R Installation and Administration
Version 4.1.0 (2021-05-18)

R Core Team

This manual is for R, version 4.1.0 (2021-05-18).
Copyright (© 2001-2021 R Core Team

Permission is granted to make and distribute verbatim copies of this manual
provided the copyright notice and this permission notice are preserved on all
copies.

Permission is granted to copy and distribute modified versions of this manual
under the conditions for verbatim copying, provided that the entire resulting
derived work is distributed under the terms of a permission notice identical to
this one.

Permission is granted to copy and distribute translations of this manual into
another language, under the above conditions for modified versions, except that
this permission notice may be stated in a translation approved by the R Core
Team.

Table of Contents

1 Obtaining R............. 1
1.1 Getting and unpacking the sources................., 1
1.2 Getting patched and development versions...................... 1

1.2.1 Using Subversion and rSync...............ccooeeiueenee.... 1

2 Installing R under Unix-alikes.................. 3
2.1 Simple compilation 3
2.2 Help Options. ...t 4
2.3 Making the manuals.......... i 5)
2.4 TInstallation........ ..o 7
2.5 Uninstallation 9
2.6 Sub-architectures.......... 9

2.6.1 Multilibo 10
2.7 Other Options. . ..o e 11
2.7.1 Debugging Symbols......... ... i i 11
2.7.2 OpenMP Support...... ..o 12
2.7.3 CH SUPPOTE « ottt 12
2.7.4 Link-Time Optimization........... o .. 13
2.74.1 LTO with GCC..... ... o, 14
2742 LTO with LLVM. e, 15
2.7.4.3 LTO for package checking............... 15

2.8 Testing an Installation............ o it 16

3 Installing R under Windows 17

3.1 Building from sourcec.. i 17
3.1.1 The Windows toolset ..., 17
3.2 REX ot 17

3.2 Checking the build o 18

3.3 Testing an Installation.......... L 18

4 Installing R under macOS..................... 19
4.1 Running R under macOS i, 19
4.2 Uninstalling under macOS........ 20
4.3 Multiple Versions ...t e 21

5 Running R.......... 22

6 Add-onpackages............................... 23
6.1 Default packageso 23
6.2 Managing libraries........ ... i 23

6.3 Installing packageso 24

6.3.1 WiIndowsooiiii 25

6.3.2 macOS ... 26

6.3.3 Customizing package compilation 28

6.3.4 Multiple sub-architectures 29
6.3.5 Byte-compilation 29

6.3.6 External software.............. ... i 30

6.4 Updating packagesoooiiiiiiiiiiii i 30
6.5 Removing packages.ccoouiiiiiiiiiiiii i 31
6.6 Setting up a package repository.......... ..ol 31
6.7 Checking installed source packages................oooiiii... 32

7 Internationalization and Localization......... 33
7.1 Locales. ... 33
7.1.1 Locales under Unix-alikes................, 33

7.1.2 Locales under Windows.............. ..., 34

7.1.3 Locales under macOS., 34

7.2 Localization of messages. ..., 34

8 Choosing between 32- and 64-bit builds...... 36
9 The standalone Rmath library................ 38
9.1 Unix-alikesooi i 38
9.2 WiINAOWSottt 39

Appendix A Essential and useful other

programs under a Unix-alike................... 41
A.1 Essential programs and libraries................... ..o, 41
A.2 Useful libraries and programscooiiiiiiiea ... 43
A21 TCl/TK .o 45
A2.2 Java SUPPOTt . ..ot 46
A.2.3 Other compiled languages.............ooiiiiiiiiiai .. 47
A3 Linear algebrao 47
A3l BLAS. . 47
A3.1.1 ATLAS .. 48
A3.1.2 OpenBLAS ... 49
A3.13 Intel MKL . ..o e 50
A3.1.4 Shared BLAS 51
A32 LAPACK ... 52

A 3.3 CaveatS . ..o 53

ii

Appendix B Configuration on a Unix-alike..... 54

B.1 Configuration optionsc.oiiiiiiiiiiiiiiiiii .. 54
B.2 Internationalization support............ o it 55
B.3 Configuration variables.............. i 55
B.3.1 Setting paper Sizeuuuuiiimiit i 56
B.3.2 Setting the browsers..............coo i 56
B.3.3 Compilation flags ... 56
B.3.4 Making manuals i 56
B.4 Setting the shell i 56
B.5 Using makeooouuiiii i o7
B.6 Using Fortran..........c.oiiiiiiiii i 57
B.7 Compile and load flags.........o 57
B.8 Maintainer mode. 59
Appendix C Platform notes..................... 60
C.l XL d8SUES « et ettt et e 60
C.2 LUK . oot 61
C21 Clang. ..ot 63
C.2.2 Intel compilers....... ..o 64
C.3 macOS . o 65
C.3.1 Prerequisites...... .o 65
C.3.1.1 Note for Catalina and Big Sur users 67

C.3.2 Cairo graphics ..o 67
C.3.3 Other C/C++ compilersooiiiiiiiiiiiaa.. 68
C.3.4 Other libraries ..ot 69
C.3.5 Tcl/Tk headers and libraries 70
C.3.6 Java ..o 71
C.3.7 Frameworks....... ..o 72
C.3.8 Building R.app....ovuriiii 72
C.3.9 Building binary packages.............ooiiiiiiiiiiiii 72
C.3.10 ‘arm64’ aka ‘Apple Silicon’, 73
C.3.10.1 Native builds. ... 74

Cid S0lariS . ettt 75
C.4.1 64-bitbuildso 78
Cd.2 USINE BCC oottt ettt e e 78
C.H FreeBSDo 79
C.6 OpenBSD 79
C.T Oy gWIN . oot 79
C.8 New platforms.... ... 79
Function and variable index....................... 81
Concept index........... 82

Environment variable index....................... 83

1 Obtaining R

Sources, binaries and documentation for R can be obtained via CRAN, the “Comprehensive
R Archive Network” whose current members are listed at https://CRAN.R-project.org/
mirrors.html.

1.1 Getting and unpacking the sources

The simplest way is to download the most recent R-x.y.z.tar.gz file, and unpack it with
tar -xf R-x.y.z.tar.gz

on systems that have a suitable! tar installed. On other systems you need to have the gzip
program installed, when you can use

gzip -dc R-x.y.z.tar.gz | tar -xf -

The pathname of the directory into which the sources are unpacked should not contain
spaces, as most make programs (and specifically GNU make) do not expect spaces.

If you want the build to be usable by a group of users, set umask before unpacking so
that the files will be readable by the target group (e.g., umask 022 to be usable by all users).
Keep this setting of umask whilst building and installing.

If you use a fairly recent GNU version of tar and do this as a root account (which
on Windows includes accounts with administrator privileges) you may see many warnings
about changing ownership. In which case you can use

tar --no-same-owner -xf R-x.y.z.tar.gz

and perhaps also include the option --no-same-permissions. (These options can also be
set in the TAR_OPTIONS environment variable: if more than one option is included they
should be separated by spaces.)

1.2 Getting patched and development versions

A patched version of the current release, ‘r-patched’, and the current development version,
‘r-devel’, are available as daily tarballs and via access to the R Subversion repository. (For
the two weeks prior to the release of a minor (4.x.0) version, ‘r-patched’ tarballs may refer
to beta/release candidates of the upcoming release, the patched version of the current release
being available via Subversion.)

The tarballs are available from https://stat.ethz.ch/R/daily/. Download
R-patched.tar.gz or R-devel.tar.gz (or the .tar.bz2 versions) and unpack as
described in the previous section. They are built in exactly the same way as distributions
of R releases.

1.2.1 Using Subversion and rsync

Sources are also available via https://svn.R-project.org/R/, the R Subversion reposi-
tory. If you have a Subversion client (see https://subversion.apache.org/), you can
check out and update the current ‘r-devel’ from https://svn.r-project.org/

R/trunk/ and the current ‘r-patched’ from ‘https://svn.r-project.org/R/branches/

! e.g. GNU tar version 1.15 or later, or that from the ‘libarchive’ (as used on macOS) or ‘Heirloom

Toolchest’ distributions.

https://CRAN.R-project.org/mirrors.html
https://CRAN.R-project.org/mirrors.html
https://stat.ethz.ch/R/daily/
https://svn.R-project.org/R/
https://subversion.apache.org/
https://svn.r-project.org/R/trunk/
https://svn.r-project.org/R/trunk/

Chapter 1: Obtaining R 2

R-x-y-branch/’ (where x and y are the major and minor number of the current released
version of R). E.g., use

svn checkout https://svn.r-project.org/R/trunk/ path

to check out ‘r-devel’ into directory path (which will be created if necessary).
The alpha, beta and RC versions of an upcoming x.y.0 release are available from
‘https://svn.r-project.org/R/branches/R-x-y-branch/’ in the four-week period prior
to the release.

Note that ‘https:’ is required?, and that the SSL certificate for the Subversion server
of the R project should be recognized as from a trusted source.

Note that retrieving the sources by e.g. wget —r or svn export from that URL will not

work (and will give a error early in the make process): the Subversion information is needed
to build R.

The Subversion repository does not contain the current sources for the recom-
mended packages, which can be obtained by rsync or downloaded from CRAN. To
use rsync to install the appropriate sources for the recommended packages, run
./tools/rsync-recommended from the top-level directory of the R sources.

If downloading manually from CRAN, do ensure that you have the correct versions
of the recommended packages: if the number in the file VERSION is ‘x.y.z" you need to
download the contents of ‘https://CRAN.R-project.org/src/contrib/dir’, where dir is
‘x.y.z/Recommended’ for r-devel or x.y-patched/Recommended for r-patched, respectively,
to directory src/library/Recommended in the sources you have unpacked. After down-
loading manually you need to execute tools/link-recommended from the top level of the
sources to make the requisite links in src/library/Recommended. A suitable incantation
from the top level of the R sources using wget might be (for the correct value of dir)

wget -r -11 --no-parent -A*.gz -nd -P src/library/Recommended \
https://CRAN.R-project.org/src/contrib/dir
./tools/link-recommended

2 for some Subversion clients ‘http:’ may appear to work, but requires continual redirection.

2 Installing R under Unix-alikes

R will configure and build under most common Unix and Unix-alike platforms includ-
ing ‘cpu-*-linux-gnu’ for the ‘alpha’, ‘arm64’, ‘hppa’, ‘ix86’, ‘m68k’, ‘mips’, ‘mipsel’#,
‘ppc64’, ‘s390x’, ‘sparc64’, and ‘x86_64" CPUs, ‘x86_64-apple-darwin’, ‘aarch64-apple-
darwin’' and ‘i386-sun-solaris’ as well as perhaps (it is tested less frequently on these
platforms) ‘1386-*-freebsd’, ‘x86_64-*-freebsd’, ‘1386-*-netbsd’, ‘x86_64-*-openbsd’
and ‘powerpc-ibm-aix6x*’

In addition, binary distributions are available for some common Linux distributions (see
the FAQ for current details) and for macOS. These are installed in platform-specific ways,
so for the rest of this chapter we consider only building from the sources.

Cross-building is not possible: installing R builds a minimal version of R and then runs
many R scripts to complete the build.

2.1 Simple compilation

First review the essential and useful tools and libraries in Appendix A [Essential and useful
other programs under a Unix-alike], page 41, and install those you want or need. Ensure that
either the environment variable TMPDIR is either unset (and /tmp exists and can be written
in and scripts can be executed from) or points to the absolute path to a valid temporary
directory (one from which execution of scripts is allowed) which does not contain spaces.?
Choose a directory to install the R tree (R is not just a binary, but has additional

data sets, help files, font metrics etc). Let us call this place R_LHOME. Untar the source
code. This should create directories src, doc, and several more under a top-level directory:
change to that top-level directory (At this point North American readers should consult
Section B.3.1 [Setting paper size|, page 56.) Issue the following commands:

./configure

make
(See Section B.5 [Using make|, page 57, if your make is not called ‘make’.) Users of Debian-
based 64-bit systems® may need

./configure LIBnn=1ib

make

Then check the built system works correctly by
make check

Failures are not necessarily problems as they might be caused by missing functionality,
but you should look carefully at any reported discrepancies. (Some non-fatal errors are
expected in locales that do not support Latin-1, in particular in true C locales and non-UTF-
8 non-Western-European locales.) A failure in tests/ok-errors.R may indicate inadequate
resource limits (see Chapter 5 [Running R], page 22).

More comprehensive testing can be done by

make check-devel

1 aka ‘Apple Silicon’: the triplet name may change and is known to some as ‘arm64-apple-darwin’.
2 Most aspects will work with paths containing spaces, but external software used by R may not.

3 which use 1ib rather than 1ib64 for their primary 64-bit library directories: attempts are made to detect
such systems.

Chapter 2: Installing R under Unix-alikes 4

or
make check-all

see file tests/README and Section 2.8 [Testing a Unix-alike Installation], page 16, for the
possibilities of doing this in parallel. Note that these checks are only run completely if the
recommended packages are installed.

If the configure and make commands execute successfully, a shell-script front-end called
R will be created and copied to R_HOME/bin. You can link or copy this script to a place where
users can invoke it, for example to /usr/local/bin/R. You could also copy the man page
R.1 to a place where your man reader finds it, such as /usr/local/man/manl. If you want
to install the complete R tree to, e.g., /usr/local/lib/R, see Section 2.4 [Installation],
page 7. Note: you do not need to install R: you can run it from where it was built.

You do not necessarily have to build R in the top-level source directory (say, TOP_
SRCDIR). To build in BUILDDIR, run

cd BUILDDIR
TOP_SRCDIR/configure
make

and so on, as described further below. This has the advantage of always keeping your
source tree clean and is particularly recommended when you work with a version of R from
Subversion. (You may need GNU make to allow this, and you will need no spaces in the
path to the build directory. It is unlikely to work if the source directory has previously been
used for a build.)

There are many settings which can be customized when building R and most are de-
scribed in the file config.site in the top-level source directory. This can be edited, but for
an installation using BUILDDIR it is better to put the changed settings in a newly-created
file config.site in the build directory.

Now rehash if necessary, type R, and read the R manuals and the R FAQ (files FAQ or
doc/manual/R-FAQ.html, or https://CRAN.R-project.org/doc/FAQ/R-FAQ.html which
always has the version for the latest release of R).

Note: if you already have R installed, check that where you installed R replaces or
comes earlier in your path than the previous installation. Some systems are set up to have
/usr/bin (the standard place for a system installation) ahead of /usr/local/bin (the de-
fault place for installation of R) in their default path, and some do not have /usr/local/bin
on the default path.

2.2 Help options

R by default provides help pages as plain text displayed in a pager, with the options (see
the help for help) of displaying help as HTML or PDF.

By default HTML help pages are created when needed rather than being built at install
time.

If you need to disable the server and want HTML help, there is the option to build
HTML pages when packages are installed (including those installed with R). This is enabled
by the configure option --enable-prebuilt-html. Whether R CMD INSTALL (and hence
install.packages) pre-builds HTML pages is determined by looking at the R installation

https://CRAN.R-project.org/doc/FAQ/R-FAQ.html

Chapter 2: Installing R under Unix-alikes 5

and is reported by R CMD INSTALL --help: it can be overridden by specifying one of the
INSTALL options —-html or ——no-html.

The server is disabled by setting the environment variable R_DISABLE_HTTPD to a non-
empty value, either before R is started or within the R session before HTML help (including
help.start) is used. It is also possible that system security measures will prevent the
server from being started, for example if the loopback interface has been disabled. See
?tools: :startDynamicHelp for more details.

2.3 Making the manuals
There is a set of manuals that can be built from the sources,

‘fullrefman’
Printed versions of all the help pages for base and recommended packages
(around 3750 pages).

‘refman’ Printed versions of the help pages for selected base packages (around 2200
pages)

‘R-FAQ" R FAQ

‘R-intro’ “An Introduction to R”.

‘R-data’ “R Data Import/Export”.

‘R-admin’ “R Installation and Administration”, this manual.
‘R-exts’ “Writing R Extensions”.

‘R-lang’ “The R Language Definition”.

To make these (with ‘fullrefman’ rather than ‘refman’), use

make pdf to create PDF versions
make info to create info files (not ‘refman’ nor ‘fullrefman’).

You will not be able to build any of these unless you have texi2any version 5.1 or later
installed, and for PDF you must have texi2dvi and texinfo.tex installed (which are part
of the GNU texinfo distribution but are, especially texinfo.tex, often made part of the
TEX package in re-distributions). The path to texi2any can be set by macro ‘TEXI2ANY’
in config.site. NB: texi2any requires perl.

The PDF versions can be viewed using any recent PDF viewer: they have hyperlinks
that can be followed. The info files are suitable for reading online with Emacs or the
standalone GNU info program. The PDF versions will be created using the paper size
selected at configuration (default ISO a4): this can be overridden by setting R_PAPERSIZE
on the make command line, or setting R_PAPERSIZE in the environment and using make
-e. (If reemaking the manuals for a different paper size, you should first delete the file
doc/manual/version.texi. The usual value for North America would be ‘letter’.)

There are some issues with making the PDF reference manual, fullrefman.pdf or
refman.pdf. The help files contain both ISO Latinl characters (e.g. in text.Rd) and
upright quotes, neither of which are contained in the standard IXTEX Computer Modern
fonts. We have provided four alternatives:

Chapter 2: Installing R under Unix-alikes 6

times (The default.) Using standard PostScript fonts, Times Roman, Helvetica and
Courier. This works well both for on-screen viewing and for printing. One dis-
advantage is that the Usage and Examples sections may come out rather wide:
this can be overcome by using in addition either of the options inconsolata
(on a Unix-alike only if found by configure) or beramono, which replace the
Courier monospaced font by Inconsolata or Bera Sans mono respectively. (You
will need a recent version of the appropriate IXTEX package inconsolata* or bera
installed.)

Note that in most KTEX installations this will not actually use the standard
fonts for PDF, but rather embed the URW clones NimbusRom, NimbusSans
and (for Courier, if used) NimbusMon.

This needs IXTEX packages times, helvetic and (if used) courier installed.

1m Using the Latin Modern fonts. These are not often installed as part of a TEX
distribution, but can obtained from https://www.ctan.org/tex-archive/
fonts/ps-typel/1lm/ and mirrors. This uses fonts rather similar to Computer
Modern, but is not so good on-screen as times.

cm-super Using type-1 versions of the Computer Modern fonts by Vladimir Volovich. This
is a large installation, obtainable from https://www.ctan.org/tex-archive/
fonts/ps-typel/cm-super/ and its mirrors. These type-1 fonts have poor
hinting and so are nowhere near as readable on-screen as the other three op-
tions.

ae A package to use composites of Computer Modern fonts. This works well most
of the time, and its PDF is more readable on-screen than the previous two op-
tions. There are three fonts for which it will need to use bitmapped fonts,
tctt0900.600pk, tctt1000.600pk and tcrm1000.600pk. Unfortunately, if
those files are not available, Acrobat Reader will substitute completely incorrect
glyphs so you need to examine the logs carefully.

The default can be overridden by setting the environment variable R_RD4PDF. (On Unix-
alikes, this will be picked up at install time and stored in etc/Renviron, but can still be
overridden when the manuals are built, using make -e.) The usual® default value for R_
RD4PDF is ‘times,inconsolata,hyper’ omit ‘hyper’ if you do not want hyperlinks (e.g.
for printing the manual) or do not have IWTEX package hyperref, and omit ‘inconsolata’
if you do not have IATEX package inconsolata installed.

Further options, e.g for hyperref, can be included in a file Rd.cfg somewhere on your
IATEX search path. For example, if you prefer to hyperlink the text and not the page number
in the table of contents use

\ifthenelse{\boolean{Rd@use@hyper}}{\hypersetup{linktoc=section}}{}
or

\ifthenelse{\boolean{Rd@use@hyper}}{\hypersetup{linktoc=all}}{}
to hyperlink both text and page number.

4 Instructions on how to install the latest version are at https://www.ctan.org/tex-archive/fonts/

inconsolata/.

5 on a Unix-alike, ‘inconsolata’ is omitted if not found by configure.

https://www.ctan.org/tex-archive/fonts/ps-type1/lm/
https://www.ctan.org/tex-archive/fonts/ps-type1/lm/
https://www.ctan.org/tex-archive/fonts/ps-type1/cm-super/
https://www.ctan.org/tex-archive/fonts/ps-type1/cm-super/
https://www.ctan.org/tex-archive/fonts/inconsolata/
https://www.ctan.org/tex-archive/fonts/inconsolata/

Chapter 2: Installing R under Unix-alikes 7

Ebook versions of most of the manuals in one or both of .epub and .mobi formats can

be made by running in doc/manual one of

make ebooks

make epub

make mobi
This requires ebook-convert from Calibre (https://calibre-ebook.com/download), or
from most Linux distributions. If necessary the path to ebook-convert can be set as make
macro EBOOK to by editing doc/manual/Makefile (which contains a commented value suit-
able for macOS) or using make -e.

2.4 Installation

To ensure that the installed tree is usable by the right group of users, set umask appropriately
(perhaps to ‘022’) before unpacking the sources and throughout the build process.

After

./configure
make
make check

(or, when building outside the source, TOP_SRCDIR/configure, etc) have been completed
successfully, you can install the complete R tree to your system by typing

make install
A parallel make can be used (but run make before make install). Those using GNU make
4.0 or later may want to use make -j n -0 to avoid interleaving of output.
This will install to the following directories:

prefix/bin or bindir
the front-end shell script and other scripts and executables

prefix/man/manl or mandir/manl
the man page

prefix/LIBnn/R or libdir/R
all the rest (libraries, on-line help system, ...). Here LIBnn is usually ‘1ib’,
but may be ‘1ib64’ on some 64-bit Linux systems. This is known as the R
home directory.

where prefix is determined during configuration (typically /usr/local) and can be set by
running configure with the option —--prefix, as in
./configure --prefix=/where/you/want/R/to/go

where the value should be an absolute path. This causes make install to install the R script
to /where/you/want/R/to/go/bin, and so on. The prefix of the installation directories can
be seen in the status message that is displayed at the end of configure. The installation
may need to be done by the owner of prefix, often a root account.

There is the option of using make install-strip (see Section 2.7.1 [Debugging Symbols],
page 11).

You can install into another directory tree by using

make prefix=/path/to/here install

https://calibre-ebook.com/download

Chapter 2: Installing R under Unix-alikes 8

at least with GNU make (but not some other Unix makes).

More precise control is available at configure time via options: see configure —-help
for details. (However, most of the ‘Fine tuning of the installation directories’ options are
not used by R.)

Configure options --bindir and --mandir are supported and govern where a copy of
the R script and the man page are installed.

The configure option ——libdir controls where the main R files are installed: the default
is ‘eprefix/LIBnn’, where eprefix is the prefix used for installing architecture-dependent
files, defaults to prefix, and can be set via the configure option —-exec-prefix.

Each of bindir, mandir and 1ibdir can also be specified on the make install command
line (at least for GNU make).

The configure or make variables rdocdir and rsharedir can be used to install
the system-independent doc and share directories to somewhere other than libdir.
The C header files can be installed to the value of rincludedir: note that as the
headers are not installed into a subdirectory you probably want something like
rincludedir=/usr/local/include/R-4.1.0.

If you want the R home to be something other than 1ibdir/R, use rhome: for example

make install rhome=/usr/local/lib64/R-4.1.0
will use a version-specific R home on a non-Debian Linux 64-bit system.

If you have made R as a shared/static library you can install it in your system’s library

directory by

make prefix=/path/to/here install-1ibR
where prefix is optional, and 1ibdir will give more precise control.® However, you should
not install to a directory mentioned in LDPATHS (e.g. /usr/local/1ib64) if you intend to
work with multiple versions of R, since that directory may be given precedence over the
1ib directory of other R installations.

make install-strip

will install stripped executables, and on platforms where this is supported, stripped libraries
in directories 1ib and modules and in the standard packages.
Note that installing R into a directory whose path contains spaces is not supported, and
some aspects (such as installing source packages) will not work.
To install info and PDF versions of the manuals, use one or both of
make install-info
make install-pdf
Once again, it is optional to specify prefix, 1ibdir or rhome (the PDF manuals are installed
under the R home directory).
More precise control is possible. For info, the setting used is that of infodir (default

prefix/info, set by configure option --infodir). The PDF files are installed into the R
doc tree, set by the make variable rdocdir.

A staged installation is possible, that it is installing R into a temporary directory in
order to move the installed tree to its final destination. In this case prefix (and so on)

6 This will be needed if more than one sub-architecture is to be installed.

Chapter 2: Installing R under Unix-alikes 9

should reflect the final destination, and DESTDIR should be used: see https://www.gnu.
org/prep/standards/html_node/DESTDIR.html.

You can optionally install the run-time tests that are part of make check-all by
make install-tests

which populates a tests directory in the installation.

2.5 Uninstallation
You can uninstall R by

make uninstall
optionally specifying prefix etc in the same way as specified for installation.
This will also uninstall any installed manuals. There are specific targets to uninstall info
and PDF manuals in file doc/manual/Makefile.

Target uninstall-tests will uninstall any installed tests, as well as removing the di-
rectory tests containing the test results.

An installed shared/static 1ibR can be uninstalled by
make prefix=/path/to/here uninstall-1ibR

2.6 Sub-architectures

Some platforms can support closely related builds of R which can share all but the executa-
bles and dynamic objects. Examples include builds under Linux and Solaris for different
CPUs or 32- and 64-bit builds.

R supports the idea of architecture-specific builds, specified by adding ‘r_arch=name’ to
the configure line. Here name can be anything non-empty, and is used to name subdi-
rectories of 1ib, etc, include and the package 1ibs subdirectories. Example names from
other software are the use of sparcv9 on Sparc Solaris and 32 by gcc on ‘x86_64" Linux.

If you have two or more such builds you can install them over each other (and for 32/64-
bit builds on one architecture, one build can be done without ‘r_arch’). The space savings
can be considerable: on ‘x86_64" Linux a basic install (without debugging symbols) took
74Mb, and adding a 32-bit build added 6Mb. If you have installed multiple builds you can
select which build to run by

R --arch=name
and just running ‘R’ will run the last build that was installed.

R CMD INSTALL will detect if more than one build is installed and try to install packages
with the appropriate library objects for each. This will not be done if the package has an
executable configure script or a src/Makefile file. In such cases you can install for extra

builds by
R --arch=name CMD INSTALL --libs-only pkgl pkg2 ...

If you want to mix sub-architectures compiled on different platforms (for example
‘x86_64" Linux and ‘1686’ Linux), it is wise to use explicit names for each, and you may
also need to set 1ibdir to ensure that they install into the same place.

