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CHAPTER
ONE

INTRODUCTION

This is the reference manual of Coq. Coq is an interactive theorem prover. It lets you formalize mathematical concepts
and then helps you interactively generate machine-checked proofs of theorems. Machine checking gives users much more
confidence that the proofs are correct compared to human-generated and -checked proofs. Coq has been used in a number
of flagship verification projects, including the CompCert verified C compiler, and has served to verify the proof of the
four color theorem® (among many other mathematical formalizations).

Users generate proofs by entering a series of tactics that constitute steps in the proof. There are many built-in tactics, some
of which are elementary, while others implement complex decision procedures (such as 11ia, a decision procedure for
linear integer arithmetic). Lzac and its planned replacement, Ltac2, provide languages to define new tactics by combining
existing tactics with looping and conditional constructs. These permit automation of large parts of proofs and sometimes
entire proofs. Furthermore, users can add novel tactics or functionality by creating Coq plugins using OCaml.

The Coq kernel, a small part of Coq, does the final verification that the tactic-generated proof is valid. Usually the tactic-
generated proof is indeed correct, but delegating proof verification to the kernel means that even if a tactic is buggy, it
won’t be able to introduce an incorrect proof into the system.

Finally, Coq also supports extraction of verified programs to programming languages such as OCaml and Haskell. This
provides a way of executing Coq code efficiently and can be used to create verified software libraries.

To learn Coq, beginners are advised to first start with a tutorial / book. Several such tutorials / books are listed at
https://coq.inria.fr/documentation.

This manual is organized in three main parts, plus an appendix:

* The first part presents the specification language of Coq, that allows to define programs and state mathematical
theorems. Core language presents the language that the kernel of Coq understands. Language extensions presents
the richer language, with notations, implicits, etc. that a user can use and which is translated down to the language
of the kernel by means of an “elaboration process”.

* The second part presents proof mode, the central feature of Coq. Basic proof writing introduces this interactive
mode and the available proof languages. Automatic solvers and programmable tactics presents some more advanced
tactics, while Creating new tactics is about the languages that allow a user to combine tactics together and develop
new ones.

* The third part shows how to use Coq in practice. Libraries and plugins presents some of the essential reusable
blocks from the ecosystem and some particularly important extensions such as the program extraction mechanism.
Command-line and graphical tools documents important tools that a user needs to build a Coq project.

¢ In the appendix, History and recent changes presents the history of Coq and changes in recent releases. This is an
important reference if you upgrade the version of Coq that you use. The various indexes are very useful to quickly
browse the manual and find what you are looking for. They are often the main entry point to the manual.

The full table of contents is presented below:

4 http://compcert.inria.fr/
> https:/github.com/math-comp/fourcolor
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Note: License

This material (the Coq Reference Manual) may be distributed only subject to the terms and conditions set forth in the
Open Publication License, v1.0 or later (the latest version is presently available at http://www.opencontent.org/openpub).
Options A and B are not elected.

2 Chapter 1. Introduction
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CHAPTER
TWO

SPECIFICATION LANGUAGE

2.1 Core language

At the heart of the Coq proof assistant is the Coq kernel. While users have access to a language with many convenient
features such as notations, implicit arguments, etc. (presented in the next chapter), those features are translated into the
core language (the Calculus of Inductive Constructions) that the kernel understands, which we present here. Furthermore,
while users can build proofs interactively using tactics (see Chapter Basic proof writing), the role of these tactics is to
incrementally build a ”proof term” which the kernel will verify. More precisely, a proof term is a ferm of the Calculus of
Inductive Constructions whose fype corresponds to a theorem statement. The kernel is a type checker which verifies that
terms have their expected types.

This separation between the kernel on one hand and the elaboration engine and tactics on the other follows what is known
as the de Bruijn criterion (keeping a small and well delimited trusted code base within a proof assistant which can be
much more complex). This separation makes it necessary to trust only a smaller, critical component (the kernel) instead
of the entire system. In particular, users may rely on external plugins that provide advanced and complex tactics without
fear of these tactics being buggy, because the kernel will have to check their output.

2.1.1 Basic notions and conventions

This section provides some essential notions and conventions for reading the manual.

We start by explaining the syntax and lexical conventions used in the manual. Then, we present the essential vocabulary
necessary to read the rest of the manual. Other terms are defined throughout the manual. The reader may refer to the
glossary index for a complete list of defined terms. Finally, we describe the various types of settings that Coq provides.

Syntax and lexical conventions

Syntax conventions

The syntax described in this documentation is equivalent to that accepted by the Coq parser, but the grammar has been
edited to improve readability and presentation.

In the grammar presented in this manual, the terminal symbols are black (e.g. £orall), whereas the nonterminals are
green, italic and hyperlinked (e.g. term). Some syntax is represented graphically using the following kinds of blocks:

?
item | An optional item.

+ . .
item A list of one or more items.

*
item | An optional list of items.
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99,9

+
item _ A list of one or more items separated by ”’s” (e.g. item; s item, s item,).

*
999

item L An optional list of items separated by ”s”.

item, ‘ item, ‘ . . . | Alternatives (either item, or item, or...).

Precedence levels® that are implemented in the Coq parser are shown in the documentation by appending the level to the
nonterminal name (as in term100 or 1tac_expr?3).

Note: Coq uses an extensible parser. Plugins and the notation system can extend the syntax at run time. Some notations
are defined in the prelude, which is loaded by default. The documented grammar doesn’t include these notations. Prece-
dence levels not used by the base grammar are omitted from the documentation, even though they could still be populated
by notations or plugins.

Furthermore, some parsing rules are only activated in certain contexts (proof mode, custom entries...).

Warning: Given the complexity of these parsing rules, it would be extremely difficult to create an external pro-
gram that can properly parse a Coq document. Therefore, tool writers are advised to delegate parsing to Coq, by
communicating with it, for instance through SerAPI’.

See also:

Print Grammar

Lexical conventions

Blanks Space, newline and horizontal tab are considered blanks. Blanks are ignored but they separate tokens.

Comments Comments are enclosed between (* and *) . They can be nested. They can contain any character. However,
embedded string literals must be correctly closed. Comments are treated as blanks.

Identifiers Identifiers, written ident, are sequences of letters, digits, _ and ', that do not start with a digit or '. That
is, they are recognized by the following grammar (except that the string _ is reserved; it is not a valid identifier):

*
ident

first_letter
subsequent_letter

first_letter | subsequent_letter

a.z ‘ A.Z ‘ _ ‘ unicode_letter
first_letter ‘ digit ‘ ! ‘ unicode_id_part

All characters are meaningful. In particular, identifiers are case-sensitive. unicode_letter non-exhaustively
includes Latin, Greek, Gothic, Cyrillic, Arabic, Hebrew, Georgian, Hangul, Hiragana and Katakana charac-
ters, CJK ideographs, mathematical letter-like symbols and non-breaking space. unicode_id_part non-
exhaustively includes symbols for prime letters and subscripts.

Numbers Numbers are sequences of digits with an optional fractional part and exponent, optionally preceded by a
minus sign. Hexadecimal numbers start with 0x or 0X. bigint are integers; numbers without fractional nor
exponent parts. bignat are non-negative integers. Underscores embedded in the digits are ignored, for example
1_000_000 is the same as 1000000.

6 https://en.wikipedia.org/wiki/Order_of_operations
7 https://github.com/ejgallego/cog-serapi
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? 9
? T + ? I
number ::= [='1 decnat|.|digit ‘ _ e | E|[+ | -1 decnat
¥
? o + %
| =t hexnat |. | hexdigit ‘ _ p ‘ P|[+ | -7 decnat
integer ::= =Y natural
natural ::= bignat
bigint si= =0 bignat
bignat ::= |decnat | hexnat
*
decnat 1= digit|digit ‘
digit = 0.9
*
hexnat  ::= [0x | O0X]hexdigit|hexdigit
hexdigit ::= 0.9 | a.f | A.F

integer and natural are limited to the range that fits into an OCaml integer (63-bit integers on most archi-
tectures). bigint and bignat have no range limitation.

The standard library provides some interpretations for number. The Number Notat ion mechanism offers the
user a way to define custom parsers and printers for number.

Strings Strings begin and end with " (double quote). Use " " to represent a double quote character within a string. In
the grammar, strings are identified with st ring.

The St ring Notation mechanism offers the user a way to define custom parsers and printers for st ring.

Keywords The following character sequences are keywords defined in the main Coq grammar that cannot be used as
identifiers (even when starting Coq with the ~-noinit command-line flag):

_ Axiom CoFixpoint Definition Fixpoint Hypothesis Parameter Prop
SProp Set Theorem Type Variable as at cofix else end
fix for forall fun if in let match return then where with

The following are keywords defined in notations or plugins loaded in the prelude:

IF by exists exists2 using

Note that loading additional modules or plugins may expand the set of reserved keywords.

Other tokens The following character sequences are tokens defined in the main Coq grammar (even when starting Coq
with the —noinit command-line flag):

Note that loading additional modules or plugins may expand the set of defined tokens.

When multiple tokens match the beginning of a sequence of characters, the longest matching token is used. Occa-
sionally you may need to insert spaces to separate tokens. For example, if ~ and ~~ are both defined as tokens, the
inputs ~ ~ and ~~ generate different tokens, whereas if ~~ is not defined, then the two inputs are equivalent.

2.1. Core language 5
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Essential vocabulary

This section presents the most essential notions to understand the rest of the Coq manual: zerms and fypes on the one hand,
commands and tactics on the other hand.

term Terms are the basic expressions of Coq. Terms can represent mathematical expressions, propositions and proofs,
but also executable programs and program types.

Here is the top-level syntax of terms. Each of the listed constructs is presented in a dedicated section. Some of
these constructs (like term forall_or fun) are part of the core language that the kernel of Coq understands
and are therefore described in this chapter, while others (like term_ i £) are language extensions that are presented
in the next chapter.

term ::=  term_forall_or_fun

| term_let

| term_if

| term_fix

| term_cofix

| terml100
terml00 : 1= term_cast

| terml0
terml0 ::= term_application

| one_term
one_term ::= term_explicit

| terml
terml ::= term_projection

| term_scope

| term0
term( ::= qualid_annotated
sort
primitive_notations
term_evar
term_match
term_record

term_generalizing
* ? - ?
| [l |term = | term |: type T ] |univ_annot
9

| term_ltac

| (term)
®
qualid_annotated : := qualid |univ_annot

Note: Many commands and factics use one_term (in the syntax of their arguments) rather than term. The
former need to be enclosed in parentheses unless they’re very simple, such as a single identifier. This avoids
confusing a space-separated list of terms or identifiers with a term_application.

type To be valid and accepted by the Coq kernel, a term needs an associated type. We express this relationship by “x of
type T, which we write as “x : 7. Informally, “x : T can be thought as “x belongs to T”.

The Coq kernel is a type checker: it verifies that a term has the expected type by applying a set of typing rules (see
Typing rules). If that’s indeed the case, we say that the term is well-typed.

A special feature of the Coq language is that types can depend on terms (we say that the language is dependently-
typed®). Because of this, types and terms share a common syntax. All types are terms, but not all terms are

8 https://en.wikipedia.org/wiki/Dependent_type
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types:
type ::= term

Intuitively, types may be viewed as sets containing terms. We say that a type is inhabited if it contains at least
one term (i.e. if we can find a term which is associated with this type). We call such terms witnesses. Note that
deciding whether a type is inhabited is undecidable’.

Formally, types can be used to construct logical foundations for mathematics alternative to the standard “set the-
ory”!: we call such logical foundations “type theories”!!. Coq is based on the Calculus of Inductive Constructions,

which is a particular instance of type theory.
sentence Coq documents are made of a series of sentences that contain commands or tactics, generally terminated with
a period and optionally decorated with attributes.

*
sentence

document
?
attributes | command .
? ?
| attributes | |natural : | query_command .
9

sentence

9
| attributes | |toplevel_selector : | ltac_expr .
| control_command

Itac_expr syntax supports both simple and compound factics. For example: split is a simple tactic while
split; auto combines two simple tactics.

command A command can be used to modify the state of a Coq document, for instance by declaring a new object, or
to get information about the current state.

By convention, command names begin with uppercase letters. Commands appear in the HTML documentation
in blue or gray boxes after the label "Command”. In the pdf, they appear after the boldface label "Command:”.
Commands are listed in the command_index. Example:
*
Command: Comments one term ‘ string natural
Prints "Comments ok” and does not change the state of the document.

tactic A tactic specifies how to transform the current proof state as a step in creating a proof. They are syntactically
valid only when Coq is in proof mode, such as after a Theorem command and before any subsequent proof-
terminating command such as Oed. See Proof mode for more on proof mode.

By convention, tactic names begin with lowercase letters. Tactic appear in the HTML documentation in blue or
gray boxes after the label "Tactic”. In the pdf, they appear after the boldface label "Tactic:”. Tactics are listed in
the tactic_index.

9 https://en.wikipedia.org/wiki/Undecidable_problem
10 https://en.wikipedia.org/wiki/Set_theory
1T https://en.wikipedia.org/wiki/Type_theory

2.1. Core language 7
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Settings

There are several mechanisms for changing the behavior of Coq. The atribute mechanism is used to modify the behavior
of a single sentence. The flag, option and table mechanisms are used to modify the behavior of Coq more globally in a
document or project.

Attributes

An attribute modifies the behavior of a single sentence. Syntactically, most commands and tactics can be decorated with
attributes (cf. sentence), but attributes not supported by the command or tactic will trigger This command does
not support this attribute.

* *

#] | attribute , ] legacy_attr

attributes
?
attribute ::= ident|attr_value
attr_value t:1=  =string
| = ident
*
| (| attribute L )
legacy_attr ::= |Local \ Global
Polymorphic ‘ Monomorphic

Private

|
| Cumulative \ NonCumulative
|
| Program

The order of top-level attributes doesn’t affect their meaning. # [foo, bar], # [bar, fool, #[foo] # [bar] and
#[bar]#[foo] are equivalent.

i
Boolean attributes take the form ident_,,, = yes | no . Whenthe yes | no value is omitted, the default

is yes.

The legacy attributes (legacy_attr) provide an older, alternate syntax for certain attributes. They are equivalent to
new attributes as follows:

Legacy attribute New attribute

Local local

Global global

Polymorphic, Monomorphic universes (polymorphic)
Cumulative, NonCumulative | universes (cumulative)
Private private (matching)
Program program

Attributes appear in the HTML documentation in blue or gray boxes after the label ”Attribute”. In the pdf, they appear
after the boldface label ”Attribute:”. Attributes are listed in the attribute_index.

Warning: This command does not support this attribute: ident.
This warning is configured to behave as an error by default. You may turn it into a normal warning by using the
Warnings option:

Set Warnings "unsupported-attributes".
#[ foo ] Comments.
(continues on next page)

8 Chapter 2. Specification language
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(continued from previous page)

Toplevel input, characters 0-18:
> #[ foo ] Comments.

S AAAAAAAAAANAAAAAAN

Warning: This command does not support this attribute: foo.
[unsupported-attributes, parsing]

Flags, Options and Tables

The following types of settings can be used to change the behavior of Coq in subsequent commands and tactics (see
Locality attributes supported by Set and Unset for a more precise description of the scope of these settings):

A flag has a boolean value, such as Universe Polymorphism.
¢ An option generally has a numeric or string value, such as F'i rstorder Depth.
¢ A table contains a set of st ringsor qualids.

¢ In addition, some commands provide settings, such as Ext raction Language.

+
setting_name ::= |ident

Flags, options and tables are identified by a series of identifiers. By convention, each of the identifiers start
with an initial capital letter.

Flags, options and tables appear in the HTML documentation in blue or gray boxes after the labels “Flag”, ”Option” and
“Table”. In the pdf, they appear after a boldface label. They are listed in the options_index.
?
Command: Set setting name integer | string
If setting name is a flag, no value may be provided; the flag is set to on. If setting name is an option, a
value of the appropriate type must be provided; the option is set to the specified value.

This command supports the 1ocal, global and export attributes. They are described /ere.

Warning: There is no flag or option with this name: "setting name".
This warning message can be raised by Set and Unset when setting name is unknown. It is a warning
rather than an error because this helps library authors produce Coq code that is compatible with several Coq
versions. To preserve the same behavior, they may need to set some compatibility flags or options that did
not exist in previous Coq versions.

Command: Unset setting name
If setting nameis aflag, it is set to off. If setting name is an option, it is set to its default value.

This command supports the 1ocal, global and export attributes. They are described /ere.

+

Command: Add setting name qualid ‘ string
Adds the specified values to the table setting name.

+

Command: Remove setting name qualid ‘ string
Removes the specified value from the table setting name.

+
Command: Test setting name for qualid ‘ string

If setting name is a flag or option, prints its current value. If setting nameis atable: if the for clause is
specified, reports whether the table contains each specified value, otherwise this is equivalent to Print Table.
The for clause is not valid for flags and options.

2.1. Core language 9
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Error: There is no flag, option or table with this name: "setting name".
This error message is raised when calling the Test command (without the for clause), or the Print
Table command, for an unknown setting name.

Error: There is no qualid-valued table with this name: "setting name".

Error: There is no string—-valued table with this name: "setting name".
These error messages are raised when calling the Add or Remove commands, or the Test command with
the for clause, if setting_name is unknown or does not have the right type.

Command: Print Options
Prints the current value of all flags and options, and the names of all tables.

Command: Print Table setting name
Prints the values in the table setting name.

Command: Print Tables
A synonym for Print Options.

Locality attributes supported by set and Unset

The Set and Unset commands support the mutually exclusive 1ocal, export and global locality attributes (or
the Local, Export or Global prefixes).

If no attribute is specified, the original value of the flag or option is restored at the end of the current module but it is not
restored at the end of the current section.

Newly opened modules and sections inherit the current settings.

Note: We discourage using the g1 oba I locality attribute with the Set and Unset commands. If your goal is to define
project-wide settings, you should rather use the command-line arguments —set and —unset for setting flags and options
(see By command line options).

2.1.2 Sorts

sort ::=  Set
| Prop

| SProp

| Type

| Type @{ _}

| Type @{ universe }

+
universe ::= max (|universe_expr 1)
b
| universe_expr
?
universe_name |+ natural

universe_expr

The types of types are called sorts.

All sorts have a type and there is an infinite well-founded typing hierarchy of sorts whose base sorts are SProp, Prop and
Set.

The sort Prop intends to be the type of logical propositions. If M is a logical proposition then it denotes the class of terms
representing proofs of M. An object m belonging to M wimesses the fact that M is provable. An object of type Prop is
called a proposition. We denote propositions by form. This constitutes a semantic subclass of the syntactic class term.

10 Chapter 2. Specification language
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The sort SProp is like Prop but the propositions in SProp are known to have irrelevant proofs (all proofs are equal).
Objects of type SProp are called strict propositions. See SProp (proof irrelevant propositions) for information about using
SProp, and [[GCST19]] for meta theoretical considerations.

The sort Set intends to be the type of small sets. This includes data types such as booleans and naturals, but also products,
subsets, and function types over these data types. We denote specifications (program types) by speci £. This constitutes
a semantic subclass of the syntactic class texrm.

SProp, Prop and Set themselves can be manipulated as ordinary terms. Consequently they also have a type. Because
assuming simply that Set has type Set leads to an inconsistent theory [[Coq86]], the language of CIC has infinitely many
sorts. There are, in addition to the base sorts, a hierarchy of universes Type(i) for any integer ¢ > 1.

Like Set, all of the sorts Type(i) contain small sets such as booleans, natural numbers, as well as products, subsets and
function types over small sets. But, unlike Set, they also contain large sets, namely the sorts Set and Type(j) for j < 4,
and all products, subsets and function types over these sorts.

Formally, we call § the set of sorts which is defined by:
S = {SProp, Prop, Set, Type(i) | i € N}

Their properties, such as Prop : Type(1), Set : Type(1), and Type(i) : Type(i 4 1), are described in Subtyping rules.

The user does not have to mention explicitly the index 7 when referring to the universe Type(i). One only writes Type.
The system itself generates for each instance of Type a new index for the universe and checks that the constraints between
these indexes can be solved. From the user point of view we consequently have Type : Type. We shall make precise in
the typing rules the constraints between the indices.

Implementation issues In practice, the Type hierarchy is implemented using algebraic universes. An algebraic universe
w is either a variable (a qualified identifier with a number) or a successor of an algebraic universe (an expression u + 1),
or an upper bound of algebraic universes (an expression max(u, ..., u,, )), or the base universe (the expression 0) which
corresponds, in the arity of template polymorphic inductive types (see Section Well-formed inductive definitions), to the
predicative sort Set. A graph of constraints between the universe variables is maintained globally. To ensure the existence
of a mapping of the universes to the positive integers, the graph of constraints must remain acyclic. Typing expressions
that violate the acyclicity of the graph of constraints results ina Universe inconsistency error.

See also:

Printing universes, Explicit Universes.

2.1.3 Functions and assumptions

Binders
. +
open_binders ::= |[name'] : term
- +
| binder
name i=
| ident
binder ::= name

| ([name *. type)

| ( name |: type : :=term)
| implicit_binders

| generalizing_binder

| ( name : type | term )

| ! pattern(

2.1. Core language 11
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Various constructions such as fun, forall, fix and cofix bind variables. A binding is represented by an identifier.
If the binding variable is not used in the expression, the identifier can be replaced by the symbol _. When the type of a
bound variable cannot be synthesized by the system, it can be specified with the notation (ident : type). There is

+
also a notation for a sequence of binding variables sharing the same type: ( ident : type). A binder can also be
any pattern prefixed by a quote, e.g. ' (x,y).

Some constructions allow the binding of a variable to value. This is called a “let-binder”. The entry binder of
the grammar accepts either an assumption binder as defined above or a let-binder. The notation in the latter case is
(ident := term). In a let-binder, only one variable can be introduced at the same time. It is also possible to give
the type of the variable as follows: (ident : type := term).

Lists of binders are allowed. In the case of fun and forall, it is intended that at least one binder of the list is an
assumption otherwise fun and forall gets identical. Moreover, parentheses can be omitted in the case of a single sequence
of bindings sharing the same type (e.g.: fun (x y z : A) => tcanbeshortenedin fun x y z : A => t).

Functions (fun) and function types (forall)

term_forall_or_fun ::= forall open_binders , term
| fun open_binders => term

The expression fun ident : type => termdefines the abstraction of the variable ident, of type type, over
the term term. It denotes a function of the variable ident that evaluates to the expression term (e.g. fun x
A => x denotes the identity function on type A). The keyword fun can be followed by several binders as given in

Section Binders. Functions over several variables are equivalent to an iteration of one-variable functions. For instance

+ +
the expression fun | ident; : type => termdenotes the same function as| fun ident; : type =>

term. If a let-binder occurs in the list of binders, it is expanded to a let-in definition (see Section Let-in definitions).

The expression forall ident : type, termdenotesthe productof the variable ident of type type, over the
term term. As for abstractions, forall is followed by a binder list, and products over several variables are equivalent
to an iteration of one-variable products. Note that term is intended to be a type.

If the variable ident occurs in term, the product is called dependent product. The intention behind a dependent
product forall x : A, Bistwofold. It denotes either the universal quantification of the variable x of type A in the
proposition B or the functional dependent product from A to B (a construction usually written II, 4. B in set theory).

Non dependent product types have a special notation: 2 —> B stands for forall _ : A, B. The non dependent
product is used both to denote the propositional implication and function types.

Function application

Lo +
term_application terml [arg

+
| @ qualid_annotated | terml
arg ::= (ident:=term)
| terml

term,,, termdenotes applying the function term,,, to term.

+
termg,, term,; | denotesapplying term,,  tothe arguments term;. Itisequivalentto ( .. ( termg,, term,
) .. ) term,: associativity is to the left.
The notation (ident := term) for arguments is used for making explicit the value of implicit arguments (see Sec-

tion Explicit applications).

12 Chapter 2. Specification language
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Assumptions

Assumptions extend the global environment with axioms, parameters, hypotheses or variables. An assumption binds an
identtoa type. Itis accepted by Coq only if type is a correct type in the global environment before the declaration
and if ident was not previously defined in the same module. This type is considered to be the type (or specification,
or statement) assumed by ident and we say that ident has type type.

?

? +
Command: assumption_token Inline ( natural ) ( assumpt ) assumpt

Axiom | Axioms
Conjecture ‘ Conjectures

assumption_token

Parameter | Parameters
Hypothesis ‘ Hypotheses
Variable | Variables

+
assumpt ::= |ident_decl | of_type
9
ident_decl ::= ident|univ_decl
of _type = [ :>]|type

These commands bind one or more ident(s) to specified t ype(s) as their specifications in the global environment.
The fact asserted by type (or, equivalently, the existence of an object of this type) is accepted as a postulate. They
accept the program attribute.

Axiom, Conjecture, Parameter and their plural forms are equivalent. They can take the 1ocal attribute,
which makes the defined idents accessible by Tmport and its variants only through their fully qualified names.

Similarly, Hypothesis, Variable and their plural forms are equivalent. Outside of a section, these are equiv-
alent to Local Parameter. Inside a section, the idents defined are only accessible within the section. When
the current section is closed, the ident(s) become undefined and every object depending on them will be explicitly
parameterized (i.e., the variables are discharged). See Section Section mechanism.

:> If specified, ident_dec1 is automatically declared as a coercion to the class of its type. See Implicit Coer-
cions.

The Inline clause is only relevant inside functors. See Module.

Example: Simple assumptions

Parameter X Y : Set.
Parameter (R : X -—> Y -> Prop) (S : Y —> X —> Prop) .
Axiom R_S_inv : forall x y, R xy <> S y x.

Error: ident already exists.

Warning: ident is declared as a local axiom
Warning generated when using Variable or its equivalent instead of Local Parameter or its equivalent.

Note: We advise using the commands Axiom, Conjecture and Hypothesis (and their plural forms) for logical
postulates (i.e. when the assertion type is of sort Prop), and to use the commands Parameter and Variable (and
their plural forms) in other cases (corresponding to the declaration of an abstract object of the given type).
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2.1.4 Definitions

Let-in definitions

5]
term_let ::= letname|: type | := term in term

+ ?
| let name |binder | |: type | := term in term
| destructuring_let

let ident := term; in term, represents the local binding of the variable ident to the value term; in
term,.

. . + - . . . . - +
let ident binder := term; in term,isanabbreviationforlet ident := fun binder =>

term; in term,.

See also:
Extensions of the 1et ... in ... syntax are described in lrrefutable patterns: the destructuring let variants.
Type cast

term_cast ::= terml0 <: type

\ terml0 «: type
\ termlO0 : type
\ terml0 >

The expression terml10 : type is a type cast expression. It enforces the type of terml0 to be type.
terml0 <: type locally sets up the virtual machine for checking that term1 0 has type type.

terml0 <<: type uses native compilation for checking that texrm1 0 has type type.

Top-level definitions

Definitions extend the global environment with associations of names to terms. A definition can be seen as a way to give
a meaning to a name or as a way to abbreviate a term. In any case, the name can later be replaced at any time by its
definition.

The operation of unfolding a name into its definition is called §-conversion (see Section J-reduction). A definition is
accepted by the system if and only if the defined term is well-typed in the current context of the definition and if the
name is not already used. The name defined by the definition is called a constant and the term it refers to is its body. A
definition has a type which is the type of its body.

A formal presentation of constants and environments is given in Section 7yping rules.

Command: Definition Example ident_decl def_ body

* D) ?
def _body = |binder | |: type | :=|reduce | term
*
| binder | : type
reduce = Eval red_exprin

These commands bind term to the name ident in the global environment, provided that term is well-typed.
They can take the 1ocal attribute, which makes the defined ident accessible by Import and its variants only
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through their fully qualified names. If reduce is present then ident is bound to the result of the specified
computation on term.

These commands also support the universes (polymorphic), program (see Program Definition),
canonical, bypass_check (universes), bypass_check (guard), and using attributes.

If termis omitted, type is required and Coq enters proof mode. This can be used to define a term incrementally,
in particular by relying on the re £ ine tactic. In this case, the proof should be terminated with De £ i ned in order
to define a constant for which the computational behavior is relevant. See Entering and exiting proof mode.

The form Definition ident : type := term checks that the type of term is definitionally equal to
type, and registers ident as being of type type, and bound to value term.

*

The form Definition ident binder : type := term is equivalent to Definition
* *

ident : forall binder |, type := fun binder => term.

See also:

Opaque, Transparent, unfold.
Error: ident already exists.

Error: The term term has type type while it is expected to have type type'.

Assertions and proofs

An assertion states a proposition (or a type) for which the proof (or an inhabitant of the type) is interactively built using
tactics. Assertions cause Coq to enter proof mode (see Proof mode). Common tactics are described in the Basic proof
writing chapter. The basic assertion command is:

Command:

* *
thm token ident_decl |binder : type |with ident_decl |binder : type

thm_token ::= Theorem
| Lemma

| Fact

| Remark

| Corollary

| Proposition
| Property

After the statement is asserted, Coq needs a proof. Once a proof of type under the assumptions represented by
*

binders is given and validated, the proof is generalized into a proof of forall binder |, type and the
theorem is bound to the name ident in the global environment.

These commands accept the program attribute. See Program Lemma.

Forms using the with clause are useful for theorems that are proved by simultaneous induction over a mutually in-
ductive assumption, or that assert mutually dependent statements in some mutual co-inductive type. It is equivalent
to Fixpoint or CoFixpoint but using tactics to build the proof of the statements (or the body of the specifi-
cation, depending on the point of view). The inductive or co-inductive types on which the induction or coinduction
has to be done is assumed to be non ambiguous and is guessed by the system.

Likeina Fixpoint or CoFixpoint definition, the induction hypotheses have to be used on structurally smaller
arguments (for a F'i xpoint) or be guarded by a constructor (for a CoF'i xpoint). The verification that recursive
proof arguments are correct is done only at the time of registering the lemma in the global environment. To know if
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the use of induction hypotheses is correct at some time of the interactive development of a proof, use the command
Guarded.

This command accepts the bypass_check (universes), bypass_check (guard), and using at-
tributes.

Error: The term term has type type which should be Set, Prop or Type.

Error: ident already exists.
The name you provided is already defined. You have then to choose another name.

Error: Nested proofs are discouraged and not allowed by default.
This error probably means that you forgot to close the last "Proof.
" with "Qed." or "Defined.". If you really intended to use nested proofs,
you can do so by turning the "Nested Proofs Allowed" flag on.
You are asserting a new statement when you’re already in proof mode. This feature, called nested proofs, is
disabled by default. To activate it, turn the Nested Proofs Allowed flagon.

Proofs start with the keyword Proof. Then Coq enters the proof mode until the proof is completed. In proof mode,
the user primarily enters tactics (see Basic proof writing). The user may also enter commands to manage the proof mode
(see Proof mode).

When the proof is complete, use the Oed command so the kernel verifies the proof and adds it to the global environment.

Note:

1. Several statements can be simultaneously asserted provided the Nested Proofs Allowed flag was turned
on.

2. Not only other assertions but any command can be given while in the process of proving a given assertion. In this
case, the command is understood as if it would have been given before the statements still to be proved. Nonetheless,
this practice is discouraged and may stop working in future versions.

3. Proofs ended by Oed are declared opaque. Their content cannot be unfolded (see Performing computations), thus
realizing some form of proof-irrelevance. To be able to unfold a proof, the proof should be ended by Defined.

4. Proof is recommended but can currently be omitted. On the opposite side, Oed (or De £ ined) is mandatory to
validate a proof.

5. One can also use Admitted in place of Oed to turn the current asserted statement into an axiom and exit proof
mode.

2.1.5 Conversion rules

In CIC, there is an internal reduction mechanism. In particular, it can decide if two programs are infentionally equal (one
says convertible). Convertibility is described in this section.
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a-conversion

Two terms are a-convertible if they are syntactically equal ignoring differences in the names of variables bound within
the expression. For example forall x, x + 0 = xisa-convertible with forall y, v + 0 = y.

B-reduction

We want to be able to identify some terms as we can identify the application of a function to a given argument with its
result. For instance the identity function over a given type 7" can be written Az : 7. z. In any global environment £ and
local context I', we want to identify any object a (of type T') with the application ((Az : T. x) a). We define for this a
reduction (or a conversion) rule we call 3:

ETE(Az:T.t)u) >g t{x/u}

We say that ¢t{x/u} is the S-contraction of ((Ax : T.t) u) and, conversely, that ((A\z : T'. ¢) u) is the S-expansion of
According to B-reduction, terms of the Calculus of Inductive Constructions enjoy some fundamental properties such as

confluence, strong normalization, subject reduction. These results are theoretically of great importance but we will not
detail them here and refer the interested reader to [[Coq85]].

t-reduction

A specific conversion rule is associated with the inductive objects in the global environment. We shall give later on (see
Section Well-formed inductive definitions) the precise rules but it just says that a destructor applied to an object built
from a constructor behaves as expected. This reduction is called i-reduction and is more precisely studied in [[PM93a],
[Wer94]].

O-reduction

We may have variables defined in local contexts or constants defined in the global environment. It is legal to identify such
a reference with its value, that is to expand (or unfold) it into its value. This reduction is called 8-reduction and shows as
follows.

Delta-Local

WF (E)[T) (x:=t:T)el
EDFz >, ¢t

Delta-Global

WF(E)[T) (c:i=t:T)eFE
ETFec > t

C-reduction

Coq allows also to remove local definitions occurring in terms by replacing the defined variable by its value. The declaration
being destroyed, this reduction differs from &-reduction. It is called C-reduction and shows as follows.

Zeta

WF(E)[T] ElFu:U El = (x:=u:U)|Ft:T
EllFletr:=u:Uint >, t{z/u}

2.1. Core language 17



The Coq Reference Manual, Release 8.13.2

n-expansion

Another important concept is n-expansion. It is legal to identify any term ¢ of functional type Va : T', U with its so-called
1-expansion

Az T. (tx)

for x an arbitrary variable name fresh in ¢.

Note: We deliberately do not define n-reduction:

Ae T (tx) B, t

This is because, in general, the type of ¢ need not to be convertible to the type of Az : T'. (¢ x). E.g., if we take f such
that:

f: Vo :Type(2), Type(l)
then
Az : Type(l). (fz) : Va: Type(l), Type(l)
We could not allow
Az : Type(l). (f z) D>, f

because the type of the reduced term Vx : Type(2), Type(1) would not be convertible to the type of the original term
Vo : Type(1), Type(1).

Proof Irrelevance

It is legal to identify any two terms whose common type is a strict proposition A : SProp. Terms in a strict propositions
are therefore called irrelevant.

Convertibility
Let us write E[I'] F ¢ [> u for the contextual closure of the relation ¢ reduces to u in the global environment F and local
context I' with one of the previous reductions 3, d, v or T.

We say that two terms ¢, and ¢, are SSt{n-convertible, or simply convertible, or definitionally equal, in the global environ-
ment F and local context I iff there exist terms w, and u, such that E['] ¢, [>...[>u; and E[['] - ¢, [> ... > u, and
either u; and u, are identical up to irrelevant subterms, or they are convertible up to n-expansion, i.e. uq is Az : T. u]
and u,x is recursively convertible to w7, or, symmetrically, u, is Az : T'. u} and u, x is recursively convertible to us,. We
then write E[I'] -1 =45,¢, to-

Apart from this we consider two instances of polymorphic and cumulative (see Chapter Polymorphic Universes) inductive
types (see below) convertible

B[]+ tw,y..w,, =gs,c, t w)...w
if we have subtypings (see below) in both directions, i.e.,

B Ftwy.wy, <gseptw)..w
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and

E[lF tw)..w), <gsucn t Wy Wy,
Furthermore, we consider

BT F cvy.v,, =gscn € V107,
convertible if

E[F] - V4 —Béu¢n U;

and we have that ¢ and ¢’ are the same constructors of different instances of the same inductive types (differing only in

universe levels) such that

E[l)F cvy..v,, s twy..w

m

and

EF ¢ vi.wp, st wi..w),

and we have

/

Bl Ftwy.w,, =gs,cp t W) wy,.

The convertibility relation allows introducing a new typing rule which says that two convertible well-formed types have
the same inhabitants.

2.1.6 Typing rules

The underlying formal language of Coq is a Calculus of Inductive Constructions (CIC) whose inference rules are presented
in this chapter. The history of this formalism as well as pointers to related work are provided in a separate chapter; see
Credits.

The terms

The expressions of the CIC are ferms and all terms have a type. There are types for functions (or programs), there are
atomic types (especially datatypes)... but also types for proofs and types for the types themselves. Especially, any object
handled in the formalism must belong to a type. For instance, universal quantification is relative to a type and takes the
form “for all x of type T', P”. The expression “z of type T” is written “x : T”. Informally, “x : T can be thought as “x
belongs to T".

Terms are built from sorts, variables, constants, abstractions, applications, local definitions, and products. From a syntactic
point of view, types cannot be distinguished from terms, except that they cannot start by an abstraction or a constructor.
More precisely the language of the Calculus of Inductive Constructions is built from the following rules.

1. the sorts SProp, Prop, Set, Type(i) are terms.

2. variables, hereafter ranged over by letters x, y, etc., are terms
3. constants, hereafter ranged over by letters c, d, etc., are terms.
4

. if x is a variable and T, U are terms then Vz : T', U (forall x:T, U in Coq concrete syntax) is a term. If
x occurs in U, Vx : T, U reads as “for all x of type T', U”. As U depends on x, one says that Vz : T', U is a
dependent product. If x does not occur in U then Vz : T, U reads as “if T' then U”. A non dependent product can
be written: 7" — U.
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5. if z is a variable and T, u are terms then Az : T'. uw (fun x:T => u in Coq concrete syntax) is a term. This is
a notation for the A-abstraction of A-calculus [[Bar81]]. The term Ax : T'. u is a function which maps elements of
T to the expression u.

6. if t and u are terms then (¢ u) is a term (t u in Coq concrete syntax). The term (¢ u) reads as “¢ applied to u”.

7. if x is a variable, and ¢, T and u are terms then let z := ¢ : T in w is a term which denotes the term © where the
variable x is locally bound to ¢ of type T'. This stands for the common “let-in” construction of functional programs
such as ML or Scheme.

Free variables. The notion of free variables is defined as usual. In the expressions Az : 7. U and Vx : T, U the
occurrences of « in U are bound.

Substitution. The notion of substituting a term ¢ to free occurrences of a variable x in a term wu is defined as usual. The
resulting term is written u{x/t}.

The logical vs programming readings. The constructions of the CIC can be used to express both logical and program-
ming notions, accordingly to the Curry-Howard correspondence between proofs and programs, and between propositions
and types [[CFC58], [dB72], [How80]].

For instance, let us assume that nat is the type of natural numbers with zero element written O and that True is the always
true proposition. Then — is used both to denote nat — nat which is the type of functions from nat to nat, to denote
True—True which is an implicative proposition, to denote nat — Prop which is the type of unary predicates over the
natural numbers, etc.

Let us assume that mult is a function of type nat — nat — nat and egnat a predicate of type nat — nat — Prop.
The A-abstraction can serve to build “ordinary” functions as in Az : nat. (mult z «) (i.e. fun x:nat => mult x
x in Coq notation) but may build also predicates over the natural numbers. For instance Az : nat. (egnat z 0) (i.e. fun
x:nat => egnat x 0 in Coq notation) will represent the predicate of one variable  which asserts the equality of
2 with 0. This predicate has type nat — Prop and it can be applied to any expression of type nat, say ¢, to give an object
P t of type Prop, namely a proposition.

Furthermore forall x:nat, P x will represent the type of functions which associate with each natural number n
an object of type (P n) and consequently represent the type of proofs of the formula “Vz. P(x)”.

Typing rules

As objects of type theory, terms are subjected to type discipline. The well typing of a term depends on a local context and
a global environment.

Local context. A [ocal context is an ordered list of declarations of variables. The declaration of a variable x is either an
assumption, written x : T (where T is a type) or a definition, written x := t : T'. Local contexts are written in brackets,
for example [z : T'; y := w : U; z: V]. The variables declared in a local context must be distinct. If I" is a local context
that declares z, we write x € I'. Writing (z : T') € T means there is an assumption or a definition giving the type T to x
inT. If T defines © := ¢ : T, we also write (x :=t : T') € I". For the rest of the chapter, I :: (y : T') denotes the local
context I" enriched with the local assumption y : 7. Similarly, I' :: (y := ¢ : T') denotes the local context I" enriched with
the local definition (y := ¢ : T'). The notation [] denotes the empty local context. Writing I';; T', means concatenation of
the local context I'; and the local context I',.

Global environment. A global environment is an ordered list of declarations. Global declarations are either assumptions,
definitions or declarations of inductive objects. Inductive objects declare both constructors and inductive or coinductive
types (see Section Theory of inductive definitions).

In the global environment, assumptions are written as (c : T'), indicating that ¢ is of the type T'. Definitions are written as
c :=t : T, indicating that c has the value ¢ and type 1. We shall call such names constants. For the rest of the chapter,
the E; ¢ : T denotes the global environment F enriched with the assumption ¢ : T". Similarly, E; ¢ := t : T denotes
the global environment E enriched with the definition (¢ := ¢ : T').
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The rules for inductive definitions (see Section Theory of inductive definitions) have to be considered as assumption rules
in which the following definitions apply: if the name c is declared in E, we write c € Eandif ¢ : T orc:=1t: T'is
declared in E, we write (¢ : T') € E.

Typing rules. In the following, we define simultaneously two judgments. The first one E[['] - ¢ : T means the term ¢
is well-typed and has type T in the global environment F and local context I'. The second judgment W.F (E)[T'] means
that the global environment F is well-formed and the local context I' is a valid local context in this global environment.

A term ¢ is well typed in a global environment E iff there exists a local context I' and a term 7" such that the judgment
E[T| F t: T can be derived from the following rules.

W-Empty
wz (Dl

W-Local-Assum

ElFT:s sES z ¢l
WF(E)T = (2 T)]

W-Local-Def

E[)Ft:T e ¢T
WF(E)[L :: (x:=1t:T))

W-Global-Assum

E+-T:s seS c¢t E
WF(E; c¢:T)[]
W-Global-Def
E[Ft:T c¢E

WF(E; c:i=1t:T)|

Ax-SProp
W7 (E)[T]
E[I'l + SProp : Type(1)
Ax-Prop
W7 (E)[I]
E[l] + Prop : Type(1)
Ax-Set
W7 (E)[I]
E[l'|+ Set: Type(1)
Ax-Type

W7 (E)[T]
E[l] F Type(i) : Type(i + 1)

2.1. Core language 21



The Coq Reference Manual, Release 8.13.2

Var
WF(E)[I) (z:T)eT or (x:=t:T) €T forsomet
ElkFa:T
Const
WF (E)[T (c:T)eFE or (c:=t:T) € E for some t
ElFc:T
Prod-SProp
El|FT:s ses E[l :: (z:T) - U : SProp
Ell-VYaz:T,U : SProp
Prod-Prop
ElET:s seS El: (z:T)FU:Prop
ETlkFVx:T, U : Prop
Prod-Set
ElFT:s s € {SProp, Prop, Set} E[l: (z:T)FU : Set
E[]FVz: T, U : Set
Prod-Type
ET|FT:s s € {SProp, Type(i)} El: (x:T))FU: Type(i)
E[l|-Vx:T, U : Type(i)
Lam
El|F-Vz:T,U:s El:(z:T)Ft:U
ElkXe:T.t:Ve: T, U
App
El)+t:Vz:U, T ElFu:U
ElF (tu): T{z/u}
Let

ElkFt:T El:=(z:=t:T)Fu:U
ElkFletz:=¢t:Tinw: U{z/t}

Note: Prod-Prop and Prod-Set typing-rules make sense if we consider the semantic difference between Prop and Set:
« All values of a type that has a sort Set are extractable.

* No values of a type that has a sort Prop are extractable.

Note: We may have let z := ¢ : T in u well-typed without having ((Az : T'. u) t) well-typed (where T is a type of t).
This is because the value ¢ associated with x may be used in a conversion rule (see Section Conversion rules).
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Subtyping rules

At the moment, we did not take into account one rule between universes which says that any term in a universe of index
1 1s also a term in the universe of index ¢ + 1 (this is the cumulativity rule of CIC). This property extends the equivalence
relation of convertibility into a subtyping relation inductively defined by:

1. if E[F] Ft :ﬁ‘SLCTI u then E[F} Ht Sﬁ5LCTI u,

2. if ¢ < jthen E[I'] + Type(i) <Bsutn Type(4),
3. forany i, E[I'] - Set <g;,,, Type(i),
4

. E[I'] = Prop <gs,, Set, hence, by transitivity, E[I'] - Prop <g; ., Type(i), for any i (note: SProp is not
related by cumulativity to any other term)

if B[T] - T =p5,c, Uand BT = (z: T)] - T' <y, U’ then E[T] - Ve : T, T’ <5,y Y : U, U’

e

6. if Ind [p] (T'; := T') is a universe polymorphic and cumulative (see Chapter Polymorphic Universes) inductive
type (see below) and (¢ : VI'p, VI'y,,(y),S) € Ipand (¢ : VI'p, VI, ), S7) € I'; are two different instances of
the same inductive type (differing only in universe levels) with constructors

[cy : VT'p, VT ;..T, EVy eV s O VD VT g T, t Vg 1V ]

lngo
and
. ’ / / 7o 7. R ’ / / 7 ’
[ey s VIR, VT 1Ty s U 0] gV s s € 2 VDR, VT T s U 0 g ]

respectively then

E[F] l_ t wl...wm £55LC77 t/ wll...w;n
(notice that ¢ and ¢’ are both fully applied, i.e., they have a sort as a type) if
E[F] l_ w; =B6uCn ’U);

for 1 < ¢ < m and we have

E[ITF T <gsicn T
and
where I'y,,.p) = [aq = Ay; o; ap = Aj] and F;wm =lay: Al; .5 ap: A
The conversion rule up to subtyping is now exactly:
Conv
ElFU:s Elkt:T E+T <goien U
ElF-t:U

Normal form. A term which cannot be any more reduced is said to be in normal form. There are several ways (or
strategies) to apply the reduction rules. Among them, we have to mention the head reduction which will play an important
role (see Chapter Tactics). Any term ¢ can be written as Az, : T}. ... Az, : T}. (¢, t;...t,,) where  is not an application.
We say then that ¢, is the head of t. If we assume that ¢, is Ax : T'. u, then one step of $-head reduction of ¢ is:

Axq Ty ey Ty (A s Toug tyoty,) D> My 2 Th) (2, 2 Ty). (ug{a/ty )ty t,,)
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Iterating the process of head reduction until the head of the reduced term is no more an abstraction leads to the 3-head
normal form of t:

t> .. DAz Ty Ay T (vug..uy,)

where v is not an abstraction (nor an application). Note that the head normal form must not be confused with the normal
form since some u,; can be reducible. Similar notions of head-normal forms involving d, t and € reductions or any
combination of those can also be defined.

Admissible rules for global environments

From the original rules of the type system, one can show the admissibility of rules which change the local context of defi-
nition of objects in the global environment. We show here the admissible rules that are used in the discharge mechanism
at the end of a section.

Abstraction. One can modify a global declaration by generalizing it over a previously assumed constant c¢. For doing
that, we need to modify the reference to the global declaration in the subsequent global environment and local context by
explicitly applying this constant to the constant c.

Below, if T' is a context of the form [y, : A;; .5 v, : A,], we write Vo : U, I'{c/x} to mean

ly, : Yo : U, A{c/z}; .5y, + VYo : U, A, {c/z}] and E{|T|/|T'|c} to mean the parallel substitution
E{yr/(y1 &)} AYn/(Yn ) }-

First abstracting property:
WF(E; ¢:U; E'; ¢/ :=1:T; E")[T]
WF(E; ¢c:U; E'; ¢/ :=X e : U.t{c/x}:Vz : U, T{c/x}; E"{c’/(c' c)}[T{c /(¢ ¢)}]
WF(E; ¢:U; E'; ¢/ : Ty E”)[I
WF(E; c:U; E'; ¢ : Vo : U, T{c/z}; E"{c'/(c’ e)}[T{c' /(¢ ¢)}]
WF(E; ¢:U; E'; Ind [p] (T} := Ty); E”)[T)
(B; ¢:U; B Ind [p+1] (Vo - U, T'{e/a} = Va: U, Dele/a}); E'{|T;Tcl/[TpTele})
[T{IT1; Tel/ T Teled]
One can similarly modify a global declaration by generalizing it over a previously defined constant c. Below, if I' is a
context of the form [y, : Ay; ...; y,, : A,,], we write I'{c/u} to mean [y, : A;{c/u}; ...; vy, : A,{c/u}].

W

Second abstracting property:

WF(E; c:=u:U; E'; ¢ :=t:T; E”)[I]

WF(E; c:=u:U; E; ¢ :=(lete:=u:Uint{c/x}) : T{c/u}; E”)[T]
WF(E; c:i=u:U; E'; ¢ : T; E")[T)
WF(E; c:=u:U; E'; ¢ : T{c/u}; E")[T]
WF(E; c:=u:U; E'; Ind [p](T; := T'y); E”)[T]
WF(E; ¢c:=w:U; E; Ind [p] (T'{c/u} := T{c/u}); E”)[I]

Pruning the local context. If one abstracts or substitutes constants with the above rules then it may happen that some

declared or defined constant does not occur any more in the subsequent global environment and in the local context. One
can consequently derive the following property.

First pruning property:

WF(E; c:U; E')[I] ¢ does not occur in E” and T’
W7 (E; E')[T]
Second pruning property:
WF(E; c:=wu:U; E')[I] c does not occur in E” and I'
W7 (E; E')[T]
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The Calculus of Inductive Constructions with impredicative Set

Coq can be used as a type checker for the Calculus of Inductive Constructions with an impredicative sort Set by using
the compiler option ~impredicative-set. For example, using the ordinary cogt op command, the following is
rejected,

Example

Fail Definition id: Set := forall X:Set, X—>X.
The command has indeed failed with message:
The term "forall X : Set, X —-> X" has type "Type"
while it is expected to have type "Set"
(universe inconsistency: Cannot enforce Set+l <= Set).

while it will type check, if one uses instead the cogtop —impredicative-set option..

The major change in the theory concerns the rule for product formation in the sort Set, which is extended to a domain in
any sort:

ProdImp

ElFT:s ses El':(x:T)|FU: Set
ET|FVa:T, U Set

This extension has consequences on the inductive definitions which are allowed. In the impredicative system, one can
build so-called large inductive definitions like the example of second-order existential quantifier (exSet).

There should be restrictions on the eliminations which can be performed on such definitions. The elimination rules in the
impredicative system for sort Set become:

Setl
s € {Prop, Set}
[T : Set|] — 3]
Set2
I is a small inductive definition s € {Type(i)}
[I: Set|I — 5]

2.1.7 Variants and the match construct

Variants

*
Command: Variant variant definition with variant_definition

P
* * D) 92

variant_definition ::= ident_decl|binder || binder s type T :=|'| |constructor |

5]
decl_notations

The Variant command is similar to the Tnduct i ve command, except that it disallows recursive definition of
types (for instance, lists cannot be defined using Variant). No induction scheme is generated for this variant,
unless the Nonrecursive Elimination Schemes flagis on.
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This command supports the universes (polymorphic), universes (template),
universes (cumulative),and private (matching) attributes.

Error: The natural th argument of ident must be ident in type.

Private (matching) inductive types

Attribute: private (matching)
This attribute can be used to forbid the use of the mat ch construct on objects of this inductive type outside of the
module where it is defined. There is also a legacy syntax using the Private prefix (cf. legacy_attr).

The main use case of private (matching) inductive types is to emulate quotient types / higher-order inductive types
in projects such as the HoTT library'?.

Example

Module Foo.
Interactive Module Foo started

#[ private (matching) ] Inductive my_nat := my_O : my_nat | my_S : my_nat -> my_nat.
my_nat is defined

Check (fun x : my_nat => match x with my_O => true | my_S _ => false end).
fun x : my_nat => match x with
| my_O => true
| my_S _ => false
end
my_nat -> bool

End Foo.
Module Foo is defined

Import Foo.

Fail Check (fun x : my_nat => match x with my_O => true | my_S _ => false end).
The command has indeed failed with message:
case analysis on a private type.

Definition by cases: match

Objects of inductive types can be destructured by a case-analysis construction called pattern matching expression. A
pattern matching expression is used to analyze the structure of an inductive object and to apply specific treatments ac-
cordingly.

12 https://github.com/HoTT/HoTT
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+ ? ? *
term_match ::= match |case_item return terml00 | with || eqn I end
s
? 2
case_item ::= terml00|as name | |in pattern
+
+
eqn = pattern => ferm
b
I
pattern ::= patternl0 : term
patternl(
patternl ::= patternl as name
*
| patternl |patternl
*
| @ qualid | patternl
patternl ::= pattern0 % scope_key
| pattern0
pattern( ::=  qualid
*
| {l\ qualid := pattern | |}
| -
+
| (|pattern | )
| number
| string
Note that the pattern ::= patternl0 : term production is not supported in match patterns. Trying to use

it will give this error:
Error: Casts are not supported in this pattern.

This paragraph describes the basic form of pattern matching. See Section Multiple and nested pattern matching and
Chapter Extended pattern matching for the description of the general form. The basic form of pattern matching is char-

acterized by a single case_ item expression, an egn restricted to a single pattern and pattern restricted to the
*
form qualid |ident

_ ? +
The expression match term return terml00 with |pattern; => term; I end denotes a pattern

matching over the term texrm (expected to be of an inductive type I). The term; are the branches of the pattern matching
expression. Each pattern; has the form qualid ident where qualid must denote a constructor. There should
be exactly one branch for every constructor of I.

The return terml00 clause gives the type returned by the whole match expression. There are several cases. In
the non dependent case, all branches have the same type, and the return terml00 specifies that type. In this case,
return termlO00 can usually be omitted as it can be inferred from the type of the branches'.

In the dependent case, there are three subcases. In the first subcase, the type in each branch may depend on the exact value
being matched in the branch. In this case, the whole pattern matching itself depends on the term being matched. This
dependency of the term being matched in the return type is expressed with an ident clause where ident is dependent
in the return type. For instance, in the following example:

Inductive bool : Type := true : bool | false : bool.
Inductive eq (A:Type) (x:A) : A —-> Prop := eqg_refl : eqg A x Xx.
Inductive or (A:Prop) (B:Prop) : Prop :=

| or_introl : A -> or A B
| or_intror : B -> or A B.

(continues on next page)

! Except if the inductive type is empty in which case there is no equation that can be used to infer the return type.
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(continued from previous page)
Definition bool_case (b:bool) : or (eq bool b true) (eq bool b false) :=
match b as x return or (eqg bool x true) (eq bool x false) with
| true => or_introl (eqg bool true true) (eq bool true false) (eg_refl bool true)
| false => or_intror (eq bool false true) (eq bool false false) (eg_refl bool false)
end.

the branches have respective types "or (eq bool true true) (eq bool true false)” and "or (eq
bool false true) (eqg bool false false)” while the whole pattern matching expression has type “or
(eq bool b true) (eq bool b false)”, the identifier b being used to represent the dependency.

Note: When the term being matched is a variable, the as clause can be omitted and the term being matched can serve
itself as binding name in the return type. For instance, the following alternative definition is accepted and has the same
meaning as the previous one.

Definition bool_case (b:bool) : or (eq bool b true) (eq bool b false) :=

match b return or (eq bool b true) (eqg bool b false) with

| true => or_introl (eqg bool true true) (eqg bool true false) (eq_refl bool true)

| false => or_intror (eq bool false true) (eq bool false false) (eqgq_refl bool false)
end.

The second subcase is only relevant for annotated inductive types such as the equality predicate (see Section Equality), the
order predicate on natural numbers or the type of lists of a given length (see Section Matching objects of dependent types).
In this configuration, the type of each branch can depend on the type dependencies specific to the branch and the whole
pattern matching expression has a type determined by the specific dependencies in the type of the term being matched.
This dependency of the return type in the annotations of the inductive type is expressed with a clause in the form in

+

+
qualid pattern |, where

e qualid is the inductive type of the term being matched;
* the holes _ match the parameters of the inductive type: the return type is not dependent on them.
» each pattern matches the annotations of the inductive type: the return type is dependent on them

* in the basic case which we describe below, each pattern is a name ident; see Patterns in in for the general
case

For instance, in the following example:

Definition eqg_sym (A:Type) (x y:A) (Hitegq A xy) : egA Yy X :=
match H in eq _ _ z return eq A z x with

| eq_refl _ _ => eq_refl A x

end.

the type of the branchis eq A x x because the third argument of eq is x in the type of the pattern eq_refl. On the
contrary, the type of the whole pattern matching expression has type eq A y x because the third argument of eq is y
in the type of H. This dependency of the case analysis in the third argument of eq is expressed by the identifier z in the
return type.

Finally, the third subcase is a combination of the first and second subcase. In particular, it only applies to pattern matching
on terms in a type with annotations. For this third subcase, both the clauses as and in are available.

There are specific notations for case analysis on types with one or two constructors: 1f .. then .. else ..and let
(wy..) = .. in .. (see Sections Pattern-matching on boolean values: the if expression and Irrefutable patterns: the
destructuring let variants).
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2.1.8 Record types

The Record construction is a macro allowing the definition of records as is done in many programming languages. Its
syntax is described in the grammar below. In fact, the Re cord macro is more general than the usual record types, since
it allows also for “manifest” expressions. In this sense, the Record construction allows defining “signatures”.

*
Command: Record | Structure record definition with record definition

? * ? ? *| 9
> 7 ident_decl | binder : sort | |:=|ident | {|record_field 1 [; i}
b

record_definition

*

= ? ? ?
record_field = |# attribute , 1 | name| field_body | natural decl_notations
*
field_body ::= |binder | of_type

*

| binder | of _type := term
*

| binder | := term

{1 [ field_def * )|

field_def ::= qualid|binder | := term

term_record

Each record _definition defines a record named by ident_decl. The constructor name is given by
ident. If the constructor name is not specified, then the default name Build_ident is used, where ident is
the record name.

If sort is omitted, the default sort is Type. Notice that the type of an identifier can depend on a previously-given
identifier. Thus the order of the fields is important. bindexr parameters may be applied to the record as a whole
or to individual fields.

?
> [ If provided, the constructor name is automatically declared as a coercion from the class of the last field type
to the record name (this may fail if the uniform inheritance condition is not satisfied). See Implicit Coercions.

Notations can be attached to fields using the dec1_notations annotation.
Recordand Structure are synonyms.

This command supports the universes (polymorphic), universes (template),
universes (cumulative),and private (matching) attributes.

More generally, a record may have explicitly defined (a.k.a.  manifest) fields.  For instance, we might
*

have: Record ident |binder : sort := { ident; : type; ; ident, := term, ; ident;
type; }. in which case the correctness of type; may rely on the instance term, of ident, and term, may in
turn depend on ident;.

Example

The set of rational numbers may be defined as:

Record Rat : Set := mkRat
{ sign : bool
; top : nat
; bottom : nat
; Rat_bottom_cond : 0 <> bottom
; Rat_irred_cond
(continues on next page)
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(continued from previous page)

forall x y z:nat, (x * y) = top /\ (x * z) = bottom -> x = 1

Rat is defined

sign is defined

top is defined

bottom is defined
Rat_bottom_cond is defined
Rat_irred_cond is defined

Note here that the fields Rat_bottom_cond depends on the field bot t om and Rat_irred_cond depends on both
top and bottom.

Let us now see the work done by the Record macro. First the macro generates a variant type definition with just one
* *
constructor: Variant ident binder : sort := ident, |binder

To build an object of type ident, provide the constructor ident , with the appropriate number of terms filling the fields
of the record.

Example

Let us define the rational 1/2:

Theorem one_two_irred : forall x y z:nat, x * y =1 /\ x * z =2 -> x = 1.
Admitted.

Definition half := mkRat true 1 2 (O_S 1) one_two_irred.

Check half.

Alternatively, the following syntax allows creating objects by using named fields, as shown in this grammar. The fields do
not have to be in any particular order, nor do they have to be all present if the missing ones can be inferred or prompted
for (see Program).

Definition half' :=

{| sign := true;
Rat_bottom_cond := 0O_S 1;
Rat_irred_cond := one_two_irred |}.

half' is defined

The following settings let you control the display format for types:

Flag: Printing Records
If set, use the record syntax (shown above) as the default display format.

You can override the display format for specified types by adding entries to these tables:

Table: Printing Record qualid
Specifies a set of qualids which are displayed as records. Use the Add and Remove commands to update the set
of qualids.

Table: Printing Constructor qualid
Specifies a set of qualids which are displayed as constructors. Use the Add and Remove commands to update the
set of qualids.

This syntax can also be used for pattern matching.
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Eval compute in (
match half with
| {|] sign := true; top :=n |} =>n
| =>0
end) .
=1
nat

The macro generates also, when it is possible, the projection functions for destructuring an object of type i dent. These
projection functions are given the names of the corresponding fields. If a field is named _ then no projection is built for
it. In our example:

Eval compute in top half.
=1
nat

Eval compute in bottom half.
=2
nat

Eval compute in Rat_bottom_cond half.
= 0_S 1
0 <> bottom half

An alternative syntax for projections based on a dot notation is available:

Eval compute in half. (top) .
=1
nat

Flag: Printing Projections
This flag activates the dot notation for printing.

Example

Set Printing Projections.
Check top half.

half. (top)
: nat
*
term_projection ::= term0 .( qualid |[arg )

*
| term0 .( @ qualid |terml | )
Syntax of Record projections
The corresponding grammar rules are given in the preceding grammar. When qua 11 d denotes a projection, the syntax

term0. (qualid) isequivalentto qualid termo,thesyntax term0. (qualid |arg + ) toqualid [arg *

+ +
termO. and the syntax term0. (@Qqualid term0O | ) to @Qgqualid |termO termO. In each case, term0
is the object projected and the other arguments are the parameters of the inductive type.

Note: Records defined with the Record keyword are not allowed to be recursive (references to the record’s name in
the type of its field raises an error). To define recursive records, one can use the Inductive and CoInductive
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keywords, resulting in an inductive or co-inductive record. Definition of mutually inductive or co-inductive records are
also allowed, as long as all of the types in the block are records.

Note: Induction schemes are automatically generated for inductive records. Automatic generation of induction
schemes for non-recursive records defined with the Record keyword can be activated with the Nonrecursive
Elimination Schemes flag (see Generation of induction principles with Scheme).

Warning: ident cannot be defined.
It can happen that the definition of a projection is impossible. This message is followed by an explanation of this
impossibility. There may be three reasons:

1. The name ident already exists in the global environment (see Ax i om).
2. The body of ident uses an incorrect elimination for i dent (see F'ixpoint and Destructors).
3. The type of the projections i dent depends on previous projections which themselves could not be defined.

Error:

Records declared with the keyword Record or Structure cannot be recursive.
The record name ident appears in the type of its fields, but uses the keyword Record. Use the keyword
Inductive or CoInductive instead.

Error: Cannot handle mutually (co)inductive records.
Records cannot be defined as part of mutually inductive (or co-inductive) definitions, whether with records only or
mixed with standard definitions.

During the definition of the one-constructor inductive definition, all the errors of inductive definitions, as described in
Section Inductive types, may also occur.

See also:

Coercions and records in section Classes as Records of the chapter devoted to coercions.

Primitive Projections

Flag: Primitive Projections

Turns on the use of primitive projections when defining subsequent records (even through the Inductive and
CoInductive commands). Primitive projections extended the Calculus of Inductive Constructions with a new
binary term constructor r. (p) representing a primitive projection p applied to a record object r (i.e., primitive
projections are always applied). Even if the record type has parameters, these do not appear in the internal represen-
tation of applications of the projection, considerably reducing the sizes of terms when manipulating parameterized
records and type checking time. On the user level, primitive projections can be used as a replacement for the usual
defined ones, although there are a few notable differences.

Flag: Printing Primitive Projection Parameters
This compatibility flag reconstructs internally omitted parameters at printing time (even though they are absent in
the actual AST manipulated by the kernel).
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Primitive Record Types

Whenthe Primitive Projectionsflagison, definitions of record types change meaning. When a type is declared
with primitive projections, its match construct is disabled (see Primitive Projections though). To eliminate the (co-
)inductive type, one must use its defined primitive projections.

For compatibility, the parameters still appear to the user when printing terms even though they are absent in the ac-
tual AST manipulated by the kernel. This can be changed by unsetting the Printing Primitive Projection
Parameters flag.

There are currently two ways to introduce primitive records types:

1. Through the Record command, in which case the type has to be non-recursive. The defined type enjoys eta-
conversion definitionally, that is the generalized form of surjective pairing for records: r = Build_R (r. (p;)
..r. (p,)) . Eta-conversion allows to define dependent elimination for these types as well.

2. Through the Inductive and CoInductive commands, when the body of the definition is a record declaration
of the form Build_R{p; : ty; .. ; P, : t, }.Inthiscase the types can be recursive and eta-conversion is
disallowed. These kind of record types differ from their traditional versions in the sense that dependent elimination
is not available for them and only non-dependent case analysis can be defined.

Reduction

The basic reduction rule of a primitive projection is p; (Build_R t; ... t,) —, t,. However, to take the ¢ flag
into account, projections can be in two states: folded or unfolded. An unfolded primitive projection application obeys
the rule above, while the folded version delta-reduces to the unfolded version. This allows to precisely mimic the usual
unfolding rules of constants. Projections obey the usual simp1l flags of the Argument s command in particular. There
is currently no way to input unfolded primitive projections at the user-level, and there is no way to display unfolded
projections differently from folded ones.

Compatibility Projections and match

To ease compatibility with ordinary record types, each primitive projection is also defined as a ordinary constant taking
parameters and an object of the record type as arguments, and whose body is an application of the unfolded primitive
projection of the same name. These constants are used when elaborating partial applications of the projection. One
can distinguish them from applications of the primitive projection if the Printing Primitive Projection
Parameters flag is off: For a primitive projection application, parameters are printed as underscores while for the
compatibility projections they are printed as usual.

Additionally, user-written mat ch constructs on primitive records are desugared into substitution of the projections, they
cannot be printed back as mat ch constructs.

2.1.9 Inductive types and recursive functions

Inductive types

*
Command: Inductive inductive definition with inductive definition
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? ? * * ?
inductive_definition = |> | ident|cumul_univ_decl | |binder | || binder : type
¥
? ?
:= | constructors_or_record decl_notations

9

constructors_or_record ::= || constructorI

? & 9
| ident | {|record_field 1_[; "}

* 9

ident | binder | |of _type |

constructor

This command defines one or more inductive types and its constructors. Coq generates destructors depending on
the universe that the inductive type belongs to.

The destructors are named ident_rect, ident_ind, ident_rec and ident_sind, which respectively
correspond to elimination principles on Type, Prop, Set and SProp. The type of the destructors expresses
structural induction/recursion principles over objects of type ident. The constant ident_ind is always gen-
erated, whereas ident_rec and ident_rect may be impossible to derive (for example, when ident is a
proposition).

This command supports the universes (polymorphic), universes (template),
universes (cumulative), bypass_check (positivity), bypass_check (universes),
and private (matching) attributes.

Mutually inductive types can be defined by including multiple inductive definitions. The idents are
simultaneously added to the global environment before the types of constructors are checked. Each ident can be
used independently thereafter. See Mutually defined inductive types.

If the entire inductive definition is parameterized with binders, the parameters correspond to a local context in
which the entire set of inductive declarations is interpreted. For this reason, the parameters must be strictly the
same for each inductive type. See Parameterized inductive types.

Constructor idents can come with binders, in which case the actual type of the constructor is forall
*

binder |, type.

Error: Non strictly positive occurrence of ident in type.
The types of the constructors have to satisfy a positivity condition (see Section Positivity Condition). This
condition ensures the soundness of the inductive definition. Positivity checking can be disabled using the
Positivity Checking flagorthe bypass_check (positivity) attribute (see Controlling Typ-
ing Flags).

Error: The conclusion of type is not valid; it must be built from ident.
The conclusion of the type of the constructors must be the inductive type ident being defined (or ident
applied to arguments in the case of annotated inductive types — cf. next section).

The following subsections show examples of simple inductive types, simple annotated inductive types, simple parametric
inductive types, mutually inductive types and private (matching) inductive types.
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Simple inductive types

A simple inductive type belongs to a universe that is a simple sort.

Example

The set of natural numbers is defined as:

Inductive nat : Set :=

| O : nat

| S : nat —-> nat.
nat is defined
nat_rect is defined
nat_ind is defined
nat_rec is defined
nat_sind is defined

The type nat is defined as the least Set containing O and closed by the S constructor. The names nat, O and S are added
to the global environment.

This definition generates four elimination principles: nat_rect, nat_ind, nat_rec and nat_sind. The type of
nat_indis:

Check nat_ind.
nat_ind
forall P : nat —-> Prop,
P O -> (forall n : nat, Pn -> P (S n)) —> forall n : nat, P n

This is the well known structural induction principle over natural numbers, i.e. the second-order form of Peano’s induction
principle. It allows proving universal properties of natural numbers (forall n:nat, P n) by inductionon n.

The types of nat_rect, nat_rec and nat_sind are similar, except that they apply to, respectively,
(P:nat->Type), (P:nat->Set) and (P:nat->SProp). They correspond to primitive induction principles
(allowing dependent types) respectively over sorts * Type, Set and SProp.

In the case where inductive types don’t have annotations (the next section gives an example of annotations), a constructor
can be defined by giving the type of its arguments alone.

Example

Inductive nat : Set := O | S (_:nat).

Simple annotated inductive types

In annotated inductive types, the universe where the inductive type is defined is no longer a simple sort, but what is
called an arity, which is a type whose conclusion is a sort.

Example

As an example of annotated inductive types, let us define the even predicate:
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Inductive even : nat -> Prop :=

| even_0 : even O

| even_SS : forall n:nat, even n —-> even (S (S n)).
even is defined
even_ind is defined
even_sind is defined

The type nat—>Prop means that even is a unary predicate (inductively defined) over natural numbers. The type of its
two constructors are the defining clauses of the predicate even. The type of even_ind is:

Check even_ind.
even_ind
forall P : nat —-> Prop,
P O —>
(forall n : nat, even n -> P n -> P (S (S n))) —>
forall n : nat, even n -> P n

From a mathematical point of view, this asserts that the natural numbers satisfying the predicate even are exactly in the
smallest set of naturals satisfying the clauses even_0 or even_SS. This is why, when we want to prove any predicate
P over elements of even, it is enough to prove it for O and to prove that if any natural number n satisfies P its double
successor (S (S n)) satisfies also P. This is analogous to the structural induction principle we got for nat.

Parameterized inductive types

In the previous example, each constructor introduces a different instance of the predicate even. In some cases, all the
constructors introduce the same generic instance of the inductive definition, in which case, instead of an annotation, we
use a context of parameters which are binders shared by all the constructors of the definition.

Parameters differ from inductive type annotations in that the conclusion of each type of constructor invokes the inductive
type with the same parameter values of its specification.

Example
A typical example is the definition of polymorphic lists:

Inductive list (A:Set) : Set :=

| nil : list A

| cons : A —-> list A —-> list A.
list is defined
list_rect is defined
list_ind is defined
list_rec is defined
list_sind is defined

In the type of nil and cons, we write "1ist A” and not just "1ist”. The constructors nil and cons have these
types:

Check nil.
nil
forall A : Set, list A
Check cons.

cons
forall A : Set, A —> list A -> list A
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Observe that the destructors are also quantified with (A: Set), for example:

Check list_ind.
list_ind
forall (A : Set) (P : list A -> Prop),
P (nil A) —>
(forall (a : A) (1 : 1list A), P 1 —> P (cons A a l)) —>
forall 1 : list A, P 1

Once again, the types of the constructor arguments and of the conclusion can be omitted:

Inductive list (A:Set) : Set := nil | cons (_:A) (_:1list A).

Note:

* The constructor type can recursively invoke the inductive definition on an argument which is not the parameter
itself.

One can define :

Inductive list2 (A:Set) : Set :=
| nil2 : list2 A
| cons2 : A —-> list2 (A*A) —-> list2 A.
list2 is defined
list2_rect is defined
list2_ind is defined
list2_rec is defined
list2_sind is defined

that can also be written by specifying only the type of the arguments:

Inductive list2 (A:Set) : Set :=
| nil?2
| cons2 (_:A) (_:1ist2 (A*A)).

list2 is defined

list2_rect is defined
list2_ind is defined
list2_rec is defined
list2_sind is defined

But the following definition will give an error:

Fail Inductive listw (A:Set) : Set :=
| nilw : listw (A*A)
| consw : A —-> listw (A*A) —-> listw (A*A).
The command has indeed failed with message:
In environment
listw : Set -> Set
A : Set
Unable to unify "listw (A * A)S%type" with "listw A".

because the conclusion of the type of constructors should be 1istw 2 in both cases.

¢ A parameterized inductive definition can be defined using annotations instead of parameters but it will sometimes
give a different (bigger) sort for the inductive definition and will produce a less convenient rule for case elimination.
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Flag: Uniform Inductive Parameters

When this flag is set (it is off by default), inductive definitions are abstracted over their parameters before type
checking constructors, allowing to write:

Set Uniform Inductive Parameters.
Inductive 1list3 (A:Set) : Set :=
| nil3 : 1list3
| cons3 : A —> 1list3 —-> 1list3.
1list3 is defined
list3_rect is defined
list3_ind is defined
list3_rec is defined
list3_sind is defined

This behavior is essentially equivalent to starting a new section and using Context to give the uniform parameters,
like so (cf. Section mechanism):

Section 1list3.
Context (A:Set).
A is declared

Inductive 1list3 : Set :=

| nil3 : 1list3

| cons3 : A —> 1ist3 —> 1list3.
list3 is defined
list3_rect is defined
list3_ind is defined
list3_rec is defined
list3_sind is defined

End list3.

For finer control, you can use a | between the uniform and the non-uniform parameters:
Inductive Acc {A:Type} (R:A->A->Prop) | (x:A) : Prop

:= Acc_in : (forall y, Ry x —> Acc y) —> Acc Xx.

The flag can then be seen as deciding whether the | is at the beginning (when the flag is unset) or at the end (when
it is set) of the parameters when not explicitly given.

See also:

Section Theory of inductive definitions and the i nduct ion tactic.

Mutually defined inductive types

Example: Mutually defined inductive types

A typical example of mutually inductive data types is trees and forests. We assume two types A and B that are given as
variables. The types can be declared like this:

Parameters A B : Set.

Inductive tree : Set := node : A —-> forest -> tree

with forest : Set :=

(continues on next page)
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(continued from previous page)

| leaf : B —> forest
| cons : tree —-> forest -> forest.

This declaration automatically generates eight induction principles. They are not the most general principles, but they
correspond to each inductive part seen as a single inductive definition.

To illustrate this point on our example, here are the types of tree_rec and forest_rec.

Check tree_rec.
tree_rec
forall P : tree —-> Set,
(forall (a : A) (f : forest), P (node a f)) -> forall t : tree, P t

Check forest_rec.
forest_rec
forall P : forest -> Set,
(forall b : B, P (leaf b)) —>
(forall (t : tree) (fO0 : forest), P fO0O -> P (cons t £f0)) —>
forall f1 : forest, P f1l

Assume we want to parameterize our mutual inductive definitions with the two type variables A and B, the declaration
should be done as follows:

Inductive tree (A B:Set) : Set := node : A -> forest A B —> tree A B

with forest (A B:Set) : Set :=
| leaf : B —> forest A B
| cons : tree A B —> forest A B —> forest A B.

Assume we define an inductive definition inside a section (cf. Section mechanism). When the section is closed, the variables
declared in the section and occurring free in the declaration are added as parameters to the inductive definition.

See also:

A generic command Scheme is useful to build automatically various mutual induction principles.

Recursive functions: fix
term_fix ::= letfix fix_declin term
9

+
| fix fix_decl | with fix_decl | for ident

* ? 9

fix_decl = ident | binder | |fixannot | [: type | :=term
fixannot = {struct ident }
| { wf one_term ident }
? ?
| { measure one_term |ident | |one_term | }
The  expression  “fix ident; binder,; : type; := term; with .. with ident, binder,
type, := term, for ident;” denotes the i-th component of a block of functions defined by mutual structural

recursion. It is the local counterpart of the i xpoint command. When n = 1, the "for ident,” clause is omitted.

*
The association of a single fixpoint and a local definition have a special syntax: let fix ident binder
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*
:= term in stands for let ident := fix ident binder := term in. The same applies for co-

fixpoints.

Some options of fixannot are only supported in specific constructs. £ix and let £ix only support the struct
option, while wf and measure are only supported in commands such as 71 xpo int (with the program attribute) and
Function.

Top-level recursive functions

This section describes the primitive form of definition by recursion over inductive objects. See the Funct i on command
for more advanced constructions.

*
Command: Fixpoint fix definition with fix definition

* ? ? z —2
fix_definition ::= ident _decl binder | |fixannot | |: type | |:=term | |decl_notations

Allows defining functions by pattern matching over inductive objects using a fixed point construction. The meaning

of this declaration is to define ident as a recursive function with arguments specified by the binders such that

ident applied to arguments corresponding to these binders has type type, and is equivalent to the expression
*

term. The type of ident is consequently forall binder |, type and its value is equivalent to fun

*
binder => term.

This command accepts the program, bypass_check (universes), and bypass_check (guard) at-
tributes.

To be accepted, a Fixpoint definition has to satisfy syntactical constraints on a special argument called the
decreasing argument. They are needed to ensure that the F'i xpoint definition always terminates. The point of
the {struct ident} annotation (see fixannot) is to let the user tell the system which argument decreases
along the recursive calls.

The {struct ident} annotation may be left implicit, in which case the system successively tries arguments
from left to right until it finds one that satisfies the decreasing condition.

Fixpoint without the program attribute does not support the wf or measure clauses of fixannot. See
Program Fixpoint.

The with clause allows simultaneously defining several mutual fixpoints. It is especially useful when defining
functions over mutually defined inductive types. Example: Mutual Fixpoints.

If termis omitted, type is required and Coq enters proof mode. This can be used to define a term incrementally,
in particular by relying on the re £ ine tactic. In this case, the proof should be terminated with De £ i ned in order
to define a constant for which the computational behavior is relevant. See Entering and exiting proof mode.

This command accepts the using attribute.

Note:

» Some fixpoints may have several arguments that fit as decreasing arguments, and this choice influences the
reduction of the fixpoint. Hence an explicit annotation must be used if the leftmost decreasing argument is
not the desired one. Writing explicit annotations can also speed up type checking of large mutual fixpoints.

* In order to keep the strong normalization property, the fixed point reduction will only be performed when the
argument in position of the decreasing argument (which type should be in an inductive definition) starts with
a constructor.
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Example

One can define the addition function as :

Fixpoint add (n m:nat) {struct n} : nat :=
match n with

| O =>m

| Sp =>S (add p m)

end.

add is defined
add is recursively defined (guarded on 1st argument)

The match operator matches a value (here n) with the various constructors of its (inductive) type. The remaining
arguments give the respective values to be returned, as functions of the parameters of the corresponding constructor.
Thus here when n equals O we return m, and when n equals (S p) wereturn (S (add p m)).

The match operator is formally described in Section The match ... with ... end construction. The system recognizes
that in the inductive call (add p m) the first argument actually decreases because it is a pattern variable coming
frommatch n with.

Example

The following definition is not correct and generates an error message:

Fail Fixpoint wrongplus (n m:nat) {struct n} : nat :=

match m with

| O =>n

| S p => S (wrongplus n p)

end.
The command has indeed failed with message:
Recursive definition of wrongplus is ill-formed.
In environment

wrongplus : nat —-> nat —> nat
n : nat
m : nat
p : nat

Recursive call to wrongplus has principal argument equal to
"n" instead of a subterm of "n"

Recursive definition is:

"fun n m : nat => match m with

| 0 =>n
| S p =>S (wrongplus n p)
end".

because the declared decreasing argument n does not actually decrease in the recursive call. The function computing
the addition over the second argument should rather be written:

Fixpoint plus (n m:nat) {struct m} : nat :=
match m with

| O =>n

| S p =>S (plus n p)

end.

plus is defined
plus is recursively defined (guarded on 2nd argument)
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Example

The recursive call may not only be on direct subterms of the recursive variable n but also on a deeper subterm and
we can directly write the function mod2 which gives the remainder modulo 2 of a natural number.

Fixpoint mod2 (n:nat) : nat :=
match n with
| O => 0
| S p => match p with
| 0O =>3S8 0
| S g => mod2 g
end
end.

mod2 is defined
mod2 is recursively defined (guarded on 1st argument)

Example: Mutual fixpoints

The size of trees and forests can be defined the following way:

Fixpoint tree_size (t:tree) : nat :=
match t with
| node a £ => S (forest_size f)
end
with forest_size (f:forest) : nat :=
match f with
| leaf b => 1
| cons t f' => (tree_size t + forest_size f')
end.
tree_size is defined
forest_size is defined
tree_size, forest_size are recursively defined (guarded respectively on.
<1st,
1st arguments)

Theory of inductive definitions

Formally, we can represent any inductive definition as Ind [p] (I'; := T'») where:
e I'; determines the names and types of inductive types;
* T' determines the names and types of constructors of these inductive types;
* p determines the number of parameters of these inductive types.

These inductive definitions, together with global assumptions and global definitions, then form the global environment.
Additionally, for any p there always exists I'p = [a; : Ay; ...; @, + A ] such thateach T'in (¢ : T') € I'; UT';, can be
written as: VI'p, T” where I , is called the context of parameters. Furthermore, we must have thateach T'in (¢ : T') € T';
can be written as: VI'p, VI'y,, ), S where Iy, is called the Arity of the inductive type ¢ and S is called the sort of the

inductive type t (not to be confused with § which is the set of sorts).

Example
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The declaration for parameterized lists is:
Ind [1] <[Iist : Set — Set] :=

which corresponds to the result of the Coq declaration:

Inductive list (A:Set) : Set :=
| nil : list A
| cons : A —> list A —-> list A.

nil : VA: Set, list A
cons : VA:Set, A—listA—listA

Example

The declaration for a mutual inductive definition of tree and forest is:

tree : Set node
Ind [0] {forest : Set} = er;oprfg

which corresponds to the result of the Coq declaration:

Inductive tree : Set :=

| node : forest —-> tree

with forest : Set :=

| emptyf : forest

| consf : tree —-> forest —-> forest.

forest — tree
forest
tree — forest — forest

Example

The declaration for a mutual inductive definition of even and odd is:

even : nat— Prop von
Ind [0] { odd : nat— Prop } - e;ggs
s

which corresponds to the result of the Coq declaration:

Inductive even : nat -> Prop :=
| even_O : even 0O

| even_S : forall n, odd n -> even (S n)
with odd : nat —-> Prop :=
| odd_S : forall n, even n -> odd (S n).

even 0
Vn, odd n — even (S n)
Vn, evenn — odd (S n)

Types of inductive objects

We have to give the type of constants in a global environment & which contains an inductive definition.

