 177

I
imax2 . 187
imin2 . 187
import . 50
importClassesFrom . 56
importFrom . 50
importMethodsFrom . 56
install . 155
iPsort . 192
ISNA . 163, 178
ISNAN . 163, 178

L
LAPACK_LIBS . 27
lbeta . 186
lbfgsb . 189
lchoose . 186
lgamma1p . 187
lgammafn . 185
library.dynam . 15, 132
log1mexp . 186
log1p . 186
log1pexp . 186
log1pmx . 186
logspace_add . 187
logspace_sub . 187
logspace_sum . 187

M
M_E . 188
M_PI . 188
mkChar . 157
mkCharCE . 174
mkCharLen . 157
mkCharLenCE . 174

N
NA_REAL . 178
NEWS.Rd . 18
nmmin . 189
norm_rand . 177

O
OBJECTS . 27, 142

Function and variable index 217

P
pentagamma . 185
PKG_CFLAGS . 142
PKG_CPPFLAGS . 142
PKG_CXXFLAGS . 142
PKG_FCFLAGS . 35
PKG_FFLAGS . 142
PKG_LIBS . 142
PKG_OBJCFLAGS . 142
PKG_OBJCXXFLAGS . 142
prompt . 82
PROTECT . 150
PROTECT_WITH_INDEX . 151
psigamma . 185
PutRNGstate . 177

Q
qsort3 . 192
qsort4 . 192

R
R CMD build . 42
R CMD check . 39
R CMD config . 24
R CMD Rd2pdf . 99
R CMD Rdconv . 99
R CMD SHLIB . 142
R CMD Stangle . 100
R CMD Sweave . 100
R_addhistory . 206
R_alloc . 176
R_allocLD . 176
R_Busy . 206
R_ChooseFile . 206
R_CleanUp . 207
R_ClearErrConsole . 206
R_csort . 191
R_dataentry . 208
R_dataviewer . 208
R_EditFile . 206
R_EditFiles . 206
R_ExpandFileName . 193
R_FINITE . 178
R_FlushConsole . 206
R_forceSymbols . 136
R_free_tmpnam . 193
R_GetCCallable . 141
R_GetCurrentSrcref . 171
R_GetSrcFilename . 171
R_INLINE . 196
R_IsNaN . 178
R_isort . 191
R_LIBRARY_DIR . 25
R_loadhistory . 206
R_max_col . 192
R_NegInf . 178

R_NewEnv . 158
R_NewPreciousMSet . 151
R_orderVector . 191
R_orderVector1 . 191
R_PACKAGE_DIR . 22, 25
R_PACKAGE_NAME . 22, 25
R_ParseVector . 170
R_PosInf . 178
R_pow . 186
R_pow_di . 186
R_PreserveInMSet . 151
R_PreserveObject . 151
R_qsort . 192
R_qsort_int . 192
R_qsort_int_I . 192
R_qsort_I . 192
R_ReadConsole . 206
R_RegisterCCallable . 141
R_registerRoutines . 134
R_ReleaseFromMSet . 151
R_ReleaseObject . 151
R_ResetConsole . 206
R_rsort . 191
R_savehistory . 206
R_selectlist . 208
R_ShowFiles . 206
R_ShowMessage . 205
R_Srcref . 171
R_Suicide . 207
R_tmpnam . 193
R_tmpnam2 . 193
R_unif_index . 177
R_useDynamicSymbols . 136
R_Version . 195
R_WriteConsole . 206
R_WriteConsoleEx . 206
Rdqagi . 190
Rdqags . 190
Realloc . 176
recover . 114
reEnc . 174
REprintf . 178
REPROTECT . 151
REvprintf . 178
revsort . 191
Riconv . 193
Riconv_close . 193
Riconv_open . 193
Rprintf . 178
Rprof . 101, 104
Rprofmem . 104
rPsort . 192
rsort_with_index . 191
Rvprintf . 178

Function and variable index 218

S
S_alloc . 176
S_realloc . 176
S3method . 51
SAFE_FFLAGS . 27
samin . 190
seed_in . 177
seed_out . 177
setAttrib . 155
setVar . 158
sign . 188
sinpi . 187
summaryRprof . 104
system . 129
system.time . 129
system2 . 129

T
tanpi . 187
tetragamma . 185
trace . 115
traceback . 111
tracemem . 104

translateChar . 174
translateCharUTF8 . 174
trigamma . 185
TRUE . 189

U
undebug . 115
unif_rand . 177
UNPROTECT . 150
UNPROTECT_PTR . 151
untracemem . 104
useDynLib . 52

V
vmaxget . 176
vmaxset . 176
vmmin . 189

219

Concept index

.

.install extras file . 47

.Rbuildignore file . 43

.Rinstignore file . 17

\
\linkS4class . 93

A
Allocating storage . 152
Attributes . 154

B
Bessel functions . 186
Beta function . 186
Building binary packages . 44
Building source packages . 42

C
C++ code, interfacing . 143
Calling C from Fortran and vice versa 179
Checking packages . 39
citation . 18, 78
Classes . 156
Cleanup code . 194
cleanup file . 4
Condition handling . 194
conditionals . 96
configure file . 4
Copying objects . 159
CRAN . 3
Creating packages . 2
Creating shared objects . 142
Cross-references in documentation 92
cumulative hazard . 184

D
Debugging . 122
DESCRIPTION file . 4
Details of R types . 153
Distribution functions from C 184
Documentation, writing . 81
Dynamic loading . 131
dynamic pages . 96

E
Editing Rd files . 100
encoding . 99
Error handling . 194
Error signaling from C . 177
Error signaling from Fortran 177
Evaluating R expressions from C 163
external pointer . 171