When sub-architectures are used the version of Rscript in e.g. /usr/bin will
be the last installed, but architecture-specific versions will be available in e.g.

https://www.gnu.org/prep/standards/html_node/DESTDIR.html
https://www.gnu.org/prep/standards/html_node/DESTDIR.html

Chapter 2: Installing R under Unix-alikes 10

/usr/1ib64/R/bin/exec${R_ARCH}. Normally all installed architectures will run on the
platform so the architecture of Rscript itself does not matter. The executable Rscript
will run the R script, and at that time the setting of the R_ARCH environment variable
determines the architecture which is run.

When running post-install tests with sub-architectures, use
R --arch=name CMD make check[-devell|all]
to select a sub-architecture to check.

Sub-architectures are also used on Windows, but by selecting executables within the
appropriate bin directory, R_HOME/bin/i386 or R_HOME/bin/x64. For backwards compat-
ibility there are executables R_LHOME/bin/R.exe and R_HOME/bin/Rscript.exe: these will
run an executable from one of the subdirectories, which one being taken first from the R_
ARCH environment variable, then from the --arch command-line option” and finally from
the installation default (which is 32-bit for a combined 32/64 bit R installation).

2.6.1 Multilib

For some Linux distributions®, there is an alternative mechanism for mixing 32-bit and
64-bit libraries known as multilib. If the Linux distribution supports multilib, then parallel
builds of R may be installed in the sub-directories 1ib (32-bit) and 1ib64 (64-bit). The
build to be run may then be selected using the setarch command. For example, a 32-bit
build may be run by

setarch i686 R

The setarch command is only operational if both 32-bit and 64-bit builds are installed.
If there is only one installation of R, then this will always be run regardless of the architec-
ture specified by the setarch command.

There can be problems with installing packages on the non-native architecture. It is a
good idea to run e.g. setarch 1686 R for sessions in which packages are to be installed,
even if that is the only version of R installed (since this tells the package installation code
the architecture needed).

There is a potential problem with packages using Java, as the post-install for a ‘1686’
RPM on ‘x86_64" Linux reconfigures Java and will find the ‘x86_64" Java. If you know
where a 32-bit Java is installed you may be able to run (as root)

export JAVA_HOME=<path to jre directory of 32-bit Java>
setarch i686 R CMD javareconf

to get a suitable setting.

When this mechanism is used, the version of Rscript in e.g. /usr/bin will be the last
installed, but an architecture-specific version will be available in e.g. /usr/1ib64/R/bin.
Normally all installed architectures will run on the platform so the architecture of Rscript
does not matter.

7 with possible values ‘1386’, ‘x64’, ‘32’ and ‘64’.

8 mainly on RedHat and Fedora, whose layout is described here.

Chapter 2: Installing R under Unix-alikes 11

2.7 Other Options

There are many other installation options, most of which are listed by configure --help.
Almost all of those not listed elsewhere in this manual are either standard autoconf options
not relevant to R or intended for specialist uses by the R developers.

One that may be useful when working on R itself is the option --disable-byte-
compiled-packages, which ensures that the base and recommended packages are not byte-
compiled. (Alternatively the (make or environment) variable R_NO_BASE_COMPILE can be
set to a non-empty value for the duration of the build.)

Option --with-internal-tzcode makes use of R’s own code and copy of the TANA
database for managing timezones. This will be preferred where there are issues with the
system implementation, usually involving times after 2037 or before 1916. An alternative
time-zone directory? can be used, pointed to by environment variable TZDIR: this should
contain files such as Europe/London. On all tested OSes the system timezone was deduced
correctly, but if necessary it can be set as the value of environment variable TZ.

Options --with-internal-iswxxxxx, --with-internal-towlower and --with-
internal-wcwidth were introduced in R 4.1.0. These control the replacement of the
system wide-character classification (such as iswprint), case-changing (wctrans) and
width (wcwidth and weswidth) functions by ones contained in the R sources. Replacement
of the classification functions has been done for many years on macOS and AIX (and
Windows): option --with-internal-iswxxxxx allows this to be suppressed on those
platforms or used on others (it is now the default for Solaris). Replacing the case-changing
functions is new in R 4.1.0 and the default on macOS. Replacement of the width functions
has also been done for many years and remains the default. These options will only
matter to those working with non-ASCII character data, especially in languages written
in a non-Western script (which includes ‘symbols’ such as emoji). Note that one of those
iswxxxxx is iswprint which is used to decide whether to output a character as a glyph or
as a ‘\U{xxxxxx}’ escape—for example, try ‘"\U1£600"’, an emoji. The width functions
are of most importance in East Asian locale: their values differ between such locales.
(Replacing the system functions provides a degree of plaform-independence (including to
OS updates) but replaces it with a dependence on the R version.)

2.7.1 Debugging Symbols

By default, configure adds a flag (usually -g) to the compilation flags for C, Fortran and
CXX sources. This will slow down compilation and increase object sizes of both R and
packages, so it may be a good idea to change those flags (set ‘CFLAGS’ etc in config.site
before configuring, or edit files Makeconf and etc/Makeconf between running configure
and make).

Having debugging symbols available is useful both when running R under a debugger
(e.g., R —=d gdb) and when using sanitizers and valgrind, all things intended for experts.

Debugging symbols (and some others) can be ‘stripped’ on installation by using
make install-strip

How well this is supported depends on the platform: it works best on those using GNU
binutils. On ‘x86_64" Linux a typical reduction in overall size was from 92MB to 66MB.

9 How to prepare such a directory is described in file src/extra/tzone/Notes in the R sources.

Chapter 2: Installing R under Unix-alikes 12

On macOS debugging symbols are not by default included in .dylib and .so files, so there
is negligible difference.

2.7.2 OpenMP Support

By default configure searches for suitable flags'® for OpenMP support for the C, C++
(default standard) and Fortran compilers.

Only the C result is currently used for R itself, and only if MAIN_LD/DYLIB_LD were not
specified. This can be overridden by specifying

R_OPENMP_CFLAGS

Use for packages has similar restrictions (involving SHLIB_LD and similar: note that
as Fortran code is by default linked by the C (or C++) compiler, both need to support
OpenMP) and can be overridden by specifying some of

SHLIB_OPENMP_CFLAGS
SHLIB_OPENMP_CXXFLAGS
SHLIB_OPENMP_FFLAGS

Setting these to an empty value will disable OpenMP for that compiler (and configuring with
--disable-openmp will disable all detection'* of OpenMP). The configure detection test
is to compile and link a standalone OpenMP program, which is not the same as compiling
a shared object and loading it into the C program of R’s executable. Note that overridden
values are not tested.

2.7.3 C++ Support

C++ is not used by R itself, but support is provided for installing packages with C++ code
via make macros defined in file etc/Makeconf (and with explanations in file config.site):

CXX
CXXFLAGS
CXXPICFLAGS
CXXSTD

CXX11
CXX11STD
CXX11FLAGS
CXX11PICFLAGS

CXX14
CXX14STD
CXX14FLAGS
CXX14PICFLAGS

CXX17

10 for example, -fopenmp, -xopenmp or -qopenmp. This includes for clang and the Intel and Oracle
compilers.

' This does not necessarily disable use of OpenMP — the configure code allows for platforms where
OpenMP is used without a flag. For the flang compiler in late 2017, the Fortran runtime always used
OpenMP.

Chapter 2: Installing R under Unix-alikes 13

CXX17STD
CXX17FLAGS
CXX17PICFLAGS

CXX20
CXX20STD
CXX20FLAGS
CXX20PICFLAGS

The macros CXX etc are those used by default for C++ code. configure will attempt to set
the rest suitably, choosing for CXXSTD and CXX11STD a suitable flag such as -std=c++11 for
C++11 support (which is required if C++ is to be supported at all). Similarly, configure will
if possible choose for CXX14STD a flag'? such as -std=c++14 for C++14 support, -std=c++17
or -std=c++1z for support for C++17 and -std=c++20 or -std=c++2a for support for
C++20.. The inferred values can be overridden in file config.site or on the configure
command line: user-supplied values will be tested by compiling some C++11/14/17/20 code.

It may be that there is no suitable flag for C++14/17/20 support with the default com-
piler, in which case a different compiler could be selected for CXX14 or CXX17 or CXX20 with
its corresponding flags.

The -std flag is supported by the GCC, clang++, Intel and Solaris compilers (the latter
from version 12.4). Currently accepted values are (plus some synonyms)
gH+: c++11 gnu+ll c++14 gnu++14 c++17 gnu++17 c++2a gnu++2a (from 8)
c++20 gnu++20 (from 10)
Intel: c++11 c++14 (from 16.0) c++17 (from 17.0)
Solaris: c++11 c++14 (from 12.5)

(Those for clang++ are documented at https://clang.llvm.org/cxx_status.html, and
follow g++: —std=c++20 is supported from Clang 10.)

‘Standards’ for g++ starting with ‘gnu’ enable ‘GNU extensions’: what those are is hard
to track down.

For the use of C++11 and later in R packages see the ‘Writing R Extensions’ manual.
Prior to R 3.6.0 the default C++ standard was that of the compiler used: currently it is
C++14 (if available): this can be overridden by setting ‘CXXSTD’ when R is configured.

https://en.cppreference.com/w/cpp/compiler_support indicates which versions of
common compilers support (parts of) which C++ standards.

2.7.4 Link-Time Optimization

There is support for using link-time optimization (LTO) if the toolchain supports it: config-
ure with flag ——enable-1to. When LTO is enabled it is used for compiled code in add-on
packages unless the flag —~—enable-1to=R is used!?.

The main benefit seen to date from LTO has been detecting long-standing bugs in the
ways packages pass arguments to compiled code and between compilation units. Benchmark-
ing in 2020 with gcc/gfortran 10 showed gains of a few percent in increased performance

12 This was a valid option for g++ 5 and later and 2016 versions of the Intel and Solaris compilers. For
earlier versions of g++ one could try -std=c++1y.

13 Then recommended packages installed as part of the R installation do use LTO, but not packages installed
later.

https://clang.llvm.org/cxx_status.html
https://en.cppreference.com/w/cpp/compiler_support

Chapter 2: Installing R under Unix-alikes 14

and reduction in installed size for builds without debug symbols, but large size reductions
for some packages'? with debug symbols. (Performance and size gains are said to be most
often seen in complex C++ builds.)

Whether toolchains support LTO is often unclear: all of the C compiler, the Fortran
compiler'® and linker have to support it, and support it by the same mechanism (so mixing
compiler families may not work and a non-default linker may be needed). It has been
supported by the GCC and LLVM projects for some years with diverging implementations.

LTO support was added in 2011 for GCC 4.5 on Linux but was little used before 2019:
compiler support has steadily improved over those years and --enable-1to=R is nowadays
used for some routine CRAN checking.

Unfortunately -—enable-1to may be accepted but silently do nothing useful if some of
the toolchain does not support LTO: this is less common than it once was.

Various macros can be set in file config.site to customize how LTO is used. If the
Fortran compiler is not of the same family as the C/C++ compilers, set macro ‘LTO_FC’
(probably to empty). Macro ‘LTO_LD’ can be used to select an alternative linker should
that be needed.

2.7.4.1 LTO with GCC
This has been tested on Linux with gcc/gfortran 8 and later: that needed setting (e.g. in

config.site)

AR=gcc-ar

RANLIB=gcc-ranlib
For non-system compilers or if those wrappers have not been installed one may need some-
thing like

AR="ar --plugin=/path/to/liblto_plugin.so"

RANLIB="ranlib --plugin=/path/to/liblto_plugin.so"

amd NM may be needed to be set analogously. (If using an LTO-enabled build to check
packages, set environment variable UserNM!¢ to ‘gcc-nm’.)

With GCC 5 and later it is possible to parallelize parts of the LTO linking process: set
the make macro ‘LTQ’ to something like ‘LTO=-f1to=8 (to use 8 threads), for example in
file config.site.

Under some circumstances and for a few packages, the PIC flags have needed overriding
on Linux with GCC 9 and later: e.g use in config.site:

CPICFLAGS=-fPIC
CXXPICFLAGS=-fPIC
CXX11PICFLAGS=-fPIC
CXX14PICFLAGS=-fPIC
CXX17PICFLAGS=-fPIC
CXX20PICFLAGS=-fPIC
FPICFLAGS=-fPIC

4 A complete CRAN installation reduced from 50 to 35GB.

15 although there is the possibility to exclude Fortran but that misses some of the benefits.

16 hot NM as we found make overriding that.

Chapter 2: Installing R under Unix-alikes 15

We suggest only using these if the problem is encountered (it was not seen on CRAN with
GCC 10 at the time of writing).

Note that R may need to be re-compiled after even a minor update to the compiler (e.g.
from 10.1 to 10.2) but this may not be clear from confused compiler messages.

2.7.4.2 LTO with LLVM

LLVM supports another type of LTO called ‘Thin LTO’ as well as a similar implementa-
tion to GCC, sometimes called ‘Full LTO’. (See https://clang.1lvm.org/docs/ThinLTO0.
html.) Currently the only LLVM compiler relevant to R is clang for which this can be se-
lected by setting macro ‘LTO0=-flto=thin’. LLVM has

AR=11lvm-ar
RANLIB=1lvm-ranlib

(but macOS does not, and these are not needed there). Where the linker supports a parallel
backend for Thin LTO this can be specified via the macro ‘LTO_LD’: see the URL above for
per-linker settings and further linking optimizations.)

For example, on macOS one might use

LTO=-flto=thin
LTO_FC=
LTO_LD=-W1l,-mllvm,-threads=4

to use Thin LTO with 4 threads for C/C++ code, but skip LTO for Fortran code compiled
with gfortran.

It is said to be particularly beneficial to use -03 for clang in conjunction with LTO.

2.7.4.3 LTO for package checking

LTO effectively compiles all the source code in a package as a single compilation unit and
so allows the compiler (with sufficient diagnostic flags such as -Wall) to check consistency
between what are normally separate compilation units.

With gcc/gfortran 9.x and later'” LTO will flag inconsistencies in calls to Fortran
subroutines/functions, both between Fortran source files and between Fortran and C/C++.
gfortran 8.4, 9.2 and later can help understanding these by extracting C prototypes from
Fortran source files with option -fc-prototypes-external, e.g. that (at the time of writ-
ing) Fortran LOGICAL corresponds to int_least32_t * in C.

On some systems it is possible to build the BLAS, LINPACK and LAPACK support
as static libraries containing intermediate-level code that LTO will compile for all objects
linked against these libraries, by configuring R with --enable-1to=check. This checks
the consistency of calls to BLAS/LINPACK/LAPACK in any packages installed using the
build. NB: as its name suggests, this option is intended only for checking installation of R
and packages: it includes these library routines (those called directly and all they depend
on) in each package. This is unlikely to work in conjunction with non-default options for
BLAS and LAPACK, and ‘linking’ against these libraries may be very slow.

17 probably also 8.4 and later.

https://clang.llvm.org/docs/ThinLTO.html
https://clang.llvm.org/docs/ThinLTO.html

Chapter 2: Installing R under Unix-alikes 16

2.8 Testing an Installation

Full post-installation testing is possible only if the test files have been installed with
make install-tests
which populates a tests directory in the installation.

If this has been done, two testing routes are available. The first is to move to the home
directory of the R installation (as given by R RHOME or from R as R.home()) and run

cd tests

followed by one of
../bin/R CMD make check
../bin/R CMD make check-devel
../bin/R CMD make check-all

and other useful targets are test-BasePackages and test-Recommended to run tests of the
standard and recommended packages (if installed) respectively.

This re-runs all the tests relevant to the installed R (including for example the code
in the package vignettes), but not for example the ones checking the example code in the
manuals nor making the standalone Rmath library. This can occasionally be useful when
the operating environment has been changed, for example by OS updates or by substituting
the BLAS (see Section A.3.1.4 [Shared BLAS], page 51).

Parallel checking of packages may be possible: set the environment variable TEST_MC_
CORES to the maximum number of processes to be run in parallel. This affects both checking
the package examples (part of make check) and package sources (part of make check-devel
and make check-recommended). It does require a make command which supports the make
-j n option: most do but on Solaris you need to select GNU make or dmake.

Alternatively, the installed R can be run, preferably with —-vanilla. Then

pdf ("tests.pdf") ## optional, but prevents flashing graphics windows
Sys.setenv(LC_COLLATE = "C", LC_TIME = "C", LANGUAGE = "en")
tools::testInstalledBasic("both")

tools: :testInstalledPackages(scope = "base")
tools::testInstalledPackages(scope = "recommended")

runs the basic tests and then all the tests on the standard and recommended packages.
These tests can be run from anywhere: the basic tests write their results in the tests
folder of the R home directory and run fewer tests than the first approach: in particular
they do not test things which need Internet access—that can be tested by
tools: :testInstalledBasic("internet")

These tests work best if diff (in Rtools*.exe for Windows users) is in the path.

It is possible to test the installed packages (but not their package-specific tests) by
testInstalledPackages even if make install-tests was not run.

Note that the results may depend on the language set for times and messages: for
maximal similarity to reference results you may want to try setting (before starting the R
session)

LANGUAGE=en

and use a UTF-8 or Latin-1 locale.

17

3 Installing R under Windows

The bin/windows directory of a CRAN site contains binaries for a base distribution and a
large number of add-on packages from CRAN to run on 32- or 64-bit Windows (Windows 7
and later are tested; XP is known to fail some tests) on ‘ix86’ and ‘x86_64" CPUs.

Your file system must allow long file names (as is likely except perhaps for some network-
mounted systems). If it does not also support conversion to short name equivalents (a.k.a.
DOS 8.3 names), then R must be installed in a path that does not contain spaces.

Installation is via the installer R-4.1.0-win.exe. Just double-click on the icon and
follow the instructions. When installing on a 64-bit version of Windows the options will
include 32- or 64-bit versions of R (and the default is to install both). You can uninstall R
from the Control Panel.

You will be asked to choose a language for installation: that choice applies to both
installation and un-installation but not to running R itself.

See the R Windows FAQ (https://CRAN.R-project.org/bin/windows/base/rw-FAQ.
html) for more details on the binary installer.

3.1 Building from source

It is possible to use other toolchains (including that used for R 3.6.3, ‘MSYS2’ and ‘MXE’
(M cross environment)) to build R, but this manual only documents that used for binary
distributions of R 4.0.x.

3.1.1 The Windows toolset

The binary distribution of R is currently built with tools distributed in rtools40-x86_
64.exe. The webpage https://cran.r-project.org/bin/windows/Rtools/ describes
how to install the toolset and has links to example scripts to build and package R.

This toolset was modified (by Jeroen Ooms) from the 'MISYS2’ project (https://
www.msys2.org/), which uses compilers (GCC version 8.3.0) and runtime libraries from
the ‘Mingw-w64’ project (http://mingw-w64.org/)! and provides a package manager
(‘pacman’) for components and additional libraries.

The toolsets used for 64-bit Windows from 2008-20 were based on Mingw-w64. The as-
sistance of Yu Gong at a crucial step in porting R to Mingw-w64 is gratefully acknowledged,
as well as help from Kai Tietz, the lead developer of the Mingw-w64 project.

3.1.2 BIEX

Both building R and checking packages need a distribution of ITEX installed, with the
directory containing pdflatex on the path.

The ‘MiKTeX’ (https://miktex.org/) distribution of IXTEX is that used on CRAN. This
can be set up to install extra packages ‘on the fly’ (without asking), which is the simplest
way to use it. The ‘basic’ version of ‘MiKTeX’ will need to add some packages.? In any case

1 Capitalization of this project’s name is inconsistent even on its own webpages.

2 There are reports of segfaults when ‘MiKTeX’ installs additional packages when making NEWS.pdf: re-
running make seems to solve this.

https://CRAN.R-project.org/bin/windows/base/rw-FAQ.html
https://CRAN.R-project.org/bin/windows/base/rw-FAQ.html
https://cran.r-project.org/bin/windows/Rtools/
https://www.msys2.org/
https://www.msys2.org/
http://mingw-w64.org/
https://miktex.org/

Chapter 3: Installing R under Windows 18

ensure that the inconsolata package is installed—you can check with the ‘MiKTeX’ Package
Manager.

It is also possible to use the TeX Live distribution from https://wuw.tug.org/texlive/
. (The CRAN package tinytex (https://CRAN.R-project.org/package=tinytex) can in-
stall and manage a subset of TeX Live.)

3.2 Checking the build

You can test a build by running
make check
The recommended packages can be checked by
make check-recommended
Other levels of checking are
make check-devel
for a more thorough check of the R functionality, and
make check-all
for both check-devel and check-recommended.

If a test fails, there will almost always be a .Rout.fail file in the directory being checked
(often tests/Examples or tests): examine the file to help pinpoint the problem.

Parallel checking of package sources (part of make check-devel and make
check-recommended) is possible: see the environment variable TEST_MC_CORES to the
maximum number of processes to be run in parallel.

3.3 Testing an Installation

The Windows installer contains a set of test files used when building R.

The toolset is not needed to run these tests, but more comprehensive analysis of errors
will be given if diff is in the path (and errorsAreFatal = FALSE is then not needed below).

Launch either Rgui or Rterm, preferably with ——vanilla. Then run
Sys.setenv(LC_COLLATE = "C", LANGUAGE = "en")
library("tools")
testInstalledBasic("both")
testInstalledPackages(scope = "base", errorsAreFatal = FALSE)
testInstalledPackages(scope = "recommended", errorsAreFatal = FALSE)

runs the basic tests and then all the tests on the standard and recommended packages.
These tests can be run from anywhere: they write some of their results in the tests folder
of the R home directory (as given by R.home()), and hence may need to be run under the
account used to install R.

The results of example (md5sums) when testing tools will differ from the reference output
as some files are installed with Windows’ CRLF line endings.

https://www.tug.org/texlive/
https://www.tug.org/texlive/
https://CRAN.R-project.org/package=tinytex

19

4 Installing R under macOS

[The rest of this paragraph is only relevant after release.] The front page of a CRAN site has
a link ‘Download R for (Mac) OS X’. Click on that, then download the file R-4.1.0.pkg
and install it. This runs on macOS 10.13 and later on ‘x86_64" (Intel) CPU (High Sierra,
Mojave, Catalina, Big Sur, . ..). It can also be installed on ‘armé4’ (aka ‘Apple Silicon’ aka
‘M1’) CPUs running Big Sur using ‘Rosetta’ emulation®, as can CRAN binary packages.

Installers for R-patched and R-devel are usually available from https://mac.
R-project.org. (Some of these packages are unsigned/not notarized: to install those
Control/right /two-finger click, select ‘Open With’ and ‘Installer’.) There may be a pre-
release package for ‘arm64’ for testers only (currently).

For some older versions of the OS you can in principle (it is little tested) install R from
the sources (see Section C.3 [macOS], page 65).

It is important that if you use a binary installer package that your OS is fully updated:
look at ‘Software Update’ in ’System Preferences’ (‘Updates’ from the ‘App Store’ on Mojave
and earlier) to be sure.

To install, just double-click on the icon of the file you downloaded. At the ‘Installation
Type’ stage, note the option to ‘Customize’. This currently shows four components: ev-
eryone will need the ‘R Framework’ component: the remaining components are optional.
(The ‘Tcl/Tk’ component is needed to use package tcltk. The ‘Texinfo’ component is only
needed by those installing source packages or R from its sources.)

This is an Apple Installer package. If you encounter any problem during the installation,
please check the Installer log by clicking on the “Window” menu and item “Installer Log”.
The full output (select “Show All Log”) is useful for tracking down problems. Note the
the installer is clever enough to try to upgrade the last-installed version of the application
where you installed it (which may not be where you want this time . . .).

Various parts of the build require XQuartz to be installed: see https://www.xquartz.
org/releases.? These include the tcltk package and the X11 device: attempting to use
these without XQuartz will if possible remind you.® This is also needed for some builds of
the cairographics-based devices (which are not often used on macOS) such as png(type =
"cairo").

If you update your macOS version, you should re-install R (and perhaps XQuartz): the
installer may tailor the installation to the current version of the OS.

For building R from source, see Section C.3 [macOS], page 65.

4.1 Running R under macOS

There are two ways to run R on macOS from a CRAN binary distribution.

There is a GUI console normally installed with the R icon in /Applications which you
can run by double-clicking (e.g. from Launchpad or Finder). (If you cannot find it there it
was possibly installed elsewhere so try searching for it in Spotlight.) This is usually referred

1 You may be asked to install Rosetta at first use — https://support.apple.com/en-us/HT211861 — which
may need administrator privileges.

2 At the time of writing the distribution was built/tested against 2.7.11 for compatibility with R 4.0.0.
3 If otool is installed: it is part of the macOS Command Line Tools.

https://mac.R-project.org
https://mac.R-project.org
https://www.xquartz.org/releases
https://www.xquartz.org/releases
https://support.apple.com/en-us/HT211861

Chapter 4: Installing R under macOS 20

to as R.APP to distinguish it from command-line R: its user manual is currently part of the
macOS FAQ at https://cran.r-project.org/bin/macosx/RMac0SX-FAQ.html and can
be viewed from R.APP’s ‘Help’ menu.

You can run command-line R and Rscript from a Terminal* so these can be typed as
commands as on any other Unix-alike: see the next chapter of this manual. There are
some small differences which may surprise users of R on other platforms, notably the de-
fault location of the personal library directory (under ~/Library/R, e.g. ~/Library/R/x86_
64/4.1/library), and that warnings, messages and other output to stderr are highlighted
in bold.

Those using the zsh shell (the default for new user accounts as from Catalina) might
find the command R being masked by the zsh builtin r (which recalls commands). One can
use a full path to R in an alias, or add disable r to ~/.zshrc.

It has been reported that running R.APP may fail if no preferences are stored, so if it
fails when launched for the very first time, try it again (the first attempt will store some
preferences).

Users of R.APP need to be aware of the ‘App Nap’ feature (https://developer.apple.
com/library/archive/releasenotes/Mac0SX/WhatsNewInOSX/Articles/Mac0SX10_9.
html) which can cause R tasks to appear to run very slowly when not producing output in
the console. Here are ways to avoid it:

e Ensure that the console is completely visible (or at least the activity indicator at the
top right corner is visible).

e In a Terminal, run
defaults write org.R-project.R NSAppSleepDisabled -bool YES

(see https://developer.apple.com/library/archive/releasenotes/Mac0SX/
WhatsNewInOSX/Articles/Mac0SX10_9.html).