Ind

W (B)[T] Ind [p] (T; = Tp) € E (a: A) €T,

ElFa:A
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Constr

Example

Provided that our global environment E contains inductive definitions we showed before, these two inference rules above
enable us to conclude that:

E[I'l + even : nat — Prop

E[l'] + odd : nat — Prop

E[l'] - eveng : even O

E[I'| F eveng : Vn : nat, odd n — even (S n)
E[l']+ oddg : Vn : nat, even n — odd (S n)

Well-formed inductive definitions

We cannot accept any inductive definition because some of them lead to inconsistent systems. We restrict ourselves to
definitions which satisfy a syntactic criterion of positivity. Before giving the formal rules, we need a few definitions:

Arity of a given sort

A type T is an arity of sort s if it converts to the sort s or to a product Vz : T, U with U an arity of sort s.

Example

A — Set is an arity of sort Set. VA : Prop, A — Prop is an arity of sort Prop.

Arity

A type T is an arity if there is a s € & such that T is an arity of sort s.

Example

A — Setand VA : Prop, A — Prop are arities.

Type of constructor

We say that T' is a type of constructor of I in one of the following two cases:
e Tis(Ity...t,)

e TisVx: U, T’ where T” is also a type of constructor of [
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Example

nat and nat — nat are types of constructor of nat. VA : Type, list Aand VA : Type, A — list A — list A are types
of constructor of list.

Positivity Condition

The type of constructor 7" will be said to satisfy the positivity condition for a constant X in the following cases:
o T =(Xty...t,) and X does not occur free in any t;

e T =Vz:U, Vand X occurs only strictly positively in U and the type V" satisfies the positivity condition for X.

Strict positivity

The constant X occurs strictly positively in T" in the following cases:
* X does not occur in T’
T converts to (X t;...t,,) and X does not occur in any of ¢,
e T converts to Vo : U, V and X does not occur in type U but occurs strictly positively in type V'

* T converts to (I ay...a,, t;...t,) where I is the name of an inductive definition of the form
Ind[m|(l:A :=c¢ :Vpy:P,..Vp,: P, Cy; ...;¢,:Vp,: P,..¥p, : P, C,)

(in particular, it is not mutually defined and it has m parameters) and X does not occur in any of the ¢;, and the

(instantiated) types of constructor C;{p,/a;} 1 _,, of I satisfy the nested positivity condition for X

Nested Positivity

The type of constructor 1" of I satisfies the nested positivity condition for a constant X in the following cases:
* T'=(Iby...b, uy...u,), I is an inductive type with m parameters and X does not occur in any u,

e T'=Vz:U, Vand X occurs only strictly positively in U and the type V satisfies the nested positivity condition
for X

Example

For instance, if one considers the following variant of a tree type branching over the natural numbers:

Inductive nattree (A:Type) : Type :=
| leaf : nattree A
| natnode : A -> (nat —> nattree A) —> nattree A.

Then every instantiated constructor of nattree A satisfies the nested positivity condition for nattree:

* Type nattree A of constructor leaf satisfies the positivity condition for nattree because nattree does
not appear in any (real) arguments of the type of that constructor (primarily because natt ree does not have any
(real) arguments) ... (bullet 1)

e TypeA - (nat - nattree A) - nattree A of constructor natnode satisfies the positivity condition
for nattree because:
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— nattree occurs only strictly positively in A ... (bullet 1)

— nattree occurs only strictly positively in nat - nattree A ... (bullet3 +2)

— nattree satisfies the positivity condition for nattree A ... (bullet 1)

Correctness rules

‘We shall now describe the rules allowing the introduction of a new inductive definition.

Let E be a global environment and I'p, I';, T'» be contexts such that T'; is [[; : VI p, Ay;
[cq : VI'p,Cy; .5 ¢, 2 VT p, C]. Then

ceed Ik : VFP7A]C]’ and FC is

W-Ind
W (E)[Lp] (ELTplF Gty )izim
W (E; Ind [p] (T := T'¢))[]
provided that the following side conditions hold:
* k> 0Oandall of I, and ¢; are distinct names for j = 1...kand i = 1...n,
* p is the number of parameters of Ind [p] (I'; := T'y) and I'p is the context of parameters,

e for j = 1...k we have that A; is an arity of sort s; and I, ¢ F,

e for 7 = 1...n we have that C; is a type of constructor of I, which satisfies the positivity condition for /; ..., and

c; ¢ E.

One can remark that there is a constraint between the sort of the arity of the inductive type and the sort of the type of its
constructors which will always be satisfied for the impredicative sorts SProp and Prop but may fail to define inductive
type on sort Set and generate constraints between universes for inductive types in the Type hierarchy.

Example

It is well known that the existential quantifier can be encoded as an inductive definition. The following declaration intro-

duces the second-order existential quantifier 3X.P(X).

Inductive exProp (P:Prop—>Prop) : Prop :=
| exP_intro : forall X:Prop, P X —> exProp P.

The same definition on Set is not allowed and fails:

Fail Inductive exSet (P:Set->Prop) : Set :=
exS_intro : forall X:Set, P X —> exSet P.
The command has indeed failed with message:
Large non-propositional inductive types must be in Type.

It is possible to declare the same inductive definition in the universe Type. The exType inductive definition has type
(Type(i) — Prop) — Type(j) with the constraint that the parameter X of exTy, has type Type(k) with & < j and

k<.

Inductive exType (P:Type->Prop) : Type :=
exT_intro : forall X:Type, P X —> exType P.
exType is defined
exType_rect is defined
exType_ind is defined
exType_rec is defined
exType_sind is defined
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Example: Negative occurrence (first example)

The following inductive definition is rejected because it does not satisfy the positivity condition:

Fail Inductive I : Prop := not_I_TI (not_I : I -> False) : I.
The command has indeed failed with message:
Non strictly positive occurrence of "I" in " (I -> False) -> I".

If we were to accept such definition, we could derive a contradiction from it (we can test this by disabling the
Positivity Checking flag):

Definition I_not_I : I -> ~ I := fun i =>
match i with not_I_TI not_I => not_I end.
I _not_TI is defined

Lemma contradiction : False.
Proof.
enough (I /\ ~ I) as [] by contradiction.
split.
- apply not_I_TI.
intro.
now apply I_not_TI.
- intro.
now apply I_not_TI.
Qed.

Example: Negative occurrence (second example)

Here is another example of an inductive definition which is rejected because it does not satify the positivity condition:

Fail Inductive Lam := lam (_ : Lam —-> Lam).
The command has indeed failed with message:
Non strictly positive occurrence of "Lam" in " (Lam -> Lam) -> Lam".

Again, if we were to accept it, we could derive a contradiction (this time through a non-terminating recursive function):

Fixpoint infinite_loop 1 : False :=
match 1 with lam x => infinite_loop (x 1) end.
infinite_loop is defined
infinite_loop is recursively defined (guarded on 1st argument)

Check infinite_loop (lam (@id Lam)) : False.
infinite_loop (lam (id (A:=Lam))) : False
False

Example: Non strictly positive occurrence

It is less obvious why inductive type definitions with occurences that are positive but not strictly positive are harmful. We
will see that in presence of an impredicative type they are unsound:
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Fail Inductive A: Type := introA: ((A -> Prop) —-> Prop) —> A.
The command has indeed failed with message:
Non strictly positive occurrence of "A" in " ((A -> Prop) -> Prop) -> A".

If we were to accept this definition we could derive a contradiction by creating an injective function from A — Prop to
A.

This function is defined by composing the injective constructor of the type A with the function Az.Az.z = z injecting
any type 7" into " — Prop.

Definition f (x: A -> Prop): A := introA (fun z => z = x).
f is defined

Lemma f_inj: forall xy, f x=fy > x=1y.
Proof.
unfold f; intros ? ? H; injection H.
set (F := fun z => z = y); intro HF.
symmetry; replace (y = x) with (F y).
+ unfold F; reflexivity.
+ rewrite <- HF; reflexivity.
Qed.

The type A — Prop can be understood as the powerset of the type A. To derive a contradiction from the injective
function f we use Cantor’s classic diagonal argument.

Definition d: A -> Prop := fun x => exists s, x = £ s /\ ~s x.
d is defined

Definition fd: A := f d.
fd is defined

Lemma cantor: (d fd) <-> ~(d fd).
Proof.
split.
+ intros [s [H1 H2]]; unfold fd in HI1.

replace d with s.
* assumption.
* apply f_inj; congruence.
+ intro; exists d; tauto.
Qed.

Lemma bad: False.
Proof.

pose cantor; tauto.
Qed.

This derivation was first presented by Thierry Coquand and Christine Paulin in [[CP90]].
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Template polymorphism

Inductive types can be made polymorphic over the universes introduced by their parameters in Type, if the minimal
inferred sort of the inductive declarations either mention some of those parameter universes or is computed to be Prop
or Set.

If A is an arity of some sort and s is a sort, we write A /s for the arity obtained from A by replacing its sort with s.
Especially, if A is well-typed in some global environment and local context, then A /s 1s typable by typability of all
products in the Calculus of Inductive Constructions. The following typing rule is added to the theory.

Let Ind [p] (T'; := I') be an inductive definition. Let I'p = [p; : Py; ...; p, : P,] be its context of parameters,
I; = [ : VI'p,Aq; .. I, : VD' p, A,] its context of definitions and T'x = [¢; : VI p,Cy; .o ¢, = VI'p,C,]
its context of constructors, with ¢; a constructor of I, . Let m < p be the length of the longest prefix of parameters
such that the m first arguments of all occurrences of all I, in all Cy, (even the occurrences in the hypotheses of C},) are
exactly applied to p;...p,,, (m is the number of recurszvely uniform parameters and the p — m remaining parameters are
the recursively non-uniform parameters). Let qq, ..., q,, with 0 < r < m, be a (possibly) partial instantiation of the

recursively uniform parameters of I' .. We have:

Ind-Family

Ind [p](T'; :=T) €E

(B F QI,: Picyr

<E[] F ]Dl SB&O} Pl{pu/qu}uzl...lfl)lzl...r
1<j<k

ElF T qyqp Ve Prys o5 0y Bl (A5)),

J

provided that the following side conditions hold:

» T'p/ is the context obtained from I'p by replacing each P, that is an arity with P, for 1 < [ < r (notice that P,
arity implies P/ arity since E[] = P/ <gs, ¢, PAPw/CuSuz1.1-1);

* there are sorts s;, for 1 < i < ksuch that, for I'yy = [I; : VI'pr, (Ay) 55 5 Iy VD pr, (Ag) s, | We have
(E[Lp;Tp] k= C; Sqi)izl...n 5

* the sorts s; are all introduced by the inductive declaration and have no universe constraints beside being greater than
or equal to Prop, and such that all eliminations, to Prop, Set and Type(j), are allowed (see Section Destructors).

Notice that if I; ¢;...q, is typable using the rules Ind-Const and App, then it is typable using the rule Ind-Family.
Conversely, the extended theory is not stronger than the theory without Ind-Family. We get an equiconsistency result
by mapping each Ind [p] (I'; := T';) occurring into a given derivation into as many different inductive types and con-
structors as the number of different (partial) replacements of sorts, needed for this derivation, in the parameters that are
arities (this is possible because Ind [p] (I'; := T'») well-formed implies that Ind [p] (I';; := T') is well-formed and
has the same allowed eliminations, where I'}, is defined as above and I' v = [¢; : VI'p/, Cy; ...; ¢, : VI pr, C,]). That
is, the changes in the types of each partial instance g; ...q,. can be characterized by the ordered sets of arity sorts among
the types of parameters, and to each signature is associated a new inductive definition with fresh names. Conversion
is preserved as any (partial) instance /; ¢;...q, or C; g, ...q, is mapped to the names chosen in the specific instance of
Ind [p] (I'; := T'e).

Warning: The restriction that sorts are introduced by the inductive declaration prevents inductive types declared
in sections to be template-polymorphic on universes introduced previously in the section: they cannot parameterize
over the universes introduced with section variables that become parameters at section closing time, as these may be
shared with other definitions from the same section which can impose constraints on them.

Flag: Auto Template Polymorphism
This flag, enabled by default, makes every inductive type declared at level Type (without annotations or hiding it
behind a definition) template polymorphic if possible.
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This can be prevented using the universes (template=no) attribute.

Template polymorphism and full universe polymorphism (see Chapter Polymorphic Universes) are incompatible, so
if the latter is enabled (through the Universe Polymorphismflagor the universes (polymorphic)
attribute) it will prevail over automatic template polymorphism.

Warning: Automatically declaring ident as template polymorphic.
Warning auto—template can be used (it is off by default) to find which types are implicitly declared template
polymorphic by Auto Template Polymorphism.

An inductive type can be forced to be template polymorphic using the universes (template) attribute: in
this case, the warning is not emitted.
>
Attribute: universes (template= yes | no )
This boolean attribute can be used to explicitly declare an inductive type as template polymorphic, whether the
Auto Template Polymorphismflagis on or off.

Error: template and polymorphism not compatible
This attribute cannot be used in a full universe polymorphic context, i.e. if the Universe
Polymorphismflagis onorif the universes (polymorphic) attribute is used.

Error:
Ill-formed template inductive declaration: not polymorphic on any universe.

The attribute was used but the inductive definition does not satisfy the criterion to be template polymorphic.

When universes (template=no) isused, it will prevent an inductive type to be template polymorphic, even
if the Auto Template Polymorphismflagison.

Attribute: universes (notemplate)
Deprecated since version 8.13: Use universes (template=no) instead.

In practice, the rule Ind-Family is used by Coq only when all the inductive types of the inductive definition are declared
with an arity whose sort is in the Type hierarchy. Then, the polymorphism is over the parameters whose type is an arity
of sort in the Type hierarchy. The sorts s; are chosen canonically so that each s; is minimal with respect to the hierarchy
Prop C Set, C Type where Set, is predicative Set. More precisely, an empty or small singleton inductive definition
(i.e. an inductive definition of which all inductive types are singleton — see Section Destructors) is set in Prop, a small
non-singleton inductive type is set in Set (even in case Set is impredicative — see The Calculus of Inductive Constructions
with impredicative Set), and otherwise in the Type hierarchy.

Note that the side-condition about allowed elimination sorts in the rule Ind-Family avoids to recompute the allowed
elimination sorts at each instance of a pattern matching (see Section Destructors). As an example, let us consider the
following definition:

Example
Inductive option (A:Type) : Type :=
| None : option A

| Some : A —> option A.

As the definition is set in the Type hierarchy, it is used polymorphically over its parameters whose types are arities of a
sort in the Type hierarchy. Here, the parameter A has this property, hence, if option is applied to a type in Set, the
result is in Set. Note that if option is applied to a type in Prop, then, the result is not set in Prop but in Set still. This
is because opt ion is not a singleton type (see Section Destructors) and it would lose the elimination to Set and Type if
set in Prop.

Example
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Check
fun A

Check
fun A

(fun A:Set => option A).

Set => option A

Set

-> Set

Prop => option A

(fun A:Prop => option A).

Prop —> Set

Here is another example.

Example

Inductive prod (A B:Type) Type := pair A -> B —> prod A B.

As prod is a singleton type, it will be in Prop if applied twice to propositions, in Set if applied twice to at least one type
in Set and none in Type, and in Type otherwise. In all cases, the three kind of eliminations schemes are allowed.

Example

Check (fun
fun A

A:Set => prod A).
Set => prod A
Set -> Type —> Type

Check (fun
fun A

A:Prop => prod A A).
Prop => prod A A
Prop —> Prop

Check
fun

(fun
(A

(A:Prop) (B:Set)
Prop) (B Set)
Prop —> Set -> Set

=> prod A B).
=> prod A B

Check (fun (A:Type) (B:Prop) => prod A B).
fun (A : Type) (B Prop) => prod A B
Type —> Prop —> Type

Note: Template polymorphism used to be called “sort-polymorphism of inductive types” before universe polymorphism
(see Chapter Polymorphic Universes) was introduced.

Destructors

The specification of inductive definitions with arities and constructors is quite natural. But we still have to say how to use
an object in an inductive type.

This problem is rather delicate. There are actually several different ways to do that. Some of them are logically equivalent
but not always equivalent from the computational point of view or from the user point of view.

From the computational point of view, we want to be able to define a function whose domain is an inductively defined
type by using a combination of case analysis over the possible constructors of the object and recursion.
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Because we need to keep a consistent theory and also we prefer to keep a strongly normalizing reduction, we cannot
accept any sort of recursion (even terminating). So the basic idea is to restrict ourselves to primitive recursive functions
and functionals.

For instance, assuming a parameter A : Set exists in the local context, we want to build a function length of type list A —
nat which computes the length of the list, such that (length (nil A)) = O and (length (cons A a 1)) = (S (length I)).
We want these equalities to be recognized implicitly and taken into account in the conversion rule.

From the logical point of view, we have built a type family by giving a set of constructors. We want to capture the fact
that we do not have any other way to build an object in this type. So when trying to prove a property about an object m
in an inductive type it is enough to enumerate all the cases where m starts with a different constructor.

In case the inductive definition is effectively a recursive one, we want to capture the extra property that we have built
the smallest fixed point of this recursive equation. This says that we are only manipulating finite objects. This analysis
provides induction principles. For instance, in order to prove VI : list A, (has_length A [ (length 1)) it is enough to
prove:

* (has_length A (nil A) (length (nil A)))

e Va: A, Vi:list A, (has_length Al (lengthl)) — (has_length A (cons A a 1) (length (cons A al)))
which given the conversion equalities satisfied by length is the same as proving:

* (has_length A (nil A) O)

* Va: A, Vi:list A, (has_length Al (lengthl)) — (has_length A (cons A al) (S (lengthl)))

One conceptually simple way to do that, following the basic scheme proposed by Martin-Lof in his Intuitionistic Type
Theory, is to introduce for each inductive definition an elimination operator. At the logical level it is a proof of the usual
induction principle and at the computational level it implements a generic operator for doing primitive recursion over the
structure.

But this operator is rather tedious to implement and use. We choose in this version of Coq to factorize the operator for
primitive recursion into two more primitive operations as was first suggested by Th. Coquand in [[Cog92]]. One is the
definition by pattern matching. The second one is a definition by guarded fixpoints.

The match ... with ... end construction

The basic idea of this operator is that we have an object m in an inductive type I and we want to prove a property which
possibly depends on m. For this, it is enough to prove the property for m = (¢; uy ...upi) for each constructor of I. The
Coq term for this proof will be written:

match m with (¢; zyy...2q,, ) = fil-..[(¢,, p1--2p,, ) = f, €Nd

In this expression, if m eventually happens to evaluate to (c; ul...upi) then the expression will behave as specified in its
i-th branch and it will reduce to f; where the z;;...z;, are replaced by the u ...u,, according to the -reduction.
Actually, for type checking a match...with...end expression we also need to know the predicate P to be proved by
case analysis. In the general case where I is an inductively defined n-ary relation, P is a predicate over n + 1 argu-
ments: the n first ones correspond to the arguments of I (parameters excluded), and the last one corresponds to object
m. Coq can sometimes infer this predicate but sometimes not. The concrete syntax for describing this predicate uses
the as...in...return construction. For instance, let us assume that / is an unary predicate with one parameter and one
argument. The predicate is made explicit using the syntax:

match m as xin I _areturn P with (¢; zy..21,, ) = fi|..|(c,, Tpp1@ = f,end

npn)
The as part can be omitted if either the result type does not depend on m (non-dependent elimination) or m is a variable
(in this case, m can occur in P where it is considered a bound variable). The in part can be omitted if the result type
does not depend on the arguments of /. Note that the arguments of I corresponding to parameters must be _, because

52 Chapter 2. Specification language



The Coq Reference Manual, Release 8.13.2

the result type is not generalized to all possible values of the parameters. The other arguments of / (sometimes called
indices in the literature) have to be variables (a above) and these variables can occur in P. The expression after in must
be seen as an inductive type pattern. Notice that expansion of implicit arguments and notations apply to this pattern. For
the purpose of presenting the inference rules, we use a more compact notation:

case(m, (\az.P), Az 1.y, - f1 || ATpy oy - f)

Allowed elimination sorts. An important question for building the typing rule for match is what can be the type of
Aazx. P with respect to the type of m. If m : [ and I : A and Aax.P : B then by [I : A|B] we mean that one can use
Aax. P with m in the above match-construct.

Notations. The [ : A|B] is defined as the smallest relation satisfying the following rules: We write [I|B] for [I : A|B]
where A is the type of 1.

The case of inductive types in sorts Set or Type is simple. There is no restriction on the sort of the predicate to be
eliminated.

Prod
(I z): A'|B']
[[:Vx: A, A|Vx: A, B]

Set & Type

s, € {Set, Type(j)} Sy €S
[T : 8|1 = s5]

The case of Inductive definitions of sort Prop is a bit more complicated, because of our interpretation of this sort. The
only harmless allowed eliminations, are the ones when predicate P is also of sort Prop or is of the morally smaller sort
SProp.

Prop

s € {SProp, Prop}
[I : Prop|I — s]

Prop is the type of logical propositions, the proofs of properties P in Prop could not be used for computation and are
consequently ignored by the extraction mechanism. Assume A and B are two propositions, and the logical disjunction
AV B is defined inductively by:

Example

Inductive or (A B:Prop) : Prop :=
or_introl : A -> or A B | or_intror : B -> or A B.

The following definition which computes a boolean value by case over the proof of or A B is not accepted:

Example

Fail Definition choice (A B: Prop) (x:or A B) :=
match x with or_introl _ _ a => true | or_intror _ _ b => false end.
The command has indeed failed with message:
Incorrect elimination of "x" in the inductive type "or":
the return type has sort "Set" while it should be "SProp" or "Prop".
Elimination of an inductive object of sort Prop
is not allowed on a predicate in sort Set
because proofs can be eliminated only to build proofs.
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From the computational point of view, the structure of the proof of (or A B) in this term is needed for computing the
boolean value.

In general, if I has type Prop then P cannot have type I — Set, because it will mean to build an informative proof of
type (P m) doing a case analysis over a non-computational object that will disappear in the extracted program. But the
other way is safe with respect to our interpretation we can have I a computational object and PP a non-computational one,
it just corresponds to proving a logical property of a computational object.

In the same spirit, elimination on P of type I — Type cannot be allowed because it trivially implies the elimination on
P of type I — Set by cumulativity. It also implies that there are two proofs of the same property which are provably
different, contradicting the proof-irrelevance property which is sometimes a useful axiom:

Example

Axiom proof_irrelevance : forall (P : Prop) (x vy : P), x=y.
proof_irrelevance is declared

The elimination of an inductive type of sort Prop on a predicate P of type I — Type leads to a paradox when applied
to impredicative inductive definition like the second-order existential quantifier exP rop defined above, because it gives
access to the two projections on this type.

Empty and singleton elimination. There are special inductive definitions in Prop for which more eliminations are
allowed.

Prop-extended

I is an empty or singleton definition sesd
[I : Prop|I — s]

A singleton definition has only one constructor and all the arguments of this constructor have type Prop. In that case, there
is a canonical way to interpret the informative extraction on an object in that type, such that the elimination on any sort s
is legal. Typical examples are the conjunction of non-informative propositions and the equality. If there is a hypothesis
h : a = b in the local context, it can be used for rewriting not only in logical propositions but also in any type.

Example

Print eq_rec.
eq_rec =
fun (A : Type) (x : A) (P : A —> Set) => eq_rect x P
forall (A : Type) (x : A) (P : A —> Set),
P x —> forall y : A, x =y —> Py

Arguments eg_rec [A]%type_scope _%function_scope

Require Extraction.
[Loading ML file extraction_plugin.cmxs ... done]

Extraction eq_rec.
(** val eq_rec : 'al -> 'az -> 'al -> 'az *%*)

let eq_rec _ £ _ =
f

An empty definition has no constructors, in that case also, elimination on any sort is allowed.
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Inductive types in SProp must have no constructors (i.e. be empty) to be eliminated to produce relevant values.

Note that thanks to proof irrelevance elimination functions can be produced for other types, for instance the elimination
for a unit type is the identity.

Type of branches. Let c be a term of type C, we assume C' is a type of constructor for an inductive type I. Let P
be a term that represents the property to be proved. We assume r is the number of parameters and s is the number of
arguments.

We define a new type {c : C'}¥ which represents the type of the branch corresponding to the ¢ : C' constructor.

{c:(Tqoqt;..t )} =Pt ..
{c:Vx:T, C}F =

We write {c}* for {c : C}¥ with C the type of c.

Example

The following term in concrete syntax:

match t as 1 return P' with

| nil _ => t1
| cons _ hd tl => t2
end

can be represented in abstract syntax as

Case(t7P7 f1|f2)

where
P = AP
i = &
fo = A(hd:nat). A(¢l : list nat). ¢,

According to the definition:
{(nil nat)}” = {(nil nat) : (list nat)}*” = (P (nil nat))
{(cons nat)}” {(cons nat) : (nat — list nat — list nat)}*
Vn : nat, {(cons nat n) : (list nat — list nat)}*

= Vn :nat, VI :listnat, {(cons natn ) : (listnat)}”
= Vn:nat, Vi:listnat, (P (consnatnl)).

Given some P then {(nil nat)} ¥ represents the expected type of f;, and {(cons nat)} represents the expected type of

fo-

Typing rule. Our very general destructor for inductive definition enjoys the following typing rule

match

ElFc:(Iq...q ty...t,)
E[-P:B
(I g;---q,)| B]
(BT f; {(Cpi @4} )iz
E[l') F case(c, P, fi|...|f;) : (P ty...t, ¢)

2.1. Core language 55



The Coq Reference Manual, Release 8.13.2

provided I is an inductive type in a definition Ind [r] (T'; := T'y) with T, = [¢; : C};
the only constructors of I.

e Cp

:CyJandc, ...

%

. are

Example
Below is a typing rule for the term shown in the previous example:

list example

E[[] ¢t : (list nat)

El|-P:B

[(list nat)| B]

E[T)F £, : {(nil nat)}”

E[T]F fy : {(cons nat)}*
E[F] + CaSG(t,P, f1|f2) ; (P t)

Definition of 1-reduction. We still have to define the t-reduction in the general case.

An -redex is a term of the following form:

case((cy, -Gy Q1---Qyy ), P f1]- ] f1)

with ¢, the i-th constructor of the inductive type I with r parameters.

The (-contraction of this term is (f; a;...a,, ) leading to the general reduction rule:

CaSG((Cp,L- qi---9y al"'am)? Pa fl||fl) [>L (fz a’l"'a’m>

Fixpoint definitions

The second operator for elimination is fixpoint definition. This fixpoint may involve several mutually recursive definitions.

The basic concrete syntax for a recursive set of mutually recursive declarations is (with I'; contexts):

fix £, (T)) « Ay == ¢, with...with £, (T,)) : A, :=t,

The terms are obtained by projections from this set of declarations and are written
fix f1(Ty) : A, :=t, with..with f,(T",,)) : 4,, :=t,, for f;
In the inference rules, we represent such a term by

Fix f{fi: Al :==1t1...f,: A, =1}

with ¢/ (resp. A) representing the term ¢, abstracted (resp. generalized) with respect to the bindings in the context I';,

namely ¢; = AL';.t, and A] = VI';, A,.

Typing rule

The typing rule is the expected one for a fixpoint.
Fix
(E[ITF A ¢ 8i)iz1m (B[ f1: Ay s fo s Al E L2 A))
ETEFix fi{fi: Ay =ty fp t A, =1} A,

i=1l..n
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Any fixpoint definition cannot be accepted because non-normalizing terms allow proofs of absurdity. The basic scheme
of recursion that should be allowed is the one needed for defining primitive recursive functionals. In that case the fixpoint
enjoys a special syntactic restriction, namely one of the arguments belongs to an inductive type, the function starts with a
case analysis and recursive calls are done on variables coming from patterns and representing subterms. For instance in
the case of natural numbers, a proof of the induction principle of type

VP :nat — Prop, (PO) = (Vn:nat, (Pn) — (P (Sn))) —» Vn:nat, (Pn)

can be represented by the term:

AP :nat — Prop. Af : (P O). A\g: (Vn:nat, (Pn)— (P (Sn))).
Fix h{h : Vn : nat, (P n) := An : nat. case(n, P, fl]Ap : nat. (gp (hp)))}

Before accepting a fixpoint definition as being correctly typed, we check that the definition is “guarded”. A precise
analysis of this notion can be found in [[Gimenez94]]. The first stage is to precise on which argument the fixpoint will
be decreasing. The type of this argument should be an inductive type. For doing this, the syntax of fixpoints is extended
and becomes

Fix fl{fl/kl : Al = tlfn/kn : An = tn}

where k; are positive integers. Each k, represents the index of parameter of f;, on which f; is decreasing. Each A, should
be a type (reducible to a term) starting with at least k; products Yy, : By, VY, By, Al and B %, an inductive type.

Now in the definition ¢;, if f; occurs then it should be applied to at least k; arguments and the k;-th argument should be
syntactically recognized as structurally smaller than y k-

The definition of being structurally smaller is a bit technical. One needs first to define the notion of recursive arguments
of a constructor. For an inductive definition Ind [r] (I'; := T'), if the type of a constructor ¢ has the form Vp, :
Py, .Np,: P, Vo : Ty, Nz, : T, (I; py..p, t;...t,), then the recursive arguments will correspond to 7} in
which one of the I; occurs.

The main rules for being structurally smaller are the following. Given a variable y of an inductively defined type in a
declaration Ind [r] (T'; := T'n) where T'; is [I; = Ay; .. I, + Agl, and T is [¢; : Cy; .5 ¢, = C,], the terms
structurally smaller than y are:

* (tw)and Az : U. t when ¢ is structurally smaller than y.

 case(c, P, fi...f,,) when each f; is structurally smaller than y. If ¢ is y or is structurally smaller than y, its type is
an inductive type /, part of the inductive definition corresponding to y. Each f; corresponds to a type of constructor
C,=Vp : P, .,Vp, : P, Vy, : By, ..Vy,, + B, (I, py...p, 1;...t,) and can consequently be written
Ay + By Ay, + By, g;. (B is obtained from B, by substituting parameters for variables) the variables y;
occurring in g; corresponding to recursive arguments B; (the ones in which one of the I; occurs) are structurally
smaller than y.

The following definitions are correct, we enter them using the i xpoint command and show the internal representation.

Example

Fixpoint plus (n m:nat) {struct n} : nat :=
match n with
| O =>m
| S p=>9S (plus p m)
end.
plus is defined
plus is recursively defined (guarded on 1lst argument)

Print plus.

(continues on next page)
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(continued from previous page)

plus
fix plus (n m : nat) {struct n} : nat
match n with
[ 0 =>m
| S p =>S (plus p m)
end
nat —-> nat —> nat
Arguments plus (_ _) %nat_scope

Fixpoint lgth (A:Set) (l:1ist A) {struct 1} : nat :=
match 1 with

| nil _ => 0
| cons _a l' => S (lgth A 1")
end.

lgth is defined
lgth is recursively defined (guarded on 2nd argument)

Print lgth.
lgth
fix lgth (A : Set) (1 : list A) {struct 1} : nat :=

match 1 with

| nil _ => 0
| cons _ _ 1" => S (lgth A 1")
end

forall A : Set, list A —-> nat
Arguments lgth _S$type_scope _

Fixpoint sizet (t:tree) : nat := let (f) := t in S (sizef f)
with sizef (f:forest) : nat :=
match f with
| emptyf => O
| consf t £ => plus (sizet t) (sizef f)
end.
sizet is defined
sizef is defined
sizet, sizef are recursively defined (guarded respectively on 1st,
1st arguments)

Print sizet.

sizet =

with sizet (t : tree) : nat :=
let (f) := t in S (sizef f)

with sizef (f : forest) : nat :=

match f with
| emptyf => 0
| consf t f0 => plus (sizet t) (sizef £0)
end
for
sizet
tree —> nat
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Reduction rule

Let F be the set of declarations: f;/k, : A; :=ty...f, /k,, : A,, :=t,. The reduction for fixpoints is:

(Fix fi{F} ay.ap,) D 6 fo/FIX fi{ F} et 010y,

when a;, starts with a constructor. This last restriction is needed in order to keep strong normalization and corresponds
to the reduction for primitive recursive operators. The following reductions are now possible:

plus (S(S0)) (SO) >, S(plus(SO)(SO))
>, S(S(plusO(S0O)))
>, S(S(S0))

Mutual induction

The principles of mutual induction can be automatically generated using the Scheme command described in Section
Generation of induction principles with Scheme.

2.1.10 Co-inductive types and co-recursive functions

Co-inductive types

The objects of an inductive type are well-founded with respect to the constructors of the type. In other words, such objects
contain only a finite number of constructors. Co-inductive types arise from relaxing this condition, and admitting types
whose objects contain an infinity of constructors. Infinite objects are introduced by a non-ending (but effective) process
of construction, defined in terms of the constructors of the type.

More information on co-inductive definitions can be found in [[Gimenez95], [Gimenez98], [GimenezCasteran05]].

*
Command: CoInductive inductive _definition with inductive_definition

This command introduces a co-inductive type. The syntax of the command is the same as the command
Inductive. No principle of induction is derived from the definition of a co-inductive type, since such prin-
ciples only make sense for inductive types. For co-inductive types, the only elimination principle is case analysis.

This command supports the universes (polymorphic), universes (template),
universes (cumulative), private (matching), bypass_check (universes),
bypass_check (positivity),and using attributes.

Example

The type of infinite sequences of natural numbers, usually called streams, is an example of a co-inductive type.

CoInductive Stream : Set := Seqg : nat -> Stream -> Stream.

The usual destructors on streams hd: St ream—>nat and t1:Str—>Str can be defined as follows:

Definition hd (x:Stream) := let (a,s) := x in a.
Definition tl (x:Stream) let (a,s) := x in s.

Definitions of co-inductive predicates and blocks of mutually co-inductive definitions are also allowed.

Example

The extensional equality on streams is an example of a co-inductive type:
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CoInductive EgSt Stream -> Stream —> Prop :=
egst forall sl s2:Stream,
hd s1 = hd s2 -> EgSt (tl sl)

(tl s2) —-> EgSt sl s2.

In order to prove the extensional equality of two streams s1 and s2 we have to construct an infinite proof of equality,
that is, an infinite object of type (EqSt s1 s2). We will see how to introduce infinite objects in Section Top-level
definitions of co-recursive functions.

Caveat

The ability to define co-inductive types by constructors, hereafter called positive co-inductive types, is known to break
subject reduction. The story is a bit long: this is due to dependent pattern-matching which implies propositional 1-
equality, which itself would require full n-conversion for subject reduction to hold, but full n-conversion is not acceptable
as it would make type checking undecidable.

Since the introduction of primitive records in Coq 8.5, an alternative presentation is available, called negative co-inductive
types. This consists in defining a co-inductive type as a primitive record type through its projections. Such a technique is
akin to the co-pattern style that can be found in e.g. Agda, and preserves subject reduction.

The above example can be rewritten in the following way.

Set Primitive Projections.

CoInductive Stream Set := Seq { hd nat; tl Stream }.
Stream is defined
hd is defined
tl is defined
CoInductive EgSt (sl s2: Stream) Prop := egst {
egst_hd hd s1 = hd s2;
egst_t1 EgSt (tl s1) (tl s2);
}.
EgSt is defined
egst_hd is defined

egst_t1

is defined

Some properties that hold over positive streams are lost when going to the negative presentation, typically when they
imply equality over streams. For instance, propositional n-equality is lost when going to the negative presentation. It is
nonetheless logically consistent to recover it through an axiom.

Axiom Stream_eta forall s:
Stream_eta is declared

Stream, s = Seqg (hd s) (tl s).

More generally, as in the case of positive coinductive types, it is consistent to further identify extensional equality of
coinductive types with propositional equality:

Axiom Stream_ext forall
Stream_ext is declared

(sl s2: Stream), EgSt sl s2 —-> sl = s2.
As of Coq 8.9, it is now advised to use negative co-inductive types rather than their positive counterparts.
See also:

Primitive Projections for more information about negative records and primitive projections.

60 Chapter 2. Specification language



The Coq Reference Manual, Release 8.13.2

Co-recursive functions: cofix

term_cofix ::= let cofix cofix_body in term
9
. + .
| cofix cofix_body | with cofix_body | for ident

* ?
cofix_body ::= ident|binder | |: type | :=term

The expression “cofix ident, binder, : type, with .. with ident, binder, : type, for
ident;” denotes the i-th component of a block of terms defined by a mutual guarded co-recursion. It is the local
counterpart of the CoFixpoint command. When n = 1, the "for ident;” clause is omitted.

Top-level definitions of co-recursive functions

*
Command: CoFixpoint cofix_definition with cofix definition

* ? ? ?
cofix_definition ::= ident_decl binder | |: type | |:=term | |decl_notations

This command introduces a method for constructing an infinite object of a coinductive type. For example, the
stream containing all natural numbers can be introduced applying the following method to the number O (see
Section Co-inductive types for the definition of St ream, hd and t1):

CoFixpoint from (n:nat) : Stream := Seg n (from (S n)).
from is defined
from is corecursively defined

Unlike recursive definitions, there is no decreasing argument in a co-recursive definition. To be admissible, a method
of construction must provide at least one extra constructor of the infinite object for each iteration. A syntactical
guard condition is imposed on co-recursive definitions in order to ensure this: each recursive call in the definition
must be protected by at least one constructor, and only by constructors. That is the case in the former definition,
where the single recursive call of from is guarded by an application of Seqg. On the contrary, the following
recursive function does not satisfy the guard condition:

Fail CoFixpoint filter (p:nat —> bool) (s:Stream) : Stream :=
if p (hd s) then Seg (hd s) (filter p (tl s)) else filter p (tl s).
The command has indeed failed with message:
Recursive definition of filter is ill-formed.
In environment

filter : (nat —> bool) —-> Stream —> Stream
p : nat —> bool
s : Stream

Unguarded recursive call in "filter p (tl s)".
Recursive definition is:

"fun (p : nat -> bool) (s : Stream) =>
if p (hd s)
then {|] hd := hd s; tl := filter p (tl s) |}

else filter p (tl s)".

The elimination of co-recursive definition is done lazily, i.e. the definition is expanded only when it occurs at the
head of an application which is the argument of a case analysis expression. In any other context, it is considered as
a canonical expression which is completely evaluated. We can test this using the command Eva I, which computes
the normal forms of a term:
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Eval compute in (from 0).
= (cofix from (n : nat) : Stream := {| hd := n; tl
Stream

from (S n) |}) O

Eval compute in (hd (from 0)).
=0
nat

Eval compute in (tl (from 0)).
= (cofix from (n : nat) : Stream
Stream

{| hd := n; t1l := from (S n) |}) 1

Asin the Fixpoint command, the with clause allows simultaneously defining several mutual cofixpoints.

If termis omitted, type is required and Coq enters proof mode. This can be used to define a term incrementally,
in particular by relying on the re £ine tactic. In this case, the proof should be terminated with De £ined in order
to define a constant for which the computational behavior is relevant. See Entering and exiting proof mode.

2.1.11 Section mechanism

Sections are naming scopes that permit creating section-local declarations that can be used by other declarations
in the section. Declarations made with Variable, Hypothesis, Context, Let, Let Fixpoint and Let
CoFixpoint (or the plural variants of the first two) within sections are local to the section.

In proofs done within the section, section-local declarations are included in the local context of the initial goal of the proof.
They are also accessible in definitions made with the Definition command.

Sections are opened by the Sect ion command, and closed by End. Sections can be nested. When a section is closed,
its local declarations are no longer available. Global declarations that refer to them will be adjusted so they’re still usable
outside the section as shown in this example.

Command: Section ident
Opens the section named ident. Section names do not need to be unique.

Command: End ident
Closes the section or module named ident. See Terminating an interactive module or module type definition for
a description of its use with modules.

After closing the section, the local declarations (variables and local definitions, see Variable) are discharged,
meaning that they stop being visible and that all global objects defined in the section are generalized with respect
to the variables and local definitions they each depended on in the section.

Error: There is nothing to end.

Error: Last block to end has name ident.

Note: Most commands, such as the Hinf commands, Notat ion and option management commands that appear inside
a section are canceled when the section is closed.

Command: Let ident_decl def body
*
Command: Let Fixpoint fix definition with fix definition

*
Command: Let CoFixpoint cofix definition with cofix definition

These are similar to Definition, Fixpoint and CoFixpoint, except that the declared constant is local to
the current section. When the section is closed, all persistent definitions and theorems within it that depend on the
constant will be wrapped with a term_1et with the same declaration.
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As for Definition, Fixpoint and CoFixpoint, if term is omitted, type is required and Coq enters
proof mode. This can be used to define a term incrementally, in particular by relying on the refine tactic. In
this case, the proof should be terminated with De £ ined in order to define a constant for which the computational
behavior is relevant. See Entering and exiting proof mode.

+
Command: Context binder
Declare variables in the context of the current section, like Variahble, but also allowing implicit variables, Implicit
generalization, and let-binders.

Context {A : Type} (a b : A).
Context ~{EgDec A}.
Context (b' := Db).

See also:

Section Binders. Section Sections and contexts in chapter T'ypeclasses.

Example: Section-local declarations

Section sli.

Variables x y : nat.
x is declared
y is declared

The command Let introduces section-wide Let-in definitions. These definitions won’t persist when the section is closed,

and all persistent definitions which depend on y ' will be prefixed with let y' := y in.
Let y' := y.
Definition x' := S x.
Definition x'' := x' + y'.
Print x'.
x' = S x
nat
Print x''.
x'' = x' + yl
nat
End sl.
Print x'.
x' = fun x : nat => S x

nat —> nat

Arguments x' _%nat_scope
Print x''.
x'"'" = fun x y : nat => let y' =y in x' x + y'

nat —-> nat —> nat

Arguments x'' (_ _)%nat_scope

Notice the difference between the value of x' and x' ' inside section s1 and outside.
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2.1.12 The Module System

The module system extends the Calculus of Inductive Constructions providing a convenient way to structure large devel-
opments as well as a means of massive abstraction.

Modules and module types
Access path. An access path is denoted by p and can be either a module variable X or, if p’ is an access path and id an
identifier, then p’.id is an access path.

Structure element. A structure element is denoted by e and is either a definition of a constant, an assumption, a definition
of an inductive, a definition of a module, an alias of a module or a module type abbreviation.

Structure expression. A structure expression is denoted by .S and can be:
* an access path p
* a plain structure Struct e; ...; e End
« a functor Functor(X : S) S/, where X is a module variable, S and S’ are structure expressions
« an application S p, where S is a structure expression and p an access path

« arefined structure S with p := p” or S with p := ¢ : T where S is a structure expression, p and p’ are access paths,
tis aterm and 7' is the type of t.

Module definition. A module definition is written Mod(X : S [:= S’]) and consists of a module variable X, a module
type S which can be any structure expression and optionally a module implementation S’ which can be any structure
expression except a refined structure.

Module alias. A module alias is written MOdA(X == p) and consists of a module variable X and a module path p.

Module type abbreviation. A module type abbreviation is written ModType(Y := S), where Y is an identifier and S
is any structure expression .

Using modules

The module system provides a way of packaging related elements together, as well as a means of massive abstraction.

Command:

? L ? +
Module Import ‘ Export ident |module_binder of_module_ type := |module_expr_ inl r
<4
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module_binder ::= (|/Import ‘ Export ! ident T : module_type_inl)
module_type_inl ::= ! module_type
o)
| module_type | functor_app_annot |
Jfunctor_app_annot  ::= [ inline at level natural ]
| [ no inline ]
module_type ::= qualid

| ( module_type )
| module_type module_expr_atom
| module_type with with_declaration

9
with_declaration : := Definition qualid univ_decl | := term

| Module gualid := qualid
module_expr_atom ::= qualid

+
| (|module_expr_atom | )

: module_type_inl

of _module_type
*
<: module_type_inl
+
! \module_expr_atom

module_expr_inl
+ ®
| module_expr_atom | | functor_app_annot

Defines a module named ident. See the examples /ere.

The Import and Export flags specify whether the module should be automatically imported or exported.

*
Specifying module binder | starts a functor with parameters given by the module binders. (A functor

is a function from modules to modules.)

+
of_module_type specifies the module type. <: module type inl | starts a module that satisfies each
module_type_inl.
+
:= |module_expr _inl s specifies the body of a module or functor definition. If it’s not specified, then the

module is defined inferactively, meaning that the module is defined as a series of commands terminated with End
instead of in a single Modu 1 e command. Interactively defining the module expr_ inlsinaseriesof Include
commands is equivalent to giving them all in a single non-interactive Module command.

The ! prefix indicates that any assumption command (such as Axiom) with an Inline clause in the type of the
functor arguments will be ignored.

Command:

* * +
Module Type ident module_ binder <: module_type_ inl := module_type inl 5
<4

Defines a module type named ident. See the example /ere.

*
Specifying module binder | starts a functor type with parameters given by the module binders.

+
:= module_type_inl | specifies the body of a module or functor type definition. If it’s not specified, then
<+
the module type is defined inferactively, meaning that the module type is defined as a series of commands terminated
with End instead of in a single Module Type command. Interactively defining the module type inls
in a series of Tnclude commands is equivalent to giving them all in a single non-interactive Module Type
command.

Terminating an interactive module or module type definition
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Interactive modules are terminated with the End command, which is also used to terminate Sections. End ident closes
the interactive module or module type i dent. If the module type was given, the command verifies that the content of the
module matches the module type. If the module is not a functor, its components (constants, inductive types, submodules
etc.) are now available through the dot notation.

Error: No such label ident.
Error: Signature components for label ident do not match.

Error: The field ident is missing in qualid.

Note:
1. Interactive modules and module types can be nested.

2. Interactive modules and module types can’t be defined inside of sections. Sections can be defined inside of interactive
modules and module types.

3. Hints and notations (the Hint and Notat i on commands) can also appear inside interactive modules and module
types. Note that with module definitions like:

Module ident; : module_type := ident,.
or
Module ident; : module_type. Include ident,. End ident,.

hints and the like valid for ident ; are the ones defined in module_ type rather then those defined in ident,
(or the module body).

4. Within an interactive module type definition, the Parameter command declares a constant instead of definining
a new axiom (which it does when not in a module type definition).

5. Assumptions such as Axiom that include the Inline clause will be automatically expanded when the functor is
applied, except when the function application is prefixed by !.

*
Command: Include module_type inl <+ module_expr inl

Includes the content of module(s) in the current interactive module. Here module type_inl can be a module
expression or a module type expression. If it is a high-order module or module type expression then the system
tries to instantiate module_type_inl with the current interactive module.

Including multiple modules is a single Tnclude is equivalent to including each module in a separate Tnclude
command.

+
Command: Include Type module type inl -
Deprecated since version 8.3: Use Include instead.

Command:
*

?
Declare Module Import ‘ Export ident module_binder : module_type_ inl
Declares a module ident of type module type_ inl.

If module_binders are specified, declares a functor with parameters given by the list of module_binders.

Command: Import filtered import

+
5
filtered_import ::= qualid|(|qualid|(..) I )
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If qualid denotes a valid basic module (i.e. its module type is a signature), makes its components available by
their short names.

Example

Module Mod.
Definition T:=nat.
Check T.

End Mod.

Check Mod.T.

Fail Check T.
The command has indeed failed with message:
The reference T was not found in the current environment.

Import Mod.
Check T.
T
Set

Some features defined in modules are activated only when a module is imported. This is for instance the case of
notations (see Notations).

Declarations made with the 1 ocal attribute are never imported by the Tmport command. Such declarations are
only accessible through their fully qualified name.

Example

Module A.

Module B.

Local Definition T := nat.
End B.

End A.

Import A.

Check B.T.
Toplevel input, characters 6-9:
> Check B.T.

> AAN

Error: The reference B.T was not found in the current environment.

Appending a module name with a parenthesized list of names will make only those names available with short
names, not other names defined in the module nor will it activate other features.

The names to import may be constants, inductive types and constructors, and notation aliases (for instance, Ltac
definitions cannot be selectively imported). If they are from an inner module to the one being imported, they must
be prefixed by the inner path.

The name of an inductive type may also be followed by (. .) to import it, its constructors and its eliminators if
they exist. For this purpose “eliminator” means a constant in the same module whose name is the inductive type’s
name suffixed by one of _sind, _ind, _recor_rect.

Example
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Module A.

Module B.

Inductive T := C.
Definition U := nat.
End B.

Definition Z := Prop.
End A.

Import A(B.T(..), Z).

Check B.T.
B.T
Prop

Check B.C.

Check 7Z.

Type

Fail Check B.U.

The command has indeed failed with message:

The reference B.U was not found in the current environment.

Check A.B.U.
A.B.U
Set

Command: Export filtered import

+
Similar to Import, except that when the module containing this command is imported, the | gqualid | are

imported as well.

The selective import syntax also works with Export.

Error: qgualid is not a module.

Warning: Trying to mask the absolute name gqualid!

Command: Print Module qualid
Prints the module type and (optionally) the body of the module qualid.

Command: Print Module Type qualid

Prints the module type corresponding to qualid.

Flag: Short Module Printing
This flag (off by default) disables the printing of the types of fields, leaving only their names, for the commands

Print Moduleand Print Module Type.
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Examples

Example: Defining a simple module interactively

Module M.
Definition T := nat.
Definition x := 0.

Definition y : bool.
1 subgoal

exact true.
No more subgoals.

Defined.
End M.

Inside a module one can define constants, prove theorems and do anything else that can be done in the toplevel. Compo-
nents of a closed module can be accessed using the dot notation:

Print M.x.
M.x = 0
nat

Example: Defining a simple module type interactively

Module Type SIG.
Parameter T : Set.
Parameter x : T.
End SIG.

Example: Creating a new module that omits some items from an existing module

Since SIG, the type of the new module N, doesn’t define y or give the body of %, which are not included in N.

Module N : SIG with Definition T := nat := M.
Module N is defined

Print N.T.
N.T = nat
Set
Print N.x.

Ax& [ N.x : N.T |

Fail Print N.y.
The command has indeed failed with message:
N.y not a defined object.
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The definition of N using the module type expression SIGwithDefinition T := nat isequivalent to the following
one:

Module Type SIG'.

Definition T : Set := nat.
Parameter x : T.

End SIG'.

Module N : SIG' := M.

If we just want to be sure that our implementation satisfies a given module type without restricting the interface, we can
use a transparent constraint

Module P <: SIG := M.
Print P.y.
P.y = true
bool

Example: Creating a functor (a module with parameters)

Module Two (X Y: SIG).

Definition T (X.T * Y.T)Stype.
Definition x := (X.x, Y.x).

End Two.

and apply it to our modules and do some computations:
Module Q := Two M N.
Eval compute in (fst Q.x + snd Q.x).

= N.x
nat

Example: A module type with two sub-modules, sharing some fields

Module Type SIG2.
Declare Module M1 : SIG.
Module M2 <: SIG.
Definition T := M1.T.
Parameter x : T.
End M2.
End SIG2.

Module Mod <: SIG2.

Module M1.
Definition T := nat.
Definition x := 1.
End M1.
Module M2 := M.
End Mod.

Notice that M is a correct body for the component M2 since its T component is nat as specified for M1 . T.
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Typing Modules

In order to introduce the typing system we first slightly extend the syntactic class of terms and environments given in
section The terms. The environments, apart from definitions of constants and inductive types now also hold any other
structure elements. Terms, apart from variables, constants and complex terms, include also access paths.

We also need additional typing judgments:
F WF(S), denoting that a structure S is well-formed,

F p : S, denoting that the module pointed by p has type S in the global environment E.

E]]
El]
E[] - S — S, denoting that a structure S is evaluated to a structure S in weak head normal form.
E[J F S, <: S5, denoting that a structure S; is a subtype of a structure S,.

E[] + ey <: ey, denoting that a structure element e_1 is more precise than a structure element e_2.
The rules for forming structures are the following:
WF-STR

W7 (E; E)[]

E[] - W (Struct E’ End)

WF-FUN

E;Mod(X : S)[| F WF(S")
E[] - WF (Functor(X : S) S”)

Evaluation of structures to weak head normal form:

WEVAL-APP

E[J+ 5 — Functor(X : $;) S, E[|F 5, — S,
E[lFp:S; E[FS;<:8;
E[JF Sp— Sof{p/ X, t1/p1.Ces sty /D Cr t

In the last rule, {t;/p;.c1, ..., t,,/Dy-C,} is the resulting substitution from the inlining mechanism. We substitute in .S
the inlined fields p;.c, from Mod(X : S;) by the corresponding delta- reduced term ¢, in p.

WEVAL-WITH-MOD
E[|F S — Structe;;...;e;;Mod(X = S));€;,9;...;€, End
Eiep;..e]F S — S E[lFp: S,
Eiep;.cef]F Sy <8
E[JF Swithz :=p —
Struct e;;...;e;; MOdA(X == p); e, o{p/X};..;e,,{p/ X} End

WEVAL-WITH-MOD-REC
E[JF S — Structey;...;e;;Mod( Xy = S)); ;4055 €, End
E;eq;..;e] F Sy withp :=p, — S,
E[l = S with X;.p :=p; —
Struct e, ;...;e;; Mod(X = Sy);se;,5{p1/X,.p}: s, {p, /X, .p} End

WEVAL-WITH-DEF
E[|F S — Structe;;...;e;; Assum()(c : T7); €495 ---; €, End

Bieyiiel) Def()(c:=t:T) < Assum()(c : T))
E[JF Swithc:=t:T —
Structe;;...;e;;Def()(c:=1t:T);e;,0;...;€, End

2.1. Core language 4



The Coq Reference Manual, Release 8.13.2

WEVAL-WITH-DEF-REC
E[] =S — Structe;;...;e;;Mod( X : Sy)5 ;4955 €, End

e
E;eq;..;e;[| F Sy withp :=p; — S,
ElFSwithX,p:=t:T —

Struct e;;...;e;;Mod(X : S5);€;,0; ... €, End

WEVAL-PATH-MOD1
EllFp— Structey;...;e;;Mod(X = S [:= Si]); €495 -5 €, End
E;e;..5¢]]FS— S
ElFpX — S

WEVAL-PATH-MOD2
WF (E)|] Mod(X : S[:=S,]) € E EJFS— S

WEVAL-PATH-ALIAS1
E[|F p— Structe,;..;e;; MOdA(X == p));e;,0;..; €, End

- G4y

E;ey;..;e]]bpp — S
ElFpX — S

WEVAL-PATH-ALIAS2

WF (E)|] ModA(X ==p,) € E ElFp, — S
EJFX — S

WEVAL-PATH-TYPE1

Ef|Fp— Structe,;...;e;;ModType(Y := S);e;,9; .5 €, End
E;eq;..;e;[]FS— S

ElFpY — S
WEVAL-PATH-TYPE2
WTF(EB)]] ModType(Y := S) € E EJFS— S
EFY — S
Rules for typing module:
MT-EVAL
EJFp— S
ElFp:S
MT-STR
E[jtp:S
ElFp:S/p

The last rule, called strengthening is used to make all module fields manifestly equal to themselves. The notation .S /p has
the following meaning:
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e if S — Structe,;...;e,, End then S/p = Struct e, /p;...;e,,/p End where e/p is defined as follows (note that
opaque definitions are processed as assumptions):

Def()(c:=1t:T)/p=Def()(c:=¢:T)
Assum()(c: U)/p = Def()(c :=p.c: U)

Mod(X : 5)/p = ModA(X == p.X)

ModA(X == p’)/p = ModA(X == p’)
Ind[l'p](I'c :==T;)/p = Ind,()[I'p](F¢ :=T)
Ind,, O[T p)(Te: == Ty)/p = Ind, ([Tp)(T e = T'y)
+ if S — Functor(X : S") S” then S/p = S

The notation Ind,,()[I'p](I'c := I';) denotes an inductive definition that is definitionally equal to the inductive defi-
nition in the module denoted by the path p. All rules which have Ind[T'p|(I' := I';) as premises are also valid for
Ind,()[I'p)(T'c := I'y). We give the formation rule for Ind,()[I'p}(I'c := I';) below as well as the equality rules on
inductive types and constructors.

The module subtyping rules:

MSUB-STR
Eiep;.sen[]Feyq <tejfori=1.m
o:{l..m} — {l..n} injective
E[] F Structey;...;e,, End <: Structef;...; e/, End
MSUB-FUN

EFS5; <5 E;Mod(X : S+, <: 5
E[] F Functor(X : S;)S, <: Functor(X : S7)S%

Structure element subtyping rules:
ASSUM-ASSUM

EH t Tl SB&LQ} T2
E[J F Assum()(c: Ty) <: Assum()(c : Ty)

DEF-ASSUM
EH t Tl SB&Q} T2
E[JF Def()(c:=1t:T;) <: Assum()(c : T5)
ASSUM-DEF
Bl =Ty <gsien T2 Ell = ¢ =g50n ta
E[J - Assum()(c: T}) <: Def()(c :=1ty : T})
DEF-DEF
EH = Tl Sﬂéz,(n T2 E[] F tl —Bsuln t2
E[| - Def()(c:=t, : Ty) <: Def()(c :=ty : Ty)
IND-IND

E[l-Tp =B5u¢n I'p Elp]FT¢ =BsuCn I'c Elp; Tl F Ty =B5u¢n 7
E[[FInd [T (T = T;) < Ind [[p] (T, = )
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INDP-IND

INDP-INDP

MOD-MOD

ALIAS-MOD

MOD-ALIAS

ALIAS-ALIAS

EH F I113‘ —Béuln F}D E[FP] F I1C’ —B6uln F/C E[FP/ FC] + FI —B5uln F}

Bl - Ind, ([T p](Cc = Ty) <: Ind [[] (T, = 1)

E[F-Tp =gscn I'p Elp|FTo =p5n T
El'p; Tl F Ty =Béuln I EllFp =Bsuln P
E[JFInd,)[T'p](Nc :=T7) <:Ind,, ()[Ip] (T :==17)

E[lE S, <: 5,
E[JFMod(X : S;) <: Mod(X : S,)

E[lFp:S, E[F S, <: S,
E[] - ModA(X == p) <: Mod(X : S,)

E[lFp:S, B[l 8; <: 8, EH'—X:&;L@P
E[JFMod(X : S;) <: ModA(X == p)

E[] F P =Buln %)
E[[F ModA(X —= p,) < ModA(X —= p)

MODTYPE-MODTYPE

E[JF S, <: 5 B[ S5, <: 5
E[] F ModType(Y := 5;) <: ModType(Y :=S,)

New environment formation rules

WF-MOD1

WF-MOD2

WF-ALIAS

WF-MODTYPE

WT (E)]] B[] F WF(S)
WF(E;Mod(X : 9))[]

E[JF S, <: S, WF(E)[] E[| - WF(S;) E[| - WF(S,)

WF (E;Mod(X : S, [:= 5,)))]]

WT (E)] Elfp:S
WF (E,ModA(X == p))]]

WF(E)|] E[| - WF(S)
WF (E,ModType(Y :=9))][]
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WEF-IND
W (B;Ind [Tp] (T, = )]
E[lFp: Structey;...;e,;Ind T (T, == I'7);... End :
Bl Ind [[}) (T, = T) <: Ind [Tp] (T = T)
W (E;Ind,()[Lp](T'c :==T))]]

€n

Component access rules

ACC-TYPE1
E[l|Fp: Structey;...;e;; Assum()(c: T);... End

€y

El)Fpec:T

ACC-TYPE2
El|Fp: Structey;...;e;; Def()(c:=t:T);... End

€4y

E[Fpc: T

Notice that the following rule extends the delta rule defined in section Conversion rules

ACC-DELTA
E[l]+p: Structey;...;e;; Def()(c:=t:U);... End
ElFpePst

In the rules below we assume I'p is [p; : Py;..;p, 2 P, Tyis [I; : Ay I s Ay],and T is [e : C; e ey, 2 C)-
ACC-IND1

E[l)Fp: Structey;...;e;;Ind [T'p] (T := Ty);... End
ElEpd;:(py: Py)..(p,: P)A

L]

ACC-IND2

E[l'lFp: Structe;;...;e;Ind [Tp] (T := Ty);... End

BT Ep.cy,: (py: PP P)C LI pyepy) jor
ACC-INDP1

E[JFp: Structe;...;e;;Ind, O[T p](Fe :=T'); ... End

E|Fpd, >sp I,

ACC-INDP2

E[l Fp: Structey;...;e;5Ind,, ()[Cp](Te :=T;); ... End
EH [ p.c; I>5 p’.CZ-

Libraries and qualified names

Names of libraries

The theories developed in Coq are stored in library files which are hierarchically classified into libraries and sublibraries.
To express this hierarchy, library names are represented by qualified identifiers qualid, i.e. as list of identifiers separated
by dots (see Qualified identifiers). For instance, the library file Mult of the standard Coq library Arith is named Coq.
Arith.Mult. The identifier that starts the name of a library is called a library root. All library files of the standard
library of Coq have the reserved root Coq but library filenames based on other roots can be obtained by using Coq
commands (coqc, coqtop, coqdep, ...) options —Q or —R (see By command line options). Also, when an interactive Coq
session starts, a library of root Top is started, unless option —top or —notop is set (see By command line options).
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Qualified identifiers

*

qualid ::= ident|field_ident
field_ident ::= .ident

Library files are modules which possibly contain submodules which eventually contain constructions (axioms, parameters,
definitions, lemmas, theorems, remarks or facts). The absolute name, or full name, of a construction in some library file
is a qualified identifier starting with the logical name of the library file, followed by the sequence of submodules names
encapsulating the construction and ended by the proper name of the construction. Typically, the absolute name Coq.
Init.Logic.eqdenotes Leibniz’ equality defined in the module Logic in the sublibrary Init of the standard library
of Coq.

The proper name that ends the name of a construction is the short name (or sometimes base name) of the construction
(for instance, the short name of Cog.Init.Logic.eqis eq). Any partial suffix of the absolute name is a partially
qualified name (e.g. Logic.eq is a partially qualified name for Cog.Init.Logic.eq). Especially, the short name
of a construction is its shortest partially qualified name.

Coq does not accept two constructions (definition, theorem, ...) with the same absolute name but different constructions
can have the same short name (or even same partially qualified names as soon as the full names are different).

Notice that the notion of absolute, partially qualified and short names also applies to library filenames.

Visibility

Coq maintains a table called the name table which maps partially qualified names of constructions to absolute names.
This table is updated by the commands Require, Import and Export and also each time a new declaration is added
to the context. An absolute name is called visible from a given short or partially qualified name when this latter name is

enough to denote it. This means that the short or partially qualified name is mapped to the absolute name in Coq name
table. Definitions with the 1ocal attribute are only accessible with their fully qualified name (see Top-level definitions).

It may happen that a visible name is hidden by the short name or a qualified name of another construction. In this case,
the name that has been hidden must be referred to using one more level of qualification. To ensure that a construction
always remains accessible, absolute names can never be hidden.

Example
Check 0.
0
nat
Definition nat := bool.

nat is defined

Check O.
0
Datatypes.nat

Check Datatypes.nat.
Datatypes.nat
Set

Locate nat.

(continues on next page)
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(continued from previous page)

Constant Top.nat
Inductive Cog.Init.Datatypes.nat
(shorter name to refer to it in current context is Datatypes.nat)

See also:

Commands Locate.

Libraries and filesystem

Note: The questions described here have been subject to redesign in Coq 8.5. Former versions of Coq use the same
terminology to describe slightly different things.

Compiled files (. vo and . vio) store sub-libraries. In order to refer to them inside Coq, a translation from file-system
names to Coq names is needed. In this translation, names in the file system are called physical paths while Coq names
are contrastingly called logical names.

A logical prefix Lib can be associated with a physical path using the command line option —Q path Lib. All subfolders of
path are recursively associated with the logical path Lib extended with the corresponding suffix coming from the physical
path. For instance, the folder path/f£00/Bar maps to Lib.f00.Bar. Subdirectories corresponding to invalid Coq
identifiers are skipped, and, by convention, subdirectories named CVS or _darcs are skipped too.

Thanks to this mechanism, . vo files are made available through the logical name of the folder they are in, extended with
their own basename. For example, the name associated with the file path/£f00/Bar/File.vois Lib.f00.Bar.
File. The same caveat applies for invalid identifiers. When compiling a source file, the . vo file stores its logical name,
so that an error is issued if it is loaded with the wrong loadpath afterwards.

Some folders have a special status and are automatically put in the path. Coq commands associate auto-
matically a logical path to files in the repository trees rooted at the directory from where the command is
launched, coglib/user-contrib/, the directories listed in the SCOQPATH, ${XDG_DATA_HOME}/coq/ and
${XDG_DATA_DIRS}/coqg/ environment variables (see XDG base directory speciﬁcation”) with the same physical-
to-logical translation and with an empty logical prefix.

The command line option —R is a variant of —Q which has the strictly same behavior regarding loadpaths, but which also
makes the corresponding . vo files available through their short names in a way similar to the ITmport command. For in-
stance, -R path Lib associates to the file /path/f00/Bar/File.vo the logical name Lib.f00.Bar.File,
but allows this file to be accessed through the short names £00.Bar.File,Bar.File and File. If several files
with identical base name are present in different subdirectories of a recursive loadpath, which of these files is found first
may be system- dependent and explicit qualification is recommended. The From argument of the Require command
can be used to bypass the implicit shortening by providing an absolute root to the required file (see Compiled files).

There also exists another independent loadpath mechanism attached to OCaml object files (. cmo or . cmxs) rather than
Coq object files as described above. The OCaml loadpath is managed using the option —I path (in the OCaml world,
there is neither a notion of logical name prefix nor a way to access files in subdirectories of path). See the command
Declare ML Module in Compiled files to understand the need of the OCaml loadpath.

See By command line options for a more general view over the Coq command line options.

13 http://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html
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Controlling the scope of commands with locality attributes

Many commands have effects that apply only within a specific scope, typically the section or the module in which the
command was called. Locality attributes can alter the scope of the effect. Below, we give the semantics of each locality
attribute while noting a few exceptional commands for which 1ocal and global attributes are interpreted differently.

Attribute: local

The 1ocal attribute limits the effect of the command to the current scope (section or module).

The Local prefix is an alternative syntax for the 1ocal attribute (see legacy_attr).

Note:

* For some commands, this is the only locality supported within sections (e.g., for Notation, Ltac and Hint
commands).

* For some commands, this is the default locality within sections even though other locality attributes are sup-
ported as well (e.g., for the Argument s command).

Warning: Exception: when 1ocal is applied to Definition, Theorem or their variants, its semantics
are different: it makes the defined objects available only through their fully-qualified names rather than their
unqualified names after an Tmport.

Attribute: export

The export attribute makes the effect of the command persist when the section is closed and applies the effect
when the module containing the command is imported.

Commands supporting this attribute include Set, Unset and the Hint commands, although the latter don’t support
it within sections.

Attribute: global

The global attribute makes the effect of the command persist even when the current section or module is closed.
Loading the file containing the command (possibly transitively) applies the effect of the command.

The Global prefix is an alternative syntax for the g1 obal attribute (see legacy_attr).

Warning: Exception: for a few commands (like Notat ionand Ltac), this attribute behaves like export.

Warning: We strongly discourage using the global locality attribute because the transitive nature of file
loading gives the user little control. We recommend using the e xpo rt locality attribute where it is supported.
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2.1.13 Primitive objects

Primitive Integers

The language of terms features 63-bit machine integers as values. The type of such a value is axiomatized; it is declared
through the following sentence (excerpt from the Int 63 module):

Primitive int := #int63_type.

This type is equipped with a few operators, that must be similarly declared. For instance, equality of two primitive integers
can be decided using the Int 63 . egb function, declared and specified as follows:

Primitive egb := #int63_eq.
Notation "m '==' n" := (egb m n) (at level 70, no associativity) : int63_scope.
Axiom eqgb_correct : forall i j, (i == J)%inté63 = true -> i = j.

The complete set of such operators can be obtained looking at the Int 63 module.

These primitive declarations are regular axioms. As such, they must be trusted and are listed by the Print
Assumptions command, as in the following example.

From Cog Require Import Int63.

Lemma one_minus_one_is _zero : (1 — 1 = 0)%int63.
Proof. apply egb_correct; vm_compute; reflexivity. Qed.

Print Assumptions one_minus_one_is_zero.

Axioms:

sub : int -> int -> int

egb_correct : forall 1 j : int, (i =? Jj)%int63 = true -> i = j
egb : int —-> int -> bool

The reduction machines implement dedicated, efficient rules to reduce the applications of these primitive operations.

The extraction of these primitives can be customized similarly to the extraction of regular axioms (see Program extraction).
Nonetheless, the Ext rOCam1Int 63 module can be used when extracting to OCaml: it maps the Coq primitives to types
and functions of a Uint 63 module. That OCaml module is not produced by extraction. Instead, it has to be provided
by the user (if they want to compile or execute the extracted code). For instance, an implementation of this module can
be taken from the kernel of Coq.

Literal values (at type Int63.int) are extracted to literal OCaml values wrapped into the Uint63.0f_int
(resp. Uint 63.0f_int64) constructor on 64-bit (resp. 32-bit) platforms. Currently, this cannot be customized (see
the function Uint 63 . compile from the kernel).

Primitive Floats

The language of terms features Binary64 floating-point numbers as values. The type of such a value is axiomatized; it is
declared through the following sentence (excerpt from the PrimF1loat module):

Primitive float := #float64_type.

This type is equipped with a few operators, that must be similarly declared. For instance, the product of two primitive
floats can be computed using the PrimFloat .mul function, declared and specified as follows:
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Primitive mul := #float64_mul.
Notation "x * y" := (mul x y) : float_scope.

Axiom mul_spec : forall x y, Prim2SF (x * y)%float = SF64mul (Prim2SF x) (Prim2SF vy).

where Prim2SF is defined in the F1loatOps module.
The set of such operators is described in section Floats library.

These primitive declarations are regular axioms. As such, they must be trusted, and are listed by the Print
Assumptions command.

The reduction machines (vimm_compute, native_compute) implement dedicated, efficient rules to reduce the appli-
cations of these primitive operations, using the floating-point processor operators that are assumed to comply with the
IEEE 754 standard for floating-point arithmetic.

The extraction of these primitives can be customized similarly to the extraction of regular axioms (see Program extraction).
Nonetheless, the Ext rOCam1Floats module can be used when extracting to OCaml: it maps the Coq primitives to
types and functions of a Float 64 module. Said OCaml module is not produced by extraction. Instead, it has to be
provided by the user (if they want to compile or execute the extracted code). For instance, an implementation of this
module can be taken from the kernel of Coq.

Literal values (of type Float64.t) are extracted to literal OCaml values (of type float) written in hexadecimal
notation and wrapped into the Float 64 .0f_float constructor, e.g.: Float64.0f_float (0xlp+0).

Primitive Arrays

The language of terms features persistent arrays as values. The type of such a value is axiomatized; it is declared through
the following sentence (excerpt from the PArray module):

Primitive array := #array_type.

This type is equipped with a few operators, that must be similarly declared. For instance, elements in an array can be
accessed and updated using the PArray.get and PArray . set functions, declared and specified as follows:

Primitive get := #array_get.

Primitive set := #array_set.

Notation "t .[ i ]" := (get t 1).

Notation "t .[ i <- a ]" := (set t 1 a).

Axiom get_set_same : forall A t i (a:A), (i < length t) = true -> t.[i<-a].[1] = a.
Axiom get_set_other : forall A t i j (a:A), 1 <> 3 -> t.[i<-al.[J] = t.[J].

The rest of these operators can be found in the PArray module.

These primitive declarations are regular axioms. As such, they must be trusted and are listed by the Print
Assumptions command.

The reduction machines (vm_compute, nat ive_compute) implement dedicated, efficient rules to reduce the appli-
cations of these primitive operations.

The extraction of these primitives can be customized similarly to the extraction of regular axioms (see Program extraction).
Nonetheless, the Ext rOCam1PArray module can be used when extracting to OCaml: it maps the Coq primitives to
types and functions of a Parray module. Said OCaml module is not produced by extraction. Instead, it has to be
provided by the user (if they want to compile or execute the extracted code). For instance, an implementation of this
module can be taken from the kernel of Coq (see kernel/parray.ml).

Coq’s primitive arrays are persistent data structures. Semantically, a set operation t . [1 <— a] represents a new array
that has the same values as t, except at position 1 where its value is a. The array t still exists, can still be used and its
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values were not modified. Operationally, the implementation of Coq’s primitive arrays is optimized so that the new array
t.[1 <-= a] does not copy all of t. The details are in section 2.3 of [[CFO7]]. In short, the implementation keeps
one version of t as an OCaml native array and other versions as lists of modifications to t. Accesses to the native array
version are constant time operations. However, accesses to versions where all the cells of the array are modified have
O(n) access time, the same as a list. The version that is kept as the native array changes dynamically upon each get and
set call: the current list of modifications is applied to the native array and the lists of modifications of the other versions
are updated so that they still represent the same values.

2.1.14 Polymorphic Universes

Author Matthieu Sozeau

General Presentation

Warning: The status of Universe Polymorphism is experimental.

This section describes the universe polymorphic extension of Coq. Universe polymorphism makes it possible to write
generic definitions making use of universes and reuse them at different and sometimes incompatible universe levels.

A standard example of the difference between universe polymorphic and monomorphic definitions is given by the identity
function:

Definition identity {A : Type} (a : A) := a.

By default, constant declarations are monomorphic, hence the identity function declares a global universe (say Top. 1)
for its domain. Subsequently, if we try to self-apply the identity, we will get an error:

Fail Definition selfid := identity (Cidentity).
The command has indeed failed with message:
The term "@identity" has type "forall A : Type, A —> A"
while it is expected to have type "?A"
(unable to find a well-typed instantiation for "?A": cannot ensure that
"Type@{identity.u0+1}" is a subtype of "Typel{identity.ulO}").

Indeed, the global level Top . 1 would have to be strictly smaller than itself for this self-application to type check, as the
typeof (@identity) is forall (A : Type@{Top.l1}), A —> A whose type isitself Type@{Top.1+1}.
A universe polymorphic identity function binds its domain universe level at the definition level instead of making it global.
Polymorphic Definition pidentity {A : Type} (a : A) := a.

About pidentity.
pidentity@{u} : forall {A : Type}, A -> A

pidentity is universe polymorphic
Arguments pidentity {A}%type_scope _

pidentity is transparent
Expands to: Constant Top.pidentity

It is then possible to reuse the constant at different levels, like so:

Definition selfpid := pidentity (@pidentity).
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Of course, the two instances of pidentity in this definition are different. This can be seen when the Printing
Universes flagis on:

Print selfpid.
selfpid =
pidentity@{selfpid.ul0} (C@pidentity@{selfpid.ul})
forall A : Type@{selfpid.ul}, A -> A
(* {selfpid.ul selfpid.ul} |= selfpid.ul < selfpid.ul *)

Arguments selfpid _%type_scope _

Now pidentity is used at two different levels: at the head of the application it is instantiated at Top .3 while in
the argument position it is instantiated at Top . 4. This definition is only valid as long as Top . 4 is strictly smaller than
Top . 3, as shown by the constraints. Note that this definition is monomorphic (not universe polymorphic), so the two
universes (in this case Top . 3 and Top . 4) are actually global levels.

When printing pidentity, we can see the universes it binds in the annotation @{Top.2}. Additionally, when
Printing Universes is on we print the “universe context” of pidentity consisting of the bound universes
and the constraints they must verify (for pident ity there are no constraints).

Inductive types can also be declared universes polymorphic on universes appearing in their parameters or fields. A typical
example is given by monoids:

Polymorphic Record Monoid := { mon_car :> Type; mon_unit : mon_car;
mon_op : mon_car —> mon_car —> mon_car .

Print Monoid.

The Monoid’s carrier universe is polymorphic, hence it is possible to instantiate it for example with Monoid itself. First
we build the trivial unit monoid in Set:

Definition unit_monoid : Monoid :=
{| mon_car := unit; mon_unit := tt; mon_op x y := tt |}.

From this we can build a definition for the monoid of Set-monoids (where multiplication would be given by the product
of monoids).

Polymorphic Definition monoid_monoid : Monoid.
refine ((@Build_Monoid Monoid unit_monoid (fun x y => x)).
Defined.

Print monoid_monoid.
monoid_monoid@{u} =

{1

mon_car := Monoid@{Set};
mon_unit := unit_monoid;
mon_op := fun x _ : Monoid@{Set} => x

[}
Monoid@{u}
(* u |[= Set < u *)

As one can see from the constraints, this monoid is “large”, it lives in a universe strictly higher than Set.
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Polymorphic, Monomorphic

?
Attribute: universes (polymorphic= yes | no )
This boolean attribute can be used to control whether universe polymorphism is enabled in the definition of an
inductive type. There is also a legacy syntax using the Polymorphic prefix (see legacy_attr) which, as
shown in the examples, is more commonly used.

When universes (polymorphic=no) is used, global universe constraints are produced, even when the
Universe Polymorphism flagis on. There is also a legacy syntax using the Monomorphic prefix (see
legacy_attr).

Attribute: universes (monomorphic)
Deprecated since version 8.13: Use universes (polymorphic=no) instead.

Flag: Universe Polymorphism
This flag is off by default. When it is on, new declarations are polymorphic unless the
universes (polymorphic=no) attribute is used to override the default.

Many other commands can be used to declare universe polymorphic or monomorphic constants depending on whether
the Universe Polymorphismflagisonorthe universes (polymorphic) attribute is used:

e Lemma, Axiom, etc. can be used to declare universe polymorphic constants.

* Using the universes (polymorphic) attribute with the Section command will locally set the polymor-
phism flag inside the section.

* Variable, Context, Universe and Constraint in a section support polymorphism. See Universe poly-
morphism and sections for more details.

e Using the universes (polymorphic) attribute with the Hint Resolveor Hint Rewrite commands
will make auto/ rewrite use the hint polymorphically, not at a single instance.

Cumulative, NonCumulative

?
Attribute: universes (cumulative= yes | no )
Polymorphic inductive types, coinductive types, variants and records can be declared cumulative using this boolean
attribute or the legacy Cumulative prefix (see legacy_attr) which, as shown in the examples, is more
commonly used.

This means that two instances of the same inductive type (family) are convertible based on the universe variances;
they do not need to be equal.

When the attribtue is off, the inductive type is non-cumulative even if the Polymorphic Inductive
Cumulativity flag is on. There is also a legacy syntax using the NonCumulative prefix (see
legacy_attr).

This means that two instances of the same inductive type (family) are convertible only if all the universes are equal.

Error: The cumulative attribute can only be used in a polymorphic context.
Using this attribute requires being in a polymorphic context, i.e. either having the Universe
Polymorphism flag on, or having used the universes (polymorphic) attribute as well.

?
Note: #[ universes (polymorphic/= yes ?), universes (cumulative = |yes ‘ no )

1 can be abbreviated into #[ universes (polymorphic/= yes 2 ,
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?
cumulative = yes ‘ no | ) 1.

Attribute: universes (noncumulative)

Deprecated since version 8.13: Use universes (cumulative=no) instead.

Flag: Polymorphic Inductive Cumulativity

When this flag is on (it is off by default), it makes all subsequent polymorphic inductive definitions cumulative, unless
the universes (cumulative=no) attribute is used to override the default. It has no effect on monomorphic

inductive definitions.

Consider the examples below.

Polymorphic Cumulative Inductive list {A
| nil : list
| cons : A —> list —> list.

Print list.
Inductive list@{u} (A Typel{u})
nil : list@{u} | cons
(* *u [= %)

Arguments list {A}%type_scope
Arguments nil {A}%type_scope
Arguments cons {A}%type_scope

A —> list@{u}

Typel{max (Set,u) } :=
-> list@{u}

When printing 11 st, the universe context indicates the subtyping constraints by prefixing the level names with symbols.

Because inductive subtypings are only produced by comparing inductives to themselves with universes changed, they
amount to variance information: each universe is either invariant, covariant or irrelevant (there are no contravariant
subtypings in Coq), respectively represented by the symbols =, + and *.

Here we see that 1ist binds an irrelevant universe, so any two instances of list are convertible: E[I'] F
lista{i} A =g5,¢, list@{j} B whenever E[I'] = A =g, B and this applies also to their corresponding construc-

tors, when they are comparable at the same type.

See Conversion rules for more details on convertibility and subtyping. The following is an example of a record with

non-trivial subtyping relation:

Polymorphic Cumulative Record packType := {pk

packType is defined
pk is defined

About packType.
packType@{u}
(* +u [= %)

Type@{u+l}

packType is universe polymorphic
Expands to: Inductive Top.packType

packType binds a covariant universe, i.e.

Type} .

E[I'] - packType@{i} =g;,, packType@{j} whenever i < j
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Specifying cumulativity

The variance of the universe parameters for a cumulative inductive may be specified by the user.

For the following type, universe a has its variance automatically inferred (it is irrelevant), b is required to be irrelevant,
¢ is covariant and d is invariant. With these annotations c and d have less general variances than would be inferred.

Polymorphic Cumulative Inductive Dummyl{a *b +c =d} : Prop := dummy.
Dummy is defined
Dummy_rect is defined
Dummy_ind is defined
Dummy_rec is defined
Dummy_sind is defined

About Dummy .
Dummy@{a b c d} : Prop
(* *a *b +c =d [= *)

Dumnmy is universe polymorphic
Expands to: Inductive Top.Dummy

Insufficiently restrictive variance annotations lead to errors:

Fail Polymorphic Cumulative Record bad@{*a} := {p : Type€l{a}}.
The command has indeed failed with message:
Incorrect variance for universe Top.45: expected * but cannot be less restrictive.
~than +.

An example of a proof using cumulativity

Set Universe Polymorphism.
Set Polymorphic Inductive Cumulativity.

Inductive eq@{i} {A : Type@{i}} (x : A) : A —> Typel{i} := eq_refl : eq x x.

Definition funext_type€@{a b e} (A : Typel{a}) (B : A —> Type€l{b})
:= forall f g : (forall a, B a),

(forall x, eql{e} (f x) (g x))

-> eq@{e} f g.

Section down.
Universes a b e e'.
Constraint e' < e.
Lemma funext_down {A B}
(H : @funext_typel{a b e} A B) : (@funext_typel{a b e'} A B.
Proof.
exact H.
Defined.
End down.
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Cumulativity Weak Constraints

Flag: Cumulativity Weak Constraints
When set, which is the default, causes "weak” constraints to be produced when comparing universes in an irrelevant
position. Processing weak constraints is delayed until minimization time. A weak constraint between u and v when
neither is smaller than the other and one is flexible causes them to be unified. Otherwise the constraint is silently
discarded.

This heuristic is experimental and may change in future versions. Disabling weak constraints is more predictable
but may produce arbitrary numbers of universes.