F
Figures in documentation . 94
finalizer . 171
Finding variables . 157

G
Gamma function . 185
Garbage collection . 150
Generic functions . 200

H
handling character data . 157
Handling lists . 156
Handling R objects in C . 148

I
IEEE special values . 163, 178
INDEX file . 14
Indices . 95
Inspecting R objects when debugging 124
integration . 190
Interfaces to compiled code 129, 160
Interfacing C++ code . 143
Interrupts . 195

L
LICENCE file . 11
LICENSE file . 11
Lists and tables in documentation 92

M
Marking text in documentation 89
Mathematics in documentation 93
Memory allocation from C . 175
Memory use . 103
Method functions . 200
Missing values . 163, 178

Concept index 220

N
namespaces . 49
news . 18
Numerical analysis subroutines from C 184
Numerical derivatives . 167

O
OpenMP . 30, 195
Operating system access . 129
optimization . 189

P
Package builder . 42
Package structure . 3
Package subdirectories . 15
Packages . 2
Parsing R code from C . 169
Platform-specific documentation 96
Printing from C . 178
Printing from Fortran . 179
Processing Rd format . 99
Profiling . 101, 103, 105

R
Random numbers in C 177, 184
Random numbers in Fortran 180
Registering native routines . 133

S
Setting variables . 157
Sort functions from C . 191
Sweave . 45

T
tarballs . 42
Tidying R code . 101

U
user-defined macros . 98

V
Version information from C 195
vignettes . 45
Visibility . 196

W
weak reference . 172

Z
Zero-finding . 165

	Acknowledgements
	1 Creating R packages
	Package structure
	The DESCRIPTION file
	Licensing
	Package Dependencies
	Suggested packages

	The INDEX file
	Package subdirectories
	Data in packages
	Non-R scripts in packages
	Specifying URLs

	Configure and cleanup
	Using Makevars
	OpenMP support
	Using pthreads
	Compiling in sub-directories

	Configure example
	Using F9x code
	Using C++ code

	Checking and building packages
	Checking packages
	Building package tarballs
	Building binary packages

	Writing package vignettes
	Encodings and vignettes
	Non-Sweave vignettes

	Package namespaces
	Specifying imports and exports
	Registering S3 methods
	Load hooks
	useDynLib
	An example
	Namespaces with S4 classes and methods

	Writing portable packages
	PDF size
	Check timing
	Encoding issues
	Portable C and C++ code
	Common symbols

	Binary distribution

	Diagnostic messages
	Internationalization
	C-level messages
	R messages
	Preparing translations

	CITATION files
	Package types
	Frontend

	Services

	2 Writing R documentation files
	Rd format
	Documenting functions
	Documenting data sets
	Documenting S4 classes and methods
	Documenting packages

	Sectioning
	Marking text
	Lists and tables
	Cross-references
	Mathematics
	Figures
	Insertions
	Indices
	Platform-specific documentation
	Conditional text
	Dynamic pages
	User-defined macros
	Encoding
	Processing documentation files
	Editing Rd files

	3 Tidying and profiling R code
	Tidying R code
	Profiling R code for speed
	Profiling R code for memory use
	Memory statistics from Rprof
	Tracking memory allocations
	Tracing copies of an object

	Profiling compiled code
	Linux
	sprof
	oprofile and operf

	Solaris
	macOS

	4 Debugging
	Browsing
	Debugging R code
	Checking memory access
	Using gctorture
	Using valgrind
	Using the Address Sanitizer
	Using the Leak Sanitizer

	Using the Undefined Behaviour Sanitizer
	Other analyses with `clang'
	Other analyses with `gcc'
	Using `Dr. Memory'
	Fortran array bounds checking

	Debugging compiled code
	Finding entry points in dynamically loaded code
	Inspecting R objects when debugging
	Debugging on macOS

	Using Link-time Optimization

	5 System and foreign language interfaces
	Operating system access
	Interface functions .C and .Fortran
	dyn.load and dyn.unload
	Registering native routines
	Speed considerations
	Example: converting a package to use registration
	Linking to native routines in other packages

	Creating shared objects
	Interfacing C++ code
	External C++ code

	Fortran I/O
	Linking to other packages
	Unix-alikes
	Windows

	Handling R objects in C
	Handling the effects of garbage collection
	Allocating storage
	Details of R types
	Attributes
	Classes
	Handling lists
	Handling character data
	Finding and setting variables
	Some convenience functions
	Semi-internal convenience functions

	Named objects and copying

	Interface functions .Call and .External
	Calling .Call
	Calling .External
	Missing and special values

	Evaluating R expressions from C
	Zero-finding
	Calculating numerical derivatives

	Parsing R code from C
	Accessing source references

	External pointers and weak references
	An example

	Vector accessor functions
	Character encoding issues

	6 The R API: entry points for C code
	Memory allocation
	Transient storage allocation
	User-controlled memory

	Error signaling
	Error signaling from Fortran

	Random number generation
	Missing and IEEE special values
	Printing
	Printing from Fortran

	Calling C from Fortran and vice versa
	Fortran character strings
	Fortran LOGICAL
	Passing functions

	Numerical analysis subroutines
	Distribution functions
	Mathematical functions
	Numerical Utilities
	Mathematical constants

	Optimization
	Integration
	Utility functions
	Re-encoding
	Condition handling and cleanup code
	Allowing interrupts
	Platform and version information
	Inlining C functions
	Controlling visibility
	Using these functions in your own C code
	Organization of header files

	7 Generic functions and methods
	Adding new generics

	8 Linking GUIs and other front-ends to R
	Embedding R under Unix-alikes
	Compiling against the R library
	Setting R callbacks
	Registering symbols
	Meshing event loops
	Threading issues

	Embedding R under Windows
	Using (D)COM
	Calling R.dll directly
	Finding R_HOME

	Function and variable index
	Concept index