Using the X11 device or the X11-based versions of View() and edit () for data frames and
matrices (the latter are the default for command-line R but not R.APP) requires XQuartz
(https://www.xquartz.org/) to be installed. So do the tcltk package and some third-party
packages.

Under some rather nebulous circumstances messages have been seen from fontconfig
about missing/unreadable configuration files when using cairo-based devices, especially
X11(type = "cairo"). With XQuartz installed there are two fontconfig areas from dif-
ferent versions and it can help to set

setenv FONTCONFIG_PATH /opt/X11/1lib/X11/fontconfig

Another symptom has been that italic/oblique fonts are replaced by upright ones.

4.2 Uninstalling under macOS

R for macOS consists of two parts: the GUI (R.APP) and the R framework. Un-installation
is as simple as removing those folders (e.g. by dragging them onto the Trash aka Bin). The
typical installation will install the GUI into the /Applications/R.app folder and the R

4 The installer puts links to R and Rscript in /usr/local/bin. If these are missing (as they may be under
‘Big Sur’), you can run directly the copies in /Library/Frameworks/R.framework/Resources/ or link
those yourself to somewhere on your path.

https://cran.r-project.org/bin/macosx/RMacOSX-FAQ.html
https://developer.apple.com/library/archive/releasenotes/MacOSX/WhatsNewInOSX/Articles/MacOSX10_9.html
https://developer.apple.com/library/archive/releasenotes/MacOSX/WhatsNewInOSX/Articles/MacOSX10_9.html
https://developer.apple.com/library/archive/releasenotes/MacOSX/WhatsNewInOSX/Articles/MacOSX10_9.html
https://developer.apple.com/library/archive/releasenotes/MacOSX/WhatsNewInOSX/Articles/MacOSX10_9.html
https://developer.apple.com/library/archive/releasenotes/MacOSX/WhatsNewInOSX/Articles/MacOSX10_9.html
https://www.xquartz.org/
https://www.xquartz.org/

Chapter 4: Installing R under macOS 21

framework into the /Library/Frameworks/R.framework folder. The links to R and Rscript
in /usr/local/bin should also be removed.
If you want to get rid of R more completely using a Terminal, simply run:
sudo rm -Rf /Library/Frameworks/R.framework /Applications/R.app \
/usr/local/bin/R /usr/local/bin/Rscript

The installation consists of up to four Apple packages:® org.r-project.R.fw.pkg,
org.r-project.R.GUI.pkg, org.r-project.x86_64.tcltk.x11 and org.r-project.x86_
64.texinfo. You can use pkgutil --forget if you want the Apple Installer to forget
about the package without deleting its files (useful for the R framework when installing
multiple R versions in parallel), or after you have deleted the files.

Uninstalling the Tcl/Tk or Texinfo components (which are installed under /usr/local)
is not as simple. You can list the files they installed in a Terminal by

pkgutil --files org.r-project.x86_64.tcltk.x11
pkgutil --files org.r-project.x86_64.texinfo

These are paths relative to /, the root of the file system.

4.3 Multiple versions

The installer will remove any previous version® of the R framework which it finds installed.
This can be avoided by using pkgutil --forget (see the previous section). However, note
that different versions are installed under /Library/Frameworks/R.framework/Versions
as 4.1, 4.0 and so on, so it is not possible to have different ‘4.x.y’ versions installed for
the same ‘x’.
A version of R can be run directly from the command-line as e.g.
/Library/Frameworks/R.framework/Versions/4.0/Resources/bin/R

However, R.APP will always run the ‘current’ version, that is the last installed version.

5 At the time of writing: use pkgutil --pkgs | grep org.r-project to check..
6 More precisely, of the Apple package of the same name: this means that installing a package for 3.6.x
does not remove an installation for 4.0 or later.

22

5 Running R

How to start R and what command-line options are available is discussed in Section “In-
voking R” in An Introduction to R.

You should ensure that the shell has set adequate resource limits: R expects a stack
size of at least 8MB and to be able to open at least 256 file descriptors. (Any modern OS
should have default limits at least as large as these, but apparently NetBSD may not. Use
the shell command ulimit (sh/bash) or 1imit (csh/tcsh) to check.) For some compilers!
and packages a larger stack size has been needed: 20-25MB has sufficed to date.

R makes use of a number of environment variables, the default values of many of which
are set in file R_HOME/etc/Renviron (there are none set by default on Windows and hence
no such file). These are set at configure time, and you would not normally want to
change them — a possible exception is R_PAPERSIZE (see Section B.3.1 [Setting paper size],
page 56). The paper size will be deduced from the ‘LC_PAPER’ locale category if it exists
and R_PAPERSIZE is unset, and this will normally produce the right choice from ‘a4’ and
‘letter’ on modern Unix-alikes (but can always be overridden by setting R_PAPERSIZE).

Various environment variables can be set to determine where R creates its per-session
temporary directory. The environment variables TMPDIR, TMP and TEMP are searched in turn
and the first one which is set and points to a writable area is used. If none do, the final
default is /tmp on Unix-alikes and the value of R_USER on Windows. The path should be an
absolute path not containing spaces (and it is best to avoid non-alphanumeric characters
such as +).

Some Unix-alike systems are set up to remove files and directories periodically from
/tmp, for example by a cron job running tmpwatch. Set TMPDIR to another directory before
starting long-running jobs on such a system.

Note that TMPDIR will be used to execute configure scripts when installing packages,
so if /tmp has been mounted as ‘noexec’, TMPDIR needs to be set to a directory from which
execution is allowed.

1 The Oracle compilers on Solaris (where the issue is parsing very complex R expressions) and GCC 9 on
Linux.

23

6 Add-on packages

It is helpful to use the correct terminology. A package is loaded from a library by the
function library(). Thus a library is a directory containing installed packages; the main
library is R_HOME/library, but others can be used, for example by setting the environment
variable R_LIBS or using the R function .1ibPaths(). To avoid any confusion you will
often see a library directory referred to as a ‘library tree’.

6.1 Default packages

The set of packages loaded on startup is by default

> getOption("defaultPackages")
[1] "datasets" ‘"utils" "grDevices" "graphics" '"stats" "methods"

(plus, of course, base) and this can be changed by setting the option in startup code (e.g.
in "/.Rprofile). It is initially set to the value of the environment variable R_DEFAULT_
PACKAGES if set (as a comma-separated list). Setting R_DEFAULT_PACKAGES=NULL ensures
that only package base is loaded.

Changing the set of default packages is normally used to reduce the set for speed when
scripting: in particular not using methods will reduce the start-up time by a factor of up
to two. But it can also be used to customize R, e.g. for class use. Rscript also checks
the environment variable R_SCRIPT_DEFAULT_PACKAGES; if set, this takes precedence over
R_DEFAULT_PACKAGES.

6.2 Managing libraries

R packages are installed into libraries, which are directories in the file system containing a
subdirectory for each package installed there.

R comes with a single library, R_HOME/library which is the value of the R object
‘.Library’ containing the standard and recommended' packages. Both sites and users
can create others and make use of them (or not) in an R session. At the lowest level
‘.1libPaths()’ can be used to add paths to the collection of libraries or to report the cur-
rent collection.

R will automatically make use of a site-specific library R_HOME/site-library if this
exists (it does not in a vanilla R installation). This location can be overridden by setting?
‘.Library.site’ in R_HOME/etc/Rprofile.site, or (not recommended) by setting the
environment variable R_LIBS_SITE. Like ‘.Library’, the site libraries are always included
by ¢.1ibPaths()’.

Users can have one or more libraries, normally specified by the environment variable R_
LIBS_USER. This has a default value (to see it, use ‘Sys.getenv("R_LIBS_USER")’ within
an R session), but that is only used if the corresponding directory actually exists (which by
default it will not).

Both R_LIBS_USER and R_LIBS_SITE can specify multiple library paths, separated by
colons (semicolons on Windows).

1 unless they were excluded in the build.

2 its binding is locked once the startup files have been read, so users cannot easily change it.

Chapter 6: Add-on packages 24

6.3 Installing packages

Packages may be distributed in source form or compiled binary form. Installing source
packages which contain C/C++/Fortran code requires that compilers and related tools be
installed. Binary packages are platform-specific and generally need no special tools to
install, but see the documentation for your platform for details.

Note that you may need to specify implicitly or explicitly the library to which the package
is to be installed. This is only an issue if you have more than one library, of course.

Ensure that the environment variable TMPDIR is either unset (and /tmp exists and can
be written in and executed from) or is the absolute path to a valid temporary directory,
not containing spaces.

For most users it suffices to call ‘install.packages (pkgname)’ or its GUI equivalent
if the intention is to install a CRAN package and internet access is available.> On most
systems ‘install.packages ()’ will allow packages to be selected from a list box (typically
with thousands of items).

To install packages from source on a Unix-alike use in a terminal
R CMD INSTALL -1 /path/to/library pkgl pkg2 ...

The part ‘-1 /path/to/library’ can be omitted, in which case the first library of a normal
R session is used (that shown by .1libPaths() [1]).

There are a number of options available: use R CMD INSTALL --help to see the current
list.

Alternatively, packages can be downloaded and installed from within R. First choose
your nearest CRAN mirror using chooseCRANmirror (). Then download and install packages
pkgl and pkg2 by

> install.packages(c("pkgl", "pkg2"))
The essential dependencies of the specified packages will also be fetched. Unless the library
is specified (argument 1ib) the first library in the library search path is used: if this is not
writable, R will ask the user (in an interactive session) if the default personal library should
be created, and if allowed to will install the packages there.

If you want to fetch a package and all those it depends on (in any way) that are not
already installed, use e.g.
> install.packages("Rcmdr", dependencies = TRUE)
install.packages can install a source package from a local .tar.gz file (or a URL to

such a file) by setting argument repos to NULL: this will be selected automatically if the
name given is a single .tar.gz file.

install.packages can look in several repositories, specified as a character vector by
the argument repos: these can include a CRAN mirror, Bioconductor, R-forge, rforge.net,
local archives, local files, ...). Function setRepositories() can select amongst those
repositories that the R installation is aware of.

Something which sometimes puzzles users is that install.packages() may report that
a package which they believe should be available is not found. Some possible reasons:

e The package, such as grid or tcltk, is part of R itself and not otherwise available.

31Ifa proxy needs to be set, see 7download.file.

Chapter 6: Add-on packages 25

e The package is not in the available repositories, so check which have been selected by
getOption("repos")

e The package is available, but not for the current version of R or for the type of OS

(Unix/Windows). To retrieve the information on available versions of package pkg, use

av <- available.packages(filters=1list())

av[av[, "Package"] == pkg,]
in your R session, and look at the ‘Depends’ and ‘0S_type’ fields (there may be more
than one matching entry). If the package depends on a version of R later than the
one in use, it is possible that an earlier version is available which will work with your
version of R: for CRAN look for ‘Old sources’ on the package’s CRAN landing page and
manually retrieve an appropriate version (of comparable age to your version of R).

Naive users sometimes forget that as well as installing a package, they have to use
library to make its functionality available.

6.3.1 Windows

What install.packages does by default is different on Unix-alikes (except macOS) and
Windows. On Unix-alikes it consults the list of available source packages on CRAN (or
other repository /ies), downloads the latest version of the package sources, and installs them
(via R CMD INSTALL). On Windows it looks (by default) first at the list of binary versions
of packages available for your version of R and downloads the latest versions (if any). If no
binary version is available or the source version is newer, it will install the source versions of
packages without compiled C/C++/Fortran code, and offer to do so for those with, if make is
available (and this can be tuned by option "install.packages.compile.from.source").

On Windows install.packages can also install a binary package from a local zip file
(or the URL of such a file) by setting argument repos to NULL. Rgui.exe has a menu
Packages with a GUI interface to install.packages, update.packages and library.

Windows binary packages for R are distributed as a single binary containing either or
both architectures (32- and 64-bit).

R CMD INSTALL works in Windows to install source packages. No addi-
tional tools are needed if the package does not contain compiled code, and
install.packages (type="source") will work for such packages. Those with compiled
code need the tools (see Section 3.1.1 [The Windows toolset], page 17) to be on the path:
this can be set from within an R session by something like

Sys.setenv(PATH=paste ("C:\\rtools40\\usr\\bin", Sys.getenv("PATH"), sep=";"))

Occasional permission problems after unpacking source packages have been seen on some
systems: these have been circumvented by setting the environment variable R_INSTALL_TAR
to ‘tar.exe’.

If you have only a source package that is known to work with current R and just want a
binary Windows build of it, you could make use of the building service offered at https://
win-builder.r-project.org/.

For almost all packages R CMD INSTALL will attempt to install both 32- and 64-bit builds
of a package if run from a 32/64-bit install of R. It will report success if the installation of
the architecture of the running R succeeded, whether or not the other architecture was suc-
cessfully installed. The exceptions are packages with a non-empty configure.win script

https://win-builder.r-project.org/
https://win-builder.r-project.org/

Chapter 6: Add-on packages 26

or which make use of src/Makefile.win. If configure.win does something appropri-
ate to both architectures use* option --force-biarch: otherwise R CMD INSTALL --merge-
multiarch can be applied to a source tarball to merge separate 32- and 64-bit installs.
(This can only be applied to a tarball, and will only succeed if both installs succeed.)

If you have a package without compiled code and no Windows-specific help, you can zip
up an installation on another OS and install from that zip file on Windows. However, such
a package can be installed from the sources on Windows without any additional tools.

6.3.2 macOS

On macOS install.packages works as it does on other Unix-alike systems, but there is an
additional type mac.binary (available for the CRAN distribution but not when compiling
R from source) which can be passed to install.packages in order to download and install
binary packages from a suitable repository. These binary package files for macOS have the
extension ‘.tgz’. The R.App GUI provides menus for installation of either binary or source
packages, from CRAN, other repositories or local files.

On R builds using binary packages, the default is type both: this looks first at the list of
binary packages available for your version of R and installs the latest versions (if any). If no
binary version is available or the source version is newer, it will install the source versions
of packages without compiled C/C++/Fortran code and offer to do so for those with, if make
is available.

Note that most binary packages which include compiled code are tied to a particular
series (e.g. R 4.0.x or 4.1.x) of R.

Installing source packages which do not contain compiled code should work with no
additional tools. For others you will need the ‘Command Line Tools’ for Xcode and compilers
which match those used to build R: see Section C.3 [macOS], page 65.

Package rJava (https://CRAN.R-project.org/package=rJava) and those which de-
pend on it need a Java runtime installed and several packages need X11 installed, including
those using Tk. See Section C.3 [macOS], page 65, and Section C.3.6 [Java (macOS)],
page 71. Package rjags (https://CRAN.R-project.org/package=rjags) needs a build of
JAGS installed under /usr/local, such as those at https://sourceforge.net/projects/
mcmc-jags/files/JAGS/4.x/Mac?,2005%20X/.

Tcl/Tk extension BWidget used to be distributed with R but no longer is; Tktable has
been distributed with most versions of R (but not 4.0.0).

A few of the binary packages need other software to be installed on your system. In
particular packages using Gtk+ (RGtk2 (https://CRAN.R-project.org/package=RGtk2),
cairoDevice (https://CRAN.R-project.org/package=cairoDevice) and those that de-
pend on them) need the GTK framework installed from https://mac.R-project.org/
libs/: the appropriate version at the time of writing was https://mac.R-project.org/
1ibs/GTK_2.24.17-X11.pkg.

The same instructions apply when installing binary packages into the CRAN distribution
of R running on an ‘armé4’ (aka ‘Apple Silicon’ aka ‘M1’) Mac.

4 for a small number of CRAN packages where this is known to be safe and is needed by the autobuilder
this is the default. Look at the source of tools:::.install_packages for the list. It can also be specified
in the package’s DESCRIPTION file.

https://CRAN.R-project.org/package=rJava
https://CRAN.R-project.org/package=rjags
https://sourceforge.net/projects/mcmc-jags/files/JAGS/4.x/Mac%20OS%20X/
https://sourceforge.net/projects/mcmc-jags/files/JAGS/4.x/Mac%20OS%20X/
https://CRAN.R-project.org/package=RGtk2
https://CRAN.R-project.org/package=cairoDevice
https://mac.R-project.org/libs/
https://mac.R-project.org/libs/
https://mac.R-project.org/libs/GTK_2.24.17-X11.pkg
https://mac.R-project.org/libs/GTK_2.24.17-X11.pkg

Chapter 6: Add-on packages 27

The default compilers specified are shown in file /Library/Frameworks/R.framework/
Resources/etc/Makeconf. At the time of writing those settings assumed that the C,
Fortran and C++ compilers were on the path, using gfortran 8.2.0 (see Section C.3 [macOS],
page 65). The settings can be changed, either by editing that file or in a file such as
~/.R/Makevars (see the next section). Entries which may need to be changed include
‘CC’, ‘CXX’, ‘FC’, ‘FLIBS’ and the corresponding flags, and perhaps ‘CXXCPP’, ‘DYLIB_LD’,
‘MAIN_LD’, ‘SHLIB_CXXLD’ and ‘SHLIB_LD’, as well as the ‘CXX11’, ‘CXX14’, ‘CXX17’ and
‘CXX20’ variants

So for example on Mojave or later you could select a specific non-Apple build of clang
for both C and C++ with extensive checking by having in ~/.R/Makevars

CC = /usr/local/clang/bin/clang -isysroot
/Library/Developer/CommandLineTools/SDKs/Mac0SX.sdk

CXX = /usr/local/clang/bin/clang++ -isysroot
/Library/Developer/CommandLineTools/SDKs/Mac0SX.sdk

CXX11 = $CXX

CXX14 = $CXX

CXX17 = $CXX

CXX20 = $CXX

CFLAGS = -g -02 -Wall -pedantic -Wconversion -Wno-sign-conversion
CXXFLAGS = -g -02 -Wall -pedantic -Wconversion -Wno-sign-conversion
CXX11FLAGS = $CXXFLAGS

CXX14FLAGS = $CXXFLAGS

CXX17FLAGS = $CXXFLAGS

CXX20FLAGS = $CXXFLAGS

(long lines split for the manual only) and gfortran by

FC = /usr/local/gfortran/bin/gfortran
FLIBS = -L/usr/local/gfortran/lib/gcc/x86_64-apple-darwinl8/8.2.0
-L/usr/local/gfortran/lib -lgfortran -lquadmath -1m

(with lines broken here for legibility). If that clang build supports OpenMP, you can add

SHLIB_OPENMP_CFLAGS = -fopenmp
SHLIB_OPENMP_CXXFLAGS = -fopenmp

to compile OpenMP-using packages. It will also be necessary to arrange for the
libomp.dylib library to be found at both install time and run time, for example by
copying/linking it somewhere that is searched such as /usr/local/lib.

Apple includes many Open Source libraries in macOS but increasingly without the cor-
responding headers (not even in Xcode nor the Command Line Tools): they are often rather
old versions. If installing packages from source using them it is usually easiest to install
a statically-linked up-to-date copy of the Open Source package from its sources or from
https://mac.R-project.org/libs-4/. But sometimes it is desirable/necessary to use
Apple’s dynamically linked library, in which case appropriate headers could be extracted
from the sources® available via https://opensource.apple.com — this has been used for
OpenSSL® and iodbc.

5 Note that capitalization and versioning may differ from the Open Source project.

6 no longer a system library in macOS 11.

https://mac.R-project.org/libs-4/
https://opensource.apple.com

Chapter 6: Add-on packages 28

Those using Command Line Tools / Xcode 12 or later (as released for macOS 11 ‘Big
Sur’) probably want to arrange that the flag

-Wno-implicit-function-declaration
is part of CFLAGS. Apple has changed the default to make implicit declarations a compilation
error (something seen in no other compiler) and understandably authors of packages and

external software have been unaware that this might be done — most issues seen were in
configure scripts.

Some care may be needed with selecting compilers when installing external software
for use with packages. The ‘system’ compilers as used when building R are clang and
clang++, but the Apple toolchain also provides compilers called gcc and g++ which despite
their names are based on LLVM and libc++ like the system ones and which behave in
almost the same way as the system ones. Most Open Source software has a configure
script developed using GNU autoconf and hence will select gcc and g++ as the default
compilers: this usually works fine. For consistency one can use

./configure CC=clang CFLAGS=-02 CXX=clang++ CXXFLAGS=-02

(avoiding autoconf’s default -g). Be careful if you put the /usr/local/gfortran/bin
directory on your path as that contains (real) gcc and g++ which may be found rather the
Apple-provided commands, and may not be able to find the headers and libraries” of the
SDK.

For ‘arm64’, not all configure scripts have been updated to recognize the platform and so
might need the flag ——build=aarch64-apple-darwin20.1.0. Also, be aware that running
the compilers from a ‘x86_64" application switches them to generating code for that CPU:
this applies to a Terminal, a shell, older cmake or (non-system) make, and from R CMD
INSTALL or install.packages(). One can use

./configure CC="clang -arch arm64" CFLAGS=-02 CXX="clang++ -arch arm64" CXXFLAGS=-02

to force ‘arm64’ code.

6.3.3 Customizing package compilation

The R system and package-specific compilation flags can be overridden or added to by
setting the appropriate Make variables in the personal file HOME/ .R/Makevars—-R_PLATFORM
(but HOME/.R/Makevars.win or HOME/.R/Makevars.win64 on Windows), or if that does
not exist, HOME/ .R/Makevars, where ‘R_PLATFORM’ is the platform for which R was built,
as available in the platform component of the R variable R.version. The full path to an
alternative personal file® can be specified via the environment variable R_MAKEVARS_USER.

Package developers are encouraged to use this mechanism to enable a reasonable amount
of diagnostic messaging (“warnings”) when compiling, such as e.g. -Wall -pedantic for
tools from GCC, the GNU Compiler Collection, or for clang.

Note that this mechanism can also be used when it necessary to change the optimization
level whilst installing a particular package. For example

for C code
CFLAGS = -g -0 -mtune=native

" From Big Sur those libraries are not publicly visible: rather the system compilers link to ‘text-based
definition’ (.tbd) files.

8 using a path containing spaces is likely to cause problems

Chapter 6: Add-on packages 29

for C++ code

CXXFLAGS = -g -0 —-mtune=native
for fixed-form Fortran code
FFLAGS = -g -0 -mtune=native

Another use is to override the settings in a binary installation of R. For example, to use
a different Fortran compiler on macOS

FC = /usr/local/gfortran/bin/gfortran
FLIBS = -L/usr/local/gfortran/lib/gcc/x86_64-apple-darwinl6/6.3.0
-L/usr/local/gfortran/lib -lgfortran -lquadmath -1lm

(line split for legibility here).

There is also provision for a site-wide Makevars.site file under R_HOME/etc (in a sub-
architecture-specific directory if appropriate). This is read immediately after Makeconf, and
the path to an alternative file can be specified by environment variable R_MAKEVARS_SITE.

Note that these mechanisms do not work with packages which fail to pass settings down
to sub-makes, perhaps reading etc/Makeconf in makefiles in subdirectories. Fortunately
such packages are unusual.

6.3.4 Multiple sub-architectures

When installing packages from their sources, there are some extra considerations on in-
stallations which use sub-architectures. These are commonly used on Windows but can in
principle be used on other platforms.

When a source package is installed by a build of R which supports multiple sub-
architectures, the normal installation process installs the packages for all sub-architectures.
The exceptions are

Unix-alikes
where there is an configure script, or a file src/Makefile.
Windows

where there is a non-empty configure.win script, or a file src/Makefile.win
(with some exceptions where the package is known to have an architecture-
independent configure.win, or if --force-biarch or field ‘Biarch’ in the
DESCRIPTION file is used to assert so).

In those cases only the current architecture is installed. Further sub-architectures can be
installed by
R CMD INSTALL --libs-only pkg

using the path to R or R ——arch to select the additional sub-architecture. There is also R
CMD INSTALL --merge-multiarch to build and merge the two architectures, starting with
a source tarball.

6.3.5 Byte-compilation
As from R 3.6.0, all packages are by default byte-compiled.

Byte-compilation can be controlled on a per-package basis by the ‘ByteCompile’ field in
the DESCRIPTION file.

Chapter 6: Add-on packages 30

6.3.6 External software

Some R packages contain compiled code which links to external software libraries. Unless
the external library is statically linked (which is done as much as possible for binary packages
on Windows and macOS), the libraries have to be found when the package is loaded and
not just when it is installed. How this should be done depends on the OS (and in some
cases the version).

For Unix-alikes except macOS the primary mechanism is the 1d.so cache controlled by
ldconfig: external dynamic libraries recorded in that cache will be found. Standard library
locations will be covered by the cache, and well-designed software will add its locations
(as for example openmpi does on Fedora). The secondary mechanism is to consult the
environment variable LD_LIBRARY_PATH. The R script controls that variable, and sets it to
the concatenation of R_LD_LIBRARY_PATH, R_JAVA_LD_LIBRARY_PATH and the environment
value of LD_LIBRARY_PATH. The first two have defaults which are normally set when R is
installed (but can be overridden in the environment) so LD_LIBRARY_PATH is the best choice
for a user to set.

On macOS the primary mechanism is to embed the absolute path to dependent dynamic
libraries into an object when it is compiled. Few R packages arrange to do so, but it can
be edited” via install_name_tool — that only deals with direct dependencies and those
would also need to be compiled to include the absolute paths of their dependencies. If the
choice of absolute path is to be deferred to load time, how they are resolved is described in
man dyld: the role of LD_LIBRARY_PATH is replaced on macOS by DYLD_LIBRARY_PATH and
DYLD_FALLBACK_LIBRARY_PATH. Running R CMD otool -L on the package shared object will
show where (if anywhere) its dependencies are resolved. DYLD_FALLBACK_LIBRARY_PATH is
preferred (and it is that which is manipulated by the R script), but as from 10.11 (‘El
Capitan’) the default behaviour had been changed for security reasons to discard these
environment variables when invoking a shell script (and R is a shell script). That makes the
only portable option to set R_LD_LIBRARY_PATH in the environment, something like

export R_LD_LIBRARY_PATH="‘R RHOME‘/lib:/opt/local/lib"

The precise rules for where Windows looks for DLLs are complex and depend on the
version of Windows. But for present purposes the main solution is to put the directories
containing the DLLs the package links to (and any those DLLs link to) on the PATH. 64-bit
versions of Windows will ignore 32-bit DLLs from 64-bit R and vice versa.

The danger with any of the methods which involve setting environment variables is of
inadvertently masking a system library. This is less for DYLD_FALLBACK_LIBRARY_PATH and
for appending to PATH on Windows (as it should already contain the system library paths).