Global and local universes

Each universe is declared in a global or local context before it can be used. To ensure compatibility, every global universe
is set to be strictly greater than Set when it is introduced, while every local (i.e. polymorphically quantified) universe is
introduced as greater or equal to Set.

Conversion and unification

The semantics of conversion and unification have to be modified a little to account for the new universe instance arguments
to polymorphic references. The semantics respect the fact that definitions are transparent, so indistinguishable from their
bodies during conversion.

This is accomplished by changing one rule of unification, the first- order approximation rule, which applies when two
applicative terms with the same head are compared. It tries to short-cut unfolding by comparing the arguments directly. In
case the constant is universe polymorphic, we allow this rule to fire only when unifying the universes results in instantiating
a so-called flexible universe variables (not given by the user). Similarly for conversion, if such an equation of applicative
terms fail due to a universe comparison not being satisfied, the terms are unfolded. This change implies that conversion
and unification can have different unfolding behaviors on the same development with universe polymorphism switched on
or off.

Minimization

Universe polymorphism with cumulativity tends to generate many useless inclusion constraints in general. Typically at
each application of a polymorphic constant £, if an argument has expected type Type@{1i} and is given a term of type
Type@{J}, aj < i constraint will be generated. It is however often the case that an equation j = ¢ would be more
appropriate, when £’s universes are fresh for example. Consider the following example:

Definition id0 := (@pidentity nat 0.
Print 1dO.
id0@{} = pidentity@{Set} O
nat

This definition is elaborated by minimizing the universe of 1d0 to level Set while the more general definition would
keep the fresh level 1 generated at the application of id and a constraint that Set < 7. This minimization process is
applied only to fresh universe variables. It simply adds an equation between the variable and its lower bound if it is an
atomic universe (i.e. not an algebraic max() universe).

Flag: Universe Minimization ToSet
Turning this flag off (it is on by default) disallows minimization to the sort Set and only collapses floating universes
between themselves.
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Explicit Universes

universe_name ::= qualid
| Set
| Prop
*
univ_annot ::=  @{ | universe_level | }
universe_level ::=  Set
| Prop
| Type
| -
| qualid
3 ?
univ_decl ::= @{|ident | |+ | | univ_constraint }
b
o ?
? ? * ?
cumul_univ_decl = @{||+ | = | *7 ident | [+ 7 |||univ_constraint _ [+ }
b
univ_constraint = universe_name|< | = | <=|universe_name

The syntax has been extended to allow users to explicitly bind names to universes and explicitly instantiate polymorphic

definitions.

Command: Universe ident

In the monomorphic case, declares new global universes with the given names. Global universe names live in a sep-
arate namespace. The command supports the universes (polymorphic) attribute (or the Polymorphic
legacy attribute) only in sections, meaning the universe quantification will be discharged for each section definition
independently.

Error: Polymorphic universes can only be declared inside sections,
use Monomorphic Universe instead.

Command: Constraint univ_constraint

14

Declares new constraints between named universes.

If consistent, the constraints are then enforced in the global environment. Like Universe, it can be used with
the universes (polymorphic) attribute (or the Polymorphic legacy attribute) in sections only to declare
constraints discharged at section closing time. One cannot declare a global constraint on polymorphic universes.

Error: Undeclared universe ident.
Error: Universe inconsistency.

Error:
Polymorphic universe constraints can only be declared inside sections,
use Monomorphic Constraint instead
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Printing universes

Flag: Printing Universes
Turn this flag on to activate the display of the actual level of each occurrence of Type. See Sorts for details. This
wizard flag, in combination with Printing A1l can help to diagnose failures to unify terms apparently identical
but internally different in the Calculus of Inductive Constructions.

? * 2
Command: Print Sorted Universes Subgraph ( qualid ) string

This command can be used to print the constraints on the internal level of the occurrences of Type (see Sorts).

The Subgraph clause limits the printed graph to the requested names (adjusting constraints to preserve the implied
transitive constraints between kept universes).

The Sorted clause makes each universe equivalent to a numbered label reflecting its level (with a linear ordering)
in the universe hierarchy.

stringis an optional output filename. If stringendsin .dot or .gv, the constraints are printed in the DOT
language, and can be processed by Graphviz tools. The format is unspecified if string doesn’t end in . dot or

.gV.

Polymorphic definitions

For polymorphic definitions, the declaration of (all) universe levels introduced by a definition uses the following syntax:

Polymorphic Definition le@{i j} (A : Type@{i}) : Type€@{j} := A.

Print le.
le@{i J} =
fun A : TypeC{i} => A
TypeC{i} -> Typel{j}
(*iJI=di<=3 %

Arguments le _S$type_scope

During refinement we find that j must be larger or equal than i, as we are using 2 : Type@{i} <= Type@{]j},
hence the generated constraint. At the end of a definition or proof, we check that the only remaining universes are the
ones declared. In the term and in general in proof mode, introduced universe names can be referred to in terms. Note
that local universe names shadow global universe names. During a proof, one can use Show Universes to display the
current context of universes.

It is possible to provide only some universe levels and let Coq infer the others by adding a + in the list of bound universe
levels:

Fail Definition foobar@{u} : Typel{u} := Type.
The command has indeed failed with message:
Universe {Top.73} is unbound.

Definition foobar@{u +} : Type€@{u} := Type.
foobar is defined

Set Printing Universes.
Print foobar.
foobarl{u ul} = Type€{ul}
Typel{u}
(* u u0 |[= u0 < u *)
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This can be used to find which universes need to be explicitly bound in a given definition.
Definitions can also be instantiated explicitly, giving their full instance:

Check (pidentity@{Set}).

pidentity@{Set}
?A —> ?A

where

?A : [ |- Set]

Monomorphic Universes k 1.
Check (le@{k 1}).
le@{k 1}
TypeC{k} —> Typel{l}
(* {} |= k <=1 %)

User-named universes and the anonymous universe implicitly attached to an explicit Type are considered rigid for uni-
fication and are never minimized. Flexible anonymous universes can be produced with an underscore or by omitting the
annotation to a polymorphic definition.

Check (fun x => x) : Type —> Type.
(fun x : Type@{Top.78} => x) : Type@{Top.78} —> Typel{Top.79}
Type@{Top.78} —> Typel{Top.79}
(* {Top.79 Top.78} |= Top.78 <= Top.79 *)

Check (fun x => x) : Type —> Type@{_}.
(fun x : Type@{Top.80} => x) : Typel{Top.80} —> Typel@{Top.80}
Typel@{Top.80} —-> Type@{Top.80}
(* {Top.80} [= *)

Check le@{k _}.
le@{k k}
TypeC{k} —> TypeC{k}

Check le.
le@{Top.83 Top.83}
Type@{Top.83} —> Typel{Top.83}
(* {Top.83} [= *)

Flag: Strict Universe Declaration
Turning this flag off allows one to freely use identifiers for universes without declaring them first, with the semantics
that the first use declares it. In this mode, the universe names are not associated with the definition or proof once
it has been defined. This is meant mainly for debugging purposes.

Flag: Private Polymorphic Universes
This flag, on by default, removes universes which appear only in the body of an opaque polymorphic definition from
the definition’s universe arguments. As such, no value needs to be provided for these universes when instantiating
the definition. Universe constraints are automatically adjusted.

Consider the following definition:

Lemma foo@{i} : Type@{i}.
1 subgoal

Type@{i}

Proof. exact Type. Qed.
(continues on next page)

2.1. Core language 89



The Coq Reference Manual, Release 8.13.2

(continued from previous page)
No more subgoals.

Print foo.
fool@{i} =
Typel{Top.86}
Typel{1i}
(* Public universes:
i |= Set < 1
Private universes:
{Top.86} |= Top.86 < i *)

The universe Top . xxx for the Type in the body cannot be accessed, we only care that one exists for any instan-
tiation of the universes appearing in the type of foo. This is guaranteed when the transitive constraint Set <=
Top.xxx < 1 isverified. Then when using the constant we don’t need to put a value for the inner universe:

Check foo@{_}.
fool@{Top.87}
Typel@{Top.87}
(* {Top.87} |= Set < Top.87 *)

and when not looking at the body we don’t mention the private universe:

About foo.
foo@{i} : Type@{i}
(* i |= Set < i *)

foo is universe polymorphic
foo is opaque
Expands to: Constant Top.foo

To recover the same behaviour with regard to universes as Defined, the Private Polymorphic
Universes flag may be unset:

Unset Private Polymorphic Universes.

Lemma bar : Type. Proof. exact Type. Qed.
1 subgoal

Typel@{Top.88}

No more subgoals.

About bar.
bar@{u ul0} : Typel{u}
(* u u0 |[= u0 < u *)

bar is universe polymorphic
bar is opaque
Expands to: Constant Top.bar

Fail Check bar@{_}.
The command has indeed failed with message:
Universe instance should have length 2.

Check bar@{_ _}.
(continues on next page)
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bar@{Top.91
Top.92}
Typel@{Top.91}
(* {Top.92 Top.91} |= Top.92 < Top.91 *)

Note that named universes are always public.

Set Private Polymorphic Universes.
Unset Strict Universe Declaration.

Lemma baz : Typel{outer}. Proof. exact Type(@{inner}. Qed.
1 subgoal

Typel{outer}

No more subgoals.

About baz.
baz@{outer inner} : Type€{outer}
(* outer inner |= inner < outer *)

baz is universe polymorphic
baz is opaque
Expands to: Constant Top.baz

Universe polymorphism and sections

Variables, Context, Universe and Constraint in a section support polymorphism. This means that the
universe variables and their associated constraints are discharged polymorphically over definitions that use them. In other
words, two definitions in the section sharing a common variable will both get parameterized by the universes produced by
the variable declaration. This is in contrast to a “mononorphic” variable which introduces global universes and constraints,
making the two definitions depend on the same global universes associated with the variable.

It is possible to mix universe polymorphism and monomorphism in sections, except in the following ways:

¢ no monomorphic constraint may refer to a polymorphic universe:

Section Foo.

Polymorphic Universe 1i.
Fail Constraint i = i.

The command has indeed failed with message:

Cannot add monomorphic constraints which refer to section polymorphic.
suniverses.

This includes constraints implicitly declared by commands such as Variable, which may need to be used with
universe polymorphism activated (locally by attribute or globally by option):

Fail Variable A : (Type@{i} : Type) .
The command has indeed failed with message:
Cannot add monomorphic constraints which refer to section polymorphic.
suniverses.

(continues on next page)
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Polymorphic Variable A : (TypeC{i} : Type) .
A is declared
(in the above example the anonymous Type constrains polymorphic universe i to be strictly smaller.)
* no monomorphic constant or inductive may be declared if polymorphic universes or universe constraints are present.

These restrictions are required in order to produce a sensible result when closing the section (the requirement on constants
and inductives is stricter than the one on constraints, because constants and inductives are abstracted by all the section’s
polymorphic universes and constraints).

2.1.15 SProp (proof irrelevant propositions)

Warning: The status of strict propositions is experimental.

In particular, conversion checking through bytecode or native code compilation currently does not understand proof
irrelevance.

This section describes the extension of Coq with definitionally proof irrelevant propositions (types in the sort SProp, also
known as strict propositions) as described in [[GCST19]].

Use of SProp may be disabled by passing —~disallow-sprop to the Coq program or by turning the A1low
StrictProp flag off.

Flag: Allow StrictProp
Enables or disables the use of SProp. It is enabled by default. The command-line flag —disallow—sprop
disables SProp at startup.

Error: SProp is disallowed because the "Allow StrictProp" flag is off.

Some of the definitions described in this document are available through Coq.Logic.StrictProp, which see.

Basic constructs

The purpose of SProp is to provide types where all elements are convertible:

Theorem irrelevance (A : SProp) (P : A -> Prop) : forall x : A, P x —> forall y : A,_
<P y.
1 subgoal

forall x : A, P x —> forall y : A, Py

Proof.
intros * Hx *.
1 subgoal
A : SProp
P : A -> Prop
x : A
Hx : P x
y : A

(continues on next page)
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exact Hx.
No more subgoals.

Qed.

Since we have definitional 7-expansion for functions, the property of being a type of definitionally irrelevant values is
impredicative, and so is SProp:

Check fun (A:Type) (B:A —-> SProp) => (forall x:A, B x) : SProp.
fun (A : Type) (B : A -> SProp) => (forall x : A, B x) : SProp
forall A : Type, (A —-> SProp) —> SProp

In order to keep conversion tractable, cumulativity for SProp is forbidden, unless the Cumulative StrictProp
flag is turned on:

Fail Check (fun (A:SProp) => A : Type) .
The command has indeed failed with message:
In environment
A : SProp
The term "A" has type "SProp" while it is expected to have type "Type".

Set Cumulative StrictProp.
Check (fun (A:SProp) => A : Type) .
fun A : SProp => A : Type
SProp —> Type

We can explicitly lift strict propositions into the relevant world by using a wrapping inductive type. The inductive stops
definitional proof irrelevance from escaping.

Inductive Box (A:SProp) : Prop := box : A —> Box A.
Arguments box {_} _

Fail Check fun (A:SProp) (x y : Box A) => eq_refl : x = y.
The command has indeed failed with message:
In environment

A : SProp
X : Box A
y : Box A

The term "eg refl" has type "x = x" while it is expected to have type
"x = y" (cannot unify "x" and "y").

Definition box_irrelevant (A:SProp) (x y : Box A) : x =Yy
:= match x, y with box x, box y => eq_refl end.

In the other direction, we can use impredicativity to "squash” a relevant type, making an irrelevant approximation.

Definition iSquash (A:Type) : SProp
:= forall P : SProp, (A —> P) —> P.
Definition isquash A : A -> iSquash A
:= fun a P £ => f a.
Definition iSquash_sind A (P : iSquash A -> SProp) (H : forall x : A, P (isquash A x))
forall x : iSquash A, P x
:= fun x => x (P x) (H : A —> P Xx).
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Or more conveniently (but equivalently)

Inductive Squash (A:Type) : SProp := squash : A —> Squash A.

Most inductives types defined in SProp are squashed types, i.e. they can only be eliminated to construct proofs of other
strict propositions. Empty types are the only exception.

Inductive sEmpty : SProp :=
Check sEmpty_rect.

sEmpty_rect
forall (P : sEmpty —> Type) (s : sEmpty), P s

Note: Eliminators to strict propositions are called foo_sind, in the same way that eliminators to propositions are
called foo_ind.

Primitive records in SProp are allowed when fields are strict propositions, for instance:

Set Primitive Projections.
Record sProd (A B : SProp) : SProp := { sfst : A; ssnd : B }.

On the other hand, to avoid having definitionally irrelevant types in non-SProp sorts (through record n-extensionality),
primitive records in relevant sorts must have at least one relevant field.
Set Warnings "+non-primitive-record".
Fail Record rBox (A:SProp) : Prop := rbox { runbox : A }.
The command has indeed failed with message:

The record rBox could not be defined as a primitive record
[non-primitive-record, record]

Record ssig (A:Type) (P:A —-> SProp) : Type := { sprl : A; spr2 : P sprl }.

Note that rBox works as an emulated record, which is equivalent to the Box inductive.

Encodings for strict propositions

The elimination for unit types can be encoded by a trivial function thanks to proof irrelevance:

Inductive sUnit : SProp := stt.
Definition sUnit_rect (P:sUnit->Type) (v:P stt) (x:sUnit) : P x := v.

By using empty and unit types as base values, we can encode other strict propositions. For instance:

Definition is_true (b:bool) : SProp := if b then sUnit else sEmpty.
Definition is_true_eqg true b : is_true b -> true = b
:= match b with
| true => fun _ => eq_refl
| false => sEmpty_ind _
end.
Definition eq_true_is_true b (H:true=b) : is_true b
:= match H in _ = x return is_true x with eq_refl => stt end.
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Definitional UIP

Flag: Definitional UIP
This flag, off by default, allows the declaration of non-squashed inductive types with 1 constructor which takes no
argument in SProp. Since this includes equality types, it provides definitional uniqueness of identity proofs.

Because squashing is a universe restriction, unsetting Universe Checking is stronger than setting
Definitional UIP

Definitional UIP involves a special reduction rule through which reduction depends on conversion. Consider the following
code:

Set Definitional UIP.

Inductive seq {A} (a:A) : A —> SProp :=
srefl : seq a a.

Axiom e : seq 0 O.
Definition hidden_arrow := match e return Set with srefl _ => nat -> nat end.

Check (fun (f : hidden_arrow) (x:nat) => (f : nat —-> nat) x).
By the usual reduction rules hidden_arrow is a stuck match, but by proof irrelevance e is convertible to srefl 0

and then by congruence hidden_arrow is convertible to nat -> nat.

The special reduction reduces any match on a type which uses definitional UIP when the indices are convertible to those of
the constructor. For seq, this means a match on a value of type seq x y reduces if and only if x and y are convertible.

Such matches are indicated in the printed representation by inserting a cast around the discriminee:

hidden_arrow = match e : seq 0 0 with
| srefl _ => nat —-> nat
end
Set

Non Termination with UIP

The special reduction rule of UIP combined with an impredicative sort breaks termination of reduction [[AC19]]:

Axiom all_eq : forall (P Q:Prop), P -> Q —> seq P Q.
all_eqg is declared

Definition transport (P Q:Prop) (x:P) (y:Q) : Q
:= match all_eqg P Q x y with srefl _ => x end.
transport is defined

Definition top : Prop := forall P : Prop, P —> P.
top is defined

Definition c : top :=
fun P p =>
transport
(top —> top)
P
(continues on next page)
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(fun x : top => x (top —-> top) (fun x => x) x)

pP.
c is defined

Fail Timeout 1 Eval lazy in c (top -> top) (fun x => x) cC.
The command has indeed failed with message:
Timeout'!

Theterm ¢ (top -> top) (fun x => x) c infinitely reduces to itself.

Issues with non-cumulativity

During normal term elaboration, we don’t always know that a type is a strict proposition early enough. For instance:

Definition constant_O0 : ?[T] —> nat := fun _ : sUnit => 0.

While checking the type of the constant, we only know that ? [T] must inhabit some sort. Putting it in some floating
universe u would disallow instantiating it by sUnit : SProp.

In order to make the system usable without having to annotate every instance of SProp, we consider SProp to be a
subtype of every universe during elaboration (i.e. outside the kernel). Then once we have a fully elaborated term it is
sent to the kernel which will check that we didn’t actually need cumulativity of SProp (in the example above, u doesn’t
appear in the final term).

This means that some errors will be delayed until Qed:

Lemma foo : Prop.
Proof. pose (fun A : SProp => A : Type); exact True.

Fail Qed.
The command has indeed failed with message:
In environment
A : SProp
The term "A" has type "SProp" while it is expected to have type "Type".

Abort.

Flag: Elaboration StrictProp Cumulativity
Unset this flag (it is on by default) to be strict with regard to SProp cumulativity during elaboration.

The implementation of proof irrelevance uses inferred “relevance” marks on binders to determine which variables are
irrelevant. Together with non-cumulativity this allows us to avoid retyping during conversion. However during elaboration
cumulativity is allowed and so the algorithm may miss some irrelevance:

Fail Definition late_mark := fun (A:SProp) (P:A -> Prop) x y (v:P x) => v : P y.
The command has indeed failed with message:
In environment

A SProp

P A —-> Prop
X @ A

vy A

v P x

The term "v" has type "P x" while it is expected to have type "P y".
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The binders for x and y are created before their type is known to be A, so they’re not marked irrelevant. This can be
avoided with sufficient annotation of binders (see irrelevance at the beginning of this chapter) or by bypassing the
conversion check in tactics.

Definition late_mark := fun (A:SProp) (P:A —-> Prop) x y (v:P x) =>
ltac: (exact_no_check v) : P y.

The kernel will re-infer the marks on the fully elaborated term, and so correctly converts x and y.

Warning: Bad relevance
This is a developer warning, disabled by default. It is emitted by the kernel when it is passed a term with incorrect
relevance marks. To avoid conversion issues as in late_mark you may wish to use it to find when your tactics
are producing incorrect marks.

Flag: Cumulative StrictProp
Set this flag (it is off by default) to make the kernel accept cumulativity between SProp and other universes. This
makes typechecking incomplete.

2.2 Language extensions

Elaboration extends the language accepted by the Coq kernel to make it easier to use. For example, this lets the user
omit most type annotations because they can be inferred, call functions with implicit arguments which will be inferred as
well, extend the syntax with notations, factorize branches when pattern-matching, etc. In this chapter, we present these
language extensions and we give some explanations on how this language is translated down to the core language presented
in the previous chapter.

2.2.1 Existential variables

Existential variables represent as yet unknown values.

term_evar ::= _
| 2 ident ]
\ 2 ?ident ]

+
| 2ident | @{ | ident := term - }

b

Coq terms can include existential variables that represent unknown subterms that are eventually replaced with actual
subterms.

@

Existential variables are generated in place of unsolved implicit arguments or “_” placeholders when using commands
such as Check (see Section Requests to the environment) or when using tactics such as refine, as well as in place of
unsolved instances when using tactics such that eapply. An existential variable is defined in a context, which is the
context of variables of the placeholder which generated the existential variable, and a type, which is the expected type of
the placeholder.

As a consequence of typing constraints, existential variables can be duplicated in such a way that they possibly appear in
different contexts than their defining context. Thus, any occurrence of a given existential variable comes with an instance
of its original context. In the simple case, when an existential variable denotes the placeholder which generated it, or is
used in the same context as the one in which it was generated, the context is not displayed and the existential variable is
represented by “?” followed by an identifier.
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Parameter identity : forall (X:Set), X -> X.
identity is declared

Check identity _ _
identity ?X 2y

?X
where
?X : [ |- Set]
2y o+ [ = ?X]
Check identity _ (fun x => _).

identity (forall x : 23, ?S0) (fun x : 2S5 => ?y)
forall x : ?S, 2SO0

where

?S : [ |- Set]

?50 : [x : ?S |- Set]
2y o [x @ ?S |- 2S0]

In the general case, when an existential variable ? ident appears outside its context of definition, its instance, written in
*

the form { ident := term L, },is appended to its name, indicating how the variables of its defining context are

instantiated. Only the variables that are defined in another context are displayed: this is why an existential variable used

in the same context as its context of definition is written with no instance. This behaviour may be changed: see Explicit

displaying of existential instances for pretty-printing.

Check (fun x y => _) 0 1.
(fun x y : nat => ?y) 0 1
?T@{x:=0; y:=1}

where
?T : [x : nat y : nat |- Type]
?y ¢ [x @ nat vy : nat |- ?T]

Existential variables can be named by the user upon creation using the syntax ? [ident]. This is useful when the
existential variable needs to be explicitly handled later in the script (e.g. with a named-goal selector, see Goal selectors).

Inferable subterms

Expressions often contain redundant pieces of information. Subterms that can be automatically inferred by Coq can be
replaced by the symbol _ and Coq will guess the missing piece of information.

Explicit displaying of existential instances for pretty-printing

Flag: Printing Existential Instances
This flag (off by default) activates the full display of how the context of an existential variable is instantiated at each
of the occurrences of the existential variable.

Check (fun x y => _) 0 1.
(fun x y : nat => 7?y) 0 1
?TA{x:=0; y:=1}

where
?T : [x : nat y : nat |- Type]
?y ¢ [x : nat vy : nat |- ?T]

(continues on next page)
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Set Printing Existential Instances.

Check (fun x y => _) 0 1.
(fun x vy : nat => ?y@{x:=x; y:=y};) 0 1
?TA{x:=0; y:=1}

where
?T : [x : nat vy : nat |- Type]
?y ¢ [x @ nat y : nat |- ?T@{x:=x; y:=y}]

Solving existential variables using tactics

Instead of letting the unification engine try to solve an existential variable by itself, one can also provide an explicit
hole together with a tactic to solve it. Using the syntax 1tac: (tacexpr), the user can put a tactic anywhere a term
is expected. The order of resolution is not specified and is implementation-dependent. The inner tactic may use any
variable defined in its scope, including repeated alternations between variables introduced by term binding as well as
those introduced by tactic binding. The expression tacexpr can be any tactic expression as described in Liac.

Definition foo (x : nat) : nat := ltac: (exact x).
foo is defined

This construction is useful when one wants to define complicated terms using highly automated tactics without resorting
to writing the proof-term by means of the interactive proof engine.

2.2.2 Implicit arguments

An implicit argument of a function is an argument which can be inferred from contextual knowledge. There are different
kinds of implicit arguments that can be considered implicit in different ways. There are also various commands to control
the setting or the inference of implicit arguments.

The different kinds of implicit arguments

Implicit arguments inferable from the knowledge of other arguments of a function

The first kind of implicit arguments covers the arguments that are inferable from the knowledge of the type of other
arguments of the function, or of the type of the surrounding context of the application. Especially, such implicit arguments
correspond to parameters dependent in the type of the function. Typical implicit arguments are the type arguments in
polymorphic functions. There are several kinds of such implicit arguments.

Strict Implicit Arguments

An implicit argument can be either strict or non strict. An implicit argument is said to be strict if, whatever the other
arguments of the function are, it is still inferable from the type of some other argument. Technically, an implicit argument
is strict if it corresponds to a parameter which is not applied to a variable which itself is another parameter of the function
(since this parameter may erase its arguments), not in the body of a match, and not itself applied or matched against
patterns (since the original form of the argument can be lost by reduction).

For instance, the first argument of

cons: forall A:Set, A -> list A -> list A
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in module List . v is strict because 1ist is an inductive type and A will always be inferable from the type 1ist A
of the third argument of cons. Also, the first argument of cons is strict with respect to the second one, since the first
argument is exactly the type of the second argument. On the contrary, the second argument of a term of type

forall P:nat->Prop, forall n:nat, P n —-> ex nat P
is implicit but not strict, since it can only be inferred from the type P n of the third argument and if P is, e.g., fun _
=> True, it reduces to an expression where n does not occur any longer. The first argument P is implicit but not strict

either because it can only be inferred from P n and P is not canonically inferable from an arbitrary n and the normal
form of P n. Consider, e.g., that n is 0 and the third argument has type True, then any P of the form

fun n => match n with 0 => True | _ => anything end

would be a solution of the inference problem.
Contextual Implicit Arguments

An implicit argument can be contextual or not. An implicit argument is said to be contextual if it can be inferred only
from the knowledge of the type of the context of the current expression. For instance, the only argument of:

nil : forall A:Set, list A

is contextual. Similarly, both arguments of a term of type:

forall P:nat->Prop, forall n:nat, P n \/ n =0

are contextual (moreover, n is strict and P is not).
Reversible-Pattern Implicit Arguments

There is another class of implicit arguments that can be reinferred unambiguously if all the types of the remaining ar-
guments are known. This is the class of implicit arguments occurring in the type of another argument in position of
reversible pattern, which means it is at the head of an application but applied only to uninstantiated distinct variables.
Such an implicit argument is called reversible- pattern implicit argument. A typical example is the argument P of nat_rec
in

nat_rec : forall P : nat -> Set, P 0 —>

(forall n : nat, Pn -> P (S n)) -> forall x : nat, P x

(P is reinferable by abstracting over n in the type P n).

See Controlling reversible-pattern implicit arguments for the automatic declaration of reversible-pattern implicit arguments.

Implicit arguments inferable by resolution

This corresponds to a class of non-dependent implicit arguments that are solved based on the structure of their type only.
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Maximal and non-maximal insertion of implicit arguments

When a function is partially applied and the next argument to apply is an implicit argument, the application can be
interpreted in two ways. If the next argument is declared as maximally inserted, the partial application will include that
argument. Otherwise, the argument is non-maximally inserted and the partial application will not include that argument.

Each implicit argument can be declared to be inserted maximally or non maximally. In Coq, maximally inserted implicit
arguments are written between curly braces ”{ }” and non-maximally inserted implicit arguments are written in square
brackets [ ]”.

See also:

Maximal Implicit Insertion

Trailing Implicit Arguments

An implicit argument is considered trailing when all following arguments are implicit. Trailing implicit arguments must
be declared as maximally inserted; otherwise they would never be inserted.

Error: Argument name is a trailing implicit,
so it can't be declared non maximal. Please use { } instead of [ ].
For instance:

Fail Definition double [n] := n + n.
The command has indeed failed with message:
Argument n is a trailing implicit, so it can't be declared non maximal.
Please use { } instead of [ ].

Casual use of implicit arguments
If an argument of a function application can be inferred from the type of the other arguments, the user can force inference
of the argument by replacing it with _.

Error: Cannot infer a term for this placeholder.
Coq was not able to deduce an instantiation of a “_".

Declaration of implicit arguments

Implicit arguments can be declared when a function is declared or afterwards, using the Argument s command.

Implicit Argument Binders

5]

implicit_binders ::= {[name ¥ : type |}
>

| [ [name T [: type ]

In the context of a function definition, these forms specify that name is an implicit argument. The first form, with curly
braces, makes name a maximally inserted implicit argument. The second form, with square brackets, makes name a
non-maximally inserted implicit argument.

For example:
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Definition id {A : Type} (x : A) : A := x.
id is defined

declares the argument A of id as a maximally inserted implicit argument. A may be omitted in applications of id but
may be specified if needed:

Definition compose {A B C} (g : B -—> C) (f : A -> B) := fun x => g (f x).
compose is defined

Goal forall A, compose id id = id (A:=A).
1 subgoal

forall A : Type, compose id id

For non-maximally inserted implicit arguments, use square brackets:

Fixpoint map [A B : Type] (£ : A —> B) (1 : list A) : list B :=
match 1 with
| nil => nil
| cons a t => cons (f a) (map f t)
end.
map is defined
map is recursively defined (guarded on 4th argument)

Print Implicit map.
map : forall [A B : Typel, (A -> B) —-> list A —-> list B

Arguments A, B are implicit

For (co-)inductive datatype declarations, the semantics are the following: an inductive parameter declared as an implicit
argument need not be repeated in the inductive definition and will become implicit for the inductive type and the con-
structors. For example:

Inductive list {A : Type} : Type :=
| nil : list
| cons : A —> list —> list.

list is defined

list_rect is defined

list_ind is defined

list_rec is defined

list_sind is defined

Print list.
Inductive list (A : Type) : Type := nil : list | cons : A -> list -> list

Arguments list {A}%type_scope
Arguments nil {A}%type_scope
Arguments cons {A}%type_scope

One can always specify the parameter if it is not uniform using the usual implicit arguments disambiguation syntax.

The syntax is also supported in internal binders. For instance, in the following kinds of expressions, the
*
type of each declaration present in | binder | can be bracketed to mark the declaration as implicit: * fun
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* *
(ident:forall binder | , type) => term, * forall (ident:forall binder , type),
* *
type, * let ident |binder := term in term, * fix ident |binder := term in term
*
and * cofix ident binder := term in term.
Here is an example:
Axiom Ax
forall (f:forall {A} (a:A), A * A),
let g {A} (x y:A) := (x,y) in
£0=g0 0.

Ax is declared

Warning: Ignoring implicit binder declaration in unexpected position
This is triggered when setting an argument implicit in an expression which does not correspond to the type of an
assumption or to the body of a definition. Here is an example:

Definition f := forall {y}, y = 0.
map is defined
map is recursively defined (guarded on 4th argument)
list is defined
list_rect is defined
list_ind is defined
list_rec is defined
list_sind is defined
Ax is declared
Toplevel input, characters 24-25:
> Definition f := forall {y}, y = 0.
> ~
Warning: Ignoring implicit binder declaration in unexpected position.
[unexpected-implicit-declaration, syntax]
f is defined

Warning: Making shadowed name of implicit argument accessible by position
This is triggered when two variables of same name are set implicit in the same block of binders, in which case the
first occurrence is considered to be unnamed. Here is an example:

Check let g {x:nat} (H:x=x) {x} (H:x=x) := x in 0.
Toplevel input, characters 0-50:
> Check let g {x:nat} (H:x=x) {x} (H:x=x) := x in O.

S AAAAAAAANANAANNNAAAAANANNNANNNNAAAANANNNNNNNNAANANNNNNNNNAN

Warning: Making shadowed name of implicit argument accessible by position.
[shadowed-implicit-name, syntax]

let g := fun (x : nat) (H : x = x) (x0 : ?A@{x0:=x}) (_ : x0 = x0) => x0 in O
: nat

where

?A : [x0 : nat H : x0 = x0 x : ?A |- Type] (x cannot be used)
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Mode for automatic declaration of implicit arguments

Flag: Implicit Arguments
This flag (off by default) allows to systematically declare implicit the arguments detectable as such. Auto-detection
of implicit arguments is governed by flags controlling whether strict and contextual implicit arguments have to be
considered or not.

Controlling strict implicit arguments

Flag: Strict Implicit
When the mode for automatic declaration of implicit arguments is on, the default is to automatically set implicit
only the strict implicit arguments plus, for historical reasons, a small subset of the non-strict implicit arguments.
To relax this constraint and to set implicit all non strict implicit arguments by default, you can turn this flag off.

Flag: Strongly Strict Implicit
Use this flag (off by default) to capture exactly the strict implicit arguments and no more than the strict implicit
arguments.

Controlling contextual implicit arguments

Flag: Contextual Implicit
By default, Coq does not automatically set implicit the contextual implicit arguments. You can turn this flag on to
tell Coq to also infer contextual implicit argument.

Controlling reversible-pattern implicit arguments

Flag: Reversible Pattern Implicit
By default, Coq does not automatically set implicit the reversible-pattern implicit arguments. You can turn this flag
on to tell Coq to also infer reversible-pattern implicit argument.

Controlling the insertion of implicit arguments not followed by explicit arguments

Flag: Maximal Implicit Insertion
Assuming the implicit argument mode is on, this flag (off by default) declares implicit arguments to be automatically
inserted when a function is partially applied and the next argument of the function is an implicit one.

Combining manual declaration and automatic declaration

When some arguments are manually specified implicit with binders in a definition and the automatic declaration mode in
on, the manual implicit arguments are added to the automatically declared ones.

In that case, and when the flag Maximal Implicit Insertionissetto off, some trailing implicit arguments can
be inferred to be non-maximally inserted. In this case, they are converted to maximally inserted ones.

Example
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Set Implicit Arguments.
Axiom eqg0_le0 : forall (n : nat) (x : n = 0), n <= 0.
eqg0_le0 is declared

Print Implicit eqg0O_1leO.
eqg0_le0 : forall [n : nat], n =0 -> n <= 0

Argument n is implicit

Axiom eg0_le0' : forall (n : nat) {x : n =0}, n <= 0.
Argument n is a trailing implicit, so it has been declared maximally
inserted.

eq0_le0' is declared

Print Implicit eqg0O_1leO'.
eq0_le0' : forall {n : nat}, n =0 -> n <= 0

Arguments n, x are implicit and maximally inserted

Explicit applications

In presence of non-strict or contextual arguments, or in presence of partial applications, the synthesis of implicit argu-
ments may fail, so one may have to explicitly give certain implicit arguments of an application. Use the (ident :=
term) form of arg to do so, where ident is the name of the implicit argument and term is its corresponding ex-
plicit term. Alternatively, one can deactivate the hiding of implicit arguments for a single function application using the

+
Qqualid _annotated terml | formof term application.

Example: Syntax for explicitly giving implicit arguments (continued)

Parameter X : Type.
X is declared

Definition Relation := X -> X -> Prop.
eqg0_le0 is declared
Argument n is a trailing implicit, so it has been declared maximally
inserted.
eq0_le0' is declared
X is declared
Relation is defined

Definition Transitivity (R:Relation) := forall x y:X, R x y —> forall z:X, Ry z —> R.
X Z.
Transitivity is defined

Parameters (R : Relation) (p : Transitivity R).
R is declared
p is declared

Arguments p : default implicits.
Print Implicit p.
p : forall [x vy : X], Rxy —> forall z : X, Ry z —> R x z

Arguments x, y, z are implicit
(continues on next page)
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(continued from previous page)

Parameters (a b c : X) (rl : Rab) (r2 : Rb c).
a is declared
b is declared
c is declared
rl is declared
r2 is declared

Check (p rl (z:=c)).
p rl (z:=c)
Rbc->Rac

Check (p (x:=a) (y:=b) rl (z:=c) r2).
p rl r2
R ac

Displaying implicit arguments

Command: Print Implicit reference
Displays the implicit arguments associated with an object, identifying which arguments are applied maximally or
not.

Displaying implicit arguments when pretty-printing

Flag: Printing Implicit
By default, the basic pretty-printing rules hide the inferable implicit arguments of an application. Turn this flag on
to force printing all implicit arguments.

Flag: Printing Implicit Defensive
By default, the basic pretty-printing rules display implicit arguments that are not detected as strict implicit arguments.
This “defensive” mode can quickly make the display cumbersome so this can be deactivated by turning this flag off.
See also:

Printing All.

Interaction with subtyping

When an implicit argument can be inferred from the type of more than one of the other arguments, then only the type of
the first of these arguments is taken into account, and not an upper type of all of them. As a consequence, the inference
of the implicit argument of “=" fails in

Fail Check nat = Prop.
The command has indeed failed with message:
The term "Prop" has type "Type" while it is expected to have type
"Set" (universe inconsistency: Cannot enforce Set+1l <= Set).

but succeeds in

Check Prop = nat.
Prop = nat
Prop
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Deactivation of implicit arguments for parsing

term_explicit ::= @ qualid_annotated

This syntax can be used to disable implicit arguments for a single function.

Example

The function id has one implicit argument and one explicit argument.
Check (id 0).
id O
nat

Definition id' := @id.
id' is defined

The function id' has no implicit argument.
Check (id' nat 0).

id' nat O
: nat

Flag: Parsing Explicit

Turning this flag on (it is off by default) deactivates the use of implicit arguments.

In this case, all arguments of constants, inductive types, constructors, etc, including the arguments declared as

implicit, have to be given as if no arguments were implicit. By symmetry, this also affects printing.

Example

We can reproduce the example above using the Parsing Explicit flag:

Set Parsing Explicit.
Definition id' := id.
id' is defined

Unset Parsing Explicit.
Check (id 1).
id 1
nat
Check (id' nat 1).

id' nat 1
: nat
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Implicit types of variables
It is possible to bind variable names to a given type (e.g. in a development using arithmetic, it may be convenient to bind
the names n or m to the type nat of natural numbers).

Command: Implicit Type ‘ Types reserv_list
reserv_list ::= |(simple_reserv)
| simple_reserv
+
simple_reserv ::= |ident | : type
Sets the type of bound variables starting with ident (either ident itself or ident followed by one or more

single quotes, underscore or digits) to t ype (unless the bound variable is already declared with an explicit type, in
which case, that type will be used).

Example

Require Import List.

Implicit Types m n : nat.

Lemma cons_inj_nat : forallmn 1, n :: 1 =m :: 1 -> n = m.
1 subgoal
forall m n (1 : list nat), n :: 1 = m :: 1 -> n =m

Proof. intros m n. Abort.

1 subgoal
m, n nat
forall 1 : list nat, n :: 1 = m :: 1 -> n =m
Lemma cons_inj_bool : forall (m n:bool) 1, n :: 1 =m 1l > n = m.
1 subgoal
forall (m n : bool) (1 : list bool), n :: 1 =m :: 1 -> n =m
Abort.

Flag: Printing Use Implicit Types
By default, the type of bound variables is not printed when the variable name is associated with an implicit type
which matches the actual type of the variable. This feature can be deactivated by turning this flag off.
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Implicit generalization

+
*(|typeclass_constraint | )

generalizing_binder

+ -

| *{ | typeclass_constraint T}
b

+
| *[ |typeclass_constraint 1]
b

5
typeclass_constraint  ::= |! | term
5
| {name}:|! | term
¥

| name : |} | term
term_generalizing := {term}

| “(term)

Implicit generalization is an automatic elaboration of a statement with free variables into a closed statement where these
variables are quantified explicitly. Use the Generalizable command to designate which variables should be general-
ized.

It is activated within a binder by prefixing it with *, and for terms by surrounding it with ‘{ }, or [ ] or ‘().

Terms surrounded by ‘{ } introduce their free variables as maximally inserted implicit arguments, terms surrounded by ‘[
] introduce them as non-maximally inserted implicit arguments and terms surrounded by ‘() introduce them as explicit
arguments.

Generalizing binders always introduce their free variables as maximally inserted implicit arguments. The binder itself
introduces its argument as usual.

In the following statement, A and y are automatically generalized, A is implicit and x, y and the anonymous equality
argument are explicit.

Generalizable All Variables.

Definition sym " (x:A) : (x =y —>y = x) := fun _ p => eqg_sym p.
sym is defined

Print sym.
sym =
fun (A : Type) (x vy : A) (p : x =y) => eqg_sym
forall (A : Type) (xy : A), X =y —> Yy = X

e}

Arguments sym {A}S%type_scope _

Dually to normal binders, the name is optional but the type is required:

Check (forall {x =y :> A}, y =
forall (A : Type) (xy : A),
Prop

X) .

X =y —>y =X

When generalizing a binder whose type is a typeclass, its own class arguments are omitted from the syntax and are
generalized using automatic names, without instance search. Other arguments are also generalized unless provided. This

produces a fully general statement. this behaviour may be disabled by prefixing the type with a ! or by forcing the
typeclass name to be an explicit application using @ (however the later ignores implicit argument information).
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Class Op (A:Type) := op : A —> A —> A.
Class Commutative (A:Type) ~ (Op A) := commutative : forall x y, op X y = 0p y X.
Instance nat_op : Op nat := plus.

nat_op is defined

Set Printing Implicit.
Check (forall " {Commutative }, True).

forall (A : Type) (H : Op A), Commutative A H —-> True

Prop

Check (forall " {Commutative nat}, True).

forall H : Op nat, Commutative nat H —-> True

Prop

Fail Check (forall " {Commutative nat _}, True).

The command has indeed failed with message:
Typeclass does not expect more arguments

Fail Check (forall {!Commutative nat}, True).

The command has indeed failed with message:
The term "Commutative nat" has type "Op nat -> Prop"
which should be Set, Prop or Type.

Arguments Commutative _ {_}.
Check (forall {!Commutative nat}, True).

@Commutative nat nat_op —> True
Prop

Check (forall " {(@Commutative nat plus}, True).

@Commutative nat Nat.add -> True
Prop

Multiple binders can be merged using , as a separator:

Check (forall " {Commutative A, Hnat : !Commutative nat}, True).

forall (A : Type) (H : Op A),
@Commutative A H -> (@Commutative nat nat_op -> True
Prop

Command:

+
Generalizable Variable | Variables  ident All Variables No Variables

Controls the set of generalizable identifiers. By default, no variables are generalizable.
This command supports the global attribute.
+
The Variable | Variables | ident | form allows generalization of only the given idents. Using
this command multiple times adds to the allowed identifiers. The other forms clear the list of idents.

The All Variables form generalizes all free variables in the context that appear under a generalization delim-
iter. This may result in confusing errors in case of typos. In such cases, the context will probably contain some
unexpected generalized variables.

The No Variables form disables implicit generalization entirely. This is the default behavior (before any
Generalizable command has been entered).
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2.2.3 Extended pattern matching

Authors Cristina Cornes and Hugo Herbelin

This section describes the full form of pattern matching in Coq terms.

Variants and extensions of match

Multiple and nested pattern matching

The basic version of match allows pattern matching on simple patterns. As an extension, multiple nested patterns or
disjunction of patterns are allowed, as in ML-like languages (cf. Multiple patterns and Nested patterns).

The extension just acts as a macro that is expanded during parsing into a sequence of match on simple patterns. Espe-
cially, a construction defined using the extended match is generally printed under its expanded form (see Printing
Matching).

Pattern-matching on boolean values: the if expression

5
term_if ::= if term | as name | return termI00 | then term else ferm

For inductive types with exactly two constructors and for pattern matching expressions that do not depend on the arguments
of the constructors, it is possible tousea 1f .. then .. else notation. For instance, the definition

Definition not (b:bool) :=
match b with
| true => false
| false => true
end.
not is defined

can be alternatively written

Definition not (b:bool) := if b then false else true.
not is defined

More generally, for an inductive type with constructors ident; and ident,, the following terms are equal:
i
?
if term, ||as name'| return term then term; else term,
?

? . . * . *
match term, as name return term with | ident; _— => term; | ident,

=> term, end

Example

Check (fun x (H:{x=0}+{x<>0}) =>
match H with

| left _ => true
| right _ => false
end) .

(continues on next page)
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(continued from previous page)

fun (x : nat) (H : {x = 0} + {x <> 0}) => if H then true else false
forall x : nat, {x = 0} + {x <> 0} —> bool

Notice that the printing uses the i f syntax because sumbool is declared as such (see Controlling pretty-printing of match
expressions).

Irrefutable patterns: the destructuring let variants

Pattern-matching on terms inhabiting inductive type having only one constructor can be alternatively written using let
in .. constructions. There are two variants of them.
2
. * ? .
destructuring let ::= let ([name , ) ||as name |- return term100 | := term in term

=
\ let ' pattern := term |return terml100 | in term

\ let ' pattern in pattern := term return ferml00 in ferm

First destructuring let syntax

*
The expression 1let ( ident; ) := term, in term, performs case analysis on term, whose type must

r

be an inductive type with exactly one constructor. The number of variables ident ; must correspond to the number of
arguments of this constructor. Then, in term,, these variables are bound to the arguments of the constructor in term,,.
For instance, the definition

Definition fst (A B:Set) (H:A * B)
| pair x y => x
end.

fst is defined

match H with

can be alternatively written
Definition fst (A B:Set) (p:A * B) := let (x, _) := p in x.
fst is defined
Notice that reduction is different from regular 1et .. in .. construction since it happens only if term, is in constructor

form. Otherwise, the reduction is blocked.

The pretty-printing of a definition by matching on a irrefutable pattern can either be done using match or the let
construction (see Section Controlling pretty-printing of match expressions).

If term inhabits an inductive type with one constructor C, we have an equivalence between

let (ident,, .., ident[d) [dep_ret_type] := term in term'

and

match term [dep_ret_type] with
C ident,; .. ident[d => term'
end

112 Chapter 2. Specification language



The Coq Reference Manual, Release 8.13.2

Second destructuring let syntax

Another destructuring let syntax is available for inductive types with one constructor by giving an arbitrary pattern instead
of just a tuple for all the arguments. For example, the preceding example can be written:

Definition fst (A B:Set) (p:A*B) := let 'pair x _ := p in x.
fst is defined

This is useful to match deeper inside tuples and also to use notations for the pattern, as the syntax let ’'p := t in
b allows arbitrary patterns to do the deconstruction. For example:

Definition deep_tuple (A:Set) (x: (A*A)* (A*A)) : A*A*A*A :=
let '((a,b), (¢, d)) := x in (a,b,c,d).
deep_tuple is defined

Notation " x 'With' p " := (exist _ x p) (at level 20).
Identifier 'With' now a keyword

Definition projl_sig' (A:Set) (P:A->Prop) (t:{ x:A | P x }) : A :=
let 'x With p := t in x.
projl_sig' is defined

When printing definitions which are written using this construct it takes precedence over let printing directives for the
datatype under consideration (see Section Controlling pretty-printing of match expressions).

Controlling pretty-printing of match expressions

The following commands give some control over the pretty-printing of mat ch expressions.

Printing nested patterns

Flag: Printing Matching
The Calculus of Inductive Constructions knows pattern matching only over simple patterns. It is however convenient
to re-factorize nested pattern matching into a single pattern matching over a nested pattern.

When this flag is on (default), Coq’s printer tries to do such limited re-factorization. Turning it off tells Coq to print
only simple pattern matching problems in the same way as the Coq kernel handles them.

Factorization of clauses with same right-hand side

Flag: Printing Factorizable Match Patterns
When several patterns share the same right-hand side, it is additionally possible to share the clauses using disjunctive
patterns. Assuming that the printing matching mode is on, this flag (on by default) tells Coq’s printer to try to do
this kind of factorization.
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Use of a default clause

Flag: Printing Allow Match Default Clause
When several patterns share the same right-hand side which do not depend on the arguments of the patterns, yet an
extra factorization is possible: the disjunction of patterns can be replaced with a __ default clause. Assuming that
the printing matching mode and the factorization mode are on, this flag (on by default) tells Coq’s printer to use a
default clause when relevant.

Printing of wildcard patterns

Flag: Printing Wildcard
Some variables in a pattern may not occur in the right-hand side of the pattern matching clause. When this flag
is on (default), the variables having no occurrences in the right-hand side of the pattern matching clause are just
printed using the wildcard symbol “_”.

Printing of the elimination predicate

Flag: Printing Synth
In most of the cases, the type of the result of a matched term is mechanically synthesizable. Especially, if the result
type does not depend of the matched term. When this flag is on (default), the result type is not printed when Coq
knows that it can re- synthesize it.

Printing matching on irrefutable patterns

If an inductive type has just one constructor, pattern matching can be written using the first destructuring let syntax.

Table: Printing Let qualid
Specifies a set of qualids for which pattern matching is displayed using a let expression. Note that this only applies
to pattern matching instances entered with match. It doesn’t affect pattern matching explicitly entered with a
destructuring 1et. Use the Add and Remove commands to update this set.

Printing matching on booleans

If an inductive type is isomorphic to the boolean type, pattern matching can be written using 1 f ... then ... else ....
This table controls which types are written this way:

Table: Printing If qualid
Specifies a set of qualids for which pattern matching is displayed using 1 £ ... then ... else .... Use the Add
and Remove commands to update this set.

This example emphasizes what the printing settings offer.

Example

Definition snd (A B:Set) (H:A * B) := match H with
| pair x y => vy

end.

snd is defined

(continues on next page)
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(continued from previous page)

Test Printing Let for prod.
Cases on elements of prod are printed using a "let' form

Print snd.

snd =

fun (A B : Set) (H : A * B) => 1let (_, y) := H in vy
forall A B : Set, A * B —> B

Arguments snd (_ _)%type_scope _

Remove Printing Let prod.
Unset Printing Synth.
Unset Printing Wildcard.

Print snd.

snd =
fun (A B : Set) (H : A * B) => match H return B with
[ (x, y) => vy
end
forall A B : Set, A * B —> B
Arguments snd (_ _)%type_scope _

Conventions about unused pattern-matching variables

Pattern-matching variables that are not used on the right-hand side of => are considered the sign of a potential error.
For instance, it could result from an undetected mispelled constant constructor. By default, a warning is issued in such
situations.

Warning: Unused variable ident catches more than one case.
This indicates that an unused pattern variable i dent occurs in a pattern-matching clause used to complete at least
two cases of the pattern-matching problem.

The warning can be deactivated by using a variable name starting with _ or by setting Set Warnings
"-unused-pattern-matching-variable".

Here is an example where the warning is activated.

Example

Definition is_zero (o : option nat) := match o with
| Some 0 => true
| x => false
end.
is_zero is defined
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Patterns

The full syntax of match is presented in Definition by cases: match. Identifiers in patterns are either constructor names
or variables. Any identifier that is not the constructor of an inductive or co-inductive type is considered to be a variable. A
variable name cannot occur more than once in a given pattern. It is recommended to start variable names by a lowercase
letter.

If a pattern has the form ¢ x where c is a constructor symbol and x is a linear vector of (distinct) variables, it is called
simple: it is the kind of pattern recognized by the basic version of match. On the opposite, if it is a variable x or has the
form ¢ p with p not only made of variables, the pattern is called nested.

A variable pattern matches any value, and the identifier is bound to that value. The pattern “_” (called “don’t care” or
“wildcard” symbol) also matches any value, but does not bind anything. It may occur an arbitrary number of times in a
pattern. Alias patterns written (pattern as ident) are also accepted. This pattern matches the same values as
pattern does and ident is bound to the matched value. A pattern of the form pattern | pattern is called
disjunctive. A list of patterns separated with commas is also considered as a pattern and is called multiple pattern. However
multiple patterns can only occur at the root of pattern matching equations. Disjunctions of multiple patterns are allowed
though.

Since extended match expressions are compiled into the primitive ones, the expressiveness of the theory remains the
same. Once parsing has finished only simple patterns remain. The original nesting of the mat ch expressions is recovered
at printing time. An easy way to see the result of the expansion is to toggle off the nesting performed at printing (use
here Printing Matching), then by printing the term with Print if the term is a constant, or using the command
Check.

The extended mat ch still accepts an optional elimination predicate given after the keyword return. Given a pattern
matching expression, if all the right-hand-sides of => have the same type, then this type can be sometimes synthesized,
and so we can omit the return part. Otherwise the predicate after return has to be provided, like for the basicmatch.

Let us illustrate through examples the different aspects of extended pattern matching. Consider for example the function
that computes the maximum of two natural numbers. We can write it in primitive syntax by:

Fixpoint max (n m:nat) {struct m} : nat :=
match n with
| O =>m
| S n' => match m with
| O => S n'
| Sm'" => S (max n' m")
end
end.

Multiple patterns

Using multiple patterns in the definition of max lets us write:

Fixpoint max (n m:nat) {struct m} : nat :=
match n, m with
| 0, _=>m
| Sn', O=>3Sn'
| Sn', Sm' =>S (max n' m')
end.

which will be compiled into the previous form.

The pattern matching compilation strategy examines patterns from left to right. A match expression is generated only
when there is at least one constructor in the column of patterns. E.g. the following example does not build a match
expression.

116 Chapter 2. Specification language



The Coq Reference Manual, Release 8.13.2

Check (fun x:nat => match x return nat with
'y => vy
end) .
fun x : nat => x
nat —-> nat

Aliasing subpatterns

We can also use as ident to associate a name to a sub-pattern:

Fixpoint max (n m:nat) {struct n} : nat :=
match n, m with
[0, _=>m

| S n' as p, O =>rp
[ Sn', Sm'" => S (

end.

max n' m')

Nested patterns

Here is now an example of nested patterns:

Fixpoint even (n:nat) : bool :=
match n with
| O => true
| S O => false
| S (S n'") => even n'
end.

This is compiled into:

Unset Printing Matching.
Print even.
even =
fix even (n : nat) : bool :=
match n with
| 0 => true
| S n0 => match n0 with
| 0 => false
| S n' => even n'
end
end
nat —> bool

Arguments even _%nat_scope

In the previous examples patterns do not conflict with, but sometimes it is comfortable to write patterns that admit a non
trivial superposition. Consider the boolean function 1ef that given two natural numbers yields t rue if the first one is
less or equal than the second one and false otherwise. We can write it as follows:

Fixpoint lef (n m:nat) {struct m} : bool :=
match n, m with
| O, x => true
| x, O => false
| Sn, Sm=> lef nm
end.
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Note that the first and the second multiple pattern overlap because the couple of values O O matches both. Thus, what is
the result of the function on those values? To eliminate ambiguity we use the textual priority rule: we consider patterns to
be ordered from top to bottom. A value is matched by the pattern at the ith row if and only if it is not matched by some
pattern from a previous row. Thus in the example, O O is matched by the first pattern, and so (1ef O O) yields true.

Another way to write this function is:

Fixpoint lef (n m:nat) {struct m} : bool :=
match n, m with
| O, x => true
| Sn, Sm=>lef nm
| _, _ => false
end.

Here the last pattern superposes with the first two. Because of the priority rule, the last pattern will be used only for values
that do not match neither the first nor the second one.

Terms with useless patterns are not accepted by the system. Here is an example:

Fail Check (fun x:nat =>
match x with
| O => true

| S _ => false
| x => true
end) .

The command has indeed failed with message:
Pattern "x" is redundant in this clause.

Disjunctive patterns

+

. . . . . . + .
Multiple patterns that share the same right-hand-side can be factorized using the notation | pattern . For instance,

’

max can be rewritten as follows:

Fixpoint max (n m:nat) {struct m} : nat :=
match n, m with
| Sn', Sm' => S (max n' m')
[ 0, p |l p, O=>p
end.

Similarly, factorization of (not necessarily multiple) patterns that share the same variables is possible by using the notation

+ .
pattern - Here is an example:

Definition filter_2_4 (n:nat) : nat :=
match n with
| 2 asm | 4 as m =>m
| _ =>0
end.

.. . .. . . + .
Nested disjunctive patterns are allowed, inside parentheses, with the notation (| pattern I ), as in:

Definition filter_some_square_corners (p:nat*nat) : nat*nat :=
match p with
| ((2 asm | 4 asm), (3 asn | 5 as n)) => (m,n)

(continues on next page)
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| _ => (0,0)
end.

About patterns of parametric types

Parameters in patterns

When matching objects of a parametric type, parameters do not bind in patterns.

Consider for example the type of polymorphic lists:

Inductive List (A:Set) : Set :=
| nil : List A
| cons : A —> List A —> List A.

We can check the function fail:

Check
(fun 1:List nat =>
match 1 with

| nil  => nil nat
| cons _ _ 1'" => 1"
end) .
fun 1 : List nat => match 1 with
| nil _ => nil nat
| cons _ _ 1' => 1"
end

List nat -> List nat

When we use parameters in patterns there is an error message:

Fail Check
(fun 1:List nat =>
match 1 with
| nil A => nil nat
| cons A _ 1' => 1"
end) .
The command has indeed failed with message:

(continued from previous

They must be substituted by

The parameters do not bind in patterns; they must be replaced by '_'.

Flag: Asymmetric Patterns
This flag (off by default) removes parameters from constructors in patterns:

Set Asymmetric Patterns.
Check (fun 1l:List nat =>
match 1 with
| nil => nil _

| cons _ 1' => 1"
end) .
fun 1 : List nat => match 1 with
| @nil _ => nil nat
| @cons _ _ 1" => 1"
end

List nat -> List nat

Unset Asymmetric Patterns.

page)

[T
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Implicit arguments in patterns

By default, implicit arguments are omitted in patterns. So we write:

Arguments nil {A}.
Arguments cons [A]
Check
(fun 1:List nat =>
match 1 with
[ nil => nil
| cons _ 1' => 1"
end) .
fun 1 : List nat => match 1 with
[ nil => nil

| cons 1" => 1"

end
List nat -> List nat

But the possibility to use all the arguments is given by “@” implicit explicitations (as for terms, see Explicit applications).

Check
(fun 1:List nat =>
match 1 with

| @nil _ => @nil nat
| @cons _ _ 1" => 1"
end) .

fun 1 : List nat => match 1 with
| nil => nil
| cons _ 1' => 1"
end
List nat -> List nat

Matching objects of dependent types

The previous examples illustrate pattern matching on objects of non- dependent types, but we can also use the expansion
strategy to destructure objects of dependent types. Consider the type 1istn of lists of a certain length:

Inductive listn : nat -> Set :=
| niln : listn O
| consn : forall n:nat, nat -> listn n -> listn (S n).

Understanding dependencies in patterns

We can define the function length over 1istn by:

Definition length (n:nat) (l:listn n) := n.

Just for illustrating pattern matching, we can define it by case analysis:

Definition length (n:nat) (l:listn n) :=
match 1 with
| niln => 0
| consn n _ _ => S n
end.

We can understand the meaning of this definition using the same notions of usual pattern matching.
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When the elimination predicate must be provided

Dependent pattern matching

The examples given so far do not need an explicit elimination predicate because all the right hand sides have the same
type and Coq succeeds to synthesize it. Unfortunately when dealing with dependent patterns it often happens that we need
to write cases where the types of the right hand sides are different instances of the elimination predicate. The function
concat for 1istn is an example where the branches have different types and we need to provide the elimination
predicate:

Fixpoint concat (n:nat) (l:listn n) (m:nat) (l':listn m) {struct 1}
listn (n + m) :=
match 1 in listn n return listn (n + m) with
| niln => 1"
| consn n' a y => consn (n' + m) a (concat n' ym 1")
end.

The elimination predicate is fun (n:nat) (l:1listn n) => listn (n+m). In generalif m hastype (I gl
. gr tl .. ts) where g1, .., gr are parameters, the elimination predicate should be of the form fun y1
ys x : (I gl .. gqgr yl .. ys ) => Q.

In the concrete syntax, it should be written : match m as x in (I _ .. _ y1 .. ys) return Q with ..
end. The variables which appear in the in and as clause are new and bounded in the property Q in the return clause.
The parameters of the inductive definitions should not be mentioned and are replaced by _.

Multiple dependent pattern matching

Recall that a list of patterns is also a pattern. So, when we destructure several terms at the same time and the branches
have different types we need to provide the elimination predicate for this multiple pattern. It is done using the same
scheme: each term may be associated with an as clause and an in clause in order to introduce a dependent product.

For example, an equivalent definition for concat (even though the matching on the second term is trivial) would have
been:

Fixpoint concat (n:nat) (l:listn n) (m:nat) (l1':listn m) {struct 1}
listn (n + m) :=
match 1 in listn n, 1' return listn (n + m) with
| niln, x => x
| consn n' a vy, x => consn (n' + m) a (concat n' y m x)
end.

Even without real matching over the second term, this construction can be used to keep types linked. If a and b are two
1listn of the same length, by writing

Check (fun n (a b: listn n) =>
match a, b with
| niln, b0 => tt
| consn n' a vy, bS => tt
end) .

we have a copy of b in type 1istn Oresp. listn (S n').
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Patterns in in

If the type of the matched term is more precise than an inductive applied to variables, arguments of the inductive in the
in branch can be more complicated patterns than a variable.

Moreover, constructors whose types do not follow the same pattern will become impossible branches. In an impossible
branch, you can answer anything but False_rect unit has the advantage to be subterm of anything.

To be concrete: the tail function can be written:

Definition tail n (v: listn (S n)) :=
match v in listn (S m) return listn m with
| niln => False_rect unit
| consn n' ay =>y
end.

and tail n v will be subterm of v.

Using pattern matching to write proofs

In all the previous examples the elimination predicate does not depend on the object(s) matched. But it may depend and
the typical case is when we write a proof by induction or a function that yields an object of a dependent type. An example
of a proof written using mat ch is given in the description of the tactic refine.

For example, we can write the function buildlist that given a natural number n builds a list of length n containing
zeros as follows:

Fixpoint buildlist (n:nat) : listn n :=
match n return listn n with
| O => niln
| S n =>consn n 0 (buildlist n)
end.

We can also use multiple patterns. Consider the following definition of the predicate less-equal Le:

Inductive LE : nat —-> nat —-> Prop :=
| LEO : forall n:nat, LE O n
| LES : forall n m:nat, LE nm -> LE (S n) (S m).

We can use multiple patterns to write the proof of the lemma forall (n m:nat), (LE n m) \/ (LE m n):

Fixpoint dec (n m:nat) {struct n} : LE nm \/ LEmn :=
match n, m return LE n m \/ LE m n with
| O, x => or_introl (LE x 0) (LEO x)

| x, O => or_intror (LE x 0) (LEO x)

| Snas n', Smas m' =>
match dec n m with
| or_introl h => or_introl (LE m' n') (LES n m h)
| or_intror h => or_intror (LE n' m') (LES m n h)
end

end.

In the example of dec, the first match is dependent while the second is not.

The user can also use match in combination with the tactic re £ine to build incomplete proofs beginning with a match
construction.
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Pattern-matching on inductive objects involving local definitions

If local definitions occur in the type of a constructor, then there are two ways to match on this constructor. Either the
local definitions are skipped and matching is done only on the true arguments of the constructors, or the bindings for local
definitions can also be caught in the matching.

Example

Inductive list : nat -> Set :=
| nil : list O
cons : forall n:nat, let m := (2 * n) in list m -> list (S (S m)).

In the next example, the local definition is not caught.

Fixpoint length n (l:1ist n) {struct 1} : nat :=
match 1 with

[ nil => 0
| cons n 10 => S (length (2 * n) 10)
end.

But in this example, it is.

Fixpoint length' n (l:1list n) {struct 1} : nat :=
match 1 with
| nil => 0
| @cons _ m 10 => S (length' m 10)
end.

Note: For a given matching clause, either none of the local definitions or all of them can be caught.

Note: You can only catch let bindings in mode where you bind all variables and so you have to use @ syntax.

Note: this feature is incoherent with the fact that parameters cannot be caught and consequently is somehow hidden. For
example, there is no mention of it in error messages.

Pattern-matching and coercions

If a mismatch occurs between the expected type of a pattern and its actual type, a coercion made from constructors is
sought. If such a coercion can be found, it is automatically inserted around the pattern.

Example

Inductive I : Set :=
| C1 : nat —> I
| C2 : I —> I.

Coercion Cl : nat >-> I.
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Check (fun x => match x with

| C2 O => 0
| _=>0
end) .
fun x : I => match x with
| c1 _ | _=>0
end
I —> nat

When does the expansion strategy fail?

The strategy works very like in ML languages when treating patterns of non-dependent types. But there are new cases of
failure that are due to the presence of dependencies.

The error messages of the current implementation may be sometimes confusing. When the tactic fails because patterns are
somehow incorrect then error messages refer to the initial expression. But the strategy may succeed to build an expression
whose sub-expressions are well typed when the whole expression is not. In this situation the message makes reference
to the expanded expression. We encourage users, when they have patterns with the same outer constructor in different
equations, to name the variable patterns in the same positions with the same name. E.g. to write (cons n O x)
=> eland (cons n _ x) => e2insteadof (cons n O x) => eland (cons n' _ x') => e2. This
helps to maintain certain name correspondence between the generated expression and the original.

Here is a summary of the error messages corresponding to each situation:

Error: The constructor ident expects natural arguments.

Error: The variable ident is bound several times in pattern term

Error:

Found a constructor of inductive type term while a constructor of term is expected
Patterns are incorrect (because constructors are not applied to the correct number of arguments, because they are
not linear or they are wrongly typed).

Error: Non exhaustive pattern matching.
The pattern matching is not exhaustive.

Error:
The elimination predicate term should be of arity natural (for non dependent case) or natu:

The elimination predicate provided to match has not the expected arity.

Error: Unable to infer a match predicate

Error:

Either there is a type incompatibility or the problem involves dependencies.
There is a type mismatch between the different branches. The user should provide an elimination predicate.

2.2.4 Syntax extensions and notation scopes

In this chapter, we introduce advanced commands to modify the way Coq parses and prints objects, i.e. the translations
between the concrete and internal representations of terms and commands.

The main commands to provide custom symbolic notations for terms are Notat ion and Infix; they will be described
in the next section. There is also a variant of Notat ion which does not modify the parser; this provides a form of
abbreviation. It is sometimes expected that the same symbolic notation has different meanings in different contexts; to
achieve this form of overloading, Coq offers a notion of notation scopes. The main command to provide custom notations
for tactics is Tactic Notation.
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Notations

Basic notations

+ ?
Command: Notation string := one_term ( syntax modifier ) : scope_name'|

4

Defines a notation, an alternate syntax for entering or displaying a specific term or term pattern.

This command supports the Iocal attribute, which limits its effect to the current module. If the command is
inside a section, its effect is limited to the section.

Specifying scope_name associates the notation with that scope. Otherwise it is a lonely notation, that is, not
associated with a scope.

For example, the following definition permits using the infix expression A /\ B to represent (and A B):

Notation "A /\ B" := (and A B).

"A /\ B" is anotation, which tells how to represent the abbreviated term (and A B).

Notations must be in double quotes, except when the abbreviation has the form of an ordinary applicative expression; see
Abbreviations. The notation consists of fokens separated by spaces. Tokens which are identifiers (such as A, x0', etc.)
are the parameters of the notation. Each of them must occur at least once in the abbreviated term. The other elements of
the string (such as /\) are the symbols.

Identifiers enclosed in single quotes are treated as symbols and thus lose their role of parameters. In the same vein, every
symbol of at least 3 characters and starting with a simple quote must be quoted (then it starts with two single quotes).
Here is an example.

Notation "'IF' ¢l 'then' ¢c2 'else' ¢c3" := (IF_then_else cl c2 c3).
A notation binds a syntactic expression to a term. Unless the parser and pretty-printer of Coq already know how to deal

with the syntactic expression (such as through Reserved Notat ion or for notations that contain only literals), explicit
precedences and associativity rules have to be given.

Note: The right-hand side of a notation is interpreted at the time the notation is given. In particular, disambiguation of
constants, implicit arguments and other notations are resolved at the time of the declaration of the notation. The right-hand
side is currently typed only at use time but this may change in the future.

Precedences and associativity

Mixing different symbolic notations in the same text may cause serious parsing ambiguity. To deal with the ambiguity of
notations, Coq uses precedence levels ranging from 0 to 100 (plus one extra level numbered 200) and associativity rules.

Consider for example the new notation

Notation "A \/ B" := (or A B).

Clearly, an expression such as forall A:Prop, True /\ A \/ A \/ False is ambiguous. To tell the Coq
parser how to interpret the expression, a priority between the symbols /\ and \ / has to be given. Assume for instance
that we want conjunction to bind more than disjunction. This is expressed by assigning a precedence level to each notation,
knowing that a lower level binds more than a higher level. Hence the level for disjunction must be higher than the level
for conjunction.

2.2. Language extensions 125



The Coq Reference Manual, Release 8.13.2

Since connectives are not tight articulation points of a text, it is reasonable to choose levels not so far from the highest
level which is 100, for example 85 for disjunction and 80 for conjunction.

Similarly, an associativity is needed to decide whether True /\ False /\ Falsedefaultsto True /\ (False
/\ False) (right associativity) or to (True /\ False) /\ False (left associativity). We may even consider
that the expression is not well-formed and that parentheses are mandatory (this is a “no associativity”)*'. We do not know
of a special convention for the associativity of disjunction and conjunction, so let us apply right associativity (which is the
choice of Coq).

Precedence levels and associativity rules of notations are specified with a list of parenthesized syntax_modifiers.
Here is how the previous examples refine:

Notation "A /\ B" := (and A B) (at level 80, right associativity).
Notation "A \/ B" := (or A B) (at level 85, right associativity).

By default, a notation is considered nonassociative, but the precedence level is mandatory (except for special cases whose
level is canonical). The level is either a number or the phrase next level whose meaning is obvious. Some associa-
tivities are predefined in the Notat ions module.

Complex notations

Notations can be made from arbitrarily complex symbols. One can for instance define prefix notations.

Notation "~ x" := (not x) (at level 75, right associativity).

One can also define notations for incomplete terms, with the hole expected to be inferred during type checking.

Notation "x = y" := (Cleqg _ x y) (at level 70, no associativity).

One can define closed notations whose both sides are symbols. In this case, the default precedence level for the inner
sub-expression is 200, and the default level for the notation itself is O.

Notation "( x , yv )" := (@pair _ _ x y).

One can also define notations for binders.

Notation "{ x : A | P }" := (sig A (fun x => P)).

In the last case though, there is a conflict with the notation for type casts. The notation for type casts, as shown by the
command Print Grammar constr is at level 100. To avoid x : A being parsed as a type cast, it is necessary to
put x at a level below 100, typically 99. Hence, a correct definition is the following:

Notation "{ x : A | P }" := (sig A (fun x => P)) (x at level 99).
Setting notation at level O.

More generally, it is required that notations are explicitly factorized on the left. See the next section for more about
factorization.

20 which are the levels effectively chosen in the current implementation of Coq

21 Coq accepts notations declared as nonassociative but the parser on which Coq is built, namely Camlp5, currently does not implement no
associativity and replaces it with left associativity; hence it is the same for Coq: no associativity is in fact left
associativity for the purposes of parsing
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Simple factorization rules

Coq extensible parsing is performed by Camip5 which is essentially a LL1 parser: it decides which notation to parse by
looking at tokens from left to right. Hence, some care has to be taken not to hide already existing rules by new rules.
Some simple left factorization work has to be done. Here is an example.

Notation "x < y" := (lt x y) (at level 70).
Fail Notation "x < y < z" := (x <y /\ y < z) (at level 70).
Toplevel input, characters 0-60:
> Fail Notation "x < y < z" := (x <y /\ y < z) (at level 70).
S AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARANAAANNANNANANANAAAAAAAAAAA
Warning: Notation "_ < _ < _" was already defined with a different format.

[notation—-incompatible-format, parsing]

The command has indeed failed with message:

Notation "_ < _ < _" is already defined at level 70 with arguments constr
at next level, constr at next level, constr at next level

while it is now required to be at level 70 with arguments constr

at next level, constr, constr at next level.

In order to factorize the left part of the rules, the subexpression referred to by y has to be at the same level in both rules.
However the default behavior puts y at the next level below 70 in the first rule (no associativity is the default),
and at level 200 in the second rule (Level 200 is the default for inner expressions). To fix this, we need to force the
parsing level of vy, as follows.

Notation "x < y" := (lt x y) (at level 70).
Notation "x < y < z" := (x <y /\ y < z) (at level 70, y at next level).

For the sake of factorization with Coq predefined rules, simple rules have to be observed for notations starting with a
symbol, e.g., rules starting with “{” or “ (” should be put at level 0. The list of Coq predefined notations can be found in
the chapter on The Coq library.

Use of notations for printing

The command Notat ion has an effect both on the Coq parser and on the Coq printer. For example:

Check (and True True) .
True /\ True
Prop

However, printing, especially pretty-printing, also requires some care. We may want specific indentations, line breaks,
alignment if on several lines, etc. For pretty-printing, Coq relies on OCaml formatting library, which provides indentation
and automatic line breaks depending on page width by means of formatting boxes.

The default printing of notations is rudimentary. For printing a notation, a formatting box is opened in such a way that if
the notation and its arguments cannot fit on a single line, a line break is inserted before the symbols of the notation and
the arguments on the next lines are aligned with the argument on the first line.

A first, simple control that a user can have on the printing of a notation is the insertion of spaces at some places of the
notation. This is performed by adding extra spaces between the symbols and parameters: each extra space (other than
the single space needed to separate the components) is interpreted as a space to be inserted by the printer. Here is an
example showing how to add spaces next to the curly braces.

Notation "{{ x : A | P }}" := (sig (fun x : A => P)) (at level 0, x at level 99).
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Check (sig (fun x : nat => x=x)).

{{ x : nat | x = x }}
Set

The second, more powerful control on printing is by using syntax_modifiers. Here is an example

Notation "'If' ¢l 'then' c¢2 'else' ¢c3" := (IF_then_else cl c2 c3)

(at

(L] [V

level 200, right associativity, format
L} lIfl Cl Y/' l[l lthenl CZ |:|| Y/' l[l lelsel C3 V:|l |j||")‘
Identifier 'If' now a keyword

Check
(IF_then_else (IF_then_else True False True)

(IF_then_else True False True)
(IF_then_else True False True)) .
If If True
then False
else True
then If True
then False
else True
else If True
then False
else True
Prop

A format is an extension of the string denoting the notation with the possible following elements delimited by single
quotes:

tokens of the form '/ ' are translated into breaking points. If there is a line break, indents the number of spaces
appearing after the “/” (no indentation in the example)

tokens of the form ' // ' force writing on a new line

well-bracketed pairs of tokens of the form ' [ ' and '] ' are translated into printing boxes; if there is a line break,
an extra indentation of the number of spaces after the “[” is applied

well-bracketed pairs of tokens of the form ' [hv 'and '] ' are translated into horizontal-or-else-vertical printing
boxes; if the content of the box does not fit on a single line, then every breaking point forces a new line and an extra
indentation of the number of spaces after the “ [ hv” is applied at the beginning of each new line

well-bracketed pairs of tokens of the form ' [v ' and '] ' are translated into vertical printing boxes; every break-
ing point forces a new line, even if the line is large enough to display the whole content of the box, and an extra
indentation of the number of spaces after the “[v” is applied at the beginning of each new line (3 spaces in the
example)

extra spaces in other tokens are preserved in the output

Notations disappear when a section is closed. No typing of the denoted expression is performed at definition time. Type
checking is done only at the time of use of the notation.

Note: The default for a notation is to be used both for parsing and printing. It is possible to declare a notation only for
parsing by adding the option only parsing to thelistof syntax modifiersof Notation. Symmetrically, the
only printing syntax modifier can be used to declare that a notation should only be used for printing.

If a notation to be used both for parsing and printing is overridden, both the parsing and printing are invalided, even if
the overriding rule is only parsing.

If a given notation string occurs only in only printing rules, the parser is not modified at all.
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To a given notation string and scope can be attached at most one notation with both parsing and printing or with only
parsing. Contrastingly, an arbitrary number of only printing notations differing in their right-hand sides but only a
unique right-hand side can be attached to a given string and scope. Obviously, expressions printed by means of such extra
printing rules will not be reparsed to the same form.

Note: When several notations can be used to print a given term, the notations which capture the largest subterm of the
term are used preferentially. Here is an example:

Notation "x < y" := (lt x y) (at level 70).
Notation "x < y < z" := (1t x y /\ 1t y z) (at level 70, y at next level).

Check (0 < 1 /\ 1 < 2).

When several notations match the same subterm, or incomparable subterms of the term to print, the notation declared
most recently is selected. Moreover, reimporting a library or module declares the notations of this library or module again.
If the notation is in a scope (see Notation scopes), either the scope has to be opened or a delimiter has to exist in the scope
for the notation to be usable.

The Infix command

The Tnfix command is a shortcut for declaring notations for infix symbols.

+ ?
Command: Infix string := one_term ( syntax modifier ) : scope_name'|

’

This command is equivalent to

+
Notation "x string y" := (one_term x y) |( syntax modifier )

’

D
scope_name

where x and y are fresh names and omitting the quotes around string. Here is an example:

Infix "/\" := and (at level 80, right associativity).

Reserving notations

+
Command: Reserved Notation string ( syntax modifier )

A given notation may be used in different contexts. Coq expects all uses of the notation to be defined at the same
precedence and with the same associativity. To avoid giving the precedence and associativity every time, this
command declares a parsing rule (st ring) in advance without giving its interpretation. Here is an example from
the initial state of Coq.

Reserved Notation "x = y" (at level 70, no associativity).

Reserving a notation is also useful for simultaneously defining an inductive type or a recursive constant and a notation
for it.
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Note: The notations mentioned in the module Notations are reserved. Hence their precedence and associativity
cannot be changed.

+
Command: Reserved Infix string ( syntax modifier )

’

This command declares an infix parsing rule without giving its interpretation.

When a format is attached to a reserved notation (with the format syntax_modifier),itis used by default
by all subsequent interpretations of the corresponding notation. Individual interpretations can override the format.

Simultaneous definition of terms and notations

Thanks to reserved notations, inductive, co-inductive, record, recursive and corecursive definitions can use customized
notations. To do this, insert a dec1_notations clause after the definition of the (co)inductive type or (co)recursive
term (or after the definition of each of them in case of mutual definitions). The exact syntax is givenby decl_notation
for inductive, co-inductive, recursive and corecursive definitions and in Record types for records. Note that only syntax
modifiers that do not require adding or changing a parsing rule are accepted.

*
decl_notations ::= where decl_notation |and decl_notation

+ ?
decl_notation ::= string := one_term |( |syntax_modifier 1 ) : Scope_name |
b

Here are examples:

Reserved Notation "A & B" (at level 80).

Inductive and' (A B : Prop) : Prop := conj' : A -> B -> A & B
where "A & B" := (and' A B).
Fixpoint plus (n m : nat) {struct n} : nat :=
match n with
| O =>m
| S p => S (ptm)
end
where "n + m" := (plus n m).

Displaying information about notations

Flag: Printing Notations
Controls whether to use notations for printing terms wherever possible. Default is on.

Flag: Printing Parentheses
If on, parentheses are printed even if implied by associativity and precedence Default is off.

See also:
Printing A1l to disable other elements in addition to notations.

Command: Print Grammar ident
Shows the grammar for the nonterminal i dent, which must be one of the following:

e constr -for terms
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e pattern -for patterns

e tactic - for currently-defined tactic notations, tact ics and tacticals (corresponding to I tac_expr in
the documentation).

e vernac - for commands

This command doesn’t display all nonterminals of the grammar. For example, productions shown by Print
Grammar tactic refer to nonterminals tactic_then_locality and for_each_goal which are not
shown and can’t be printed.

Most of the grammar in the documentation was updated in 8.12 to make it accurate and readable. This was
done using a new developer tool that extracts the grammar from the source code, edits it and inserts it into the
documentation files. While the edited grammar is equivalent to the original, for readability some nonterminals have
been renamed and others have been eliminated by substituting the nonterminal definition where the nonterminal
was referenced. This command shows the original grammar, so it won’t exactly match the documentation.

The Coq parser is based on Camlp5. The documentation for Extensible grammars'# is the most relevant but it
assumes considerable knowledge. Here are the essentials:

Productions can contain the following elements:
¢ nonterminal names - identifiers in the form [a-zA-20-9_]*

e "_." - aliteral string that becomes a keyword and cannot be used as an ident. The string doesn’t have to
be a valid identifier; frequently the string will contain only punctuation characters.

e IDENT ".." - aliteral string that has the form of an ident

* OPT element - optionally include element (e.g. a nonterminal, IDENT ”...” or ”...”)
e LIST1 element - alist of one or more elements

e LISTO element - an optional list of elements

e LIST1 element SEP sep -alistof elements separated by sep

e LISTO element SEP sep - an optional list of elements separated by sep

e [ elementsl | elements2 | .. ] -alternatives (either elementsl or elements2 or...)

Nonterminals can have multiple levels to specify precedence and associativity of its productions. This feature of
grammars makes it simple to parse input such as 1+2* 3 in the usual way as 1+ (2*3) . However, most nontermi-
nals have a single level.

For example, this output from Print Grammar tactic shows the first 3 levels for 1tac_expr, designated
as’5”,”4” and ”3”. Level 3 is right-associative, which applies to the productions within it, such as the t ry construct:

Entry ltac_expr is

[ "5" RIGHTA
[ binder_tactic ]
| "4" LEFTA

[ SELF; ";"; binder_tactic

| SELF; ";"; SELF

| SELF; ";"; tactic_then_locality; for_each_goal; "]" ]
| "3"™ RIGHTA

[ IDENT "try"; SELF

The interpretation of SELF depends on its position in the production and the associativity of the level:

* At the beginning of a production, SELF means the next level. In the fragment shown above, the next level
for t ry is ”2”. (This is defined by the order of appearance in the grammar or output; the levels could just as
well be named "foo” and bar”.)
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¢ In the middle of a production, SELF means the top level ("5 in the fragment)

¢ At the end of a production, SELF means the next level within LEFTA levels and the current level within
RIGHTA levels.

NEXT always means the next level. nonterminal LEVEL ".." is a reference to the specified level for
nonterminal.

Associativity'> explains SELF and NEXT in somewhat more detail.

The output for Print Grammar constr includes Notation definitions, which are dynamically added to
the grammar at run time. For example, in the definition for t e rm, the production on the second line shown here is
defined by a Reserved Notationcommand in Notations.v:

| "50" LEFTA
[ SELF; "||"; NEXT

Similarly, Print Grammar tacticincludes Tactic Notations,suchas dintuition.

The file doc/tools/docgram/fullGrammar'® in the source tree extracts the full grammar for Coq (not including
notations and tactic notations defined in * . v files nor some optionally-loaded plugins) in a single file with minor
changes to handle nonterminals using multiple levels (described in doc/tools/docgram/README.md'”). This is
complete and much easier to read than the grammar source files. doc/tools/docgram/orderedGrammar'® has the
edited grammar that’s used in the documentation.

Developer documentation for parsing is in dev/doc/parsing.md'®.

Locating notations

To know to which notations a given symbol belongs to, use the Locate command. You can call it on any (composite)
symbol surrounded by double quotes. To locate a particular notation, use a string where the variables of the notation are
replaced by “_” and where possible single quotes inserted around identifiers or tokens starting with a single quote are

dropped.
Locate "exists".
Notation "'exists' x .. vy , p" := (ex (fun x => .. (ex (fun y => p)) ..))
type_scope (default interpretation)
Notation "'exists' ! x .. y , p" :=
(ex (unique (fun x => .. (ex (unique (fun y => p))) ..))) : type_scope

(default interpretation)

Locate "exists _ .. _ , _".

Notation "'exists' x .. vy , p" = (ex (fun x => .. (ex (fun y => p)) ..))
type_scope (default interpretation)

14 http://camlp5.github.io/doc/htmlc/grammars.html

15 http://camlp5.github.io/doc/htmlc/grammars. html#b: Associativity

16 http://github.com/cog/cog/blob/master/doc/tools/docgram/full Grammar

17 http://github.com/coq/cog/blob/master/doc/tools/docgram/README.md

18 hitp://github.com/cog/cog/blob/master/doc/tools/docgram/orderedGrammar
19 http://github.com/cog/cog/blob/master/dev/doc/parsing.md
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Inheritance of the properties of arguments of constants bound to a notation
If the right-hand side of a notation is a partially applied constant, the notation inherits the implicit arguments (see Implicit
arguments) and notation scopes (see Notation scopes) of the constant. For instance:

Record R := {dom : Type; op : forall {A}, A —-> dom}.
Notation "# x" := (Cop x) (at level 8).

Check fun x:R => # x 3.
fun x : R => # x 3
forall x : R, dom x

As an exception, if the right-hand side is just of the form @qualid, this conventionally stops the inheritance of implicit
arguments (but not of notation scopes).

Notations and binders

Notations can include binders. This section lists different ways to deal with binders. For further examples, see also
Notations with recursive patterns involving binders.

Binders bound in the notation and parsed as identifiers

Here is the basic example of a notation using a binder:

Notation "'sigma' x : A , B" := (sigT (fun x : A => B))
(at level 200, x name, A at level 200, right associativity).

The binding variables in the right-hand side that occur as a parameter of the notation (here x) dynamically bind all the
occurrences in their respective binding scope after instantiation of the parameters of the notation. This means that the
term bound to B can refer to the variable name bound to x as shown in the following application of the notation:

Check sigma z : nat, z = 0.
sigma z : nat, z = 0
Set

Note the syntax modifier x name in the declaration of the notation. It tells to parse x as a single identifier (or
as the unnamed variable _).

Binders bound in the notation and parsed as patterns

In the same way as patterns can be used as binders, as in fun ' (x,y) => x+yor fun '(existT _ x _) =>
x, notations can be defined so that any pattern can be used in place of the binder. Here is an example:

Notation "'subset' ' p , P " := (sig (fun p => P))
(at level 200, p pattern, format "'subset' ''p, P").

Check subset ' (x,y), x+y=0.
subset '(x, y), x +y =0
Set

The syntax_modifier p pattern in the declaration of the notation tells to parse p as a pattern. Note that a
single variable is both an identifier and a pattern, so, e.g., the following also works:
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Check subset 'x, x=0.
subset 'x, x = 0
Set

If one wants to prevent such a notation to be used for printing when the pattern is reduced to a single identifier, one has
to use instead the syntax modifier p strict pattern. For parsing, however, a strict pattern will
continue to include the case of a variable. Here is an example showing the difference:

Notation "'subset_bis' ' p , P" := (sig (fun p => P))
(at level 200, p strict pattern).
Notation "'subset_bis' p , P " := (sig (fun p => P))

(at level 200, p name).

Check subset_bis 'x, x=0.
subset_bis x, x = 0
Set

The default level for a pattern is 0. One can use a different level by using pattern at level n where the scale
is the same as the one for terms (see Notations).

Binders bound in the notation and parsed as terms

Sometimes, for the sake of factorization of rules, a binder has to be parsed as a term. This is typically the case for a
notation such as the following:

Notation "{ x : A | P }" := (sig (fun x : A => P))
(at level 0, x at level 99 as name) .

This is so because the grammar also contains rules starting with { } and followed by a term, such as the rule for the
notation { A } + { B } for the constant sumbool (see Specification).

Then, in the rule, x name isreplaced by x at level 99 as name meaning that x is parsed as a term at level 99
(as done in the notation for sumbool), but that this term has actually to be a name, i.e. an identifier or _.

The notation { x | P } is already defined in the standard library with the as name syntax_modifier. We
cannot redefine it but one can define an alternative notation, say { p such that P },usinginstead as pattern.

Notation "{ p 'such' 'that' P }" := (sig (fun p => P))
(at level 0, p at level 99 as pattern).
Then, the following works:

Check { (x,y) such that x+y=0}.
{(x, y) such that x + y = 0}
: Set

To enforce that the pattern should not be used for printing when it is just a name, one could have saidp at level 99
as strict pattern.

Note also that in the absence of a as name, as strict patternoras pattern syntax modifiers, the
default is to consider sub-expressions occurring in binding position and parsed as terms to be as name.
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Binders bound in the notation and parsed as general binders

It is also possible to rely on Coq’s syntax of binders using the binder modifier as follows:

Notation "'myforall' p , [ P, Q] " := (forall p, P —> Q)
(at level 200, p binder).

In this case, all of ident, {ident}, [ident], ident: type, {ident:type}, [ident:type]l, 'pattern
can be used in place of the corresponding notation variable. In particular, the binder can declare implicit arguments:

Check fun (f : myforall {a}, [a=0, Prop]) => f eq_refl.
fun £ : myforall a, [a = 0, Prop] => f 0 eq_refl
(myforall a, [a = 0, Prop]) —> Prop
Check myforall '((x,y):nat*nat), [ x =y, True ].
myforall '(x, vy), [x =y, True]
Prop

By using instead closed binder, the same list of binders is allowed except that ident : type requires parentheses
around.

Binders not bound in the notation
We can also have binders in the right-hand side of a notation which are not themselves bound in the notation. In this case,
the binders are considered up to renaming of the internal binder. E.g., for the notation

Notation "'exists_different' n" := (exists p:nat, p<>n) (at level 200).

the next command fails because p does not bind in the instance of n.

Fail Check (exists_different p).
The command has indeed failed with message:
The reference p was not found in the current environment.

Notation "[> a , .. , b <]" :=
(cons a .. (cons b nil) .., cons b .. (cons a nil) ..).

Notations with expressions used both as binder and term

It is possible to use parameters of the notation both in term and binding position. Here is an example:

Definition force n (P:nat -> Prop) := forall n', n' >> n -> P n'.
Notation "O_ n P" := (force n (fun n => P))
(at level 0, n name, P at level 9, format "O_ n P").

Check exists p, O_p (p >= 1).
exists p : nat, O_p (p >= 1)
Prop

More generally, the parameter can be a pattern, as in the following variant:

Definition force2 g (P:nat*nat —-> Prop) =
(forall n', n' >= fst g -> forall p', p' >= snd g —> P q).
(continues on next page)

2.2. Language extensions 135



The Coq Reference Manual, Release 8.13.2

(continued from previous page)

Notation "O_ p P" := (force2 p (fun p => P))
(at level 0, p pattern at level 0, P at level 9, format "O_ p P").

Check exists x y, O_(x,y) (x >= 1 /\ y >= 2).
exists x y : nat, O_(x, y) (x >= 1 /\ y >= 2)
Prop

This support is experimental. For instance, the notation is used for printing only if the occurrence of the parameter in
term position comes in the right-hand side before the occurrence in binding position.

Notations with recursive patterns

A mechanism is provided for declaring elementary notations with recursive patterns. The basic example is:

Notation "[ x ; .. ; yv |]" := (cons x .. (cons y nil) ..).
Setting notation at level O.

On the right-hand side, an extra construction of the form . . t .. canbe used. Notice that . . is part of the Coq syntax

(73Rt}

and it must not be confused with the three-dots notation “...” used in this manual to denote a sequence of arbitrary size.

On the left-hand side, the part “x s .. s y” of the notation parses any number of times (but at least once) a sequence

6,

of expressions separated by the sequence of tokens s (in the example, s is just “;

The right-hand side must contain a subterm of the form either v (x, .. w(y,t) ..)orp(y, .. w(x,t) ..)
where ([ |, [ ];), called the iterator of the recursive notation is an arbitrary expression with distinguished placeholders
and where ? is called the terminating expression of the recursive notation. In the example, we choose the names x and y
but in practice they can of course be chosen arbitrarily. Note that the placeholder [ |; has to occur only once but [ | ; can
occur several times.

Parsing the notation produces a list of expressions which are used to fill the first placeholder of the iterating pattern
which itself is repeatedly nested as many times as the length of the list, the second placeholder being the nesting point.
In the innermost occurrence of the nested iterating pattern, the second placeholder is finally filled with the terminating
expression.

In the example above, the iterator ©([ |z, [ ];) is cons| ]z [ ]; and the terminating expression is nil.

Here is another example with the pattern associating on the left:

Notation "( x , v , .. , z )" := (pair .. (pair x y) .. z) (at level 0).

Here is an example with more involved recursive patterns:

Notation "[| t * (x , VvV, .. , 2z ) ; (a, b, .., c) *u |[]" =
(pair (pair .. (pair (pair t x) (pair t y)) .. (pair t z))
(pair .. (pair (pair a u) (pair b u)) .. (pair c u)))

(t at level 39).

To give a flavor of the extent and limits of the mechanism, here is an example showing a notation for a chain of equalities.
It relies on an artificial expansion of the intended denotation so asto exposeaw (x, .. w(y,t) ..) structure, with
the drawback that if ever the beta-redexes are contracted, the notations stops to be used for printing. Support for notations
defined in this way should be considered experimental.
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Notation "x [Py [ .. [@Fz [ t" :=
((fun b A a => a <=Db /\ADb) y .. ((fun b A a =>a <=Db /\ ADb) z (fun b => b <=_
st)) .. Xx)
(at level 70, y at next level, z at next level, t at next level).

Note finally that notations with recursive patterns can be reserved like standard notations, they can also be declared within
notation scopes.

Notations with recursive patterns involving binders

Recursive notations can also be used with binders. The basic example is:

Notation "'exists' x .. y , p" :=
(ex (fun x => .. (ex (fun y => p)) ..))
(at level 200, x binder, y binder, right associativity).

The principle is the same as in Notations with recursive patterns except that in the iterator ¢([ ]z, [ ];), the placeholder
[ ]z can also occur in position of the binding variable of a fun ora forall.

To specify that the part “x .. y” of the notation parses a sequence of binders, x and y must be marked as binder in
the list of syntax modifiers of the notation. The binders of the parsed sequence are used to fill the occurrences of
the first placeholder of the iterating pattern which is repeatedly nested as many times as the number of binders generated.
If ever the generalization operator ' (see Implicit generalization) is used in the binding list, the added binders are taken
into account too.

There are two flavors of binder parsing. If x and y are marked as binder, then a sequence suchas a b ¢ : T will be
accepted and interpreted as the sequence of binders (a:T) (b:T) (c:T). For instance, in the notation above, the
syntax exists a b : nat, a = bisvalid

The variables x and y can also be marked as closed binder in which case only well-bracketed binders of the form (a b
c:T) or {a b c:T} etc. are accepted.

With closed binders, the recursive sequence in the left-hand side can be of the more general form x s .. s y where
s is an arbitrary sequence of tokens. With open binders though, s has to be empty. Here is an example of recursive
notation with closed binders:

Notation "'mylet' f x .. y := t 'in' u":=
(let £ := fun x => .. (fun y => t) .. in u)
(at level 200, x closed binder, y closed binder, right associativity).

A recursive pattern for binders can be used in position of a recursive pattern for terms. Here is an example:

Notation "'FUNAPP' x .. y , f" :=
(fun x => .. (fun y => (.. (£ x) ..) y ) ..)
(at level 200, x binder, y binder, right associativity).

If an occurrence of the [ ] is not in position of a binding variable but of a term, it is the name used in the binding which
is used. Here is an example:

Notation "'exists_non_null' x .. vy , P" :
(ex (fun x => x <> 0 /\ .. (ex (fun y => y <> 0 /\ P)) ..))
(at level 200, x binder).
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Predefined entries

By default, sub-expressions are parsed as terms and the corresponding grammar entry is called constr. However, one
may sometimes want to restrict the syntax of terms in a notation. For instance, the following notation will accept to parse
only global reference in position of x:

Notation "'apply' £ al .. an" := (.. (f al) .. an)
(at level 10, f global, al, an at level 9).

In addition to global, one can restrict the syntax of a sub-expression by using the entry names ident, name or
pattern already seen in Binders not bound in the notation, even when the corresponding expression is not used as a
binder in the right-hand side. E.g.:

Notation "'apply_id' f al .. an" := (.. (f al) .. an)
(at level 10, f ident, al, an at level 9).

Note: As of version 8.13, the entry ident is a deprecated alias for name. In the future, it is planned to strictly parse
an identifier (excluding _).

Custom entries

Command: Declare Custom Entry ident
Defines new grammar entries, called custom entries, that can later be referred to using the entry name custom
ident.

This command supports the 1 ocal attribute, which limits the entry to the current module.

Example
For instance, we may want to define an ad hoc parser for arithmetical operations and proceed as follows:

Inductive Expr :=

| One : Expr

| Mul : Expr -> Expr —-> Expr

| Add : Expr —-> Expr —> Expr.
Expr is defined
Expr_rect is defined
Expr_ind is defined
Expr_rec is defined
Expr_sind is defined

Declare Custom Entry expr.
Notation "[ e ]" := e (e custom expr at level 2).
Setting notation at level O.

Notation "1" := One (in custom expr at level 0).

Notation "x y" := (Mul x y) (in custom expr at level 1, left associativity).
Notation "x + y" := (Add x y) (in custom expr at level 2, left associativity).
Notation "( x )" := x (in custom expr, x at level 2).

Setting notation at level O.

(continues on next page)
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(continued from previous page)

Notation "{ x }" := x (in custom expr, x constr).
Setting notation at level 0.

Notation "x" := x (in custom expr at level 0, x ident).

Axiom f : nat -> Expr.
f is declared

Check fun x y z => [1 + y z + {f x}].
fun (x : nat) (y z : Expr) => [1 + vy z + {apply f x}]
nat -> Expr -> Expr -> Expr

Unset Printing Notations.
Check fun x y z => [1 + vy z + {f x}].
fun (x : nat) (y z : Expr) => Add (Add One (Mul y z)) (f x)
forall (_ : nat) (_ : Expr) (_ : Expr), Expr

Set Printing Notations.
Check fun e => match e with
[ [1 + 1] => [1]
| [xy + z] => [x + v z]
[y => [y + €]
end.

fun e : Expr =>

match e with

[ [1 + 1] => [1]

[ [xy +z] => [x +y z]

[ _ => [e + e]
end

Expr —-> Expr

Custom entries have levels, like the main grammar of terms and grammar of patterns have. The lower level is 0 and this is
the level used by default to put rules delimited with tokens on both ends. The level is left to be inferred by Coq when using
in custom ident. The level is otherwise given explicitly by using the syntax in custom ident at level
natural, where natural refers to the level.

Levels are cumulative: a notation at level n of which the left end is a term shall use rules at level less than n to parse this sub-
term. More precisely, it shall use rules at level strictly less than n if the rule is declared with right associativity
and rules at level less or equal than n if the rule is declared with 1left associativity. Similarly, a notation at
level n of which the right end is a term shall use by default rules at level strictly less than n to parse this subterm if the
rule is declared left associative and rules at level less or equal than n if the rule is declared right associative. This is what
happens for instance in the rule

Notation "x + y" := (Add x y) (in custom expr at level 2, left associativity).
where x is any expression parsed in entry expr at level less or equal than 2 (including, recursively, the given rule) and y
is any expression parsed in entry expr at level strictly less than 2.

Rules associated with an entry can refer different sub-entries. The grammar entry name constr can be used to refer to
the main grammar of term as in the rule

Notation "{ x }" := x (in custom expr at level 0, x constr).

which indicates that the subterm x should be parsed using the main grammar. If not indicated, the level is computed as
for notations in constr, e.g. using 200 as default level for inner sub-expressions. The level can otherwise be indicated
explicitly by using constr at level nforsome n,or constr at next level.
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Conversely, custom entries can be used to parse sub-expressions of the main grammar, or from another custom entry as
is the case in

Notation "[ e ]" := e (e custom expr at level 2).

to indicate that e has to be parsed at level 2 of the grammar associated with the custom entry expr. The level can be
omitted, as in

Notation "[ e |]" := e (e custom expr).

in which case Coq infer it. If the sub-expression is at a border of the notation (as e.g. x and y in x + y), the level is
determined by the associativity. If the sub-expression is not at the border of the notation (ase.g. ein " [ e 1), the level
is inferred to be the highest level used for the entry. In particular, this level depends on the highest level existing in the
entry at the time of use of the notation.

In the absence of an explicit entry for parsing or printing a sub-expression of a notation in a custom entry, the default is to
consider that this sub-expression is parsed or printed in the same custom entry where the notation is defined. In particular,
if x at level n is used for a sub-expression of a notation defined in custom entry foo, it shall be understood the
same as x custom foo at level n.

In general, rules are required to be productive on the right-hand side, i.e. that they are bound to an expression which is
not reduced to a single variable. If the rule is not productive on the right-hand side, as it is the case above for

Notation "( x )" := x (in custom expr at level 0, x at level 2).
and
Notation "{ x }" := x (in custom expr at level 0, x constr).

it is used as a grammar coercion which means that it is used to parse or print an expression which is not available in the
current grammar at the current level of parsing or printing for this grammar but which is available in another grammar or
in another level of the current grammar. For instance,

Notation "( x )" := x (in custom expr at level 0, x at level 2).

tells that parentheses can be inserted to parse or print an expression declared at level 2 of expr whenever this expression
is expected to be used as a subterm at level O or 1. This allows for instance to parse and print Add x y as a subterm of
Mul (Add x y) =z usingthesyntax (x + y) z. Similarly,

Notation "{ x }" := x (in custom expr at level 0, x constr).

gives a way to let any arbitrary expression which is not handled by the custom entry expr be parsed or printed by the
main grammar of term up to the insertion of a pair of curly brackets.

Another special situation is when parsing global references or identifiers. To indicate that a custom entry should parse
identifiers, use the following form:

Notation "x" := x (in custom expr at level 0, x ident).

Similarly, to indicate that a custom entry should parse global references (i.e. qualified or non qualified identifiers), use
the following form:

Notation "x" := x (in custom expr at level 0, x global).

Command: Print Custom Grammar ident
This displays the state of the grammar for terms associated with the custom entry ident.
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Syntax

Here are the syntax elements used by the various notation commands.

syntax_modifier  ::= at level natural
9
| in custom ident  at level natural

+
| ident L at level
5]
ident at level | binder_interp |
ident explicit_subentry
ident binder_interp
left associativity
right associativity
no associativity
only parsing
only printing
5]
| format string string |
explicit_subentry ::= ident
| name
| global
| bigint
?
| strict pattern at level natural

| binder

| closed binder
? ?
| constr |at level | |binder_interp
2 2
| custom ident |at level | |binder_interp
9
| pattern at level natural

binder_interp ::= asident

| as name

| as pattern

| as strict pattern
level ::=  level natural

| next level

Note: No typing of the denoted expression is performed at definition time. Type checking is done only at the time of
use of the notation.

Note: Some examples of Notation may be found in the files composing the initial state of Coq (see directory $COQLIB/
theories/Init).

Note: The notation "{ x }" has a special status in the main grammars of terms and patterns so that complex notations
of the foom "x + { y }"or "x * { y }" can be nested with correct precedences. Especially, every notation
involving a pattern of the form "{ x }" is parsed as a notation where the pattern "{ x }" has been simply replaced
by "x" and the curly brackets are parsed separately. E.g. "y + { z }" is not parsed as a term of the given form
but as a term of the form "y + z" where z has been parsed using the rule parsing "{ x }". Especially, level and
precedences for a rule including patterns of the form "{ x }" are relative not to the textual notation but to the notation
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where the curly brackets have been removed (e.g. the level and the associativity given to some notation, say "{ vy } &
{ z }" in fact applies to the underlying "{ x }"-free rule whichis "y & z").

Note: Notationssuchas " ( p | g )" (orstartingwith " ( x | ", more generally) are deprecated as they conflict
with the syntax for nested disjunctive patterns (see Extended pattern matching), and are not honored in pattern expressions.

Warning:
Use of string Notation is deprecated as it is inconsistent with pattern syntax.

This warning is disabled by default to avoid spurious diagnostics due to legacy notation in the Coq standard library.
It can be turned on with the —-w disj-pattern-notation flag.

Note: As of version 8.13, the entry ident is a deprecated alias for name. In the future, it is planned to strictly parse
an identifier (to the exclusion of _). If the intent was to use ident as an identifier (excluding _), just silence the warning
with Set Warnings "-deprecated-ident-entry" and it should automatically get its intended meaning in
version 8.15.

Similarly, as ident is a deprecated alias for as name, which will only accept an identifier in the future. If
the intent was to use as ident as an identifier (excluding _), just silence the warning with Set Warnings
"-deprecated—-as-ident-kind".

However, this deprecation does not apply to custom entries, where it already denotes an identifier, as expected.

Notation scopes

A notation scope is a set of notations for terms with their interpretations. Notation scopes provide a weak, purely syntactic
form of notation overloading: a symbol may refer to different definitions depending on which notation scopes are currently
open. For instance, the infix symbol + can be used to refer to distinct definitions of the addition operator, such as for
natural numbers, integers or reals. Notation scopes can include an interpretation for numbers and strings with the Numbe r
Notationand String Notation commands.

scope ::= Scope_name
| scope_key

scope_name ::= ident

scope_key ::= ident

Each notation scope has a single scope_name, which by convention ends with the suffix ”_scope”, as in “nat_scope”.
One or more scope_keys (delimiting keys) may be associated with a notation scope with the Delimit Scope
command. Most commands use scope_name; scope_keys are used within terms.

Command: Declare Scope scope_name
Declares a new notation scope. Note that the initial state of Coq declares the following notation
scopes: core_scope, type_scope, function_scope, nat_scope, bool_scope, 1list_scope,
int_scope, uint_scope.

Use commands such as Notat ion to add notations to the scope.
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Global interpretation rules for notations

At any time, the interpretation of a notation for a term is done within a stack of notation scopes and lonely notations.
If a notation is defined in multiple scopes, Coq uses the interpretation from the most recently opened notation scope or
declared lonely notation.

Note that “stack” is a misleading name. Each scope or lonely notation can only appear in the stack once. New items are
pushed onto the top of the stack, except that adding a item that’s already in the stack moves it to the top of the stack
instead. Scopes are removed by name (e.g. by C1ose Scope) wherever they are in the stack, rather than through "pop”
operations.

Usethe Print Visibility command to display the current notation scope stack.

Command: Open Scope scope
Adds a scope to the notation scope stack. If the scope is already present, the command moves it to the top of the
stack.

If the command appears in a section: By default, the scope is only added within the section. Specifying global
marks the scope for export as part of the current module. Specifying 1ocal behaves like the default.

If the command does not appear in a section: By default, the scope marks the scope for export as part of the current
module. Specifying 1ocal prevents exporting the scope. Specifying g1 obal behaves like the default.

Command: Close Scope scope
Removes a scope from the notation scope stack.

If the command appears in a section: By default, the scope is only removed within the section. Specifying g1obal
marks the scope removal for export as part of the current module. Specifying 1oca 1 behaves like the default.

If the command does not appear in a section: By default, the scope marks the scope removal for export as part
of the current module. Specifying Iocal prevents exporting the removal. Specifying g1obal behaves like the
default.

Local interpretation rules for notations

In addition to the global rules of interpretation of notations, some ways to change the interpretation of subterms are
available.

Opening a notation scope locally
term_scope ::= terml0 % scope_key

The notation scope stack can be locally extended within a term with the syntax (term) $scope_key (or simply
term0%scope_key for atomic terms).

In this case, termis interpreted in the scope stack extended with the scope bound to scope_key.

Command: Delimit Scope scope name with scope key
Binds the delimiting key scope_key to a scope.

Command: Undelimit Scope scope_name
Removes the delimiting keys associated with a scope.
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Binding types or coercion classes to a notation scope

Command: Bind Scope scope name with |class

Binds the notation scope scope__name to the type or coercion class c1ass. When bound, arguments of that type
for any function will be interpreted in that scope by default. This default can be overridden for individual functions
with the A rgument s command. The association may be convenient when a notation scope is naturally associated
with a t ype (e.g. nat and the natural numbers).

Whether the argument of a function has some type t ype is determined statically. For instance, if £ is a polymorphic
function of type forall X:Type, X —> Xand type t is bound to a scope scope, thenaof typetinf t
a is not recognized as an argument to be interpreted in scope scope.

Parameter U : Set.

Declare Scope U_scope.

Bind Scope U_scope with U.

Parameter Uplus : U -—> U —> U.

Parameter P : forall T:Set, T -> U -> Prop.
Parameter f : forall T:Set, T -> U.

Infix "+" := Uplus : U_scope.

Unset Printing Notations.

Open Scope nat_scope.

Check (fun x y1 y2 z t => P _ (x + t) ((£ _ (y1 + y2) + z))).
fun (x yl1 y2 : nat) (z : U) (t : nat) =>
P nat (Nat.add x t) (Uplus (f nat (Nat.add y1 y2)) z)
forall (_ : nat) (_ : nat) (_ : nat) (_ : U) (_ : nat), Prop

Note: When active, a bound scope has effect on all defined functions (even if they are defined after the Bind
Scope directive), except if argument scopes were assigned explicitly using the Argument s command.

Note: The scopes type_scope and function_scope also have a local effect on interpretation. See the next
section.

The type_scope notation scope

The scope type_scope has a special status. It is a primitive interpretation scope which is temporarily activated each
time a subterm of an expression is expected to be a type. It is delimited by the key t ype, and bound to the coercion
class Sortclass. Itis also used in certain situations where an expression is statically known to be a type, including the
conclusion and the type of hypotheses within an Ltac goal match (see Pattern matching on goals and hypotheses: match
goal), the statement of a theorem, the type of a definition, the type of a binder, the domain and codomain of implication,
the codomain of products, and more generally any type argument of a declared or defined constant.
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The function_scope hotation scope

The scope function_scope also has a special status. It is temporarily activated each time the argument of a global
reference is recognized to be a Funclass instance, i.e., of type forall x:A, BorA —-> B.

Notation scopes used in the standard library of Coq

We give an overview of the scopes used in the standard library of Coq. For a complete list of notations in each scope, use
the commands Print Scopesor Print Scope.

type_scope This scope includes infix * for product types and infix + for sum types. It is delimited by the key type,
and bound to the coercion class Sortclass, as described above.

function_scope This scope is delimited by the key function, and bound to the coercion class Funclass, as
described above.

nat_scope This scope includes the standard arithmetical operators and relations on type nat. Positive integer numbers
in this scope are mapped to their canonical representent built from O and S. The scope is delimited by the key nat,
and bound to the type nat (see above).

N_scope This scope includes the standard arithmetical operators and relations on type N (binary natural numbers). It
is delimited by the key N and comes with an interpretation for numbers as closed terms of type N.

Z_scope This scope includes the standard arithmetical operators and relations on type Z (binary integer numbers). It
is delimited by the key Z and comes with an interpretation for numbers as closed terms of type Z.

positive_scope This scope includes the standard arithmetical operators and relations on type positive (binary
strictly positive numbers). It is delimited by key positive and comes with an interpretation for numbers as
closed terms of type positive.

Q_scope This scope includes the standard arithmetical operators and relations on type Q (rational numbers defined
as fractions of an integer and a strictly positive integer modulo the equality of the numerator- denominator cross-
product) and comes with an interpretation for numbers as closed terms of type Q.

Qc_scope This scope includes the standard arithmetical operators and relations on the type Qc of rational numbers
defined as the type of irreducible fractions of an integer and a strictly positive integer.

R_scope This scope includes the standard arithmetical operators and relations on type R (axiomatic real numbers). It is
delimited by the key R and comes with an interpretation for numbers using the I ZR morphism from binary integer
numbers to R and Z . pow_pos for potential exponent parts.

bool_scope This scope includes notations for the boolean operators. It is delimited by the key boo1l, and bound to
the type boo1l (see above).

list_scope This scope includes notations for the list operators. It is delimited by the key 1ist, and bound to the
type 1ist (see above).

core_scope This scope includes the notation for pairs. It is delimited by the key core.

string_scope This scope includes notation for strings as elements of the type string. Special characters and escaping
follow Coq conventions on strings (see Lexical conventions). Especially, there is no convention to visualize non
printable characters of a string. The file St ring. v shows an example that contains quotes, a newline and a beep
(i.e. the ASCII character of code 7).

char_scope This scope includes interpretation for all strings of the form " c" where c is an ASCII character, or of the
form "nnn" where nnn is a three-digit number (possibly with leading Os), or of the form """ ". Their respective
denotations are the ASCII code of c, the decimal ASCII code nnn, or the ascii code of the character " (i.e. the
ASCII code 34), all of them being represented in the type ascii.
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Displaying information about scopes

Command: Print Visibility |scope name 2
Displays the current notation scope stack. The top of the stack is displayed last. Notations in scopes whose inter-
pretation is hidden by the same notation in a more recently opened scope are not displayed. Hence each notation
is displayed only once.

If scope_name is specified, displays the current notation scope stack as if the scope scope_name is pushed
on top of the stack. This is useful to see how a subterm occurring locally in the scope is interpreted.

Command: Print Scopes
Displays, for each existing notation scope, all accessible notations (whether or not currently in the notation scope
stack), the most-recently defined delimiting key and the class the notation scope is bound to. The display also
includes lonely notations.

Use the Print Visibility command to display the current notation scope stack.

Command: Print Scope scope_name
Displays all notations defined in the notation scope scope_name. It also displays the delimiting key and the class
to which the scope is bound, if any.

Abbreviations

* ?
Command: Notation ident ident := one_term ( only parsing )

parm
Defines an abbreviation i dent with the parameters ident ..
This command supports the 1 ocal attribute, which limits the notation to the current module.

An abbreviation is a name, possibly applied to arguments, that denotes a (presumably) more complex expression.
Here are examples:

Notation Nlist := (list nat).
Check 1 :: 2 :: 3 :: nil.
1 :: 2 2 3 :: nil
Nlist
Notation reflexive R := (forall x, R x x).

Check forall A:Prop, A <-> A.
reflexive iff
Prop

Check reflexive iff.
reflexive iff
Prop

Notation Plusl B := (Nat.add B 1).

Compute (Plusl 3).
= 4
nat

An abbreviation expects no precedence nor associativity, since it is parsed as an usual application. Abbreviations
are used as much as possible by the Coq printers unless the modifier (only parsing) is given.
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An abbreviation is bound to an absolute name as an ordinary definition is and it also can be referred to by a qualified
name.

Abbreviations are syntactic in the sense that they are bound to expressions which are not typed at the time of the
definition of the abbreviation but at the time they are used. Especially, abbreviations can be bound to terms with
holes (i.e. with “_"). For example:

Definition explicit_id (A:Set) (a:A) := a.
Notation id := (explicit_id _).

Check (id 0).
id 0
nat

Abbreviations disappear when a section is closed. No typing of the denoted expression is performed at definition
time. Type checking is done only at the time of use of the abbreviation.

Like for notations, if the right-hand side of an abbreviation is a partially applied constant, the abbreviation inherits
the implicit arguments and notation scopes of the constant. As an exception, if the right-hand side is just of the
form @qualid, this conventionally stops the inheritance of implicit arguments.

Like for notations, it is possible to bind binders in abbreviations. Here is an example:

Definition force2 g (P:nat*nat -> Prop) :=
(forall n', n' >= fst g —> forall p', p' >= snd g —> P q).

Notation F p P := (force2 p (fun p => P)).
Check exists x y, F (x,y) (x >= 1 /\ y >= 2).

Numbers and strings

primitive_notations ::= number
| string

Numbers and strings have no predefined semantics in the calculus. They are merely notations that can be bound to
objects through the notation mechanism. Initially, numbers are bound to Peano’s representation of natural numbers
(see Datatypes).

Note: Negative integers are not at the same level as natural, for this would make precedence unnatural.

Number notations

Command:

+
( |number_modifier ) : scope_name

4

Number Notation qualid,, . qualid,... qualid

print

number_modifier warning after bignat
| abstract after bignat

| number_string_via

=+
number_string_via via qualid mapping [  qualid => qualid ‘ [ qualid 1 => qualid 1" ]
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This command allows the user to customize the way number literals are parsed and printed.

qualid,,,. the name of an inductive type, while qualid,,, .. and qualid,,;,, should be the
names of the parsing and printing functions, respectively. The parsing function qualid,,, ..
should have one of the following types:

* Number.int -> qualid,

* Number.int —-> option gqualid,,

* Number.uint -> qualid,,,

* Number.uint -> option qualid,, .

* Z —> qualid,,,

* Z —> option gualid,,,

* Int63.int -> qualid, .

* Int63.int —> option qualid,,

* Number.number -> qualid,,,.

* Number.number -> option qualid,,,.

And the printing function qualid

prin

—> Number.int

+ should have one of the following types:

* qualid

type
* qualid,,,. —> option Number.int

* qualid,,,. —> Number.uint

* qualid,,,. —> option Number.uint

* qualid,,,, —> Z

* qualid,,,. —> option Z

* qualid,,,. —> Int63.int

* qualid,,,, —> option Inté3.int

* qualid,,,  —> Number.number

* qualid,,,. —> option Number.number

Deprecated since version 8.12: Number notations on Decimal.uint, Decimal.int
and Decimal.decimal are replaced respectively by number notations on Number.uint,
Number.int and Number .number.

When parsing, the application of the parsing function qualid,,, . to the number will be fully
reduced, and universes of the resulting term will be refreshed.

Note that only fully-reduced ground terms (terms containing only function application, constructors,
inductive type families, sorts, and primitive integers) will be considered for printing.

via qualidind mapping [ qualidconstant => qualidconstructor
r

1 When using

this option, qualid,, . no longer needs to be an inductive type and is instead mapped to

the inductive type qualid,,, according to the provided list of pairs, whose first compo-
*
nent qualid,,,...,. IS @ constant of type qualid,, .

qualid,,,.) and the second a constructor of type qualid, .

replaced by qualid, , in the above parser and printer types.

(or a function of type |_ —>

The type qualid, . is then
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When qualid,,, ... is surrounded by square brackets, all the implicit arguments of
qualid,_,, ,.,. (whether maximally inserted or not) are ignored when translating to
qualid_ ., ueeor (€., before applying qualid ) and replaced with implicit argument

print
holes _ when translating from qualid

constructor to qualldconstant (after qualldparse)'
See below for an example.

Note: The implicit status of the arguments is considered only at notation declaration time, any
further modification of this status has no impact on the previously declared notations.

Note: In case of multiple implicit options (for instance Arguments eq_refl
{A}%type_scope {x}, [_] _), an argument is considered implicit when it is implicit in

any of the options.

Note: To use a sort as the target type qualid
below.

type> Us€ an abbreviation as in the example

warning after bignat displaysawarning message about a possible stack overflow when calling

qualid,,,. to parse a literal larger than bignat.

Warning:
Stack overflow or segmentation fault happens when working with large numbers in

When a Number Notation is registered in the current scope with (warning after
bignat), this warning is emitted when parsing a number greater than or equal to bignat.

abstract after bignat returns (qualid,,,.. m) when parsing a literal m that's greater
than bignat rather than reducing it to a normal form. Here m will be a Number . int, Number.
uint, Z or Number.number, depending on the type of the parsing function qualid,,, ..
This allows for a more compact representation of literals in types such as nat, and limits parse fail-
ures due to stack overflow. Note that a warning will be emitted when an integer larger than bignat
is parsed. Note that (abstract after bignat) has no effect when gqualid lands

'parse
in an option type.

Warning: To avoid stack overflow,

large numbers in type are interpreted as applications of qualid,,..
When a Number Notation is registered in the current scope with (abstract after
bignat), this warning is emitted when parsing a number greater than or equal to bignat.
Typically, this indicates that the fully computed representation of numbers can be so large that
non-tail-recursive OCaml functions run out of stack space when trying to walk them.

Warning:
The 'abstract after' directive has no effect when the parsing function (qualid,,

As noted above, the (abstract after natural) directive has no effect when

qualid,,,.. lands inan option type.

Error: 'via' and 'abstract' cannot be used together.
With the abstract after option, the parser function gqualid,,, .. does notreduce large

numbers to a normal form, which prevents doing the translation given in the mapping list.
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Error: Cannot interpret this number as a value of type type
The number notation registered for ¢ ype does not support the given number. This error is given when the
interpretation function returns None, or if the interpretation is registered only for integers or non-negative
integers, and the given number has a fractional or exponent part or is negative.

Error: int63 are only non—-negative numbers.
Int63.int are unsigned integers.

Error: overflow in int63 literal bigint
The constant is too big to fit into an unsigned 63-bit integer Int 63 . int.

Error: qualid,, .. should go from Number.int to type or (option type).
Instead of Number.int, the types Number.uint or Z or Inté63.int or Number.
number could be used (you may need to require BinNums or Number or Inté63 first).

The parsing function given to the Number Notation command is not of the right type.

Error: qualid,,;,. should go from type to Number.int or (option Number.int).
Instead of Number.int, the types Number.uint or Z or Inté63.int or Number.
number could be used (you may need to require BinNums or Number or Int63 first).

The printing function given to the Number Notation command is not of the right type.

Error: Unexpected term term while parsing a number notation.
Parsing functions must always return ground terms, made up of function application, constructors, inductive
type families, sorts and primitive integers. Parsing functions may not return terms containing axioms, bare
(co)fixpoints, lambdas, etc.

Error: Unexpected non-option term term while parsing a number notation.
Parsing functions expected to return an opt i on must always return a concrete Some or None when applied
to a concrete number expressed as a (hexa)decimal. They may not return opaque constants.

Error: Multiple 'via' options.
At most one via option can be given.

Error: Multiple 'warning after' or 'abstract after' options.
At most one warning after or abstract after option can be given.

String notations

Command:
?
String Notation qualid,,. qualid,,. qualid,., | ( number_ string via ) . scope_name

Allows the user to customize how strings are parsed and printed.

qualid,,,. the name of an inductive type, while qualid,,, .. and qualid,,;,, should
be the names of the parsing and printing functions, respectively. The parsing function
qualid,,,. should have one of the following types:

* Byte.byte -> qualid,, .

* Byte.byte —> option qualid,,,.

* list Byte.byte —> gqualid

type

* list Byte.byte —> option qualid,,

The printing function gualid,, ;. should have one of the following types:

* qualid,,,. —> Byte.byte
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* qualid,,,. —> option Byte.byte
* qualid,,,, —> list Byte.byte
* qualid,,,, —> option (list Byte.byte)

When parsing, the application of the parsing function qualid,, . to the string will be
fully reduced, and universes of the resulting term will be refreshed.

Note that only fully-reduced ground terms (terms containing only function application,
constructors, inductive type families, sorts, and primitive integers) will be considered for
printing.
- = - - - +
via qualldind mapping [ qualldconstant = qualldconstructor ]
works as for number notations above.
Error: Cannot interpret this string as a value of type type

The string notation registered for ¢ ype does not support the given string. This error is given when
the interpretation function returns None.

Error: qualid should go from Byte.byte or (list Byte.

‘parse
byte) to type or (option type).
The parsing function given to the St ring Notation command is not of the right type.

Error: qualid,,;,. should go from type to Byte.byte or (option Byte.

byte) or (list Byte.byte) or (option (list Byte.byte)).
The printing function given to the St ring Notation command is not of the right type.

Error: Unexpected term term while parsing a string notation.
Parsing functions must always return ground terms, made up of function application, constructors, in-
ductive type families, sorts and primitive integers. Parsing functions may not return terms containing
axioms, bare (co)fixpoints, lambdas, etc.

Error: Unexpected non-option term term while parsing a string notation.
Parsing functions expected to return an opt ion must always return a concrete Some or None when
applied to a concrete string expressed as a decimal. They may not return opaque constants.

Note: Number or string notations for parameterized inductive types can be added by declaring an abbreviation for the
inductive which instantiates all parameters. See example below.

The following errors apply to both string and number notations:

Error: type is not an inductive type.
String and number notations can only be declared for inductive types. Declare string or numeral nota-

tions for non-inductive types using number_ string via.

Error:
qualid was already mapped to gualid and cannot be remapped to qualid

Duplicates are not allowed in the mapping list.

Error: Missing mapping for constructor qualid
A mapping should be provided for qualid in the mapping list.

Warning: type was already mapped to type,
mapping it also to type might yield ill typed terms when using the notation.

Two pairs in the mapping list associate types that might be incompatible.
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Warning: Type of qualid seems incompatible with the type of qualid.
Expected type is: type instead of type.
This might yield ill typed terms when using the notation.

A mapping given in the mapping list associates a constant with a seemingly incompatible constructor.

Error:
Cannot interpret in scope name because qualid could not be found in the current enviro:

The inductive type used to register the string or number notation is no longer available in the environ-
ment. Most likely, this is because the notation was declared inside a functor for an inductive type inside
the functor. This use case is not currently supported.

Alternatively, you might be trying to use a primitive token notation from a plugin which forgot to specify
which module you must Requi re for access to that notation.

Error:
Syntax error: [prim:reference] expected after 'Notation' (in [vernac:command]) .

The type passed to St ring Notation or Number Notation mustbe a single qualified identi-
fier.

Error:
Syntax error: [prim:reference] expected after [prim:reference] (in [vernac:command]).

Both functions passed to String Notation or Number Notation must be single qualified
identifiers.

Error: qualid is bound to a notation that does not denote a reference.
Identifiers passed to St ring Notation or Number Notation must be global references, or
notations which evaluate to single qualified identifiers.

Example: Number Notation for radix 3

The following example parses and prints natural numbers whose digits are 0, 1 or 2 as terms of the following inductive
type encoding radix 3 numbers.

Inductive radix3 : Set :=
| x0 : radix3
| x3 : radix3 —-> radix3
| x3pl : radix3 -> radix3
| x3p2 : radix3 -> radix3.

We first define a parsing function

Definition of_uint_dec (u : Decimal.uint) : option radix3 :=
let fix f u := match u with
| Decimal.Nil => Some x0
| Decimal.DO u => match f u with Some u => Some (x3 u) | None => None end
| Decimal.D1 u => match f u with Some u => Some (x3pl u) | None => None end
| Decimal.D2 u => match f u with Some u => Some (x3p2 u) | None => None end
\

_ => None end in
f (Decimal.rev u).
Definition of_uint (u : Number.uint) : option radix3 :=
match u with Number.UIntDecimal u => of_uint_dec u | Number.UIntHexadecimal _ =>_
<None end.

and a printing function
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Definition to_uint_dec (x : radix3) : Decimal.uint :=
let fix f x := match x with
| x0 => Decimal.Nil
| x3 x => Decimal.DO0 (f x)
| x3pl x => Decimal.Dl (f x)
| x3p2 x => Decimal.D2 (f x) end in
Decimal.rev (f x).
Definition to_uint (x : radix3) : Number.uint := Number.UIntDecimal (to_uint_dec x).

before declaring the notation

Declare Scope radix3_scope.
Open Scope radix3_scope.
Number Notation radix3 of_uint to_uint : radix3_scope.

We can check the printer

Check x3p2 (x3pl x0).
12
radix3

and the parser

Set Printing All.
Check 120.
x3 (x3p2 (x3pl x0))
radix3

Digits other than 0, 1 and 2 are rejected.

Check 3.
Toplevel input, characters 6-7:
> Check 3.
> ~
Error: Cannot interpret this number as a value of type radix3

Example: Number Notation for a non inductive type

The following example encodes the terms in the form sum unit ( ... (sum unit unit) ... ) asthenum-
ber of units in the term. For instance sum unit (sum unit unit) is encoded as 3 while unit is 1 and 0 stands
for Empty_set. The inductive I will be used as qualid, .

Inductive I := Iempty : I | Iunit : I | Isum : I —-> I —-> TI.

We then define qualid and qualid

parse print
Definition of_uint (x : Number.uint) : I :=
let fix f n := match n with

| O => Iempty | S O => Iunit
| S n => Isum Iunit (f n) end in
f (Nat.of_num_uint x).

Definition to_uint (x : I) : Number.uint
let fix f i := match i with
| Tempty => O | Iunit => 1
Isum i1 i2 => f i1 + f i2 end in

(continues on next page)
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(continued from previous page)

Nat.to_num_uint (f x).

Inductive sum (A : Set) (B : Set) : Set := pair : A —> B -> sum A B.

the number notation itself

Notation nSet := Set (only parsing).
Number Notation nSet of_uint to_uint (via I
mapping [Empty_set => Iempty, unit => Iunit, sum => Isum]) : type_scope.

and check the printer

Local Open Scope type_scope.
Check sum unit (sum unit unit) .
3
Set

and the parser

Set Printing All.
Check 3.
sum unit (sum unit unit)
Set

Example: Number Notation with implicit arguments
The following example parses and prints natural numbers between 0 and n—1 as terms of type Fin.t n.

Require Import Vector.
Print Fin.t.
Inductive t : nat —-> Set :=
F1 : forall n : nat, Fin.t (S n)
| FS : forall n : nat, Fin.t n -> Fin.t (S n)

Arguments Fin.t _%nat_scope

Arguments Fin.F1 {n}%nat_scope
Arguments Fin.FS {n}%nat_scope _

Note the implicit arguments of Fin.F1 and Fin.FS, which won’t appear in the corresponding inductive type.

Inductive I := I1 : I | IS : I —> TI.
Definition of_uint (x : Number.uint) : I :=
let fix f n := match n with O => I1 | S n => IS (f n) end in

f (Nat.of_num_uint x).

Definition to_uint (x : I) : Number.uint :=
let fix f i := match i with I1 => O | IS n => S (f n) end in
Nat.to_num_uint (f x).

Declare Scope fin_scope.
Delimit Scope fin_scope with fin.
Local Open Scope fin_scope.
Number Notation Fin.t of_uint to_uint (via I
mapping [[Fin.F1] => Il1, [Fin.FS] => IS]) : fin_scope.
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Now 2 isparsedas Fin.FS (Fin.FS Fin.F1),thatis @Fin.FS _ (@Fin.FS _ (QFin.F1 _)).

Check 2.
2
Fin.t (S (S (S ?n)))
where
?n : [ |- nat]

which can be of type Fin.t 3 (numbers O, 1 and 2)

Check 2 : Fin.t 3.
2 : Fin.t 3
Fin.t 3

but cannot be of type Fin.t 2 (only 0 and 1)

Check 2 : Fin.t 2.
Toplevel input, characters 6-7:
> Check 2 : Fin.t 2.
> ~
Error:
The term "2" has type "Fin.t (S (S (S ?n)))"
while it is expected to have type "Fin.t 2".

Example: String Notation with a parameterized inductive type

The parameter Byte . byte for the parameterized inductive type 11ist is given through an abbreviation.

Notation string := (list Byte.byte) (only parsing) .
Definition id_string := @id string.

String Notation string id_string id_string : list_scope.

Check "abc"%list.
"abc"%list
list Byte.byte

Tactic Notations

Tactic notations allow customizing the syntax of tactics.

Command:
? +
Tactic Notation |( at level natural ) ltac_production_item := ltac_expr
ltac_production_item ::= string

=
| ident |(ident |, string | )

Defines a tactic notation, which extends the parsing and pretty-printing of tactics.
This command supports the 1 ocal attribute, which limits the notation to the current module.

natural The parsing precedence to assign to the notation. This information is particularly relevant
for notations for tacticals. Levels can be in the range 0 .. 5 (default is 5).
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+
ltac_production_item | Thenotationsyntax. Notations for simple tactics should begin with a
string. Note that Tactic Notation foo := idtac isnot valid; it should be Tactic
Notation "foo" := idtac.

string represents a literal value in the notation

ident is the name of a grammar nonterminal listed in the table below. In a few cases, to maintain
backward compatibility, the name differs from the nonterminal name used elsewhere in the docu-
mentation.

? . . N
( ident_,., |, string, ) ident,,,, is the parameter name associated with ident. The

string, is the separator string to use when ident specifies a list with separators (i.e. ident
ends with _1ist_sep).

ltac_expr The tactic expression to substitute for the notation. ident
ltac_expr are substituted with the associated nonterminal value.

tokens appearing in

parm

For example, the following command defines a notation with a single parameter x.

Tactic Notation "destruct_with_eqn" constr(x) := destruct x egn:?.

For a complex example, examine the 16 Tactic Notation "setoid_replace"sdefinedin SCOQLIB/
theories/Classes/SetoidTactics. v, which are designed to accept any subset of 4 optional parameters.

The nonterminals that can specified in the tactic notation are:

Specified ident Parsed as Interpreted as as in tactic
ident ident a user-given name intro
simple_intropattennsimple intropatterran introduction pattern assert as
hyp ident a hypothesis defined in | clear
context
reference qualid a qualified identifier name of an L, -defined
tactic
smart_global reference a global reference of term | unfold,
with_strateqgy
constr one_term aterm exact
uconstr one_term an untyped term refine
integer integer an integer
int_or_var int_or_var an integer do
strategy_level strategy_level a strategy level
strategy_level_or_|vatrategy_level_ or |vastrategy level with_strategy
tactic ltac_expr a tactic
tacticn (nin0..5) ltac_exprn a tactic at level n
entry_list entry . a list of how entry is inter-
preted
+ . ..
ne_entry_list entry alist of how entry is inter-
preted
*
entry_list_sep entry a list of how entry is inter-
2 preted
+ . ..
ne_entry_list_sep entry a list of how entry is inter-
2 preted
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Note: In order to be bound in tactic definitions, each syntactic entry for argument type must include the case of a
simple L, identifier as part of what it parses. This is naturally the case for ident, simple_intropattern,
reference, constr, ... butnot for integer nor for strategy_level. This is the reason for introducing
special entries int_or_var and strategy_level_or_var which evaluate to integers or strategy levels
only, respectively, but which syntactically includes identifiers in order to be usable in tactic definitions.

Note: The entry_list* and ne_entry_11ist* entries can be used in primitive tactics or in other notations at
places where a list of the underlying entry can be used: entry is either constr, hyp, integer, reference,
strategy_level, strategy_level_or_var,or int_or_var.

2.2.5 Setting properties of a function’s arguments

Command:
* ?
* *
Arguments reference |arg_specs , |implicits_alt : largs_modifier
2 ¥
argument_spec ::= |! [ name|% scope_key
arg_specs 1 1= argument_spec
| /
| &
+ ®
| (|argument_spec | )| % scope_key
+ ¥
| [ | argument_spec T 1| % scope_key
Ep ?
| {|argument_spec T }| % scope_key
implicits_alt ::= name

| [name+]

| { [name + }
args_modifier : := simpl nomatch
simpl never
default implicits
clear implicits
clear scopes
clear bidirectionality hint
rename
assert
extra scopes
clear scopes and implicits
clear implicits and scopes

Specifies properties of the arguments of a function after the function has already been defined. It gives fine-grained
control over the elaboration process (i.e. the translation of Gallina language extensions into the core language used
by the kernel). The command’s effects include:

* Making arguments implicit. Afterward, implicit arguments must be omitted in any expression that applies
reference.

¢ Declaring that some arguments of a given function should be interpreted in a given scope.
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o Affecting when the simpl and chn tactics unfold the function. See Effects of Arguments on unfolding.
* Providing bidirectionality hints. See Bidirectionality hints.

This command supports the 1ocal and global attributes. Default behavior is to limit the effect to the current
section but also to extend their effect outside the current module or library file. Applying 1ocal limits the effect
of the command to the current module if it’s not in a section. Applying g1 oba I within a section extends the effect
outside the current sections and current module in which the command appears.

/ the function will be unfolded only if it’s applied to at least the arguments appearing before the /. See
Effects of Arguments on unfolding.

Error: The / modifier may only occur once.

& tells the type checking algorithm to first type check the arguments before the & and then to propagate
information from that typing context to type check the remaining arguments. See Bidirectionality
hints.

Error: The & modifier may only occur once.

?

( ... ) |% scope' (name; name, ...)%scope is shorthand for name;%scope
name,%scope
2 . . .
[ ... 1 |% scope declares the enclosed names as implicit, non-maximally inserted. [name,
name, ... ]%scopeisequivalentto [name;]%scope [name,]%scope
?
{ ... } |% scope declares the enclosed names as implicit, maximally inserted. {name,
name, ... }%scopeisequivalentto {name,;}%scope {name,}%scope

! the function will be unfolded only if all the arguments marked with ! evaluate to constructors. See
Effects of Arguments on unfolding.

5]
name |% scope | aformal parameter of the function reference (i.e. the parameter name used

in the function definition). Unless rename is specified, the list of names must be a prefix of the

formal parameters, including all implicit arguments. _ can be used to skip over a formal parameter.
The construct name |$ scope | declares name as non-implicit if clear implicits is

specified or at least one other name is declared implicit in the same list of names. scope can be
either a scope name or its delimiting key. See Binding arguments to a scope.

Error: To rename arguments the 'rename' flag must be specified.
Error: Flag 'rename' expected to rename name into name.
clear implicits makes all implicit arguments into explicit arguments

Error:
The 'clear implicits' flag must be omitted if implicit annotations are given.

default implicits automatically determine the implicit arguments of the object. See Automatic
declaration of implicit arguments.

Error:
The 'default implicits' flag is incompatible with implicit annotations.

rename rename implicit arguments for the object. See the example Zere.

assert assert that the object has the expected number of arguments with the expected names. See
the example here: Renaming implicit arguments.
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Warning:

This command is just asserting the names of arguments of gqualid.
If this is what you want, add ': assert' to silence the warning.
If you want to clear implicit arguments,

add ': clear implicits'. If you want to clear notation scopes,
add ': clear scopes'

clear scopes clears argument scopes of reference

extra scopes defines extra argument scopes, to be used in case of coercion to Funclass (see
Implicit Coercions) or with a computed type.

simpl nomatch prevents performing a simplification step for reference that would expose a
match construct in the head position. See Effects of Arguments on unfolding.

simpl never prevents performing a simplification step for reference. See Effects of Arguments
on unfolding.

clear bidirectionality hint removes the bidirectionality hint, the &

implicits_alt use to specify alternative implicit argument declarations for functions that can only
be applied to a fixed number of arguments (excluding, for instance, functions whose type is poly-
morphic). For parsing, the longest list of implicit arguments matching the function application is
used to select which implicit arguments are inserted. For printing, the alternative with the most
implicit arguments is used; the implict arguments will be omitted if Printing Implicit is
not set. See the example /ere.

Use About to view the current implicit arguments setting for a re ference.

Or use the Print Implicit command to see the implicit arguments of an object (see Displaying implicit
arguments).

Manual declaration of implicit arguments

Example

Inductive list (A : Type) : Type :=

| nil
| cons

list A
A -> list A -> list A.

list is defined
list_rect is defined
list_ind is defined
list_rec is defined
list_sind is defined

Check

(cons nat 3 (nil nat)).

cons nat 3 (nil nat)

Arguments cons [A]

list nat

Arguments nil {A}.

Check

(cons 3 nil).

cons 3 nil

(continues on next page)
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(continued from previous page)

list nat
Fixpoint map (A B : Type) (f : A -> B) (1 : list A) : list B :=
match 1 with nil => nil | cons a t => cons (f a) (map A B f t) end.

map is defined
map is recursively defined (guarded on 4th argument)

Fixpoint length (A : Type) (1 : list A) nat :=
match 1 with nil => 0 | cons _ m => S (length A m) end.
length is defined
length is recursively defined (guarded on 2nd argument)

Arguments map [A B] f 1.
Arguments length {A} 1. (* A has to be maximally inserted *)
Check (fun 1l:1ist (list nat) => map length 1).

fun 1 : list (list nat) => map length 1
list (list nat) —-> list nat

Example: Multiple alternatives with implicits_alt

Arguments map [A B] £ 1, [A] B £ 1, A B f 1.

Check (fun 1 => map length 1 = map (list nat) nat length 1).
fun 1 : list (list nat) => map length 1 = map length 1
list (list nat) —-> Prop

Automatic declaration of implicit arguments

The ’default implicits” args_modifier clause tells Coq to automatically determine the implicit
arguments of the object.

Auto-detection is governed by flags specifying whether strict, contextual, or reversible-pattern implicit ar-
guments must be considered or not (see Controlling strict implicit arguments, Controlling contextual implicit
arguments, Controlling reversible-pattern implicit arguments and also Controlling the insertion of implicit ar-
guments not followed by explicit arguments).

Example: Default implicits

Inductive list (A:Set) : Set :=

| nil : list A

| cons : A —> list A —> list A.
list is defined
list_rect is defined
list_ind is defined
list_rec is defined
list_sind is defined

(continues on next page)
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(continued from previous page)

Arguments cons : default implicits.

Print Implicit cons.
cons : forall [A : Set], A -> list A -> list A

Argument A is implicit

Arguments nil : default implicits.
Print Implicit nil.

nil : forall A : Set, list A
Set Contextual Implicit.
Arguments nil : default implicits.

Print Implicit nil.
nil : forall {A : Set}, list A

Argument A is implicit and maximally inserted

The computation of implicit arguments takes account of the unfolding of constants. For instance, the variable p below has
type (Transitivity R) whichisreducibleto forall x,y:U, R x y -> forall z:U, Ry z —-> R
x z. As the variables x, y and z appear strictly in the body of the type, they are implicit.

Parameter X : Type.
X is declared

Definition Relation := X -> X -> Prop.
Relation is defined

Definition Transitivity (R:Relation) := forall x y:X, R x y —> forall z:X, Ry z —> R.
=X Z.
Transitivity is defined

Parameters (R : Relation) (p : Transitivity R).
R is declared
p is declared

Arguments p : default implicits.

Print p.
*** [ p : Transitivity R ]

Expanded type for implicit arguments
p : forall [x y : X], Rxy —> forall z : X, Ry z —> R x z

(continues on next page)
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(continued from previous page)

Arguments p [x y] _ [z] _

Print Implicit p.
p : forall [x vy : X], Rxy —> forall z : X, Ry z —> R x z

Arguments x, y, z are implicit

Parameters (a b ¢ : X) (rl : Rab) (r2 : Rb c).
a is declared
b is declared
c is declared
rl is declared
r2 is declared

Check (p rl r2).
p rl r2
R ac

Renaming implicit arguments

Example: (continued) Renaming implicit arguments

Arguments p [s t] _ [u] _: rename.

Check (p rl (u:=c)).
p rl (u:=c)
Rbc->Rac

Check (p (s:=a) (t:=b) rl (u:=c) r2).
p rl r2
R ac

Fail Arguments p [s t] _ [w] _ : assert.
The command has indeed failed with message:
Flag "rename" expected to rename u into w.

Binding arguments to a scope

The following command declares that the first two arguments of plus_fct are in the scope delimited by
the key F (Rfun_scope) and the third argument is in the scope delimited by the key R (R_scope).

Arguments plus_fct (f1 £2)%F x3%R.
When interpreting a term, if some of the arguments of reference are built from a notation, then this

notation is interpreted in the scope stack extended by the scope bound (if any) to this argument. The effect
of the scope is limited to the argument itself. It does not propagate to subterms but the subterms that, after
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interpretation of the notation, turn to be themselves arguments of a reference are interpreted accordingly to

the argument scopes bound to this reference.

Note: In notations, the subterms matching the identifiers of the notations are interpreted in the scope in which the
identifiers occurred at the time of the declaration of the notation. Here is an example:

Parameter g : bool —> bool.
g is declared

Declare Scope mybool_scope.

Notation "@E" := true (only parsing) : bool_scope.
Setting notation at level O.

Notation "@@" := false (only parsing): mybool_scope.

Bind Scope bool_scope with bool.
Notation "# x #" := (g x) (at level 40).
Check # Q@ #.
# true #
bool

Arguments g _$mybool_scope.
Check # Q@ #.
# true #
bool

Delimit Scope mybool_scope with mybool.
Check # @@%mybool #.
# false #
bool

Effects of Arguments on unfolding

e simpl never indicates that a constant should never be unfolded by chn, simpl or hnf:

Example

Arguments minus n m : simpl never.

After that command an expression like (minus (S x) y) is left untouched by the tactics cbn and simpl.

* A constant can be marked to be unfolded only if it’s applied to at least the arguments appearing before the / in a

Argument s command.

Example

Definition fcomp A B C f (g : A —> B) (x : A)
fcomp is defined

Arguments fcomp {A B C} f g x /.

Notation "f \o g" := (fcomp f g) (at level 50).

2.2. Language extensions
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After that command the expression (£ \o g) is left untouched by simpl while ( (£ \o g) t) isreduced
to (f (g t)). The same mechanism can be used to make a constant volatile, i.e. always unfolded.

Example

Definition volatile := fun x : nat => x.
volatile is defined

Arguments volatile / x.

A constant can be marked to be unfolded only if an entire set of arguments evaluates to a constructor. The ! symbol
can be used to mark such arguments.

Example

Arguments minus !n !m.

After that command, the expression (minus (S x) vy) isleft untouched by simpl, while (minus (S x)
(S y)) isreducedto (minus x y).

simpl nomatch indicates that a constant should not be unfolded if it would expose a mat ch construct in the
head position. This affects the cbn, simpl and hnf tactics.

Example

Arguments minus n m : simpl nomatch.

In this case, (minus (S (S x)) (S y)) issimplified to (minus (S x) y) even if an extra simplifica-
tion is possible.

In detail: the tactic simp] first applies Si-reduction. Then, it expands transparent constants and tries to reduce
further using Se-reduction. But, when no ¢ rule is applied after unfolding then J-reductions are not applied. For
instance trying touse simpl on (plus n O) = n changes nothing.

Bidirectionality hints

When type-checking an application, Coq normally does not use information from the context to infer the types of the
arguments. It only checks after the fact that the type inferred for the application is coherent with the expected type.
Bidirectionality hints make it possible to specify that after type-checking the first arguments of an application, typing
information should be propagated from the context to help inferring the types of the remaining arguments.

An Argument s command containing arg_specs; & arg_specs, provides bidirectionality hints. It tells the type-
checking algorithm, when type checking applications of qualid, to first type check the arguments in arg_specs,
and then propagate information from the typing context to type check the remaining arguments (in arg_specs,).

Example: Bidirectionality hints

In a context where a coercion was declared from bool to nat:

164

Chapter 2. Specification language



The Coq Reference Manual, Release 8.13.2

Definition b2n (b : bool) := if b then 1 else 0.
Coercion b2n : bool >-> nat.

Coq cannot automatically coerce existential statements over bool to statements over nat, because the need for inserting
a coercion is known only from the expected type of a subterm:

Fail Check (ex_intro _ true _ : exists n : nat, n > 0).
The command has indeed failed with message:
The term "ex_intro ?P true ?y" has type "exists vy, ?P vy
while it is expected to have type "exists n : nat, n > 0"
(cannot unify "bool" and "nat").

However, a suitable bidirectionality hint makes the example work:

Arguments ex_intro _ _ & _ _
Check (ex_intro _ true _ : exists n : nat, n > 0).
ex_intro (fun n : nat => n > 0) true ?g : exists n : nat, n > 0
exists n : nat, n > 0
where
?g : [ |- (fun n : nat => n > 0) true]

Coq will attempt to produce a term which uses the arguments you provided, but in some cases involving Program mode
the arguments after the bidirectionality starts may be replaced by convertible but syntactically different terms.

2.2.6 Implicit Coercions

Author Amokrane Saibi

General Presentation

This section describes the inheritance mechanism of Coq. In Coq with inheritance, we are not interested in adding any
expressive power to our theory, but only convenience. Given a term, possibly not typable, we are interested in the problem
of determining if it can be well typed modulo insertion of appropriate coercions. We allow to write:

e £ awhere f: (forall x:A,B) and a:A"' when A' can be seen in some sense as a subtype of A.
* x:A when A is not a type, but can be seen in a certain sense as a type: set, group, category etc.

e £ a when f is not a function, but can be seen in a certain sense as a function: bijection, functor, any structure
morphism etc.

Classes

A class with n parameters is any defined name with a type forall (ident; : type;) .. (ident,:type,),
sort. Thus a class with parameters is considered as a single class and not as a family of classes. An object of a class is
any term of type class term; .. term,. In addition to these user-defined classes, we have two built-in classes:

* Sortclass, the class of sorts; its objects are the terms whose type is a sort (e.g. Prop or Type).

e Funclass, the class of functions; its objects are all the terms with a functional type, i.e. of form forall
x:A,B.

Formally, the syntax of classes is defined as:
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class ::= Funclass
| Sortclass
| reference
Coercions

A name f can be declared as a coercion between a source user-defined class C with n parameters and a target class D if
one of these conditions holds:

¢ D is a user-defined class, then the type of £ must have the form forall (x;:A;) .. (xEF:AQ) (v:C x;..
x@), D u,..uldwhere m is the number of parameters of D.

* D is Funclass, then the type of £ must have the form forall (x,:A;).. (xE:ARQ) (yv:C x,..
x@) (x:A), B.

e Dis Sortclass, then the type of £ must have the form forall (x,:A;).. (x@:ARQ) (y:C x,..x0H),
s with s a sort.

We then write £ : C >-> D. The restriction on the type of coercions is called the uniform inheritance condition.

Note: The built-in class Sortclass can be used as a source class, but the built-in class Funclass cannot.

To coerce an object t : C t, . .t of C towards D, we have to apply the coercion £ to it; the obtained term £ t, . .t[
t is then an object of D.

Identity Coercions

Identity coercions are special cases of coercions used to go around the uniform inheritance condition. Let C and D be
two classes with respectively n and m parameters and £ : forall (x,:T,;) .. (x@:TQA) (y:C u,..ull), D v,.
. v[@ a function which does not verify the uniform inheritance condition. To declare £ as coercion, one has first to declare
asubclass C' of C:

C' := fun (x,:T;)..xE:TA) => C u,..uld
We then define an identity coercion between C ' and C:
Id_ C'_C := fun (x,:T;)..(xE:TA) (v:C' x,..xH) => (y:C u,..uld)

We can now declare f as coercion from C' to D, since we can "cast” its type as forall (x,:T;) .. (x@:TH) (y:C'
X,..x@A),D v,..v[

The identity coercions have a special status: to coerce an object t : C' t,..t[ of C' towards C, we do not have to
insert explicitly Id_C'_Csince Id_C'_C t,..t[ t is convertible with t. However we “rewrite” the type of t to
become an object of C; in this case, it becomes C u[d' . .u[l' where each u[J"' is the result of the substitution in u[? of
the variables x[? by t[2.
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Inheritance Graph

Coercions form an inheritance graph with classes as nodes. We call coercion path an ordered list of coercions between
two nodes of the graph. A class C is said to be a subclass of D if there is a coercion path in the graph from C to D;
we also say that C inherits from D. Our mechanism supports multiple inheritance since a class may inherit from several
classes, contrary to simple inheritance where a class inherits from at most one class. However there must be at most one
path between two classes. If this is not the case, only the oldest one is valid and the others are ignored. So the order of
declaration of coercions is important.

We extend notations for coercions to coercion paths. For instance [£,; ..; f@] : C >-> D is the coercion path
composed by the coercions £, . . £i. The application of a coercion path to a term consists of the successive application
of its coercions.

Declaring Coercions

Command: Coercion reference : class >-> class

?
Command: Coercion ident univ_decl def_body

name Coercion; _
The first form declares the construction denoted by re ference as a coercion between the two given classes. The

?
second form defines ident just like Definition ident luniv_decl def body and then declares

ident as a coercion between it source and its target. Both forms support the 1ocal attribute, which makes the
coercion local to the current section.

Error: qgualid not declared.

Error: qualid is already a coercion.

Error: Funclass cannot be a source class.

Error: qualid is not a function.

Error: Cannot find the source class of qualid.

Error: Cannot recognize class as a source class of gqualid.

Warning: qualid does not respect the uniform inheritance condition.
Error: Found target class ... instead of

Warning: New coercion path ... is ambiguous with existing
When the coercion qualid is added to the inheritance graph, new coercion paths which have the same
classes as existing ones are ignored. The Coercion command tries to check the convertibility of new ones
and existing ones. The paths for which this check fails are displayed by a warning in the form [£,; . .; £2]
C >-> D.

The convertibility checking procedure for coercion paths is complete for paths consisting of coercions sat-
isfying the uniform inheritance condition, but some coercion paths could be reported as ambiguous even if
they are convertible with existing ones when they have coercions that don’t satisfy the uniform inheritance
condition.

Warning: ... is not definitionally an identity function.
If a coercion path has the same source and target class, that is said to be circular. When a new circular
coercion path is not convertible with the identity function, it will be reported as ambiguous.

Some objects can be declared as coercions when they are defined. This applies to assumptions and constructors of inductive
types and record fields. Use :> instead of : before the type of the assumption to do so. See of_type.
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Command: Identity Coercion ident : class >-> class
If C is the source class and D the destination, we check that C is a constant with a body of the form fun
(x,:T,)..(x@:TA) => D t,..t[d where m is the number of parameters of D. Then we define an iden-
tity function with type forall (x,:T,;).. (x@:TQA) (y:C x,..x[A),D t,..t[, and we declare it as an
identity coercion between C and D.

This command supports the 1 ocal attribute, which makes the coercion local to the current section.
Error: class must be a transparent constant.

Command: SubClass ident_decl def body
If typeisaclass ident' applied to some arguments then ident is defined and an identity coercion of
name Id_ident_ident' is declared. Otherwise said, this is an abbreviation for

Definition ident := type. Identity Coercion Id_ident_ident' : ident >->
ident’'.

This command supports the 1 ocal attribute, which makes the coercion local to the current section.

Displaying Available Coercions
Command: Print Classes
Print the list of declared classes in the current context.

Command: Print Coercions
Print the list of declared coercions in the current context.

Command: Print Graph
Print the list of valid coercion paths in the current context.

Command: Print Coercion Paths class class
Print the list of valid coercion paths between the two given classes.

Activating the Printing of Coercions
Flag: Printing Coercions
When on, this flag forces all the coercions to be printed. By default, coercions are not printed.

Table: Printing Coercion qualid
Specifies a set of qualids for which coercions are always displayed. Use the Add and Remove commands to update
the set of qualids.

Classes as Records

Structures with Inheritance may be defined using the Record command.

Use > before the record name to declare the constructor name as a coercion from the class of the last field type to the
record name (this may fail if the uniform inheritance condition is not satisfied). See record _definition.

Use : > in the field type to declare the field as a coercion from the record name to the class of the field type. See of_type.
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Coercions and Sections

The inheritance mechanism is compatible with the section mechanism. The global classes and coercions defined inside a
section are redefined after its closing, using their new value and new type. The classes and coercions which are local to
the section are simply forgotten. Coercions with a local source class or a local target class, and coercions which do not
verify the uniform inheritance condition any longer are also forgotten.

Coercions and Modules

The coercions present in a module are activated only when the module is explicitly imported.

Examples

There are three situations:

Coercion at function application

f aisill-typed where £: forall x:A,B and a:A'. If there is a coercion path between A' and A, then £ a is
transformed into £ a' where a' is the result of the application of this coercion path to a.

We first give an example of coercion between atomic inductive types

Definition bool_in_nat (b:bool) := if b then 0 else 1.
bool_in_nat is defined

Coercion bool_in_nat : bool >-> nat.
bool_in_nat is now a coercion

Check (0 = true).
0 = true
Prop

Set Printing Coercions.
Check (0 = true).
0 = bool_in_nat true
Prop

Unset Printing Coercions.

Warning: Note that Check (true = 0) would fail. This is “normal” behavior of coercions. To validate
true=0, the coercion is searched from nat to bool. There is none.

We give an example of coercion between classes with parameters.

Parameters (C : nat —-> Set) (D : nat -> bool -> Set) (E : bool -> Set).
C is declared
D is declared
E is declared

Parameter f : forall n:nat, C n -> D (S n) true.
f is declared

(continues on next page)
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Coercion f C >-> D.
f is now a coercion

Parameter g
g is declared

Coercion g D >> E.
g is now a coercion

Parameter ¢ : C O.
c is declared

Parameter T E true —>
T is declared

Check (T c).
T c
nat

Set Printing Coercions.
Check (T c).
T (g 1 true (£ 0 c¢))
: nat

forall (n:nat)

nat.

Unset Printing Coercions.

(b:bool),

We give now an example using identity coercions.

Definition D' (b:bool)
D' is defined

Identity Coercion IdD'D
Print IdD'D.

IdD'D =

(fun (b : bool) (x

:= D

D'

b.

>=> D.

D' b) => x)
forall b : bool,

Arguments IdD'D _%bool_scope _

IdD'D is a coercion

Parameter d' : D' true.
d' is declared

Check (T d').
T d'
nat

Set Printing Coercions.
Check (T d').
T (g 1 true d'")
: nat

Unset Printing Coercions.

In the case of functional arguments, we use the monotonic rule of sub-typing. To coerce t

Dnb

forall b
D' b -—>D 1 b

-> E b.

bool,

(continued from previous page)

->D 1 Db

forall x : A, B

towards forall x : A', B',we have tocoerce A' towards A and B towards B'. An example is given below:
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Parameters (A B : Set) (h : A —> B).
A is declared
B is declared
h is declared

Coercion h : A >-> B.
h is now a coercion

Parameter U : (A -> E true) -> nat.
U is declared

Parameter t : B -> C 0.
t is declared

Check (U t).
U (fun x : A => t X)
: nat

Set Printing Coercions.
Check (U t).
U (fun x : A => g 1 true (£ 0 (t (h x))))
: nat

Unset Printing Coercions.

Remark the changes in the result following the modification of the previous example.

Parameter U' : (C 0 -> B) —-> nat.
U' is declared

Parameter t' : E true -> A.
t' is declared

Check (U' t').
U' (fun x : C 0 => t' x)
: nat

Set Printing Coercions.
Check (U' t').
U' (fun x : C 0 => h (t' (g 1 true (f 0 x))))
: nat

Unset Printing Coercions.

Coercion to a type

An assumption x : A when A is not a type, is ill-typed. It is replaced by x : A" where A" is the result of the application
to A of the coercion path between the class of A and Sortclass if it exists. This case occurs in the abstraction fun
x:A => t,universal quantification forall x:A, B, global variables and parameters of (co-)inductive definitions and
functions. In forall x:A, B, such a coercion path may also be applied to B if necessary.

Parameter Graph : Type.
Graph is declared

Parameter Node : Graph -> Type.
(continues on next page)
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Node is declared

Coercion Node : Graph >-> Sortclass.
Node is now a coercion

Parameter G : Graph.
G is declared

Parameter Arrows : G —> G —> Type.
Arrows is declared

Check Arrows.
Arrows
G —> G —> Type

Parameter fg : G —> G.
fg is declared

Check fg.

fg
G > G

Set Printing Coercions.
Check fg.
fg
Node G —> Node G

Unset Printing Coercions.

Coercion to a function

(continued from previous page)

f aisill-typed because £ : A is not a function. The term £ is replaced by the term obtained by applying to £ the coercion

path between A and Funclass if it exists.

Parameter bij : Set -> Set —> Set.
bij is declared

Parameter ap : forall A B:Set, bij A B -> A —> B.

ap is declared

Coercion ap : bij >-> Funclass.
ap is now a coercion

Parameter b : bij nat nat.
b is declared

Check (b 0).
b 0
nat

Set Printing Coercions.
Check (b 0).
ap nat nat b 0
: nat

(continues on next page)

172

Chapter 2. Specification language



The Coq Reference Manual, Release 8.13.2

(continued from previous page)

Unset Printing Coercions.

Let us see the resulting graph after all these examples.

Print Graph.

[bool_in_nat] : bool >-> nat
[f] = C >> D

[f; g] : C >> E

[g] : D >>E

[IdD'D] : D' >-> D

[IdD'D; g] : D' >-> E

[h] : A >> B

[Node] : Graph >-> Sortclass
[ap] : bij >-> Funclass

2.2.7 Typeclasses

This chapter presents a quick reference of the commands related to type classes. For an actual introduction to typeclasses,
there is a description of the system [[SO08]] and the literature on type classes in Haskell which also applies.

Class and Instance declarations

The syntax for class and instance declarations is the same as the record syntax of Coq:

Class classname (pl : tl) - (pn : tn) [: sort] := { f1 : ul ; «~ ; fm : um }.

Instance instancename gl - gm : classname pl - pn := { f1 := t1 ; « ; fm := tm }.

The pi : ti variables are called the parameters of the class and the £i : ti are called the methods. Each class
definition gives rise to a corresponding record declaration and each instance is a regular definition whose name is given
by instancename and type is an instantiation of the record type.

We'll use the following example class in the rest of the chapter:

Class EgDec (A : Type) :=
{ egqgb : A —> A —> bool ;
egb_leibniz : forall x y, egb x y = true —> x =y }.

This class implements a boolean equality test which is compatible with Leibniz equality on some type. An example
implementation is:

Instance unit_EgDec : EgDec unit :=
{ egb x y := true ;
egb_leibniz x y H :=
match x, y return x = y with
| tt, tt => eq_refl tt
end }.

Using the re fine attribute, if the term is not sufficient to finish the definition (e.g. due to a missing field or non-inferable
hole) it must be finished in proof mode. If it is sufficient a trivial proof mode with no open goals is started.

#[refine] Instance unit_EqgDec' : EgDec unit := { egb x y := true }.
Proof. intros [] [];reflexivity. Defined.
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Note that if you finish the proof with Oed the entire instance will be opaque, including the fields given in the initial term.

Alternatively, in Program Mode if one does not give all the members in the Instance declaration, Coq generates obli-
gations for the remaining fields, e.g.:

Require Import Program.Tactics.
Program Instance eqg_bool : EgDec bool :=
{ egb x y := if x then y else negb y }.

Next Obligation.
1 subgoal

X, y : bool

H : (if x then y else negb y) = true
X =Yy
destruct x ; destruct y ; (discriminate || reflexivity).

No more subgoals.

Defined.

One has to take care that the transparency of every field is determined by the transparency of the Tnstance proof. One
can use alternatively the program attribute to get richer facilities for dealing with obligations.

Binding classes

Once a typeclass is declared, one can use it in class binders:

Definition negb {A} {ega : EgDec A} (x y : A) := negb (egb x y).
negb is defined

When one calls a class method, a constraint is generated that is satisfied only in contexts where the appropriate instances
can be found. In the example above, a constraint EgDec A is generated and satisfied by eqa : EgDec A. In case no
satisfying constraint can be found, an error is raised:

Fail Definition negb' (A : Type) (x y : A) := negb (egb x y).

The command has indeed failed with message:

The following term contains unresolved implicit arguments:
(fun (A : Type) (x y : A) => negb (egb x y))

More precisely:

— ?EgDec: Cannot infer the implicit parameter EgDec of egb whose type is
"EgDec A" (no type class instance found) in environment:
A : Type
X, y : A

The algorithm used to solve constraints is a variant of the eaut o tactic that does proof search with a set of lemmas (the
instances). It will use local hypotheses as well as declared lemmas in the typeclass_instances database. Hence
the example can also be written:

Definition negb' A (ega : EgDec A) (x y : A) := negb (egb x y).
negb' is defined
However, the generalizing binders should be used instead as they have particular support for typeclasses:

¢ They automatically set the maximally implicit status for typeclass arguments, making derived functions as easy to
use as class methods. In the example above, A and ega should be set maximally implicit.
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» They support implicit quantification on partially applied type classes (/mplicit generalization). Any argument not
given as part of a typeclass binder will be automatically generalized.

* They also support implicit quantification on Superclasses.
Following the previous example, one can write:

Generalizable Variables A B C.

Definition negb_implicit "~ {ega : EgDec A} (x y : A) := negb (egb x y).
negb_implicit is defined

Here A is implicitly generalized, and the resulting function is equivalent to the one above.

Parameterized Instances

One can declare parameterized instances as in Haskell simply by giving the constraints as a binding context before the
instance, e.g.:

Program Instance prod_egb " (EA : EgDec A, EB : EgDec B) : EgDec (A * B) :=
{ egb x y := match x, y with
| (la, ra), (lb, rb) => andb (egb la 1lb) (egb ra rb)
end }.

These instances are used just as well as lemmas in the instance hint database.

Sections and contexts

To ease developments parameterized by many instances, one can use the Cont ext command to introduce the parameters
into the local context, it works similarly to the command Variable, exceptitaccepts any binding context as an argument,
so variables can be implicit, and Implicit generalization can be used. For example:

Section EgDec_defs.

Context " {EA : EgDec A}.
A is declared
EA is declared

#[ global, program | Instance option_egb : EgDec (option A) :=
{ egb x y := match x, y with
| Some x, Some y => egb x y
| None, None => true
| _, _ => false
end }.
Admit Obligations.

End EgDec_defs.

About option_egb.
option_eqgb : forall {A : Type}, EgDec A -> EgDec (option A)

option_egb is not universe polymorphic
Arguments option_eqgb {A}%type_scope {EA}
option_egb is transparent

Expands to: Constant Top.option_eqgb
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Here the global attribute redeclares the instance at the end of the section, once it has been generalized by the context
variables it uses.

See also:

Section Section mechanism

Building hierarchies

Superclasses

One can also parameterize classes by other classes, generating a hierarchy of classes and superclasses. In the same way,
we give the superclasses as a binding context:

Class Ord " (E : Eghec A) := { le : A -> A —> bool }.
Ord is defined
le is defined

Contrary to Haskell, we have no special syntax for superclasses, but this declaration is equivalent to:

Class (E : EgDec A) => Ord A :=
{ le : A —> A —> bool }.

This declaration means that any instance of the Ord class must have an instance of EqDec. The parameters of the
subclass contain at least all the parameters of its superclasses in their order of appearance (here A is the only one). As
we have seen, Ord is encoded as a record type with two parameters: a type A and an E of type EqDec A. However, one
can still use it as if it had a single parameter inside generalizing binders: the generalization of superclasses will be done
automatically.

Definition le_egb {Ord A} (x y : A) := andb (le x y) (le y x).
le_egb is defined

In some cases, to be able to specify sharing of structures, one may want to give explicitly the superclasses. It is is possible
to do it directly in regular binders, and using the ! modifier in class binders. For example:

Definition 1t "{eqga : EgDec A, ! Ord ega} (x y : A) := andb (le x y) (negb x vy).
1t is defined

The ! modifier switches the way a binder is parsed back to the usual interpretation of Coq. In particular, it uses the
implicit arguments mechanism if available, as shown in the example.