6.4 Updating packages

The command update.packages() is the simplest way to ensure that all the packages on
your system are up to date. It downloads the list of available packages and their current
versions, compares it with those installed and offers to fetch and install any that have later
versions on the repositories.

9 They need to have been created using -headerpad_max_install_names, which is the default for an R
package.

Chapter 6: Add-on packages 31

An alternative interface to keeping packages up-to-date is provided by the command
packageStatus (), which returns an object with information on all installed packages and
packages available at multiple repositories. The print and summary methods give an over-
view of installed and available packages, the upgrade method offers to fetch and install the
latest versions of outdated packages.

One sometimes-useful additional piece of information that packageStatus() returns is
the status of a package, as "ok", "upgrade" or "unavailable" (in the currently selected
repositories). For example

> inst <- packageStatus()$inst

> inst[inst$Status != "ok", c("Package", "Version", "Status")]
Package Version Status

Biobase Biobase 2.8.0 unavailable

RCurl RCurl 1.4-2 upgrade

Rgraphviz Rgraphviz 1.26.0 unavailable

rgdal rgdal 0.6-27 upgrade

6.5 Removing packages

Packages can be removed in a number of ways. From a command prompt they can be
removed by

R CMD REMOVE -1 /path/to/library pkgl pkg2 ...
From a running R process they can be removed by

> remove.packages(c("pkgl", "pkg2"),
lib = file.path("path", "to", "library"))

Finally, one can just remove the package directory from the library.

6.6 Setting up a package repository

Utilities such as install.packages can be pointed at any CRAN-style repository, and R
users may want to set up their own. The ‘base’ of a repository is a URL such as https://
www.stats.ox.ac.uk/pub/RWin/: this must be an URL scheme that download.packages
supports (which also includes ‘https://’, ‘ftp://’ and ‘file://’). Under that base URL
there should be directory trees for one or more of the following types of package distribu-
tions:

e "source": located at src/contrib and containing .tar.gz files. Other forms of com-
pression can be used, e.g. .tar.bz2 or .tar.xz files. Complete repositories contain
the sources corresponding to any binary packages, and in any case it is wise to have a
src/contrib area with a possibly empty PACKAGES file.

e "win.binary": located at bin/windows/contrib/x.y for R versions x.y.z and con-
taining .zip files for Windows.

e "mac.binary": located at bin/macosx/contrib/4.y for the CRAN builds for macOS
for R versions 4.y.z, containing .tgz files.

e "mac.binary.el-capitan": located at bin/macosx/el-capitan/contrib/3.y for the
CRAN builds for R versions 3.y.z, containing .tgz files.

https://www.stats.ox.ac.uk/pub/RWin/
https://www.stats.ox.ac.uk/pub/RWin/

Chapter 6: Add-on packages 32

Each terminal directory must also contain a PACKAGES file. This can be a concatenation
of the DESCRIPTION files of the packages separated by blank lines, but only a few of the
fields are needed. The simplest way to set up such a file is to use function write_PACKAGES
in the tools package, and its help explains which fields are needed. Optionally there can
also be PACKAGES.rds and PACKAGES. gz files, downloaded in preference to PACKAGES. (If
you have a mis-configured server that does not report correctly non-existent files you may
need these files.)

To add your repository to the list offered by setRepositories(), see the help file for
that function.

Incomplete repositories are better specified via a contriburl argument than via being
set as a repository.

A repository can contain subdirectories, when the descriptions in the PACKAGES file of
packages in subdirectories must include a line of the form
Path: path/to/subdirectory
—once again write_PACKAGES is the simplest way to set this up.

6.7 Checking installed source packages

It can be convenient to run R CMD check on an installed package, particularly on a platform
which uses sub-architectures. The outline of how to do this is, with the source package in
directory pkg (or a tarball filename):

R CMD INSTALL -1 libdir pkg > pkg.log 2>&1
R CMD check -1 libdir --install=check:pkg.log pkg

Where sub-architectures are in use the R CMD check line can be repeated with additional
architectures by

R --arch arch CMD check -1 libdir --extra-arch --install=check:pkg.log pkg
where —-extra-arch selects only those checks which depend on the installed code and not
those which analyse the sources. (If multiple sub-architectures fail only because they need
different settings, e.g. environment variables, ——no-multiarch may need to be added to the
INSTALL lines.) On Unix-alikes the architecture to run is selected by —--arch: this can also
be used on Windows with R_HOME/bin/R.exe, but it is more usual to select the path to the
Rcmd. exe of the desired architecture.

So on Windows to install, check and package for distribution a source package from a
tarball which has been tested on another platform one might use

.../bin/i386/Rcmd INSTALL -1 libdir tarball --build > pkg.log 2>&1

.../bin/i386/Rcmd check -1 libdir --extra-arch --install=check:pkg.log pkg

.../bin/x64/Rcmd check -1 libdir --extra-arch --install=check:pkg.log pkg
where one might want to run the second and third lines in a different shell with different
settings for environment variables and the path (to find external software, notably for Gtk+).

R CMD INSTALL can do a 1386 install and then add the x64 DLL from a single command
by

R CMD INSTALL --merge-multiarch -1 libdir tarball
and --build can be added to zip up the installation.

33

7 Internationalization and Localization

Internationalization refers to the process of enabling support for many human languages,
and localization to adapting to a specific country and language.

Current builds of R support all the character sets that the underlying OS can handle.
These are interpreted according to the current locale, a sufficiently complicated topic
to merit a separate section. Note though that R has no built-in support for right-to-left
languages and bidirectional output, relying on the OS services. For example, how character
vectors in UTF-8 containing both English digits and Hebrew characters are printed is OS-
dependent (and perhaps locale-dependent).

The other aspect of the internationalization is support for the translation of messages.
This is enabled in almost all builds of R.

7.1 Locales

A locale is a description of the local environment of the user, including the preferred lan-
guage, the encoding of characters, the currency used and its conventions, and so on. Aspects
of the locale are accessed by the R functions Sys.getlocale and Sys.localeconv.

The system of naming locales is OS-specific. There is quite wide agreement on schemes,
but not on the details of their implementation. A locale needs to specify

e A human language. These are generally specified by a lower-case two-character abbre-
viation following ISO 639 (see e.g. https://en.wikipedia.org/wiki/IS0_639-1).

e A ‘territory’, used mainly to specify the currency. These are generally specified by
an upper-case two-character abbreviation following ISO 3166 (see e.g. https://en.
wikipedia. org/wiki/ISU_3166).

e A charset encoding, which determines both how a byte stream should be divided into
characters, and which characters the subsequences of bytes represent. Sometimes the
combination of language and territory is used to specify the encoding, for example to
distinguish between traditional and simplified Chinese.

e Optionally, a modifier, for example to indicate that Austria is to be considered pre-
or post-Euro. The modifier is also used to indicate the script (@latin, @cyrillic for
Serbian, @iqtelif) or language dialect (e.g. @saaho, a dialect of Afar, and @bokmal
and @nynorsk, dialects of Norwegian regarded by some OSes as separate languages, no
and nn).

R is principally concerned with the first (for translations) and third. Note that the
charset may be deducible from the language, as some OSes offer only one charset per
language.

7.1.1 Locales under Unix-alikes

Modern Linux uses the XPG! locale specifications which have the form ‘en_GB’,
‘en_GB.UTF-8’, ‘aa_ER.UTF-8@saaho’, ‘de_AT.is0885915@euro’, the components being in
the order listed above. (See man locale and locale -a for more details.) Similar schemes
are used by most Unix-alikes: some (including some distributions of Linux) use ‘.utf8’
rather than ‘. UTF-8’.

1 ‘X /Open Portability Guide’, which has had several versions.

https://en.wikipedia.org/wiki/ISO_639-1
https://en.wikipedia.org/wiki/ISO_3166
https://en.wikipedia.org/wiki/ISO_3166

Chapter 7: Internationalization and Localization 34

Note that whereas UTF-8 locales are nowadays almost universally used, locales such as
‘en_GB’ use 8-bit encodings for backwards compatibility.

7.1.2 Locales under Windows

Windows also uses locales, but specified in a rather less concise way. Most users will
encounter locales only via drop-down menus, but more information and lists can be found
by searching for ‘Windows language country strings’).

It offers only one encoding per language.

Some care is needed with Windows’ locale names. For example, chinese is Traditional
Chinese and not Simplified Chinese as used in most of the Chinese-speaking world.

7.1.3 Locales under macOS

macOS supports locales in its own particular way, but the R GUI tries to make this
easier for users. See https://developer.apple.com/library/archive/documentation/
Mac0SX/Conceptual/BPInternational/ for how users can set their locales. As with Win-
dows, end users will generally only see lists of languages/territories. Users of R in a terminal
may need to set the locale to something like ‘en_GB.UTF-8’ if it defaults to ‘C’ (as it some-
times does when logging in remotely and for batch jobs: note whether Terminal sets the
LANG environment variable is an (advanced) preference, but does so by default).

Internally macOS uses a form similar to Linux: the main difference from other Unix-
alikes is that where a character set is not specified it is assumed to be UTF-8.

7.2 Localization of messages

The preferred language for messages is by default taken from the locale. This can be
overridden first by the setting of the environment variable LANGUAGE and then? by the
environment variables LC_ALL, LC_MESSAGES and LANG. (The last three are normally used
to set the locale and so should not be needed, but the first is only used to select the
language for messages.) The code tries hard to map locales to languages, but on some
systems (notably Windows) the locale names needed for the environment variable LC_ALL
do not all correspond to XPG language names and so LANGUAGE may need to be set. (One
example is ‘LC_ALL=es’ on Windows which sets the locale to Estonian and the language to
Spanish.)

It is usually possible to change the language once R is running via (not Windows)
Sys.setlocale("LC_MESSAGES", "new_locale"), or by setting an environment variable
such as LANGUAGE, provided® the language you are changing to can be output in the current
character set. But this is OS-specific, and has been known to stop working on an OS up-
grade. Note that translated messages may be cached, so attempting to change the language
of an error that has already been output in another language may not work.

Messages are divided into domains, and translations may be available for some or all
messages in a domain. R makes use of the following domains.

e Domain R for the C-level error and warning messages from the R interpreter.

2 On some systems setting LC_ALL or LC_MESSAGES to ‘C’ disables LANGUAGE.

31 you try changing from French to Russian except in a UTF-8 locale, you may find messages change to
English.

https://developer.apple.com/library/archive/documentation/MacOSX/Conceptual/BPInternational/
https://developer.apple.com/library/archive/documentation/MacOSX/Conceptual/BPInternational/

Chapter 7: Internationalization and Localization 35

e Domain R-pkg for the R stop, warning and message messages in each package, in-
cluding R-base for the base package.

e Domain pkg for the C-level messages in each package.
e Domain RGui for the menus etc of the R for Windows GUI front-end.

Dividing up the messages in this way allows R to be extensible: as packages are loaded,
their message translation catalogues can be loaded too.

R can be built without support for translations, but it is enabled by default.

R-level and C-level domains are subtly different, for example in the way strings are
canonicalized before being passed for translation.

Translations are looked for by domain according to the currently specified language,
as specifically as possible, so for example an Austrian (‘de_AT’) translation catalogue will
be used in preference to a generic German one (‘de’) for an Austrian user. However, if
a specific translation catalogue exists but does not contain a translation, the less specific
catalogues are consulted. For example, R has catalogues for ‘en_GB’ that translate the
Americanisms (e.g., ‘gray’) in the standard messages into English.* Two other examples:
there are catalogues for ‘es’, which is Spanish as written in Spain and these will by default
also be used in Spanish-speaking Latin American countries, and also for ‘pt_BR’, which are
used for Brazilian locales but not for locales specifying Portugal.

Translations in the right language but the wrong charset are made use of by on-the-
fly re-encoding. The LANGUAGE variable (only) can be a colon-separated list, for example
‘se:de’, giving a set of languages in decreasing order of preference. One special value is
‘en@quot’, which can be used in a UTF-8 locale to have American error messages with pairs
of single quotes translated to Unicode directional quotes.

If no suitable translation catalogue is found or a particular message is not translated in
any suitable catalogue, ‘English’® is used.

See https://developer.r-project.org/Translations30.html for how to prepare
and install translation catalogues.

4 the language written in England: some people living in the USA appropriate this name for their language.

5 with Americanisms.

https://developer.r-project.org/Translations30.html

36

8 Choosing between 32- and 64-bit builds

Almost all current CPUs have both 32- and 64-bit sets of instructions. Most OSes running
on such CPUs offer the choice of building a 32-bit or a 64-bit version of R (and details are
given below under specific OSes). For most a 32-bit version is the default, but for some
(e.g., ‘x86_64" Linux and macOS > 10.6) 64-bit is.

All current versions of R use 32-bit integers (this is enforced in the build) and
ISO/IEC 60559' double-precision reals, and so compute to the same precision? and with
the same limits on the sizes of numerical quantities. The principal difference is in the size
of the pointers.

64-bit builds have both advantages and disadvantages:

e The total virtual memory space made available to a 32-bit process is limited by the
pointer size to 4GB, and on most OSes to 3GB (or even 2GB). The limits for 64-bit
processes are much larger (e.g. 8-128TB).

R allocates memory for large objects as needed, and removes any unused ones at garbage
collection. When the sizes of objects become an appreciable fraction of the address
limit, fragmentation of the address space becomes an issue and there may be no hole
available that is the size requested. This can cause more frequent garbage collection or
the inability to allocate large objects. As a guide, this will become an issue for 32-bit
builds with objects more than 10% of the size of the address space (around 300Mb) or
when the total size of objects in use is around one third (around 1Gb).

e Only 64-bit builds support ‘long vectors’, those with 23! or more elements (which needs
at least 16GB of storage for each numeric vector).

e Most 32-bit OSes by default limit file sizes to 2GB (and this may also apply to 32-bit
builds on 64-bit OSes). This can often be worked around: configure selects suitable
defines if this is possible. (We have also largely worked around that limit on 32-bit
Windows.) 64-bit builds have much larger limits.

e Because the pointers are larger, R’s basic structures are larger. This means that R
objects take more space and (usually) more time to manipulate. So 64-bit builds of R
will, all other things being equal, run slower than 32-bit builds. (On Sparc Solaris the
difference was 15-20%.)

e However, ‘other things’ may not be equal. In the specific case of ‘x86_64" vs ‘ix86’, the
64-bit CPU has features (such as SSE2 instructions) which are guaranteed to be present
but are optional on the 32-bit CPU, and also has more general-purpose registers. This
means that on chips like a desktop Intel i7 the vanilla 64-bit version of R has been
around 10% faster on both Linux and macOS. (Laptop CPUs are usually relatively
slower in 64-bit mode.)

So, for speed you may want to use a 32-bit build (especially on a laptop), but to handle
large datasets (and perhaps large files) a 64-bit build. You can often build both and install
them in the same place: See Section 2.6 [Sub-architectures], page 9. (This is done for the
Windows binary distributions.)

! also known as IEEE 754
2 at least when storing quantities: the on-FPU precision is allowed to vary

Chapter 8: Choosing between 32- and 64-bit builds 37

Even on 64-bit builds of R there are limits on the size of R objects (see
help("Memory-limits")), some of which stem from the use of 32-bit integers (especially
in Fortran code). For example, each dimension of an array is limited to 23' — 1.

38

9 The standalone Rmath library

The routines supporting the distribution and special! functions in R and a few others are
declared in C header file Rmath.h. These can be compiled into a standalone library for
linking to other applications. (Note that they are not a separate library when R is built,
and the standalone version differs in several ways.)

The makefiles and other sources needed are in directory src/nmath/standalone, so the
following instructions assume that is the current working directory (in the build directory
tree on a Unix-alike if that is separate from the sources).

Rmath.h contains ‘R_VERSION_STRING’, which is a character string containing the current
R version, for example "4.0.0".

There is full access to R’s handling of NaN, Inf and -Inf via special versions of the
macros and functions

ISNAN, R_FINITE, R_log, R_pow and R_pow_di
and (extern) constants R_PosInf, R_NegInf and NA_REAL.

There is no support for R’s notion of missing values, in particular not for NA_INTEGER
nor the distinction between NA and NaN for doubles.

A little care is needed to use the random-number routines. You will need to supply the
uniform random number generator

double unif_rand(void)
or use the one supplied (and with a shared library or DLL you may have to use the one
supplied, which is the Marsaglia-multicarry with an entry point
set_seed(unsigned int, unsigned int)
to set its seeds).
The facilities to change the normal random number generator are available through the
constant NO1_kind. This takes values from the enumeration type

typedef enum {
BUGGY_KINDERMAN_RAMAGE,
AHRENS_DIETER,
BOX_MULLER,
USER_NORM,
INVERSION,
KINDERMAN_RAMAGE

} NOitype;

(and ‘USER_NORM’ is not available).

9.1 Unix-alikes
If R has not already been made in the directory tree, configure must be run as described
in the main build instructions.

Then (in src/nmath/standalone)

make

1 e.g. Bessel, beta and gamma functions

Chapter 9: The standalone Rmath library 39

will make standalone libraries 1ibRmath.a and 1ibRmath.so (1ibRmath.dylib on macOS):
‘make static’ and ‘make shared’ will create just one of them.
To use the routines in your own C or C++ programs, include
#define MATHLIB_STANDALONE
#include <Rmath.h>

and link against ‘-1Rmath’ (and ‘-1m’ if needed on your OS). The example file test.c does
nothing useful, but is provided to test the process (via make test). Note that you will
probably not be able to run it unless you add the directory containing 1ibRmath.so to the
LD_LIBRARY_PATH(Hndronnuﬂﬁ;Vaﬂabkz(limeath.dylib,DYLD_FALLBACK_LIBRARY_PATH
on macOS).

The targets
make install
make uninstall

will (un)install the header Rmath.h and shared and static libraries (if built). Both prefix=
and DESTDIR are supported, together with more precise control as described for the main
build.
‘make install’ installs a file for pkg-config to use by e.g.
$(CC) ‘pkg-config --cflags libRmath‘ -c test.c
$(CC) ‘pkg-config --libs libRmath‘ test.o -o test

On some systems ‘make install-strip’ will install a stripped shared library.

9.2 Windows

You need to set up? almost all the tools to make R and then run (in a Unix-like shell)

(cd ../../gnuwin32; make MkRules)

(cd ../../include; make -f Makefile.win config.h Rconfig.h Rmath.h)

make -f Makefile.win
Alternatively, in a cmd.exe shell use

cd ../../include

make —-f Makefile.win config.h Rconfig.h Rmath.h

cd ../nmath/standalone

make -f Makefile.win

This creates a static library 1ibRmath.a and a DLL Rmath.d11l. If you want an import

library 1ibRmath.d1l1l.a (you don’t need one), use

make -f Makefile.win shared implib
To use the routines in your own C or C++ programs using MinGW-w64, include

#define MATHLIB_STANDALONE
#include <Rmath.h>

and link against ‘~1Rmath’. This will use the first found of 1ibRmath.d1ll.a, 1ibRmath.a
and Rmath.d11 in that order, so the result depends on which files are present. You should
be able to force static or dynamic linking via

-W1l,-Bstatic -1Rmath -Wl,Bdynamic

2 including copying MkRules.dist to MkRule.local and selecting the architecture.

Chapter 9: The standalone Rmath library 40

-Wl,-Bdynamic -1Rmath
or by linking to explicit files (as in the ‘test’ target in Makefile.win: this makes two exe-
cutables, test.exe which is dynamically linked, and test-static.exe, which is statically
linked).

It is possible to link to Rmath.d11 using other compilers, either directly or via an import
library: if you make a MinGW-w64 import library as above, you will create a file Rmath.def
which can be used (possibly after editing) to create an import library for other systems such
as Visual C++.

If you make use of dynamic linking you should use

#define MATHLIB_STANDALONE
#define RMATH_DLL
#include <Rmath.h>

to ensure that the constants like NA_REAL are linked correctly. (Auto-import will probably
work with MinGW-w64, but it is better to be sure. This is likely to also work with VC++,
Borland and similar compilers.)

41

Appendix A Essential and useful other programs
under a Unix-alike

This appendix gives details of programs you will need to build R on Unix-like platforms, or
which will be used by R if found by configure.

Remember that some package management systems (such as RPM and Debian/Ubuntu’s)
make a distinction between the user version of a package and the development version. The
latter usually has the same name but with the extension ‘-devel’ or ‘-dev’: you need both
versions installed.

A.1 Essential programs and libraries

You need a means of compiling C and Fortran 90 (see Section B.6 [Using Fortran], page 57).
Your C compiler should be ISO/IEC 60059', POSIX 1003.1 and C99-compliant.? R tries
to choose suitable flags® for the C compilers it knows about, but you may have to set CC
or CFLAGS suitably. For versions of gcc prior to 5.1 with glibc-based Linux this means
including -std=gnu99*. (Note that options essential to run the compiler even for linking,
such as those to set the architecture, should be specified as part of CC rather than in CFLAGS.)

Unless you do not want to view graphs on-screen (or use macOS) you need ‘X11’ installed,
including its headers and client libraries. For recent Fedora/RedHat distributions it means
(at least) RPMs ‘1ibX11’, ‘1ibX11-devel’, ‘1ibXt’ and ‘1ibXt-devel’. On Debian/Ubuntu
we recommend the meta-package ‘xorg-dev’. If you really do not want these you will need
to explicitly configure R without X11, using --with-x=no.

The command-line editing (and command completion) depends on the GNU readline
library (including its headers): version 6.0 or later is needed for all the features to be
enabled. Otherwise you will need to configure with —-with-readline=no (or equivalent).

A suitably comprehensive iconv function is essential. The R usage requires iconv to
be able to translate between "latinl" and "UTF-8", to recognize "" (as the current en-
coding) and "ASCII", and to translate to and from the Unicode wide-character formats
"UCS-[24] [BL]E" — this is true by default for glibc® but not of most commercial Unixes.
However, you can make use of GNU libiconv (as used on macOS: see https://www.gnu.
org/software/libiconv/).

also known as IEEE 754

Note that C11 compilers need not be C99-compliant: R requires support for double complex and variable-
length arrays which are optional in C11 but are mandatory in C99. C18 (also known as C17) is a ‘bugfix
release’ of C11, clarifying the standard.

Examples are -std=gnu99, -std=c99 and -c99.

-std=c99 excludes POSIX functionality, but config.h will turn on all GNU extensions to include the
POSIX functionality for R itself: this does not apply to badly-written packages. The default mode for
GCC 5.1 and later is -std=gnull, which currently includes the optional features R needs.

However, it is possible to break the default behaviour of glibc by re-specifying the gconv modules to be
loaded.

https://www.gnu.org/software/libiconv/
https://www.gnu.org/software/libiconv/

Appendix A: Essential and useful other programs under a Unix-alike 42

The OS needs to have enough support® for wide-character types: this is checked at
configuration. Some C99 functions” are required and checked for at configuration. A small
number of POSIX functions® are essential, and others® will be used if available.

Installations of z1ib (version 1.2.5 or later), 1ibbz2 (version 1.0.6 or later: called bzip2-
libs /bzip2-devel or libbz2-1.0/libbz2-dev by some Linux distributions) and 1iblzma'® ver-
sion 5.0.3 or later are required.

Either PCREL (version 8.32 or later, formerly known as just PCRE) or PCRE2 is re-
quired: PCRE2 is preferred and using PCRE1 requires configure option --with-pcrel.
Only the 8-bit library and headers are needed if these are packaged separately. JIT support
(optional) is desirable for the best performance. For PCRE2 >= 10.30 (which is desirable
as matching has been re-written not to use recursion and the Unicode tables were updated
to version 10)
./configure --enable-jit
suffices. If building PCRE1 for use with R a suitable configure command might be
./configure --enable-utf --enable-unicode-properties --enable-jit --disable-cpp

The --enable-jit flag is supported for most common CPUs. (See also the comments for
Solaris.)

Some packages require the ‘Unicode properties’ which are optional for PCRE1: support
for this and JIT can be checked at run-time by calling pcre_config().

Library libcurl (version 7.28.0 or later'!) is required. Information on libcurl is found
from the curl-config script: if that is missing or needs to be overridden'? there are macros
to do so described in file config.site.

A tar program is needed to unpack the sources and packages (including the recom-
mended packages). A version'® that can automagically detect compressed archives is pre-
ferred for use with untar(): the configure script looks for gtar and gnutar before tar —
use environment variable TAR to override this. (On NetBSD/OpenBSD systems set this to
bsdtar if that is installed.)

There need to be suitable versions of the tools grep and sed: the problems are usually
with old AT&T and BSD variants. configure will try to find suitable versions (including
looking in /usr/xpg4/bin which is used on some commercial Unixes).

You will not be able to build most of the manuals unless you have texi2any version
5.1 or later installed (which requires perl), and if not most of the HTML manuals will be

6 specifically, the C99 functionality of headers wchar.h and wctype.h, types wctans_t and mbstate_t and

functions mbrtowc, mbstowcs, wcrtomb, wecscoll, westombs, wetrans, wetype, and iswctype.
7

8

including expm1, hypot, loglp, nearbyint and va_copy.
including opendir, readdir, closedir, popen, stat, glob, access, getcwd and chdir system calls,
select on a Unix-alike, and either putenv or setenv.

such as realpath, symlink.

10 most often distributed as part of xz: possible names in Linux distributions include xz-devel/xz-1libs

and liblzma-dev.

1 but not a major version greater than 7 should there ever be one: the major version has been 7 since

2000.

for example to specify static linking with a build which has both shared and static libraries.

Such as GNU tar 1.15 or later, bsdtar (from https://github.com/libarchive/libarchive/, used as
tar by FreeBSD and macOS 10.6 and later) or tar from the Heirloom Toolchest (http://heirloom.
sourceforge.net/tools.html), although the latter does not support xz compression.

12
13

https://github.com/libarchive/libarchive/
http://heirloom.sourceforge.net/tools.html
http://heirloom.sourceforge.net/tools.html

Appendix A: Essential and useful other programs under a Unix-alike 43

linked to a version on CRAN. To make PDF versions of the manuals you will also need
file texinfo.tex installed (which is part of the GNU texinfo distribution but is often made
part of the TEX package in re-distributions) as well as texi2dvi.' Further, the versions of
texi2dvi and texinfo.tex need to be compatible: we have seen problems with older TEX
distributions.

If you want to build from the R Subversion repository then texi2any is highly recom-
mended as it is used to create files which are in the tarball but not stored in the Subversion
repository.