Substructures
Substructures are components of a class which are instances of a class themselves. They often arise when using classes
for logical properties, e.g.:

Class Reflexive (A : Type) (R : relation A) :=
reflexivity : forall x, R x x.

Class Transitive (A : Type) (R : relation A) :=
transitivity : forall x y z, Rxy >Ry z >R x z.

This declares singleton classes for reflexive and transitive relations, (see the singleton class variant for an explanation).
These may be used as parts of other classes:
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Class PreOrder (A : Type) (R : relation A) :=
{ PreOrder_Reflexive :> Reflexive A R ;
PreOrder_Transitive :> Transitive A R }.
PreOrder is defined
PreOrder_Reflexive is defined
PreOrder_Transitive is defined

The syntax : > indicates that each PreOrder can be seen as a Reflexive relation. So each time a reflexive relation
is needed, a preorder can be used instead. This is very similar to the coercion mechanism of St ructure declarations.
The implementation simply declares each projection as an instance.

Warning: Ignored instance declaration for “ident”: “term” is not a class
Using this : > syntax with a right-hand-side that is not itself a Class has no effect (apart from emitting this warning).
In particular, is does not declare a coercion.

One can also declare existing objects or structure projections using the Existing Instance command to achieve the same
effect.

Summary of the commands

Command: Class record _definition
Command: Class singleton_class_definition

2 & ?
singleton_class_definition ::= [> " ident_decl| binder 2 sort | := constructor

*
The first form declares a record and makes the record a typeclass with parameters binder | and the listed record
fields.

The second form declares a singlefon class with a single method. This singleton class is a so-called definitional class,
represented simply as a definition ident binders := term and whose instances are themselves objects of
this type. Definitional classes are not wrapped inside records, and the trivial projection of an instance of such a
class is convertible to the instance itself. This can be useful to make instances of existing objects easily and to
reduce proof size by not inserting useless projections. The class constant itself is declared rigid during resolution
so that the class abstraction is maintained.

Like any command declaring a record, this command supports the universes (polymorphic),
universes (template), universes (cumulative),and private (matching) attributes.

Command: Existing Class gqualid
This variant declares a class from a previously declared constant or inductive definition. No methods or
instances are defined.

Warning: ident is already declared as a typeclass
This command has no effect when used on a typeclass.

Command:

* ? *

Instance |ident_decl binder : type |hint_info := { |field_def } := term
Declares a typeclass instance named i dent_dec of the class t ype with the specified parameters and with fields
defined by field def, where each field must be a declared field of the class.

Adds one or more binders to declare a parameterized instance. hint_ info may be used to specify the hint
priority, where O is the highest priority as for aut o hints. If the priority is not specified, the default is the number
of non-dependent binders of the instance. If one_pattern is given, terms matching that pattern will trigger use
of the instance. Otherwise, use is triggered based on the conclusion of the type.
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This command supports the global attribute that can be used on instances declared in a section so that their
generalization is automatically redeclared when the section is closed.

Like Definition, it also supports the program attribute to switch the type checking to Program (chapter
Program) and to use the obligation mechanism to manage missing fields.

Finally, it supports the lighter refine attribute:

Attribute: refine
This attribute can be used to leave holes or not provide all fields in the definition of an instance and open the
tactic mode to fill them. It works exactly as if no body had been given and the re £ ine tactic has been used
first.

* 2
Command: Declare Instance ident_decl binder : term |hint_info

Ina Module Type, declares that a corresponding concrete instance should exist in any implementation of
this Module Type. Thisis similar to the distinction between Parametervs. Definition, or between
Declare Module and Module.

?
Command: Existing Instance qualid hint_info

+ ?
Command: Existing Instances gqualid | natural

Adds a constant whose type ends with an applied typeclass to the instance database with an optional priority
natural. It can be used for redeclaring instances at the end of sections, or declaring structure projections
as instances. This is equivalent to Hint Resolve ident : typeclass_instances, except it
registers instances for Print Instances.

Flag: Instance Generalized Output
Deprecated since version 8.13.

Disabled by default, this provides compatibility with Coq version 8.12 and earlier.

When enabled, the type of the instance is implicitly generalized over unbound and generalizable variables as
though surrounded by \ " { }.

Command: Print Instances reference

Shows the list of instances associated with the typeclass reference.

? ?

Tactic: typeclasses eauto bfs  |nat_or var | |with ident

This proof search tactic uses the resolution engine that is run implicitly during type checking. This tactic uses a
different resolution engine than eaut o and auto. The main differences are the following:

» Unlike eauto and auto, the resolution is done entirely in the proof engine, meaning that backtracking is
available among dependent subgoals, and shelving goals is supported. typeclasses eauto is a multi-
goal tactic. It analyses the dependencies between subgoals to avoid backtracking on subgoals that are entirely
independent.

 The transparency information of databases is used consistently for all hints declared in them. It is always used
when calling the unifier. When considering local hypotheses, we use the transparent state of the first hint
database given. Using an empty database (created with Create HintDb for example) with unfoldable
variables and constants as the first argument of typeclasses eauto hence makes resolution with the
local hypotheses use full conversion during unification.

e The mode hints (see Hint Mode) associated with a class are taken into account by typeclasses
eauto. When a goal does not match any of the declared modes for its head (if any), instead of failing
like eaut o, the goal is suspended and resolution proceeds on the remaining goals. If after one run of resolu-
tion, there remains suspended goals, resolution is launched against on them, until it reaches a fixed point when
the set of remaining suspended goals does not change. Using solve [typeclasses eauto] can be
used to ensure that no suspended goals remain.

* When considering local hypotheses, we use the union of all the modes declared in the given databases.
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e Use the Typeclasses eauto command to customize the behavior of this tactic.

nat_or_var Specifies the maximum depth of the search.

Warning: The semantics for the limit nat_or_var are different than for aut o. By default,
if no limit is given, the search is unbounded. Unlike aut o, introduction steps count against the
limit, which might result in larger limits being necessary when searching with t ypeclasses
eauto than with auto.

+
with |ident | Runs resolution with the specified hint databases. It treats typeclass subgoals the same as other
subgoals (no shelving of non-typeclass goals in particular), while allowing shelved goals to remain at any point
during search.

When with is not specified, t ypeclasses eauto uses the typeclass_instances database by
default (instead of core). Dependent subgoals are automatically shelved, and shelved goals can remain after
resolution ends (following the behavior of Coq 8.5).

Note: all:once (typeclasses eauto) faithfully mimics what happens during typeclass resolu-
tion when it is called during refinement/type inference, except that only declared class subgoals are considered
at the start of resolution during type inference, while a1 1 can select non-class subgoals as well. It might move
toall:typeclasses eauto in future versions when the refinement engine will be able to backtrack.

Tactic: autoapply one_term with ident
The tactic aut oapply applies one_term using the transparency information of the hint database i dent, and
does no typeclass resolution. This can be used in Hint Extern’s for typeclass instances (in the hint database
typeclass_instances) to allow backtracking on the typeclass subgoals created by the lemma application,
rather than doing typeclass resolution locally at the hint application time.

Typeclasses Transparent, Typeclasses Opaque

Command: Typeclasses Transparent qualid

Makes qualid transparent during typeclass resolution. A shortcut for Hint Transparent |qualid
typeclass_instances

Command: Typeclasses Opaque qualid

+
Make qualid opaque for typeclass search. A shortcut for Hint Opaque |qualid
typeclass_instances.

It is useful when some constants prevent some unifications and make resolution fail. It is also useful to declare
constants which should never be unfolded during proof search, like fixpoints or anything which does not look like
an abbreviation. This can additionally speed up proof search as the typeclass map can be indexed by such rigid
constants (see The hints databases for auto and eauto).

By default, all constants and local variables are considered transparent. One should take care not to make opaque any
constant that is used to abbreviate a type, like:

Definition relation A := A -> A -> Prop.
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Settings

Flag:

Flag:

Flag:

Flag:

Flag:

Flag:

Flag:

Flag:

Typeclasses Dependency Order

This flag (off by default) respects the dependency order between subgoals, meaning that subgoals on which other
subgoals depend come first, while the non-dependent subgoals were put before the dependent ones previously (Coq
8.5 and below). This can result in quite different performance behaviors of proof search.

Typeclasses Filtered Unification

This flag, which is off by default, switches the hint application procedure to a filter-then-unify strategy. To apply a
hint, we first check that the goal matches syntactically the inferred or specified pattern of the hint, and only then try
to unify the goal with the conclusion of the hint. This can drastically improve performance by calling unification less
often, matching syntactic patterns being very quick. This also provides more control on the triggering of instances.
For example, forcing a constant to explicitly appear in the pattern will make it never apply on a goal where there is
a hole in that place.

Typeclasses Limit Intros

This flag (on by default) controls the ability to apply hints while avoiding (functional) eta-expansions in the generated
proof term. It does so by allowing hints that conclude in a product to apply to a goal with a matching product directly,
avoiding an introduction.

Warning: This can be expensive as it requires rebuilding hint clauses dynamically, and does not benefit from
the invertibility status of the product introduction rule, resulting in potentially more expensive proof search (i.e.
more useless backtracking).

Typeclass Resolution For Conversion

This flag (on by default) controls the use of typeclass resolution when a unification problem cannot be solved during
elaboration/type inference. With this flag on, when a unification fails, typeclass resolution is tried before launching
unification once again.

Typeclasses Strict Resolution

Typeclass declarations introduced when this flag is set have a stricter resolution behavior (the flag is off by default).
When looking for unifications of a goal with an instance of this class, we “freeze” all the existentials appearing in
the goals, meaning that they are considered rigid during unification and cannot be instantiated.

Typeclasses Unique Solutions
When a typeclass resolution is launched we ensure that it has a single solution or fail. This ensures that the resolution
is canonical, but can make proof search much more expensive.

Typeclasses Unique Instances

Typeclass declarations introduced when this flag is set have a more efficient resolution behavior (the flag is off by
default). When a solution to the typeclass goal of this class is found, we never backtrack on it, assuming that it is
canonical.

Typeclasses Iterative Deepening
When this flag is set, the proof search strategy is breadth-first search. Otherwise, the search strategy is depth-first
search. The default is off. Typeclasses eauto is another way to set this flag.

Option: Typeclasses Depth natural

Flag:

Sets the maximum proof search depth. The default is unbounded. Typeclasses eauto is another way to set
this option.

Typeclasses Debug
Controls whether typeclass resolution steps are shown during search. Setting this flag also sets Typeclasses
Debug Verbositytol. Typeclasses eauto isanother way to set this flag.

Option: Typeclasses Debug Verbosity natural

Determines how much information is shown for typeclass resolution steps during search. 1 is the default level. 2
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shows additional information such as tried tactics and shelving of goals. Setting this option to 1 or 2 turns on the
Typeclasses Debug flag; setting this option to O turns that flag off.

Typeclasses eauto

? ?
Command: Typeclasses eauto := debug ( bfs \ dfs ) natural
Allows more global customization of the t ypeclasses eauto tactic. The options are:

?

debug Sets debug mode. In debug mode, a trace of successfully applied tactics is printed. Debug mode can also
be set with Typeclasses Debug.

dfs,bfs Sets the search strategy to depth-first search (the default) or breadth-first search. The search strategy
can also be set with Typeclasses Iterative Deepening.

natural Sets the depth limit for the search. The limit can also be set with Typeclasses Depth.

2.2.8 Canonical Structures

Authors Assia Mahboubi and Enrico Tassi

This chapter explains the basics of canonical structures and how they can be used to overload notations and build a
hierarchy of algebraic structures. The examples are taken from [[MT13]]. We invite the interested reader to refer to
this paper for all the details that are omitted here for brevity. The interested reader shall also find in [[GZNDI11]] a
detailed description of another, complementary, use of canonical structures: advanced proof search. This latter papers
also presents many techniques one can employ to tune the inference of canonical structures.

Declaration of canonical structures

A canonical structure is an instance of a record/structure type that can be used to solve unification problems involving a
projection applied to an unknown structure instance (an implicit argument) and a value. The complete documentation of
canonical structures can be found in Canonical Structures; here only a simple example is given.

?
Command: Canonical Structure reference

?
Command: Canonical Structure ident_decl def_ body
The first form of this command declares an existing reference as a canonical instance of a structure (a record).

The second form defines a new constant as if the Definition command had been used, then declares it as a
canonical instance as if the first form had been used on the defined object.

This command supports the Zocal attribute. When used, the structure is canonical only within the Section

containing it.

Assume that gualid denotes an object (Build_struct c; ... ¢, ) in the structure struct of which the
fields are x,, ..., x,,. Then, each time an equation of the form (x; _) =g, c; has to be solved during the type
checking process, qualid is used as a solution. Otherwise said, gualid is canonically used to extend the field
c, into a complete structure built on c,.

Canonical structures are particularly useful when mixed with coercions and strict implicit arguments.

Example

Here is an example.
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Require Import Relations.
Require Import EgNat.

Set Implicit Arguments.
Unset Strict Implicit.

Structure Setoid : Type := {Carrier :> Set; Equal : relation Carrier;
Prf_equiv : equivalence Carrier Equal}.
Setoid is defined
Carrier is defined
Equal is defined
Prf_equiv is defined

Definition is_law (A B:Setoid) (f:A —-> B) := forall x y:A, Equal x y -> Equal (f_
ox) (£ y).
is_law is defined

Axiom eqg_nat_equiv : equivalence nat eq_nat.
eq_nat_equiv is declared

Definition nat_setoid : Setoid := Build_Setoid eq_nat_equiv.
nat_setoid is defined

Canonical nat_setoid.

Thanks to nat_setoid declared as canonical, the implicit arguments A and B can be synthesized in the next
statement.

Lemma is_law_S : 1is_law S.
1 subgoal

is_law (A:=nat_setoid) (B:=nat_setoid) S

Note: If a same field occurs in several canonical structures, then only the structure declared first as canonical is
considered.

?
Attribute: canonical = yes | no

This boolean attribute can decorate a Definition or Let command. It is equivalent to having a Canonical
Structure declaration just after the command.

To prevent a field from being involved in the inference of canonical instances, its declaration can be annotated with
canonical=no (cf. the syntax of record_field).

Example

For instance, when declaring the Set oid structure above, the Prf_equiv field declaration could be written as
follows.
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#[canonical=no] Prf_equiv : equivalence Carrier Equal

See Hierarchy of structures for a more realistic example.

*

Command: Print Canonical Projections reference

This displays the list of global names that are components of some canonical structure. For each of them, the
canonical structure of which it is a projection is indicated. If constants are given as its arguments, only the unification
rules that involve or are synthesized from simultaneously all given constants will be shown.

Example
For instance, the above example gives the following output:

Print Canonical Projections.
nat <- Carrier ( nat_setoid )
eq_nat <- Equal ( nat_setoid )
eq_nat_equiv <- Prf_equiv ( nat_setoid )

Print Canonical Projections nat.
nat <- Carrier ( nat_setoid )

Note: The last line in the first example would not show up if the corresponding projection (namely Prf_equiv)
were annotated as not canonical, as described above.

Notation overloading

We build an infix notation == for a comparison predicate. Such notation will be overloaded, and its meaning will depend

on the types of the terms that are compared.

Module EQ.

Interactive Module EQ started

Record class (T : Type) := Class { cmp : T -> T —> Prop }.
class is defined
cmp is defined

Structure type := Pack { obj : Type; class_of : class obj }.
type is defined
obj is defined
class_of is defined

Definition op (e : type) : obj e —> obj e —> Prop :=
let 'Pack _ (Class _ the_cmp) := e in the_cmp.
op is defined

Check op.

op
forall e : type, obj e —> obj e —> Prop

Arguments op {e} x y : simpl never.
Arguments Class {T} cmp.
(continues on next page)
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Module theory.
Interactive Module theory started

Notation "x == y" := (op x y) (at level 70).
End theory.
Module theory is defined

End EQ.
Module EQ is defined

We use Coq modules as namespaces. This allows us to follow the same pattern and naming convention for the rest of the
chapter. The base namespace contains the definitions of the algebraic structure. To keep the example small, the algebraic
structure EQ. type we are defining is very simplistic, and characterizes terms on which a binary relation is defined,
without requiring such relation to validate any property. The inner theory module contains the overloaded notation ==
and will eventually contain lemmas holding all the instances of the algebraic structure (in this case there are no lemmas).

Note that in practice the user may want to declare EQ . obj as a coercion, but we will not do that here.

The following line tests that, when we assume a type e that is in theEQ class, we can relate two of its objects with ==.

Import EQ.theory.
Check forall (e : EQ.type) (a b : EQ.obj e), a ==
forall (e : EQ.type) (a b : EQ.obj e), a ==
Prop

Still, no concrete type is in the EQ class.

Fail Check 3 ==
The command has indeed failed with message:
The term "3" has type "nat" while it is expected to have type "EQ.obj ?e".

We amend that by equipping nat with a comparison relation.

Definition nat_eq (x y : nat) := Nat.compare x y = Eqg.
nat_eq is defined

Definition nat_EQcl : EQ.class nat := EQ.Class nat_eq.
nat_EQcl is defined

Canonical Structure nat_EQty : EQ.type := EQ.Pack nat nat_EQcl.
nat_EQty is defined

Check 3 ==
3 ==
Prop

Eval compute in 3 ==

= Lt = Eq
Prop
This last test shows that Coq is now not only able to type check 3 == 3, but also that the infix relation was bound to

the nat_eq relation. This relation is selected whenever == is used on terms of type nat. This can be read in the line
declaring the canonical structure nat_EQty, where the first argument to Pack is the key and its second argument a
group of canonical values associated with the key. In this case we associate with nat only one canonical value (since its
class, nat_EQc1 has just one member). The use of the projection op requires its argument to be in the class EQ, and
uses such a member (function) to actually compare its arguments.

Similarly, we could equip any other type with a comparison relation, and use the == notation on terms of this type.
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Derived Canonical Structures

We know how to use == on base types, like nat, bool, Z. Here we show how to deal with type constructors, i.e. how
to make the following example work:

Fail Check forall (e : EQ.type) (a b : EQ.obj e), (a, b) == (a, b).
The command has indeed failed with message:
In environment
e : EQ.type
a : EQ.obj e
b : EQ.obj e
The term " (a, b)" has type " (EQ.obj e * EQ.obj e)%type"
while it is expected to have type "EQ.ob7j ?e".

The error message is telling that Coq has no idea on how to compare pairs of objects. The following construction is telling
Coq exactly how to do that.

Definition pair_eq (el e2 : EQ.type) (x y : EQ.obj el * EQ.obj e2) :=
fst x == fst y /\ snd x == snd y.
pair_eq is defined

Definition pair_EQcl el e2 := EQ.Class (pair_eq el e2).
pair_EQcl is defined

Canonical Structure pair_EQty (el e2 : EQ.type) : EQ.type :=
EQ.Pack (EQ.obj el * EQ.obj e2) (pair_EQcl el e2).
pair_EQty is defined

Check forall (e : EQ.type) (a b : EQ.obj e), (a, b) == (a, b).
forall (e : EQ.type) (a b : EQ.obj e), (a, b) == (a, b)
Prop
Check forall n m : nat, (3, 4) == (n, m).
forall n m : nat, (3, 4) == (n, m)
Prop

Thanks to the pair_EQty declaration, Coq is able to build a comparison relation for pairs whenever it is able to build a
comparison relation for each component of the pair. The declaration associates to the key * (the type constructor of pairs)
the canonical comparison relation pair_eq whenever the type constructor * is applied to two types being themselves
in the EQ class.

Hierarchy of structures

To get to an interesting example we need another base class to be available. We choose the class of types that are equipped
with an order relation, to which we associate the infix <= notation.

Module LE.
Interactive Module LE started

Record class T := Class { cmp : T -> T —-> Prop }.
class is defined
(continues on next page)
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cmp is defined

Structure type := Pack { obj : Type; class_of : class obj }.
type is defined
obj is defined
class_of is defined

Definition op (e : type) : obj e —> obj e —-> Prop :=
let 'Pack _ (Class f) := e in f.
op is defined

Arguments op {_} x y : simpl never.
Arguments Class {T} cmp.
Module theory.
Interactive Module theory started
Notation "x <= y" := (op x y) (at level 70).
End theory.

Module theory is defined

End LE.
Module LE is defined

As before we register a canonical LE class for nat.

Import LE.theory.

Definition nat_le x y := Nat.compare x y <> Gt.
nat_le is defined

Definition nat_ILEcl : LE.class nat := LE.Class nat_le.
nat_LEcl is defined

Canonical Structure nat_LEty : LE.type := LE.Pack nat nat_LEcl.
nat_LEty is defined

And we enable Coq to relate pair of terms with <=.

Definition pair_le el e2 (x y : LE.obj el * LE.obj e2) :=
fst x <= fst y /\ snd x <= snd y.
pair_le is defined

Definition pair_LEcl el e2 := LE.Class (pair_le el e2).
pair_LEcl is defined

(continued from previous page)

(continues on next page)
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Canonical Structure pair LEty (el e2 LE.type)
LE.Pack (LE.obj el * LE.obj e2) (pair_LEcl el e2).
pair_LEty is defined

Check (3,4,5) <= (3,4,5).
(3, 4, 5) <= (3, 4, 5)
Prop

LE.type

(continued from previous page)

At the current stage we can use == and <= on concrete types, like tuples of natural numbers, but we can’t develop an

algebraic theory over the types that are equipped with both relations.

Check 2 <= 3 /\ 2 == 2.
2 <=3 /\ 2 ==2
Prop

Fail Check forall (e EQ.type) (x vy EQ.obj e),
The command has indeed failed with message:
In environment
e : EQ.type
x : EQ.obj e
y : EQ.obj e
The term "x"
"LE.obj

has type
2e".

Fail Check forall (e LE.type) (x vy LE.obj e),
The command has indeed failed with message:
In environment
e : LE.type
X : LE.obj e
y : LE.obj e
The term "x" has type

"EQ.ob7j ve".

We need to define a new class that inherits from both EQ and LE.

Module LEQ.
Interactive Module LEQ started

X <=y —>y <=

X <=y

le xy /\ le y x <> x

X —> X == y.

"EQ.obJ e" while it is expected to have type

>y <= x —> x == y.

"LE.obj e" while it is expected to have type

y -

(LE.cmp T LE_class) }.

Record mixin (e EQ.type) (le EQ.obj e —> EQ.obj e —> Prop) :=
Mixin { compat forall x y EQ.obj e,
mixin is defined
compat is defined
Record class T := Class {
EQ _class EQ.class T;
LE_class LE.class T;
extra mixin (EQ.Pack T EQ_class)
class is defined
EQ _class is defined
LE_class is defined
extra is defined

(continues on next page)
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(continued from previous page)

Structure type := _Pack { obj : Type; #[canonical=no] class_of : class obj }.
type is defined
obj is defined
class_of is defined

Arguments Mixin {e le} _

Arguments Class {T}

The mixin component of the LEQ class contains all the extra content we are adding to EQ and LE. In particular it contains
the requirement that the two relations we are combining are compatible.

The class_of projection of the t ype structure is annotated as not canonical; it plays no role in the search for instances.
Unfortunately there is still an obstacle to developing the algebraic theory of this new class.

Module theory.
Interactive Module theory started

Fail Check forall (le : type) (nm : obj le), n <=m -> n <=m —> n == m.
The command has indeed failed with message:
In environment

le : type
n : obj le
m : obj le

The term "n" has type "obj le" while it is expected to have type "LE.obj 7e".

The problem is that the two classes LE and LEQ are not yet related by a subclass relation. In other words Coq does not
see that an object of the LEQ class is also an object of the LE class.

The following two constructions tell Coq how to canonically build the LE . t ype and EQ . t ype structure given an LEQ .
type structure on the same type.

Definition to_EQ (e : type) : EQ.type :=
EQ.Pack (obj e) (EQ_class _ (class_of e)).
to_EQ is defined

Canonical Structure to_EQ.
Definition to_LE (e : type) : LE.type :=

LE.Pack (obj e) (LE_class (class_of e)).
to_LE is defined

Canonical Structure to_LE.

We can now formulate out first theorem on the objects of the LEQ structure.

Lemma lele_eq (e : type) (xy : obje) : x <=y —>y <= x —> X == y.
1 subgoal

(continues on next page)
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X <=y >y <= X —> X ==Yy

now intros; apply (compat _ _ (extra _
No more subgoals.

Qed.

Arguments lele_eq {e} x y _ _.

End theory.

Module theory is defined

End LEQ.
Module LEQ is defined

Import LEQ.theory.

Check lele_eq.

lele_eq

forall x y : LEQ.obj ?e, x <=y
where
e : [ |- LEQ.type]

(continued from previous page)

(class_of e)) x y); split.

>y <= X > x ==y

Of course one would like to apply results proved in the algebraic setting to any concrete instate of the algebraic structure.

Example test_algebraic (n m : nat) : n <=
1 subgoal

n <=m —->m <= n —> n ==

Fail apply (lele_eg n m).

The command has indeed failed with message:

In environment
n, m : nat

<=n ->n ==

The term "n" has type "nat" while it is expected to have type "LEQ.obj 7?e".

Abort.

Example test_algebraic2 (11 12 : LEQ.type)
n<=m->m-<=n ->n == m.
1 subgoal

11, 12 : LEQ.type
n, m : LEQ.obj 11 * LEQ.obj 12

n <=m->m-«<=n —>n ==m

Fail apply (lele_eg n m).

LEQ.obj 11 * LEQ.ob3j 12)

(continues on next page)
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The command has indeed failed with message:

In environment

11, 12 : LEQ.type

n, m : LEQ.obj 11 * LEQ.obj 12

The term "n" has type " (LEQ.ob7j 11 * LEQ.obj 12)%type"
while it is expected to have type "LEQ.obj 2e".

Abort.

Again one has to tell Coq that the type nat is in the LEQ class, and how the type constructor * interacts with the LEQ
class. In the following proofs are omitted for brevity.

Lemma nat_LEQ_compat (nm : nat) : n <=m /\ m <= n <-> n == m.
1 subgoal

n<=m/\ m<=n <-> n ==

Admitted.
nat_LEQ_compat is declared

Definition nat_LEQmx := LEQ.Mixin nat_LEQ_compat.
nat_LEQmx is defined

Lemma pair_ LEQ_compat (11 12 : LEQ.type) (n m : LEQ.obj 11 * LEQ.obj 12)
n<=m/\ m<=n <->n == m.
1 subgoal

11, 12 : LEQ.type
n, m : LEQ.obj 11 * LEQ.obj 12

n<=m/\ m<=n <->n ==nm

Admitted.
pair_LEQ_compat is declared

Definition pair LEQmx 11 12 := LEQ.Mixin (pair_LEQ_compat 11 12).
pair_LEQmx is defined

The following script registers an LEQ class for nat and for the type constructor *. It also tests that they work as expected.

Unfortunately, these declarations are very verbose. In the following subsection we show how to make them more compact.

Module Add_instance_attempt.
Interactive Module Add_instance_attempt started

Canonical Structure nat_LEQty : LEQ.type :=
LEQ. Pack nat (LEQ.Class nat_EQcl nat_LEcl nat_LEQmx) .
nat_LEQty is defined
(continues on next page)
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Canonical Structure pair_LEQty (11 12 : LEQ.type) : LEQ.type :=
LEQ._Pack (LEQ.obj 11 * LEQ.obj 12)
(LEQ.Class

(EQ.class_of (pair_EQty (to_EQ 11) (to_EQ 12))
(LE.class_of (pair_LEty (to_LE 11) (to_LE 12))
(pair_LEQmx 11 12)).

pair_LEQty is defined

Example test_algebraic (nm : nat) : n <=m ->m <=n —-> n == m.
1 subgoal

n <=m->m=«<=n —>n ==nm

now apply (lele_eg n m).
No more subgoals.

Qed.

Example test_algebraic2 (nm : nat * nat) : n <= m -> m <= n —-> n == m.
1 subgoal

n <=m->m-«<=n —>n == m

now apply (lele_eqg n m). Qed.
No more subgoals.

End Add_instance_attempt.
Module Add_instance_attempt is defined

Note that no direct proof of n <= m -> m <= n -> n == mis provided by the user for n and m of type nat *
nat. What the user provides is a proof of this statement for n and m of type nat and a proof that the pair constructor pre-
serves this property. The combination of these two facts is a simple form of proof search that Coq performs automatically
while inferring canonical structures.

Compact declaration of Canonical Structures

We need some infrastructure for that.

Require Import Strings.String.
[Loading ML file ring_plugin.cmxs ... done]

Module infrastructure.
Interactive Module infrastructure started
(continues on next page)
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Inductive phantom {T : Type} (t : T) : Type :=
phantom is defined

phantom_rect is defined

phantom_ind is defined

phantom_rec is defined

phantom_sind is defined

Phantom.

Definition unify {T1 T2} (tl1 : T1l) (t2 : T2) (s : option string) :=
phantom t1 -> phantom t2.
unify is defined

Definition id {T} {t : T} (x : phantom t) := x.
id is defined

Notation "[find v | t1 ~ t2 ] p" := (fun v (_ : unify tl t2 None) => p)
(at level 50, v name, only parsing).

Notation "[find v | t1 ~ t2 | s ] p" := (fun v (_ : unify tl t2 (Some s)) => p)
(at level 50, v name, only parsing).

Notation "'Error : t : s" := (unify _ t (Some s)
(at level 50, format "''Error' : t : s").

Open Scope string_scope.

End infrastructure.
Module infrastructure is defined

To explain the notation [find v | tl ~ t2] letus pick one of its instances: [find e | EQ.obj e ~ T |
"is not an EQ.type" ].Itshould be read as: “find a class e such that its objects have type T or fail with message

9999

”T is not an EQ.type™”.

The other utilities are used to ask Coq to solve a specific unification problem, that will in turn require the inference of
some canonical structures. They are explained in more details in [[MT13]].

We now have all we need to create a compact “packager” to declare instances of the LEQ class.

Import infrastructure.

Definition packager T e0 1le0 (mO : LEQ.mixin e0 1le0) :=
[find e | EQ.0obj e ~ T | "is not an EQ.type" ]
[find o | LE.obj o ~ T | "is not an LE.type" ]
[find ce | EQ.class_of e ~ ce ]
[find co | LE.class_of o ~ co |
[find m | m ~ m0O | "is not the right mixin" ]

LEQ. Pack T (LEQ.Class ce co m).
packager is defined

Notation Pack T m

= (packager T _ _ m _ id _ id _ id _ id _ id).

The object Pack takes a type T (the key) and a mixin m. It infers all the other pieces of the class LEQ and declares them
as canonical values associated with the T key. All in all, the only new piece of information we add in the LEQ class is the
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mixin, all the rest is already canonical for T and hence can be inferred by Coq.

Pack is a notation, hence it is not type checked at the time of its declaration. It will be type checked when it is used, an
in that case T is going to be a concrete type. The odd arguments __ and id we pass to the packager represent respectively
the classes to be inferred (like e, o, etc) and a token (1 d) to force their inference. Again, for all the details the reader can
refer to [[MT13]].

The declaration of canonical instances can now be way more compact:

Canonical Structure nat_LEQty := Eval hnf in Pack nat nat_LEQmx.
nat_LEQty is defined

Canonical Structure pair_ LEQty (11 12 : LEQ.type) :=
Eval hnf in Pack (LEQ.obj 11 * LEQ.obj 12) (pair_LEQmx 11 12).
pair_LEQty is defined

Error messages are also quite intelligible (if one skips to the end of the message).

Fail Canonical Structure err := Eval hnf in Pack bool nat_LEQmx.
The command has indeed failed with message:
The term "id" has type "phantom (EQ.obj ?e) -> phantom (EQ.obj 2e)"
while it is expected to have type "'Error:bool:"is not an EQ.type"".

2.2.9 Program

Author Matthieu Sozeau

We present here the Program tactic commands, used to build certified Coq programs, elaborating them from their algo-
rithmic skeleton and a rich specification [[Soz07]]. It can be thought of as a dual of Extraction. The goal of Program
is to program as in a regular functional programming language whilst using as rich a specification as desired and proving
that the code meets the specification using the whole Coq proof apparatus. This is done using a technique originating
from the “Predicate subtyping” mechanism of PVS [[ROS98]], which generates type checking conditions while typing a
term constrained to a particular type. Here we insert existential variables in the term, which must be filled with proofs to
get a complete Coq term. Program replaces the Program tactic by Catherine Parent [[Par95]] which had a similar goal
but is no longer maintained.

The languages available as input are currently restricted to Coq’s term language, but may be extended to OCaml, Haskell
and others in the future. We use the same syntax as Coq and permit to use implicit arguments and the existing coercion
mechanism. Input terms and types are typed in an extended system (Russell) and interpreted into Coq terms. The
interpretation process may produce some proof obligations which need to be resolved to create the final term.

Elaborating programs

The main difference from Coq is that an objectin a type T : Set can be considered as an object of type {x : T |

P} for any well-formed P : Prop. If we go from T to the subset of T verifying property P, we must prove that the
object under consideration verifies it. Russell will generate an obligation for every such coercion. In the other direction,
Russell will automatically insert a projection.

Another distinction is the treatment of pattern matching. Apart from the following differences, it is equivalent to the
standard match operation (see Extended pattern matching).

¢ Generation of equalities. A match expression is always generalized by the corresponding equality. As an example,
the expression:
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match x with

| 0 => t
| S n=>u
end.

will be first rewritten to:

(match x as y return (x =y -> _) with
| 0 => fun H : x = 0 -> t
| Sn=>fun H : x =S n —->u

end) (eq_refl x).

This permits to get the proper equalities in the context of proof obligations inside clauses, without which reasoning
is very limited.

Generation of disequalities. If a pattern intersects with a previous one, a disequality is added in the context of the
second branch. See for example the definition of div2 below, where the second branch is typed in a context where
Vp, _<>5 (S p).

Coercion. If the object being matched is coercible to an inductive type, the corresponding coercion will be auto-
matically inserted. This also works with the previous mechanism.

There are flags to control the generation of equalities and coercions.

Flag:

Flag:

Flag:

Program Cases

Controls the special treatment of pattern matching generating equalities and disequalities when using Program
(it is on by default). All pattern-matches and let-patterns are handled using the standard algorithm of Coq (see
Extended pattern matching) when this flag is deactivated.

Program Generalized Coercion
Controls the coercion of general inductive types when using Program (the flag is on by default). Coercion of subset
types and pairs is still active in this case.

Program Mode

Enables the program mode, in which 1) typechecking allows subset coercions and 2) the elaboration of pattern
matchingof Fixpointand Definitionactsasif the programattribute has been used, generating obligations
if there are unresolved holes after typechecking.

?

Attribute: program= yes | no

This boolean attribute allows using or disabling the Program mode on a specific definition. An alternative and
commonly used syntax is to use the legacy Program prefix (cf. Iegacy_attr)asitis elsewhere in this chapter.

Syntactic control over equalities

To give more control over the generation of equalities, the type checker will fall back directly to Coq’s usual typing of
dependent pattern matching if a return or in clause is specified. Likewise, the if construct is not treated specially by
Program so boolean tests in the code are not automatically reflected in the obligations. One can use the de c combinator
to get the correct hypotheses as in:

Require Import Program Arith.

Program Definition id (n : nat) : { x : nat | x = n } :=

if

dec (leb n 0) then 0

else S (pred n).

id has type-checked, generating 2 obligations
Solving obligations automatically...

(continues on next page)
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(continued from previous page)

2 obligations remaining
Obligation 1 of id:
(forall n : nat, (n <=2 0) = true -> (fun X : nat => x = n) 0).

Obligation 2 of id:
(forall n : nat,

(n <=2 0) = false -> (fun x : nat => x = n) (S (Init.Nat.pred n))).
The let tupling construct let (x1, ..., xn) := t in b does not produce an equality, contrary to the let
pattern construct let ' (x1,..., xn) := t in b. Also, term :> explicitly asks the system to coerce term to

its support type. It can be useful in notations, for example:

Notation " x "=y " := (leq _ (x :>) (y :>)) (only parsing).

This notation denotes equality on subset types using equality on their support types, avoiding uses of proof-irrelevance
that would come up when reasoning with equality on the subset types themselves.

The next two commands are similar to their standard counterparts Definition and Fixpoint in that they define
constants. However, they may require the user to prove some goals to construct the final definitions.

Program Definition

A Definitioncommand with the program attribute types the value term in Russell and generates proof obligations.
Once solved using the commands shown below, it binds the final Coq term to the name ident in the global environment.

Program Definition ident : type := term

Interprets the type type, potentially generating proof obligations to be resolved. Once done with them, we have a Coq
type type,. It then elaborates the preterm terminto a Coq term term,, checking that the type of term, is coercible
to type,, and registers ident as being of type type, once the set of obligations generated during the interpretation
of term, and the aforementioned coercion derivation are solved.

See also:

Sections Controlling the reduction strategies and the conversion algorithm, unfold

Program Fixpoint

A Fixpoint command with the program attribute may also generate obligations. It works with mutually recursive
definitions too. For example:

Require Import Program Arith.

Program Fixpoint div2 (n : nat) : { x : nat | n =2 * x \/ n=2 *x + 1 } :=
match n with
| S (S p) => S (div2 p)
| =>0
end.
Solving obligations automatically...
4 obligations remaining

The Fixpoint command may include an optional £ixannot annotation, which can be:

* measure f R where f isa value of type X computed on any subset of the arguments and the optional term R is
a relation on X. X defaults to nat and Rto 1t.
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e wf R x which is equivalent to measure x R.

Here we have one obligation for each branch (branches for 0 and (S 0) are automatically generated by the pattern
matching compilation algorithm).

Obligation 1.
1 subgoal

o :p=x+ (x+0) \/ p=x+ (x+ 0) +1

S (Sp) =S (x+S (x+0)) \/ S (Sp) =S (x+ S (x+ 0) +1)

One can use a well-founded order or a measure as termination orders using the syntax:

Program Fixpoint div2 (n : nat) {measure n} : { x : nat | n =2 * x \/ n=2*x + 1 }
match n with
| S (S p) => S (div2 p)
| _— =>20

end.

Caution: When defining structurally recursive functions, the generated obligations should have the prototype of
the currently defined functional in their context. In this case, the obligations should be transparent (e.g. defined using
Defined) so that the guardedness condition on recursive calls can be checked by the kernel’s type- checker. There is
an optimization in the generation of obligations which gets rid of the hypothesis corresponding to the functional when
it is not necessary, so that the obligation can be declared opaque (e.g. using Qed). However, as soon as it appears in
the context, the proof of the obligation is required to be declared transparent.

No such problems arise when using measures or well-founded recursion.

Program Lemma

A Lemma command with the program attribute uses the Russell language to type statements of logical properties.
It generates obligations, tries to solve them automatically and fails if some unsolved obligations remain. In this case,
one can first define the lemma’s statement using Definition and use it as the goal afterwards. Otherwise the proof
will be started with the elaborated version as a goal. The Program attribute can similarly be used with Variable,
Hypothesis, Axiometc.

Solving obligations

The following commands are available to manipulate obligations. The optional identifier is used when multiple functions
have unsolved obligations (e.g. when defining mutually recursive blocks). The optional tactic is replaced by the default
one if not specified.

Command: Obligation Tactic := ltac_expr
Sets the default obligation solving tactic applied to all obligations automatically, whether to solve them or when
starting to prove one, e.g. using Next Obligation.

This command supports the Jocal and global attributes. 1ocal makes the setting last only for the current
module. Iocal is the default inside sections while g1obal otherwise.

Command: Show Obligation Tactic
Displays the current default tactic.
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?

Command: Obligations |of ident |

Displays all remaining obligations.

? ?

Command: Obligation natural |of ident | |: type 'with ltac_expr

?
Command: Next Obligation of ident with ltac expr

?
Command: Solve Obligations of ident with Itac_expr

Start the proof of obligation natural.

?

Start the proof of the next unsolved obligation.

?

Tries to solve each obligation of ident using the given 1tac_expr or the default one.

?

Command: Solve All Obligations with Iltac_expr

Tries to solve each obligation of every program using the given tactic or the default one (useful for mutually recursive
definitions).

?
Command: Admit Obligations of ident

Admits all obligations (of ident).

Note: Does not work with structurally recursive programs.

?

Command: Preterm of ident

Flag:

Flag:

Shows the term that will be fed to the kernel once the obligations are solved. Useful for debugging.

Transparent Obligations
Controls whether all obligations should be declared as transparent (the default), or if the system should infer which
obligations can be declared opaque.

Hide Obligations
Deprecated since version 8.12.

Controls whether obligations appearing in the term should be hidden as implicit arguments of the special constant
Program.Tactics.obligation.

The module Cog.Program.Tactics defines the default tactic for solving obligations called program_simpl.
Importing Coq.Program.Program also adds some useful notations, as documented in the file itself.

Frequently Asked Questions

Error: Ill-formed recursive definition.

This error can happen when one tries to define a function by structural recursion on a subset object, which means
the Coq function looks like:

Program Fixpoint £ (x : A | P) := match x with A b => f b end.

Supposing b : A, the argument at the recursive call to f is not a direct subterm of x as b is wrapped inside an
exist constructor to build an object of type {x : A | P}.Hence the definition is rejected by the guardedness
condition checker. However one can use wellfounded recursion on subset objects like this:

Program Fixpoint £ (x : A | P) { measure (size x) } :=
match x with A b => f b end.

One will then just have to prove that the measure decreases at each recursive call. There are three drawbacks
though:
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1. A measure function has to be defined;
2. The reduction is a little more involved, although it works well using lazy evaluation;

3. Mutual recursion on the underlying inductive type isn’t possible anymore, but nested mutual recursion is
always possible.

2.2.10 Commands

Displaying

? ?
Command: Print Term reference |univ_name_list

*
univ_name_list ::= @{[name |}

Displays definitions of terms, including opaque terms, for the object reference.

e Term - a syntactic marker to allow printing a term that is the same as one of the various Print commands.
For example, Print A1l is a different command, while Print Term All shows information on the
object whose name is "A11”.

* univ_name_list - locally renames the polymorphic universes of reference. The name _ means the
usual name is printed.

Error: qualid not a defined object.
Error: Universe instance should have length natural.
Error: This object does not support universe names.

Command: Print All
This command displays information about the current state of the environment, including sections and modules.

Command: Inspect natural
This command displays the natural last objects of the current environment, including sections and modules.

Command: Print Section qualid
Displays the objects defined since the beginning of the section named qualid.

Query commands

Unlike other commands, query_commands may be prefixed with a goal selector (natural:) to specify which goals
it applies to. If no selector is provided, the command applies to the current goal. If no proof is open, then the command
only applies to accessible objects. (see Section Invocation of tactics).
?
Command: About reference univ_name_list
Displays information about the reference object, which, if a proof is open, may be a hypothesis of the selected
goal, or an accessible theorem, axiom, etc.: its kind (module, constant, assumption, inductive, constructor, abbre-
viation, ...), long name, type, implicit arguments and argument scopes (as set in the definition of reference or
subsequently with the Argument s command). It does not print the body of definitions or proofs.

Command: Check term
Displays the type of term. When called in proof mode, the term is checked in the local context of the selected
goal.
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Command: Eval red_expr in term
Performs the specified reduction on term and displays the resulting term with its type. If a proof is open, term
may reference hypotheses of the selected goal.

See also:
Section Performing computations.

Command: Compute term
Evaluates term using the bytecode-based virtual machine. It is a shortcut for Eval vm_compute in term.

See also:

Section Performing computations.

+
Command: Search search query inside \ outside gqualid

This command can be used to filter the goal and the global context to retrieve objects whose name or type satisfies
a number of conditions. Library files that were not loaded with Requi re are not considered. The Search
Blacklist table can also be used to exclude some things from all calls to Search.

The output of the command is a list of qualified identifiers and their types. If the Search Output Name
On1y flag is on, the types are omitted.

search_query ::= search_item
\ - search_query

+
+
\ [ || search_query 1

Multiple search_items can be combined into a complex search_query:

— search_guery Excludes the objects that would be filtered by search_query. See this example.

+ +
[ | search_query | ... | |search_query 1 This is a disjunction of conjunctions of queries.
A simple conjunction can be expressed by having a single disjunctive branch. For a conjunction at top-level,
the surrounding brackets are not required.
¥
head ‘ hyp ‘ concl ‘ headhyp ‘ headconcl : string

5
% scope_key

search_item

?
| head ‘ hyp ‘ concl ‘ headhyp ‘ headconcl : one_pattern

| is : logical_kind

Searched objects can be filtered by patterns, by the constants they contain (identified by their name or a notation)
and by their names. The location of the pattern or constant within a term

one_pattern Search for objects whose type contains a subterm matching the pattern one_pattern. Holes
of the pattern are indicated by __ or ? ident. If the same ? ident occurs more than once in the pattern, all
occurrences in the subterm must be identical. See this example.
?
string |% scope_key
e If string is a substring of a valid identifier and no $ scope_key is provided, search for objects
whose name contains string. See this example.

* Otherwise, search for objects whose type contains the reference that this string, interpreted as a notation,
is attached to (as described in reference). See this example.
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Note: To refer to a string used in a notation that is a substring of a valid identifier, put it between single
quotes or explicitly provide a scope. See this example.

hyp: The provided pattern or reference is matched against any subterm of an hypothesis of the type of the objects.
See this example.

headhyp: The provided pattern or reference is matched against the subterms in head position (any partial ap-
plicative subterm) of the hypotheses of the type of the objects. See the previous example.

concl: The provided pattern or reference is matched against any subterm of the conclusion of the type of the
objects. See this example.

headconcl: The provided pattern or reference is matched against the subterms in head position (any partial
applicative subterm) of the conclusion of the type of the objects. See the previous example.

head: This is simply the union between headconcl: and headhyp:.
is: logical_ kind

logical_kind ::= |thm_token ‘ assumption_token
\ Definition ‘ Example ‘ Context ‘ Primitive
| Coercion | Instance | Scheme | Canonical | SubClass
\ Field | Method

Filters objects by the keyword that was used to define them (Theorem, Lemma, Axiom, Variable,
Context, Primitive...) or its status (Coercion, Instance, Scheme, Canonical, SubClass,
Field* for record fields, Met hod for class fields). Note that Coercions, Canonical Structures,
Instance’s and Schemes can be defined without using those keywords. See his example.

Additional clauses:

+
* inside qualid | - limit the search to the specified modules

+
* outside gualid | - exclude the specified modules from the search

Error: Module/section qualid not found.
There is no constant in the environment named qualid, where qualidis in an inside or outside
clause.

Example: Searching for a pattern
We can repeat meta-variables to narrow down the search. Here, we are looking for commutativity lemmas.

Search (_ ?n ?m = _ ?m ?n).

Nat.land_comm: forall a b : nat, Nat.land
Nat.lor_comm: forall a b : nat, Nat.lor a
Nat.lxor_comm: forall a b : nat, Nat.lxor
Nat.lcm_comm: forall a nat, Nat.lcm a = Nat.lcm b a
Nat.min_comm: forall n nat, Nat.min n = Nat.min m n
Nat.gcd_comm: forall n nat, Nat.gcd n = Nat.gcd m n

b

n

b = Nat.land b a
= Nat.lor b a
b = Nat.lxor b a

3 8 00 OO
I

Bool.xorb_comm: forall b' : bool, xorb b b' = xorb b'

Nat .max_comm: forall n nat, Nat.max n m = Nat.max m

Nat.mul_comm: forall n nat, n * m =m * n

Nat.add_comm: forall nm : nat, n + m = m + n

Bool.orb_comm: forall bl b2 : bool, (bl || b2)%bool = (b2 || bl)%bool

2 30838 380

Bool.andb_comm: forall bl b2 : bool, (bl && b2)%bool = (b2 && bl)%bool
Nat.egb_sym: forall x y : nat, (x =? vy) = (y =7 Xx)
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Example: Searching for part of an identifier

Search " _assoc".
or_assoc: forall A B C : Prop, (A \/ B) \/ C <> A \/ B \/ C
and_assoc: forall A B C : Prop, (A /\ B) /\ C <> A /\ B /\ C
eg_trans_assoc:
forall [A : Type] [x vy z t : Al (e : x =vy) (e' vy =12) (¢'"" : z =1t),
')

eg_trans e (eg_trans e' e'') = eg_trans (eg_trans e e e'!

Example: Searching for a reference by notation

Search "+".
plus_O_n: forall n : nat, 0 + n = n
plus_n_O: forall n : nat, n = n + 0

plus_n_Sm: forall nm : nat, S (n + m) = n + S m
plus_Sn_m: forall nm : nat, Sn + m =S (n + m)
mult_n_Sm: forall nm : nat, n *m + n =n * S m

f_equal2_plus:

forall x1 y1 x2 y2 : nat, x1 =yl —> x2 = y2 —> xl1 + x2
nat_rect_plus:

forall (nm : nat) {A : Type} (£ : A —> A) (x : A),

vyl + y2

nat_rect (fun _ : nat => A) x (fun _ : nat => f) (n + m) =
nat_rect (fun _ : nat => A)
(nat_rect (fun _ : nat => A) x (fun _ : nat => f) m)
(fun _ : nat => f) n

Example: Disambiguating between part of identifier and notation

In this example, we show two ways of searching for all the objects whose type contains Nat . modulo but which
do not contain the substring “mod”.

Search "'mod'" -"mod".
Nat.bitO_egb: forall a : nat, Nat.testbit a 0 = (a mod 2 =7 1)
Nat.land_ones: forall a n : nat, Nat.land a (Nat.ones n) = a mod 2 "~ n

Nat.div_exact: forall a b : nat, b <> 0 -—> a =b * (a / b) <> a mod b = 0
Nat.testbit_spec':

forall a n : nat, Nat.b2n (Nat.testbit a n) = (a / 2 ~ n) mod 2
Nat .pow_div_1:

forall a b c : nat, b <> 0 ->amod b =0 -> (a /b)) "c=a”c/ b"c
Nat.testbit_eqb: forall a n : nat, Nat.testbit a n = ((a / 2 ~ n) mod 2 =2 1)
Nat .testbit_false:

forall a n : nat, Nat.testbit a n = false <-> (a / 2 ~ n) mod 2 = 0
Nat .testbit_true:

forall a n : nat, Nat.testbit a n = true <-> (a / 2 ~ n) mod 2 = 1

Search "mod"%nat -"mod".
Nat.bitO_egb: forall a : nat, Nat.testbit a 0 = (a mod 2 =72 1)
Nat.land_ones: forall a n : nat, Nat.land a (Nat.ones n) = a mod 2 "~ n
Nat.div_exact: forall a b : nat, b <> 0 -—> a =b * (a / b) <> a mod b = 0
Nat.testbit_spec':
forall a n : nat, Nat.b2n (Nat.testbit a n) = (a / 2 ©~ n) mod 2

(continues on next page)
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(continued from previous page)

Nat.pow_div_1:

forall a b c : nat, b <> 0 > amod b =0 -> (a /b)) "c=a”c/ b"c
Nat.testbit_egb: forall a n : nat, Nat.testbit a n = ((a / 2 ~ n) mod 2 =72 1)
Nat.testbit_false:

forall a n : nat, Nat.testbit a n = false <-> (a / 2 ~ n) mod 2 = 0
Nat.testbit_true:

forall a n : nat, Nat.testbit a n = true <> (a / 2 ~ n) mod 2 = 1

Example: Search in hypotheses

The following search shows the objects whose type contains bool in an hypothesis as a strict subterm only:

Search hyp:bool -headhyp:bool.

Nat.bitwise: (bool -> bool -> bool) —-> nat —-> nat —-> nat —-> nat
Byte.of_bits:
bool * (bool * (bool * (bool * (bool * (bool * (bool * bool)))))) —>
Byte.byte
Byte.to_bits_of_bits:
forall
b : bool * (bool * (bool * (bool * (bool * (bool * (bool * bool)))))),
Byte.to_bits (Byte.of_bits b) = Db

Example: Search in conclusion

The following search shows the objects whose type contains bool in the conclusion as a strict subterm only:

Search concl:bool -headconcl:bool.

Byte.to_bits:

Byte.byte —>

bool * (bool * (bool * (bool * (bool * (bool * (bool * bool))))))
andb_prop: forall a b : bool, (a && b)%bool = true -> a = true /\ b = true
andb_true_intro:

forall [bl b2 : bool], bl = true /\ b2 = true —> (bl && b2)%bool = true
Byte.to_bits_of_bits:

forall

b : bool * (bool * (bool * (bool * (bool * (bool * (bool * bool)))))),

Byte.to_bits (Byte.of_bits b) = Db
bool_choice:

forall [S : Set] [R1 R2 : S —> Prop],

(forall x : S, {R1 x} + {R2 x}) —>

{f : S —> bool | forall x : S, £ x = true /\ Rl x \/ £ x = false /\ R2 x}

Example: Search by keyword or status

The following search shows the definitions whose type is a nat or a function which returns a nat and the lemmas
about +:

Search [ is:Definition headconcl:nat | is:Lemma (_ + _) ].
Nat.two: nat
Nat.zero: nat
Nat.one: nat
(continues on next page)
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(continued from previous page)

Nat.succ: nat —> nat

Nat.log2: nat —> nat

Nat.sgrt: nat —> nat

Nat .square: nat —-> nat

Nat .double: nat —-> nat

Nat .pred: nat —-> nat

Nat.ldiff: nat —-> nat -> nat

Nat.tail _mul: nat —-> nat —-> nat

Nat.land: nat -> nat -> nat

Nat.div: nat -> nat -> nat

Nat.modulo: nat —-> nat —-> nat

Nat.lor: nat —-> nat —-> nat

Nat.lxor: nat —-> nat -> nat

Nat.of_hex_uint: Hexadecimal.uint —-> nat
Nat.of_uint: Decimal.uint -> nat
Nat.of_num_uint: Number.uint -> nat

length: forall [A Type], list A —-> nat
plus_n_O: forall n nat, n = n + 0

plus_O_n: forall n nat, 0 + n = n

plus_n_Sm: forall n m nat, S (n +m) = n + S m
plus_Sn_m: forall n m nat, S n +m=3S (n + m)
mult_n_Sm: forall n m nat, n *m+ n=n * S m

The following search shows the instances whose type includes the classes Reflexive or Symmetric:

Search is:Instance | Reflexive |
iff_Symmetric: Symmetric iff
iff_Reflexive: Reflexive iff
impl_Reflexive:

eq_Symmetric: forall {A Type},
eq_Reflexive: forall {A Type},
Equivalence_Symmetric:

forall {A Type} {R Relation_.

Equivalence R —> Symmetric R
Equivalence_Reflexive:

forall {A Type} {R Relation_.

Equivalence R —> Reflexive R
PER_Symmetric:

forall {A Type} {R Relation_.

PER R —> Symmetric R
PreOrder_Reflexive:

forall {A Type} {R Relation_

PreOrder R —-> Reflexive R
reflexive_eq_dom_reflexive:
forall {A B Type} {R'

Reflexive R' —> Reflexive

Symmetric .

Reflexive Basics.impl
Symmetric eq
Reflexive eq

Definitions.relation A},

Definitions.relation A},
relation A},

Definitions.

Definitions.relation A},

Relation_Definitions.relation B},
(eq ==> R') %$signature

Command: SearchHead one_pattern

inside \ outside qualid

Deprecated since version 8.12: Use the headconcl: clause of Search instead.

Displays the name and type of all hypotheses of the selected goal (if any) and theorems of the current context that
)

*

have the form | forall binder | , P,

->

*
C where one_ patternmatches a subterm of C in head

position. For example, a one_patternof £ _ b matches £ a b, which is a subterm of C in head position

whenCisf a b c.

2.2. Language extensions

203



The Coq Reference Manual, Release 8.13.2

See Search for an explanation of the inside/outside clauses.

Example: SearchHead examples

SearchHead le.
Toplevel input, characters 0-14:
> SearchHead le.
S AAAAAAAAAAAAAA
Warning:
SearchHead is deprecated. Use the headconcl: clause of Search instead.
[deprecated-searchhead, deprecated]
le_n: forall n : nat, n <= n
le_0_n: forall n : nat, 0 <= n
le_S: forall nm : nat, n <= m -> n <= S m
le_pred: forall nm : nat, n <= m —> Nat.pred n <= Nat.pred m
le_n_S: forall nm : nat, n <= m -> S n <= S m
le_S_ n: forall nm : nat, S n <= S m ->n <=m

SearchHead (leq bool).
Toplevel input, characters 0-22:
> SearchHead (€leg bool).
S AAAAAAAAAAAAAAAAAAAAAA
Warning:
SearchHead is deprecated. Use the headconcl: clause of Search instead.
[deprecated-searchhead, deprecated]
andb_true_intro:
forall [bl b2 : bool], bl = true /\ b2 = true —> (bl && b2)%bool = true

+
Command: SearchPattern one_pattern inside | outside qualid

Displays the name and type of all hypotheses of the selected goal (if any) and theorems of the current context
?

* *
ending with forall binder | , P, —> C that match the pattern one_pattern.

1

See Search for an explanation of the inside/outside clauses.

Example: SearchPattern examples
Require Import Arith.
SearchPattern (_ + = + ).

Nat.add_comm: forall nm : nat, n + m = m + n
plus_Snm_nSm: forall nm : nat, S n + m

Nat .add_succ_comm: forall nm : nat, S n +m=n + S m
Nat.add_shuffle3: forall n m p : nat, n + (m + p) = m + (n + p)
plus_assoc_reverse: forall n m p : nat, m+p=n+ (m + p)

(

+
Nat.add_assoc: forall n m p : nat, n + (m + p) = n + m + p
Nat.add_shuffleO: forall n m p : nat, n + m
f_equal2_plus:

forall x1 y1 x2 y2 : nat, x1
Nat.add_shuffle2: forall n m p
Nat.add_shufflel: forall n m p

vyl —> x2 = y2 —> x1 + x2 =yl + y2
:nat, n +m+ (p + Q) + g+ (m+ p)
nat, n + + p + (m+ q)

SearchPattern (nat —-> bool).
Nat.odd: nat —> bool
(continues on next page)
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(continued from previous page)

Init.Nat.odd: nat -> bool

Nat.even: nat —-> bool

Init.Nat.even: nat -> bool

Init.Nat.testbit: nat -> nat -> bool

Nat.leb: nat —-> nat —-> bool

Nat.egb: nat -> nat —-> bool

Init.Nat.egb: nat -> nat —> bool

Nat.ltb: nat -> nat -> bool

Nat.testbit: nat —-> nat -> bool

Init.Nat.leb: nat -> nat —-> bool

Init.Nat.ltb: nat -> nat —-> bool

BinNat.N.testbit_nat: BinNums.N —-> nat —-> bool
BinPosDef.Pos.testbit_nat: BinNums.positive —-> nat -> bool
BinPos.Pos.testbit_nat: BinNums.positive —-> nat -> bool
BinNatDef.N.testbit_nat: BinNums.N -> nat —-> bool

SearchPattern (forall 1 : list _, _ 1
List.incl_refl: forall [A : Type]

1).
(1 : list A), List.incl 1 1
List.lel_refl: forall [A : Type] (1

list A), List.lel 1 1

SearchPattern (?X1 + = _ 4+ ?2X1).
Nat.add_comm: forall nm : nat, n + m = m + n

+
Command: SearchRewrite one_pattern | inside \ outside qualid
Displays the name and type of all hypotheses of the selected goal (if any) and theorems of the current context
?

* *
that have the form | forall binder | , P, —> LHS = RHS where one_patternmatches either

LHS or RHS.

See Search for an explanation of the inside/outside clauses.

Example: SearchRewrite examples

Require Import Arith.

SearchRewrite (_ + _ + _).
Nat.add_shufflelO: forall n mp : nat, n +m + p =n + p + m
plus_assoc_reverse: forall n mp : nat, n + m + p = n + (m + p)
Nat.add_assoc: forall n m p : nat, n + (m + p) = n + m + p
Nat.add_shufflel: forall nmp g : nat, n + m + (p + q) n+p+ (m+ q)
Nat.add_shuffle2: forall n mp g : nat, n + m + (p + 9 = n + g + (m + p)
Nat.add_carry_div2:
forall (a b : nat) (cO : bool),
(a + b + Nat.b2n c0) / 2 =
a/ 2 +b / 2+
Nat .b2n
(Nat.testbit a 0 && Nat.testbit b 0
|| c0 && (Nat.testbit a 0 || Nat.testbit b 0))

Table: Search Blacklist string
Specifies a set of strings used to exclude lemmas from the results of Search, SearchHead, SearchPattern
and SearchRewrite queries. A lemma whose fully-qualified name contains any of the strings will be excluded
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from the search results. The default blacklisted substrings are _subterm, _subproof and Private_.
Use the Add and Remove commands to update the set of blacklisted strings.

Flag: Search Output Name Only
This flag restricts the output of search commands to identifier names; turning it on causes invocations of Search,
SearchHead, SearchPattern, SearchRewrite etc. to omit types from their output, printing only iden-
tifiers.

Requests to the environment
Command: Print Assumptions reference
Displays all the assumptions (axioms, parameters and variables) a theorem or definition depends on.
The message ”Closed under the global context” indicates that the theorem or definition has no dependencies.

Command: Print Opaque Dependencies reference
Displays the assumptions and opaque constants that re ference depends on.

Command: Print Transparent Dependencies reference
Displays the assumptions and transparent constants that reference depends on.

Command: Print All Dependencies reference
Displays all the assumptions and constants reference depends on.

Command: Locate reference
reference ::= qualid

5]
| string | % scope_key

Displays the full name of objects from Coq’s various qualified namespaces such as terms, modules and Ltac, thereby
showing the module they are defined in. It also displays notation definitions.

qualid refers to object names that end with qualid.
string |% scope key | refers to definitions of notations. string can be a single token in the notation
such as ”—>” or a pattern that matches the notation. See Locating notations.

% scope_key, if present, limits the reference to the scope bound to the delimiting key scope_key, such
as, for example, $nat. (see Section Local interpretation rules for notations)

Command: Locate Term reference
Like Locate, but limits the search to terms

Command: Locate Module qualid
Like Locate, but limits the search to modules

Command: Locate Ltac qualid
Like Locate, but limits the search to tactics

Command: Locate Library qualid
Displays the full name, status and file system path of the module gualid, whether loaded or not.

Command: Locate File string
Displays the file system path of the file ending with string. Typically, string has a suffix such as . cmo or
.vo or .v file, such as Nat . v.

Example: Locate examples
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Locate nat.
Inductive Cog.Init.Datatypes.nat

Locate Datatypes.O.
Constructor Cog.Init.Datatypes.O
(shorter name to refer to it in current context is O)

Locate Init.Datatypes.O.
Constructor Cog.Init.Datatypes.O
(shorter name to refer to it in current context is O)

Locate Cog.Init.Datatypes.O.
Constructor Cog.Init.Datatypes.O
(shorter name to refer to it in current context is O)

Locate I.Dont.Exist.
No object of suffix I.Dont.Exist

Printing flags

Flag: Fast Name Printing
When turned on, Coq uses an asymptotically faster algorithm for the generation of unambiguous names of bound
variables while printing terms. While faster, it is also less clever and results in a typically less elegant display, e.g.
it will generate more names rather than reusing certain names across subterms. This flag is not enabled by default,
because as Ltac observes bound names, turning it on can break existing proof scripts.

Loading files

Coq offers the possibility of loading different parts of a whole development stored in separate files. Their contents will be
loaded as if they were entered from the keyboard. This means that the loaded files are text files containing sequences of
commands for Coq’s toplevel. This kind of file is called a script for Coq. The standard (and default) extension of Coq’s
script files is .v.

?
Command: Load Verbose string ‘ ident

Loads a file. If ident is specified, the command loads a file named ident . v, searching successively in each of
the directories specified in the loadpath. (see Section Libraries and filesystem)

If stringis specified, it must specify a complete filename. ~ and .. abbreviations are allowed as well as shell
variables. If no extension is specified, Coq will use the default extension . v.

Files loaded this way can’t leave proofs open, nor can Load be used inside a proof.

We discourage the use of Load; use Require instead. Require loads . vo files that were previously compiled
from . v files.

Verbose displays the Coq output for each command and tactic in the loaded file, as if the commands and tactics
were entered interactively.

Error: Can’t find file ident on loadpath.
Error: Load is not supported inside proofs.

Error: Files processed by Load cannot leave open proofs.
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Compiled files

This section describes the commands used to load compiled files (see Chapter The Coq commands for documentation on
how to compile a file). A compiled file is a particular case of a module called a library file.

? +
Command: Require Import Export qualid

Loads compiled modules into the Coq environment. For each gualid, which has the form ident , ..,
ident, the command searches for the logical name represented by the ident

ident.vo from the associated filesystem directory.

s and loads the compiled file

prefix

The process is applied recursively to all the loaded files; if they contain Reguire commands, those commands
are executed as well. The compiled files must have been compiled with the same version of Coq. The compiled
files are neither replayed nor rechecked.

e Import - additionally does an Tmport on the loaded module, making components defined in the module
available by their short names

» Export - additionally does an Export on the loaded module, making components defined in the module
available by their short names and marking them to be exported by the current module

If the required module has already been loaded, Import and Export make the command equivalent to Tmport
or Export.

The loadpath must contain the same mapping used to compile the file (see Section Libraries and filesystem). If
several files match, one of them is picked in an unspecified fashion. Therefore, library authors should use a unique
name for each module and users are encouraged to use fully-qualified names or the rom .. Require command
to load files.

? ¥
Command: From dirpath Require Import ‘ Export qualid

Works like Require, but loads, for each qualid, the library whose fully-qualified name matches
* *
dirpath. ident . | qualid for some ident . | . This is useful to ensure that the qualid li-

brary comes from a particular package.
Error: Cannot load gqualid: no physical path bound to dirpath.

Error: Cannot find library foo in loadpath.
The command did not find the file foo.vo. Either foo.v exists but is not compiled or foo.vo is in a directory
which is not in your LoadPath (see Section Libraries and filesystem).

Error: Compiled library ident.

vo makes inconsistent assumptions over library qualid.
The command tried to load library file ident.vo that depends on some specific version of library qualid
which is not the one already loaded in the current Coq session. Probably ident . v was not properly recom-
piled with the last version of the file containing module qualid.

Error: Bad magic number.
The file ident.vo was found but either it is not a Coq compiled module, or it was compiled with an
incompatible version of Coq.

Error: The file ident.vo contains library qualid;, and not library qualid,.
The library qualid, is indirectly required by a Requireor From .. Requirecommand. The loadpath
maps qualid, to ident.vo, which was compiled using a loadpath that bound it to qualid,. Usually
the appropriate solution is to recompile ident . v using the correct loadpath. See Libraries and filesystem.

Warning: Require inside a module is deprecated and strongly discouraged.
You can Require a module at toplevel and optionally Import it inside another one.

Note that the Tmport and Export commands can be used inside modules.
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See also:
Chapter The Coq commands

Command: Print Libraries
This command displays the list of library files loaded in the current Coq session.

Command: Declare ML Module string ¥
This commands dynamically loads OCaml compiled code from a .m11ib file. It is used to load plugins dynami-
cally. The files must be accessible in the current OCaml loadpath (see command line option —=I and command Add
ML Path). The .m11ib suffix may be omitted.

This command is reserved for plugin developers, who should provide a .v file containing the command. Users of
the plugins will then generally load the .v file.

This command supports the 1ocal attribute. If present, the listed files are not exported, even if they’re outside a
section.

Error: File not found on loadpath: string.

Command: Print ML Modules
This prints the name of all OCaml modules loaded with Declare ML Module. To know from where these
module were loaded, the user should use the command Locate File.

Loadpath

Loadpaths are preferably managed using Coq command line options (see Section Libraries and filesysten), but there are
also commands to manage them within Coq. These commands are only meant to be issued in the toplevel, and using them
in source files is discouraged.

Command: Pwd
This command displays the current working directory.
?
Command: Cd string
If string is specified, changes the current directory according to st ring which can be any valid path. Other-
wise, it displays the current directory.

Command: Add LoadPath string as dirpath

*®
dirpath ::= |ident. | ident

This command is equivalent to the command line option —Q string dirpath. It adds a mapping to the
loadpath from the logical name dirpath to the file system directory string.

e dirpathis a prefix of a module name. The module name hierarchy follows the file system hierarchy. On
Linux, for example, the prefix A . B. C maps to the directory string/B/C. Avoid using spaces after a . in
the path because the parser will interpret that as the end of a command or tactic.

Command: Add Rec LoadPath string as dirpath
This command is equivalent to the command line option -R string dirpath. It adds the physical directory
string and all its subdirectories to the current Coq loadpath.

Command: Remove LoadPath string
This command removes the path string from the current Coq loadpath.

?
Command: Print LoadPath dirpath

This command displays the current Coq loadpath. If dirpath is specified, displays only the paths that extend
that prefix.
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Command: Add ML Path string
Equivalent to the command line option =I string. Adds the path string to the current OCaml loadpath (cf.
Declare ML Module). Itis for convenience, such as for use in an interactive session, and it is not exported
to compiled files. For separation of concerns with respect to the relocability of files, we recommend using —I
string.

Command: Print ML Path
Displays the current OCaml loadpath, as provided by the command line option =I string or by the command
Add ML Path@string (cf. Declare ML Module).

Backtracking

The backtracking commands described in this section can only be used interactively, they cannot be part of a Coq file
loaded via Load or compiled by cogc.

Command: Reset ident
This command removes all the objects in the environment since ident was introduced, including ident. ident
may be the name of a defined or declared object as well as the name of a section. One cannot reset over the name
of a module or of an object inside a module.

Error: ident: no such entry.

Command: Reset Initial

Goes back to the initial state, just after the start of the interactive session.
?

Command: Back natural
Undoes all the effects of the last natural sentences. If natural is not specified, the command undoes
one sentence. Sentences read from a . v file via a Load are considered a single sentence. While Back can undo
tactics and commands executed within proof mode, once you exit proof mode, such as with Oed, all the statements
executed within are thereafter considered a single sentence. Back immediately following Oed gets you back to
the state just after the statement of the proof.

Error: Invalid backtrack.
The user wants to undo more commands than available in the history.

Command: BackTo natural
This command brings back the system to the state labeled natural, forgetting the effect of all commands executed
after this state. The state label is an integer which grows after each successful command. It is displayed in the prompt
when in -emacs mode. Just as Back (see above), the Back To command now handles proof states. For that, it
may have to undo some extra commands and end on a state natural’ < natural if necessary.

Quitting and debugging

Command: Quit
Causes Coq to exit. Valid only in coqtop.

Command: Drop
This command temporarily enters the OCaml toplevel. It is a debug facility used by Coq’s implementers. Valid
only in the bytecode version of coqtop. The OCaml command:

#use "include";;

adds the right loadpaths and loads some toplevel printers for all abstract types of Coq- section_path, identifiers,
terms, judgments, .... You can also use the file base_include instead, that loads only the pretty-printers for sec-
tion_paths and identifiers. You can return back to Coq with the command:
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go();;

Warning:

1. It only works with the bytecode version of Coq (i.e. cogtop.byte, see Section
interactive-use).

2. You must have compiled Coq from the source package and set the environment variable COQTOP to the
root of your copy of the sources (see Section customization-by-environment-variables).

Command: Time sentence
Executes sentence and displays the time needed to execute it.

Command: Redirect string sentence
Executes sentence, redirecting its output to the file st ring.out”.

Command: Timeout natural sentence
Executes sentence. If the operation has not terminated after natural seconds, then it is interrupted and an
error message is displayed.

Option: Default Timeout natural
If set, each sentence is treated as if it was prefixed with Timeout natural, except for Timeout
commands themselves. If unset, no timeout is applied.

Command: Fail sentence
For debugging scripts, sometimes it is desirable to know whether a command or a tactic fails. If sentence fails,
then Fail sentence succeeds (except for critical errors, such as “stack overflow”), without changing the proof
state. In interactive mode, the system prints a message confirming the failure.

Error: The command has not failed!
If the given command succeeds, then Fail sentence fails with this error message.

Note: Time, Redirect, Timeout and Fail are control_commands. For these commands, attributes and
goal selectors, when specified, are part of the sentence argument, and thus come after the control command prefix
and before the inner command or tactic. For example: Time #[ local ] Definition foo := 0.orFail
Timeout 10 all: auto.

Controlling display

Flag: Silent
This flag controls the normal displaying.

+

?
Option: Warnings " - | + | ident "

4

This option configures the display of warnings. It is experimental, and expects, between quotes, a comma-separated
list of warning names or categories. Adding - in front of a warning or category disables it, adding + makes it an error.
It is possible to use the special categories all and default, the latter containing the warnings enabled by default. The
flags are interpreted from left to right, so in case of an overlap, the flags on the right have higher priority, meaning
that A, —A is equivalent to —A.

Option: Printing Width natural
This command sets which left-aligned part of the width of the screen is used for display. At the time of writing
this documentation, the default value is 78.
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Option: Printing Depth natural

Flag:

Flag:

Flag:

This option controls the nesting depth of the formatter used for pretty- printing. Beyond this depth, display of
subterms is replaced by dots. At the time of writing this documentation, the default value is 50.

Printing Compact Contexts

This flag controls the compact display mode for goals contexts. When on, the printer tries to reduce the vertical
size of goals contexts by putting several variables (even if of different types) on the same line provided it does not
exceed the printing width (see Printing Width). At the time of writing this documentation, it is off by default.

Printing Unfocused
This flag controls whether unfocused goals are displayed. Such goals are created by focusing other goals with bullets
(see Bullets or curly braces). It is off by default.

Printing Dependent Evars Line
This flag controls the printing of the “(dependent evars: ...)” information after each tactic. The information is used
by the Prooftree tool in Proof General. (https://askra.de/software/prooftree)

Printing constructions in full

Flag:

Printing All

Coercions, implicit arguments, the type of pattern matching, but also notations (see Syntax extensions and nota-
tion scopes) can obfuscate the behavior of some tactics (typically the tactics applying to occurrences of subterms
are sensitive to the implicit arguments). Turning this flag on deactivates all high-level printing features such as
coercions, implicit arguments, returned type of pattern matching, notations and various syntactic sugar for pattern
matching or record projections. Otherwise said, Printing A1l includes the effects of the flags Printing
Implicit, Printing Coercions, Printing Synth, Printing Projections,and Printing
Notations. To reactivate the high-level printing features, use the command Unset Printing All.

Note: In some cases, setting Printing A1l may display terms that are so big they become very hard to read.
One technique to work around this is use Undelimit Scope and/or Close Scope to turn off the printing
of notations bound to particular scope(s). This can be useful when notations in a given scope are getting in the way
of understanding a goal, but turning off all notations with Printing A1 would make the goal unreadable.

Controlling the reduction strategies and the conversion algorithm

Coq provides reduction strategies that the tactics can invoke and two different algorithms to check the convertibility of

types.

The first conversion algorithm lazily compares applicative terms while the other is a brute-force but efficient algo-

rithm that first normalizes the terms before comparing them. The second algorithm is based on a bytecode representation
of terms similar to the bytecode representation used in the ZINC virtual machine [[Ler90]]. It is especially useful for
intensive computation of algebraic values, such as numbers, and for reflection-based tactics. The commands to fine- tune
the reduction strategies and the lazy conversion algorithm are described first.

+
Command: Opaque reference

This command accepts the g1 obal attribute. By default, the scope of Opaqgue is limited to the current section
or module.

This command has an effect on unfoldable constants, i.e. on constants defined by Definition or Let (with
an explicit body), or by a command associated with a definition such as Fixpoint, etc, or by a proof ended
by Defined. The command tells not to unfold the constants in the reference sequence in tactics using d-
conversion (unfolding a constant is replacing it by its definition).

Opague has also an effect on the conversion algorithm of Coq, telling it to delay the unfolding of a constant as
much as possible when Coq has to check the conversion (see Section Conversion rules) of two distinct applied
constants.
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+
Command: Transparent reference

This command accepts the g1 obal attribute. By default, the scope of Transparent is limited to the current
section or module.

This command is the converse of Opaque and it applies on unfoldable constants to restore their unfoldability after
an Opaque command.

Note in particular that constants defined by a proof ended by Qed are not unfoldable and Transparent has no effect
on them. This is to keep with the usual mathematical practice of proof irrelevance: what matters in a mathematical
development is the sequence of lemma statements, not their actual proofs. This distinguishes lemmas from the
usual defined constants, whose actual values are of course relevant in general.

Error: The reference qualid was not found in the current environment.
There is no constant named qualid in the environment.

See also:

Performing computations and Entering and exiting proof mode

+
Command: Strategy strategy level [ reference 1

strategy_level ::= opaque
| integer
| expand
| transparent
strategy_level or_var ::= strategy_level
| ident

This command accepts the 1 oca attribute, which limits its effect to the current section or module, in which case
the section and module behavior is the same as Opaque and Transparent (without global).

This command generalizes the behavior of the Opague and Transparent commands. It is used to fine-tune
the strategy for unfolding constants, both at the tactic level and at the kernel level. This command associates a
strategy_level with the qualified names in the re ference sequence. Whenever two expressions with two
distinct head constants are compared (for instance, this comparison can be triggered by a type cast), the one with
lower level is expanded first. In case of a tie, the second one (appearing in the cast type) is expanded.

Levels can be one of the following (higher to lower):
e opaque : level of opaque constants. They cannot be expanded by tactics (behaves like +oo, see next item).

e integer : levels indexed by an integer. Level O corresponds to the default behavior, which corresponds to
transparent constants. This level can also be referred to as t ransparent. Negative levels correspond to
constants to be expanded before normal transparent constants, while positive levels correspond to constants
to be expanded after normal transparent constants.

e expand : level of constants that should be expanded first (behaves like —co)
e transparent : Equivalent to level O

Command: Print Strategy reference
This command prints the strategy currently associated with reference. It fails if reference is not an unfold-
able reference, that is, neither a variable nor a constant.

Error: The reference is not unfoldable.

Command: Print Strategies
Print all the currently non-transparent strategies.

2.2. Language extensions 213



The Coq Reference Manual, Release 8.13.2

Command: Declare Reduction ident := red_expr
Declares a short name for the reduction expression red_expr, forinstance lazy beta delta [foo bar].
This short name can then be used in Eval ident in or eval constructs. This command accepts the 1ocal
attribute, which indicates that the reduction will be discarded at the end of the file or module. The name is not
qualified. In particular declaring the same name in several modules or in several functor applications will be rejected
if these declarations are not local. The name ident cannot be used directly as an Ltac tactic, but nothing prevents
the user from also performing a Ltac ident := red_expr.

See also:

Performing computations

Controlling Typing Flags

Flag: Guard Checking
This flag can be used to enable/disable the guard checking of fixpoints. Warning: this can break the consistency of
the system, use at your own risk. Decreasing argument can still be specified: the decrease is not checked anymore
but it still affects the reduction of the term. Unchecked fixpoints are printed by Print Assumptions.

?

Attribute: bypass_check (quard= yes | no )
Similar to Guard Checking, but on a per-declaration basis. Disable guard checking locally with
bypass_check (guard).

Flag: Positivity Checking
This flag can be used to enable/disable the positivity checking of inductive types and the productivity checking
of coinductive types. Warning: this can break the consistency of the system, use at your own risk. Unchecked
(co)inductive types are printed by Print Assumptions.

?

Attribute: bypass_check (positivity = yes | no )
Similar to Positivity Checking, but on a per-declaration basis. Disable positivity checking locally with
bypass_check (positivity).

Flag: Universe Checking
This flag can be used to enable/disable the checking of universes, providing a form of “type in type”. Warning:
this breaks the consistency of the system, use at your own risk. Constants relying on “type in type” are printed by
Print Assumptions. Ithas the same effect as -t ype—in-type command line argument (see By command
line options).

?

Attribute: bypass_check (universes= yes | no )
Similar to Universe Checking, but on a per-declaration basis. Disable universe checking locally with
bypass_check (universes).

Command: Print Typing Flags
Print the status of the three typing flags: guard checking, positivity checking and universe checking.

See also Cumulative StrictProp inthe SProp chapter.

Example

Unset Guard Checking.

Print Typing Flags.
check_guarded: false
check_positive: true
check_universes: true
(continues on next page)
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cumulative sprop: false
definitional uip: false

Fixpoint f (n : nat) : False
= f n.
f is defined
f is recursively defined (guarded on 1st argument)

Fixpoint ackermann (m n : nat) {struct m} : nat :=
match m with
| 0 => S n
| S m =>
match n with
| 0 => ackermann m 1
| S n => ackermann m (ackermann (S m) n)
end
end.
ackermann is defined
ackermann is recursively defined (guarded on 1st argument)

Print Assumptions ackermann.
Axioms:
ackermann is assumed to be guarded.

Note that the proper way to define the Ackermann function is to use an inner fixpoint:

Fixpoint ack m :=

fix ackm n :=

match m with

| 0 =>Sn

| S m' =>
match n with
| 0 => ack m' 1
| S n' => ack m' (ackm n'")
end

end.
ack is defined
ack is recursively defined (guarded on 1st argument)

(continued from previous page)
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Internal registration commands

Due to their internal nature, the commands that are presented in this section are not for general use. They are meant to
appear only in standard libraries and in support libraries of plug-ins.

Exposing constants to OCaml libraries

Command: Register qualid; as qualid,
Makes the constant gualid, accessible to OCaml libraries under the name gqualid,. The constant can then
be dynamically located in OCaml code by calling Cogqlib.lib_ref "qualid,". The OCaml code doesn’t
need to know where the constant is defined (what file, module, library, etc.).

As a special case, when the first segment of qualid, is kernel, the constant is exposed to the kernel. For
instance, the Int 63 module features the following declaration:

Register bool as kernel.ind_bool.

This makes the kernel aware of the bool type, which is used, for example, to define the return type of the
#int 63_eq primitive.

See also:

Primitive Integers

Inlining hints for the fast reduction machines

Command: Register Inline qualid
Gives a hint to the reduction machines (VM and native) that the body of the constant qualid should be inlined
in the generated code.

Registering primitive operations

?
Command: Primitive ident_decl : term := #ident

Makes the primitive type or primitive operator # ident defined in OCaml accessible in Coq commands and tactics.
For internal use by implementors of Coq’s standard library or standard library replacements. No space is allowed
after the #. Invalid values give a syntax error.

For example, the standard library files Int 63.v and PrimFloat .v use Primit ive to support, respectively,
the features described in Primitive Integers and Primitive Floats.

The types associated with an operator must be declared to the kernel before declaring operations that use the type.
Do this with Primitive for primitive types and Register with the kernel prefix for other types. For
example, in Int63.v, #1nt 63_type must be declared before the associated operations.

Error:

The type ident must be registered before this construction can be typechecked.

The type must be defined with Primit ive command before this Primitive command (declaring an
operation using the type) will succeed.
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CHAPTER
THREE

PROOFS

3.1 Basic proof writing

Coq is an interactive theorem prover, or proof assistant, which means that proofs can be constructed interactively through
a dialog between the user and the assistant. The building blocks for this dialog are tactics which the user will use to
represent steps in the proof of a theorem.

The first section presents the proof mode (the core mechanism of the dialog between the user and the proof assistant).
Then, several sections describe the available tactics. One section covers the SSReflect proof language, which provides
a consistent alternative set of tactics to the standard basic tactics. The last section documents the Scheme family of
commands, which can be used to extend the power of the i nduction and inversion tactics.

Additional tactics are documented in the next chapter Automatic solvers and programmable tactics.

3.1.1 Proof mode

Proof mode is used to prove theorems. Coq enters proof mode when you begin a proof, such as with the Theorem
command. It exits proof mode when you complete a proof, such as with the Oed command. Tactics, which are available
only in proof mode, incrementally transform incomplete proofs to eventually generate a complete proof.

When you run Coq interactively, such as through CoqIDE, Proof General or coqtop, Coq shows the current proof state
(the incomplete proof) as you enter tactics. This information isn’t shown when you run Coq in batch mode with cogc.

Proof State

The proof state consists of one or more unproven goals. Each goal has a conclusion (the statement that is to be proven)
and a local context, which contains named /hypotheses (which are propositions), variables and local definitions that can be
used in proving the conclusion. The proof may also use constants from the global environment such as definitions and
proven theorems.

The term ”goal” may refer to an entire goal or to the conclusion of a goal, depending on the context.

The conclusion appears below a line and the local context appears above the line. The conclusion is a type. Each item in
the local context begins with a name and ends, after a colon, with an associated type. Local definitions are shown in the
formn := 0 : nat, for example, in which nat is the type of 0.

The local context of a goal contains items specific to the goal as well as section-local variables and hypotheses (see
Assumptions) defined in the current section. The latter are included in the initial proof state. Items in the local context are
ordered; an item can only refer to items that appear before it. (A more mathematical description of the local context is
here.)

The global environment has definitions and proven theorems that are global in scope. (A more mathematical description
of the global environment is here.)
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When you begin proving a theorem, the proof state shows the statement of the theorem below the line and often nothing
in the local context:

1 subgoal

After applying the int ros factic, we see hypotheses above the line. The names of variables (n and m) and hypotheses
(H) appear before a colon, followed by the type they represent.

intros.
1 subgoal

P1/\P2

Some tactics, such as split, create new goals, which may be referred to as subgoals for clarity. Goals are numbered

from 1 to N at each step of the proof to permit applying a tactic to specific goals. The local context is only shown for the
first goal.

split.
2 subgoals

subgoal 2 is:
P 2

”Variables” may refer specifically to local context items for which the type of their type is Set or Type, and “hypotheses”
refers to items that are propositions, for which the type of their type is Prop or SProp, but these terms are also used
interchangeably.

type of n : nat
type of nat : Set

type of H : (n > m)
type of (n > m) : Prop

A proof script, consisting of the tactics that are applied to prove a theorem, is often informally referred to as a ”proof”.
The real proof, whether complete or incomplete, is a term, the proof term, which users may occasionally want to examine.
(This is based on the Curry-Howard isomorphism [[Bar81], [GLT89], [How80], [Hue89]], which is a correspondence
between between proofs and terms and between propositions and types of A-calculus. The isomorphism is also sometimes
called the “propositions-as-types correspondence”.)

The Show Proof command displays the incomplete proof term before you’ve completed the proof. For example, here’s
the proof term after using the sp 11t tactic above:

Show Proof.
(fun (n m : nat) (H : n > m) => conj ?Goal ?Goal0)

The incomplete parts, the goals, are represented by existential variables with names that begin with 2Goal. The Show
Existentials command shows each existential with the hypotheses and conclusion for the associated goal.
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Show Existentials.
Existential 1 = ?Goal : [n : nat m : nat H : n >m |- P 1]
Existential 2 = ?Goal0 : [n : nat m : nat H : n >m |- P 2]

Coq’s kernel verifies the correctness of proof terms when it exits proof mode by checking that the proof term is well-typed
and that its type is the same as the theorem statement.

After a proof is completed, Print <theorem_name> shows the proof term and its type. The type appears after the
colon (forall ...),as for this theorem from Coq’s standard library:

Print projl.
Fetching opaque proofs from disk for Cog.Init.Logic

projl =

fun (A B : Prop) (H : A /\ B) => match H with
| conj HO _ => HO
end

forall A B : Prop, A /\ B —> A

Arguments projl [A B]S%type_scope _

Entering and exiting proof mode

Coq enters proof mode when you begin a proof through commands such as Theorem or Goal. Coq user interfaces
usually have a way to indicate that you’re in proof mode.

Tactics are available only in proof mode (currently they give syntax errors outside of proof mode). Most commands can
be used both in and out of proof mode, but some commands only work in or outside of proof mode.

When the proof is completed, you can exit proof mode with commands such as Oed, Defined and Save.

Command: Goal type
Asserts an unnamed proposition. This is intended for quick tests that a proposition is provable. If the proof is
eventually completed and validated, you can assign a name with the Save or De fined commands. If no name
is given, the name will be Unnamed_thm (or, if that name is already defined, a variant of that).

Command: Qed
Passes a completed proof term to Coq’s kernel to check that the proof term is well-typed and to verify that its type
matches the theorem statement. If it’s verified, the proof term is added to the global environment as an opaque
constant using the declared name from the original goal.

It’s very rare for a proof term to fail verification. Generally this indicates a bug in a tactic you used or that you
misused some unsafe tactics.

Error: Attempt to save an incomplete proof.

Error: No focused proof (No proof-editing in progress).
You tried to use a proof mode command such as Oed outside of proof mode.

Note: Sometimes an error occurs when building the proof term, because tactics do not enforce completely the
term construction constraints.

The user should also be aware of the fact that since the proof term is completely rechecked at this point, one may
have to wait a while when the proof is large. In some exceptional cases one may even incur a memory overflow.

Command: Save ident
Similar to Oed, except that the proof term is added to the global context with the name i dent, which overrides
any name provided by the Theorem command or its variants.
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?
Command: Defined ident

Similar to Oed and Save, except the proof is made transparent, which means that its content can be explicitly
used for type checking and that it can be unfolded in conversion tactics (see Performing computations, Opaque,
Transparent). If ident is specified, the proof is defined with the given name, which overrides any name
provided by the Theorem command or its variants.

Command: Admitted
This command is available in proof mode to give up the current proof and declare the initial goal as an axiom.

?
Command: Abort All | ident
Cancels the current proof development, switching back to the previous proof development, or to the Coq toplevel
if no other proof was being edited.

ident Aborts editing the proof named ident for use when you have nested proofs. See also Nested Proofs
Allowed.

All Aborts all current proofs.
Error: No focused proof (No proof-editing in progress).

Command: Proof term
This command applies in proof mode. It is equivalent to exact term. Qed. That is, you have to give the full
proof in one gulp, as a proof term (see Section Applying theorems).

Warning: Use of this command is discouraged. In particular, it doesn’t work in Proof General because it
must immediately follow the command that opened proof mode, but Proof General inserts Unset Silent
before it (see Proof General issue #4982%).

Command: Proof
Is a no-op which is useful to delimit the sequence of tactic commands which start a proof, after a Theorem
command. It is a good practice to use Proof as an opening parenthesis, closed in the script with a closing Oed.

See also:

Proof with
?
Command: Proof using section var_expr with ltac expr

*
starred_ident_ref

section_var_expr

4 .
| -+ section_var_expr50
section_var_expr50 ::= section_var_expr( - section_var_expr(
| section_var_expr( + section_var_expr0
| section_var_expr(
section_var_expr( ::= starred_ident_ref
o)
| ( section_var_expr) | *
?
ident | *
?
| Type ' *
| All

starred_ident_ref

Opens proof mode, declaring the set of section variables (see Assumptions) used by the proof. At Oed time, the
system verifies that the set of section variables used in the proof is a subset of the declared one.

22 https://github.com/Proof General/PG/issues/498
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The set of declared variables is closed under type dependency. For example, if T is a variable and a is a variable
of type T, then the commands Proof using aand Proof using T a are equivalent.

The set of declared variables always includes the variables used by the statement. In other words Proof using
e is equivalent to Proof using Type + e for any declaration expression e.

— section_var_ expr50 Use all section variables except those specified by section_ var expr50

section_var_ expr(0 + section_var_ expr0 Use section variables from the union of both collections.
See Name a set of section hypotheses for Proof using to see how to form a named collection.

section_var_expr0 — section_var_expr(0 Use section variables which are in the first collection but
not in the second one.

? . . .
* | Use the transitive closure of the specified collection.

Type Use only section variables occurring in the statement. Specifying * uses the forward transitive closure of
all the section variables occurring in the statement. For example, if the variable H has type p < 5 then H is
in p* since p occurs in the type of H.

All Use all section variables.
See also:
Setting implicit automation tactics

Attribute: using
This attribute can be applied to the Definition, Example, Fixpoint and CoFixpoint commands as
well as to Lemma and its variants. It takes a section_var expr, in quotes, as its value. This is equivalent to
specifying the same section var_ exprin Proof using.

Example

Section Test.
Variable n : nat.
n is declared

Hypothesis Hn : n <> 0.

Hn is declared

#[using="Hn"]
Lemma example : 0 < n.
1 subgoal

Abort.
End Test.
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Proof using options

The following options modify the behavior of Proof using.

Option: Default Proof Using "section_var_ expr"
Use section_var_expr as the default Proof using value. E.g. Set Default Proof Using "a
b" will complete all Proof commands not followed by a using part with using a b.

Flag: Suggest Proof Using
When Oed is performed, suggest a us ing annotation if the user did not provide one.

Name a set of section hypotheses for Proof using

Command: Collection ident := section_var_ expr
This can be used to name a set of section hypotheses, with the purpose of making Proof using annotations
more compact.

Example

Define the collection named Some containing x, y and z:

Collection Some := x y z.

Define the collection named Fewer containing only x and y:

Collection Fewer := Some - z

Define the collection named Many containing the set union or set difference of Fewer and Some:

Collection Many := Fewer + Some
Collection Many := Fewer - Some

Define the collection named Many containing the set difference of Fewer and the unnamed collection x y:

Collection Many := Fewer - (x V)

?
Command: Existential natural : type := term

This command instantiates an existential variable. natural is an index in the list of uninstantiated existential
variables displayed by Show Existentials.

This command is intended to be used to instantiate existential variables when the proof is completed but some
uninstantiated existential variables remain. To instantiate existential variables during proof edition, you should use
the tactic instantiate.

Deprecated since version 8.13.

Command: Grab Existential Variables
This command can be run when a proof has no more goal to be solved but has remaining uninstantiated existential
variables. It takes every uninstantiated existential variable and turns it into a goal.

Deprecated since version 8.13: Use Unshelve instead.
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Proof modes

When entering proof mode through commands such as Goa 1 and Proof, Coq picks by default the L,,, mode. Nonethe-
less, there exist other proof modes shipped in the standard Coq installation, and furthermore some plugins define their
own proof modes. The default proof mode used when opening a proof can be changed using the following option.

Option: Default Proof Mode string
Select the proof mode to use when starting a proof. Depending on the proof mode, various syntactic constructs
are allowed when writing a proof. All proof modes support commands; the proof mode determines which tactic
language and set of tactic definitions are available. The possible option values are:

"Classic" Activates the L. language and the tactics with the syntax documented in this manual. Some tactics
are not available until the associated plugin is loaded, such as SSR or micromega. This proof mode is set
when the prelude is loaded.

"Noedit" No tactic language is activated at all. This is the default when the prelude is not loaded, e.g. through
the —-noinit option for coqgc.

"Ltac2" Activates the Ltac2 language and the Ltac2-specific variants of the documented tactics. This value is
only available after Requiring Ltac2. ITmporting Ltac2 sets this mode.

Some external plugins also define their own proof mode, which can be activated with this command.

Navigation in the proof tree

?
Command: Undo | To natural
Cancels the effect of the last natural commands or tactics. The To natural form goes back to the specified
state number. If natural is not specified, the command goes back one command or tactic.

Command: Restart
Restores the proof to the original goal.

Error: No focused proof to restart.

2
Command: Focus natural
Focuses the attention on the first goal to prove or, if natural is specified, the natural-th. The printing of the

other goals is suspended until the focused goal is solved or unfocused.
Deprecated since version 8.8: Prefer the use of bullets or focusing brackets with a goal selector (see below).

Command: Unfocus
This command restores to focus the goal that were suspended by the last Focus command.

Deprecated since version 8.8.
Command: Unfocused

Succeeds if the proof is fully unfocused, fails if there are some goals out of focus.
?
Tactic: |natural | [ ident ]| : [ {
Tactic: }
{ (without a terminating period) focuses on the first goal. The subproof can only be unfocused when it has been
fully solved (i.e., when there is no focused goal left). Unfocusing is then handled by } (again, without a terminating
period). See also an example in the next section.

Note that when a focused goal is proved a message is displayed together with a suggestion about the right bullet or
} to unfocus it or focus the next one.

natural: Focuses on the natural-th goal to prove.
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[ ident ]: { Focuses on the named goal ident.

Note: Goals are just existential variables and existential variables do not get a name by default. You can give a
name to a goal by using refine ?[ident]. You may also wrap this in an Ltac-definition like:

Ltac name_goal name := refine ?[name].

See also:

Existential variables

Example

This first example uses the Ltac definition above, and the named goals only serve for documentation.

Goal forall n, n + 0 = n.

1 subgoal
forall n nat, n + 0 = n
Proof.
induction n; [ name_goal base | name_goal step ].
2 subgoals
0+0=0

subgoal 2 is:
Sn+ 0=2S8n

[base]: {
1 subgoal

reflexivity.
This subproof is complete, but there are some unfocused goals.
Try unfocusing with "}".

1 subgoal

subgoal 1 is:
Sn+ 0=2Sn

[step]: {
1 subgoal
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simpl.
1 subgoal

f_equal.

assumption.
No more subgoals.

}
Qed.
No more subgoals.

This can also be a way of focusing on a shelved goal, for instance:

Goal exists n : nat, n = n.
1 subgoal

eexists ?[x].
1 focused subgoal
(shelved: 1)

reflexivity.
All the remaining goals are on the shelf.

1 subgoal

subgoal 1 is:
nat

[x]: exact O.
No more subgoals.

Qed.

Error: This proof is focused, but cannot be unfocused this way.
You are trying to use } but the current subproof has not been fully solved.

Error: No such goal (natural).

Error: No such goal (ident).
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Error: Brackets do not support multi-goal selectors.
Brackets are used to focus on a single goal given either by its position or by its name if it has one.

See also:

The error messages for bullets below.

Bullets

Alternatively, proofs can be structured with bullets instead of { and }. The use of a bullet b for the first time focuses on
the first goal g, the same bullet cannot be used again until the proof of g is completed, then it is mandatory to focus the
next goal with b. The consequence is that g and all goals present when g was focused are focused with the same bullet b.
See the example below.

Different bullets can be used to nest levels. The scope of bullet does not go beyond enclosing { and }, so bullets can be
reused as further nesting levels provided they are delimited by these. Bullets are made of repeated —, + or * symbols:

bullet : := S8 ‘ ++ ‘ *

Note again that when a focused goal is proved a message is displayed together with a suggestion about the right bullet or
} to unfocus it or focus the next one.

Note: In Proof General (Emacs interface to Coq), you must use bullets with the priority ordering shown above to have
a correct indentation. For example — must be the outer bullet and * * the inner one in the example below.

The following example script illustrates all these features:

Example
Goal (((True /\ True) /\ True) /\ True) /\ True.
1 subgoal
(((True /\ True) /\ True) /\ True) /\ True
Proof.
split.
2 subgoals

((True /\ True) /\ True) /\ True

subgoal 2 is:
True

- split.
1 subgoal

((True /\ True) /\ True) /\ True

2 subgoals

(continues on next page)
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(continued from previous page)
(True /\ True) /\ True

subgoal 2 is:
True

+ split.
1 subgoal

(True /\ True) /\ True

2 subgoals

True /\ True

subgoal 2 is:
True

** { split.
1 subgoal

1 subgoal

True /\ True

2 subgoals

subgoal 2 is:
True

- trivial.
1 subgoal

This subproof is complete, but there are some unfocused goals.
Focus next goal with bullet -.

4 subgoals

subgoal 1 is:

True

subgoal 2 is:

True

subgoal 3 is:

True
subgoal 4 is:

True

(continues on next page)
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(continued from previous page)

- trivial.
1 subgoal

This subproof is complete, but there are some unfocused goals.
Try unfocusing with "}".

3 subgoals

subgoal 1 is:
True

subgoal 2 is:
True

subgoal 3 is:
True

}

** trivial.
This subproof is complete, but there are some unfocused goals.
Focus next goal with bullet **.

3 subgoals

subgoal 1 is:
True

subgoal 2 is:
True

subgoal 3 is:
True

1 subgoal

This subproof is complete, but there are some unfocused goals.
Focus next goal with bullet +.

2 subgoals

subgoal 1 is:
True
subgoal 2 is:
True

+ trivial.
1 subgoal

This subproof is complete, but there are some unfocused goals.
Focus next goal with bullet -.

(continues on next page)
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(continued from previous page)

1 subgoal

subgoal 1 is:
True

- assert True.
1 subgoal

subgoal 2 is:
True

{ trivial. }

assumption.
1 subgoal

This subproof is complete, but there are some unfocused goals.
Try unfocusing with "}".

1 subgoal

subgoal 1 is:
True

1 subgoal

No more subgoals.

Qed.

Error: Wrong bullet bullet;: Current bullet bullet, is not finished.
Before using bullet bullet, again, you should first finish proving the current focused goal. Note that bullet,
and bullet, may be the same.

Error: Wrong bullet bullet,: Bullet bullet, is mandatory here.
You must put bullet, to focus on the next goal. No other bullet is allowed here.

Error: No such goal. Focus next goal with bullet bullet.
You tried to apply a tactic but no goals were under focus. Using bullet is mandatory here.

Error: No such goal. Try unfocusing with }.
You just finished a goal focused by {, you must unfocus it with }.
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Mandatory Bullets

Using Default Goal Selector withthe ! selector forces tactic scripts to keep focus to exactly one goal (e.g. using
bullets) or use explicit goal selectors.

Set Bullet Behavior

Option: Bullet Behavior "None" ‘ "Strict Subproofs"
This option controls the bullet behavior and can take two possible values:

¢ ”None”: this makes bullets inactive.

 "Strict Subproofs”: this makes bullets active (this is the default behavior).

Modifying the order of goals

Tactic: cycle int_or var
Reorders the selected goals so that the first integer goals appear after the other selected goals. If integer
is negative, it puts the last integer goals at the beginning of the list. The tactic is only useful with a goal
selector, most commonly all:. Note that other selectors reorder goals; 1, 3: cycle 1 is not equivalent to
all: cycle 1.See.. : .. (goal selector).

Example

Goal P 1 /\P 2 /\P 3 /\P4/\PS5.
1 subgoal

P1/\NP2/\P3/\P4/\P5

repeat split.
5 subgoals

subgoal 2 is:
P 2
subgoal 3 is:
P 3
subgoal 4 is:
P 4
subgoal 5 is:
P 5

all: cycle 2.
5 subgoals

subgoal 2 is:
P 4
subgoal 3 is:
(continues on next page)
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(continued from previous page)
P 5
subgoal 4 is:
P 1
subgoal 5 is:
P 2

all: cycle -3.
5 subgoals

Tactic: swap int_or_var int_or_var
Exchanges the position of the specified goals. Negative values for integer indicate counting goals backward from
the end of the list of selected goals. Goals are indexed from 1. The tactic is only useful with a goal selector, most
commonly all:. Note that other selectors reorder goals; 1, 3: swap 1 3 isnotequivalentto all: swap
1 3.See.. : .. (goal selector).

Example

Goal P 1 /NP 2 /NP3 /\P 4 /\PS5.
1 subgoal

pP1 /NP2 /NP3 /NP4 /\PS5

repeat split.
5 subgoals

subgoal 2 is:
P 2
subgoal 3 is:
P 3
subgoal 4 is:
P 4
subgoal 5 is:
P 5

all: swap 1 3.
5 subgoals

(continues on next page)
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all:

subgoal
P 2
subgoal
P 1
subgoal
P 4
subgoal
P 5

swap 1

-1.

5 subgoals

subgoal
P 2
subgoal
P 1
subgoal
P 4
subgoal
P 3

(continued from previous page)

Tactic: revgoals
Reverses the order of the selected goals. The tactic is only useful with a goal selector, most commonly all
Note that other selectors reorder goals; 1, 3: revgoals isnotequivalentto all: revgoals. See ..

(goal selector).

Example

Goal P 1 /\P 2 /NP3 /\P 4 /\PS5.
1 subgoal

repeat split.
5 subgoals

subgoal
P 2
subgoal
P 3
subgoal
P 4
subgoal
P 5

all: revgoals.
5 subgoals

is:

is:

is:

is:

(continues on next page)
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(continued from previous page)

Postponing the proof of some goals

Goals can be shelved so they are no longer displayed in the proof state. They can then be unshelved to make them visible
again.

Tactic: shelve
This tactic moves all goals under focus to a shelf. While on the shelf, goals will not be focused on. They can be
solved by unification, or they can be called back into focus with the command Unshelve.

Tactic: shelve_unifiable
Shelves only the goals under focus that are mentioned in other goals. Goals that appear in the type of other
goals can be solved by unification.

Example

Goal exists n, n=0.
1 subgoal

refine (ex_intro _ _ _).
1 focused subgoal
(shelved: 1)

all: shelve_unifiable.
reflexivity.
No more subgoals.

Command: Unshelve
This command moves all the goals on the shelf (see shelve) from the shelf into focus, by appending them to the
end of the current list of focused goals.

Tactic: unshelve ltac_exprl
Performs tactic, then unshelves existential variables added to the shelf by the execution of tactic, prepending
them to the current goal.
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Tactic: give_up
This tactic removes the focused goals from the proof. They are not solved, and cannot be solved later in the proof.
As the goals are not solved, the proof cannot be closed.

The give_up tactic can be used while editing a proof, to choose to write the proof script in a non-sequential
order.

Requesting information

?
Command: Show  ident | natural

Displays the current goals.
natural Display only the natural-th goal.

ident Displays the named goal i dent. This is useful in particular to display a shelved goal but only works if the
corresponding existential variable has been named by the user (see Existential variables) as in the following

example.
Example
Goal exists n, n = 0.
1 subgoal
exists n nat, n = 0

eexists ?[n].
1 focused subgoal
(shelved: 1)

Show n.

Error: No focused proof.

Error: No such goal.

?
Command: Show Proof Diffs removed

Displays the proof term generated by the tactics that have been applied so far. If the proof is incomplete, the
term will contain holes, which correspond to subterms which are still to be constructed. Each hole is an existential
variable, which appears as a question mark followed by an identifier.

Specifying “Diffs” highlights the difference between the current and previous proof step. By default, the command
shows the output once with additions highlighted. Including “removed” shows the output twice: once showing
removals and once showing additions. It does not examine the Di £ f's option. See "Show Proof” differences.

Command: Show Conjectures
Prints the names of all the theorems that are currently being proved. As it is possible to start proving a previous
lemma during the proof of a theorem, there may be multiple names.
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Command: Show Intro
If the current goal begins by at least one product, prints the name of the first product as it would be generated by
an anonymous intro. The aim of this command is to ease the writing of more robust scripts. For example, with
an appropriate Proof General macro, it is possible to transform any anonymous int ro into a qualified one such
as intro y13. In the case of a non-product goal, it prints nothing.

Command: Show Intros
Similar to the previous command. Simulates the naming process of intros.

Command: Show Existentials
Displays all open goals / existential variables in the current proof along with the type and the context of each
variable.

Command: Show Match qualid

Displays a template of the Gallina mat ch construct with a branch for each constructor of the type qualid. This

is used internally by company-coq”’.

Example

Show Match nat.
match # with
| O =>
| S x =>
end

Error: Unknown inductive type.

Command: Show Universes
Displays the set of all universe constraints and its normalized form at the current stage of the proof, useful for
debugging universe inconsistencies.

Command: Show Goal natural at natural
Available in coqtop. Displays a goal at a proof state using the goal ID number and the proof state ID number. It
is primarily for use by tools such as Prooftree that need to fetch goal history in this way. Prooftree is a tool for
visualizing a proof as a tree that runs in Proof General.

Command: Guarded
Some tactics (e.g. refine)allow to build proofs using fixpoint or co-fixpoint constructions. Due to the incremental
nature of proof construction, the check of the termination (or guardedness) of the recursive calls in the fixpoint or
cofixpoint constructions is postponed to the time of the completion of the proof.

The command Guarded allows checking if the guard condition for fixpoint and cofixpoint is violated at some
time of the construction of the proof without having to wait the completion of the proof.

Showing differences between proof steps

Coq can automatically highlight the differences between successive proof steps and between values in some error messages.
Coq can also highlight differences in the proof term. For example, the following screenshots of CoqIDE and coqtop show
the application of the same int ros tactic. The tactic creates two new hypotheses, highlighted in green. The conclusion is
entirely in pale green because although it’s changed, no tokens were added to it. The second screenshot uses the “removed”
option, so it shows the conclusion a second time with the old text, with deletions marked in red. Also, since the hypotheses
are new, no line of old text is shown for them.

23 https://github.com/cpitclaudel/company-coq
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1 subgoal
n_: nat
E:evn

(1/1)

exists k : nat, n = double k

(1/1)

£ereiia—tmet—e¥ " —> exists k ! nat, n = double k
exists k : nat, n = double k

This image shows an error message with diff highlighting in CoqIDE:

Unable to unify
"(if p a then 1 else 0) + (count p &% + count p £2)"
with

"(if p a then 1 else 0) + (count p £2 + count p t1)".

How to enable diffs

Option: Diffs "on" | "off" | "removed"
The “on” setting highlights added tokens in green, while the “removed” setting additionally reprints items with
removed tokens in red. Unchanged tokens in modified items are shown with pale green or red. Diffs in error
messages use red and green for the compared values; they appear regardless of the setting. (Colors are user-
configurable.)

For coqtop, showing diffs can be enabled when starting coqtop with the —~diffs on|off|removed command-line
option or by setting the Di s option within Coq. You will need to provide the ~color on|auto command-line
option when you start coqtop in either case.

Colors for coqtop can be configured by setting the COQ_COLORS environment variable. See section By environment
variables. Diffs use the tags diff.added, diff.added.bg,diff.removedand diff.removed.bg.

In CoqIDE, diffs should be enabled from the View menu. Don’t use the Set Diffs command in CoqIDE. You
can change the background colors shown for diffs from the Edit | Preferences | Tags panel by changing the
settings for the diff.added,diff.added.bg,diff.removedand diff.removed.bg tags. This panel also
lets you control other attributes of the highlights, such as the foreground color, bold, italic, underline and strikeout.

Proof General can also display Coq-generated proof diffs automatically. Please see the PG documentation section ”Show-
ing Proof Diffs">*) for details.

How diffs are calculated

Diffs are calculated as follows:

1. Select the old proof state to compare to, which is the proof state before the last tactic that changed the proof.
Changes that only affect the view of the proof, suchas all: swap 1 2, are ignored.

2. For each goal in the new proof state, determine what old goal to compare it to—the one it is derived from or is the
same as. Match the hypotheses by name (order is ignored), handling compacted items specially.

3. For each hypothesis and conclusion (the “items”) in each goal, pass them as strings to the lexer to break them into
tokens. Then apply the Myers diff algorithm [[Mye86]] on the tokens and add appropriate highlighting.

Notes:

* Aside from the highlights, output for the "on” option should be identical to the undiffed output.

24 https://proofgeneral.github.io/doc/master/userman/Coq- Proof- General#Showing- Proof- Diffs
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* Goals completed in the last proof step will not be shown even with the “removed” setting.

This screen shot shows the result of applying a sp1it tactic that replaces one goal with 2 goals. Notice that the goal P
1 is not highlighted at all after the split because it has not changed.

3 subgoals
(1/3)

P1
(2/3)

P2
(3/3)

P 3

Diffs may appear like this after applying a int ro tactic that results in a compacted hypotheses:

1 subgoal
n, m : nat

(1/1)

n+m=m+n

”Show Proof” differences

To show differences in the proof term:
* In coqtop and Proof General, use the Show Proof Diffs command.

¢ In CoqIDE, position the cursor on or just after a tactic to compare the proof term after the tactic with the proof
term before the tactic, then select View / Show Proof from the menu or enter the associated key binding.
Differences will be shown applying the current Show Diffs setting from the View menu. If the current setting
isDon't show diffs, diffs will not be shown.

Output with the "added and removed” option looks like this:

Messages -~ Errors »~

(conj 2Geal (conj ?Geald ?7Geall))
(conj I (conj ?Goal ?Goald))

Controlling proof mode

Option: Hyps Limit natural
This option controls the maximum number of hypotheses displayed in goals after the application of a tactic. All
the hypotheses remain usable in the proof development. When unset, it goes back to the default mode which is to
print all available hypotheses.

Flag: Nested Proofs Allowed
When turned on (it is off by default), this flag enables support for nested proofs: a new assertion command can be
inserted before the current proof is finished, in which case Coq will temporarily switch to the proof of this nested
lemma. When the proof of the nested lemma is finished (with Oed or Defined), its statement will be made
available (as if it had been proved before starting the previous proof) and Coq will switch back to the proof of the
previous assertion.

Flag: Printing Goal Names
When turned on, the name of the goal is printed in proof mode, which can be useful in cases of cross references
between goals.
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Controlling memory usage

Command: Print Debug GC
Prints heap usage statistics, which are values from the st at type of the Gc module described here® in the OCaml
documentation. The 1ive_words, heap_words and top_heap_words values give the basic information.
Words are 8 bytes or 4 bytes, respectively, for 64- and 32-bit executables.

When experiencing high memory usage the following commands can be used to force Coq to optimize some of its internal
data structures.

Command: Optimize Proof
Shrink the data structure used to represent the current proof.

Command: Optimize Heap
Perform a heap compaction. This is generally an expensive operation. See: OCaml Gec.compac
analogous tactic optimize_heap.

t2° There is also an

Memory usage parameters can be set through the OCAMLRUNPARAM environment variable.

3.1.2 Tactics

Tactics specify how to transform the proof state of an incomplete proof to eventually generate a complete proof.

Proofs can be developed in two basic ways: In forward reasoning, the proof begins by proving simple statements that are
then combined to prove the theorem statement as the last step of the proof. With forward reasoning, for example, the
proof of 2 /\ B would begin with proofs of A and B, which are then used to prove A /\ B. Forward reasoning is
probably the most common approach in human-generated proofs.

In backward reasoning, the proof begins with the theorem statement as the goal, which is then gradually transformed until
every subgoal generated along the way has been proven. In this case, the proof of A /\ B begins with that formula as
the goal. This can be transformed into two subgoals, A and B, followed by the proofs of A and B. Coq and its tactics use
backward reasoning.

A tactic may fully prove a goal, in which case the goal is removed from the proof state. More commonly, a tactic replaces
a goal with one or more subgoals. (We say that a tactic reduces a goal to its subgoals.)

Most tactics require specific elements or preconditions to reduce a goal; they display error messages if they can’t be applied
to the goal. A few tactics, such as aut o, don't fail even if the proof state is unchanged.

Goals are identified by number. The current goal is number 1. Tactics are applied to the current goal by default. (The
default can be changed with the Default Goal Selector option.) They can be applied to another goal or to
multiple goals with a goal selector such as 2: tactic.

This chapter describes many of the most common built-in tactics. Built-in tactics can be combined to form tactic expres-
sions, which are described in the Lzac chapter. Since tactic expressions can be used anywhere that a built-in tactic can be
used, “tactic” may refer to both built-in tactics and tactic expressions.

25 https://caml.inria.fr/pub/docs/manual-ocaml/libref/Ge.htmI#TYPEstat
26 http://caml.inria.fr/pub/docs/manual-ocaml/libref/Gc.html#V ALcompact
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Common elements of tactics

Reserved keywords

The tactics described in this chapter reserve the following keywords:

by using

Thus, these keywords cannot be used as identifiers. It also declares the following character sequences as tokens:

Invocation of tactics

A tactic is applied as an ordinary command. It may be preceded by a goal selector (see Section Goal selectors). If no
selector is specified, the default selector is used.

tactic_invocation ::= toplevel_selector : tactic.
| tactic.

Option: Default Goal Selector "toplevel_selector"
This option controls the default selector, used when no selector is specified when applying a tactic. The initial value
is 1, hence the tactics are, by default, applied to the first goal.

Using value a1l will make it so that tactics are, by default, applied to every goal simultaneously. Then, to apply a
tactic tac to the first goal only, you can write 1 : tac.

Using value ! enforces that all tactics are used either on a single focused goal or with a local selector (“strict focusing
mode”).

Although other selectors are available, only all, ! or a single natural number are valid default goal selectors.

Bindings

Tactics that take a term as an argument may also accept bindings to instantiate some parameters of the term by name
or position. The general form of a term with bindingsis term,,, with bindings where bindings can take
two different forms:

+
bindings ::= |(|ident \ natural | := term )

\ one_term

¢ In the first form, if an ident is specified, it must be bound in the type of texrm and provides the tactic with an
instance for the parameter of this name. If a natural is specified, it refers to the n-th non dependent premise of
term, .

Error: No such binder.

¢ Inthe second form, the interpretation of the one_ t e rms depend on which tactic they appear in. For i nduction,
destruct, elimand case, the one_terms provide instances for all the dependent products in the type of
term, . while in the case of apply, or of constructor and its variants, only instances for the dependent
products that are not bound in the conclusion of term, . are required.

Error: Not the right number of missing arguments.
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Intro patterns

Intro patterns let you specify the name to assign to variables and hypotheses introduced by tactics. They also let you
split an introduced hypothesis into multiple hypotheses or subgoals. Common tactics that accept intro patterns include
assert, introsand destruct.

*

intropattern_list = |intropattern
intropattern 1= Ok

| sk3k

| simple_intropattern
*
simple_intropattern ::=  simple_intropattern_closed | % term(

simple_intropattern_closed ::= naming_intropattern

rewriting_intropattern

| -

| or_and_intropattern

|

| injection_intropattern

naming_intropattern ::= ident
| ?
| ?ident
*
or_and_intropattern ::= [ |intropattern_list | 1

*
| (|simple_intropattern 1 )

9
*

| (|simple_intropattern & )

rewriting_intropattern 1= >
<-
injection_intropattern : := [= intropattern_list ]
or_and_intropattern_loc ::= or_and_intropattern
| ident

Note that the intro pattern syntax varies between tactics. Most tactics use simple_intropattern in the grammar.
destruct, edestruct, induction, einduction, case, ecase and the various inversion tactics use
or_and_intropattern_ loc,while introsand eintrosuse intropattern_ list. The egn: construct
in various tactics uses naming_intropattern.

Naming patterns
Use these elementary patterns to specify a name:
e ident — use the specified name
e ? — let Coq choose a name
e ?ident — generate a name that begins with ident
e _ — discard the matched part (unless it is required for another hypothesis)
« if a disjunction pattern omits a name, such as [ | H2], Coq will choose a name
Splitting patterns
The most common splitting patterns are:

* split a hypothesis in the form A /\ B into two hypotheses H1 : A and H2: B using the pattern (H1 & H2) or
(H1, H2) or [H1 H2]. Example. This also works on A <-=> B, which is just a notation representing (A —>
B) /\ (B —> A).
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* split a hypothesis in the form 2 \/ B into two subgoals using the pattern [H1 | H2]. The first subgoal will have
the hypothesis H1 : A and the second subgoal will have the hypothesis H2 : B. Example

* split a hypothesis in either of the forms 2 /\ BorA \/ B using the pattern [].
Patterns can be nested: [ [Ha|Hb] H] can be used to split (A \/ B) /\ C.

Note that there is no equivalent to intro patterns for goals. Foragoal A /\ B, usethe split tactic to replace the current
goal with subgoals A and B. For a goal A \/ B, use left to replace the current goal with A, or right to replace the
current goal with B.

+
* ( |simple intropattern | )— matches a product over an inductive type with a single constructor. If the
number of patterns equals the number of constructor arguments, then it applies the patterns only to the arguments,

+ +
and ( |simple_intropattern ) is equivalent to [| simple intropattern | ]. If the number of

’

patterns equals the number of constructor arguments plus the number of let—ins, the patterns are applied to the
arguments and 1let—in variables.

+
* ( |simple_intropattern ) — matches a right-hand nested term that consists of one or more nested
&

binary inductive types such as al OP1 a2 OP2 ... (where the OPn are right-associative). (If the OPn are
left-associative, additional parentheses will be needed to make the term right-hand nested, such as al OP1 (a2
OP2 ...).) The splitting pattern can have more than 2 names, for example (H1 & H2 & H3) matchesA /\
B /\ C. The inductive types must have a single constructor with two parameters. Example

+
* [ |intropattern list | 1 — splits an inductive type that has multiple constructors such as A \/ B into

multiple subgoals. The number of intropattern_1ist must be the same as the number of constructors for
the matched part.

+
* [ |intropattern 1 — splits an inductive type that has a single constructor with multiple parameters such
asA /\ B into multiple hypotheses. Use [H1 [H2 H3]] tomatcha /\ B /\ C.

e [1 — splits an inductive type: If the inductive type has multiple constructors, suchas A \/ B, create one subgoal
for each constructor. If the inductive type has a single constructor with multiple parameters, suchasA /\ B, split
it into multiple hypotheses.

Equality patterns
These patterns can be used when the hypothesis is an equality:

e —> — replaces the right-hand side of the hypothesis with the left-hand side of the hypothesis in the conclusion of
the goal; the hypothesis is cleared; if the left-hand side of the hypothesis is a variable, it is substituted everywhere
in the context and the variable is removed. Example

¢ <— — similar to —>, but replaces the left-hand side of the hypothesis with the right-hand side of the hypothesis.

*
* [= |intropattern 1 — If the product is over an equality type, applies either injection or

4

discriminate. If injection is applicable, the intropattern is used on the hypotheses generated by
injection. If the number of patterns is smaller than the number of hypotheses generated, the pattern ? is
used to complete the list. Example

Other patterns

e * — introduces one or more quantified variables from the result until there are no more quantified variables. FEx-
ample

e ** — introduces one or more quantified variables or hypotheses from the result until there are no more quantified
variables or implications (—>). intros ** isequivalent to intros. Example
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s simple_intropattern closed |% term

Flag:

— first applies each of the terms with the apply .. in

tactic on the hypothesis to be introduced, then it uses simple_intropattern closed. Example

Bracketing Last Introduction Pattern

For intros intropattern_list, controls how to handle a conjunctive pattern that doesn’t give enough
simple patterns to match all the arguments in the constructor. If set (the default), Coq generates additional names
to match the number of arguments. Unsetting the flag will put the additional hypotheses in the goal instead, behavior
that is more similar to SSReflect’s intro patterns.

Deprecated since version 8.10.

Note: A \/ BandA /\ Buse infix notation to refer to the inductive types or and and. or has multiple constructors
(or_introl and or_intror), while and has a single constructor (con3j) with multiple parameters (A and B). These
are defined in theories/Init/Logic.v. The "where” clauses define the infix notation for ”or” and ”and”.

Inductive or (A B:Prop) : Prop :=

where "A \/ B" := (or A B) type_scope.
Inductive and (A B:Prop) : Prop :=

conj : A -> B -—> A /\ B
where "A /\ B" := (and A B) type_scope.

or_introl : A —> A \/ B
or_intror : B -—> A \/ B

Note: intros [p *is not always equivalent to intros p;

intros p if some of the p are _. In the

first form, all erasures are done at once, while they’re done sequentially for each tactic in the second form. If the second
matched term depends on the first matched term and the pattern for both is _ (i.e., both will be erased), the first intros

in the second form will fail because the second matched term still has the dependency on the first.

Examples:

Example: intro pattern for N\

1 subgoal

destruct H as (HA & HB).

1 subgoal

HA A
HB B
True

Example: intro pattern for \V
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1 subgoal

A, B : Prop
H: A \/ B

destruct H as [HA|HB]. all: swap 1 2.
2 subgoals

subgoal 2 is:
True

2 subgoals

subgoal 2 is:
True

Example: -> intro pattern

1 subgoal
X, V, 2 nat
H X =y
y =z > x =2

intros ->.

1 subgoal
X, z : nat
H X = 2z
X = Z

Example: [=] intro pattern

The first intros [=] uses injectiontostrip (S ...) from both sides of the matched equality. The
second uses discriminate on the contradiction 1 = 2 (internally represented as (S O) = (S (S
0) ) ) to complete the goal.

1 subgoal

(continues on next page)
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(continued from previous page)

intros [= H].
1 subgoal

n, m : nat

H n =m

1 = 2 -> False

intros [=].
No more subgoals.

Example: (A & B & ...) intro pattern
1 subgoal

intros (a & x & b & c).
1 subgoal

Example: * intro pattern
1 subgoal

forall A B : Prop, A —> B

intros *.
1 subgoal

Example: ** pattern (’intros **” is equivalent to ”intros”)
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1 subgoal

forall A B : Prop, A

intros **.
1 subgoal

Example: compound intro pattern

1 subgoal

forall A B C

Prop, A \/ B /\ C -—> (A > C) —> C

intros * [a | (

2 subgoals

a A
f A -> C
C

subgoal 2 is:
C

all: swap 1 2.
2 subgoals

subgoal 2 is:
C

Example: combined intro pattern using [=] -> and %

1 subgoal

A : Type
xs, ys : list A

S (length ys) = 1 —-> xs ++ ys = Xs
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intros [=->%length_zero_iff nil].
1 subgoal
A : Type

xs : list A

e introswouldaddH : S (length ys) =1
e intros [=] would additionally apply injectionto Htoyield HO : length ys = 0

e intros [=->%length_zero_iff_nil] applies the theorem, making H the equality 1=nil,
which is then applied as for —>.

Theorem length_zero_iff nil (1 : list A):
length 1 = 0 <-> 1=nil.

The example is based on Tej Chajed’s coq-tricks®’

Occurrence clauses

An occurrence is a subterm of a goal or hypothesis that matches a pattern provided by a tactic. Occurrence clauses select
a subset of the ocurrences in a goal and/or in one or more of its hypotheses.
occurrences 1= atoccs_nums
| in goal_occurrences

9
occs_nums ::= [= |nat_or_var
nat_or_var : 1= |natural \ ident
%
+ ?
goal_occurrences ::= |hyp_occs 1 |I-|concl_occs

b
92

| * |- | concl_occs

?
| I- | concl_occs
9
| concl_occs
5]
hyp_occs ::=  hypident|at occs_nums |
hypident ::= ident
| ( type of ident)

| ( value of ident)
92

concl_occs * |at occs_nums

occurrences The first form of occurrences selects occurrences in the conclusion of the goal. The
second form can select occurrences in the goal conclusion and in one or more hypotheses.

= nat_or_var ¥ Selects the specified occurrences within a single goal or hypothesis. Occurrences
are numbered starting with 1 following a depth-first traversal of the term’s expression, including occur-
rences in implicit arguments and coercions that are not displayed by default. (Setthe Printing A1l
flag to show those in the printed term.)

27 https://github.com/tchajed/cog-tricks/blob/8e6efe497 1ed828ac8bdb5512¢ 1£615d7d6269 1e/src/IntroPatterns.v
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For example, when matching the pattern _ + _ in the term (a + b) + c, occurrence 1is (. .
.) + c and occurrence 2 is (a + b). When matching that pattern with term a + (b + c),
occurrence 1isa + (...) and occurrence 2isb + c.

Specifying — includes all occurrences except the ones listed.

?
* ?
hyp occs |- |concl_occs Selects occurrences in the specified hypotheses and the speci-

’

fied occurrences in the conclusion.

? . . .
* |- |concl_occs | Selects all occurrences in all hypotheses and the specified occurrences in the
conclusion.

?
|- concl occs | Selects the specified occurrences in the conclusion.

5
goal_occurrences ::= concl_occs | Selects all occurrences in all hypotheses and in the spec-
ified occurrences in the conclusion.

7 .. o .
hypident at occs _nums | Omiting occs_nums selects all occurrences within the hypothesis.

hypident ::= ident Selects the hypothesis named ident.
( type of ident ) Selects the type part of the named hypothesis (e.g. : nat).
( value of ident ) Selects the value part of the named hypothesis (e.g. := 1).
? . . .
concl_ocecs ::= * at occs _nums | Selects occurrences in the conclusion. **’ by itself selects
all occurrences. occs_nums selects the specified occurrences.

Use in * to select all occurrences in all hypotheses and the conclusion, which is equivalent to in * |-
*. Use * |- to select all occurrences in all hypotheses.

Tactics that select a specific hypothesis H to apply to other hypotheses, such as rewrite H in * |-,
won'’t apply H to itself.

If multiple occurrences are given, such asin rewrite H at 1 2 3, the tactic must match at least one
occurrence in order to succeed. The tactic will fail if no occurrences match. Occurrence numbers that are
out of range (e.g. at 1 3 when there are only 2 occurrences in the hypothesis or conclusion) are ignored.

Tactics that use occurrence clauses include set, remember, inductionand destruct.

See also:

Managing the local context, Case analysis and induction, Printing constructions in full.

Applying theorems

Tactic: exact term
This tactic applies to any goal. It gives directly the exact proof term of the goal. Let T be our goal, let p be a term

of type U then exact p succeeds iff T and U are convertible (see Conversion rules).
Error: Not an exact proof.

Variant: eexact term.
This tactic behaves like exact but is able to handle terms and goals with existential variables.

Tactic: assumption
This tactic looks in the local context for a hypothesis whose type is convertible to the goal. If it is the case, the

subgoal is proved. Otherwise, it fails.

Error: No such assumption.
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Variant: eassumption
This tactic behaves like assumpt ion but is able to handle goals with existential variables.

Tactic: refine term

This tactic applies to any goal. It behaves like exact with a big difference: the user can leave some holes (denoted

by _or (_ : type)) in the term. refine will generate as many subgoals as there are remaining holes in
the elaborated term. The type of holes must be either synthesized by the system or declared by an explicit cast
like (_ : nat -> Prop). Any subgoal that occurs in other subgoals is automatically shelved, as if calling

shelve_unifiable. The produced subgoals (shelved or not) are nor candidates for typeclass resolution, even
if they have a type-class type as conclusion, letting the user control when and how typeclass resolution is launched
on them. This low-level tactic can be useful to advanced users.

Example

Inductive Option : Set :=

| Fail : Option

| Ok : bool -> Option.
Option is defined
Option_rect is defined
Option_ind is defined
Option_rec is defined
Option_sind is defined

Definition get : forall x:Option, x <> Fail -> bool.
1 subgoal

forall x : Option, x <> Fail —-> bool

refine
(fun x:Option =>
match x return x <> Fail -> bool with

| Fail =>
| Ok b => fun _ => Db
end) .

1 subgoal

Fail <> Fail -> bool

intros; absurd (Fail = Fail); trivial.
No more subgoals.

Defined.

Error: Invalid argument.
The tactic refine does not know what to do with the term you gave.

Error: Refine passed ill-formed term.

The term you gave is not a valid proof (not easy to debug in general). This message may also occur in higher-
level tactics that call refine internally.

Error: Cannot infer a term for this placeholder.
There is a hole in the term you gave whose type cannot be inferred. Put a cast around it.
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Variant: simple refine term
This tactic behaves like refine, but it does not shelve any subgoal. It does not perform any beta-reduction
either.

Variant: notypeclasses refine term
This tactic behaves like re £ine except it performs type checking without resolution of typeclasses.

Variant: simple notypeclasses refine term
This tactic behaves like the combination of simple refine and notypeclasses refine: it per-
forms type checking without resolution of typeclasses, does not perform beta reductions or shelve the subgoals.

Flag: Debug Unification
Enables printing traces of unification steps used during elaboration/typechecking and the re £ ine tactic.

Tactic: apply term
This tactic applies to any goal. The argument term is a term well-formed in the local context. The tactic apply
tries to match the current goal against the conclusion of the type of term. If it succeeds, then the tactic returns as
many subgoals as the number of non-dependent premises of the type of term. If the conclusion of the type of term
does not match the goal and the conclusion is an inductive type isomorphic to a tuple type, then each component
of the tuple is recursively matched to the goal in the left-to-right order.

The tactic app1y relies on first-order unification with dependent types unless the conclusion of the type of term
is of the foom P (t, ... t,) with P to be instantiated. In the latter case, the behavior depends on the form
of the goal. If the goal is of the form (fun x => Q) wu; ... u,andthe t; and u; unify, then P is taken to
be (fun x => Q). Otherwise, app 1y tries to define P by abstractingover t_1 ... t__n inthe goal. See
pattern to transform the goal so that it gets the form (fun x => Q) u; ... u,.

Error: Unable to unify term with term.
The apply tactic failed to match the conclusion of ¢erm and the current goal. You can help the apply
tactic by transforming your goal with the change or pattern tactics.

Error: Unable to find an instance for the variables ident
This occurs when some instantiations of the premises of term are not deducible from the unification. This
is the case, for instance, when you want to apply a transitivity property. In this case, you have to use one of
the variants below:

+
Variant: apply term with term
Provides apply with explicit instantiations for all dependent premises of the type of term that do not occur in

. . . . . +
the conclusion and consequently cannot be found by unification. Notice that the collection | term | must be
given according to the order of these dependent premises of the type of term.

Error: Not the right number of missing arguments.

Variant: apply term with bindings
This also provides apply with values for instantiating premises. Here, variables are referred by names and
non-dependent products by increasing numbers (see Bindings).

+
Variant: apply term .

This is a shortcut for apply term;; [.. | ... ; [ .. | apply term,] ... 1,ie. for
the successive applications of term,, on the last subgoal generated by apply term; , starting from the
application of term;.

Variant: eapply term
The tactic eapply behaves like app 1y but it does not fail when no instantiations are deducible for some
variables in the premises. Rather, it turns these variables into existential variables which are variables still to
instantiate (see Existential variables). The instantiation is intended to be found later in the proof.

Variant: rapply term
The tactic rapp 1y behaves like eapp 1y but it uses the proof engine of re £ ine for dealing with existential
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variables, holes, and conversion problems. This may result in slightly different behavior regarding which
conversion problems are solvable. However, like app 1y but unlike eapply, rapply will fail if there are
any holes which remain in termitself after typechecking and typeclass resolution but before unification with
the goal. More technically, termis first parsed as a const r rather than asa uconstr or open_constr
before being applied to the goal. Note that rapp 1y prefers to instantiate as many hypotheses of term as
possible. As a result, if it is possible to apply term to arbitrarily many arguments without getting a type error,
rapply will loop.

Note that you need to Require Import Coq.Program.Tactics to make use of rapply.

Variant: simple apply term.
This behaves like apply but it reasons modulo conversion only on subterms that contain no variables to
instantiate. For instance, the following example does not succeed because it would require the conversion of
id ?fooandO.

Example

Definition id (x : nat) := x.
id is defined

Parameter H : forall x y, id x = y.
H is declared

Goal O = O.
1 subgoal

Fail simple apply H.
The command has indeed failed with message:
Unable to unify "id ?M160 = ?M161" with "0 = 0".

Because it reasons modulo a limited amount of conversion, simple apply fails quicker than apply and
it is then well-suited for uses in user-defined tactics that backtrack often. Moreover, it does not traverse tuples
as apply does.

+
? 2
Variant:  simple apply term with bindings

’

+
? ?

Variant: |simple | eapply term with bindings

4

This summarizes the different syntaxes for apply and eapply.

Variant: lapply term
This tactic applies to any goal, say G. The argument term has to be well-formed in the current context, its type
being reducible to a non-dependent product 2 —> B with B possibly containing products. Then it generates
two subgoals B—>G and A. Applying lapply H (where H has type A—>B and B does not start with a product)
does the same as giving the sequence cut B. 2:apply H. where cut is described below.

Warning:
When term contains more than one non dependent product the tactic lapply only takes

Example

250 Chapter 3. Proofs



The Coq Reference Manual, Release 8.13.2

Assume we have a transitive relation R on nat:

Parameter R : nat —-> nat -> Prop.

Axiom Rtrans : forall x y z:nat, Rxy >Ry z —> R x z.
Parameters n m p : nat.

Axiom Rnm : R n m.

Axjiom Rmp : R m p.

Consider the goal (R n p) provable using the transitivity of R:

Goal R n p.

The direct application of Rt rans with apply fails because no value for y in Rt rans is found by apply:

apply Rtrans.
Toplevel input, characters 6-12:
> apply Rtrans.

> AANAAAA

Error: Unable to find an instance for the variable y.

A solutionisto apply (Rtrans n m p) or (Rtrans n m).

apply (Rtrans n m p).
2 subgoals

subgoal 2 is:
Rmp

Note that n can be inferred from the goal, so the following would work too.

apply (Rtrans _ m).

More elegantly, apply Rtrans with (y:=m) allows only mentioning the unknown m:

apply Rtrans with (y := m).

Another solution is to mention the proof of (R x y) in Rtrans

apply Rtrans with (1 := Rnm).
1 subgoal

... or the proof of (R v z).

apply Rtrans with (2 := Rmp) .
1 subgoal
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On the opposite, one can use eapply which postpones the problem of finding m. Then one can apply the hypotheses
Rnm and Rmp. This instantiates the existential variable and completes the proof.

eapply Rtrans.
2 focused subgoals
(shelved: 1)

subgoal 2 is:
R 2y p

apply Rnm.
1 subgoal

apply Rmp.
No more subgoals.

Note: When the conclusion of the type of the term to apply is an inductive type isomorphic to a tuple type and
apply looks recursively whether a component of the tuple matches the goal, it excludes components whose statement
would result in applying an universal lemma of the form forall A, ... —> A.Excluding this kind of lemma can
be avoided by setting the following flag:

Flag: Universal Lemma Under Conjunction
This flag, which preserves compatibility with versions of Coq prior to 8.4 is also available for apply term in
ident (see apply .. 1in).

Tactic: apply term in ident
This tactic applies to any goal. The argument term is a term well-formed in the local context and the argument
ident is an hypothesis of the context. The tactic apply term in ident tries to match the conclusion of
the type of ident against a non-dependent premise of the type of term, trying them from right to left. If it
succeeds, the statement of hypothesis ident is replaced by the conclusion of the type of term. The tactic also
returns as many subgoals as the number of other non-dependent premises in the type of term and of the non-
dependent premises of the type of ident. If the conclusion of the type of ¢ erm does not match the goal and the
conclusion is an inductive type isomorphic to a tuple type, then the tuple is (recursively) decomposed and the first
component of the tuple of which a non-dependent premise matches the conclusion of the type of ident. Tuples
are decomposed in a width-first left-to-right order (for instance if the type of H1 is &2 <—> B and the type of H2
is A then apply H1 in H2 transforms the type of H2 into B). The tactic app 1y relies on first-order pattern
matching with dependent types.

Error: Statement without assumptions.
This happens if the type of term has no non-dependent premise.

Error: Unable to apply.
This happens if the conclusion of ident does not match any of the non-dependent premises of the type of
term.

+ +
Variant: apply term - in |ident |

This applies each term in sequence in each hypothesis i dent.
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+ +
Variant: apply term with bindings in |ident !

’

This does the same but uses the bindings to instantiate parameters of term (see Bindings).

+
?

? +
Variant: eapply term with bindings in |ident I

I4

This works as apply .. inbutturns unresolved bindings into existential variables, if any, instead of failing.

+ +
? ?

Variant: apply term with bindings | in |ident |as simple_ intropattern |

This works as apply .. in but applying an associated simple_intropattern to each hypothesis
ident that comes with such clause.

+
Variant: simple apply term in | ident L
This behaves like apply .. inbutitreasons modulo conversion only on subterms that contain no variables
to instantiate and does not traverse tuples. See the corresponding example.

Variant:
+ +
? ? ?
simple apply term with bindings in |ident |as simple_intropattern
Variant:
+
? ? ?
simple eapply term with bindings in |ident as simple_intropattern

14

+
This summarizes the different syntactic variants of apply term in ident . and eapply term
- - +
in |ident L

Tactic: constructor natural
This tactic applies to a goal such that its conclusion is an inductive type (say I). The argument natural must be
less or equal to the numbers of constructor(s) of I.Let c¢; be the i-th constructor of I, then constructor 1iis
equivalent to intros; apply c;.

Error: Not an inductive product.
Error: Not enough constructors.

Variant: constructor
This tries constructor 1 then constructor 2,..,then constructor n where n is the number

of constructors of the head of the goal.

Variant: constructor natural with bindings
Let ¢ be the i-th constructor of I, then constructor i with bindings is equivalent to intros;
apply ¢ with bindings.

Warning: The terms in bindings are checked in the context where constructor is executed and not
in the context where app 1y is executed (the introductions are not taken into account).

?
Variant: split with bindings
This applies only if I has a single constructor. It is then equivalent to constructor 1

?
with bindings | . Itis typically used in the case of a conjunction A A B.

Variant: exists bindings
This applies only if I has a single constructor. It is then equivalent to intros; constructor 1
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Flag:

with bindings. Itis typically used in the case of an existential quantification 3z, P(z).

+
Variant: exists bindings

4

This iteratively applies exists bindings.

Error: Not an inductive goal with 1 constructor.
?
Variant: left with bindings

?
Variant: right with bindings

These tactics apply only if I has two constructors, for instance in the case of a disjunction A vV B. Then,
?
they are respectively equivalent to constructor 1 with bindings | and constructor 2

2
with bindings

Error: Not an inductive goal with 2 constructors.

Variant: econstructor

Variant: eexists

Variant: esplit

Variant: eleft

Variant: eright
These tactics and their variants behave like constructor, exists, split, left, right and their
variants but they introduce existential variables instead of failing when the instantiation of a variable cannot
be found (cf. eapply and apply).

Debug Tactic Unification
Enables printing traces of unification steps in tactic unification. Tactic unification is used in tactics such as apply
and rewrite.

Managing the local context

Tactic: intro

This tactic applies to a goal that is either a product or starts with a let-binder. If the goal is a product, the tactic
implements the “Lam” rule given in Typing rules'. If the goal starts with a let-binder, then the tactic implements a
mix of the "Let” and "Conv”.

If the current goal is a dependent product forall x:T, U (resp let x:=t in U)then introputs x:T
(resp x : =t ) in the local context. The new subgoal is U.

If the goal is a non-dependent product " — U, then it puts in the local context either Hn: T (if T is of type Set
or Prop) or Xn: T (if the type of T is Type). The optional index n is such that Hn or Xn is a fresh identifier. In
both cases, the new subgoal is U.

If the goal is an existential variable, i nt ro forces the resolution of the existential variable into a dependent product
V x:?X, ?Y,puts x:?X in the local context and leaves ?Y as a new subgoal allowed to depend on x.

The tactic int ro applies the tactic hnf until int ro can be applied or the goal is not head-reducible.
Error: No product even after head-reduction.

Variant: intro ident
This applies int ro but forces ident to be the name of the introduced hypothesis.

Error: ident is already used.
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Note: If a name used by intro hides the base name of a global constant then the latter can still be referred to by a
qualified name (see Qualified identifiers).

Variant: intros
This repeats int ro until it meets the head-constant. It never reduces head-constants and it never fails.

Variant: intros ident
This is equivalent to the composed tactic intro ident; ... ; intro ident.

Variant: intros until ident
This repeats intro until it meets a premise of the goal having the form (ident : type) and discharges
the variable named ident of the current goal.

Error: No such hypothesis in current goal.

Variant: intros until natural
This repeats int ro until the natural-th non-dependent product.

Example

Onthesubgoal forall x y : nat, x = y —> y = xthetacticintros until 1isequivalent
tointros x y Hyasx = y —> y = xis the first non-dependent product.

On the subgoal forall x y z : nat, x = y —-> y = xthetacticintros until 1 isequiv-
alent to intros x y z as the product on z can be rewritten as a non-dependent product: forall x y
nat, nat > x =y —> y = X

Error: No such hypothesis in current goal.
This happens when natural is O or is greater than the number of non-dependent products of the goal.
?
Variant: intro ident; after ident,

?
Variant: intro ident; before ident,

2
Variant: intro ident; at top

?
Variant: intro ident, at bottom

?
These tactics apply intro ident; | and move the freshly introduced hypothesis respectively after the

hypothesis ident,, before the hypothesis ident ,, at the top of the local context, or at the bottom of the
local context. All hypotheses on which the new hypothesis depends are moved too so as to respect the order

?
of dependencies between hypotheses. It is equivalent to intro ident,; | followed by the appropriate
call to move .. after ..,move .. before ..,move .. at top,ormove .. at bottom.

Note: intro at bottom is a synonym for intro with no argument.

Error: No such hypothesis: ident.

Tactic: intros intropattern_list
Introduces one or more variables or hypotheses from the goal by matching the intro patterns. See the description
in Intro patterns.

! Actually, only the second subgoal will be generated since the other one can be automatically checked.
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Tactic: eintros intropattern_list

Works just like intros .. except that it creates existential variables for any unresolved variables rather than
failing.

Tactic: clear ident

This tactic erases the hypothesis named ident in the local context of the current goal. As a consequence, ident
is no more displayed and no more usable in the proof development.

Error: No such hypothesis.
Error: ident is used in the conclusion.
Error: ident is used in the hypothesis ident.
Variant: clear |ident

This is equivalent to clear ident. ... clear ident.
Variant: clear - ident

+
This variant clears all the hypotheses except the ones depending in the hypotheses named | ident | and in
the goal.

Variant: clear
This variants clears all the hypotheses except the ones the goal depends on.

Variant: clear dependent ident
This clears the hypothesis i dent and all the hypotheses that depend on it.
+
Variant: clearbody | ident

+
This tactic expects | ident | to be local definitions and clears their respective bodies. In other words, it
turns the given definitions into assumptions.

Error: ident is not a local definition.

Tactic: revert ident

+
This applies to any goal with variables | ident | . It moves the hypotheses (possibly defined) to the goal, if this
respects dependencies. This tactic is the inverse of int ro.

Error: No such hypothesis.
Error: ident; is used in the hypothesis ident,.

Variant: revert dependent ident
This moves to the goal the hypothesis i dent and all the hypotheses that depend on it.

Tactic: move ident;, after ident,

i

This moves the hypothesis named ident in the local context after the hypothesis named ident,, where “after’
is in reference to the direction of the move. The proof term is not changed.

If ident, comes before ident, in the order of dependencies, then all the hypotheses between ident; and
ident, that (possibly indirectly) depend on ident ; are moved too, and all of them are thus moved after ident,
in the order of dependencies.

If ident,; comes after ident, in the order of dependencies, then all the hypotheses between ident; and
ident, that (possibly indirectly) occur in the type of ident; are moved too, and all of them are thus moved
before ident , in the order of dependencies.

Variant: move ident, before ident,
This moves ident; towards and just before the hypothesis named ident,. As for move .. after ..,
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dependencies over ident; (when ident, comes before ident, in the order of dependencies) or in the
type of ident, (when ident, comes after ident, in the order of dependencies) are moved too.

Variant: move ident at top
This moves ident at the top of the local context (at the beginning of the context).

Variant: move ident at bottom
This moves ident at the bottom of the local context (at the end of the context).

Error: No such hypothesis.
Error: Cannot move ident,; after ident,: it occurs in the type of ident,.

Error: Cannot move ident,; after ident,: it depends on ident,.

Example

Goal forall x :nat, x = 0 -> forall z y:nat, y=y—> 0=x.
1 subgoal

forall x : nat, x = 0 -> nat —-> forall y : nat, vy =y > 0 = x

intros x H z y HO.

1 subgoal
X nat
H x =0
z, Yy : nat
HO : y =y
0 = x

move x after HO.
1 subgoal

X nat
H x = 0
0 = x
Undo.

1 subgoal
X nat
H x =0
z, y : nat
HO : y =y
0 = x

move x before HO.
1 subgoal

z, Y, X : nat
H: x=20
HO : v =y
(continues on next page)
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(continued from previous page)

0 X
Undo.

1 subgoal
X nat
H x =0
z, y : nat
HO : y =y
0 X

move HO after H.

1 subgoal
X, Yy : nat
HO : v =y
H x = 0
z nat
0 b4

Undo.

1 subgoal
X nat
H x = 0

move HO before H.

1 subgoal
x nat
H x =0
% nat
HO : y =y
z nat
0 = x

Tactic: rename ident; into ident,

This renames hypothesis ident; into ident, in the current context. The name of the hypothesis in the proof-
term, however, is left unchanged.

Variant: rename ident; into ident;

This renames the variables ident; into ident in parallel. In particular, the target identifiers may contain
identifiers that exist in the source context, as long as the latter are also renamed by the same tactic.

Error: No such hypothesis.

Error: ident is already used.
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Tactic: set (ident := term)
This replaces t ermby ident in the conclusion of the current goal and adds the new definition ident := term
to the local context.

W

If termhasholes (i.e. subexpressions of the form “_"), the tactic first checks that all subterms matching the pattern
are compatible before doing the replacement using the leftmost subterm matching the pattern.

Error: The variable ident is already defined.

Variant: set (ident := term) in goal_occurrences
This notation allows specifying which occurrences of term have to be substituted in the context. The in
goal_occurrences clause is an occurrence clause whose syntax and behavior are described in goal
occurrences.
. * ?
Variant: set (ident binder := term) |in goal_occurrences
*
This is equivalent to set (ident := fun binder => term)
?
in goal_occurrences

5
Variant: set term in goal occurrences
5

This behaves as set (ident := term) |in goal occurrences | but ident is generated by
Cog.
* ?
Variant: eset (ident binder := term) |in goal_occurrences

Variant: eset term in goal_occurrences z
While the different variants of set expect that no existential variables are generated by the tactic, eset
removes this constraint. In practice, this is relevant only when eset is used as a synonym of epose, i.e.
when the term does not occur in the goal.

?
Tactic: remember term as ident,; eqn:naming intropattern
This behavesas set (ident := term) in *, usingalogical (Leibniz’s)equality instead of alocal definition.
Use naming_ intropattern to name or split up the new equation.

Variant:
®

remember term as ident; leqn:naming intropattern in goal_occurrences

This is a more general form of remembe r that remembers the occurrences of term specified by an occur-

rence set.
Variant:

2 ?

eremember term as ident; eqn:naming intropattern in goal_occurrences

While the different variants of remember expect that no existential variables are generated by the tactic,
eremember removes this constraint.

Tactic: pose (ident := term)
This adds the local definition ident := termto the current context without performing any replacement in the
goal or in the hypotheses. It is equivalent to set (ident := term) in |-.
*
Variant: pose (ident binder := term)

*
This is equivalent to pose (ident := fun binder | => term).

Variant: pose term
This behaves as pose (ident := term) but ident is generated by Coq.

*
Variant: epose (ident binder := term)
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Variant: epose term
While the different variants of pose expect that no existential variables are generated by the tactic, epose
removes this constraint.

+
Tactic: decompose [ qualid | ] term
This tactic recursively decomposes a complex proposition in order to obtain atomic ones.

Example

Goal forall A B C:Prop, A /\ B /N C \/ B /\NC\/ C /\ A —> C.
1 subgoal

forall AB C : Prop, A /\ B /\NC \/ B /\NC\/ C/\A ->C

intros A B C H; decompose [and or] H.
3 subgoals

A, B, C : Prop
H:A/\B/NC\/B/\NC\/  C/\A

H1 A
HO B
H3 C
C

subgoal 2 is:
c
subgoal 3 is:
c

all: assumption.
No more subgoals.

Qed.

Note: decompose does not work on right-hand sides of implications or products.

Variant: decompose sum term
This decomposes sum types (like or).

Variant: decompose record term
This decomposes record types (inductive types with one constructor, like and and ex i st s and those defined
with the Record command.
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Controlling the proof flow

Tactic: assert (ident : type)
This tactic applies to any goal. assert (H : U) adds a new hypothesis of name H asserting U to the current
goal and opens a new subgoal U”. The subgoal U comes first in the list of subgoals remaining to prove.

Error: Not a proposition or a type.
Arises when the argument ¢ ype is neither of type Prop, Set nor Type.

Variant: assert type
This behaves as assert (ident : type) but ident is generated by Coq.

Variant: assert type by tactic
This tactic behaves like assert but applies tactic to solve the subgoals generated by assert.

Error: Proof is not complete.

Variant: assert type as simple intropattern
If simple_intropattern is an intro pattern (see Intro patterns), the hypothesis is named after this
introduction pattern (in particular, if simple_intropatternis ident, the tactic behaves like assert
(ident : type)). If simple_intropattern is an action introduction pattern, the tactic behaves
like assert type followed by the action done by this introduction pattern.

Variant: assert type as simple intropattern by tactic
This combines the two previous variants of assert.

Variant: assert (ident := term)
This behaves as assert (ident : type) by exact termwhere typeisthe typeof term. This
is equivalent to using pose proof. If the head of term is i dent, the tactic behaves as specialize.

Error: Variable ident is already declared.

Variant: eassert type as simple_intropattern by tactic
While the different variants of assert expect that no existential variables are generated by the tactic, eassert
removes this constraint. This lets you avoid specifying the asserted statement completely before starting to prove
it.
?
Variant: pose proof term as simple_intropattern

?
This tactic behaves like assert type as simple intropattern by exact term where

type is the type of term. In particular, pose proof term as ident behaves as assert
(ident := term) and pose proof term as simple_intropattern isthe same as applying the
simple_intropatternto term.
?
Variant: epose proof term as simple intropattern
While pose proof expects that no existential variables are generated by the tactic, epose proof removes
this constraint.

Variant: pose proof (ident := term)
This is an alternative syntax for assert (ident := term) and pose proof term as ident, fol-
lowing the model of pose (ident := term) but dropping the value of ident.

Variant: epose proof (ident := term)
This is an alternative syntax for eassert (ident := term) and epose proof term as ident, fol-
lowing the model of epose (ident := term) but dropping the value of ident.

Variant: enough (ident : type)
This adds a new hypothesis of name ident asserting t ype to the goal the tactic enough is applied to. A new
subgoal stating ¢ ype is inserted after the initial goal rather than before it as assert would do.

2 This corresponds to the cut rule of sequent calculus.
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Variant: enough type
This behaves like enough (ident : type) with the name ident of the hypothesis generated by Coq.

Variant: enough type as simple intropattern
This behaves like enough type using simple intropattern toname or destruct the new hypothesis.

Variant: enough (ident : type) by tactic
?
Variant: enough type as simple intropattern by tactic

This behaves as above but with t act i ¢ expected to solve the initial goal after the extra assumption t ype is added
and possibly destructed. If the as simple intropattern clause generates more than one subgoal, tactic
is applied to all of them.
2 ?
Variant: eenough type as simple intropattern by tactic

?
Variant: eenough (ident : type) by tactic

While the different variants of enough expect that no existential variables are generated by the tactic, eenough
removes this constraint.

Variant: cut type
This tactic applies to any goal. It implements the non-dependent case of the “App” rule given in T'yping rules. (This
is Modus Ponens inference rule.) cut U transforms the current goal T into the two following subgoals: U —> T
and U. The subgoal U —> T comes first in the list of remaining subgoal to prove.
* ?
Variant: specialize (ident term | ) as simple intropattern
2
Variant: specialize ident with bindings las simple_intropattern

This tactic works on local hypothesis ident. The premises of this hypothesis (either universal quantifications or
*
non-dependent implications) are instantiated by concrete terms coming either from arguments | texrm | or from

*
Bindings. In the first form the application to | term | can be partial. The first form is equivalent to assert

(ident := ident |term * ) . In the second form, instantiation elements can also be partial. In this case the
uninstantiated arguments are inferred by unification if possible or left quantified in the hypothesis otherwise. With
the as clause, the local hypothesis ident is left unchanged and instead, the modified hypothesis is introduced as
specified by the simple_intropattern. The name ident can also refer to a global lemma or hypothesis.
In this case, for compatibility reasons, the behavior of specialize is close to that of generalize: the
instantiated statement becomes an additional premise of the goal. The as clause is especially useful in this case to
immediately introduce the instantiated statement as a local hypothesis.

Error: ident is used in hypothesis ident.
Error: ident is used in conclusion.

Tactic: generalize term
This tactic applies to any goal. It generalizes the conclusion with respect to some term.

Example

Show.
1 subgoal

generalize (x + y + y).
1 subgoal

(continues on next page)
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(continued from previous page)

If the goal is G and t is a subterm of type T in the goal, then generalize t replaces the goal by forall (x:T),
G’ where G’ is obtained from G by replacing all occurrences of t by x. The name of the variable (here n) is chosen
based on T.

Variant: generalize term
This is equivalent to generalize term; ... ; generalize term. Note that the sequence of term ;
’s are processed from n to 1.

Variant: generalize term at natural
This is equivalent to generalize termbutitgeneralizes only over the specified occurrences of term (counting
from left to right on the expression printed using the Printing Al] flag).

Variant: generalize term as ident
This is equivalent to generalize termbutituses ident to name the generalized hypothesis.

+

+
Variant: generalize term at natural as ident

I4

This is the most general form of generalize that combines the previous behaviors.

Variant: generalize dependent term
This generalizes term but also all hypotheses that depend on term. It clears the generalized hypotheses.

Tactic: evar (ident : term)
The evar tactic creates a new local definition named ident with type term in the context. The body of this
binding is a fresh existential variable.

Tactic: instantiate (ident := term )
The instantiate tactic refines (see refine) an existential variable ident with the term term. It is equivalent to
only [ident]: refine term (preferred alternative).

Note: To be able to refer to an existential variable by name, the user must have given the name explicitly (see
EXxistential variables).

Note: When you are referring to hypotheses which you did not name explicitly, be aware that Coq may make a
different decision on how to name the variable in the current goal and in the context of the existential variable. This
can lead to surprising behaviors.

Variant: instantiate (natural := term)
This variant selects an existential variable by its position. The natural argument is the position of the existential
variable from right to left in the conclusion of the goal. (Use one of the variants below to select an existential
variable in a hypothesis.) Counting starts at 1 and multiple occurrences of the same existential variable are counted
multiple times. Because this variant is not robust to slight changes in the goal, its use is strongly discouraged.

Variant: instantiate ( natural := term ) in ident

Variant: instantiate ( natural term ) in ( value of ident )

Variant: instantiate ( natural := term ) in ( type of ident )
These allow to refer respectively to existential variables occurring in a hypothesis or in the body or the type of a
local definition (named ident).
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Variant: instantiate
Without argument, the instantiate tactic tries to solve as many existential variables as possible, using information
gathered from other tactics in the same tactical. This is automatically done after each complete tactic (i.e. after a
dot in proof mode), but not, for example, between each tactic when they are sequenced by semicolons.

Tactic: admit
This tactic allows temporarily skipping a subgoal so as to progress further in the rest of the proof. A proof containing
admitted goals cannot be closed with Oed but only with Admitted.

Variant: give_up
Synonym of admit.

Tactic: absurd term
This tactic applies to any goal. The argument term is any proposition P of type Prop. This tactic applies False
elimination, that is it deduces the current goal from False, and generates as subgoals ~P and P. It is very useful in
proofs by cases, where some cases are impossible. In most cases, P or ~P is one of the hypotheses of the local
context.

Tactic: contradiction
This tactic applies to any goal. The contradiction tactic attempts to find in the current context (after all intros) a
hypothesis that is equivalent to an empty inductive type (e.g. False), to the negation of a singleton inductive type
(e.g. True or x=x), or two contradictory hypotheses.

Error: No such assumption.

Variant: contradiction ident
The proof of False is searched in the hypothesis named ident.

Tactic: contradict ident
This tactic allows manipulating negated hypothesis and goals. The name ident should correspond to a hypothesis.
With contradict H, the current goal and context is transformed in the following way:

* H:-A + B becomes - A
e H:=A  -B becomes H: B — A
* H: A+ B becomes -+ —A
e H: A+ —B becomes H: B -~ —-A

Tactic: exfalso
This tactic implements the “ex falso quodlibet” logical principle: an elimination of False is performed on the current
goal, and the user is then required to prove that False is indeed provable in the current context. This tactic is a macro
for elimtype False.

Case analysis and induction

The tactics presented in this section implement induction or case analysis on inductive or co-inductive objects (see 7heory
of inductive definitions).

Tactic: destruct term
This tactic applies to any goal. The argument term must be of inductive or co-inductive type and the tactic
generates subgoals, one for each possible form of term, i.e. one for each constructor of the inductive or co-
inductive type. Unlike i nduct ion, no induction hypothesis is generated by dest ruct.

Variant: destruct ident
If ident denotes a quantified variable of the conclusion of the goal, then destruct ident behaves as
intros until ident; destruct ident. If ident is not anymore dependent in the goal after
application of destruct, itis erased (to avoid erasure, use parentheses, as in destruct (ident)).

264 Chapter 3. Proofs



The Coq Reference Manual, Release 8.13.2

If ident is a hypothesis of the context, and ident is not anymore dependent in the goal after application
of destruct,itis erased (to avoid erasure, use parentheses, as in destruct (ident)).

Variant: destruct natural

destruct natural behaves as intros until natural followed by destruct applied to
the last introduced hypothesis.

Note: For destruction of a number, use syntax destruct (natural) (not very interesting anyway).

Variant: destruct pattern
The argument of destruct can also be a pattern of which holes are denoted by “_”. In this case, the

tactic checks that all subterms matching the pattern in the conclusion and the hypotheses are compatible and
performs case analysis using this subterm.

+
Variant: destruct | term -

This is a shortcut for destruct term; ...; destruct term.

Variant: destruct term as or_ and intropattern_loc

This behaves as destruct term but uses the names in or_and_intropattern_loc to name the
variables introduced in the context. The or_and_intropattern_1loc must have the form [pll

pln | ... | pml ... pmn ] with m being the number of constructors of the type of term. Each
variable introduced by dest ruct in the context of the i-th goal gets its name from the listpil ... pin
in order. If there are not enough names, dest ruct invents names for the remaining variables to introduce.
More generally, the piJj can be any introduction pattern (see int ros). This provides a concise notation for
chaining destruction of a hypothesis.

Variant: destruct term eqn:naming intropattern
This behaves as destruct term but adds an equation between term and the value that it takes in each
of the possible cases. The name of the equation is specified by naming intropattern (see intros),
in particular ? can be used to let Coq generate a fresh name.

Variant: destruct term with bindings
This behaves like destruct term providing explicit instances for the dependent premises of the type of
term.

Variant: edestruct term
This tactic behaves like destruet termexcept that it does not fail if the instance of a dependent premises
of the type of term is not inferable. Instead, the unresolved instances are left as existential variables to be
inferred later, in the same way as eapp 1y does.
2
Variant: destruct term using term with bindings

?
This is synonym of induction term using term with bindings

Variant: destruct term in goal_occurrences
This syntax is used for selecting which occurrences of term the case analysis has to be done on. The in
goal_occurrences clause is an occurrence clause whose syntax and behavior is described in occurrences
sets.

Variant:

? ? ?
destruct term |with bindings as or_and_intropattern_ loc eqn:naming_intropattern
Variant:

2 ? ?
edestruct term |with bindings as or_and_intropattern loc eqn:naming_intropattern

These are the general forms of destruct and edestruct. They combine the effects of the with, as,
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eqgn:, using, and in clauses.

Tactic: case term
The tactic case is a more basic tactic to perform case analysis without recursion. It behaves as elim termbut
using a case-analysis elimination principle and not a recursive one.

Variant: case term with bindings
Analogous to elim term with bindings above.
?
Variant: ecase term with bindings
In case the type of term has dependent premises, or dependent premises whose values are not inferable from the
with bindings clause, ecase turns them into existential variables to be resolved later on.

Variant: simple destruct ident
This tactic behaves as intros until ident; case ident when ident is a quantified variable of the
goal.

Variant: simple destruct natural
This tactic behaves as intros until natural; case ident where ident is the name given by
intros until natural to the natural -th non-dependent premise of the goal.

Variant: case_eq term
The tactic case_eq is a variant of the case tactic that allows to perform case analysis on a term without com-
pletely forgetting its original form. This is done by generating equalities between the original form of the term and
the outcomes of the case analysis.

Tactic: induction term
This tactic applies to any goal. The argument £ ermmust be of inductive type and the tactic induction generates
subgoals, one for each possible form of term, i.e. one for each constructor of the inductive type.

If the argument is dependent in either the conclusion or some hypotheses of the goal, the argument is replaced by
the appropriate constructor form in each of the resulting subgoals and induction hypotheses are added to the local
context using names whose prefix is IH.

There are particular cases:

* If term is an identifier ident denoting a quantified variable of the conclusion of the goal, then inductionident
behaves as intros until ident; induction ident. If ident isnot anymore dependent in the
goal after application of induction, it is erased (to avoid erasure, use parentheses, as in induction
(ident)).

o If termisa natural, then induction natural behaves as intros until natural followed
by induction applied to the last introduced hypothesis.

Note: For simple induction on a number, use syntax induction (number) (not very interesting anyway).

* In case term is a hypothesis ident of the context, and ident is not anymore dependent in the goal after
application of induction, it is erased (to avoid erasure, use parentheses, as in induction (ident)).

¢ The argument term can also be a pattern of which holes are denoted by “_". In this case, the tactic checks
that all subterms matching the pattern in the conclusion and the hypotheses are compatible and performs
induction using this subterm.

Example

Lemma induction_test : forall n:nat, n = n —> n <= n.
1 subgoal

(continues on next page)
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(continued from previous page)

intros n H.
1 subgoal

induction n.
2 subgoals

subgoal 2 is:
S n <= S n

exact (le_n 0).

1 subgoal
n nat
H S n S n
IHn n=mn->mn <=n

Error: Not an inductive product.

Error: Unable to find an instance for the variables ident ... ident.
Use in this case the variant e im .. with below.

Variant: induction term as or_and_intropattern_loc

This behaves as induction but uses the names in or_and_intropattern_loc to name the variables
introduced in the context. The or_and_ intropattern_loc must typically be of theform [ p;; ... P
m !l <+« | Pmi --- Pmn ] with m being the number of constructors of the type of term. Each variable
introduced by induction in the context of the i-th goal gets its name from the listp;; . . . p;, in order. If there are
not enough names, induction invents names for the remaining variables to introduce. More generally, the p;; can
be any disjunctive/conjunctive introduction pattern (see intros ..). For instance, for an inductive type with one
constructor, the pattern notation (p; , ... , P,) canbeusedinsteadof [ p; ... P, 1.

Variant: induction term with bindings
This behaves like i nduct ion providing explicit instances for the premises of the type of term (see Bindings).

Variant: einduction term
This tactic behaves like i nduct ion except that it does not fail if some dependent premise of the type of term
is not inferable. Instead, the unresolved premises are posed as existential variables to be inferred later, in the same
way as eapply does.

Variant: induction term using term
This behaves as i nduct ion but using term as induction scheme. It does not expect the conclusion of the type
of the first term to be inductive.

Variant: induction term using term with bindings
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This behaves as induction .. using ..butalso providing instances for the premises of the type of the second
term.