The PDF documentation (including doc/NEWS.pdf) and building vignettes needs
pdftex and pdflatex. We require KTEX version 2005/12/01 or later (for UTF-8 support).
Building PDF package manuals (including the R reference manual) and vignettes is
sensitive to the version of the IWTEX package hyperref and we recommend that the TEX
distribution used is kept up-to-date. A number of standard KTEX packages are required
(including url and some of the font packages such as times, helvetic, ec and cm-super) and
others such as hyperref and inconsolata are desirable (and without them you may need
to change R’s defaults: see Section 2.3 [Making the manuals], page 5). Note that package
hyperref (currently) requires packages kvoptions, ltxcmds and refcount. For distributions
based on TeX Live the simplest approach may be to install collections collection-latex,
collection-fontsrecommended, collection-latexrecommended, collection-fontsextra and
collection-latexextra (assuming they are not installed by default): Fedora uses names like
texlive-collection-fontsextra and Debian/Ubuntu like texlive-fonts-extra.

The essential programs should be in your PATH at the time configure is run: this will
capture the full paths.

Those distributing binary versions of R may need to be aware of the licences of the
external libraries it is linked to (including ‘useful’ libraries from the next section). The
liblzma library is in the public domain and X11, 1ibbzip2, 1ibcurl and z1ib have MIT-
style licences. PCRE and PCRE2 have a BSD-style licence which requires distribution of
the licence (included in R’s COPYRIGHTS file) in binary distributions. GNU readline is
licensed under GPL (which version(s) of GPL depends on the readline version).

A.2 Useful libraries and programs

The ability to use translated messages makes use of gettext and most likely needs GNU
gettext: you do need this to work with new translations, but otherwise the version of the
gettext runtime contained in the R sources will be used if no suitable external gettext is
found.

The ‘modern’ version of the X11 (), jpeg(), png() and tiff () graphics devices uses the
Cairo and Pango libraries. Cairo version 1.2.0 or later and Pango version 1.10 or later are
required (but much later versions are current). R checks for pkg-config, and uses that to
check first that the ‘pangocairo’ package is installed (and if not, ‘cairo’) then if suitable

14 texi2dvi is normally a shell script. Some versions (including those from texinfo 5.2 and 6.0-6.6) need to

be run under bash rather than a Bourne shell, especially on Solaris. Some of the issues which have been
observed with broken versions of texi2dvi can be circumvented by setting the environment variable
R_TEXI2DVICMD to the value emulation.

Appendix A: Essential and useful other programs under a Unix-alike 44

code can be compiled. These tests will fail if pkg-config is not installed'®, and might
fail if cairo was built statically unless configure option —-with-static-cairo is used.
Most systems with Gtk+ 2.8 or later installed will have suitable libraries: for Fedora users
the pango-devel RPM and its dependencies suffice. It is possible (but very unusual on a
platform with X11) to build Cairo without its cairo-x1ib module in which case X11 (type
= "cairo") will not be available. Pango is optional but highly desirable as it is likely to
give much better text rendering, including kerning.

For the best font experience with these devices you need suitable fonts installed:
Linux users will want the urw-fonts package. On platforms which have it available, the
msttcorefonts package!® provides TrueType versions of Monotype fonts such as Arial
and Times New Roman. Another useful set of fonts is the ‘liberation’ TrueType fonts
available at https://pagure.io/liberation-fonts,!” which cover the Latin, Greek and
Cyrillic alphabets plus a fair range of signs. These share metrics with Arial, Times New
Roman and Courier New, and contain fonts rather similar to the first two (https://en.
wikipedia.org/wiki/Liberation_fonts). Then there is the ‘Free UCS Outline Fonts’
project (https://www.gnu.org/software/freefont/) which are OpenType/TrueType
fonts based on the URW fonts but with extended Unicode coverage. See the R help on X11
on selecting such fonts.

The bitmapped graphics devices jpeg(), png() and tiff () need the appropriate headers
and libraries installed: jpeg (version 6b or later, or libjpeg-turbo) or libpng (version
1.2.7 or later) and z1ib or libtiff (versions 4.0.[5-10] and 4.[12].0 have been tested)
respectively. pkg-config is used if available and so needs the appropriate .pc file (which
requires 1ibtiff version 4.x and is not available on all platforms for jpeg before version 9c¢).
They also need support for either X11 or cairo (see above). Should support for these devices
not be required or broken system libraries need to be avoided there are configure options
--without-libpng, —-without-jpeglib and --without-1libtiff. The TIFF library has
many optional features such as jpeg, libz, zstd, lzma, webp jbig and jpegl2, none of
which is required for the tiff () devices but may need to be present to link the library
(usually only an issue for static linking). pkg-config can tell you what other libraries are
required for linking, for example by pkg-config 1ibtiff-4 --static --1ibs.

Option --with-system-tre is also available: it needs a recent version of TRE. (The
latest sources are in the git repository at https://github.com/laurikari/tre/, but at
the time of writing (2016) the resulting build did not pass its checks.).

An implementation of XDR is required, and the R sources contain one which is likely to
suffice (although a system version may have higher performance). XDR is part of RPC and
historically has been part of 1ibc on a Unix-alike. (In principle man xdr_string should tell
you which library is needed, but it often does not: on Solaris and others it is provided by
1ibnsl.) However some builds'® of glibc omit or hide it with the intention that the TI-RPC

15 If necessary the path to pkg-config can be specified by setting PKG_CONFIG in config.site, on the

configure command line or in the environment. There is a compatible re-implementation of pkg-config
called pkgconf which can be used in the unlikely event that is installed but not linked to pkg-config.
also known as ttf-mscorefonts-installer in the Debian/Ubuntu world: see also https://en.
wikipedia.org/wiki/Core_fonts_for_the_Web.

ttf-liberation in Debian/Ubuntu.

This is the default as from glibc 2.26 and has been confirmed for Fedora >= 28, which does not mention
this on its man pages.

16

17
18

https://pagure.io/liberation-fonts
https://en.wikipedia.org/wiki/Liberation_fonts
https://en.wikipedia.org/wiki/Liberation_fonts
https://www.gnu.org/software/freefont/
https://github.com/laurikari/tre/
https://en.wikipedia.org/wiki/Core_fonts_for_the_Web
https://en.wikipedia.org/wiki/Core_fonts_for_the_Web

Appendix A: Essential and useful other programs under a Unix-alike 45

library be used, in which case 1libtirpc (and its development version) should be installed,
and its headers'® need to be on the C include path or under /usr/include/tirpc.

Use of the X11 clipboard selection requires the Xmu headers and libraries. These are
normally part of an X11 installation (e.g. the Debian meta-package ‘xorg-dev’), but some
distributions have split this into smaller parts, so for example recent versions of Fedora
require the ‘libXmu’ and ‘libXmu-devel’ RPMs.

Some systems (notably macOS and at least some FreeBSD systems) have inadequate sup-
port for collation in multibyte locales. It is possible to replace the OS’s collation support by
that from ICU (International Components for Unicode, http://site.icu-project.org/
), and this provides much more precise control over collation on all systems. ICU is avail-
able as sources and as binary distributions for (at least) most Linux distributions, Solaris,
FreeBSD, macOS and AIX, usually as libicu or icudc. It will be used by default where
available: should a very old or broken version of ICU be found this can be suppressed by
--without-ICU.

The bitmap and dev2bitmap devices and function embedFonts() use ghostscript
(https://www.ghostscript.com/). This should either be in your path when the
command is run, or its full path specified by the environment variable R_GSCMD at that
time.

At the time of writing a full installation on Fedora Linux used the following packages
and their development versions, and this may provide a useful checklist for other systems:

bzip2 cairo fontconfig freetype fribidi glib2 harfbuzz 1ibX11l libXext
1libXt libcurl libicu libjpeg libpng libtiff libtirpc libxcrypt ncurses
pango pkgconf-pkg-config pcre2 readline tcl tk xz zlib

A.2.1 Tcl/Tk

The tcltk package needs Tcl/Tk > 8.4 installed: the sources are available at https://
www.tcl.tk/. To specify the locations of the Tcl/Tk files you may need the configuration
options

-—with-tcltk
use Tcl/Tk, or specify its library directory

-—with-tcl-config=TCL_CONFIG
specify location of tclConfig.sh

--with-tk-config=TK_CONFIG
specify location of tkConfig.sh

or use the configure variables TCLTK_LIBS and TCLTK_CPPFLAGS to specify the flags needed
for linking against the Tcl and Tk libraries and for finding the tcl.h and tk.h headers,
respectively. If you have both 32- and 64-bit versions of Tcl/Tk installed, specifying the
paths to the correct config files may be necessary to avoid confusion between them.

Versions of Tcl/Tk up to 8.5.19 and 8.6.11 have been tested (including most versions of
8.4.x, but not recently).

19 R uses rpc/xdr.h but that includes netconfig.h from the top tirpc directory.

http://site.icu-project.org/
http://site.icu-project.org/
https://www.ghostscript.com/
https://www.tcl.tk/
https://www.tcl.tk/

Appendix A: Essential and useful other programs under a Unix-alike 46

Note that the tk.h header includes?® X11 headers, so you will need X11 and its devel-
opment files installed.

A.2.2 Java support

The build process looks for Java support on the host system, and if it finds it sets
some settings which are useful for Java-using packages (such as rJava (https://
CRAN.R-project.org/package=rJava) and JavaGD (https://CRAN.R-project.org/
package=JavaGD): these require a full JDK). This check can be suppressed by configure
option --disable-java. Configure variable JAVA_HOME can be set to point to a specific
JRE/JDK, on the configure command line or in the environment.

Principal amongst these settings are some paths to the Java libraries and JVM, which
are stored in environment variable R_JAVA_LD_LIBRARY_PATH in file R_HOME/etc/ldpaths
(or a sub-architecture-specific version). A typical setting for ‘x86_64" Linux is

JAVA_HOME=/usr/lib/jvm/java-1.8.0-openjdk-1.8.0.265.b01-1.fc32.x86_64/jre
R_JAVA_LD_LIBRARY_PATH=${JAVA_HOME}/1lib/amd64/server

Unfortunately this depends on the exact version of the JRE/JDK installed, and
so may need updating if the Java installation is updated. This can be done by
running R CMD javareconf which updates settings in both R_HOME/etc/Makeconf and
R_HOME/etc/ldpaths. See R CMD javareconf --help for details: note that this needs to
be done by the account owning the R installation.

Another way of overriding those settings is to set the environment variable R_JAVA_
LD_LIBRARY_PATH (before R is started, hence not in ~/.Renviron), which suffices to run
already-installed Java-using packages. For example

R_JAVA_LD_LIBRARY_PATH=/usr/1ib/jvm/java-1.8.0/jre/lib/amd64/server

It may be possible to avoid this by specifying an invariant link as the path when config-
uring. For example, on that system any of

JAVA_HOME=/usr/lib/jvm/java
JAVA_HOME=/usr/lib/jvm/java-1.8.0
JAVA_HOME=/usr/lib/jvm/java-1.8.0/jre
JAVA_HOME=/usr/lib/jvm/jre-1.8.0

worked (since the ‘auto’ setting of /etc/alternatives chose Java 8 aka 1.8.0).

‘Non-server’ Oracle distributions of Java as from version 11 are of a full JDK. However,

Linux distributions can be confusing: for example Fedora 32 had

java-1.8.0-openjdk

java-1.8.0-openjdk-devel

java-openjdk

java-openjdk-devel

java-1l-openjdk

java-11-openjdk-devel

java-latest-openjdk

java-latest-openjdk-devel

20 This is true even for the ‘Aqua’ version of Tk on macOS, but distributions of that include a copy of the
X11 files needed.

https://CRAN.R-project.org/package=rJava
https://CRAN.R-project.org/package=rJava
https://CRAN.R-project.org/package=JavaGD
https://CRAN.R-project.org/package=JavaGD

Appendix A: Essential and useful other programs under a Unix-alike 47

where the -devel RPMs are needed to complete the JDK. (At the time of writing
java-openjdk was Java 14.) Debian/Ubuntu use ‘-jre’ and ‘-jdk’, e.g.
sudo apt install default-jdk

A.2.3 Other compiled languages

Some add-on packages need a C++ compiler. This is specified by the configure variables
CXX, CXXFLAGS and similar. configure will normally find a suitable compiler. It is possi-
ble to specify an alternative C++17 compiler by the configure variables CXX17, CXX17STD,
CXX17FLAGS and similar (see Section 2.7.3 [C++ Support], page 12). Again, configure will
normally find a suitable value for CXX178TD if the compiler given by CXX is capable of com-
piling C++17 code, but it is possible that a completely different compiler will be needed.
(Similar macros are provided for C++20.)

For source files with extension .£90 or .£95 containing free-form Fortran, the compiler
defined by the macro FC is used by R CMD INSTALL. Note that it is detected by the name of
the command without a test that it can actually compile Fortran 90 code. Set the configure
variable FC to override this if necessary: variables FCFLAGS and FCLIBS_XTRA might also
need to be set.

See file config.site in the R source for more details about these variables.
A.3 Linear algebra
A.3.1 BLAS

The linear algebra routines in R can make use of enhanced BLAS (Basic Linear Algebra Sub-
programs, https://www.netlib.org/blas/faq.html) routines. However, these have to be
explicitly requested at configure time: R provides an internal BLAS which is well-tested and
will be adequate for most uses of R.

You can specify a particular BLAS library wvia a value for the configuration option
--with-blas and not to use an external BLAS library by --without-blas (the default).
If ——with-blas is given with no =, its value is taken from the environment variable BLAS_
LIBS, set for example in config.site. If neither the option nor the environment variable
supply a value, a search is made for a suitable?! BLAS. If the value is not obviously a linker
command (starting with a dash or giving the path to a library), it is prefixed by ‘-1, so

-—-with-blas="foo"

is an instruction to link against ‘~1foo’ to find an external BLAS (which needs to be found
both at link time and run time).

The configure code checks that the external BLAS is complete (it must include all double
precision and double complex routines, as well as LSAME), and appears to be usable. How-
ever, an external BLAS has to be usable from a shared object (so must contain position-
independent code), and that is not checked.

Some enhanced BLASes are compiler-system-specific (sunperf on Solaris*?; 1ibessl on
IBM, Accelerate on macOS). The correct incantation for these is often found via --with-
blas with no value on the appropriate platforms.

21 The search includes OpenBLAS, ATLAS and a generic 1libblas, plus some platform-specific choices (see
below).
22 Using the Oracle Developer Studio cc and £95 compilers

https://www.netlib.org/blas/faq.html

Appendix A: Essential and useful other programs under a Unix-alike 48

Some of the external BLASes are multi-threaded. One issue is that R profiling (which
uses the SIGPROF signal) may cause problems, and you may want to disable profiling if you
use a multi-threaded BLAS. Note that using a multi-threaded BLAS can result in taking
more CPU time and even more elapsed time (occasionally dramatically so) than using a
similar single-threaded BLAS. On a machine running other tasks, there can be contention
for CPU caches that reduces the effectiveness of the optimization of cache use by a BLAS
implementation: some people warn that this is especially problematic for hyperthreaded
CPUs.

Note that under Unix (but not under Windows) if R is compiled against a non-default
BLAS and --enable-BLAS-shlib is not used (it is the default on all platforms except AIX),
then all BLAS-using packages must also be. So if R is re-built to use an enhanced BLAS
then packages such as quantreg (https://CRAN.R-project.org/package=quantreg) will
need to be re-installed; they may be under other circumstances.

R relies on ISO/IEC 60559 compliance of an external BLAS. This can be broken if for
example the code assumes that terms with a zero factor are always zero and do not need to
be computed—whereas x*0 can be NaN. This is checked in the test suite.

External BLAS implementations often make less use of extended-precision floating-point
registers (where available) and will almost certainly re-order computations. This can result
in less accuracy than using a reference BLAS, and may result in different solutions, e.g.
different signs in SVD and eigendecompositions.

Debian/Ubuntu systems provide a system-specific way to switch the BLAS in use.
Build R with -with-blas to select the OS version of the reference BLAS, and then use
update-alternatives to switch between the available BLAS libraries. See https://wiki.
debian.org/DebianScience/LinearAlgebral.ibraries.

The URIs for several of these BLAS have been subject to frequent gratuitous changes,
so you will need to search for their current locations.

BLAS (and LAPACK) routines may be used inside threaded code, for example in
OpenMP sections in packages such as mgev. The reference implementations are thread-safe
but external ones may not be (even single-threaded ones): this can lead to hard-to-track-
down incorrect results or segfaults.

NOTE: BLAS libraries built with gfortran 9 (and later and versions 8.4, 7.5 and later in
those series) require calls from C/C++ to handle ‘hidden’ character lengths — R itself does
so but many packages do not and some segfault. (This applies also to external LAPACK
libraries.)

A.3.1.1 ATLAS

ATLAS (http://math-atlas.sourceforge.net/) is a “tuned” BLAS that runs on a wide
range of Unix-alike platforms. Unfortunately it is built by default as a static library that
on some platforms may not be able to be used with shared objects such as are used in R
packages. Be careful when using pre-built versions of ATLAS static libraries (they seem to
work on ‘ix86’ platforms, but not always on ‘x86_64’ ones).

ATLAS contains replacements for a small number of LAPACK routines, but can be built
to merge these with LAPACK sources to include a full LAPACK library.

https://CRAN.R-project.org/package=quantreg
https://wiki.debian.org/DebianScience/LinearAlgebraLibraries
https://wiki.debian.org/DebianScience/LinearAlgebraLibraries
http://math-atlas.sourceforge.net/

Appendix A: Essential and useful other programs under a Unix-alike 49

Recent versions of ATLAS can be built as a single shared library, either libsatlas or
libtatlas (serial or threaded respectively): these may even contain a full LAPACK. Such
builds can be used by one of

—--with-blas=satlas
—--with-blas=tatlas

or, as on ‘x86_64" Fedora where a path needs to be specified,

--with-blas="-L/usr/lib64/atlas -lsatlas"
--with-blas="-L/usr/lib64/atlas -ltatlas"

Distributed ATLAS libraries cannot be tuned to your machine and so are a compromise: for
example Fedora tunes ‘x86_64’ for CPUs with SSE3 extensions, and separate ‘atlas-sse2’
and ‘atlas-sse3’ ‘i686° RPMs are available.?

Note that building R on Linux against distributed shared libraries may need ‘-devel’
or ‘-dev’ packages installed.

Linking against multiple static libraries requires one of

--with-blas="-1f77blas -latlas"

--with-blas="-1ptf77blas -lpthread -latlas"
--with-blas="-L/path/to/ATLAS/libs -1f77blas -latlas"
--with-blas="-L/path/to/ATLAS/1ibs -1lptf77blas -lpthread -latlas"

Consult its installation guide®* for how to build ATLAS as a shared library or as a static
library with position-independent code (on platforms where that matters).

According to the ATLAS FAQ? the maximum number of threads used by multi-threaded
ATLAS is set at compile time. Also, the author advises against using multi-threaded ATLAS
on hyperthreaded CPUs without restricting affinities at compile-time to one virtual core
per physical CPU. (For the Fedora libraries the compile-time flag specifies 4 threads.)

A.3.1.2 OpenBLAS

Dr Kazushige Goto wrote a tuned BLAS for several processors and OSes, which was frozen
in mid-2010. OpenBLAS (https://www.openblas.net/) is a descendant project with sup-
port for some later CPUs.

This can be used by configuring R with something like
--with-blas="-lopenblas"

See see Section A.3.1.4 [Shared BLAS]|, page 51, for an alternative (and in many ways
preferable) way to use them.

Some platforms provide multiple builds of OpenBLAS: for example Fedora 32 has
RPMs?6

openblas
openblas-threads

23 There were others for earlier versions of ATLAS, and are for non-Intel architectures. The only way to
see exactly which CPUs the distributed libraries have been tuned for is to read the atlas.spec file: at
the time of writing ‘HAMMER64SSE3’ and ‘Corei264AVX’ for ‘x86_64’ Fedora.

24 http://math-atlas.sourceforge.net/atlas_install/

25 http://math-atlas.sourceforge.net/faq.html#tnum

26 (and more, e.g. for 64-bit ints and static versions).

https://www.openblas.net/
http://math-atlas.sourceforge.net/atlas_install/
http://math-atlas.sourceforge.net/faq.html#tnum

Appendix A: Essential and useful other programs under a Unix-alike 50

openblas—-openmp
providing shared libraries

libopenblas.so
libopenblasp.so
libopenblaso.so

respectively, each of which can be used as a shared BLAS. For the second and third the
number of threads is controlled by OPENBLAS_NUM_THREADS and OMP_NUM_THREADS (as usual
for OpenMP) respectively. There is also a Fedora RPM ‘openblas-Rblas’ to replace
libRblas.so in their distribution of R.

Note that building R on Linux against distributed libraries may need ‘~devel’ or ‘-dev’
packages installed.

For ‘ix86’ and ‘x86_64’ most distributed libraries contain several alternatives for differ-
ent CPU microarchitectures with the choice being made at run time.

A.3.1.3 Intel MKL

For Intel processors (and perhaps others) and some distributions of Linux, there is In-
tel’s Math Kernel Library. You are strongly encouraged to read the MKL User’s Guide,
which is installed with the library, before attempting to link to MKL. This includes a
‘link line advisor’ which will suggest appropriate incantations: its use is recommended.
Or see https://software.intel.com/content/www/us/en/develop/tools/oneapi/
components/onemkl/link-line-advisor.html.

There are also versions of MKL for macOS?” and Windows, but when these have been
tried they did not work with the default compilers used for R on those platforms.

The MKL interface has changed several times but has been stable in recent years: the
following examples have been used with versions 10.3 to 2020.2, for GCC compilers on
‘x86_64".

To use a sequential version of MKL we used

MKL_LIB_PATH=/path/to/intel_mkl/mkl/1lib/intel64

export LD_LIBRARY_PATH=$MKL_LIB_PATH

MKL="-L${MKL_LIB_PATH} -1lmkl_gf_ 1p64 -1lmkl_core -1lmkl_sequential"

./configure --with-blas="$MKL" --with-lapack
The option --with-lapack is used since MKL contains a tuned copy of LAPACK (often
older than the current version) as well as BLAS (see Section A.3.2 [LAPACK], page 52),
although this can be omitted.

Threaded MKL may be used by replacing the line defining the variable MKL by

MKL="-L${MKL_LIB_PATH} -1lmkl_gf_1p64 -lmkl_core \
-1mkl_gnu_thread -dl1 -fopenmp"

R can also be linked against a single shared library, 1ibmkl_rt.so, for both BLAS and
LAPACK, but the correct OpenMP and MKL interface layer then has to be selected via
environment variables. With 64-bit builds and the GCC compilers, we used

export MKL_INTERFACE_LAYER=GNU,LP64
export MKL_THREADING_LAYER=GNU

27 The issue for macOS has been the use of double-complex routines.

https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/onemkl/link-line-advisor.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/onemkl/link-line-advisor.html

Appendix A: Essential and useful other programs under a Unix-alike 51

On Debian/Ubuntu, MKL is provided by package intel-mkl-full and one can
set libmkl_rt.so as the system-wide implementation of both BLAS and LAPACK
during installation of the package, so that also R installed from Debian/Ubuntu package
r-base would use it. It is, however, still essential to set MKL_INTERFACE_LAYER and
MKL_THREADING_LAYER before running R, otherwise MKL computations will produce
incorrect results. R does not have to be rebuilt to use MKL, but configure include tests
which may discover some errors such as a failure to set the correct OpenMP and MKL
interface layer.

The default number of threads will be chosen by the OpenMP software, but can be controlled
by setting OMP_NUM_THREADS or MKL_NUM_THREADS, and in recent versions seems to default
to a sensible value for sole use of the machine. (Parallel MKL has not always passed make
check-all, but did with MKL 2019.4 and later.)

MKL includes a partial implementation of FFTW3, which causes trouble for applications
that require some of the FFTW3 functionality unsupported in MKL. Please see the MKL
manuals for description of these limitations and for instructions on how to create a custom
version of MKL which excludes the FFTW3 wrappers.

It was reported in 2015 that
--with-blas=’-mkl=parallel’ --with-lapack
worked with the Intel 2015.3 compilers on Centos 6.

A.3.1.4 Shared BLAS

The BLAS library will be used for many of the add-on packages as well as for R itself. This
means that it is better to use a shared/dynamic BLAS library, as most of a static library
will be compiled into the R executable and each BLAS-using package.

R offers the option of compiling the BLAS into a dynamic library 1ibRblas stored in
R_HOME/1ib and linking both R itself and all the add-on packages against that library.

This is the default on all platforms except AIX unless an external BLAS is specified and
found: for the latter it can be used by specifying the option —-enable-BLAS-shlib, and it
can always be disabled via --disable-BLAS-shlib.

This has both advantages and disadvantages.

e It saves space by having only a single copy of the BLAS routines, which is helpful if
there is an external static BLAS (as used to be standard for ATLAS).

e There may be performance disadvantages in using a shared BLAS. Probably the most
likely is when R’s internal BLAS is used and R is not built as a shared library, when it is
possible to build the BLAS into R.bin (and 1ibR.a) without using position-independent
code. However, experiments showed that in many cases using a shared BLAS was as
fast, provided high levels of compiler optimization are used.

e It is easy to change the BLAS without needing to re-install R and all the add-on pack-
ages, since all references to the BLAS go through 1ibRblas, and that can be replaced.
Note though that any dynamic libraries the replacement links to will need to be found
by the linker: this may need the library path to be changed in R_HOME/etc/ldpaths.

Another option to change the BLAS in use is to symlink a single dynamic BLAS library
to R_HOME/1ib/1ibRblas.so. For example, just

mv R_HOME/1ib/libRblas.so R_HOME/1ib/libRblas.so.keep

Appendix A: Essential and useful other programs under a Unix-alike 52

ln -s /usr/lib64/libopenblasp.so.0 R_HOME/lib/libRblas.so

on ‘x86_64" Fedora will change the BLAS used to multithreaded OpenBLAS. A similar link
works for most versions of the OpenBLAS (provided the appropriate 1ib directory is in the
run-time library path or 1d.so cache). It can also be used for a single-library ATLAS, so
on ‘x86_64" Fedora

ln -s /usr/lib64/atlas/libsatlas.so.3 R_HOME/lib/libRblas.so
ln -s /usr/lib64/atlas/libtatlas.so.3 R_HOME/lib/libRblas.so

can be used with its distributed ATLAS libraries. (If you have the ‘-~devel’ RPMS installed
you can omit the .0/.3.)

Note that rebuilding or symlinking 1ibRblas.so may not suffice if the intention is to use
a modified LAPACK contained in an external BLAS: the latter could even cause conflicts.
However, on Fedora where the OpenBLAS distribution contains a copy of LAPACK, it is
the latter which is used.