0 - - + - .
Variant: induction term  using qualid

This syntax is used for the case qualid denotes an induction principle with complex predicates as the induction
principles generated by Function or Functional Scheme may be.

Variant: induction term in goal_occurrences
This syntax is used for selecting which occurrences of term the induction has to be carried on. The in
goal_occurrences clause is an occurrence clause whose syntax and behavior is described in occurrences
sets. If variables or hypotheses not mentioning term in their type are listed in goal occurrences, those are
generalized as well in the statement to prove.

Example

Lemma comm X y : X + y =y + x.
1 subgoal

induction y in x |- *,
2 subgoals

subgoal 2 is:
X+ Sy=8Sy +x

Show 2.
subgoal 2 is:

X, y : nat

Variant:
induction term with bindings as or_and_ intropattern loc using term with bindings in goal_o
Variant:
einduction term with bindings as or_and intropattern loc using term with bindings in goal_
These are the most general forms of induction and einduction. It combines the effects of the with, as,
using, and in clauses.

Variant: elim term
This is a more basic induction tactic. Again, the type of the argument term must be an inductive type. Then,
according to the type of the goal, the tactic e1im chooses the appropriate destructor and applies it as the tactic
apply would do. For instance, if the local context contains n : nat and the current goal is T of type Prop, then
elim nisequivalent to apply nat_ind with (n:=n). The tactic elim does not modify the context of
the goal, neither introduces the induction loading into the context of hypotheses. More generally, elim term
also works when the type of termis a statement with premises and whose conclusion is inductive. In that case
the tactic performs induction on the conclusion of the type of texrm and leaves the non-dependent premises of the
type as subgoals. In the case of dependent products, the tactic tries to find an instance for which the elimination
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lemma applies and fails otherwise.

Variant: elim term with bindings
Allows to give explicit instances to the premises of the type of term (see Bindings).

Variant: eelim term
In case the type of termhas dependent premises, this turns them into existential variables to be resolved later on.

Variant: elim term using term

Variant: elim term using term with bindings
Allows the user to give explicitly an induction principle term that is not the standard one for the underlying
inductive type of term. The bindings clause allows instantiating premises of the type of term.

Variant: elim term with bindings using term with bindings

Variant: eelim term with bindings using term with bindings
These are the most general forms of e1imand eelim. It combines the effects of the using clause and of the
two uses of the with clause.

Variant: elimtype type
The argument ¢t ype must be inductively defined. elimtype I isequivalenttocut I. intro Hn; elim
Hn; clear Hn. Therefore the hypothesis Hn will not appear in the context(s) of the subgoal(s). Conversely, if
t is a termof (inductive) type I that does not occur in the goal, then elim t is equivalent to elimtype I;
2:exact t.

Variant: simple induction ident
This tactic behaves as intros until ident; elim ident when ident is a quantified variable of the
goal.

Variant: simple induction natural
This tactic behaves as intros until natural; elim ident where ident is the name given by
intros until natural to the natural-th non-dependent premise of the goal.

Tactic: double induction ident ident
This tactic is deprecated and should be replaced by induction ident; induction ident (or
induction ident ; destruct ident depending on the exact needs).

Variant: double induction natural; natural,
This tactic is deprecated and should be replaced by induction numl; induction num3 where num3 is
the result of num2 - numl

Tactic: dependent induction ident
The experimental tactic dependent induction performs induction- inversion on an instantiated inductive predicate.
One needs to first require the Coq.Program.Equality module to use this tactic. The tactic is based on the BasicElim
tactic by Conor McBride [[McBO0O]] and the work of Cristina Cornes around inversion [[CT95]]. From an instanti-
ated inductive predicate and a goal, it generates an equivalent goal where the hypothesis has been generalized over
its indexes which are then constrained by equalities to be the right instances. This permits to state lemmas without
resorting to manually adding these equalities and still get enough information in the proofs.

Example
Lemma 1lt_1_r : forall n:nat, n < 1 -> n = 0.
1 subgoal
forall n nat, n <1 -—> n = 0

intros n H ; induction H.
2 subgoals

(continues on next page)
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subgoal 2 is:
n =20

Here we did not get any information on the indexes to help fulfill this proof. The problem is that, when we use the
induction tactic, we lose information on the hypothesis instance, notably that the second argument is 1 here. Depen-
dent induction solves this problem by adding the corresponding equality to the context.

Require Import Cog.Program.Equality.

Lemma 1lt_1_r : forall n:nat, n < 1 -> n = 0.
1 subgoal
forall n nat, n < 1 -> n =0

intros n H ; dependent induction H.
2 subgoals

subgoal 2 is:
n 0

The subgoal is cleaned up as the tactic tries to automatically simplify the subgoals with respect to the generated equalities.
In this enriched context, it becomes possible to solve this subgoal.

reflexivity.
1 subgoal

Now we are in a contradictory context and the proof can be solved.

inversion H.
No more subgoals.

This technique works with any inductive predicate. In fact, the dependent induction tactic is just a wrapper
around the induction tactic. One can make its own variant by just writing a new tactic based on the definition found
in Cog.Program.Equality.

Variant: dependent induction ident generalizing  ident
This performs dependent induction on the hypothesis ident but first generalizes the goal by the given variables
so that they are universally quantified in the goal. This is generally what one wants to do with the variables that are
inside some constructors in the induction hypothesis. The other ones need not be further generalized.

Variant: dependent destruction ident
This performs the generalization of the instance ident but uses destruct instead of induction on the general-
ized hypothesis. This gives results equivalent to inversion or dependent inversion if the hypothesis is
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dependent.
See also the larger example of dependent induction and an explanation of the underlying technique.
See also:
functional induction

Tactic: discriminate term
This tactic proves any goal from an assumption stating that two structurally different terms of an inductive set are
equal. For example, from (S (S 0))=(S O) we can derive by absurdity any proposition.

The argument term is assumed to be a proof of a statement of conclusion term = term with the two terms
being elements of an inductive set. To build the proof, the tactic traverses the normal forms® of the terms looking
for a couple of subterms u and w (u subterm of the normal form of term and w subterm of the normal form of
term), placed at the same positions and whose head symbols are two different constructors. If such a couple of
subterms exists, then the proof of the current goal is completed, otherwise the tactic fails.

Note: The syntax discriminate ident can be used to refer to a hypothesis quantified in the goal. In this case,
the quantified hypothesis whose name is ident is first introduced in the local context using intros until ident.

Error: No primitive equality found.
Error: Not a discriminable equality.

Variant: discriminate natural
This does the same thing as intros until natural followed by discriminate ident where ident
is the identifier for the last introduced hypothesis.

Variant: discriminate term with bindings
This does the same thing as discriminate term but using the given bindings to instantiate parameters or
hypotheses of term.

Variant: ediscriminate natural

?
Variant: ediscriminate term with bindings

This works the same as discriminate but if the type of term, or the type of the hypothesis referred to by
natural, has uninstantiated parameters, these parameters are left as existential variables.

Variant: discriminate
This behaves like discriminate ident if identis the name of an hypothesis to which discriminate is ap-
plicable; if the current goal is of the form term <> term,thisbehavesasintro ident; discriminate
ident.

Error: No discriminable equalities.

Tactic: injection term
The injection tactic exploits the property that constructors of inductive types are injective, i.e. that if c is a con-
structor of an inductive type and ¢ t; and ¢ t, are equal then t, and t, are equal too.

If termis a proof of a statement of conclusion term = term, then injection applies the injectivity of
constructors as deep as possible to derive the equality of all the subterms of term and term at positions where
the terms start to differ. For example, from (S p, S n) = (g, S (S m)) wemayderive S p = gand
n = S m. For this tactic to work, the terms should be typed with an inductive type and they should be neither
convertible, nor having a different head constructor. If these conditions are satisfied, the tactic derives the equality
of all the subterms at positions where they differ and adds them as antecedents to the conclusion of the current goal.

Example

3 Reminder: opaque constants will not be expanded by & reductions.
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Consider the following goal:

Inductive list : Set :=

| nil : 1list
| cons : nat -> list —-> list.
Parameter P : list -> Prop.
Goal forall 1 n, P nil -> cons n 1 = cons O nil -> P 1.
intros.
1 subgoal

1 : list

n : nat

H : P nil

HO : cons n 1 = cons 0 nil

P 1

injection HO.

1 subgoal
1 : list
n : nat
H : P nil
HO : cons n 1 = cons 0 nil

Beware that injection yields an equality in a sigma type whenever the injected object has a dependent type P with
its two instances in different types (P t; ... t,) and (P u; ... u,,. If t; and u; are the same and have
for type an inductive type for which a decidable equality has been declared using Scheme Equality ... (see
Generation of induction principles with Scheme), the use of a sigma type is avoided.

Note: If some quantified hypothesis of the goal is named ident, then injection ident firstintroduces the
hypothesis in the local context using intros until ident.

Error: Nothing to do, it is an equality between convertible terms.
Error: Not a primitive equality.

Error: Nothing to inject.
This error is given when one side of the equality is not a constructor.

Variant: injection natural
This does the same thing as intros until naturalfollowedby injection ident where ident
is the identifier for the last introduced hypothesis.

Variant: injection term with bindings
This does the same as injection termbut using the given bindings to instantiate parameters or hypothe-
ses of term.

Variant: einjection natural
?
Variant: einjection term with bindings
This works the same as injection but if the type of term, or the type of the hypothesis referred to by

natural, has uninstantiated parameters, these parameters are left as existential variables.
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Variant: injection
If the current goal is of the form term <> term, this behaves as intro ident; injection
ident.

Error: goal does not satisfy the expected preconditions.

?
Variant: injection term with bindings as |simple_intropattern

Variant: injection natural as | simple_intropattern

Variant: injection as simple_ intropattern

?
Variant: einjection term with bindings as |simple_ intropattern

Variant: einjection natural as |simple intropattern
Variant: einjection as simple intropattern

These variants apply intros simple intropattern ¥ after the call to injection or
einjection so that all equalities generated are moved in the context of hypotheses. The number of
simple intropattern must not exceed the number of equalities newly generated. If it is smaller,
fresh names are automatically generated to adjust the list of simple_ intropattern to the number of
new equalities. The original equality is erased if it corresponds to a hypothesis.

Variant: injection term with bindings F as injection_ intropattern

Variant: injection natural as injection_intropattern

Variant: injection as injection_intropattern
2
Variant: einjection term with bindings as injection_ intropattern

Variant: einjection natural as injection_intropattern
Variant: einjection as injection intropattern
These are equivalent to the previous variants but using instead the syntax injection_ intropattern

+
which intros uses. In particular as [= |simple intropattern | ] behaves the same as as
simple_intropattern

Flag: Structural Injection
This flag ensures that injection termerases the original hypothesis and leaves the generated equalities
in the context rather than putting them as antecedents of the current goal, as if giving injection term
as (with an empty list of names). This flag is off by default.

Flag: Keep Proof Equalities
By default, injection only creates new equalities between terms whose type is in sort Type or Set,
thus implementing a special behavior for objects that are proofs of a statement in Prop. This flag controls
this behavior.

Tactic: inversion ident
Let the type of ident in the local context be (I t), where I is a (co)inductive predicate. Then, inversion
applied to ident derives for each possible constructor ¢ i of (I t), all the necessary conditions that should
hold for the instance (I t) to be proved by ¢ 1i.

Note: If ident does not denote a hypothesis in the local context but refers to a hypothesis quantified in the goal, then
the latter is first introduced in the local context using intros until ident.

Note: As inversion proofs may be large in size, we recommend the user to stock the lemmas whenever the same
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instance needs to be inverted several times. See Generation of inversion principles with Derive Inversion.

Note: Part of the behavior of the inversion tactic is to generate equalities between expressions that appeared in the
hypothesis that is being processed. By default, no equalities are generated if they relate two proofs (i.e. equalities between
t erms whose type is in sort Prop). This behavior can be turned off by using the Keep Proof Equalities setting.

Variant: inversion natural

This does the same thing as intros until natural then inversion ident where ident is the iden-
tifier for the last introduced hypothesis.

Variant: inversion_clear ident

This behaves as inversion and then erases ident from the context.

Variant: inversion ident as or and intropattern_loc

This generally behaves as inversion but using names in or_and_intropattern_loc for naming hypotheses.
The or_and_intropattern_loc must have the form [p; ... P | -++ | Pui - -+ Pmn ] Withm
being the number of constructors of the type of ident. Be careful that the list must be of length m even if
inversion discards some cases (which is precisely one of its roles): for the discarded cases, just use an empty
list (i.e. n = 0).The arguments of the i-th constructor and the equalities that inversion introduces in the
context of the goal corresponding to the i-th constructor, if it exists, get their names from the list p;; ... pj, in
order. If there are not enough names, inversion invents names for the remaining variables to introduce. In case
an equation splits into several equations (because inversion applies injection on the equalities it generates),

the corresponding name p;; in the list must be replaced by a sublist of the form [p;;; . . . Pjjq 1 (or, equivalently,
(Piji » - - -+ PBjq)) where gis the number of subequalities obtained from splitting the original equation. Here is
an example. The inversion ... as variantof inversion generally behaves in a slightly more expectable
way than inversion (no artificial duplication of some hypotheses referring to other hypotheses). To take benefit
of these improvements, it is enough to use inversion ... as [], letting the names being finally chosen by
Coq.

Example

Inductive contains0O : list nat —> Prop

| in_hd : forall 1, containsO (0 :: 1)

| in_tl : forall 1 b, contains0O 1 -> contains0O (b :: 1).

contains0 is defined
contains0_ind is defined
contains0_sind is defined

Goal forall 1:1ist nat, containsO (1 :: 1) —-> containsO 1.
1 subgoal
forall 1 : list nat, containsO (1 :: 1) —-> containsO 1
intros 1 H; inversion H as [ | 1' p H1' [Hegp Heqgl'] 1].
1 subgoal

1 : list nat

H : containsO (1 :: 1)
1" : list nat

p : nat

H1' : containsO 1
Hegp : p =1

Hegl' : 1' =1

(continues on next page)
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containsO 1

Variant: inversion natural as or_and intropattern_loc
This allows naming the hypotheses introduced by inversion natural in the context.

Variant: inversion_clear ident as or_ and intropattern loc
This allows naming the hypotheses introduced by inversion_clear in the context. Notice that hypothesis
names can be provided as if inversion were called, even though the inversion_clear will eventually
erase the hypotheses.

Variant: inversion ident in | ident
+ Sy . . . - : +
Let ident | be identifiers in the local context. This tactic behaves as generalizing ident | , and then per-
forming inversion.
Variant: inversion ident as or_and_intropattern_loc in | ident

This allows naming the hypotheses introduced in the context by inversion ident in ident

Variant: inversion_clear ident in |ident

+ +
Let ident | be identifiers in the local context. This tactic behaves as generalizing | ident |, and then per-
forming inversion_clear.

Variant: inversion_clear ident as or_ and intropattern_loc in | ident
This allows naming the hypotheses introduced in the context by inversion_clear ident in | ident

Variant: dependent inversion ident
That must be used when ident appears in the current goal. It acts like inversion and then substitutes ident
for the corresponding @ term in the goal.

Variant: dependent inversion ident as or_and_intropattern_loc
This allows naming the hypotheses introduced in the context by dependent inversion ident.

Variant: dependent inversion_clear ident
Like dependent inversion, except that ident is cleared from the local context.

Variant: dependent inversion_clear ident as or_and intropattern_ loc
This allows naming the hypotheses introduced in the context by dependent inversion_clear ident.

Variant: dependent inversion ident with term
This variant allows you to specify the generalization of the goal. It is useful when the system fails to generalize the
goal automatically. If ident hastype (I t) and I hastype forall (x:T), s,then termmustbe of type
I:forall (x:T), I x —> s' wheres' isthe type of the goal.

Variant: dependent inversion ident as or_and intropattern loc with term
This allows naming the hypotheses introduced in the context by dependent inversion ident with
term.

Variant: dependent inversion_clear ident with term
Like dependent inversion .. with ..withbutclears ident from the local context.

Variant: dependent inversion_clear ident as or_ and_ intropattern_loc with term
This allows naming the hypotheses introduced in the context by dependent inversion_clear ident
with term.
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Variant: simple inversion ident
It is a very primitive inversion tactic that derives all the necessary equalities but it does not simplify the constraints
as inversion does.

Variant: simple inversion ident as or_and_ intropattern_ loc
This allows naming the hypotheses introduced in the context by simple inversion.

Tactic: inversion ident using ident

Let ident havetype (I t) (I aninductive predicate) in the local context, and ident be a (dependent) inversion
lemma. Then, this tactic refines the current goal with the specified lemma.

Variant: inversion ident using ident in |ident

. . . . . + . - . - - -
This tactic behaves as generalizing | ident |, then doing inversion ident using ident.

Variant: inversion_sigma
This tactic turns equalities of dependent pairs (e.g., existT P x p = existT P y g, frequently left over
by inversion on a dependent type family) into pairs of equalities (e.g., a hypothesis H : x y and a hypoth-
esis of type rew H in p = q); these hypotheses can subsequently be simplified using subst, without ever
invoking any kind of axiom asserting uniqueness of identity proofs. If you want to explicitly specify the hypoth-
esis to be inverted, or name the generated hypotheses, you can invoke induction H as [H1 H2] using

eq_sigT_rect. Thistactic also works for sig, sigT2, and sig2, and there are similareq_sig ***_rect
induction lemmas.

Example
Non-dependent inversion.
Let us consider the relation Le over natural numbers:

Inductive Le : nat -> nat —-> Set :=
| LeO : forall n:nat, Le 0 n
| LeS : forall n m:nat, Le nm —> Le (S n) (S m).

Let us consider the following goal:

1 subgoal
P : nat -> nat -> Prop
Q : forall nm : nat, Le n m —-> Prop
n, m : nat

To prove the goal, we may need to reason by cases on H and to derive that m is necessarily of the form (S m0) for certain
m0 and that (Le n mO). Deriving these conditions corresponds to proving that the only possible constructor of (Le
(S n) m) is LeS and that we can invert the arrow in the type of LeS. This inversion is possible because Le is the
smallest set closed by the constructors LeO and LeS.

inversion_clear H.

1 subgoal
P : nat -> nat -> Prop
Q : forall nm : nat, Le n m —> Prop
n, m, mO : nat

HO : Le n mO

(continues on next page)
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Note that m has been substituted in the goal for (S m0) and that the hypothesis (Le n m0) has been added to the
context.

Sometimes it is interesting to have the equality m
inversion that does not clear the equalities:

(S mO0) in the context to use it after. In that case we can use

inversion H.

1 subgoal
P : nat -> nat -> Prop
Q : forall nm : nat, Le n m —> Prop
n, m : nat
H: Le (S n) m
n0, mO0 : nat

H1 : Le n mO

Example
Dependent inversion.
Let us consider the following goal:

1 subgoal

P : nat -> nat -> Prop
Q : forall nm : nat, Le n m —> Prop

As H occurs in the goal, we may want to reason by cases on its structure and so, we would like inversion tactics to
substitute H by the corresponding @term in constructor form. Neither inversionnor inversion_clear do such
a substitution. To have such a behavior we use the dependent inversion tactics:

dependent inversion_clear H.

1 subgoal
P : nat -> nat -> Prop
Q : forall nm : nat, Le n m —-> Prop
n, m, mO : nat

1 : Le n mO

Q (S n) (S mO) (LeS n mO 1)

Note that H has been substituted by (LeS n m0O 1) andmby (S m0).
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Example

Using inversion_sigma.

Let us consider the following inductive type of length-indexed lists, and a lemma about inverting equality of cons:

Require Import Cog.Logic.Egdep_dec.

Inductive vec A

| nil

| cons {n} (x : A)

nat -> Type :=
vec A O

(xs vec A n) vec A (S n).

vec is defined
vec_rect is defined
vec_ind is defined
vec_rec is defined
vec_sind is defined

Lemma

Proof.

invert_cons forall A n x xXs y VyS,
@cons A n X xs =

vSs.

@cons A n y ys

-> XS
subgoal

forall (A Type) (n nat) (x : A)
cons A X XS = cons Ay ys —> Xs = ys

(xs vec A n) (y : A) (ys

intros A n x Xxs y ys H.

1

subgoal

A : Type

n nat

X A

xXs : vec A n

v A

ys : vec A n

H cons A X Xxs = cons Ay ys
XS = ys

After performing inversion, we are left with an equality of existTs:

inversion H.

1

subgoal

A : Type

n : nat

x © A

Xs : vec A n

y A

ys : vec A n

H : cons A x Xxs = cons Ay ys

Hl : x =y
H2 : existT
existT

(fun n
(fun n

nat => vec A n) n Xs =
nat => vec A n) n ys

vec A n),

(continues on next page)
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Xs = ysS

We can turn this equality into a usable form with inversion_sigma:

inversion_sigma.

1 subgoal
A : Type
n : nat
x © A
Xs : vec A n
y A
ys : vec A n
H : cons A x Xxs = cons Ay ys
H1 X =y
HO n =n
H3 : eg_rect n (fun a : nat => vec A a) xs n HO = ys
XS = ys

To finish cleaning up the proof, we will need to use the fact that that all proofs of n = n for n a nat are eq_refl:

let H := match goal with H : n = n |- _ => H end in
pose proof (Egdep_dec.UIP_refl_nat _ H); subst H.
1 subgoal

A : Type

n : nat

X A

Xs : vec A n

% A

ys : vec A n

H : cons A x Xxs = cons Ay ys

Hl : x =y

H3 : eg_rect n (fun a : nat => vec A a) xs n eqg_refl = ys

XS = ys

simpl in *.

1 subgoal
A Type
n nat
X A
Xs : vec A n
v A
ys : vec A n
H cons A X Xs = cons Ay ys

Finally, we can finish the proof:

assumption.
No more subgoals.
(continues on next page)
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Qed.

See also:
functional inversion

Tactic: £ix ident natural
This tactic is a primitive tactic to start a proof by induction. In general, it is easier to rely on higher-level induction
tactics such as the ones described in induction.

In the syntax of the tactic, the identifier ident is the name given to the induction hypothesis. The natural number
natural tells on which premise of the current goal the induction acts, starting from 1, counting both dependent
and non dependent products, but skipping local definitions. Especially, the current lemma must be composed of at
least natural products.

Like in a fix expression, the induction hypotheses have to be used on structurally smaller arguments. The verifi-
cation that inductive proof arguments are correct is done only at the time of registering the lemma in the global
environment. To know if the use of induction hypotheses is correct at some time of the interactive development
of a proof, use the command Guarded (see Section Requesting information).

Variant: £ix ident natural with | (ident binder T [{struct ident}] : type)
This starts a proof by mutual induction. The statements to be simultaneously proved are respectively forall
binder ... binder, type. The identifiers ident are the names of the induction hypotheses. The iden-
tifiers ident are the respective names of the premises on which the induction is performed in the statements to
be simultaneously proved (if not given, the system tries to guess itself what they are).

Tactic: cofix ident
This tactic starts a proof by coinduction. The identifier ident is the name given to the coinduction hypothesis.
Like in a cofix expression, the use of induction hypotheses have to guarded by a constructor. The verification
that the use of co-inductive hypotheses is correct is done only at the time of registering the lemma in the global
environment. To know if the use of coinduction hypotheses is correct at some time of the interactive development
of a proof, use the command Guarded (see Section Requesting information).

+
+
Variant: cofix ident with | (ident binder : type)
This starts a proof by mutual coinduction. The statements to be simultaneously proved are respectively forall
binder ... binder, type The identifiers ident are the names of the coinduction hypotheses.

Checking properties of terms

Each of the following tactics acts as the identity if the check succeeds, and results in an error otherwise.

Tactic: constr_eq term term
This tactic checks whether its arguments are equal modulo alpha conversion, casts and universe constraints. It may
unify universes.

Error: Not equal.
Error: Not equal (due to universes).

Tactic: constr_eq_strict term term
This tactic checks whether its arguments are equal modulo alpha conversion, casts and universe constraints. It does
not add new constraints.

Error: Not equal.
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Error: Not equal (due to universes).

Tactic: unify term term
This tactic checks whether its arguments are unifiable, potentially instantiating existential variables.

Error: Unable to unify term with term.

Variant: unify term term with ident
Unification takes the transparency information defined in the hint database ident into account (see the hints
databases for auto and eauto).

Tactic: is_evar term
This tactic checks whether its argument is a current existential variable. Existential variables are uninstantiated
variables generated by eapp 1y and some other tactics.

Error: Not an evar.

Tactic: has_evar term
This tactic checks whether its argument has an existential variable as a subterm. Unlike context patterns combined
with is_evar, this tactic scans all subterms, including those under binders.

Error: No evars.

Tactic: is_var term
This tactic checks whether its argument is a variable or hypothesis in the current local context.

Error: Not a variable or hypothesis.

Equality

Tactic: £_equal
This tactic applies to a goal of the form £ a; ... a, = £’a’; ... a’,. Using £ equal on such a goal
leads to subgoals f=f’ and a; =a’; andsoonup to a, = a’,. Amongst these subgoals, the simple ones (e.g.
provable by reflexivity or congruence) are automatically solved by £_equal.

Tactic: reflexivity
This tactic applies to a goal that has the form t=u. It checks that t and u are convertible and then solves the goal.
It is equivalent to apply refl_equal.

Error: The conclusion is not a substitutive equation.
Error: Unable to unify ... with

Tactic: symmetry
This tactic applies to a goal that has the form t =u and changes it into u=t.

Variant: symmetry in ident
If the statement of the hypothesis ident has the form t=u, the tactic changes it to u=t.

Tactic: transitivity term
This tactic applies to a goal that has the form t=u and transforms it into the two subgoals t=termand term=u.

Variant: etransitivity
This tactic behaves like t ransitivity, using a fresh evar instead of a concrete term.
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Equality and inductive sets

We describe in this section some special purpose tactics dealing with equality and inductive sets or types. These tactics
use the equality eq: forall (A:Type), A->A->Prop,simply written with the infix symbol =.

Tactic: decide equality
This tactic solves a goal of the form forall x v : R, {x = y} + {~ x = y},whereRisan inductive
type such that its constructors do not take proofs or functions as arguments, nor objects in dependent types. It solves
goals of the form {x = y} + {~ x = y} aswell

Tactic: compare term term
This tactic compares two given objects termand term of an inductive datatype. If G is the current goal, it leaves
the sub- goals term =term —> Gand ~ term = term —> G. The type of termand term must satisfy
the same restrictions as in the tactic decide equality.

Tactic: simplify eq term
Let term be the proof of a statement of conclusion term = term. If term and term are structurally
different (in the sense described for the tactic discriminate), then the tactic simplify_eq behaves as
discriminate term, otherwise it behaves as injection term.

Note: If some quantified hypothesis of the goal is named ident, then simplify_eq ident first introduces the
hypothesis in the local context using intros until ident.

Variant: simplify eq natural
This does the same thing as intros until natural then simplify eq ident where ident is the
identifier for the last introduced hypothesis.

Variant: simplify eq term with bindings
This does the same as simplify_eq termbut using the given bindings to instantiate parameters or hypotheses
of term.

Variant: esimplify eq natural
?
Variant: esimplify_eq term with bindings
This works the same as simplify_eq but if the type of term, or the type of the hypothesis referred to by
natural, has uninstantiated parameters, these parameters are left as existential variables.

Variant: simplify_eq
If the current goal has form t1 <> t2, it behaves as intro ident; simplify eq ident.

Tactic: dependent rewrite -> ident
This tactic applies to any goal. If ident has type (existT B a b)=(existT B a' b') in the local
context (i.e. each term of the equality has a sigma type { a:A & (B a) }) this tactic rewrites a into a ' and
b into b' in the current goal. This tactic works even if B is also a sigma type. This kind of equalities between
dependent pairs may be derived by the injectionand inversion tactics.

Variant: dependent rewrite <- ident
Analogous to dependent rewrite ->butuses the equality from right to left.
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Classical tactics

In order to ease the proving process, when the Classical module is loaded, a few more tactics are available. Make
sure to load the module using the Require Import command.

Tactic: classical_left

Tactic: classical_right
These tactics are the analog of Ieft and right but using classical logic. They can only be used for disjunctions.
Use classical_left toprove the left part of the disjunction with the assumption that the negation of right part
holds. Use classical_right to prove the right part of the disjunction with the assumption that the negation
of left part holds.

Delaying solving unification constraints

Tactic: solve_constraints

Flag: Solve Unification Constraints
By default, after each tactic application, postponed typechecking unification problems are resolved using heuris-
tics. Unsetting this flag disables this behavior, allowing tactics to leave unification constraints unsolved. Use the
solve_constraints tactic at any point to solve the constraints.

Proof maintenance

Experimental. Many tactics, such as int ros, can automatically generate names, such as "HO” or "H1” for a new hypoth-
esis introduced from a goal. Subsequent proof steps may explicitly refer to these names. However, future versions of Coq
may not assign names exactly the same way, which could cause the proof to fail because the new names don’t match the
explicit references in the proof.

The following "Mangle Names” settings let users find all the places where proofs rely on automatically generated names,
which can then be named explicitly to avoid any incompatibility. These settings cause Coq to generate different names,
producing errors for references to automatically generated names.

Flag: Mangle Names
When set, generated names use the prefix specified in the following option instead of the default prefix.

Option: Mangle Names Prefix string
Specifies the prefix to use when generating names.

Performance-oriented tactic variants

Tactic: exact_no_check term
For advanced usage. Similar to exact term, but as an optimization, it skips checking that term has the goal’s
type, relying on the kernel check instead. See change_no_ check for more explanation.

Example

Goal False.
1 subgoal

exact_no_check I.
No more subgoals.
(continues on next page)
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(continued from previous page)

Fail Qed.
The command has indeed failed with message:
The term "I" has type "True" while it is expected to have type "False".

Variant: vm_cast_no_check term
For advanced usage. Similar to exact_no_check term, but additionally instructs the kernel to use
vm_compute to compare the goal’s type with the termn’s type.

Example

Goal False.
1 subgoal

vm_cast_no_check I.
No more subgoals.

Fail Qed.
The command has indeed failed with message:
The term "I" has type "True" while it is expected to have type "False".

Variant: native_cast_no_check term
for advanced usage. similar to exact_no_check term, but additionally instructs the kernel to use
native_compute to compare the goal’s type with the term’s type.

Example

Goal False.
1 subgoal

native_cast_no_check I.
No more subgoals.

Fail Qed.
The command has indeed failed with message:
The term "I" has type "True" while it is expected to have type "False'".
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3.1.3 Reasoning with equalities

There are multiple notions of equality in Coq:

* Leibniz equality is the standard way to define equality in Coq and the Calculus of Inductive Constructions, which
is in terms of a binary relation, i.e. a binary function that returns a Prop. The standard library defines eq similar
to this:

Inductive eq {A : Type} (x : A) : A —> Prop := eq_refl : eqg x x.

The notation x = y represents thetermeq x y. Thenotationx = y :> A gives the type of x and y explicitly.

» Setoid equality defines equality in terms of an equivalence relation. A setoid is a set that is equipped with an equiv-
alence relation (see https://en.wikipedia.org/wiki/Setoid). These are needed to form a quotient set or quotient (see
https://en.wikipedia.org/wiki/Equivalence_Class). In Coq, users generally work with setoids rather than construct-
ing quotients, for which there is no specific support.

* Definitional equality is equality based on the conversion rules, which Coq can determine automatically. When two
terms are definitionally equal, Coq knows it can replace one with the other, such as with change X with Y,
among many other advantages. ”Convertible” is another way of saying that two terms are definitionally equal.

Rewriting with Leibniz and setoid equality

. . - : + ? ?
Tactic: rewrite oriented rewriter occurrences by ltac_expr3
’
? % i3
oriented_rewriter = > ] <- natural ? \ ! | one_term_with_bindings
? ?
one_term_with_bindings ::= |> | one_term |with bindings

Replaces subterms with other subterms that have been proven to be equal. The type of one term must have the
form:

+
forall (x;: A;) 0 EQ term; term,

g8
where EQ is the Leibniz equality eq or a registered setoid equality. Note that eq term, term, is typically
written with the infix notation term; = term,. You must Require Setoid to use the tactic with a setoid
equality or with seroid rewriting. In the general form, any binder may be used, not just (x; : A;).

rewrite one_termfinds subterms matching term; in the goal, and replaces them with term, (or the reverse
if <- is given). Some of the variables x; are solved by unification, and some of the types A;, ..., A, may
become new subgoals. rewrite won't find occurrences inside forall that refer to variables bound by the
forall;use the more advanced setoid_ rewrite if you want to find such occurrences.

+
oriented rewriter | The oriented rewriters are applied sequentially to the first goal generated

’

by the previous oriented_rewriter. If any of them fail, the tactic fails.

—> | <=1 For —> (the default), term, is rewritten into term,. For <—, term, is rewritten into texrm,.

? ? . . L .
natural 2 | natural is the number of rewrites to perform. If 2 is given, natural is the
maximum number of rewrites to perform; otherwise natural is the exact number of rewrites to perform.

? (without natural) performs the rewrite as many times as possible (possibly zero times). This form never
fails. ! (without natural) performs the rewrite as many times as possible and at least once. The tactic fails
if the requested number of rewrites can’t be performed. natural ! is equivalent to natural.

3.1. Basic proof writing 285


https://en.wikipedia.org/wiki/Setoid
https://en.wikipedia.org/wiki/Equivalence_Class

The Coq Reference Manual, Release 8.13.2

occurrences If occurrences specifies multiple occurrences, the tactic succeeds if any of them can be
rewritten. If not specified, only the first occurrence in the conclusion is replaced.

Note: If at occs_nums is specified, rewriting is always done with setoid rewriting, even for Leibniz
equality, which means that you must Require Setoid to use that form. However, note that rewrite
(even when using setoid rewriting) and setoid_ rewrite don’t behave identically (as is noted above and
below).

by ltac_expr3 If specified, is used to resolve all side conditions generated by the tactic.

Note: For each selected hypothesis and/or the conclusion, rewrite finds the first matching subterm in depth-
first search order. Only subterms identical to that first matched subterm are rewritten. If the at clause is
specified, only these subterms are considered when counting occurrences. To select a different set of match-
ing subterms, you can specify how some or all of the free variables are bound by using a with clause (see
one_term with_ bindings).

For instance, if we want to rewrite the right-hand side in the following goal, this will not work:

1 subgoal

rewrite Nat.add_comm at 2.
Toplevel input, characters 0-25:
> rewrite Nat.add_comm at 2.

S AAAAAAAANANANNAAANNAANANAANANANN

Error: Tactic failure: Nothing to rewrite.

One can explicitly specify how some variables are bound to match a different subterm:

rewrite Nat.add_comm with (m := x).
1 subgoal

Note that the more advanced setoid_rewrite tactic behaves differently, and thus the number of occurrences
available to rewrite may differ between the two tactics.

Error: Tactic failure: Setoid library not loaded.
Error: Cannot find a relation to rewrite.
Error: Tactic generated a subgoal identical to the original goal.

Error: Found no subterm matching term in ident.
Error: Found no subterm matching term in the current goal.

This happens if term does not occur in, respectively, the named hypothesis or the goal.

. . : : + ? ?
Tactic: erewrite oriented rewriter occurrences by ltac_expr3

14

Works like rewrite, but turns unresolved bindings, if any, into existential variables instead of failing. It
has the same parameters as rewrite.
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Flag: Keyed Unification
Makes higher-order unification used by rewrite rely on a set of keys to drive unification. The subterms,
considered as rewriting candidates, must start with the same key as the left- or right-hand side of the lemma
given to rewrite, and the arguments are then unified up to full reduction.

Tactic:
? ? ? ?
rewrite * [—> | <- one_term |in ident at rewrite_occs by ltac_expr3
? 2
Tactic: rewrite * [-> | <- one_term at rewrite_occs in ident |by ltac_expr3

?
Tactic: rewrite_db ident in ident

. . ? ?
Tactic: replace one_term,, , with one term,, loccurrences by ltac expr3

Tactic: replace -> | <- ? one_term,,, |occurrences 2
The first form replaces all free occurrences of one_term,, , in the current goal with one_ term, , and generates
an equality one_term,, = one_term,,,, asasubgoal. (Note the generated equality is reversed with respect
to the order of the two terms in the tactic syntax; see issue #13480°%.) This equality is automatically solved if it
occurs among the hypotheses, or if its symmetric form occurs.

The second form, with —> or no arrow, replaces one_term,, with term,  using the first hypothesis whose
type has the form one_term,, , = term,,. If <- is given, the tactic uses the first hypothesis with the reverse
form, i.e. term,, = one_term,,.

occurrences The type of and value of forms are not supported. Note you must Require Setoid
to use the at clause in occurrences.

by ltac_expr3 Applies the 1tac_expr3 to solve the generated equality.

Error: Terms do not have convertible types.

2 ?
Tactic: cutrewrite -> | <- one_term |in ident
Where one_termis an equality.

Deprecated since version 8.5: Use replace instead.

? ?
Tactic: substitute |-> | <- | one_term with bindings

Tactic: subst ident T
For each ident, in order, for which there is a hypothesis in the form ident = termor term = ident,
replaces ident with termeverywhere in the hypotheses and the conclusion and clears ident and the hypothesis
from the context. If there are multiple hypotheses that match the ident, the first one is used. If no ident is
given, replacement is done for all hypotheses in the appropriate form in top to bottom order.

If ident is a local definition of the form ident := term, itis also unfolded and cleared.

If ident is a section variable it must have no indirect occurrences in the goal, i.e. no global declarations implicitly
depending on the section variable may be present in the goal.

Note: If the hypothesis is itself dependent in the goal, it is replaced by the proof of reflexivity of equality.

Flag: Regular Subst Tactic
This flag controls the behavior of subst. When it is activated (it is by default), subst also deals with the
following corner cases:

28 https://github.com/cog/coq/issues/13480
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* A context with ordered hypotheses ident, = ident,and ident, = t,ort’ = ident, with
t’ not a variable, and no other hypotheses of the form ident, = uoru = ident,; without the
flag, a second call to subst would be necessary to replace ident, by t or t ’ respectively.

¢ The presence of a recursive equation which without the flag would be a cause of failure of subst.

* A context with cyclic dependencies as with hypotheses ident; = £ ident, and ident, = g
ident; which without the flag would be a cause of failure of subst.

Additionally, it prevents a local definition such as ident := t from being unfolded which otherwise
it would exceptionally unfold in configurations containing hypotheses of the form ident = u, oru’ =
ident with u’ not a variable. Finally, it preserves the initial order of hypotheses, which without the flag it
may break.

Error: Cannot find any non-recursive equality over ident.

Error:
Section variable ident occurs implicitly in global declaration gqualid present in hypot!

Error:
Section variable ident occurs implicitly in global declaration gqualid present in the c¢

Raised when the variable is a section variable with indirect dependencies in the goal. If ident is a section
variable, it must not have any indirect occurrences in the goal, i.e. no global declarations implicitly depending
on the section variable may be present in the goal.

Tactic: simple subst
?
Tactic: stepl one_term by ltac expr
For chaining rewriting steps. It assumes a goal in the form R term; term, where R is a binary relation and
relies on a database of lemmas of the form forall x yv z, R x y —> eq x z —> R z y where eq
is typically a setoid equality. The application of stepl one_term then replaces the goal by R one term
term, and adds a new goal stating eq one_term term,.

If 1tac_expr is specified, it is applied to the side condition.

Command: Declare Left Step one_term
Adds one_termto the database used by stepl.

This tactic is especially useful for parametric setoids which are not accepted as regular setoids for rewrite and
setoid_replace (see Generalized rewriting).
?
Tactic: stepr one_term by ltac expr
This behaves like step 1 but on the right hand side of the binary relation. Lemmas are expected to be in the
form forall x vy z, Rxy > eqy z —> R x z.

Command: Declare Right Step one_term
Adds termto the database used by stepr.
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Rewriting with definitional equality

? 2

Tactic: change one term,., at occs_nums  with one_term,, |[occurrences '

Replaces terms with other convertible terms. If one_term,,, is not specified, then one_term,, . replaces
the conclusion and/or the specified hypotheses. If one_term,__, is specified, the tactic replaces occurrences of

one_term,  within the conclusion and/or the specified hypotheses.
?
? .
one_term,, . at occs nums | with  Replaces the occurrences of one_termg, ., specified by

occs_nums with one_term, , provided that the two one_ terms are convertible. one_term,, ., may
contain pattern variables such as ?x, whose value which will substituted for x in one_term,, such as in
change (f ?x ?y) with (g (x, y)) orchange (fun x => ?f x) with f.

occurrences If with is not specified, occurrences must only specify entire hypotheses and/or the goal;
it must not include any at occs_nums clauses.

Error: Not convertible.
Error: Found an "at" clause without "with" clause

Tactic: now_show one_term
A synonym for change one_term. It can be used to make some proof steps explicit when refactoring a
proof script to make it readable.

See also:

Performing computations

Tactic:

?

g ?
change_no_check one_term,  at occs_nums with one_term,, |occurrences

For advanced usage. Similar to change, but as an optimization, it skips checking that one_ term,  is convertible
with the goal or one_term,, .

Recall that the Coq kernel typechecks proofs again when they are concluded to ensure correctness. Hence, using
change checks convertibility twice overall, while change_no_ check can produce ill-typed terms, but checks
convertibility only once. Hence, change_no_check can be useful to speed up certain proof scripts, especially
if one knows by construction that the argument is indeed convertible to the goal.

In the following example, change_no_check replaces False with True, but Oed then rejects the proof,
ensuring consistency.

Example

Goal False.
1 subgoal

change_no_check True.
1 subgoal

(continues on next page)
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(continued from previous page)

No more subgoals.

Qed.
Toplevel input, characters 0-4:
> Qed.
S AnAA
Error:
The term "I" has type "True" while it is expected to have type "False".

Example

Goal True —> False.
1 subgoal

True —> False

intro H.
1 subgoal

change_no_check False in H.
1 subgoal

exact H.
No more subgoals.

Qed.
Toplevel input, characters 0-4:
> Qed.
S AAAA
Error:
The term "fun H : True => H" has type "True —-> True"
while it is expected to have type "True —> False".

Tactic: convert_concl_no_check one_term
Deprecated since version 8.11.

Deprecated old name for change_no_ check. Does not support any of its variants.

290 Chapter 3. Proofs



The Coq Reference Manual, Release 8.13.2

Performing computations

red_expr ::= red
| hnf
? ?
| simpl |delta_flag | |reference_occs pattern_occs
?
| cbv |strategy_flag
9
| cbn |strategy_flag
o)
| lazy |strategy_flag
5
| compute delta_flag
2
| vm_compute reference_occs ‘ pattern_occs

| native_compute | reference_occs ‘ pattern_occs

+
| unfold | reference_occs

b
+
| fold | one_term

+
| pattern |pattern_occs
b

| ident
5 +
delta_flag ::= [ [|reference | ]

strategy_flag ::= |red_flag T
| delta_flag

red_flag ::= beta

| iota

| match

| fix

| cofix

| zeta

9
| delta | delta_flag
>
reference | at occs_nums
>
one_term |at occs_nums

ref erence_occs

pattern_occs

This set of tactics implements different specialized usages of the tactic change.

All conversion tactics (including change) can be parameterized by the parts of the goal where the conversion can occur.
This is done using goal clauses which consists in a list of hypotheses and, optionally, of a reference to the conclusion of
the goal. For defined hypothesis it is possible to specify if the conversion should occur on the type part, the body part or
both (default).

Goal clauses are written after a conversion tactic (tactics set, rewrite, replace and autorewrite also use goal
clauses) and are introduced by the keyword in. If no goal clause is provided, the default is to perform the conversion
only in the conclusion.

+
For backward compatibility, the notation in |ident | performs the conversion in hypotheses ident
?
Tactic: cbv |strategy flag
?

Tactic: lazy |strategy flag |
These parameterized reduction tactics apply to any goal and perform the normalization of the goal according to the
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specified flags. In correspondence with the kinds of reduction considered in Coq namely 3 (reduction of functional
application), ¢ (unfolding of transparent constants, see Controlling the reduction strategies and the conversion algo-
rithm), ¢ (reduction of pattern matching over a constructed term, and unfolding of £ix and cofix expressions)
and ( (contraction of local definitions), the flags are either beta, delta, match, fix, cofix, iota or zeta.
The iota flag is a shorthand for match, fix and cofix. The delta flag itself can be refined into delta

[ lqualid ¥ ] ordelta - [ qualid ¥ 1, restricting in the first case the constants to unfold to the
constants listed, and restricting in the second case the constant to unfold to all but the ones explicitly mentioned.
Notice that the delta flag does not apply to variables bound by a let-in construction inside the term itself (use
here the zeta flag). In any cases, opaque constants are not unfolded (see Controlling the reduction strategies and
the conversion algorithm).

Normalization according to the flags is done by first evaluating the head of the expression into a weak-head normal
form, i.e. until the evaluation is blocked by a variable (or an opaque constant, or an axiom), as e.g. in x ul
un,ormatch x with ... end,or (fix £ x {struct x} := ...) x,orisa constructed form
(a A-expression, a constructor, a cofixpoint, an inductive type, a product type, a sort), or is a redex that the flags
prevent to reduce. Once a weak-head normal form is obtained, subterms are recursively reduced using the same
strategy.

Reduction to weak-head normal form can be done using two strategies: lazy (1azy tactic), or call-by-value (cbv
tactic). The lazy strategy is a call-by-need strategy, with sharing of reductions: the arguments of a function call are
weakly evaluated only when necessary, and if an argument is used several times then it is weakly computed only
once. This reduction is efficient for reducing expressions with dead code. For instance, the proofs of a proposition
exists x. P (x) reduce to a pair of a witness t, and a proof that t satisfies the predicate P. Most of the time,
t may be computed without computing the proof of P (t ), thanks to the lazy strategy.

The call-by-value strategy is the one used in ML languages: the arguments of a function call are systematically
weakly evaluated first. Despite the lazy strategy always performs fewer reductions than the call-by-value strategy,
the latter is generally more efficient for evaluating purely computational expressions (i.e. with little dead code).

Variant: compute
Variant: cbv

These are synonyms for cbv beta delta iota zeta.

Variant: lazy

This is a synonym for lazy beta delta iota zeta.

+
Variant: compute [ qualid 1

+
Variant: cbv [ qualid ]

+
These are synonyms of cbv beta delta qualid iota zeta.

+
Variant: compute - [ qualid 1

+
Variant: cbv - [ qualid 1

+
These are synonyms of cbv beta delta —qualid | iota zeta.

+
Variant: lazy [ qualid ]

+
Variant: lazy - [ qualid 1

+
These are respectively synonyms of lazy beta delta qualid iota zeta and lazy beta

+
delta - qualid iota zeta.

Variant: vim_compute

This tactic evaluates the goal using the optimized call-by-value evaluation bytecode-based virtual machine described
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in [[GregoireLLO2]]. This algorithm is dramatically more efficient than the algorithm used for the cbv tactic, but
it cannot be fine-tuned. It is especially interesting for full evaluation of algebraic objects. This includes the case of
reflection-based tactics.

Variant: native_compute
This tactic evaluates the goal by compilation to OCaml as described in [[BDenesGregoirel1]]. If Coq is running
in native code, it can be typically two to five times faster than vin_compute. Note however that the compilation
cost is higher, so it is worth using only for intensive computations. Depending on the configuration, this tactic can
either default to vm_comput e, recompile dependencies or fail due to some missing precompiled dependencies,
see the native-compiler option for details.

Flag: NativeCompute Timing
This flag causes all calls to the native compiler to print timing information for the conversion to native code,
compilation, execution, and reification phases of native compilation. Timing is printed in units of seconds of
wall-clock time.

Flag: NativeCompute Profiling
On Linux, if you have the per £ profiler installed, this flag makes it possible to profile native_compute
evaluations.

Option: NativeCompute Profile Filename string
This option specifies the profile output; the default is native_compute_profile.data. The actual
filename used will contain extra characters to avoid overwriting an existing file; that filename is reported to
the user. That means you can individually profile multiple uses of native_compute in a script. From the
Linux command line, run perf report on the profile file to see the results. Consult the per f documen-
tation for more details.

Flag: Debug Cbv
This flag makes cbv (and its derivative compute) print information about the constants it encounters and the
unfolding decisions it makes.

Tactic: red
This tactic applies to a goal that has the form:

forall (x:T1) ... (xk:Tk), T
with T Si-reducingto ¢ t, ... t,and c a constant. If c is transparent then it replaces c with its definition
(say t) and then reduces (t t, ... t,) according to St(-reduction rules.

Error: No head constant to reduce.

Tactic: hnf
This tactic applies to any goal. It replaces the current goal with its head normal form according to the 5d.(-reduction
rules, i.e. it reduces the head of the goal until it becomes a product or an irreducible term. All inner Si-redexes
are also reduced. The behavior of both hnf can be tuned using the Argument s command.

Example: The term fun n : nat => S n + S nisnotreduced by hnf.

Note: The § rule only applies to transparent constants (see Controlling the reduction strategies and the conversion algorithm
on transparency and opacity).

Tactic: cbn

Tactic: simpl
These tactics apply to any goal. They try to reduce a term to something still readable instead of fully normalizing
it. They perform a sort of strong normalization with two key differences:

¢ They unfold a constant if and only if it leads to a :-reduction, i.e. reducing a match or unfolding a fixpoint.
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* While reducing a constant unfolding to (co)fixpoints, the tactics use the name of the constant the (co)fixpoint
comes from instead of the (co)fixpoint definition in recursive calls.

The cbn tactic was intended to be a more principled, faster and more predictable replacement for simp1.

The cbn tactic accepts the same flags as cbv and 1azy. The behavior of both simpl and chn can be tuned
using the Argument s command.

Notice that only transparent constants whose name can be reused in the recursive calls are possibly unfolded by
simpl. For instance a constant defined by plus' := plus is possibly unfolded and reused in the recursive
calls, but a constant such as succ := plus (S 0O) is never unfolded. This is the main difference between
simpl and cbn. The tactic cbn reduces whenever it will be able to reuse it or not: succ t isreducedto S t.

Variant: cbn [ qualid ¥ 1

Variant: cbn - [ gqualid T ]
These are respectively synonyms of cbn beta delta [ qualid ¥ ] iota zeta and cbn beta
delta - [ qualid ¥ ] iota zeta (see cbn).

Variant: simpl pattern
This applies simpl only to the subterms matching pattexrn in the current goal.

Variant: simpl pattern at natural

+
This applies simpl only to the natural | occurrences of the subterms matching pattern in the current
goal.

Error: Too few occurrences.

Variant: simpl qualid

Variant: simpl string
This applies simpl only to the applicative subterms whose head occurrence is the unfoldable constant qualid
(the constant can be referred to by its notation using string if such a notation exists).

Variant: simpl qualid at natural
Variant: simpl string at natural

+
This applies simpl only to the natural | applicative subterms whose head occurrence is qualid (or
string).

Flag: Debug RAKAM
This flag makes chn print various debugging information. RAKAM is the Refolding Algebraic Krivine Abstract
Machine.

Tactic: unfold qualid
This tactic applies to any goal. The argument qualid must denote a defined transparent constant or local definition
(see Top-level definitions and Controlling the reduction strategies and the conversion algorithm). The tactic unfold
applies the 0 rule to each occurrence of the constant to which qualid refers in the current goal and then replaces
it with its Sc¢-normal form. Use the general reduction tactics if you want to avoid this final reduction, for instance
cbv delta [gqualid].

Error: Cannot coerce gqualid to an evaluable reference.
This error is frequent when trying to unfold something that has defined as an inductive type (or constructor)
and not as a definition.

Example
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Goal 0 <= 1.

1 subgoal
0 <=1
unfold le.

Toplevel input, characters 7-9:

> unfold le.

S AA

Error: Cannot turn inductive le into an evaluable reference.

This error can also be raised if you are trying to unfold something that has been marked as opaque.

Example

Opaque Nat.add.
Goal 1 + 0 = 1.
1 subgoal

unfold Nat.add.
Toplevel input, characters 0-14:
> unfold Nat.add.

S AAAAAAAAAANAAN

Error: Nat.add is opaque.

Variant: unfold qualid in goal_occurrences
Replaces gqualid in hypothesis (or hypotheses) designated by goal occurrences with its definition
and replaces the hypothesis with its 5. normal form.

+
Variant: unfold qualid

+
Replaces gqualid | with their definitions and replaces the current goal with its 3¢ normal form.

Variant: unfold qualid at occurrences

The list occurrences specify the occurrences of qualid to be unfolded. Occurrences are located from
left to right.

Error: Bad occurrence number of qualid.
Error: gualid does not occur.

Variant: unfold string
If string denotes the discriminating symbol of a notation (e.g. ”+”) or an expression defining a notation
(e.g. "_ + _"), and this notation denotes an application whose head symbol is an unfoldable constant, then
the tactic unfolds it.

Variant: unfold string%ident
This is variant of unfold string where string gets its interpretation from the scope bound to the
delimiting key ident instead of its default interpretation (see Local interpretation rules for notations).
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Variant:

2 ? ?
unfold qualid string %$ident at occurrences in goal_occurrences

This is the most general form.

Tactic: fold term
This tactic applies to any goal. The term termis reduced using the red tactic. Every occurrence of the resulting
termin the goal is then replaced by term. This tactic is particularly useful when a fixpoint definition has been
wrongfully unfolded, making the goal very hard to read. On the other hand, when an unfolded function applied to
its argument has been reduced, the fo1d tactic won’t do anything.

Example

Goal ~0=0.
1 subgoal

unfold not.
1 subgoal

0 = 0 —-> False

Fail progress fold not.
The command has indeed failed with message:
Failed to progress.

pattern (0 = 0).
1 subgoal

(fun P : Prop => P —> False) (0 = 0)

fold not.
1 subgoal

+
Variant: fold term
Equivalent to fold term ; ... ; fold term.

Tactic: pattern term
This command applies to any goal. The argument term must be a free subterm of the current goal. The command
pattern performs [-expansion (the inverse of S-reduction) of the current goal (say T) by

« replacing all occurrences of termin T with a fresh variable
e abstracting this variable
* applying the abstracted goal to term

For instance, if the current goal T is expressible as ¢ (t) where the notation captures all the instances of t in
@ (t), then pattern t transforms it into (fun x:A => ¢ (x)) t. This tactic can be used, for instance,
when the tactic apply fails on matching.
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Variant: pattern term at natural

+ . .
Only the occurrences | natural | of termare considered for -expansion. Occurrences are located from left
to right.

Variant: pattern term at - natural

. + . .
All occurrences except the occurrences of indexes | natural | of termare considered for 5-expansion. Occur-
rences are located from left to right.

+
Variant: pattern term

Starting from a goal ¢ (t, ... t,),thetactic pattern t,, ..., t, generates the equivalent goal (fun
(x1:R1) oo (X tAy ) =>@ (X ... Xu)) ty ... ty. Ift;occurs in one of the generated types A;
these occurrences will also be considered and possibly abstracted.

+

Variant: pattern term at natural

4

+
This behaves as above but processing only the occurrences natural | of termstarting from term.

+
?

+
Variant: pattern term at - ?! |natural .

’

This is the most general syntax that combines the different variants.

Tactic: with_strategy strategy level or var [ \reference ¥ ] ltac_expr3
Executes 1tac_expr3, applying the alternate unfolding behavior that the St rategy command controls, but
only for 1 tac_expr3. This can be useful for guarding calls to reduction in tactic automation to ensure that certain
constants are never unfolded by tactics like simpl and chn or to ensure that unfolding does not fail.

Example
Opaque id.
Goal id 10 = 10.
1 subgoal
id 10 = 10

Fail unfold id.
The command has indeed failed with message:
id is opaque.

with_strategy transparent [id] unfold id.
1 subgoal

Warning: Use this tactic with care, as effects do not persist past the end of the proof script. Notably, this
fine-tuning of the conversion strategy is not in effect during Oed nor De fined, so this tactic is most useful
either in combination with abst ract, which will check the proof early while the fine-tuning is still in effect,
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or to guard calls to conversion in tactic automation to ensure that, e.g., unfold does not fail just because the
user made a constant Opaque.

This can be illustrated with the following example involving the factorial function.

Fixpoint fact (n : nat) : nat :=
match n with
| 0 =>1
| S n' =>n * fact n'
end.

Suppose now that, for whatever reason, we want in general to unfold the i d function very late during conversion:

Strategy 1000 [id].

If we try to prove id (fact n) = fact nby reflexivity, it will now take time proportional to
n!, because Coq will keep unfolding fact and * and + before it unfolds id, resulting in a full computation
of fact n (in unary, because we are using nat), which takes time n!. We can see this cross the relevant
threshold at around n = 9:

Goal True.

1 subgoal
True
Time assert (id (fact 8) = fact 8) by reflexivity.
Finished transaction in 0.468 secs (0.333u,0.13s) (successful)
1 subgoal
H id (fact 8) = fact 8
True
Time assert (id (fact 9) = fact 9) by reflexivity.
Finished transaction in 2.321 secs (2.299u,0.s) (successful)
1 subgoal
H : id (fact 8) = fact 8
HO : id (fact 9) = fact 9
True

Note that behavior will be the same if you mark id as Opaque because while most reduction tactics refuse to
unfold Opaque constants, conversion treats Opagque as merely a hint to unfold this constant last.

We can get around this issue by using with_strategy:

Goal True.

1 subgoal
True
Fail Timeout 1 assert (id (fact 100) = fact 100) by reflexivity.
The command has indeed failed with message:
Timeout!
Time assert (id (fact 100) = fact 100) by with_strategy -1 [id] reflexivity.
Finished transaction in 0.003 secs (0.003u,0.s) (successful)
1 subgoal
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However, when we go to close the proof, we will run into trouble, because the reduction strategy changes are
local to the tactic passed to with_strategy.
exact I.

No more subgoals.

Timeout 1 Defined.
Toplevel input, characters 0-18:
> Timeout 1 Defined.

S AANAAAAAAAANANAAAANAN

Error: Timeout!

We can fix this issue by using abstract:

Goal True.
1 subgoal

Time assert (id (fact 100) = fact 100) by with_strategy -1 [id] abstract.
sreflexivity.
Finished transaction in 0.005 secs (0.005u,0.s) (successful)
1 subgoal

exact I.
No more subgoals.

Time Defined.
Finished transaction in 0.003 secs (0.003u,0.s) (successful)

On small examples this sort of behavior doesn’t matter, but because Coq is a super-linear performance domain
in so many places, unless great care is taken, tactic automation using with_strateqgy may not be robustly
performant when scaling the size of the input.

Warning: In much the same way this tactic does not play well with Oed and Defined without using
abstract as an intermediary, this tactic does not play well with cogchk, even when used with abstract,
due to the inability of tactics to persist information about conversion hints in the proof term. See #12200%° for
more details.

29 https://github.com/cog/coq/issues/12200

3.1. Basic proof writing 299


https://github.com/coq/coq/issues/12200

The Coq Reference Manual, Release 8.13.2

Conversion tactics applied to hypotheses

+
The form tactic in |ident — applies tactic (any of the conversion tactics listed in this section) to

+
the hypotheses | ident

If ident is alocal definition, then i dent can be replaced by type of ident to address not the body
but the type of the local definition.

Example: unfold not in (type of H1l) (type of H3).

3.1.4 The SSReflect proof language

Authors Georges Gonthier, Assia Mahboubi, Enrico Tassi

Introduction

This chapter describes a set of tactics known as SSReflect originally designed to provide support for the so-called small
scale reflection proof methodology. Despite the original purpose this set of tactic is of general interest and is available in
Coq starting from version 8.7.

SSReflect was developed independently of the tactics described in Chapter Tactics. Indeed the scope of the tactics part
of SSReflect largely overlaps with the standard set of tactics. Eventually the overlap will be reduced in future releases of
Coq.

Proofs written in SSReflect typically look quite different from the ones written using only tactics as per Chapter Tactics.
We try to summarise here the most “visible” ones in order to help the reader already accustomed to the tactics described
in Chapter Tactics to read this chapter.

The first difference between the tactics described in this chapter and the tactics described in Chapter Tactics is the way
hypotheses are managed (we call this bookkeeping). In Chapter Tactics the most common approach is to avoid moving
explicitly hypotheses back and forth between the context and the conclusion of the goal. On the contrary in SSReflect all
bookkeeping is performed on the conclusion of the goal, using for that purpose a couple of syntactic constructions behaving
similar to tacticals (and often named as such in this chapter). The : tactical moves hypotheses from the context to the
conclusion, while => moves hypotheses from the conclusion to the context, and in moves back and forth a hypothesis
from the context to the conclusion for the time of applying an action to it.

While naming hypotheses is commonly done by means of an as clause in the basic model of Chapter Tacfics, it is here
to => that this task is devoted. Tactics frequently leave new assumptions in the conclusion, and are often followed by =>
to explicitly name them. While generalizing the goal is normally not explicitly needed in Chapter 7actics, it is an explicit
operation performed by :.

See also:
Bookkeeping

Beside the difference of bookkeeping model, this chapter includes specific tactics which have no explicit counterpart in
Chapter Tactics such as tactics to mix forward steps and generalizations as generally have or without loss.

SSReflect adopts the point of view that rewriting, definition expansion and partial evaluation participate all to a same
concept of rewriting a goal in a larger sense. As such, all these functionalities are provided by the rewri te tactic.

SSReflect includes a little language of patterns to select subterms in tactics or tacticals where it matters. Its most notable
application is in the rewr i te tactic, where patterns are used to specify where the rewriting step has to take place.

Finally, SSReflect supports so-called reflection steps, typically allowing to switch back and forth between the computa-
tional view and logical view of a concept.
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To conclude it is worth mentioning that SSReflect tactics can be mixed with non SSReflect tactics in the same proof, or
in the same Ltac expression. The few exceptions to this statement are described in section Compatibility issues.

Acknowledgments

The authors would like to thank Frédéric Blanqui, Francois Pottier and Laurence Rideau for their comments and sugges-
tions.

Usage

Getting started

To be available, the tactics presented in this manual need the following minimal set of libraries to be loaded: ssreflect.
v, ssrfun.vand ssrbool.v. Moreover, these tactics come with a methodology specific to the authors of SSReflect
and which requires a few options to be set in a different way than in their default way. All in all, this corresponds to
working in the following context:

From Cog Require Import ssreflect ssrfun ssrbool.
Set Implicit Arguments.

Unset Strict Implicit.

Unset Printing Implicit Defensive.

See also:

Implicit Arguments, Strict Implicit,Printing Implicit Defensive

Compatibility issues

Requiring the above modules creates an environment which is mostly compatible with the rest of Coq, up to a few
discrepancies:

New keywords (i s) might clash with variable, constant, tactic or tactical names, or with quasi-keywords in tactic
or notation commands.

New tactic(al)s names (1ast, done, have, suffices, suff, without loss, wlog, congr, unlock)
might clash with user tactic names.

Identifiers with both leading and trailing _, such as _x_, are reserved by SSReflect and cannot appear in scripts.

—

The extensions to the rewrite tactic are partly incompatible with those available in current versions of Coq; in

particular: rewrite .. in (type of k) orrewrite .. in * orany other variantof rewrite will
not work, and the SSReflect syntax and semantics for occurrence selection and rule chaining is different. Use an
explicit rewrite direction (rewrite <- ..orrewrite -> ..)to access the Coq rewrite tactic.

New symbols (//, /=, / /=) might clash with adjacent existing symbols. This can be avoided by inserting white
spaces.

New constant and theorem names might clash with the user theory. This can be avoided by not importing all of
SSReflect:

From Cog Require ssreflect.
Import ssreflect.SsrSyntax.

Note that the full syntax of SSReflect’s rewrite and reserved identifiers are enabled only if the ssreflect module has
been required and if SsrSyntax has been imported. Thus a file that requires (without importing) ssreflect
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and imports SsrSyntax, can be required and imported without automatically enabling SSReflect’s extended
rewrite syntax and reserved identifiers.

» Some user notations (in particular, defining an infix ; ) might interfere with the ”open term”, parenthesis free, syntax
of tactics such as have, set and pose.

» The generalization of if statements to non-Boolean conditions is turned off by SSReflect, because it is mostly sub-
sumed by Coercion to bool of the sumXXX types (declared in ssrfun.v)and the if term is pattern
then term else termconstruct (see Pattern conditional). To use the generalized form, turn off the SSRe-
flect Boolean 1 f notation using the command: Close Scope boolean_if_scope.

 The following flags can be unset to make SSReflect more compatible with parts of Coq:

Flag: SsrRewrite
Controls whether the incompatible rewrite syntax is enabled (the default). Disabling the flag makes the syntax
compatible with other parts of Coq.

Flag: SsrIdents
Controls whether tactics can refer to SSReflect-generated variables that are in the form _xxx_. Scripts with explicit
references to such variables are fragile; they are prone to failure if the proof is later modified or if the details of
variable name generation change in future releases of Coq.

The default is on, which gives an error message when the user tries to create such identifiers. Disabling the flag
generates a warning instead, increasing compatibility with other parts of Coq.

Gallina extensions

Small-scale reflection makes an extensive use of the programming subset of Gallina, Coq’s logical specification language.
This subset is quite suited to the description of functions on representations, because it closely follows the well-established
design of the ML programming language. The SSReflect extension provides three additions to Gallina, for pattern assign-
ment, pattern testing, and polymorphism; these mitigate minor but annoying discrepancies between Gallina and ML.

Pattern assignment

The SSReflect extension provides the following construct for irrefutable pattern matching, that is, destructuring assign-
ment:

term += let: pattern := term in term

Note the colon : after the 1et keyword, which avoids any ambiguity with a function definition or Coq’s basic destruc-
turing let. The let: construct differs from the latter in that

¢ The pattern can be nested (deep pattern matching), in particular, this allows expression of the form:

let: exist (x, y) p_xy := Hp in ..

» The destructured constructor is explicitly given in the pattern, and is used for type inference.

Example

Definition f u := let: (m, n) := u in m + n.
f is defined

Check f.
f
nat * nat —-> nat
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Using let : Coq infers a type for £, whereas with a usual 1et the same term requires an extra type annotation in
order to type check.

Fail Definition f u := let (m, n) := u in m + n.
The command has indeed failed with message:
Cannot infer a type for this expression.

The let: construct is just (more legible) notation for the primitive Gallina expression match term with
pattern => term end.

The SSReflect destructuring assignment supports all the dependent match annotations; the full syntax is

? ? ?
term += let: pattern|as ident | |in pattern | := term |return ferm | in term

where the second pattern and the second term are types.

When the as and return keywords are both present, then ident is bound in both the second pattern and the
second t e rm; variables in the optional type pat t ern are bound only in the second term, and other variables in the first
pattern are bound only in the third t erm, however.

Pattern conditional

The following construct can be used for a refutable pattern matching, that is, pattern testing:

term +=  if term is pattern then term else term

Although this construct is not strictly ML (it does exist in variants such as the pattern calculus or the p-calculus), it turns
out to be very convenient for writing functions on representations, because most such functions manipulate simple data
types such as Peano integers, options, lists, or binary trees, and the pattern conditional above is almost always the right
construct for analyzing such simple types. For example, the null and all list function(al)s can be defined as follows:

Example

Variable d: Set.
d is declared

Definition null (s : list d) :=
if s is nil then true else false.
null is defined

Variable a : d —> bool.
a is declared

Fixpoint all (s : list d) : bool :=
if s is cons x s' then a x && all s' else true.
all is defined
all is recursively defined (guarded on 1lst argument)

The pattern conditional also provides a notation for destructuring assignment with a refutable pattern, adapted to the pure
functional setting of Gallina, which lacks a Match_Failure exception.
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Like let : above, the i f..1is constructis just (more legible) notation for the primitive Gallina expressionmatch term
with pattern => term | _ => term end.

Similarly, it will always be displayed as the expansion of this form in terms of primitive match expressions (where the
default expression may be replicated).

Explicit pattern testing also largely subsumes the generalization of the i £ construct to all binary data types; compare i £
term is inl _ then term else termand if term then term else term.

The latter appears to be marginally shorter, but it is quite ambiguous, and indeed often requires an explicit annotation
(term : {_} + {_}) totype check, which evens the character count.

Therefore, SSReflect restricts by default the condition of a plain if construct to the standard bool type; this avoids
spurious type annotations.

Example

Definition orb bl b2 := if bl then true else Db2.
orb is defined

As pointed out in section Compatibility issues, this restriction can be removed with the command:
Close Scope boolean_if_ scope.
Like 1let : above, the 1 f-is—-then-else construct supports the dependent match annotations:

term +=  if term is pattern as ident in pattern return term then ferm else term

Asin let : the variable i dent (and those in the type pattern) are bound in the second term; ident is also bound in
the third ¢ erm (but not in the fourth t erm), while the variables in the first pat t e rn are bound only in the third t e rm.

Another variant allows to treat the el se case first:

term +=  if term isn't pattern then ferm else term

Note that pat tern eventually binds variables in the third ¢ erm and not in the second te rm.

Parametric polymorphism

Unlike ML, polymorphism in core Gallina is explicit: the type parameters of polymorphic functions must be declared
explicitly, and supplied at each point of use. However, Coq provides two features to suppress redundant parameters:

* Sections are used to provide (possibly implicit) parameters for a set of definitions.

 Implicit arguments declarations are used to tell Coq to use type inference to deduce some parameters from the
context at each point of call.

The combination of these features provides a fairly good emulation of ML-style polymorphism, but unfortunately this
emulation breaks down for higher-order programming. Implicit arguments are indeed not inferred at all points of use, but
only at points of call, leading to expressions such as

Example

Definition all_null (s : list T) := all (@null T) s.
all null is defined
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Unfortunately, such higher-order expressions are quite frequent in representation functions, especially those which use
Coq’s Structures to emulate Haskell typeclasses.

Therefore, SSReflect provides a variant of Coq’s implicit argument declaration, which causes Coq to fill in some implicit
parameters at each point of use, e.g., the above definition can be written:

Example

Prenex Implicits null.
Definition all null (s : list T) := all null s.
all_null is defined

Better yet, it can be omitted entirely, since all_null s isn’t much of an improvement over all null s.

The syntax of the new declaration is

Command: Prenex Implicits ident;
This command checks that each ident is the name of a functional constant, whose implicit arguments are prenex,
i.e., the first n; > 0 arguments of ident; are implicit; then it assigns Maximal Implicit status to these
arguments.

As these prenex implicit arguments are ubiquitous and have often large display strings, it is strongly recommended
to change the default display settings of Coq so that they are not printed (except after a Set Printing All
command). All SSReflect library files thus start with the incantation

Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.

Anonymous arguments

When in a definition, the type of a certain argument is mandatory, but not its name, one usually uses “arrow” abstractions
for prenex arguments, or the (_ : term) syntax for inner arguments. In SSReflect, the latter can be replaced by the
opensyntax of termor (equivalently) & term, which are both syntactically equivalenttoa (_ : term) expression.
This feature almost behaves as the following extension of the binder syntax:

binder += |&term | of term

Caveat: & T and of T abbreviations have to appear at the end of a binder list. For instance, the usual two-constructor
polymorphic type list, i.e. the one of the standard List library, can be defined by the following declaration:

Example

Inductive list (A : Type) : Type := nil | cons of A & list A.
list is defined
list_rect is defined
list_ind is defined
list_rec is defined
list_sind is defined
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Wildcards

The terms passed as arguments to SSReflect tactics can contain /oles, materialized by wildcards _. Since SSReflect allows
a more powerful form of type inference for these arguments, it enhances the possibilities of using such wildcards. These
holes are in particular used as a convenient shorthand for abstractions, especially in local definitions or type expressions.

Wildcards may be interpreted as abstractions (see for example sections Definitions and Structure), or their content can be
inferred from the whole context of the goal (see for example section Abbreviations).

Definitions

Tactic: pose
This tactic allows to add a defined constant to a proof context. SSReflect generalizes this tactic in several ways. In
particular, the SSReflect pose tactic supports open syntax: the body of the definition does not need surrounding
parentheses. For instance:

pose t = x + y.

is a valid tactic expression.

The pose tactic is also improved for the local definition of higher order terms. Local definitions of functions can use the
same syntax as global ones. For example, the tactic pose supports parameters:

Example

Lemma test : True.
1 subgoal

pose f x y = x + y.
1 subgoal

f := fun x y : nat => x + y : nat -> nat -> nat

The SSReflect pose tactic also supports (co)fixpoints, by providing the local counterpart of the Fixpoint £ := ..
and CoFixpoint f := .. constructs. For instance, the following tactic:

pose fix f (x y : nat) {struct x} : nat :=
if x is S p then S (f p y) else O.

defines a local fixpoint £, which mimics the standard plus operation on natural numbers.

Similarly, local cofixpoints can be defined by a tactic of the form:

pose cofix f (arg : T) := ..

The possibility to include wildcards in the body of the definitions offers a smooth way of defining local abstractions. The
type of “holes” is guessed by type inference, and the holes are abstracted. For instance the tactic:

pose f := + 1.
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is shorthand for:

pose £f n :=n + 1.

When the local definition of a function involves both arguments and holes, hole abstractions appear first. For instance, the
tactic:

pose f x := x +

is shorthand for:

pose f n x := x + n.

The interaction of the pose tactic with the interpretation of implicit arguments results in a powerful and concise syntax
for local definitions involving dependent types. For instance, the tactic:

pose f x y = (%, Vy).

adds to the context the local definition:

pose £ (Tx Ty : Type) (x : Tx) (y : Ty) = (x, y).

The generalization of wildcards makes the use of the pose tactic resemble ML-like definitions of polymorphic functions.

Abbreviations

? ?
Tactic: set ident : term := |occ_switch term

The SSReflect set tactic performs abbreviations: it introduces a defined constant for a subterm appearing in the
goal and/or in the context.

SSReflect extends the set tactic by supplying:
* an open syntax, similarly to the pose (ssreflect) tactic;
* a more aggressive matching algorithm;
* an improved interpretation of wildcards, taking advantage of the matching algorithm;

¢ an improved occurrence selection mechanism allowing to abstract only selected occurrences of a term.

> *
occ_switch ::= {[+ | -7 |natural T }

where:

e ident is a fresh identifier chosen by the user.

e term 1 is an optional type annotation. The type annotation term 1 can be given in open syntax (no surrounding
parentheses). If no occ__switch (described hereafter) is present, it is also the case for the second term. On the
other hand, in presence of occ_switch, parentheses surrounding the second t erm are mandatory.

¢ In the occurrence switch occ__swit ch, if the first element of the list is a natural, this element should be a number,
and not an Ltac variable. The empty list { } is not interpreted as a valid occurrence switch, it is rather used as a
flag to signal the intent of the user to clear the name following it (see Occurrence switches and redex switches and
Introduction in the context)

The tactic:

Example
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Lemma test x : f x + fx=f x.
1 subgoal

set t = £ _
1 subgoal
X nat
t = f x nat
t +t =1t
set t = {2} (f _)
1 subgoal
X nat
t = f x nat

The type annotation may contain wildcards, which will be filled with the appropriate value by the matching process.

The tactic first tries to find a subterm of the goal matching the second t erm (and its type), and stops at the first subterm
it finds. Then the occurrences of this subterm selected by the optional occ_switch are replaced by ident and a
definition ident := termis added to the context. If no occ_switch is present, then all the occurrences are
abstracted.

Matching

The matching algorithm compares a pattern t e rm with a subterm of the goal by comparing their heads and then pairwise
unifying their arguments (modulo conversion). Head symbols match under the following conditions:

* If the head of termis a constant, then it should be syntactically equal to the head symbol of the subterm.
« If this head is a projection of a canonical structure, then canonical structure equations are used for the matching.

¢ If the head of term is not a constant, the subterm should have the same structure (A abstraction, let...in structure

D).

* If the head of termis a hole, the subterm should have at least as many arguments as term.

Example

Lemma test (x y z : nat) : Xty = z.
1 subgoal

set t = _ x.
1 subgoal

(continues on next page)
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(continued from previous page)

X, Yy, 2z : nat
t := Nat.add x : nat —-> nat
ty =2z
¢ In the special case where term is of the form (let £ := t0 in f) tl1 .. tn, then the pattern term
is treated as (_ tl1 .. tn). For each subterm in the goal having the form (A ul .. um) with m = n, the
matching algorithm successively tries to find the largest partial application (A ul .. uj) convertible to the head
t0 of term.
Example
Lemma test : (let f x y z := x +y + z in £ 1) 2 3 = 6.
1 subgoal
(let £ := fun x y z : nat => x + y + z in £ 1) 2 3 = 6
set t = (let gy z =Sy + z in g) 2.
1 subgoal
t := unkeyed (fun y z : nat => S y + z) 2 : nat —-> nat
t 3 =206
The notation unkeyed defined in ssreflect . v is a shorthand for the degenerate term let x := .. in x.
Moreover:

e Multiple holes in term are treated as independent placeholders.

Example
Lemma test x y z : x +y = z.
1 subgoal
X, YV, 2 nat
X +y = z
set t = _ + _
1 subgoal
X, Y, z : nat
t = x + vy nat
t =z

» The type of the subterm matched should fit the type (possibly casted by some type annotations) of the pattern
term.

¢ The replacement of the subterm found by the instantiated pattern should not capture variables. In the example
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above x is bound and should not be captured.

Example
Lemma test : forall x : nat, x + 1 = 0.
1 subgoal
forall x : nat, x + 1 = 0
Fail set t := _ + 1.
The command has indeed failed with message:
The pattern (_ + 1) did not match and has holes. Did you mean pose?

 Typeclass inference should fill in any residual hole, but matching should never assign a value to a global existential
variable.

Occurrence selection

SSReflect provides a generic syntax for the selection of occurrences by their position indexes. These occurrence switches
are shared by all SSReflect tactics which require control on subterm selection like rewriting, generalization, ...

An occurrence switch can be:

* A list natural numbers {+ nl .. nm} of occurrences affected by the tactic.

Example

Lemma test : £ 2 + £ 8 =£f 2 + £ 2.
1 subgoal

set x := {+1 3} (f 2).
1 subgoal
x = £ 2 nat

Notice that some occurrences of a given term may be hidden to the user, for example because of a notation. Setting
the Printing A1l flag causes these hidden occurrences to be shown when the term is displayed. This setting
should be used to find the correct coding of the occurrences to be selected™”.

Example

Notation "a < b":= (le (S a) b).

Lemma test x vy : x <y —> S x < S vy.
1 subgoal

(continues on next page)

30 Unfortunately, even after a call to the Set Printing All command, some occurrences are still not displayed to the user, essentially the ones possibly
hidden in the predicate of a dependent match structure.
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(continued from previous page)

set t := S x.

A list of natural numbers between {nl .. nm}. This is equivalent to the previous {+ nl
should start with a number, and not with an Ltac variable.

Alist {- nl .. nm} of occurrences not to be affected by the tactic.

. nm} but the list

Example

Lemma test : £ 2 + £ 8 =£f 2 + £ 2.
1 subgoal

set x = {-2}(f 2).
1 subgoal
x = £ 2 nat

Note that, in this goal, it behaves like set x := {1 3} (f 2).

In particular, the switch { +} selects all the occurrences. This switch is useful to turn off the default behavior of a

tactic which automatically clears some assumptions (see section Discharge for instance).

The switch { -} imposes that no occurrences of the term should be affected by the tactic. The tactic: set x :=
{=} (£ 2) . leaves the goal unchanged and adds the definition x := f 2 to the context. This kind of tactic may
be used to take advantage of the power of the matching algorithm in a local definition, instead of copying large

terms by hand.

It is important to remember that matching precedes occurrence selection.

Example

Lemma test x y z : x + vy =x + vy + z.
1 subgoal

(continues on next page)
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set a = {2} (_ + _)
1 subgoal
X, YV, z : nat
a = x ty nat

Hence, in the following goal, the same tactic fails since there is only one occurrence of the selected term.

Example
Lemma test x y z @ (x +vy) + (z + z) =2z + z.
1 subgoal
X, V, 2 nat
Kbyt lzizm o —zrz
Fail set a := {2} (_ + _).

The command has indeed failed with message:
Only 1 < 2 occurrence of (x + vy + (z + z))

Basic localization

It is possible to define an abbreviation for a term appearing in the context of a goal thanks to the in tactical.

Variant: set ident := term in |ident

This variant of set (ssreflect) introduces a defined constant called i dent in the context, and
folds it in the context entries mentioned on the right hand side of in. The body of ident is the first
subterm matching these context entries (taken in the given order).

Example

I
=~

Lemma test x t (Hx : x = 3) : x + t
1 subgoal

x + t =4
set z := 3 in Hx.
1 subgoal

x, t nat

z := 3 : nat
Hx X =z

x + t =4
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+
Variant: set ident := term in  ident *

This variant matches t e rm and then folds i dent similarly in all the given context entries but also folds
ident in the goal.

Example

Lemma test x t (Hx : x = 3) : x + t = 4.
1 subgoal

set z := 3 in Hx *

Indeed, remember that 4 is just a notation for (S 3).

The use of the in tactical is not limited to the localization of abbreviations: for a complete description of the in tactical,
see section Bookkeeping and Localization.

Basic tactics

A sizable fraction of proof scripts consists of steps that do not prove” anything new, but instead perform menial book-
keeping tasks such as selecting the names of constants and assumptions or splitting conjuncts. Although they are logically
trivial, bookkeeping steps are extremely important because they define the structure of the data-flow of a proof script.
This is especially true for reflection-based proofs, which often involve large numbers of constants and assumptions. Good
bookkeeping consists in always explicitly declaring (i.e., naming) all new constants and assumptions in the script, and sys-
tematically pruning irrelevant constants and assumptions in the context. This is essential in the context of an interactive
development environment (IDE), because it facilitates navigating the proof, allowing to instantly ”jump back” to the point
at which a questionable assumption was added, and to find relevant assumptions by browsing the pruned context. While
novice or casual Coq users may find the automatic name selection feature convenient, the usage of such a feature severely
undermines the readability and maintainability of proof scripts, much like automatic variable declaration in programming
languages. The SSReflect tactics are therefore designed to support precise bookkeeping and to eliminate name generation
heuristics. The bookkeeping features of SSReflect are implemented as tacticals (or pseudo-tacticals), shared across most
SSReflect tactics, and thus form the foundation of the SSReflect proof language.
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Bookkeeping

During the course of a proof Coq always present the user with a sequent whose general form is:

ci : Ti
dj = ej : Tj
Fk : Pk

forall (x1 : T1) ..,
let ym := bm in .. in
Pn > .. —> C

The goal to be proved appears below the double line; above the line is the confext of the sequent, a set of declarations of
constants c1 , defined constants d7j , and facts Fk that can be used to prove the goal (usually, Ti, Tj : Type and Pk

Prop). The various kinds of declarations can come in any order. The top part of the context consists of declarations
produced by the Section commands Variable, Let, and Hypothesis. This section context is never affected by
the SSReflect tactics: they only operate on the lower part — the proof context. As in the figure above, the goal often
decomposes into a series of (universally) quantified variables (x1 : T1), local definitions let ym := bm in,and
assumptions P n —>, and a conclusion C (as in the context, variables, definitions, and assumptions can appear in any
order). The conclusion is what actually needs to be proved — the rest of the goal can be seen as a part of the proof
context that happens to be “below the line”.