A.3.2 LAPACK

Provision is made for using an external LAPACK library, principally to cope with BLAS
libraries which contain a copy of LAPACK (such as sunperf on Solaris, Accelerate on
macOS and ATLAS and MKL on ‘ix86’/‘x86_64’ Linux). At least LAPACK version 3.2 is
required. This can only be done if ——with-blas has been used.

However, the likely performance gains are thought to be small (and may be negative).
The default is not to search for a suitable LAPACK library, and this is definitely not
recommended. You can specify a specific LAPACK library or a search for a generic library
by the configuration option ——with-lapack. The default for -~—with-lapack is to check the
BLAS library and then look for an external library ‘-1lapack’. Sites searching for the fastest
possible linear algebra may want to build a LAPACK library using the ATLAS-optimized
subset of LAPACK: this is simplest with a dynamic ATLAS library which contains a full
LAPACK, when --with-lapack suffices.

A value for —-with-lapack can be set via the environment variable LAPACK_LIBS, but
this will only be used if -——with-lapack is specified (as the default value is no) and the
BLAS library does not contain LAPACK.

If you do use --with-lapack, be aware of potential problems with bugs in the LAPACK
sources (or in the posted corrections to those sources). In particular, bugs in DGEEV and
DGESDD have resulted in error messages such as

DGEBRD gave error code -10

. Other potential problems are incomplete versions of the libraries, seen several times in
Linux distributions over the years.

Please do bear in mind that using —-with-lapack is ‘definitely not recommended’: it
is provided only because it is necessary on some platforms and because some users want to
experiment with claimed performance improvements. Reporting problems where it is used
unnecessarily will simply irritate the R helpers.

Note too the comments about ISO/IEC 60559 compliance in the section of external BLAS:
these apply equally to an external LAPACK, and for example the Intel MKL documentation
has said

Appendix A: Essential and useful other programs under a Unix-alike 53

LAPACK routines assume that input matrices do not contain IEEE 754 spe-
cial values such as INF or NaN values. Using these special values may cause
LAPACK to return unexpected results or become unstable.

We rely on limited support in LAPACK for matrices with 23! or more elements: it is
possible that an external LAPACK will not have that support.

A.3.3 Caveats

As with all libraries, you need to ensure that they and R were compiled with compatible
compilers and flags. For example, this has meant that on Sun Sparc using the Oracle
compilers the flag ~dalign is needed if sunperf is to be used.

On some systems it has been necessary that an external BLAS/LAPACK was built with
the same Fortran compiler used to build R.

LAPACK 3.9.0 has a bug in which the DCOMBSSQ subroutine has a bug that may
cause NA to be interpreted as zero. This is fixed in the R 3.6.3 and later sources, but if
you use an external LAPACK, you may need to fix it there.

The code (in dlapack.f) should read

* .
* .. Executable Statements ..
*
IFC vi(1).GE.V2(1)) THEN
IF(V1(1).NE.ZERO) THEN
ViC2) =V1i(2) + (V201) /VI(C 1) d)*x2 *x V2(2)

ELSE
Vi(2) =Vvi(2) +Vv2(2)
END IF
ELSE
VI(2) =V2(2) + (VI(1) /7 V2(1))**2 x V1(2)
Vi1) =v2(1)
END IF
RETURN

(The inner ELSE clause was missing in LAPACK 3.9.0.)

54

Appendix B Configuration on a Unix-alike

B.1 Configuration options

configure has many options: running
./configure --help

will give a list. Probably the most important ones not covered elsewhere are (defaults in
brackets)

--with-x use the X Window System [yes]

——-x-includes=DIR
X include files are in DIR

—--x-libraries=DIR
X library files are in DIR

--with-readline
use readline library (if available) [yes]

--enable-R-profiling
attempt to compile support for Rprof () [yes]

—-—enable-memory-profiling
attempt to compile support for Rprofmem() and tracemem() [no]

--enable-R-shlib
build R as a shared/dynamic library [no]

--enable-BLAS-shlib
build the BLAS as a shared/dynamic library [yes, except on AIX]

You can use —-without-foo or --disable-foo for the negatives.

You will want to use -—disable-R-profiling if you are building a profiled executable
of R (e.g. with ‘-pg)’. Support for R profiling requires OS support for POSIX threads (aka
‘pthreads’), which are available on all mainstream Unix-alike platforms.

Flag --enable-R-shlib causes the make process to build R as a dynamic (shared)
library, typically called 1ibR.so, and link the main R executable R.bin against that library.
This can only be done if all the code (including system libraries) can be compiled into a
dynamic library, and there may be a performance! penalty. So you probably only want
this if you will be using an application which embeds R. Note that C code in packages
installed on an R system linked with --enable-R-shlib is linked against the dynamic
library and so such packages cannot be used from an R system built in the default way.
Also, because packages are linked against R they are on some OSes also linked against the
dynamic libraries R itself is linked against, and this can lead to symbol conflicts.

For maximally effective use of valgrind, R should be compiled with valgrind instru-
mentation. The configure option is --with-valgrind-instrumentation=level, where
level is 0, 1 or 2. (Level 0 is the default and does not add anything.) The system headers

1 We have measured 15-20% on ‘1686’ Linux and around 10% on ‘x86_64’ Linux.

Appendix B: Configuration on a Unix-alike 55

for valgrind can be requested by option --with-system-valgrind-headers: they will be
used if present (on Linux they may be in a separate package such as valgrind-devel). Note
though that there is no guarantee that the code in R will be compatible with very old? or
future valgrind headers.

If you need to re-configure R with different options you may need to run make clean or
even make distclean before doing so.

The configure script has other generic options added by autoconf and which are not
supported for R: in particular building for one architecture on a different host is not possible.

B.2 Internationalization support

Translation of messages is supported via GNU gettext unless disabled by the configure
option --disable-nls. The configure report will show NLS as one of the ‘Additional
capabilities’ if support has been compiled in, and running in an English locale (but not the
C locale) will include

Natural language support but running in an English locale

in the greeting on starting R.

B.3 Configuration variables

If you need or want to set certain configure variables to something other than their default,
you can do that by either editing the file config.site (which documents many of the
variables you might want to set: others can be seen in file etc/Renviron.in) or on the
command line as

./configure VAR=value

If you are building in a directory different from the sources, there can be copies of
config.site in the source and the build directories, and both will be read (in that order).
In addition, if there is a file */.R/config, it is read between the config.site files in the
source and the build directories.

There is also a general autoconf mechanism for config.site files, which are
read before any of those mentioned in the previous paragraph. This looks first at a
file specified by the environment variable CONFIG_SITE, and if not is set at files such
as /usr/local/share/config.site and /usr/local/etc/config.site in the area
(exemplified by /usr/local) where R would be installed.

These variables are precious, implying that they do not have to be exported to the
environment, are kept in the cache even if not specified on the command line, checked for
consistency between two configure runs (provided that caching is used), and are kept during
automatic reconfiguration as if having been passed as command line arguments, even if no
cache is used.

See the variable output section of configure —-help for a list of all these variables.
If you find you need to alter configure variables, it is worth noting that some settings
may be cached in the file config.cache, and it is a good idea to remove that file (if it

exists) before re-configuring. Note that caching is turned off by default: use the command
line option --config-cache (or -C) to enable caching.

2 We believe that versions 3.4.0 to 3.15.0 are compatible.

Appendix B: Configuration on a Unix-alike 56

B.3.1 Setting paper size

One common variable to change is R_PAPERSIZE, which defaults to ‘a4’, not ‘letter’. (Valid
values are ‘a4’, ‘letter’, ‘legal’ and ‘executive’.)

This is used both when configuring R to set the default, and when running R to override
the default. It is also used to set the paper size when making PDF manuals.

The configure default will most often be ‘a4’ if R_PAPERSIZE is unset. (If the (Debian
Linux) program paperconf is found or the environment variable PAPERSIZE is set, these
are used to produce the default.)

B.3.2 Setting the browsers

Another precious variable is R_BROWSER, the default HTML browser, which should take a
value of an executable in the user’s path or specify a full path.

Its counterpart for PDF files is R_PDFVIEWER.

B.3.3 Compilation flags

If you have libraries and header files, e.g., for GNU readline, in non-system directories,
use the variables LDFLAGS (for libraries, using ‘-L’ flags to be passed to the linker) and
CPPFLAGS (for header files, using ‘-I’ flags to be passed to the C/C++ preprocessors),
respectively, to specify these locations. These default to ‘-L/usr/local/lib’ (LDFLAGS,
‘-L/usr/local/1ib64’ on most 64-bit Linux OSes) and ‘-I/usr/local/include’
(CPPFLAGS, but note that on most systems /usr/local/include is regarded as a system
include directory and so instances in that macro will be skipped) to catch the most
common cases. If libraries are still not found, then maybe your compiler/linker does not
support re-ordering of -L and -1 flags. In this case, use a different compiler (or a front-end
shell script which does the re-ordering).

These flags can also be used to build a faster-running version of R. On most platforms
using gecc, having ‘-03’ in CFLAGS and FFLAGS produces worthwhile performance gains with
gcc and gfortran, but may result in a less reliable build (both segfaults and incorrect
numeric computations have been seen). On systems using the GNU linker (especially those
using R as a shared library), it is likely that including ‘-W1,-01’ in LDFLAGS is worthwhile,
and ‘’-Bdirect,--hash-style=both,-W1,-01’’ is recommended at https://lwn.net/
Articles/192624/. Tuning compilation to a specific CPU family (e.g. ‘-mtune=native’
for gcc) can give worthwhile performance gains, especially on older architectures such as
‘1x86’.

B.3.4 Making manuals
The default settings for making the manuals are controlled by R_RD4PDF and R_PAPERSIZE.

B.4 Setting the shell

By default the shell scripts such as R will be ‘“#!/bin/sh’ scripts (or using the SHELL chosen
by configure). This is almost always satisfactory, but on a few systems /bin/sh is not
a Bourne shell or clone, and the shell to be used can be changed by setting the configure
variable R_SHELL to a suitable value (a full path to a shell, e.g. /usr/local/bin/bash).

https://lwn.net/Articles/192624/
https://lwn.net/Articles/192624/

Appendix B: Configuration on a Unix-alike 57

B.5 Using make

To compile R, you will most likely find it easiest to use GNU make, although the Sun make
works on Solaris.

To build in a separate directory you need a make that supports the VPATH variable, for
example GNU make and Sun make.

dmake has also been used. e.g, on Solaris 10.

If you want to use a make by another name, for example if your GNU make is called
‘gmake’, you need to set the variable MAKE at configure time, for example

./configure MAKE=gmake

B.6 Using Fortran

To compile R, you need a Fortran 90 compiler. The current default is to search for gfortran,
g95, x1£95 £95, fort, ifort, ifc, efc, pgfortran, pgf95 1£95, f£tn, nagfor, x1£90, £90,
pgf90, pghpf, epcf90. (Note that these are searched for by name, without checking the
standard of Fortran they support.) The command and flags used should support fixed-form
Fortran with extension .f: in the unusual case that a specific flag is needed for free-form
Fortran with extension .£90 or .£95, this can be specified as part of FCFLAGS.

The search mechanism can be changed using the configure variable FC which specifies the
command that runs the Fortran compiler. If your Fortran compiler is in a non-standard lo-
cation, you should set the environment variable PATH accordingly before running configure,
or use the configure variable FC to specify its full path.

If your Fortran libraries are in slightly peculiar places, you should also look at LD_
LIBRARY_PATH (or your system’s equivalent) to make sure that all libraries are on this path.

Note that only Fortran compilers which convert identifiers to lower case are supported.

You must set whatever compilation flags (if any) are needed to ensure that Fortran
integer is equivalent to a C int pointer and Fortran double precision is equivalent to a
C double pointer. This is checked during the configuration process.

Some of the Fortran code makes use of DOUBLE COMPLEX and COMPLEX*16 variables. This
is checked for at configure time, as well as its equivalence to the Rcomplex C structure
defined in R_ext/Complex.h.

gfortran 10 by default gives a compilation error for the previously widespread practice
of passing a Fortran array element where an array is expected, or a scalar instead of a
length-one array. See https://gcc.gnu.org/gcc-10/porting_to.html.

B.7 Compile and load flags

A wide range of flags can be set in the file config.site or as configure variables on the
command line. We have already mentioned

CPPFLAGS header file search directory (-I) and any other miscellaneous options for the C
and C++ preprocessors and compilers

LDFLAGS path (-L), stripping (-s) and any other miscellaneous options for the linker
and others include

CFLAGS debugging and optimization flags, C

https://gcc.gnu.org/gcc-10/porting_to.html

Appendix B: Configuration on a Unix-alike 58

MAIN_CFLAGS
ditto, for compiling the main program (e.g. when profiling)

SHLIB_CFLAGS
for shared objects (no known examples)

FFLAGS debugging and optimization flags, fixed-form Fortran
FCFLAGS debugging and optimization flags, free-form Fortran

SAFE_FFLAGS
ditto for source files which need exact floating point behaviour

MAIN_FFLAGS
ditto, for compiling the main program (e.g. when profiling)

SHLIB_FFLAGS
for shared objects (no known examples)

MAIN_LDFLAGS
additional flags for the main link

SHLIB_LDFLAGS
additional flags for linking the shared objects

LIBnn the primary library directory, 1ib or 1ib64

CPICFLAGS
special flags for compiling C code to be turned into a shared object

FPICFLAGS
special flags for compiling Fortran code to be turned into a shared object

CXXPICFLAGS
special flags for compiling C++ code to be turned into a shared object

DEFS defines to be used when compiling C code in R itself

Library paths specified as -L/1lib/path in LDFLAGS are collected together and prepended
to LD_LIBRARY_PATH (or your system’s equivalent), so there should be no need for -R or
-rpath flags.

Variables such as CPICFLAGS are determined where possible by configure. Some systems
allows two types of PIC flags, for example ‘~fpic’ and ‘-fPIC’, and if they differ the first
allows only a limited number of symbols in a shared object. Since R as a shared library has
about 6200 symbols, if in doubt use the larger version.

Other variables often set by configure include ‘MAIN_LDFLAGS’, ‘SAFE_FFLAGS’,
‘SHLIB_LDFLAGS’ and ‘SHLIB_CXXLDFLAGS’: see file config.site in the sources for more
documentation on these and others.

To compile a profiling version of R, one might for example want to use
‘MAIN_CFLAGS=-pg’, ‘MAIN_FFLAGS=-pg’, ‘MAIN_LDFLAGS=-pg’ on platforms where ‘-pg’
cannot be used with position-independent code.

Beware: it may be necessary to set CFLAGS and FFLAGS in ways compatible with the
libraries to be used: one possible issue is the alignment of doubles, another is the way
structures are passed.

Appendix B: Configuration on a Unix-alike 59

On some platforms configure will select additional flags for CFLAGS, CPPFLAGS and
LIBS in R_XTRA_CFLAGS (and so on). These are for options which are always required, for
example to force TEC 60559 compliance.

B.8 Maintainer mode

There are several files that are part of the R sources but can be re-generated from their own
sources by configuring with option --enable-maintainer-mode and then running make in
the build directory. This requires other tools to be installed, discussed in the rest of this
section.

File configure is created from configure.ac and the files under m4 by autoconf and
aclocal (part of the automake package). There is a formal version requirement on autoconf
of 2.69 or later, but it is unlikely that anything other than the most recent versions® have
been thoroughly tested.

File src/include/config.h is created by autoheader (part of autoconf).

Grammar files *.y are converted to C sources by an implementation of yacc, usually
bison -y: these are found in src/main and src/library/tools/src. It is known that
earlier versions of bison generate code which reads (and in some cases writes) outside array
bounds: bison 2.6.1 was found to be satisfactory.

The ultimate sources for package compiler are in its noweb directory. To re-
create the sources from src/library/compiler/noweb/compiler.nw, the command
notangle is required. Some Linux distributions include this command in package
noweb. It can also be installed from the sources at https://www.cs.tufts.edu/
“nr/noweb/%. The package sources are only re-created even in maintainer mode if
src/library/compiler/noweb/compiler.nw has been updated.

3 at the time of revision of this para in late 2018, autoconf-2.69 from 2012 and automake-1.16.1 from 2018.

4 The links there have proved difficult to access, in which case grab the copy made available at https://
developer.r-project.org/noweb-2.11b.tgz.

https://www.cs.tufts.edu/~nr/noweb/
https://www.cs.tufts.edu/~nr/noweb/
https://developer.r-project.org/noweb-2.11b.tgz
https://developer.r-project.org/noweb-2.11b.tgz

60

Appendix C Platform notes

This section provides some notes on building R on different Unix-alike platforms. These
notes are based on tests run on one or two systems in each case with particular sets of
compilers and support libraries. Success in building R depends on the proper installation
and functioning of support software; your results may differ if you have other versions of
compilers and support libraries.

Older versions of this manual contain notes on platforms such as HP-UX, IRIX, Al-
pha/OSF1 (for R < 2.10.0, and support has since been removed for all of these) and AIX
(for R < = 3.5.x) for which we have had no recent reports.

C macros to select particular platforms can be tricky to track down (there is a fair
amount of misinformation on the Web). The Wiki (currently) at https://sourceforge.
net/p/predef/wiki/Home/ can be helpful. The R sources have used (often in included
software under src/extra)

ATIX: _AIX

Cygwin: __CYGWIN__
FreeBSD: __FreeBSD__
HP-UX: __hpux__, __hpux
IRIX: sgi, __sgi

Linux: __linux__

mac0S: __APPLE__
NetBSD: __NetBSD__
OpenBSD: __OpenBSD__
Solaris: sun, sun

Windows: _WIN32, _WIN64

C.1 X11 issues

The ‘X11 ()’ graphics device is the one started automatically on Unix-alikes (except most
macOS builds) when plotting. As its name implies, it displays on a (local or remote) X
server, and relies on the services provided by the X server.

The ‘modern’ version of the ‘X11()’ device is based on ‘cairo’ graphics and (in most
implementations) uses ‘fontconfig’ to pick and render fonts. This is done on the server,
and although there can be selection issues, they are more amenable than the issues with
‘X11 ()’ discussed in the rest of this section.

When X11 was designed, most displays were around 75dpi, whereas today they are of the
order of 100dpi or more. If you find that X11() is reporting! missing font sizes, especially
larger ones, it is likely that you are not using scalable fonts and have not installed the
100dpi versions of the X11 fonts. The names and details differ by system, but will likely
have something like Fedora’s

xorg-xl1l1-fonts-75dpi
xorg-x11-fonts-100dpi
xorg-x11-fonts-I508859-2-75dpi
xorg-xl1-fonts-Typel

L for example, X11 font at size 14 could not be loaded.

https://sourceforge.net/p/predef/wiki/Home/
https://sourceforge.net/p/predef/wiki/Home/

Appendix C: Platform notes 61

xorg-xll-fonts-cyrillic
and you need to ensure that the ‘~100dpi’ versions are installed and on the X11 font path
(check via xset -q). The ‘X11()’ device does try to set a pointsize and not a pixel size:
laptop users may find the default setting of 12 too large (although very frequently laptop
screens are set to a fictitious dpi to appear like a scaled-down desktop screen).

More complicated problems can occur in non-Western-European locales, so if you are
using one, the first thing to check is that things work in the C locale. The likely issues are
a failure to find any fonts or glyphs being rendered incorrectly (often as a pair of ASCII
characters). X11 works by being asked for a font specification and coming up with its idea
of a close match. For text (as distinct from the symbols used by plotmath), the specification
is the first element of the option "X11fonts" which defaults to

"-adobe-helvetica-}s-s—*—*—Jd—*k—k—k—k—k—k—xk"

If you are using a single-byte encoding, for example ISO 8859-2 in Eastern Europe or
KOIS8-R in Russian, use xlsfonts to find an appropriate family of fonts in your encoding
(the last field in the listing). If you find none, it is likely that you need to install further font
packages, such as ‘xorg-x11-fonts-IS08859-2-75dpi’ and ‘xorg-xll-fonts-cyrillic’
shown in the listing above.

Multi-byte encodings (most commonly UTF-8) are even more complicated. There are
few fonts in ‘is010646-1", the Unicode encoding, and they only contain a subset of the
available glyphs (and are often fixed-width designed for use in terminals). In such locales
fontsets are used, made up of fonts encoded in other encodings. If the locale you are using
has an entry in the ‘XLC_LOCALE’ directory (typically /usr/share/X11/locale), it is likely
that all you need to do is to pick a suitable font specification that has fonts in the encodings
specified there. If not, you may have to get hold of a suitable locale entry for X11. This may
mean that, for example, Japanese text can be displayed when running in ‘ja_JP.UTF-8’ but
not when running in ‘en_GB.UTF-8’ on the same machine (although on some systems many
UTF-8 X11 locales are aliased to ‘en_US.UTF-8’ which covers several character sets, e.g.
ISO 8859-1 (Western European), JISX0208 (Kanji), KSC5601 (Korean), GB2312 (Chinese
Han) and JISX0201 (Kana)).

On some systems scalable fonts are available covering a wide range of glyphs. One source
is TrueType/OpenType fonts, and these can provide high coverage. Another is Type 1 fonts:
the URW set of Type 1 fonts provides standard typefaces such as Helvetica with a larger
coverage of Unicode glyphs than the standard X11 bitmaps, including Cyrillic. These are
generally not part of the default install, and the X server may need to be configured to use
them. They might be under the X11 fonts directory or elsewhere, for example,

/usr/share/fonts/default/Typel
/usr/share/fonts/ja/TrueType

C.2 Linux

Linux is the main development platform for R, so compilation from the sources is normally
straightforward with the most common compilers and libraries.?

Recall that some package management systems (such as RPM and deb) make a distinction
between the user version of a package and the developer version. The latter usually has

2 For example, glibc: other C libraries such as musl have been used but are not routinely tested.

Appendix C: Platform notes 62

the same name but with the extension ‘~devel’ or ‘~dev’: you need both versions installed.
So please check the configure output to see if the expected features are detected: if for
example ‘readline’ is missing add the developer package. (On most systems you will also
need ‘ncurses’ and its developer package, although these should be dependencies of the
‘readline’ package(s).) You should expect to see in the configure summary

Interfaces supported: X11, tcltk
External libraries: pcre2, readline, curl
Additional capabilities: PNG, JPEG, TIFF, NLS, cairo, ICU

When R has been installed from a binary distribution there are sometimes problems
with missing components such as the Fortran compiler. Searching the ‘R-help’ archives
will normally reveal what is needed.

It seems that ‘ix86° Linux accepts non-PIC code in shared libraries, but this is not
necessarily so on other platforms, in particular on 64-bit CPUs such as ‘x86_64". So care
can be needed with BLAS libraries and when building R as a shared library to ensure
that position-independent code is used in any static libraries (such as the Tcl/Tk libraries,
libpng, 1libjpeg and z1ib) which might be linked against. Fortunately these are normally
built as shared libraries with the exception of the ATLAS BLAS libraries.

The default optimization settings chosen for CFLAGS etc are conservative. It is likely
that using -mtune will result in significant performance improvements on recent CPUs: one
possibility is to add -mtune=native for the best possible performance on the machine on
which R is being installed. It is also possible to increase the optimization levels to -03:
however for many versions of the compilers this has caused problems in at least one CRAN
package.

For platforms with both 64- and 32-bit support, it is likely that
LDFLAGS="-L/usr/local/1ib64 -L/usr/local/lib"

is appropriate since most (but not all) software installs its 64-bit libraries in
/usr/local/1ib64. To build a 32-bit version of R on ‘x86_64" with Fedora 32 we used

CC="gcc -m32"

CXX="g++ -m32"

FC="gfortran -m32"

0BJC=${CC}

LDFLAGS="-L/usr/local/lib"

LIBnn=1ib

Note the use of ‘LIBnn’: ‘x86_64" Fedora installs its 64-bit software in /usr/1ib64 and
32-bit software in /usr/1lib. Linking will skip over inappropriate binaries, but for example
the 32-bit Tcl/Tk configure scripts are in /usr/1lib. It may also be necessary to set the
pkg-config path, e.g. by

export PKG_CONFIG_PATH=/usr/local/lib/pkgconfig:/usr/lib/pkgconfig
The 32-bit system libcurl did not work with the system CA certificates: this is worked
around in R’s test suite.

64-bit versions on Linux are built with support for files > 2Gb, and 32-bit versions will
be if possible unless —-disable-largefile is specified.

Note that 32-bit glibc before version 2.29 uses a 32-bit time_t type, so to pass all the
date-time checks needs R built with flag ——with-internal-tzcode.

Appendix C: Platform notes 63

Users of ‘ix86" CPUs with SSE2 support® may prefer to use the C/C++/Fortran flags
-mfpmath=sse -msse2

to force floating-point to use the same instructions as ‘x86_64’ builds and hence not
make use of 80-bit ‘extended precision’ intermediate results. (NB: this affects more than
floating-point operations. For some OSes and versions of gcc it might be necessary to add
-mstackrealign.)

To build a 64-bit version of R on ‘ppc64’ (also known as ‘powerpc64’) with gcc 4.1.1,
Fi-ji Nakama used
CC="gcc -m64"
CXX="gxx -m64"
FC="gfortran -m64"
CFLAGS="-mminimal-toc -fno-optimize-sibling-calls -g -02"
FFLAGS="-mminimal-toc -fno-optimize-sibling-calls -g -02"
the additional flags being needed to resolve problems linking against 1ibnmath.a and when
linking R as a shared library.

The setting of the macro ‘SAFE_FFLAGS’ may need some help. It should not need addi-
tional flags on platforms other than ‘68000’ (not likely to be encountered) and ‘ix86’. For
the latter, if the Fortran compiler is GNU (gfortran or possibly g77) the flags

-msse2 -mfpmath=sse
are added: earlier versions of R added -ffloat-store and this might still be needed if
a ‘ix86’ CPU is encountered without SSE2 support. Note that it is a replacement for
‘FFLAGS’, so should include all the flags in that macro (except perhaps the optimization
level).

Additional compilation flags can be specified for added safety/security checks. For ex-
ample Fedora adds

-Werror=format-security -Wp,-D_FORTIFY_SOURCE=2 -Wp,-D_GLIBCXX_ASSERTIONS
-Fexceptions -fstack-protector-strong -fasynchronous-unwind-tables
-fstack-clash-protection -fcf-protection
to all the C, C++ and Fortran compiler flags (even though _GLIBCXX_ASSERTIONS is only
for C++ in current GCC and glibc and none of these are documented for gfortran). Use
of _GLIBCXX_ASSERTIONS will link abort and printf into almost all C++ code, and R CMD
check -—as-cran will warn.

C.2.1 Clang

R has been built with Linux ‘ix86’ and ‘x86_64" C and C++ compilers (https://clang.
1lvm.org) based on the Clang front-ends, invoked by CC=clang CXX=clang++, together
with gfortran. These take very similar options to the corresponding GCC compilers.

This has to be used in conjunction with a Fortran compiler: the configure code will
remove -1gcc from FLIBS, which is needed for some versions of gfortran.

The current out-of-the-box default for clang++ is to use the C++ runtime from the in-
stalled g++. Using the runtime from the libc++ (https://libcxx.1llvm.org/) project
(Fedora RPM libcxx-devel) via —-stdlib=1libc++ has also been tested.

3 Likely all since 2005, including Pentium 4 and all ‘x86_64’ CPUs with 32-bit compilers.

https://clang.llvm.org
https://clang.llvm.org
https://libcxx.llvm.org/

Appendix C: Platform notes 64

Recent versions have (optional when built) OpenMP support.*

There is a project called flang (https://github.com/flang-compiler/flang)) to de-
velop a Fortran compiler similar to clang but based on the Portland Group’s front end.
This needs something like

FC=/usr/local/flang/bin/flang
LDFLAGS="-L/usr/local/flang/1ib -L/usr/local/lib64"

Note that flang accepts all the flags which clang does (the driver is a modified version
of clang, and flang is a symbolic link to clang), but does not implement all of them
for Fortran compilation: it also accepts most PGl-style flags such as -mp for OpenMP. It
currently produces few diagnostics even with -Wall -pedantic.

flang’s Fortran runtime is compiled against OpenMP and it seems this conflicts with
using OpenMP in R. So it may be necessary to disable the latter by configuring R using
--disable-openmp.

It is not clear what architectures flang intends to support: our experiments were done
on ‘x86_64’. At the time of writing binary ‘releases’ were available for that platform (called
by them ‘x86’) and ‘ppc64le’.

C.2.2 Intel compilers

Intel compilers have been used under ‘ix86’ and ‘x86_64" Linux. Brian Ripley used version
9.0 of the compilers for ‘x86_64" on Fedora Core 5 with

CC=icc

CFLAGS="-g -03 -wd188 -ip -mp"
FC=ifort

FLAGS="-g -03 -mp"

CXX=icpc

CXXFLAGS="-g -03 -mp"
ICC_LIBS=/opt/compilers/intel/cce/9.1.039/1ib
IFC_LIBS=/opt/compilers/intel/fce/9.1.033/1ib
LDFLAGS="-L$ICC_LIBS -L$IFC_LIBS -L/usr/local/lib64"
SHLIB_CXXLD=icpc

It may be necessary to use CC="icc -std=c99" or CC="icc -c99" for C99-compliance. The
flag -wd188 suppresses a large number of warnings about the enumeration type ‘Rboolean’.
Because the Intel C compiler sets ‘__GNUC__’ without complete emulation of gcc, we suggest
adding CPPFLAGS=-no-gcc.

To maintain correct TEC 60559 arithmetic you most likely need add flags to CFLAGS,
FFLAGS and CXXFLAGS such as -mp (shown above) or -fp-model precise -fp-model
source, depending on the compiler version.

Others have reported success with versions 10.x and 11.x. BjA rn-Helge Mevik reported
success with version 2015.3 of the compilers, using (for a SandyBridge CPU on Centos 6.x)
fast="-fp-model precise -ip -03 -opt-mem-layout-trans=3 -xHost -mavx"
CC=icc
CFLAGS="$fast -wd188"
FC=ifort

4 This also needs the OpenMP runtime which has sometimes been distributed separately.

https://github.com/flang-compiler/flang

Appendix C: Platform notes 65

FFLAGS="$fast"
CXX=icpc
CXXFLAGS="$fast"
It is possible that 32-builds need to force the use of SSE2 instructions in SAFE_FFLAGS,
e.g. by
SAFE_FFLAGS=-axsse2

C.3 macOS

The main instructions here are for Intel 64-bit (‘x86_64") builds on 10.13-10.15 (High Sierra,
Mojave and Catalina) and 11 (Big Sur).

C.3.1 Prerequisites
The following are essential to build R:

e Apple’s ‘Command Line Tools’: these can be (re-)installed by running xcode-select
--install in a terminal.

If you have a fresh OS installation, running e.g. make in a terminal will offer the
installation of the command-line tools. If you have installed Xcode, this provides the
command-line tools. The tools may need to be reinstalled when macOS is upgraded,
as upgrading may partially or completely remove them.

The Command Line Tools provide C and C++ compilers derived from LLVM’s clang.
e A Fortran compiler. An installer for gfortran is available at https://github.com/

fxcoudert/gfortran-for-mac0S/releases/download/8.2/gfortran-8.2-Mojave.
dmg.> This installs into /usr/local/gfortran.

e Binary components pcre2 and xz (for 1iblzma) from https://mac.R-project.org/
libs-4/. For example

curl -0L https://mac.r-project.org/libs-4/pcre2-10.34-darwin.17-x86_64.tar.gz
sudo tar -xvzf pcre2-10.34-darwin.17-x86_64.tar.gz -C /

curl -OL https://mac.r-project.org/libs-4/xz-5.2.4-darwin.17-x86_64.tar.gz
sudo tar -xvzf xz-5.2.4-darwin.17-x86_64.tar.gz -C /

(Messages like ‘usr/local/: Can’t restore time’ should be ignored.)

and desirable

e GNU readline from https://mac.R-project.org/libs-4/,%. If readline is not
present, the emulation in Apple’s version of 1ibedit (aka editline) will be used: if
you wish to avoid that, configure with —-without-readline.

e Components jpeg, libpng, pkgconfig, tiff and zlib-system-stub from https://
mac.R-project.org/libs-4/, for the full range of bitmapped graphics devices. (Some
builds of tiff may require libwepb and/or openjpeg.)

e An X sub-system unless configuring using --without-x: see https://www.xquartz.
org/. R’s configure script can be told to look for X11 in XQuartz’s main location of
/opt/X11, e.g. by

5 This is said to be for Mojave and later but works well enough on High Sierra.

6 For licence reasons this is version 5.2 of readline: for those who want a more recent version it is
straightforward to compile it from its sources.

https://github.com/fxcoudert/gfortran-for-macOS/releases/download/8.2/gfortran-8.2-Mojave.dmg
https://github.com/fxcoudert/gfortran-for-macOS/releases/download/8.2/gfortran-8.2-Mojave.dmg
https://github.com/fxcoudert/gfortran-for-macOS/releases/download/8.2/gfortran-8.2-Mojave.dmg
https://mac.R-project.org/libs-4/
https://mac.R-project.org/libs-4/
https://mac.R-project.org/libs-4/
https://mac.R-project.org/libs-4/
https://mac.R-project.org/libs-4/
https://www.xquartz.org/
https://www.xquartz.org/

Appendix C: Platform notes 66

--x-includes=/opt/X11/include --x-libraries=/opt/X11/1ib

although without this linked versions under /usr/X11 will be found. (It seems that
for some versions of macOS/XQuartz /usr/X11 may exist but be a link to a non-
existent directory: reinstalling XQuartz might help.) Be wary of pre-release versions
of XQuartz, which may be offered as an update.

e An Objective-C compiler, as provided by clang in the Command Line Tools: this is
needed for the quartz() graphics device.

Use --without-aqua if you want a standard Unix-alike build: apart from disabling
quartz() and the ability to use the build with R.APP, it also changes the default
location of the personal library (see ?7.1ibPaths).

e Support for Cairo-based graphics devices. See Section C.3.2 [Cairo graphics], page 67.
e A TeX installation. See Section C.3.4 [Other libraries|, page 69.

e texi2any from a ‘texinfo’ distribution, which requires perl (currently version 5.18
(High Sierra) — 5.28 is a default part of macOS but it has been announced that it may
not be in future). A version of texi2any has been included in the binary distribution
of R and there is a texinfo component at https://mac.R-project.org/libs-4/.

To build R itself from the sources with the compilers in the Command Line Tools (or
Xcode) and gfortran from the installer mentioned above, use a file config.site containing

CC=clang

0BJC=$CC
FC=/usr/local/gfortran/bin/gfortran
CXX=clang++

and configure by something like

./configure -C \
--enable-R-shlib --enable-memory-profiling \
--x-includes=/opt/X11/include --x-libraries=/opt/X11/1ib \
--with-tcl-config=/usr/local/lib/tclConfig.sh \
--with-tk-config=/usr/local/lib/tkConfig.sh \
PKG_CONFIG_PATH=/opt/X11/1ib/pkgconfig:/usr/local/lib/pkgconfig: /usr/1ib/pkgconfig
(See below for Tcl/Tk, including other options.)
To install packages using compiled code one needs the Command Line Tools (or Xcode)
and appropriate compilers, e.g. Fortran and the C/C++ compilers from those tools. Some
packages have further requirements such as pkg-config.
A subversion client, svn version 1.10, used to be part of macOS”. A more recent client
can be obtained from https://mac.r-project.org/tools/, for example by
curl -OL https://mac.r-project.org/tools/subversion-1.14.0-darwinl5.6.tar.gz
tar xf subversion-1.14.0-darwinl5.6.tar.gz
sudo cp subversion-1.14.0-darwinl5.6/svn /usr/local/bin
If you have a build® of cairo with dynamic libraries, you can add option --without-
static-cairo to the configure call (it probably would work anyway).

" but as a stub invoking an executable provided by the Command Line Tools and the latter is not in
versions 11.5 and later of the Command Line Tools.

8 For example, some Homebrew distributions.

https://mac.R-project.org/libs-4/
https://mac.r-project.org/tools/

Appendix C: Platform notes 67

As from Command Line Tools version 12, -Wno-implicit-function-declaration
needs to be included in CFLAGS to configure R up to 4.0.2 and earlier as well as some
external software.

C.3.1.1 Note for Catalina and Big Sur users

A more recent Fortran compiler for Catalina and later is available at https://github.com/
fxcoudert/gfortran-for-mac0S/releases/download/10.2/gfortran-10.2-Catalina.
dmg. (That does not run on High Sierra.) This supports the option -fc-prototypes-
external mentioned in the ‘Writing R Extensions’ manual.

The default security settings for Catalina and later can make it difficult to install
recently-built Apple packages which have not been ‘notarized’® by Apple. And not just
packages, as this has been seen for executables contained in tarballs/zipfiles (for example,
for pandoc). Usually one can use ‘Open With’ (Control/right/two-finger-click in Finder),
then select ‘Installer’ and ‘Open’ if you get a further warning message. This applies also
to some ‘nightly builds’ from https://mac.R-project.org/.

If you run into problems with ‘quarantine’ for tarballs downloaded in a browser, con-
sider using curl -OL to download (as illustrated above) or xattr -c to remove extended
attributes.

Should one want to build R for Intel on an ‘arm64’ Big Sur Mac, add the target for the
C and C++ compilers:

CC="clang -arch x86_64
0BJC=$CC
CXX="clang++ -arch x86_64"

and install the Fortran compiler and external software as described above.

C.3.2 Cairo graphics

Cairo-based graphics devices such as cairo_ps, cairo_pdf, X11(type = "cairo") and the
Cairo-based types of devices bmp jpeg, png and tiff are not the default on macOS, and
much less used than the Quartz-based devices. However, the only SVG device in the R
distribution, svg, is based on Cairo.

Support for Cairo is optional and can be added in several ways, all of which need
pkg-config. configure will add Cairo support if pkg-config finds package cairo un-
less —-without-cairo is used.

A way to statically link Cairo is by downloading and unpacking components
cairo, fontconfig, freetype, pixman and zlib-system-stub (and do not have
/opt/X11/1ib/pkgconfig in PKG_CONFIG_PATH). Some static builds of fontconfig need
libxml2 (from component xm12) and others expat, supplied by macOS but needing a file
/usr/local/lib/pkgconfig/expat.pc along the lines of

Name: expat

Version: 2.2.8

Description: expat XML parser
URL: http://www.libexpat.org
Libs: -lexpat

9 See https://developer.apple.com/documentation/xcode/notarizing macos_software_before_distribution.

https://github.com/fxcoudert/gfortran-for-macOS/releases/download/10.2/gfortran-10.2-Catalina.dmg
https://github.com/fxcoudert/gfortran-for-macOS/releases/download/10.2/gfortran-10.2-Catalina.dmg
https://github.com/fxcoudert/gfortran-for-macOS/releases/download/10.2/gfortran-10.2-Catalina.dmg
https://mac.R-project.org/
https://developer.apple.com/documentation/xcode/notarizing_macos_software_before_distribution

Appendix C: Platform notes 68

Cflags:

Note that the list of components is liable to change: running pkg-config cairo --exists
—--print-errors should tell you if any others are required.

If you have XQuartz 2.7.x installed (not 2.8.x) and ensure XQuartz’s pkg-config files
are found first on its configuration path, Cairo will be linked dynamically. This can be done
by setting something like

export PKG_CONFIG_PATH=/opt/X11/1ib/pkgconfig:/usr/local/lib/pkgconfig:/usr/1ib/pkgcon

or by appending that variable to the configure command. (Note that this uses rather old
versions of the graphics software.)

If you use XQuartz or another build of cairo with dynamic libraries, you can add option
--without-static-cairo to the configure call (it may work without).

The best font experience of Cairo graphics will be to use it in combination with Pango
which will match that supported on most other Unix-alikes. configure uses pkg-config to
determine if all the external software required by both Pango and Cairo is available: running
pkg-config pangocairo --exists —-print-errors should show if the installation suffices
and if not, what is missing. At the time of writing pre-built components were available only
for ‘arm64’, where components cairo, ffi, fontconfig, freetype, £fi, glib, harfbuzz,
pango and xm12 sufficed.

C.3.3 Other C/C++ compilers

Other distributions of clang are available from https://releases.llvm.org/. In par-
ticular, these include support for OpenMP which Apple builds of clang do not, and may
contain more bugfixes and new features (such as better diagnostics) than that in Command
Line Tools / Xcode.

Suppose one of these distributions is installed under /usr/local/clang. Use a file
config.site containing

CC=/usr/local/clang/bin/clang
0BJC=$CC
FC=/usr/local/gfortran/bin/gfortran
CXX=/usr/local/clang/bin/clang++
LDFLAGS="-L/usr/local/clang/1ib -L/usr/local/lib"
R_LD_LIBRARY_PATH=/usr/local/clang/lib:/usr/local/lib
The care to specify library paths is to ensure that the OpenMP runtime library, here

/usr/local/clang/lib/libomp.dylib, is found when needed. If this works, you should
see the line

checking whether OpenMP SIMD reduction is supported... yes

in the configure output. Also, ‘R_LD_LIBRARY_PATH’ needs to be set to find the latest
version of the C++ run-time libraries rather than the system ones.

For Mojave and later the system paths need to be specified via
CC="/usr/local/clang/bin/clang -isysroot
/Library/Developer/CommandLineTools/SDKs/Mac0SX.sdk"
CXX="/usr/local/clang/bin/clang++ -isysroot
/Library/Developer/CommandLineTools/SDKs/Mac0SX.sdk"

https://releases.llvm.org/

Appendix C: Platform notes 69

(Long lines split for the manual, only.) Should the location of the SDK change (or where
Xcode provides the SDK rather than the Command Line Tools), it can be found by running
xcrun -show-sdk-path.

It is usually possible to build R with GCC (built from the sources, from a gfortran
distribution, from Homebrew, ...). When last tested'® it was not possible to use gcc to
build the quartz() device, so configure --without-aqua may be required.

C.3.4 Other libraries

Pre-compiled versions of many of the Section A.2 [Useful libraries and programs|, page 43,
are available from https://mac.R-project.org/libs-4/ or https://mac.R-project.
org/libs/.

The Accelerate library!! can be used via the configuration option
--with-blas="-framework Accelerate"

to provide potentially higher-performance versions of the BLAS and LAPACK routines.'?
This also includes a full LAPACK which can be used wvia --with-lapack: however, the
version of LAPACK it contains has often been seriously old (and is not used unless ——with-
lapack is specified).

Threading in Accelerate is controlled by ‘Grand Central Dispatch’ and is said not to
need user control. Test nls.R in package stats usually fails with the Accelerate BLAS.

Looking at the top of /Library/Frameworks/R.framework/Resources/etc/Makeconf
will show the compilers and configuration options used for the CRAN binary package for R:
at the time of writing the non-default options

--enable-memory-profiling --enable-R-framework
—--x-libraries=/opt/X11/1ib --x-includes=/opt/X11/include

were used. (--enable-R-framework implies -—enable-R-shlib.)

Configure option --with-internal-tzcode is the default on macOS, as the system
implementation of time zones does not work correctly for times before 1902 or after 2037
(despite using a 64-bit time_t).

The main TEX implementation used by the developers is MacTeX'? (https://www.tug.
org/mactex/): the full installation is about 7GB, but a much smaller version (‘Basic TeX’)
is available at https://www.tug.org/mactex/morepackages.html to which you will need
to add some packages to build R, e.g. for the 2021 version we needed to add'* cm-super,
helvetic, inconsolata and texinfo which brought this to about 370MB.'® ‘TeX Live Utility’
(available via the MacTeX front page) provides a graphical means to manage TEX packages.
MacTeX 2021 requires Mojave or later: for earlier macOS versions see the instructions'® on

10" with gee 10.2.
11

12

https://developer.apple.com/documentation/accelerate.

It has been reported that for some non-Apple toolchains CPPFLAGS needed to contain -D__ACCELERATE__:
not needed for clang from https://releases.llvm.org though.

An essentially equivalent TEX installation can be obtained by the Unix TeX Live installation scripts.
E.g. via tlmgr install cm-super helvetic inconsolata texinfo .
Adding all the packages needed to check CRAN increased this to about 600MB.

which amount to installing MacTeX 2020 (whose LaTeX packages are frozen) or TeXLive 2021 (which
has been tried and has current updates).

13
14
15
16

https://mac.R-project.org/libs-4/
https://mac.R-project.org/libs/
https://mac.R-project.org/libs/
https://www.tug.org/mactex/
https://www.tug.org/mactex/
https://www.tug.org/mactex/morepackages.html
https://developer.apple.com/documentation/accelerate
https://releases.llvm.org

Appendix C: Platform notes 70

the MacTeX front page. It contains executables which run natively on both ‘x86_64" and
‘arm64’.

Checking packages thoroughly requires ghostscript (part of the full MacTeX dis-
tribution or separately from https://www.tug.org/mactex/morepackages.html, includ-
ing for High Sierra) and qpdf (from https://mac.R-project.org/libs-4/, a version of
which is in the bin directory of a binary installation of R, usually /Library/Frameworks/
R.framework/Resources/bin/qpdf).

One macOS quirk is that the default path has /usr/local/bin after /usr/bin, contrary
to common practice on Unix-alikes. This means that if you install tools from the sources
they will by default be installed under /usr/local and not supersede the system versions.

Parallel installation of packages will make use of the utility timeout if available. A
dual-architecture build can be downloaded from https://www.stats.ox.ac.uk/pub/bdr/
timeout: make it executable (chmod 755 timeout) and put it somewhere on your path.

C.3.5 Tcl/Tk headers and libraries

If you plan to use the tcltk package for R, you need to install a distribution of Tcl/Tk.
There are two alternatives. If you use R.APP you will want to use X11-based Tcl/Tk (as
used on other Unix-alikes), which is installed under /usr/local/lib as part of the CRAN
binary for R.!” This may need configure options
--with-tcltk=/usr/local/lib
or

-—with-tcl-config=/usr/local/lib/tclConfig.sh
--with-tk-config=/usr/local/lib/tkConfig.sh

Note that this requires a matching'® XQuartz installation.

There is also a native (‘Aqua’) version of Tcl/Tk which produces widgets in the native
macOS style: this will not work with R.APP because of conflicts over the macOS menu,
but for those only using command-line R this provides a much more intuitive interface to
Tk for experienced Mac users. Earlier versions of macOS came with an Aqua Tcl/Tk dis-
tribution but these were often not at all recent versions of Tcl/Tk (8.5.9 in High Sierra,
which is not even the latest patched version in that series). (Catalina included a partial
distribution which lacks the files needed to compile against Tcl/Tk.) It is better to install
Tcl/Tk 8.6.x from the sources'® or a binary distribution from https://www.activestate.
com/activetcl/downloads. For the latter, configure R with

--with-tcl-config=/Library/Frameworks/Tcl.framework/tclConfig.sh
--with-tk-config=/Library/Frameworks/Tk.framework/tkConfig.sh

If you need to find out which distribution of Tk is in use at run time, use
library(tcltk)
tclvalue(.Tcl("tk windowingsystem")) # "x11" or "aqua"

Note that some Tcl/Tk extensions only support the X11 interface: this includes Tktable
and the CRAN package tkrplot (https://CRAN.R-project.org/package=tkrplot).

1T Just that component can be selected from the installer for R: at the ‘Installation Type’ screen select
‘Customise’ and then just the ‘T'cl/Tk 8.6.6” component.

18 At the time of writing the Intel distribution used 2.7.11.
19 Configure Tk with --enable-aqua.

https://www.tug.org/mactex/morepackages.html
https://mac.R-project.org/libs-4/
https://www.stats.ox.ac.uk/pub/bdr/timeout
https://www.stats.ox.ac.uk/pub/bdr/timeout
https://www.activestate.com/activetcl/downloads
https://www.activestate.com/activetcl/downloads
https://CRAN.R-project.org/package=tkrplot

Appendix C: Platform notes 71

C.3.6 Java

macOS does not comes with an installed Java runtime (JRE) and a macOS upgrade may
remove one if already installed: it is intended to be installed at first use. Check if a
JRE is installed by running java -version in a Terminal window: if Java is not in-
stalled?® this should prompt you to install it.?2! You can also install directly a recent
Java from Oracle (https://www.oracle.com/java/technologies/javase-downloads.
html). Builds of OpenJDK with a less restrictive licence may also be available, e.g.
from AdoptOpenJDK (https://adoptopenjdk.net), Azul (https://www.azul.com/
downloads/zulu-community/) or https://jdk.java.net/. We recommend you install a
version with long-term support, e.g. 8 or 11 or (when released ca 2020-09) 17 but not 9, 10,
12-16 which have/had a 6-month lifetime.

Binary distributions of R are built against a specific version (e.g. 11.0.6) of Java so sudo
R CMD javareconf will likely be needed to be run before using Java-using packages.

To wuse Java (specifically, package rJava (https://CRAN.R-project.org/
package=rJava)) with a CRAN (‘x86_64’) binary distribution of R on ‘arm64’ macOS
install a ‘x86_64" build of a Java JRE such as that from AdoptOpenJDK (https://
adoptopenjdk.net), then run sudo R CMD javareconf.

To see what compatible versions of Java are currently installed, run
/usr/libexec/java_home -V -a x86_64. If needed, set the environment variable
JAVA_HOME to choose between these, both when R is built from the sources and when R
CMD javareconf is run.

Configuring and building R both looks for a JRE and for support for compiling JNI
programs (used to install packages rJava (https://CRAN.R-project.org/package=rJava)
and JavaGD (https://CRAN.R-project.org/package=JavaGD)); the latter requires a JDK
(Java SDK) and not just a JRE?.

The build process tries to fathom out what JRE/JDK to use, but it may need some help,
e.g. by setting JAVA_HOME. A Oracle JDK can be specified explicitly by something like

JAVA_HOME=/Library/Java/JavaVirtualMachines/jdk-11.jdk/Contents/Home
JAVA_CPPFLAGS="-I/${JAVA_HOME}/include -I/${JAVA_HOME}/include/darwin"
JAVA_LD_LIBRARY_PATH="${JAVA_HOME}/lib/server"
JAVA_LIBS="-L/${JAVA_HOME}/lib/server -1ljvm"

in config.site.

To use the builds of OpenJDK from AdoptOpenJDK (https://adoptopenjdk.net) set
e.g.
JAVA_HOME=/Library/Java/JavaVirtualMachines/adoptopenjdk-11.jdk/Contents/Home

Note that it is necessary to set the environment variable NOAWT to 1 to install many of
the Java-using packages.

20 In the unlikely event that the version reported does not start with 1.8.0, 11 or higher you need to
update your Java.

21 Not at the time of writing for ‘arm64’.

22 As from Java 11, there is no separate client JRE distribution from Oracle, but there may be from
OpenJDK.

https://www.oracle.com/java/technologies/javase-downloads.html
https://www.oracle.com/java/technologies/javase-downloads.html
https://adoptopenjdk.net
https://www.azul.com/downloads/zulu-community/
https://www.azul.com/downloads/zulu-community/
https://jdk.java.net/
https://CRAN.R-project.org/package=rJava
https://CRAN.R-project.org/package=rJava
https://adoptopenjdk.net
https://adoptopenjdk.net
https://CRAN.R-project.org/package=rJava
https://CRAN.R-project.org/package=JavaGD
https://adoptopenjdk.net

Appendix C: Platform notes 72

C.3.7 Frameworks
The CRAN build of R is installed as a framework, which is selected by the option

./configure --enable-R-framework

(This is intended to be used with an Apple toolchain: others may not support frameworks
correctly but those from https://releases.llvm.org do.)

It is only needed if you want to build R for use with the R.APP console, and implies
—--enable-R-shlib to build R as a dynamic library. This option configures R to be built and
installed as a framework called R. framework. The default installation path for R.framework
is /Library/Frameworks but this can be changed at configure time by specifying the flag
--enable-R-framework [=DIR] (or --prefix) or at install time via

make prefix=/where/you/want/R.framework/to/go install

Note that installation as a framework is non-standard (especially to a non-standard
location) and Unix utilities may not support it (e.g. the pkg-config file 1ibR.pc will be
put somewhere unknown to pkg-config).

C.3.8 Building R.app

Building the R.APP GUI console is a separate project, using Xcode. Before compiling R.APP
make sure the current version of R is installed in /Library/Frameworks/R.framework and
working at the command-line (this can be a binary install).
The current sources can be checked out by
svn co https://svn.r-project.org/R-packages/trunk/Mac-GUI

and built by loading the R.xcodeproj project (select the R target and a suitable configura-
tion), or from the command-line by e.g.

xcodebuild -target R -configuration Release

See also the INSTALL file in the checkout or directly at https://svn.r-project.org/
R-packages/trunk/Mac-GUI/INSTALL.

R.APP does not need to be installed in any specific way. Building R.APP results in the
R.APP bundle which appears as one R icon. This application bundle can be run anywhere
and it is customary to place it in the /Applications folder.

C.3.9 Building binary packages

CRAN macOS binary packages are distributed as tarballs with suffix .tgz to distinguish
them from source tarballs. One can tar an existing installed package, or use R CMD INSTALL
--build.

However, there are some important details.

e Current CRAN macOS distributions are targeted at High Sierra so it is wise to ensure
that the compilers generate code that will run on High Sierra or later. With the
recommended compilers we can use

CC="clang -mmacosx-version-min=10.13"
CXX="clang++ -mmacosx-version-min=10.13"
FC="/usr/local/gfortran/bin/gfortran -mmacosx-version-min=10.13"

e Using the flag -Werror=partial-availability can help trigger compilation errors on
functionality not in High Sierra.

https://releases.llvm.org
https://svn.r-project.org/R-packages/trunk/Mac-GUI/INSTALL
https://svn.r-project.org/R-packages/trunk/Mac-GUI/INSTALL

Appendix C: Platform notes 73

e Check that any compiled code is not dynamically linked to libraries only on your
machine, for example by using otool -L or objdump -macho -dylibs-used. This can
include C++ and Fortran run-time libraries under /usr/local: one can use install_
name_tool to point these at system versions or those shipped with R, for example

install_name_tool -change /usr/local/clang/lib/libc++.1.dylib \
/usr/1ib/libc++.1.dylib \

pkg.so

install_name_tool -change /usr/local/gfortran/lib/libgfortran.5.dylib \
/Library/Frameworks/R.framework/Resources/1ib/libgfortran.5.dylib \

pkg.so
(where the details depend on the compilers and CRAN macOS R release).

e For C++ code there is the possibility that calls will be generated to entry points not
in the system /usr/lib/libc++.1.dylib. The previous step allows this to be tested
against the system library on the build OS, but not against earlier ones. It may
be possible to circumvent that by static linking to libc++.a and libc++abi.a by
something like

SHLIB_CXXLD = /usr/local/clang/bin/clang
PKG_LIBS = /usr/local/clang/lib/libc++.a /usr/local/clang/lib/libc++abi.a

in src/Makevars. It would also be possible to static link the For-
tran runtime libraries /usr/local/gfortran/lib/libgfortran.a and
/usr/local/gfortran/lib/libquadmath.a should the Fortran compiler have later
versions (but gfortran 8, 9 and 10 all have version 5.0.0).

The CRAN binary packages are built with the Apple compiler on High Sierra, which avoids
the first two and any issues with C++ libraries.

C.3.10 ‘arm64’ aka ‘Apple Silicon’

In November 2020 Apple launched Macs using ‘Apple Silicon’: this architecture has un-
fortunately many names, including ‘aarch64’ (in the FOSS world) ‘arm64’ and ‘armé64e’
(by Apple): the machines are also known as ‘M1’, Apple’s name for their (first-generation)
CPU.

It is possible to build and run R and almost all packages for ‘x86_64’ using ‘Rosetta’
emulation. To do so, install all the prerequisites and other software described above, but
include the flag —arch x86_64 for clang and clang++, for example with a config.site file
containing

CC="clang -arch x86_64"

0BJC=$CC

CXX="clang++ -arch x86_64"

FC="/usr/local/gfortran/bin/gfortran -mtune=native -mmacosx-version-min=10.13"

To correctly set the architecture (which will be auto-detected as aarch64), use something
like

/path/to/configure --build=x86_64-apple-darwin20

Appendix C: Platform notes 74

C.3.10.1 Native builds

This section is experimental, and everything said should be prefixed by ‘at the time of
writing’. It follows the planned CRAN distribution in using /opt/R/armé4 rather than
/usr/local: this largely allows natively-compiled software to co-exist with Intel-compiled
software (although the C/C++ compilers and linker will still search /usr/local/include
and /usr/local/lib).

No Fortran compiler has been released for this architecture although there
are ports under development. = We used the preliminary fork of gfortran from
https://github.com/iains/gcc-darwin-arm64 of which there are binary dis-
tributions at https://mac.r-project.org/libs-arm64/ and https://github.
com/fxcoudert/gfortran-for-mac0S/releases/. It seems these have been built
using the SDK path for Xcode and not that for the Command Line Tools which
causes some problems?® when using the Fortran compiler to link: to fix that change
the symbolic link /opt/R/arm64/gfortran/SDK to point to your SDK, e.g. to
/Library/Developer/CommandLineTools/SDKs/Mac0SX.sdk (the appropriate path can
be found by running xcrun -show-sdk-path).

A release of XQuartz 2.8.1 is available via https://www.xquartz.org/releases/: this
is dual-architecture so supports both ‘arm64’ and ‘x86_64’ builds.

A binary package of Aqua Tcl/Tk is supplied rather than the X11-based variant of Tk
used for Intel builds (and some packages, notably tkrplot (https://CRAN.R-project.org/
package=tkrplot), do not support that, nor is Tktable available). If XQuartz is installed
it is possible to build the X11-based variant of Tk from source.

Binary builds of the prerequisites are available at https://mac.r-project.org/
libs-arm64/. These (largely) unpack into /opt/R/armé4: it is simplest to first create that
directory and adjust its ownership if desired:

sudo mkdir -p /opt/R/arm64
sudo chown -R myaccount /opt/R

Then components can be downloaded and unpacked, for example

curl -0L https://mac.r-project.org/libs-arm64/jpeg-9d-darwin.20-armé4.tar.gz
tar -C/ -xf jpeg-9d-darwin.20-arm64.tar.gz

using sudo if necessary (it will be for the tcltk tarball which partially unpacks into
/Library/Frameworks and hence conflicts with Intel versions of Aqua Tcl/Tk, for example
from ActiveTcl).

Prerequisite readline can easily be built from source, although libedit emulation can
also be used. If compiling from source, pcre2 (at least up to version 10.36) needs to be
built without JIT support as the build segfaults if that is enabled, so do run make check
on your build.

Add /opt/R/arm64/bin to the PATH, create a file config.site something like

CC="clang -target arm64-apple-macosil"

0BJC=$CC

FC="/opt/R/arm64/gfortran/bin/gfortran -mtune=native"
CXX="clang++ -target arm64-apple-macosll"

23 guch as being unable to find -1m.

https://github.com/iains/gcc-darwin-arm64
https://mac.r-project.org/libs-arm64/
https://github.com/fxcoudert/gfortran-for-macOS/releases/
https://github.com/fxcoudert/gfortran-for-macOS/releases/
https://www.xquartz.org/releases/
https://CRAN.R-project.org/package=tkrplot
https://CRAN.R-project.org/package=tkrplot
https://mac.r-project.org/libs-arm64/
https://mac.r-project.org/libs-arm64/

Appendix C: Platform notes 75

CFLAGS="-falign-functions=8 -g -02 -Wall -pedantic"
CPPFLAGS=-I/0opt/R/arm64/include
LDFLAGS=-L/opt/R/arm64/1ib
R_LD_LIBRARY_PATH=/opt/R/arm64/1ib

(the first flag in CFLAGS is needed to inter-work with the current gfortran without seg-
faulting in some packages). Then configure R using something like

/path/to/configure --enable-R-shlib --enable-memory-profiling \
--with-tcl-config=/Library/Frameworks/Tcl.framework/tclConfig.sh \
--with-tk-config=/Library/Frameworks/Tk.framework/tkConfig.sh \
PKG_CONFIG_PATH=/opt/R/arm64/local/lib/pkgconfig:/usr/lib/pkgconfig \
JAVA_HOME=/path/to/zulu-11. jdk/Contents/Home

Updating a build may fail because of the bug described at https://openradar.
appspot.com/FB8914243 but ab initio builds work.

Native Java builds are becoming available, for example https://www.azul.com/
downloads/zulu-community/?os=macos&architecture=arm-64-bit&package=jdk.

As with Intel builds, use the Accelerate library could be used wia the configuration
option
--with-blas="-framework Accelerate"

It is possible to build external C/C++ libraries containing both architectures which could
then be used for building packages. A typical configure line might be

./configure --enable-static --disable-shared \

CC=’clang -arch arm64 -arch x86_64’ CFLAGS=-02 \

CXX=’clang++ -arch arm64 -arch x86_64’ CXXFLAGS=-02 \

CPP=’clang -E’ CXXCPP=’clang++ -E’
Such libraries installed into the usual default of /usr/local will be usable for both ‘armé4’
and ‘x86_64" builds.

According to Apple, C/C++ code intended only for this architecture can be enclosed in
an #ifdef block using macro __arm64__ or __aarch64__ : you may want to also condition
on __APPLE__ as those macros are defined on other OSes, at least for clang and gcc (
aarch64__).

If building software or installing packages with cmake (or a non-Apple make) ensure it
contains the ‘arm64’ architecture (use £ile to be sure). Running compilers from an ‘x86_64’
executable will generate ‘x86_64" code

C.4 Solaris

R has been built successfully on Solaris 10 using the (zero cost) Oracle Developer Studio®*
compilers: there has also been success with gcc/gfortran. (Recent Sun machines are AMD
Opterons or Intel Xeons (‘amd64’) rather than ‘x86’, but 32-bit ‘x86’ executables are the
default.) How these compilers identify themselves is slightly confusing: commands CC -V
with Developer Studio 12.5 and 12.6 report as versions 5.14 and 5.15. We will only consider
Developer Studio versions 12.5 (May 2016) and 12.6 (July 2017).

There have been few reports on Solaris 11, with no known extra issues.

2 Formerly known as Oracle Solaris Studio or Sun Studio.

https://openradar.appspot.com/FB8914243
https://openradar.appspot.com/FB8914243
https://www.azul.com/downloads/zulu-community/?os=macos&architecture=arm-64-bit&package=jdk
https://www.azul.com/downloads/zulu-community/?os=macos&architecture=arm-64-bit&package=jdk

Appendix C: Platform notes 76

Solaris was last tested on Sparc machines in June 2017.

The Solaris versions of several of the tools needed to build R (e.g. make, ar and 1d)
are in /usr/ccs/bin, so if using those tools ensure this is in your path. A version of the
preferred GNU tar is (if installed) in /usr/sfw/bin. It may be necessary to avoid the tools
in /usr/ucb: POSIX-compliant versions of some tools can be found in /usr/xpg4/bin and
/usr/xpg6/bin.

A large selection of Open Source software can be installed from https://www.opencsw.
org, by default installed under /opt/csw. Solaris 10 ships with bz1lib version 1.0.6 (suffi-
cient) but z1ib version 1.2.3 (too old): OpenCSW has 1.2.8. (Note from 2019: updating of
OpenCSW has slowed or stopped.)

At least when compiling with Oracle compilers, Solaris uses far more stack space than
other platforms. This makes it desirable to build PCRE1 (and PCRE2 < 10.30) with the
option --disable-stack-for-recursion: the OpenCSW distribution was at the time of
writing.

The Oracle compilers are unusual in not including /usr/local/include in the default
include search path: R’s default CPPFLAGS=-I/usr/local/include remedies this. If you
rely on OpenCSW software you may need CPPFLAGS=-I/opt/csw/include (or both).

You will need GNU 1libiconv and readline: the Solaris version of iconv is not suffi-
ciently powerful.

The native make suffices to build R but a number of packages require GNU make (some
without declaring it as ‘SystemRequirements’ in the DESCRIPTION file).

The support for the C99 long double type on Sparc hardware uses quad-precision arith-
metic, and this is usually slow because it is done by software emulation. On such systems
the configure option --disable-long-double can be used for faster but less accurate
computations.

The Solaris time-zone conversion services seem to be unreliable pre-1916 in Europe (when
daylight-savings time was first introduced): most often reporting in the non-existent DST
variant. Using configure option --with-internal-tzcode is recommended, and required
if you find time-zone abbreviations being given odd values (as has been seen on 64-bit builds
without it).

Using configure options —-with-internal-iswxxxxx and --with-internal-towlower
is recommended for those working with non-Western character data (as the system imple-
mentations use old tables only covering the Unicode Basic Multilingual Plane).

When using the Oracle compilers do not specify -fast, as this disables IEEE arithmetic
and make check will fail.

A little juggling of paths was needed to ensure GNU libiconv (in /usr/local) was used
rather than the Solaris iconv:

CC="cc -xc99"
CFLAGS="-0 -xlibmieee"
FC=f95

FFLAGS=-0

CXX=CC

CXXSTD="-std=c++11 -library=stdcpp,CrunG3"
CXX118TD="-std=c++11 -library=stdcpp,CrunG3"

https://www.opencsw.org
https://www.opencsw.org

Appendix C: Platform notes 7

CXX14STD="-std=c++14 -library=stdcpp,CrunG3"
CXXFLAGS=-0
R_LD_LIBRARY_PATH="/opt/developerstudiol2.6/1lib:/usr/local/lib:/opt/csw/1ib"

The Oracle compilers do not by default conform to the C99 standard (appendix F 8.9)
on the return values of functions such as log: use -xlibmieee to ensure this.

A peculiarity of some versions of the Fortran compiler has been that when asked to link
a shared object they did not link against all the Fortran 9x runtime libraries, hence

FCLIBS_XTRA="-1fsu /opt/developerstudiol2.6/1ib/libfui.so.2"
has been needed.

Using -x1ibmil in CFLAGS or FFLAGS allows more system mathematical functions to be
inlined.

On ‘x86’ you will get marginally higher performance via

CFLAGS="-x05 -xlibmieee -xlibmil -nofstore -xtarget=native"
FFLAGS="-x05 -x1ibmil -nofstore -xtarget=native"
CXXFLAGS="-x05 -xlibmil -nofstore -xtarget=native"
SAFE_FFLAGS="-0 -xlibmil -fstore -xtarget=native"

but the use of -nofstore can be less numerically stable, and some packages have in the
past failed to compile at optimization level 5.

The Oracle compilers provide several implementations of the C++ standards which select
both the set of headers and a C++ runtime library. One of those is selected by the -1ibrary
flag, which as it is needed for both compiling and linking is best specified as part of the
compiler or standard. Current R expects a C++11 compiler, for which the choice given
above is the only possibility. Although version 12.5 accepted the flag -std=c++14, it did
not pass configure’s conformance tests: version 12.6 does.

The performance library sunperf is available for use with the Oracle compilers. If
selected as a BLAS, it must also be selected as LAPACK via

./configure --with-blas=’-library=sunperf’ --with-lapack
This has often given test failures in the past, in several different places.?”

Parsing very complex R expressions needs a lot of stack space when the Oracle compilers
are used: several packages require the stack increased to at least 20MB.

Some people have reported that the Solaris 1ibintl needs to be avoided, for example
by using --disable-nls or ——with-included-gettext or using 1ibintl from OpenCSW.
(On the other hand, there have been many successful installs which automatically detected
libintl from OpenCSW or selected the included gettext.)

It has been reported that some Solaris installations need
INTERNET_LIBS="-1lsocket -1lnsl"

on the configure command line or in file config.site; however, there have been many
successful installs without this.

25 When last checked it failed in tests/reg-BLAS.R, and on some builds, including for ‘amd64’, it failed in
example(eigen).

Appendix C: Platform notes 78

C.4.1 64-bit builds
On both ‘x86’ and ‘Sparc’ platforms the compilers default to 32-bit code.

For a 64-bit target add -m64 to the compiler macros and use something like
LDFLAGS=-L/usr/local/lib/amd64 or LDFLAGS=-L/usr/local/lib/sparcv9 as
appropriate (and other 64-bit library directories if used, e.g. -L/opt/csw/1ib/amd64). It
will also be necessary to point pkg-config at the 64-bit directories, e.g. by something like

PKG_CONFIG_PATH= /usr/local/lib/amd64/pkgconfig:/opt/csw/1lib/64/pkgconfig: /usr/1ib/64/
and to specify a 64-bit Java VM by e.g.

JAVA_CPPFLAGS="-I${JAVA_HOME}/../include -I${JAVA_HOME}/../include/solaris"

JAVA_LD_LIBRARY_PATH=${JAVA_HOME}/1lib/amd64/server

JAVA_LIBS="-L${JAVA_HOME}/lib/amd64/server \
-R${JAVA_HOME}/1lib/amd64/server -1jvm"

C.4.2 Using gcc

If using gcc, ensure that the compiler was compiled for the version of Solaris in use. (This
can be ascertained from gcc -v.) gcc makes modified versions of some header files, and
several reports of problems were due to using gcc compiled on one version of Solaris on a
later version. Note that this can even apply to OS patches: some 2016 patches to Solaris 10
changed its C header files in way incompatible?® with the modified versions included with
OpenCSW'’s binary distribution.

The notes here are for gcc set up to use the Solaris linker: it can also be set up to use GNU
1d, but that has not been tested. The tests were for compilers from the OpenCSW reposi-
tory: Solaris systems often come with much older compilers installed under /usr/sfw/bin.
One of -m32 or -m64 will be the default and could be omitted, but it is not easy to find out
which. (For OpenCSW it is -m32.)

Compilation for an ‘x86’ target with gcc 5.2.0 needed

CC="gcc -m32"

CPPFLAGS="-I/opt/csw/include -I/usr/local/include"
FC="gfortran -m32"

CXX="g++ -m32"

LDFLAGS="-L/opt/csw/1ib -L/usr/local/lib"

For an ‘amd64’ target we used

CC="gcc -m64"

CPPFLAGS="-I/opt/csw/include -I/usr/local/include"
FC="gfortran -m64"

CXX="g++ -m64"

LDFLAGS="-L/opt/csw/1ib/amd64 -L/usr/local/lib/amd64"

Note that paths such as /opt/csw/lib, /usr/local/lib/amd64 and
/opt/csw/lib/amd64 may need to be in the LD_LIBRARY_PATH during configura-
tion.

26 In particular, header cmath in C++11 mode includes math.h and iso/math_c99.h and gec had ‘fixed’ an
earlier version of the latter.

Appendix C: Platform notes 79

The latest version of gcc available in the OpenCSW distribution at the time of writing
was 5.5.0 (and had been since Oct 2017). Later versions can be built from the sources, e.g.
9.3.0 (which supports C++17, unlike 5.x).

C.5 FreeBSD

There have been few recent reports on FreeBSD: there is a ‘port’ at https://svnweb.
freebsd.org/ports/head/math/. Recent versions of FreeBSD use Clang and the 1ibc++
C++ headers and runtime, but the ‘port’ is configured to use GCC.

Use of ICU for collation and the configure option --with-internal-tzcode are desir-
able workarounds.

C.6 OpenBSD

Ingo Feinerer installed R version 3.2.2 on OpenBSD 5.8 arch ‘amd64’ (their name for
‘x86_64’). Details of the build (and patches applied) are at https://cvsweb.openbsd.org/
cgi-bin/cvsweb/ports/math/R/. (Downgrading the z1lib requirement to 1.2.3 is against
the advice of the R developers.)

C.7 Cygwin

The 32-bit version never worked well enough to pass R’s make check, and residual support
from earlier experiments was removed in R 3.3.0.

The 64-bit version was never supported.

C.8 New platforms

There are a number of sources of problems when installing R on a new hardware/OS plat-
form. These include

Floating Point Arithmetic: R requires arithmetic compliant with TEC 60559, also known
as IEEE 754. This mandates the use of plus and minus infinity and NaN (not a number)
as well as specific details of rounding. Although almost all current FPUs can support this,
selecting such support can be a pain. The problem is that there is no agreement on how
to set the signalling behaviour; Sun/Sparc, SGI/IRIX and ‘ix86’ Linux require no special
action, FreeBSD requires a call to (the macro) fpsetmask(0) and OSF1 required that
computation be done with a -ieee_with_inexact flag etc. With Intel compilers on 32-bit
and 64-bit Intel machines, one has to explicitly disable flush-to-zero and denormals-are-
zero modes. Some ARM processors including A12Z and M1 (Apple Silicon) by default use
runfast mode, which includes flush-to-zero and default-nan and hence has to be disabled.
With default-nan mode, the NaN payload used for representation of numeric NA values is
lost even on simple operations with finite values. On a new platform you must find out
the magic recipe and add some code to make it work. This can often be done via the file
config.site which resides in the top level directory.

Beware of using high levels of optimization, at least initially. On many compilers these
reduce the degree of compliance to the IEEE model. For example, using -fast on the
Oracle compilers has caused R’s NaN to be set incorrectly, and gcc’s -ffast-math and
clang’s -0fast have given incorrect results.

https://svnweb.freebsd.org/ports/head/math/
https://svnweb.freebsd.org/ports/head/math/
https://cvsweb.openbsd.org/cgi-bin/cvsweb/ports/math/R/
https://cvsweb.openbsd.org/cgi-bin/cvsweb/ports/math/R/

Appendix C: Platform notes 80

Shared Objects: There seems to be very little agreement across platforms on what needs
to be done to build shared objects. there are many different combinations of flags for the
compilers and loaders. GNU libtool cannot be used (yet), as it currently does not fully
support Fortran: one would need a shell wrapper for this). The technique we use is to first
interrogate the X window system about what it does (using xmkmf), and then override this
in situations where we know better (for tools from the GNU Compiler Collection and/or
platforms we know about). This typically works, but you may have to manually override the
results. Scanning the manual entries for cc and 1d usually reveals the correct incantation.
Once you know the recipe you can modify the file config.site (following the instructions
therein) so that the build will use these options.

It seems that gcc 3.4.x and later on ‘ix86’ Linux defeat attempts by the
LAPACK code to avoid computations entirely in extended-precision registers, so file
src/modules/lapack/dlamc.f may need to be compiled without optimization or with
additional flags. Set the configure variable SAFE_FFLAGS to the flags to be used for this file.

If you do manage to get R running on a new platform please let us know about it so we
can modify the configuration procedures to include that platform.

If you are having trouble getting R to work on your platform please feel free to use the
‘R-devel’ mailing list to ask questions. We have had a fair amount of practice at porting
R to new platforms ...

81

Function and variable index

configure.............. ... i 3,4, 7,55, 57 R_HOME. .. 3
remove.packagest 31
I
install.packagesooviiiiiiininnnnn.. 24 U
update.packages ... 30

Concept index

B

Fortran.......... 57
FreeBSD 79

I

Installationt 7
Installing under Unix-alikes 3
Installing under Windows 17
Internationalization 33

L

LAPACK libraryooooia.. 52, 69, 77
Libraries. ... 23
Libraries, managing............................ 23
Libraries, site........cooooiii i 23
Libraries, usero 23
Linux ..o 3, 61
Locale.......ooi 33
Localization i 33

macOS ... o 3, 19, 65
Manuals ... 5
Manuals, installing.......... 8

82

O

Obtaining R...... ... i 1
OpenBSD. ... 79

P

Packages............ o i 23
Packages, default 23
Packages, installingol 24
Packages, removing ... 31
Packages, updatingo 30
Pango......... ...l 43, 68

S

Site libraries 23
Solaris. ... 75
Sourcesfor R 1
Subversionooiiiiiiii 1, 43

U

User libraries ...t 23

v

Vignettes ... 43

83

Environment variable index

BLAS_LIBS . ..t 47
CONFIG_SITE. ... 55
DESTDIR . ..ot 9, 39
JAVA_HOME ..ot 46
LANG . . oottt e e 34
LANGUAGE.\t 34, 35
LAPACK_LIBS. ... 52
LC_ALL . .\ttt 34
LC_COLLATE\t 16
LC_MESSAGESt 34

LD_LIBRARY PATH 39, 57, 58, 78

P

PAPERSIZE ...\ 56
PATH ..o 43, 57
R

RoARCH. ..o 10
R_BROWSER . ..o 56
R_DEFAULT_PACKAGES0vvuennn, 23
R_DISABLE_HTTPD, 5
R_GSCMD ..o 45
R_INSTALL_TARoooiiiiiiii i, 25
R_JAVA_LD_LIBRARY_PATH.............cccoo.... 46
R_LIBS. .o 23
R_LIBS_SITE. . ..o 23
R_LIBS_USER......oouemmmeeen 23
R_PAPERSIZE................coooiiiii.. 5, 22, 56
R_PDFVIEWERt 56
R_RDAPDFt 6, 56
R_SCRIPT_DEFAULT_PACKAGES................... 23
R_USER. ..o 22
T

TAR .o 42
TAR_OPTIONS . ..o 1
TEMP . oot 22
TMP 22
TMPDIR ... 3,22, 24

	1 Obtaining R
	Getting and unpacking the sources
	Getting patched and development versions
	Using Subversion and rsync

	2 Installing R under Unix-alikes
	Simple compilation
	Help options
	Making the manuals
	Installation
	Uninstallation
	Sub-architectures
	Multilib

	Other Options
	Debugging Symbols
	OpenMP Support
	C++ Support
	Link-Time Optimization
	LTO with GCC
	LTO with LLVM
	LTO for package checking

	Testing an Installation

	3 Installing R under Windows
	Building from source
	The Windows toolset
	LaTeX

	Checking the build
	Testing an Installation

	4 Installing R under macOS
	Running R under macOS
	Uninstalling under macOS
	Multiple versions

	5 Running R
	6 Add-on packages
	Default packages
	Managing libraries
	Installing packages
	Windows
	macOS
	Customizing package compilation
	Multiple sub-architectures
	Byte-compilation
	External software

	Updating packages
	Removing packages
	Setting up a package repository
	Checking installed source packages

	7 Internationalization and Localization
	Locales
	Locales under Unix-alikes
	Locales under Windows
	Locales under macOS

	Localization of messages

	8 Choosing between 32- and 64-bit builds
	9 The standalone Rmath library
	Unix-alikes
	Windows

	A Essential and useful other programs under a Unix-alike
	Essential programs and libraries
	Useful libraries and programs
	Tcl/Tk
	Java support
	Other compiled languages

	Linear algebra
	BLAS
	ATLAS
	OpenBLAS
	Intel MKL
	Shared BLAS

	LAPACK
	Caveats

	B Configuration on a Unix-alike
	Configuration options
	Internationalization support
	Configuration variables
	Setting paper size
	Setting the browsers
	Compilation flags
	Making manuals

	Setting the shell
	Using make
	Using Fortran
	Compile and load flags
	Maintainer mode

	C Platform notes
	X11 issues
	Linux
	Clang
	Intel compilers

	macOS
	Prerequisites
	Note for Catalina and Big Sur users

	Cairo graphics
	Other C/C++ compilers
	Other libraries
	Tcl/Tk headers and libraries
	Java
	Frameworks
	Building R.app
	Building binary packages
	arm64 aka `Apple Silicon'
	Native builds

	Solaris
	64-bit builds
	Using gcc

	FreeBSD
	OpenBSD
	Cygwin
	New platforms

	Function and variable index
	Concept index
	Environment variable index