However, although they are logically equivalent, there are fundamental differences between constants and facts on the one
hand, and variables and assumptions on the others. Constants and facts are unordered, but named explicitly in the proof
text; variables and assumptions are ordered, but unnamed: the display names of variables may change at any time because
of a-conversion.

Similarly, basic deductive steps such as apply can only operate on the goal because the Gallina terms that control their
action (e.g., the type of the lemma used by apply) only provide unnamed bound variables.’' Since the proof script
can only refer directly to the context, it must constantly shift declarations from the goal to the context and conversely in
between deductive steps.

In SSReflect these moves are performed by two tacticals => and :, so that the bookkeeping required by a deductive step
can be directly associated with that step, and that tactics in an SSReflect script correspond to actual logical steps in the
proof rather than merely shuffle facts. Still, some isolated bookkeeping is unavoidable, such as naming variables and
assumptions at the beginning of a proof. SSReflect provides a specific move tactic for this purpose.

Now move does essentially nothing: it is mostly a placeholder for => and :. The => tactical moves variables, local
definitions, and assumptions to the context, while the : tactical moves facts and constants to the goal.

Example

For example, the proof of

Lemma subnK : forall m n, n <= m ->m — n + n = m.
1 subgoal

forall mn : nat, n <= m ->m - n + n =m

might start with

31 Thus scripts that depend on bound variable names, e.g., via intros or with, are inherently fragile.
32 The name subnkK reads as “right cancellation rule for nat subtraction”.
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move=> m n le_n_m.
1 subgoal

where move does nothing, but => m n le_m n changes the variables and assumption of the goal in the constants m
n : natandthefact le_n_m : n <= m,thus exposing the conclusionm - n + n = m.

The : tactical is the converse of =>, indeed it removes facts and constants from the context by turning them into variables
and assumptions.

move: m le_n_m.
1 subgoal

forall m : nat, n <= m ->m - n + n =m

turns back m and 1e_m_n into a variable and an assumption, removing them from the proof context, and changing the
goalto forall m, n <= m -> m - n + n = m which can be proved by induction on n using elim: n.

Because they are tacticals, : and => can be combined, as in

move: m le_n m => p le_n_p.

simultaneously renames m and 1e_m_n into p and le_n_p, respectively, by first turning them into unnamed variables,
then turning these variables back into constants and facts.

Furthermore, SSReflect redefines the basic Coq tactics case, elim, and apply so that they can take better advantage
of : and =>. In there SSReflect variants, these tactic operate on the first variable or constant of the goal and they do not
use or change the proof context. The : tactical is used to operate on an element in the context.

Example

For instance the proof of subnX could continue with elim: n. Instead of elim n (note, no colon), this
has the advantage of removing n from the context. Better yet, this e 1 im can be combined with previous move
and with the branching version of the => tactical (described in Infroduction in the context), to encapsulate
the inductive step in a single command:

Lemma subnK : forall m n, n <= m ->m — n + n = m.
1 subgoal

forall m n : nat, n <= m ->m - n + n =m

move=> m n le_n_m.
1 subgoal

(continues on next page)
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(continued from previous page)
elim: n m le_n.m => [|n IHn] m => [_ | lt_n_m].
2 subgoals

subgoal 2 is:
m- Sn+ Sn=m

which breaks down the proof into two subgoals, the second one having in its context 1t_n_m : S n <= mand IHn
forall m, n <= m ->m - n + n = m

The : and => tacticals can be explained very simply if one views the goal as a stack of variables and assumptions piled
on a conclusion:

e tactic : a Db c pushes the context constants a, b, c as goal variables before performing tactic.

* tactic => a b c pops the top three goal variables as context constants a, b, c, after tactic has been per-
formed.

These pushes and pops do not need to balance out as in the examples above, so move: m le_n_m => p would
rename m into p, but leave an extra assumption n <= p in the goal.

Basic tactics like apply and elim can also be used without the ’:’ tactical: for example we can directly start a proof of
subnK by induction on the top variable m with

elim=> [|m IHm] n le_n.

The general form of the localization tactical in is also best explained in terms of the goal stack:

tactic in a H1 H2 *.

is basically equivalent to

move: a H1 H2; tactic => a H1 H2.

with two differences: the in tactical will preserve the body of an if a is a defined constant, and if the * is omitted it will
use a temporary abbreviation to hide the statement of the goal from tactic.

The general form of the in tactical can be used directly with the move, case and el im tactics, so that one can write

elim: n => [|n IHn] in m le_n_m *.
instead of
elim: nm le.n m => [|n IHn] m le_n_m.

This is quite useful for inductive proofs that involve many facts.

See section Localization for the general syntax and presentation of the in tactical.
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The defective tactics

In this section we briefly present the three basic tactics performing context manipulations and the main backward chaining

tool.

The move tactic.

Tactic: move

This tactic, in its defective form, behaves like the hn £ tactic.

Example

Require Import ssreflect.
Goal not False.
1 subgoal

move.

False —-> False

More precisely, the move tactic inspects the goal and does nothing (i dt ac) if an introduction step is possible, i.e.
if the goal is a product or a let .. in, and performs hnf otherwise.

Of course this tactic is most often used in combination with the bookkeeping tacticals (see section Introduction in
the context and Discharge). These combinations mostly subsume the int ros, generalize, revert, rename,
clear and pattern tactics.

The case tactic

Tactic: case

This tactic performs primitive case analysis on (co)inductive types; specifically, it destructs the top variable or
assumption of the goal, exposing its constructor(s) and its arguments, as well as setting the value of its type family
indices if it belongs to a type family (see section 7Type families).

The SSReflect case tactic has a special behavior on equalities. If the top assumption of the goal is an equality, the
case tactic “destructs” it as a set of equalities between the constructor arguments of its left and right hand sides, as
per the tactic injection. For example, case changes the goal:

x=1->y =2 -> G.

The case can generate the following warning:

Warning: SSReflect: cannot obtain new equations out of
The tactic was run on an equation that cannot generate simpler equations, for example x = 1.
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The warning can be silenced or made fatal by wusing the Warnings option and the
spurious-ssr—injection key.

Finally the case tactic of SSReflect performs False elimination, even if no branch is generated by this case
operation. Hence the tactic case on a goal of the form False -> G will succeed and prove the goal.

The elim tactic

Tactic: elim
This tactic performs inductive elimination on inductive types. In its defective form, the tactic performs inductive
elimination on a goal whose top assumption has an inductive type.

Example

Lemma test m : forall n : nat, m <= n.
1 subgoal

elim.

subgoal 2 is:
forall n : nat, m <= n -> m <= S n

The apply tactic

rd

Tactic: apply |term |
This is the main backward chaining tactic of the proof system. It takes as argument any ¢ erm and applies it to the
goal. Assumptions in the type of term that don’t directly match the goal may generate one or more subgoals.

In its defective form, this tactic is a synonym for:
intro top; first [refine top | refine (top _) | refine (top _ _) | ..]1; clear top.
where t op is a fresh name, and the sequence of refine tactics tries to catch the appropriate number of wildcards

to be inserted. Note that this use of the re £ ine tactic implies that the tactic tries to match the goal up to expansion
of constants and evaluation of subterms.

apply (ssreflect) has a special behavior on goals containing existential metavariables of sort Prop.

Example

Lemma test : forall y, 1 <y —>vy < 2 —>exists x : { n | n < 3 }, 0 < projl_sig x.
1 subgoal

(continues on next page)
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(continued from previous page)

forall y : nat,
1 <y >y < 2 —-> exists x : {n : nat | n < 3}, 0 < projl_sig x

move=> y y_gtl y_1t2; apply: (ex_intro _ (exist _ vy _)).

2 focused subgoals
(shelved: 2)

subgoal 2 is:
forall HypO : y < 3, 0 < projl_sig (exist (fun n : nat => n < 3) y HypO)

by apply: lt_trans y_1t2 _

1 focused subgoal
(shelved: 1)

forall HypO : y < 3, 0 < projl_sig (exist (fun n : nat => n < 3) y HypO)

by move=> y_1t3; apply: 1lt_trans y_gtl.
No more subgoals.

Note that the last _ of the tactic apply: (ex_intro _ (exist _ y _)) represents a proof thaty < 3. In-
stead of generating the goal:

0 < projl_sig (exist (fun n : nat => n < 3) y ?Goal).

the system tries to prove y < 3 calling the trivial tactic. If it succeeds, let’s say because the context contains H : y <
3, then the system generates the following goal:

0 < projl_sig (exist (fun n => n < 3) y H).

Otherwise the missing proof is considered to be irrelevant, and is thus discharged generating the two goals shown above.

Last, the user can replace the trivial tactic by defining an Ltac expression named ssrautoprop.

Discharge

The general syntax of the discharging tactical : is:

? + ?
Tactic: tactic ident : |d_item clear_switch
?
d_item ::= |occ_switch ‘ clear_switch | term
. . +
clear_switch ::= {|ident | }
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with the following requirements:

e tactic must be one of the four basic tactics described in The defective tactics, i.e., move, case, elim or
apply, the exact tactic (section Terminators), the congr tactic (section Congruence), or the application of the
view tactical /’ (section Interpreting assumptions) to one of move, case, or elim.

» The optional ident specifies equation generation (section Generation of equations), and is only allowed if tactic
is move, case or elim, or the application of the view tactical */’ (section Inferpreting assumptions) to case or
elim.

e An occ_switch selects occurrences of term, as in Abbreviations, occ_switch is not allowed if tacticis
apply orexact.

e Aclearitem clear_switch specifies facts and constants to be deleted from the proof context (as per the clear
tactic).

The : tactical first discharges all the d_ i t em, right to left, and then performs tactic, i.e., for each d_ i t em, starting with
the last one :

1. The SSReflect matching algorithm described in section Abbreviations is used to find occurrences of term in the
goal, after filling any holes ‘_’ in term; however if tactic is apply or exact a different matching algorithm, described
below, is used>>.

2. These occurrences are replaced by a new variable; in particular, if term is a fact, this adds an assumption to the
goal.

3. If term is exactly the name of a constant or fact in the proof context, it is deleted from the context, unless there is
an occ_switch.

Finally, tactic is performed just after the first d_ i t em has been generalized — that is, between steps 2 and 3. The names
listed in the final clear_ switch (if it is present) are cleared first, before d_ i temn is discharged.

Switches affect the discharging of a d_ i t em as follows:

* An occ_switch restricts generalization (step 2) to a specific subset of the occurrences of term, as per section
Abbreviations, and prevents clearing (step 3).

* All the names specified by a clear_switch are deleted from the context in step 3, possibly in addition to term.

For example, the tactic:

move: n {2;n (refl_equal n).

e first generalizes (refl_equal n : n = n);
* then generalizes the second occurrence of n.

* finally generalizes all the other occurrences of n, and clears n from the proof context (assuming n is a proof
constant).

Therefore this tactic changes any goal G into

forall n n0 : nat, n = n0 —> G.

where the name nO0 is picked by the Coq display function, and assuming n appeared only in G.

Finally, note that a discharge operation generalizes defined constants as variables, and not as local definitions. To override
this behavior, prefix the name of the local definition with a @, like in move: @n.

This is in contrast with the behavior of the in tactical (see section Localization), which preserves local definitions by
default.

33 Also, a slightly different variant may be used for the first d_i t em of case and elim; see section Type families.

320 Chapter 3. Proofs



The Coq Reference Manual, Release 8.13.2

Clear rules

The clear step will fail if term is a proof constant that appears in other facts; in that case either the facts should be
cleared explicitly with a clear_ switch, or the clear step should be disabled. The latter can be done by adding an
occ_switch or simply by putting parentheses around term: both move: (n) . and move: {+}n. generalize n
without clearing n from the proof context.

The clear step will also fail if the c1ear switchcontains a ident thatis not in the proof context. Note that SSReflect
never clears a section constant.

If tactic is move or case and an equation ident is given, then clear (step 3) for d_item is suppressed (see section
Generation of equations).

Intro patterns (see section Introduction in the context) and the rewrite tactic (see section Rewriting) let one place a
clear_switchin the middle of other items (namely identifiers, views and rewrite rules). This can trigger the addition
of proof context items to the ones being explicitly cleared, and in turn this can result in clear errors (e.g. if the context
item automatically added occurs in the goal). The relevant sections describe ways to avoid the unintended clear of context
items.

Matching for apply and exact

The matching algorithm for d_ i t emof the SSReflect apply and exact tactics exploits the type of the first d_itemto
interpret wildcards in the other d_ i t em and to determine which occurrences of these should be generalized. Therefore,
occur switches are not needed for apply and exact.

Indeed, the SSReflect tactic apply: H xisequivalentto refine (QH _
priate number of wildcards between H and x.

x); clear H x withan appro-

Note that this means that matching for apply and exact has much more context to interpret wildcards; in particular it
can accommodate the _ d_ i t em, which would always be rejected after move:.

Example

Lemma test (Hfg : forall x, £ x = g x) ab : £ a =g b.
1 subgoal

Hfg : forall x : nat, £ x = g x
a, b : nat

apply: trans_equal (Hfg _)
1 focused subgoal
(shelved: 1)

Hfg : forall x : nat, f x = g x
a, b : nat

This tactic is equivalent (see section Bookkeeping) to: refine (trans_equal (Hfg _) _) . and thisis a com-
mon idiom for applying transitivity on the left hand side of an equation.
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The abstract tactic

Tactic: abstract: d_item
This tactic assigns an abstract constant previously introduced with the [: ident ] intro pattern (see section
Introduction in the context).

In a goal like the following:

m : nat
abs : <hidden>
n : nat

The tactic abstract: abs n first generalizes the goal with respect to n (that is not visible to the abstract constant
abs) and then assigns abs. The resulting goal is:

Once this subgoal is closed, all other goals having abs in their context see the type assigned to abs. In this case:

m : nat
abs : forall n, m < 5 + n

For a more detailed example the reader should refer to section Structure.

Introduction in the context

The application of a tactic to a given goal can generate (quantified) variables, assumptions, or definitions, which the user
may want to infroduce as new facts, constants or defined constants, respectively. If the tactic splits the goal into several
subgoals, each of them may require the introduction of different constants and facts. Furthermore it is very common
to immediately decompose or rewrite with an assumption instead of adding it to the context, as the goal can often be
simplified and even proved after this.

All these operations are performed by the introduction tactical =>, whose general syntax is

+
Tactic: tactic => |i_item

i_item ::= |i_pattern ‘ s_item clear_switch i_view i_block
s_item ::= |I= | N | NI=
?
iview ::= |{} ] |/term ‘ Mtac:( tactic)
? ? +
i_pattern ::= |ident > _ ? * + occ_switch -> <- [ |i_item | ] - [: |ident T 1]
i_block ::= |[”ident] ‘ [*~ |ident \ natural | ]
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The => tactical first executes tact ic, then the i_ i tems, left to right. An s_ it em specifies a simplification operation;
a clear_switch specifies context pruning as in Discharge. The i__patterns can be seen as a variant of intro patterns
(see intros:) each performs an introduction operation, i.e., pops some variables or assumptions from the goal.

Simplification items

An s_item can simplify the set of subgoals or the subgoals themselves:

e // removes all the “trivial” subgoals that can be resolved by the SSReflect tactic done described in Terminators,
i.e., it executes try done.

* /= simplifies the goal by performing partial evaluation, as per the tactic simp1°*.
¢ / /= combines both kinds of simplification; it is equivalentto /= //,i.e., simpl; try done.

When an s_ i temimmediately precedes a clear switch,thenthe clear switchisexecuted after the s_item,
e.g., { IHn} // will solve some subgoals, possibly using the fact THn, and will erase I Hn from the context of the remaining
subgoals.

Views

The first entry in the i_ view grammar rule, / term, represents a view (see section Views and reflection). It interprets
the top of the stack with the view t e rm. It is equivalent to move/ term.

A clear_switch that immediately precedes an i_ view is complemented with the name of the view if an only if
the i_view is a simple proof context entry’”. E.g. {}/v is equivalent to /v{v}. This behavior can be avoided by
separating the clear switch from the i_ view with the — intro pattern or by putting parentheses around the view.

A clear_switch that immediately precedes an i_ view is executed after the view application.

If the next i__itemis a view, then the view is applied to the assumption in top position once all the previous i_item
have been performed.

The second entry in the i view grammar rule, /1ltac: ( tactic ), executes tactic. Notations can be used to
name tactics, for example

Notation "'myop'" := (ltac: (my ltac code)) : ssripat_scope.

lets one write just /myop in the intro pattern. Note the scope annotation: views are interpreted opening the ssripat
scope. We provide the following ltac views: / [dup] to duplicate the top of the stack, / [ swap] to swap the two first
elements and / [apply] to apply the top of the stack to the next.

Intro patterns

SSReflect supports the following i_patterns:

ident pops the top variable, assumption, or local definition into a new constant, fact, or defined constant ident,
respectively. Note that defined constants cannot be introduced when d-expansion is required to expose the top vari-
able or assumption. A clear_switch (even an empty one) immediately preceding an i dent is complemented
with that ident if and only if the identifier is a simple proof context entry’. As a consequence by prefixing the
ident with { } one can replace a context entry. This behavior can be avoided by separating the clear_switch
from the i dent with the — intro pattern.

34 Except /= does not expand the local definitions created by the SSReflect in tactical.
39 A simple proof context entry is a naked identifier (i.e. not between parentheses) designating a context entry that is not a section variable.
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v

pops every variable occurring in the rest of the stack. Type class instances are popped even if they don’t occur in the
rest of the stack. The tactic move=> > is equivalent to move=> ? ? on a goal such as:

forall x vy, x <y —-> G

A typical use if move=>> H to name H the first assumption, in the example above x < y.

? pops the top variable into an anonymous constant or fact, whose name is picked by the tactic interpreter. SSReflect
only generates names that cannot appear later in the user script®.

_ pops the top variable into an anonymous constant that will be deleted from the proof context of all the subgoals produced
by the => tactical. They should thus never be displayed, except in an error message if the constant is still actually
used in the goal or context after the last i_ i t em has been executed (s_ it em can erase goals or terms where the
constant appears).

*

pops all the remaining apparent variables/assumptions as anonymous constants/facts. Unlike ? and move the *
i_itemdoes not expand definitions in the goal to expose quantifiers, so it may be useful to repeat a move=> *
tactic, e.g., on the goal:

forall a b : bool, a <> Db

a first move=> *addsonly _a_ : booland _b_ : bool to the context; it takes a second move=> * to
add_Hyp_ : _a_ = _Db

+ temporarily introduces the top variable. It is discharged at the end of the intro pattern. For example move=> + y
on a goal:

forall x y, P

is equivalent to move=> _x_ y; move: _x_ that results in the goal:

forall x, P

occ_switch 7 —> (resp. occ_switch <-) pops the top assumption (which should be a rewritable proposition)
into an anonymous fact, rewrites (resp. rewrites right to left) the goal with this fact (using the SSReflect rewrite
tactic described in section Rewriting, and honoring the optional occurrence selector), and finally deletes the anony-
mous fact from the context.

[i_item* | .. | i_item* ] when it is the very first i_pattern after tactic => tactical and tactic is not a
move, is a branchingi_pattern. It executes the sequence i_ item; on the i-th subgoal produced by tactic. The
execution of tactic should thus generate exactly m subgoals, unless the [..] i_pattern comes after an initial
// or //= s_1itemthat closes some of the goals produced by tactic, in which case exactly m subgoals should
remain after the s__ i t em, or we have the trivial branching i__pattern [], which always does nothing, regardless
of the number of remaining subgoals.

[i_ditem* | .. | i_item* ] when it is not the first i_pattern or when tactic is a move, is a destructing
i_pattern. It starts by destructing the top variable, using the SSReflect case tactic described in The de-
fective tactics. It then behaves as the corresponding branching i_pat tern, executing the sequence i_item; in
the i-th subgoal generated by the case analysis; unless we have the trivial destructing i_pattern [], the latter
should generate exactly m subgoals, i.e., the top variable should have an inductive type with exactly m construc-
tors*®. While it is good style to use the i_itemi * to pop the variables and assumptions corresponding to each
constructor, this is not enforced by SSReflect.

— does nothing, but counts as an intro pattern. It can also be used to force the interpretation of [ i_item* | .. |
i_item * ] as a case analysis like in move=> —[H1 H2]. It can also be used to indicate explicitly the link
between a view and a name like in move=> /eqgP-H1. Last, it can serve as a separator between views. Section

35 SSReflect reserves all identifiers of the form “_x_”, which is used for such generated names.
36 More precisely, it should have a quantified inductive type with a assumptions and m — a constructors.
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Views and reflection®® explains in which respect the tactic move=> /v1/v2 differs from the tactic move=>
/vl-/v2.

[: ident ..] introduces in the context an abstract constant for each ident. Its type has to be fixed later on by using
the abstract tactic. Before then the type displayed is <hidden>.

Note that SSReflect does not support the syntax (ipat, .., ipat) for destructing intro patterns.

Clear switch

Clears are deferred until the end of the intro pattern.

Example

Lemma test x y : Nat.leb 0 x = true -> (Nat.leb 0 x) && (Nat.leb y 2) = true.
1 subgoal

Nat.leb 0 x = true -> Nat.leb 0 x && Nat.leb y 2 = true

move=> {x} —>.
1 subgoal

If the cleared names are reused in the same intro pattern, a renaming is performed behind the scenes.

Facts mentioned in a clear switch must be valid names in the proof context (excluding the section context).

Branching and destructuring

The rules for interpreting branching and destructing i_pat tern are motivated by the fact that it would be pointless to
have a branching pattern if tactic is a move, and in most of the remaining cases tactic is case or el im, which implies
destruction. The rules above imply that:

* move=> [a b].
e case=> [a Db].
* case=> a b.

are all equivalent, so which one to use is a matter of style; move should be used for casual decomposition, such as splitting
a pair, and case should be used for actual decompositions, in particular for type families (see 7ype families) and proof
by contradiction.

The trivial branching i _pattern can be used to force the branching interpretation, e.g.:
* case=> [] [a b] c.
* move=> [[a b] c].

* case; case=> a b c.

38 The current state of the proof shall be displayed by the Show Proof command of Coq proof mode.
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are all equivalent.

Block introduction

SSReflect supports the following i_blocks:

[~ ident 1 block destructing i_pattern. It performs a case analysis on the top variable and introduces, in one
g0, all the variables coming from the case analysis. The names of these variables are obtained by taking the names
used in the inductive type declaration and prefixing them with i dent. If the intro pattern immediately follows a
call to e1im with a custom eliminator (see Interpreting eliminations) then the names are taken from the ones used
in the type of the eliminator.

Example

Record r := { a : nat; b := (a, 3); _ : bool; }.
r is defined
a is defined
b is defined

Lemma test : r —> True.

Proof. move => [" x ].

[~~ ident ] block destructing using ident as a suffix.
[~ natural ] block destructing using natural as a suffix.

Only a s_itemis allowed between the elimination tactic and the block destructing.

Generation of equations

The generation of named equations option stores the definition of a new constant as an equation. The tactic:

move En: (size 1) => n.

where 1 is a list, replaces size 1 by n inthe goal and adds the factEn : size 1 = n to the context. This is quite
different from:

pose n := (size 1).

which generates a definitionn := (size 1). Itis not possible to generalize or rewrite such a definition; on the other
hand, it is automatically expanded during computation, whereas expanding the equation En requires explicit rewriting.
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The use of this equation name generation option with a case or an el im tactic changes the status of the first i item,
in order to deal with the possible parameters of the constants introduced.

Example
Lemma test (a b :nat) : a <> Db.
1 subgoal

case E : a => [|n].
2 subgoals

subgoal 2 is:
S n <> b

If the user does not provide a branching i itemas first i_item, or if the i_ item does not provide enough names
for the arguments of a constructor, then the constants generated are introduced under fresh SSReflect names.

Example
Lemma test (a b :nat) : a <> b.
1 subgoal

case E : a => H.
2 subgoals

E a =20
H 0=">D
False
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Combining the generation of named equations mechanism with the ca se tactic strengthens the power of a case analysis.
On the other hand, when combined with the e I im tactic, this feature is mostly useful for debug purposes, to trace the
values of decomposed parameters and pinpoint failing branches.

Type families

When the top assumption of a goal has an inductive type, two specific operations are possible: the case analysis performed
by the ca se tactic, and the application of an induction principle, performed by the e 1 i mtactic. When this top assumption
has an inductive type, which is moreover an instance of a type family, Coq may need help from the user to specify which
occurrences of the parameters of the type should be substituted.

+
Variant: case: d_item / |d_item

Variant: elim: d_item ¥ / |d_item ¥
A specific / switch indicates the type family parameters of the type of a d_ i t em immediately following this /
switch. The d_ i tem on the right side of the / switch are discharged as described in section Discharge. The case
analysis or elimination will be done on the type of the top assumption after these discharge operations.

Every d_ i tempreceding the / is interpreted as arguments of this type, which should be an instance of an inductive
type family. These terms are not actually generalized, but rather selected for substitution. Occurrence switches can
be used to restrict the substitution. If a term is left completely implicit (e.g. writing just _), then a pattern is inferred
looking at the type of the top assumption. This allows for the compact syntax:

case: {2}_ / eqgP.

where _isinterpretedas (_ == _) sinceeqP T a b : reflect (a = b) (a == b) andreflectisa
type family with one index.

Moreover if the d_item list is too short, it is padded with an initial sequence of _ of the right length.

Example

Here is a small example on lists. We define first a function which adds an element at the end of a given list.

Require Import List.

Section LastCases.

Variable A : Type.
A is declared

Implicit Type 1 : list A.
Fixpoint add_last a 1 : list A :=
match 1 with
| nil => a :: nil
| hd :: tl => hd :: (add_last a tl) end.
add_last is defined
add_last is recursively defined (guarded on 2nd argument)

Then we define an inductive predicate for case analysis on lists according to their last element:

Inductive last_spec : list A -> Type :=

| LastSeq0 : last_spec nil

| LastAdd s x : last_spec (add_last x s).
last_spec is defined
last_spec_rect is defined
last_spec_ind is defined
last_spec_rec is defined

(continues on next page)
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(continued from previous page)

last_spec_sind is defined

Theorem lastP : forall 1 : list A, last_spec 1.
1 subgoal

forall 1, last_spec 1

Admitted.
lastP is declared

We are now ready to use 1astP in conjunction with case.

Lemma test 1 : (length 1) * 2 = length (1 ++ 1).
1 subgoal

length 1 * 2 = length (1 ++ 1)

case: (lastP 1).
2 subgoals

A : Type
1 : list A

length nil * 2 = length (nil ++ nil)

subgoal 2 is:
forall (s : list A) (x : A),
length (add_last x s) * 2 = length (add_last x s ++ add_last x s)

Applied to the same goal, the tactc case: 1 / (lastP 1) generatesthe same subgoals but 1 has been cleared
from both contexts:

case: 1 / (lastP 1).
2 subgoals

length nil * 2 = length (nil ++ nil)

subgoal 2 is:
forall (s : list A) (x : A),
length (add_last x s) * 2 = length (add_last x s ++ add_last x s)

Again applied to the same goal:

case: {1 3}1 / (lastP 1).
2 subgoals

A : Type
1 : list A

(continues on next page)
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(continued from previous page)
length nil * 2 = length (1 ++ nil)

subgoal 2 is:
forall (s : list A) (x : A),
length (add_last x s) * 2 = length (1 ++ add_last x s)

Note that selected occurrences on the left of the / switch have been substituted with | instead of being affected by
the case analysis.

The equation name generation feature combined with a type family / switch generates an equation for the first
dependent d_ i t em specified by the user. Again starting with the above goal, the command:

Example

Lemma test 1 : (length 1) * 2 = length (1 ++ 1).
1 subgoal

length 1 * 2 = length (1 ++ 1)

case E: {1 3}1 / (lastP 1) => [|s x].
2 subgoals

length nil * 2 = length (1 ++ nil)

subgoal 2 is:
length (add_last x s) * 2 = length (1 ++ add_last x s)

Show 2.
subgoal 2 is:

length (add_last x s) * 2 = length (1 ++ add_last x s)

There must be at least one d_ i tem to the left of the / switch; this prevents any confusion with the view feature.
However, the d_ i tem to the right of the / are optional, and if they are omitted the first assumption provides the
instance of the type family.

The equation always refers to the first d_ i t em in the actual tactic call, before any padding with initial _. Thus, if
an inductive type has two family parameters, it is possible to have SSReflect generate an equation for the second
one by omitting the pattern for the first; note however that this will fail if the type of the second parameter depends
on the value of the first parameter.
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Control flow

Indentation and bullets

A linear development of Coq scripts gives little information on the structure of the proof. In addition, replaying a proof
after some changes in the statement to be proved will usually not display information to distinguish between the various
branches of case analysis for instance.

To help the user in this organization of the proof script at development time, SSReflect provides some bullets to highlight
the structure of branching proofs. The available bullets are —, + and *. Combined with tabulation, this lets us highlight
four nested levels of branching; the most we have ever needed is three. Indeed, the use of “simpl and closing” switches,
of terminators (see above section Terminators) and selectors (see section Selectors) is powerful enough to avoid most of
the time more than two levels of indentation.

Here is a fragment of such a structured script:

case El: (abezoutn _ _) => [[| k1] [I| k2]].
- rewrite !muln0 !gexpn0 mulgl => HI1.
move/eqgP: (sym_equal FO0); rewrite -H1 ordergl egqn_mull.
by case/andP; move/eqgP.
- rewrite muln0 gexpnO mulgl => HI1.
have F1: t %| t * S k2.+41 - 1.
apply: (@dvdn_trans (orderg x)); first by rewrite FO; exact: dvdn_mull.
rewrite orderg_dvd; apply/eqP; apply: (mulgl x).
rewrite —-{1} (gexpnl x) mulgl gexpn_add leq_add_sub //.
by move: P1l; case t.
rewrite dvdn_subr in F1; last by exact: dvdn_mulr.

+ rewrite H1 FO —{2} (mulnl (p ~ 1)); congr (_ * _).
by apply/egP; rewrite -dvdnl.
+ by move: Pl; case: (t) => [| [| s1]].

- rewrite muln0 gexpn0O mullg => HI1.

Terminators

To further structure scripts, SSReflect supplies ferminating tacticals to explicitly close off tactics. When replaying scripts,
we then have the nice property that an error immediately occurs when a closed tactic fails to prove its subgoal.

It is hence recommended practice that the proof of any subgoal should end with a tactic which fails if it does not solve the
current goal, like discriminate, contradictionor assumption.

In fact, SSReflect provides a generic tactical which turns any tactic into a closing one (similar to now). Its general syntax
is:

Tactic: by tactic

The Ltac expression by [tactic | tactic | ..] is equivalent to do [done | by tactic | by
tactic | ..], which corresponds to the standard Ltac expression first [done | tactic; done |
tactic; done | ..].

In the script provided as example in section Indentation and bullets, the paragraph corresponding to each sub-case ends
with a tactic line prefixed with a by, like in:

by apply/eqP; rewrite -dvdnl.

Tactic: done
The by tactical is implemented using the user-defined, and extensible done tactic. This done tactic tries to solve
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the current goal by some trivial means and fails if it doesn’t succeed. Indeed, the tactic expression by tacticis
equivalent to tactic; done.

Conversely, the tactic by [ ] is equivalent to done.
The default implementation of the done tactic, in the ssreflect.v file, is:

Ltac done :=
trivial; hnf; intros; solve
[ do ![solve [trivial | apply: sym_equal; trivial]

| discriminate | contradiction | split]
| case not_locked_false_eq_true; assumption
| match goal with H : ~ _ |- _ => solve [case H; trivial] end ].

The lemma not_locked_false_eqg_true is needed to discriminate locked boolean predicates (see section
Locking, unlocking). The iterator tactical do is presented in section /teration. This tactic can be customized by the
user, for instance to include an aut o tactic.

A natural and common way of closing a goal is to apply a lemma which is the exact one needed for the goal to be solved.
The defective form of the tactic:

exact.

is equivalent to:

do

[done | by move=> top; apply top].

where t op is a fresh name assigned to the top assumption of the goal. This applied form is supported by the : discharge
tactical, and the tactic:

exact: MyLemma.

is equivalent to:

by apply: MyLemma.

(see section Discharge for the documentation of the apply: combination).

Warning: The list of tactics (possibly chained by semicolons) that follows the by keyword is considered to be a
parenthesized block applied to the current goal. Hence for example if the tactic:

by rewrite my_lemmal.

succeeds, then the tactic:

by rewrite my_lemmal; apply my_lemmaZz2.
usually fails since it is equivalent to:

by

(rewrite my_lemmal; apply my_lemmaZ2) .
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Selectors

Tactic: last

Tactic: first
When composing tactics, the two tacticals first and 1ast let the user restrict the application of a tactic to only
one of the subgoals generated by the previous tactic. This covers the frequent cases where a tactic generates two
subgoals one of which can be easily disposed of.

This is another powerful way of linearization of scripts, since it happens very often that a trivial subgoal can be
solved in a less than one line tactic. For instance, tactic ; last by tactic tries to solve the last subgoal
generated by the first tactic using the given second tactic, and fails if it does not succeed. Its analogue tactic ;
first by tactic tries to solve the first subgoal generated by the first tactic using the second given tactic, and
fails if it does not succeed.

SSReflect also offers an extension of this facility, by supplying tactics to permute the subgoals generated by a tactic.

Variant: last first
Variant: first last
These two equivalent tactics invert the order of the subgoals in focus.

Variant: last natural first
If natural’s value is k, this tactic rotates the n subgoals G , ..., G,, in focus. Subgoal G, ;_; becomes
the first, and the circular order of subgoals remains unchanged.

Tactic: first natural last
If natural’s valueis k, this tactic rotates the n subgoals G , ..., G, in focus. Subgoal G, | 4 -, DECOMES
the first, and the circular order of subgoals remains unchanged.

Finally, the tactics last and first combine with the branching syntax of Ltac: if the tactic generates n subgoals on a
given goal, then the tactic

tactic ; last k [ tacticl |..| tacticm ] || tacticn.

where natural denotes the integer k as above, applies tacticl to the n — k 4 1-th goal, ... tacticm to the n — k + 2-th goal
and tacticn to the others.

Example

Here is a small example on lists. We define first a function which adds an element at the end of a given list.

Inductive test : nat -> Prop :=
| C1l nofn-=1 test n
| C2 nof n=2: test n
| C3 nof n =3 test n
| C4 nof n=4: test n.

test is defined
test_ind is defined
test_sind is defined

Lemma example n (t : test n) : True.
1 subgoal

(continues on next page)
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(continued from previous page)

case: t; last 2 [move=> k| move=> 1]; idtac.
4 subgoals

subgoal 2 is:

k =2 —-> True
subgoal 3 is:
1 = 3 —> True

subgoal 4 is:
forall nO : nat, n0O = 4 —-> True

Iteration

? +
Tactic: do mult tactic [ |tactic

| 1
This tactical offers an accurate control on the repetition of tactics. mult is a multiplier.
Brackets can only be omitted if a single tactic is given and a multiplier is present.

A tactic of the form:

do [ tactic 1 | .. | tactic n ].

is equivalent to the standard Ltac expression:

first [ tactic 1 | .. | tactic n ].

The optional multiplier mu 1t specifies how many times the action of tactic should be repeated on the current subgoal.
There are four kinds of multipliers:

mult ::= |natural! | ! | natural? | ?

Their meaning is:
e n'! the step tactic is repeated exactly n times (where n is a positive integer argument).
| the step tactic is repeated as many times as possible, and done at least once.
* 2 the step tactic is repeated as many times as possible, optionally.
¢ n? the step tactic is repeated up to n times, optionally.

For instance, the tactic:

tactic; do 1? rewrite mult_comm.

rewrites at most one time the lemma mult_comm in all the subgoals generated by tactic, whereas the tactic:

tactic; do 2! rewrite mult_comm.

rewrites exactly two times the lemma mult_comm in all the subgoals generated by tactic, and fails if this rewrite is not

possible in some subgoal.
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Note that the combination of multipliers and rewrite is so often used that multipliers are in fact integrated to the syntax
of the SSReflect rewrite tactic, see section Rewriting.

Localization

In sections Basic localization and Bookkeeping, we have already presented the localization tactical in, whose general syntax
is:

. + ?
Tactic: tactic in ident £

where 1dent is a name in the context. On the left side of in, tactic can be move, case, elim, rewrite, set,
or any tactic formed with the general iteration tactical do (see section lteration).

The operation described by tactic is performed in the facts listed after in and in the goal if a * ends the list of names.
The in tactical successively:

« generalizes the selected hypotheses, possibly “protecting” the goal if * is not present,

 performs tact ic, on the obtained goal,

« reintroduces the generalized facts, under the same names.

This defective form of the do tactical is useful to avoid clashes between standard Ltac in and the SSReflect tactical in.

Example

Ltac mytac H := rewrite H.
mytac is defined

Il
o

Lemma test x y (Hl : x =vy) (H2 : y =3) : x + vy
1 subgoal

do [mytac H2] in H1 *.
1 subgoal

the last tactic rewrites the hypothesis H2 : y = 3bothinH1 : x = yandinthegoalx + y = 6.

By default in keeps the body of local definitions. To erase the body of a local definition during the generalization phase,
the name of the local definition must be written between parentheses, like in rewrite H in H1 (def_n) H2.
Variant:

? ?
tactic in |clear_switch @ [ ident ( ident ) ( |@ [ ident := c_pattern )

This is the most general form of the in tactical. In its simplest form the last option lets one rename hypotheses
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that can’t be cleared (like section variables). For example, (v := x) generalizes over x and reintroduces the
generalized variable under the name y (and does not clear x). For a more precise description of this form of
localization refer to Advanced generalization.

Structure

Forward reasoning structures the script by explicitly specifying some assumptions to be added to the proof context. It
is closely associated with the declarative style of proof, since an extensive use of these highlighted statements make the
script closer to a (very detailed) textbook proof.

Forward chaining tactics allow to state an intermediate lemma and start a piece of script dedicated to the proof of this
statement. The use of closing tactics (see section Terminators) and of indentation makes syntactically explicit the portion
of the script building the proof of the intermediate statement.

The have tactic.

Tactic: have : term
This is the main SSReflect forward reasoning tactic. It can be used in two modes: one starts a new (sub)proof for
an intermediate result in the main proof, and the other provides explicitly a proof term for this intermediate step.

This tactic supports open syntax for term. Applied to a goal G, it generates a first subgoal requiring a proof of
term in the context of G. The second generated subgoal is of the form term —> G, where term becomes the
new top assumption, instead of being introduced with a fresh name. At the proof-term level, the have tactic creates
a P redex, and introduces the lemma under a fresh name, automatically chosen.

Like in the case of the pose (ssreflect) tactic (see section Definitions), the types of the holes are abstracted in
term.

Example

Lemma test : True.
1 subgoal

have: _ * 0 = 0.

subgoal 2 is:
(forall n : nat, n * 0 = 0) —-> True

The invocation of have is equivalent to:

have: forall n : nat, n * 0 = 0.
2 subgoals
forall n nat, n * 0 = 0

subgoal 2 is:
(forall n : nat, n * 0 = 0) —-> True
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The have tactic also enjoys the same abstraction mechanism as the pose tactic for the non-inferred implicit arguments.
For instance, the tactic:

Example
have: forall x vy, (x, y) = (x, y + 0).
2 subgoals
forall (T : Type) (x : T) (y : nat), (x, y) = (x, y + 0)

subgoal 2 is:
(forall (T : Type) (x : T) (y : nat), (x, y) = (x, y + 0)) —> True

opens a new subgoal where the type of x is quantified.

The behavior of the defective have tactic makes it possible to generalize it in the following general construction:

Tactic:

* ? + ? ?
have i_item i_pattern s_item ssr_binder : term := term by tactic

Open syntax is supported for both term. For the description of i_itemand s_item see section Introduction in the
context. The first mode of the have tactic, which opens a sub-proof for an intermediate result, uses tactics of the form:

Variant: have clear switch i_item : term by tactic

which behave like:

have: term ; first by tactic.
move=> clear_switch 1i_item.

Note that the clear_ switch precedes the i_item, which allows to reuse a name of the context, possibly used by the
proof of the assumption, to introduce the new assumption itself.

The by feature is especially convenient when the proof script of the statement is very short, basically when it fits in one
line like in:

have H23 : 3 + 2 = 2 + 3 by rewrite addnC.

The possibility of using i__ i tem supplies a very concise syntax for the further use of the intermediate step. For instance,

Example

Lemma test a : 3 * a - 1 = a.
1 subgoal

have -> : forall x, x * a = a.
2 subgoals

a : nat

(continues on next page)
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(continued from previous page)

subgoal 2 is:
a - 1= a

Note how the second goal was rewritten using the stated equality. Also note that in this last subgoal, the intermediate
result does not appear in the context.

Thanks to the deferred execution of clears, the following idiom is also supported (assuming x occurs in the goal only):

have {x} -> : x = y.

Another frequent use of the intro patterns combined with have is the destruction of existential assumptions like in the
tactic:

Example

Lemma test : True.
1 subgoal

have [x Px]: exists x : nat, x > 0; last first.
2 subgoals

subgoal 2 is:
exists x : nat, x > 0

An alternative use of the have tactic is to provide the explicit proof term for the intermediate lemma, using tactics of
the form:

?
Variant: have ident 1= term

This tactic creates a new assumption of type the type of term. If the optional i dent is present, this assumption
is introduced under the name ident. Note that the body of the constant is lost for the user.

Again, non inferred implicit arguments and explicit holes are abstracted.

Example

Lemma test : True.
1 subgoal

have H := forall x, (x, xX) = (x, X).

(continues on next page)
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(continued from previous page)

1 subgoal

H : Type —-> Prop

adds to the context H : Type —-> Prop. This is a schematic example but the feature is specially useful when the
proof term to give involves for instance a lemma with some hidden implicit arguments.

After the i_pattern, alist of binders is allowed.

Example

Lemma test : True.
1 subgoal

have H x (y : nat) : 2 * x + y =x + x + y by lia.
1 subgoal

A proof term provided after := can mention these bound variables (that are automatically introduced with the given
names). Since the i_pattern can be omitted, to avoid ambiguity, bound variables can be surrounded with parentheses
even if no type is specified:

have (x) : 2 * x
1 subgoal

x + x by lia.

The i_itemand s_itemcan be used to interpret the asserted hypothesis with views (see section Views and reflection)
or simplify the resulting goals.

The have tactic also supports a suf £ modifier which allows for asserting that a given statement implies the current goal
without copying the goal itself.

Example

have suff H : 2 + 2 = 3; last first.
2 subgoals

subgoal 2 is:
2 + 2 =3 -> True
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Note that H is introduced in the second goal.

The suff modifier is not compatible with the presence of a list of binders.

Generating let in context entries with have

Since SSReflect 1.5 the have tactic supports a “transparent” modifier to generate let in context entries: the @ symbol in
front of the context entry name.

Example

Inductive Ord n := Sub x of x < n.
Ord is defined
Ord_rect is defined
Ord_ind is defined
Ord_rec is defined
Ord_sind is defined

Notation "'I_ n" := (Ord n) (at level 8, n at level 2, format "''I_' n").
Arguments Sub {_} _
Lemma test nm (H : m + 1 < n) : True.
1 subgoal
n, m : nat
H m+ 1 < n
True
have (@i : 'I_n by apply: (Sub m); lia.
1 subgoal
n, m : nat
H:m+ 1 <n
i := Sub m
((fun ... => Morphisms.iff_flip_ impl_subrelation .. ...%72 lemma)
(ZifyClasses.mkrel nat Z 1t Z.of_nat Z.1lt NatZZ inj_lt m
(...) egrefl n (...) eg_refl)
(let HO : ...%Z := ... in ... ...)) : 'I_.n
True

Note that the subterm produced by i a is in general huge and uninteresting, and hence one may want to hide it. For this

purpose the [ : name ] intro pattern and the tactic abstract (see The abstract tactic) are provided.
Example
Lemma test nm (H : m + 1 < n) : True.
1 subgoal
n, m nat

(continues on next page)
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(continued from previous page)

True

have [:pm] @i : 'I_n by apply: (Sub m); abstract: pm; lia.
1 subgoal

The type of pm can be cleaned up by its annotation (*1*) by just simplifying it. The annotations are there for technical
reasons only.

When intro patterns for abstract constants are used in conjunction with have and an explicit term, they must be used as
follows:

Example

Lemma test nm (H : m + 1 < n) : True.
1 subgoal

have [:pm] @i : 'I_n := Sub m pm.
2 subgoals

subgoal 2 is:
True

by lia.
1 subgoal

n, m : nat

H:m+ 1 <n

pm : S m <=n (*1%)

i = (Submpm : 'I_n) : 'I_n

In this case the abstract constant pm is assigned by using it in the term that follows : = and its corresponding goal is left
to be solved. Goals corresponding to intro patterns for abstract constants are opened in the order in which the abstract
constants are declared (not in the “order” in which they are used in the term).

Note that abstract constants do respect scopes. Hence, if a variable is declared after their introduction, it has to be properly
generalized (i.e. explicitly passed to the abstract constant when one makes use of it).
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Example

Lemma test nm (H : m + 1 < n) : True.
1 subgoal

True
have [:pm] @i k : 'I_(n+k) by apply: (Sub m); abstract: pm k; lia.
1 subgoal
n, m : nat
H:m+ 1 <n
pm : (forall k : nat, m < n + k) (*1%)
i := fun k : nat => Sub m (pm k) : forall k : nat, 'I_(n + k)
True

Last, notice that the use of intro patterns for abstract constants is orthogonal to the transparent flag @ for have.

The have tactic and typeclass resolution

Since SSReflect 1.5 the have tactic behaves as follows with respect to typeclass inference.

have foo : ty.
2 subgoals

subgoal 2 is:
True

Full inference for ty. The first subgoal demands a proof of such instantiated statement.

have foo : ty :=

No inference for ty. Unresolved instances are quantified in ty. The first subgoal demands a proof of such

quantified statement. Note that no proof term follows : =, hence two subgoals are generated.
have foo : ty := t.
1 subgoal
foo ty

No inference for ty and t.

have foo := t.
1 subgoal

(continues on next page)
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(continued from previous page)

No inference for t. Unresolved instances are quantified in the (inferred) type of t and abstracted in t.

Flag: SsrHave NoTCResolution
This flag restores the behavior of SSReflect 1.4 and below (never resolve typeclasses).

Variants: the suff and wlog tactics

As it is often the case in mathematical textbooks, forward reasoning may be used in slightly different variants. One of
these variants is to show that the intermediate step L easily implies the initial goal G. By easily we mean here that the
proof of L = G is shorter than the one of L itself. This kind of reasoning step usually starts with: “It suffices to show that

2

This is such a frequent way of reasoning that SSReflect has a variant of the have tactic called suffices (whose
abridged name is suff). The have and suff tactics are equivalent and have the same syntax but:

* the order of the generated subgoals is inverted

* the optional clear item is still performed in the second branch. This means that the tactic:

suff {H} H : forall x : nat, x >= 0.

fails if the context of the current goal indeed contains an assumption named H.

The rationale of this clearing policy is to make possible “trivial” refinements of an assumption, without changing its name
in the main branch of the reasoning.

The have modifier can follow the suf £ tactic.

Example

Lemma test : G.
1 subgoal

suff have H : P.

2 subgoals
H P
G

subgoal 2 is:
(P —> G) —> G

Note that, in contrast with have suff, the name H has been introduced in the first goal.

Another useful construct is reduction, showing that a particular case is in fact general enough to prove a general property.
This kind of reasoning step usually starts with: “Without loss of generality, we can suppose that ...”. Formally, this
corresponds to the proof of a goal G by introducing a cut wlog_statement -> G. Hence the user shall provide a
proof for both (wlog_statement -> G) -> Gandwlog_statement -> G.However, such cuts are usually
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rather painful to perform by hand, because the statement wlog_statement is tedious to write by hand, and sometimes
even to read.

SSReflect implements this kind of reasoning step through the without Ioss tactic, whose short name is wlog. It
offers support to describe the shape of the cut statements, by providing the simplifying hypothesis and by pointing at the
elements of the initial goals which should be generalized. The general syntax of without loss is:

Tactic: wlog suff z clear_switch z i _item z : |ident * / term

Tactic: without loss suff 7 clear_switch 7 i _item z : |ident F / term
where each ident is a constant in the context of the goal. Open syntax is supported for t erm.

In its defective form:

Variant: wlog: / term
Variant: without loss: / term

on a goal G, it creates two subgoals: a first one to prove the formula (term -> G) -> G and a second one to prove the
formula term -> G.

If the optional list of i dent is present on the left side of /, these constants are generalized in the premise (term -> G) of
the first subgoal. By default bodies of local definitions are erased. This behavior can be inhibited by prefixing the name
of the local definition with the @ character.

In the second subgoal, the tactic:

move=> clear_switch i_item.

is performed if at least one of these optional switches is present in the w1 og tactic.

The wlog tactic is specially useful when a symmetry argument simplifies a proof. Here is an example showing the
beginning of the proof that quotient and reminder of natural number euclidean division are unique.

Example

Lemma quo_rem_unicity d gl g2 rl r2
gql*d + rl = g2*d + r2 —> rl < d -> r2 <d -> (gql, rl) = (g2, r2).
1 subgoal

gl *d + rl = g2 *d + r2 —>rl <d ->1r2 <d-> (gl, rl) = (g2, r2)

wlog: gl g2 rl r2 / gl <= g2.
2 subgoals

(forall g3 g4 r3 r4 : nat,

g3 <= g4 >

g3 *d + r3 =qg4 *d+rd > r3 <d->r4d <d-> (g3, r3) = (g4, r4d)) —>
gl *d + rl = g2 *d + r2 —>rl <d->1r2 <d-> (g1, rl) = (g2, r2)

subgoal 2 is:
ql <= g2 ->
ql *d + rl = g2 *d + r2 > 1rl <d->1r2<d-> (gl, rl) = (g2, r2)

by case (le_gt_dec gl g2)=> H; last symmetry; eauto with arith.
1 subgoal
(continues on next page)
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(continued from previous page)

gl <= g2 ->
gl *d + rl = g2 *d + r2 —>rl <d ->1r2 <d-> (g1, rl) = (g2, r2)

The wlog suff variant is simpler, since it cuts wlog_statement instead of wlog_statement —-> G. It thus
opens the goals wlog_statement -> Gand wlog_statement.

Inits simplest form the generally have : ..tacticisequivalenttowlog suff : ..followed by lastfirst. When
the have tactic is used with the generally (or gen) modifier it accepts an extra identifier followed by a comma before
the usual intro pattern. The identifier will name the new hypothesis in its more general form, while the intro pattern will
be used to process its instance.

Example

Lemma simple n (ngt0 : 0 < n ) : P n.
1 subgoal

P n
gen have 1tnV, /andP[nge0 neqgO] : n ngtO0 / (0 <= n) && (n != 0); last first.
2 subgoals
n : nat
ngt0 : 0 < n
1ltnv : forall n : nat, 0 < n -> (0 <= n) && (n != 0)
nge0 0 <= n
neq0 n !=
P n

subgoal 2 is:
(0 <= n) && (n !'= 0)

Advanced generalization

The complete syntax for the items on the left hand side of the / separator is the following one:

2 2
Variant: wlog ... : clear switch @ | ident ( |Q [ ident := c_pattern) / term

Clear operations are intertwined with generalization operations. This helps in particular avoiding dependency issues while
generalizing some facts.

If an ident is prefixed with the @ mark, then a let-in redex is created, which keeps track if its body (if any). The syntax
(ident := c_pattern) allows to generalize an arbitrary term using a given name. Note that its simplest form (x
:= y) is just a renaming of y into x. In particular, this can be useful in order to simulate the generalization of a section
variable, otherwise not allowed. Indeed renaming does not require the original variable to be cleared.
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The syntax (@x := y) generates a let-in abstraction but with the following caveat: x will not bind y, but its body,
whenever y can be unfolded. This covers the case of both local and global definitions, as illustrated in the following
example.

Example

Section Test.
Variable x : nat.
x is declared

Definition addx z := z + x.
addx is defined

Lemma test : x <= addx x.
1 subgoal

x <= addx x

wlog H : (y := x) (@twoy := addx x) / twoy = 2 * y.
2 subgoals
X nat
(forall y : nat, let twoy := y + vy in twoy = 2 * y —> y <= twoy) —>

X <= addx x

subgoal 2 is:
y <= twoy

To avoid unfolding the term captured by the pattern add x one can use the pattern id (addx x), that would produce
the following first subgoal

wlog H : (y := x) (@twoy := id (addx x)) / twoy = 2 * y.
2 subgoals
x nat
(forall y : nat, let twoy := addx y in twoy = 2 * y —> y <= addx y) —>

x <= addx x

subgoal 2 is:
y <= addx y
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Rewriting

The generalized use of reflection implies that most of the intermediate results handled are properties of effectively com-
putable functions. The most efficient mean of establishing such results are computation and simplification of expressions
involving such functions, i.e., rewriting. SSReflect therefore includes an extended rewrite tactic, that unifies and
combines most of the rewriting functionalities.

An extended rewrite tactic

The main features of the rewrite tactic are:
* It can perform an entire series of such operations in any subset of the goal and/or context;
« It allows to perform rewriting, simplifications, folding/unfolding of definitions, closing of goals;
« Several rewriting operations can be chained in a single tactic;
» Control over the occurrence at which rewriting is to be performed is significantly enhanced.

The general form of an SSReflect rewrite tactic is:

+
Tactic: rewrite rstep

The combination of a rewrite tactic with the in tactical (see section Localization) performs rewriting in both the context
and the goal.

A rewrite step rstep has the general form:

9

rstep ::= |r_prefix | r_item
5 ? ? ?
r_prefix ::= [ |mult | |occ_switch ‘ clear_switch [ r_pattern ]
2
r_pattern ::= |term in identin | term term in \ term as | ident in term
?
r_item ::= ||/ | term S_item

An r_prefix contains annotations to qualify where and how the rewrite operation should be performed:

* The optional initial — indicates the direction of the rewriting of r_ i tem: if present the direction is right-to-left
and it is left-to-right otherwise.

* The multiplier mult (see section lteration) specifies if and how the rewrite operation should be repeated.

* A rewrite operation matches the occurrences of a rewrite pattern, and replaces these occurrences by another term,
according to the given r_ i tem. The optional redex switch [r_pattern], which should always be surrounded
by brackets, gives explicitly this rewrite pattern. In its simplest form, it is a regular term. If no explicit redex switch
is present the rewrite pattern to be matched is inferred from the r_item.

» This optional term, or the r item, may be preceded by an occ_switch (see section Selectors) or a
clear_switch (see section Discharge), these two possibilities being exclusive.

An occurrence switch selects the occurrences of the rewrite pattern which should be affected by the rewrite opera-
tion.

A clear switch, even an empty one, is performed after the r_item is actually processed and is complemented
with the name of the rewrite rule if an only if it is a simple proof context entry’. As a consequence one can write
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rewrite {}H torewrite with H and dispose H immediately afterwards. This behavior can be avoided by putting
parentheses around the rewrite rule.

An r_itemcan be:

* A simplification r_item, represented by a s_ i tem (see section Introduction in the context). Simplification oper-
ations are intertwined with the possible other rewrite operations specified by the list of _item.

* A folding/unfolding r_item. The tactic: rewrite /term unfolds the head constant of term in every occur-
rence of the first matching of term in the goal. In particular, if my_def is a (local or global) defined constant,
the tactic: rewrite /my_def. is analogous to: unfold my_def. Conversely: rewrite —/my_def.
is equivalent to: fold my_def. When an unfold »_ i t em is combined with a redex pattern, a conversion oper-
ation is performed. A tactic of the form: rewrite - [terml]/term2. isequivalent to: change terml
with term2. If term? is a single constant and terml head symbol is not term2, then the head symbol of
terml is repeatedly unfolded until t erm2 appears.

¢ A term, which can be:

— A term whose type has the form: forall (x1 : Al )..(xn : An ), eq terml term2
where eq is the Leibniz equality or a registered setoid equality.

— Alistof terms (t1 ,..,tn),each ti havinga type above. The tactic: rewrite r_prefix (tl

,..,Ln ). is equivalent to: do [rewrite r_prefix tl | .. | rewrite r_prefix
tn .
— An anonymous rewrite lemma (_ : term), where term has a type as above.
Example
Definition double x := x + x.

double is defined

Definition ddouble x := double (double x).
ddouble is defined

Lemma test x : ddouble x = 4 * x.
1 subgoal

rewrite [ddouble _]/double.
1 subgoal

Warning: The SSReflect terms containing holes are not typed as abstractions in this context. Hence the
following script fails.
Definition f := fun x y => x + y.

f is defined

Lemma test xy : x +y =f vy x.
1 subgoal
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rewrite -[f y]/(y + _).
Toplevel input, characters 0-22:
> rewrite —[f y]/(y + _).

S AANAAAAAAAAANNANNAAAAANNNN

Error: fold pattern (y + _) does not match redex (f y)

but the following script succeeds

rewrite - [f y x]/(y + _).
1 subgoal
X, Y nat

Flag: SsrOldRewriteGoalsOrder
Controls the order in which generated subgoals (side conditions) are added to the proof context. The flag is off by
default, which puts subgoals generated by conditional rules first, followed by the main goal. When it is on, the main
goal appears first. If your proofs are organized to complete proving the main goal before side conditions, turning
the flag on will save you from having to add Iast first tactics that would be needed to keep the main goal as
the currently focused goal.

Remarks and examples
Rewrite redex selection

The general strategy of SSReflect is to grasp as many redexes as possible and to let the user select the ones to be rewritten
thanks to the improved syntax for the control of rewriting.

This may be a source of incompatibilities between the two rewrite tactics.

In a rewrite tactic of the form:

rewrite occ_switch [terml]term?2.

terml is the explicit rewrite redex and term?2 is the rewrite rule. This execution of this tactic unfolds as follows:

First terml and term2 are i normalized. Then term?2 is put in head normal form if the Leibniz equality
constructor eq is not the head symbol. This may involve € reductions.

Then, the matching algorithm (see section Abbreviations) determines the first subterm of the goal matching the
rewrite pattern. The rewrite pattern is given by terml, if an explicit redex pattern switch is provided, or by the
type of term2 otherwise. However, matching skips over matches that would lead to trivial rewrites. All the
occurrences of this subterm in the goal are candidates for rewriting.

Then only the occurrences coded by occ_swit ch (see again section Abbreviations) are finally selected for rewrit-
ing.

The left hand side of term? is unified with the subterm found by the matching algorithm, and if this succeeds, all
the selected occurrences in the goal are replaced by the right hand side of term?2.

Finally the goal is 3t normalized.
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In the case term?2 is a list of terms, the first top-down (in the goal) left-to-right (in the list) matching rule gets selected.

Chained rewrite steps

The possibility to chain rewrite operations in a single tactic makes scripts more compact and gathers in a single command
line a bunch of surgical operations which would be described by a one sentence in a pen and paper proof.

Performing rewrite and simplification operations in a single tactic enhances significantly the concision of scripts. For
instance the tactic:

rewrite /my_def {2}[f _]/= my_eq //=.

unfolds my_def in the goal, simplifies the second occurrence of the first subterm matching pattern [£ _ ], rewrites
my_edq, simplifies the goals and closes trivial goals.

Here are some concrete examples of chained rewrite operations, in the proof of basic results on natural numbers arithmetic.

Example

Axiom addnO : forall m, m + 0 = m.
addn0 is declared

Axiom addnS : forall m n, m + S n =S (m + n).
addnS is declared

Axiom addSnnS : forall m n, Sm + n =m + S n.

addSnnS is declared

Lemma addnCAmnp :m+ (n +p) =n+ (m+ p).
1 subgoal

by elim: m p => [ | m Hrec] p; rewrite ?addSnnS -?addnS.
No more subgoals.

Qed.

Lemma addnC nm : m + n = n + m.
1 subgoal

by rewrite -{1}[n]addn0 addnCA addnO.
No more subgoals.

Qed.

Note the use of the ? switch for parallel rewrite operations in the proof of addnCA.
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Explicit redex switches are matched first

If an r_prefix involves a redex switch, the first step is to find a subterm matching this redex pattern, independently
from the left hand side of the equality the user wants to rewrite.

Example

Lemma test (H : forall t u, t +u=u+t) xy : x +vy =y + x.
1 subgoal

H : forall t u : nat, t + u =u + t
X, y : nat

rewrite [y + _]H.
1 subgoal

H : forall t u : nat, t + u=u + t
X, y : nat

Note that if this first pattern matching is not compatible with the r_ i t em, the rewrite fails, even if the goal contains a
correct redex matching both the redex switch and the left hand side of the equality.

Example
Lemma test (H : forall t u, t +u * 0 =1t) xvy X +y *4+2*0=x+2*0.
1 subgoal
H : forall t u : nat, t + u * 0 =t

X, Y : nat

Fail rewrite [x + _]H.
The command has indeed failed with message:
pattern (x + y * 4) does not match LHS of H

Indeed the left hand side of H does not match the redex identified by the pattern x + y * 4.

Occurrence switches and redex switches

Example

Lemma test xy : x +y +0=x+y+y+0+0+ (x+y + 0).
1 subgoal

(continues on next page)

3.1. Basic proof writing 351



The Coq Reference Manual, Release 8.13.2

x+y+0=x+y+y+0+0+ (x+y+ 0)

rewrite {2}[_ + y + 0] (_: forall z, z + 0 = z).
2 subgoals
X, VY nat
forall z : nat, z + 0 = z

subgoal 2 is:
Xx+y+0=x+y+y+0+0+ (x+vy)

(continued from previous page)

The second subgoal is generated by the use of an anonymous lemma in the rewrite tactic. The effect of the tactic on the
initial goal is to rewrite this lemma at the second occurrence of the first matching x + y + 0 of the explicit rewrite

redex _ + y + O.

Occurrence selection and repetition

Occurrence selection has priority over repetition switches. This means the repetition of a rewrite tactic specified by a
multiplier will perform matching each time an elementary rewrite operation is performed. Repeated rewrite tactics apply
to every subgoal generated by the previous tactic, including the previous instances of the repetition.

Example
Lemma test x y (z : nat) : x + 1 =x + vy + 1.
1 subgoal
X, YV, 2 nat

rewrite 2! (_ : _ + 1 = z).
4 subgoals
X, YV, 2 nat
x + 1 =z

subgoal 2 is:
z = z

subgoal 3 is:
x +ty + 1=z

subgoal 4 is:

zZz = Z

This last tactic generates three subgoals because the second rewrite operation specified with the 2 ! multiplier applies to

the two subgoals generated by the first rewrite.
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Multi-rule rewriting

The rewrite tactic can be provided a fuple of rewrite rules, or more generally a tree of such rules, since this tuple can
feature arbitrary inner parentheses. We call multirule such a generalized rewrite rule. This feature is of special interest
when it is combined with multiplier switches, which makes the rewrite tactic iterate the rewrite operations prescribed by
the rules on the current goal.

Example

Variables (a b ¢ : nat).
a is declared
b is declared
c is declared

Hypothesis egab : a = b.
egab is declared

Hypothesis egac : a = c.

egac is declared

Lemma test : a = a.
1 subgoal

rewrite (egab, egac).
1 subgoal

Indeed rule egab is the first to apply among the ones gathered in the tuple passed to the rewrite tactic. This multirule
(egab, egac) is actually a Coq term and we can name it with a definition:

Definition multil := (egab, egac).
multil is defined

In this case, the tactic rewrite multil isasynonym for rewrite (egab, egac).

More precisely, a multirule rewrites the first subterm to which one of the rules applies in a left-to-right traversal of the
goal, with the first rule from the multirule tree in left-to-right order. Matching is performed according to the algorithm
described in Section Abbreviations, but literal matches have priority.

Example

Definition d := a.
d is defined

(continues on next page)
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Hypotheses eqd0 : d = 0.

eqd0 is declared

Definition multi2 := (egab, eqgd0).

multi2 is defined

Lemma test : d = b.

1 subgoal

a, b, ¢ : nat

eqab : a = Db
egac a =c
eqd0 d =0
d=>

rewrite multi?2.

1 subgoal

a, b, ¢ : nat

eqab : a = Db
egqac : a = c
eqdld : d =0
0 =Db

Indeed rule eqd0 applies without unfolding the definition of d.

(continued from previous page)

For repeated rewrites the selection process is repeated anew.

Example

Hypothesis eq_adda_b : forall x, x + a = Db.

eg_adda_b is declared

Hypothesis eq_adda_c : forall x, x + a = cC.

eg_adda_c is declared

Hypothesis egb0 : b = 0.

egb0 is declared

Definition multi3 := (eqg_adda_b, eqg_adda_c,

multi3 is defined

Lemma test : 1 + a = 12 + a.

1 subgoal

a, b, ¢ : nat

eqab : a = b
egqac : a = c
eqdd : d = 0

eq_adda_b : forall x : nat, x + a = Db

egbO0) .

(continues on next page)
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(continued from previous page)

eq_adda_c : forall x : nat, x + a = ¢
egb0

o |
Il
o

rewrite 2'multi3.
1 subgoal

a, b, ¢ : nat

eqab : a = Db
egqac : a = cC
eqdld : d = 0

eq_adda_b : forall x : nat, x + a =
eq_adda_c : forall x : nat, x + a
egb0 : b =0

Il
Qo

It uses eq_adda_b then egb0 on the left-hand side only. Without the bound 2 one would obtain 0 = 0.

The grouping of rules inside a multirule does not affect the selection strategy but can make it easier to include one rule
set in another or to (universally) quantify over the parameters of a subset of rules (as there is special code that will omit
unnecessary quantifiers for rules that can be syntactically extracted). It is also possible to reverse the direction of a rule
subset, using a special dedicated syntax: the tactic rewrite (=~ multil) isequivalentto rewrite multil_rev.

Example

Hypothesis egba : b = a.
egba is declared

Hypothesis eqgca : ¢ = a.
eqca is declared

Definition multil_rev := (egba, egca).
multil_rev is defined

except that the constants eqba, eqab, mult1_rev have not been created.

Rewriting with multirules is useful to implement simplification or transformation procedures, to be applied on terms of
small to medium size. For instance the library ssrnat (Mathematical Components library) provides two implemen-
tations for arithmetic operations on natural numbers: an elementary one and a tail recursive version, less inefficient but
also less convenient for reasoning purposes. The library also provides one lemma per such operation, stating that both
versions return the same values when applied to the same arguments:

Lemma addE : add =2 addn.
Lemma doubleE : double =1 doublen.

Lemma add_mulE n m s : add_mul n m s = addn (muln n m) s.
Lemma mulE : mul =2 muln.
Lemma mul_expE mn p : mul_exp m n p = muln (expn m n) p.
Lemma expE : exp =2 expn.

Lemma oddE : odd =1 oddn.

The operation on the left hand side of each lemma is the efficient version, and the corresponding naive implementation
is on the right hand side. In order to reason conveniently on expressions involving the efficient operations, we gather all
these rules in the definition t recE:
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Definition trecE := (addkE, (doubleE, oddE), (mulE, add_mulE, (expE, mul_expE))) .

The tactic: rewrite !trecE. restores the naive versions of each operation in a goal involving the efficient ones, e.g.
for the purpose of a correctness proof.

Wildcards vs abstractions

The rewrite tactic supports r_items containing holes. For example, in the tactic rewrite (_ : _ * 0 = 0).
the term _ * 0 = O isinterpreted as forall n : nat, n * 0 = 0. Anyway this tactic is not equivalent to
rewrite (_ : forall x, x * 0 = 0)..

Example

Lemma test y z : vy * 0 +y * (z * 0) = 0.
1 subgoal

rewrite (_ : * 0 =0).

2 subgoals

subgoal 2 is:
0 +y * (z *0) =0

while the other tactic results in

rewrite (_ : forall x, x * 0 = 0).
2 subgoals
Y, Z nat

subgoal 2 is:
0 +y * (z *0) =0

The first tactic requires you to prove the instance of the (missing) lemma that was used, while the latter requires you prove
the quantified form.

356 Chapter 3. Proofs



The Coq Reference Manual, Release 8.13.2

When SSReflect rewrite fails on standard Coq licit rewrite

In a few cases, the SSReflect rewrite tactic fails rewriting some redexes which standard Coq successfully rewrites. There
are two main cases:

* SSReflect never accepts to rewrite indeterminate patterns like:

Lemma foo (x : unit) : x = tt.

SSReflect will however accept the nC expansion of this rule:

Lemma fubar (x : unit) : (let u := x in u) = tt.

 The standard rewrite tactic provided by Coq uses a different algorithm to find instances of the rewrite rule.

Example

Variable g : nat —> nat.
g is declared

Definition f := g.
f is defined

Axiom H : forall x, g x = 0.
H is declared

Lemma test : £ 3 + £ 3 = £ 6.
1 subgoal

(* we call the standard rewrite tactic here *)
rewrite —> H.
1 subgoal

g : nat —> nat

This rewriting is not possible in SSReflect because there is no occurrence of the head symbol £ of the rewrite rule
in the goal.

rewrite H.
Toplevel input, characters 0-9:
> rewrite H.

S AAAAAAAANA

Error: The LHS of H

(g )
does not match any subterm of the goal

Rewriting with H first requires unfolding the occurrences of £ where the substitution is to be performed (here
there is a single such occurrence), using tactic rewrite /f (for a global replacement of f by g) or rewrite
pattern/f, for a finer selection.

3.1. Basic proof writing 357



The Coq Reference Manual, Release 8.13.2

rewrite /f H.
1 subgoal

alternatively one can override the pattern inferred from H

rewrite [f _]H.
1 subgoal

Existential metavariables and rewriting

The rewrite tactic will not instantiate existing existential metavariables when matching a redex pattern.

If a rewrite rule generates a goal with new existential metavariables in the Prop sort, these will be generalized as for
apply (see The apply tactic) and corresponding new goals will be generated.

Example

Axiom leg : nat —-> nat —> bool.
leg is declared

Notation "m <= n" := (leg m n) : nat_scope.
Notation "m < n" := (S m <= n) : nat_scope.
Inductive Ord n := Sub x of x < n.

Ord is defined
Ord_rect is defined
Ord_ind is defined
Ord_rec is defined
Ord_sind is defined

Notation "'I_ n" := (Ord n) (at level 8, n at level 2, format "''I_' n").
Arguments Sub {_} _ _.
Definition val n (i : 'I_n) := let: Sub a _ := i in a.

val is defined

Definition insub n x :=
if @idP (x < n) is ReflectT _ Px then Some (Sub x Px) else None.
insub is defined

Axiom insubT : forall n x Px, insub n x = Some (Sub x Px).
insubT is declared
Lemma test (x : 'I_2) y : Some x = insub 2 y.

1 subgoal

x : '"I_2

(continues on next page)
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(continued from previous page)

rewrite insubT.

2 subgoals
X 'T_2
y : nat

forall HypO : y < 2, Some x = Some (Sub y HypO)

subgoal 2 is:
y < 2

Since the argument corresponding to Px is not supplied by the user, the resulting goal should be Some x = Some
(Sub y ?Goal) . Instead, SSReflect rewrite tactic hides the existential variable.

As in The apply tactic, the ssrautoprop tactic is used to try to solve the existential variable.

Lemma test (x : 'I_2) y (H : vy < 2) : Some x = insub 2 y.
1 subgoal
X 'T_2
v nat
H y < 2
Some x = insub 2 y

rewrite insubT.
1 subgoal

Some x = Some (Sub y H)

As a temporary limitation, this behavior is available only if the rewriting rule is stated using Leibniz equality (as opposed
to setoid relations). It will be extended to other rewriting relations in the future.

Rewriting under binders

Goals involving objects defined with higher-order functions often require “rewriting under binders”. While setoid rewriting
is a possible approach in this case, it is common to use regular rewriting along with dedicated extensionality lemmas. This
may cause some practical issues during the development of the corresponding scripts, notably as we might be forced to
provide the rewrite tactic with complete terms, as shown by the simple example below.

Example

Axiom subnn : forall n : nat, n — n = 0.

Parameter map : (nat —> nat) -> list nat —> list nat.
Parameter sumlist : list nat -> nat.

(continues on next page)
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(continued from previous page)
Axiom eqg_map
forall F1 F2 : nat —-> nat,
(forall n : nat, F1 n = F2 n) —>
forall 1 : list nat, map F1 1 = map F2 1.

Lemma example_map 1 : sumlist (map (fun m => m - m) 1) = 0.
1 subgoal

1 : list nat

sumlist (map (fun m : nat => m - m) 1) = 0

In this context, one cannot directly use eq_map:

rewrite eg_map.
Toplevel input, characters 0-14:
> rewrite eq_map.
S AAAAAAAAAAAAAA
Error: Unable to find an instance for the variable F2.
Rule's type:
(forall F1 F2 : nat -> nat,
(forall n : nat, F1 n = F2 n) —> forall 1 : list nat, map F1 1 = map F2 1)

as we need to explicitly provide the non-inferable argument F2, which corresponds here to the term we want to obtain
after the rewriting step. In order to perform the rewrite step one has to provide the term by hand as follows:

rewrite ((@eg map _ (fun _ : nat => 0)).
2 subgoals

1 : list nat

subgoal 2 is:
sumlist (map (fun _ : nat => 0) 1) = 0

by move=> m; rewrite subnn.
1 subgoal

1 : list nat

sumlist (map (fun _ : nat => 0) 1) = 0

The under tactic lets one perform the same operation in a more convenient way:

Lemma example_map 1 : sumlist (map (funm =>m - m) 1) = 0.
1 subgoal

1 : list nat

sumlist (map (fun m : nat => m - m) 1) = 0

under eq_map => m do rewrite subnn.
1 subgoal

1 : list nat

(continues on next page)
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sumlist (map (fun _ : nat => 0) 1) = 0

The under tactic

The convenience under tactic supports the following syntax:

? i *
Tactic: under r prefix term |=> |i_item do tactic [ tacticI ]

Operate under the context proved to be extensional by lemma term.

Error: Incorrect number of tactics (expected N tactics, was given M).
This error can occur when using the version with a do clause.

The multiplier part of r_prefix is not supported.

We distinguish two modes, interactive mode without a do clause, and one-liner mode with a do clause, which are explained
in more detail below.

Interactive mode

Let us redo the running example in interactive mode.

Example

Lemma example_map 1 : sumlist (map (fun m => m - m) 1) = 0.
1 subgoal

1 : list nat

sumlist (map (fun m : nat => m - m) 1) = 0

under eq_map => m.
2 focused subgoals
(shelved: 2)

1 : list nat
: nat

subgoal 2 is:
sumlist (map ?Goal 1) = 0

rewrite subnn.
2 focused subgoals
(shelved: 2)

(continues on next page)
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'Under [ O

subgoal 2 is:
sumlist (map ?Goal 1) = 0

over.

1 focused subgoal
(shelved: 1)

sumlist (map (fun _ : nat => 0) 1) = 0

The execution of the Ltac expression:

under term => [ i_item; | .. | i_item, ].

involves the following steps:

1.

It performs a rewrite term without failing like in the first example with rewrite eq_map., but creating
evars (see evar). If term is prefixed by a pattern or an occurrence selector, then the modifiers are honoured.

As a n-branches intro pattern is provided under checks that n+1 subgoals have been created. The last one is the
main subgoal, while the other ones correspond to premises of the rewrite rule (such as forall n, F1 n =
F2 nfor eq_map).

If so under puts these n goals in head normal form (using the defective form of the tactic move), then executes
the corresponding intro pattern i_pattern; in each goal.

Then unde r checks that the first n subgoals are (quantified) Leibniz equalities, double implications or registered re-
lations (w.r.t. Class RewriteRelation)betweenatermandanevar,e.g. m — m = ?F2 minthe runningex-
ample. (This support for setoid-like relations is enabled as soon as we do both Require Import ssreflect.
and Require Setoid.)

If so under protects these n goals against an accidental instantiation of the evar. These protected goals are dis-
played using the 'Under [ .. ] notation (e.g. 'Under[ m - m ] in the running example).

The expression inside the 'Under [ .. ] notation can be proved equivalent to the desired expression by using a
regular rewrite tactic.

Interactive editing of the first n goals has to be signalled by using the ove r tactic or rewrite rule (see below), which
requires that the underlying relation is reflexive. (The running example deals with Leibniz equality, but PreOrder
relations are also supported, for example.)

Finally, a post-processing step is performed in the main goal to keep the name(s) for the bound variables chosen
by the user in the intro pattern for the first branch.

The over tactic

Two equivalent facilities (a terminator and a lemma) are provided to close intermediate subgoals generated by under
(i.e. goals displayed as 'Under [ .. 1):

Tactic: over

This terminator tactic allows one to close goals of the form 'Under [ .. ].

Variant: by rewrite over

This is a variant of over in order to close 'Under [ .. ] goals, relying on the over rewrite rule.
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Note

that a rewrite rule UnderE is available as well, if one wants to “unprotect” the evar, without closing the goal

automatically (e.g., to instantiate it manually with another rule than reflexivity).

One-liner mode

The Ltac expression:

under term => [ i_item; | .. | i_item, ] do [ tactic; | .. | tactic, ].

can be seen as a shorter form for the following expression:

(under term) => [ i_item; | .. | i_item, | 1; [ tactic,; over | .. | tactic,;
over | cbv beta iota ].

Notes:

The beta-iota reduction here is useful to get rid of the beta redexes that could be introduced after the substi-
tution of the evars by the under tactic.

Note that the provided tactics can as well involve other under tactics. See below for a typical example involving
the bigop theory from the Mathematical Components library.

If there is only one tactic, the brackets can be omitted, e.g.: under term => i do tactic. and thatshorter
form should be preferred.

If the do clause is provided and the intro pattern is omitted, then the default i tem * is applied to each branch.

E.g., the Ltac expression: under term do [ tactic; | .. | tactic, ] is equivalent to: under
term => [ * | .. | * ] do [ tactic; | .. | tactic, ] (and it can be noted here that the
under tactic performs a move . before processing the intro patterns => [ * | .. | * ]).

Example

Parameter addnC : forall m n : nat, m + n = n + m.
Parameter mulnl : forall n : nat, n * 1 = n

Check eqg_bigr.

eq_bigr
forall (nm : nat) (P : nat -> bool) (F1 F2 : nat —-> nat),
(forall x : nat, P x —> Fl1 x = F2 x) —>
\sum_(n <= 1 <m | P i) F1 1 \sum_(n <= i <m | P i) F2 i

Check eq_big.

eq_big
forall (nm : nat) (P1 P2 : nat —-> bool) (F1 F2 : nat —-> nat),
(forall x : nat, Pl x = P2 x) —>
(forall i : nat, P1 1 -> F1 i = F2 i) —>
\sum_(n <= i <m | P1 i) F1 1 = \sum_(n <= i <m | P2 i) F2 i

Lemma test_big_nested (m n : nat)

\sum_(0 <= a < m | prime a) \sum_(0 <= j <

o}

[ odd (3 * 1)) (a + 3) =

\sum_(0 <= i < m | prime 1) \sum_(0 <= J < n | odd j) (j + 1i).
1 subgoal
m, n nat
\sum_(0 <= a < m | prime a) \sum_(0 <= j < n | odd (3 * 1)) (a + J) =
\sum_(0 <= i < m | prime i) \sum_(0 <= j < n | odd j) (3 + 1)

(continues on next page)
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under eq_bigr => i prime_1i do
under eq big => [ j | j odd_j ] do

[ rewrite (mulnl j) | rewrite (addnC i j) 1].
1 subgoal
m, n nat

i <m | prime i) \sum_ (0 J<n | odd j) (3 + i) =
\sum_(0 <= i < m | prime i) \sum_(0 <= j < n | odd j) (3 + 1)

Remark how the final goal uses the name i (the name given in the intro pattern) rather than a in the binder of the first
summation.

Locking, unlocking

As program proofs tend to generate large goals, it is important to be able to control the partial evaluation performed
by the simplification operations that are performed by the tactics. These evaluations can for example come from a /=
simplification switch, or from rewrite steps which may expand large terms while performing conversion. We definitely
want to avoid repeating large subterms of the goal in the proof script. We do this by “clamping down” selected function
symbols in the goal, which prevents them from being considered in simplification or rewriting steps. This clamping is
accomplished by using the occurrence switches (see section Abbreviations) together with “term tagging” operations.

SSReflect provides two levels of tagging.

The first one uses auxiliary definitions to introduce a provably equal copy of any term t. However this copy is (on purpose)
not convertible to t in the Coq system®’. The job is done by the following construction:

Lemma master_key : unit. Proof. exact tt. Qed.
Definition locked A := let: tt := master_key in fun x : A => x.
Lemma lock : forall A x, x = locked x :> A.

Note that the definition of master_key is explicitly opaque. The equation t = locked t given by the 1ock lemma
can be used for selective rewriting, blocking on the fly the reduction in the term t.

Example

Variable A : Type.
A is declared

Fixpoint has (p : A -> bool) (1 : list A) : bool :=
if 1 is cons x 1 then p x || (has p 1) else false.
has is defined
has is recursively defined (guarded on 2nd argument)

Lemma test p xy 1 (H: p x = true) : has p (x ::y :: 1) = true.
1 subgoal

A : Type
p : A —> bool
X, y : A
(continues on next page)

37 This is an implementation feature: there is no such obstruction in the metatheory
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has p (x vy 1) = true
rewrite {2} [cons]lock /= -lock.
1 subgoal
A : Type
p : A —> bool
X, y : A

1 : list A

It is sometimes desirable to globally prevent a definition from being expanded by simplification; this is done by adding
locked in the definition.

Example

Definition 1lid := locked (fun x : nat => x).
1id is defined

Lemma test : 1lid 3 = 3.
1 subgoal

rewrite /=.
1 subgoal

unlock 1lid.
1 subgoal

Tactic: unlock occ_switch ident
This tactic unfolds such definitions while removing “locks”, i.e. it replaces the occurrence(s) of ident coded by
the occ__switch with the corresponding body.

We found that it was usually preferable to prevent the expansion of some functions by the partial evaluation switch /=,
unless this allowed the evaluation of a condition. This is possible thanks to another mechanism of term tagging, resting
on the following Notation:

Notation "'nosimpl' t" := (let: tt := tt in t).

The term (nosimpl t) simplifies to t except in a definition. More precisely, given:
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Definition foo := (nosimpl bar).

the term foo (or (foo t’)) will not be expanded by the simpl tactic unless it is in a forcing context (e.g., in mat ch
foo t’ with .. end, foo t’ will be reduced if this allows mat ch to be reduced). Note that nosimpl bar is
simply notation for a term that reduces to bar; hence unfold foo will replace foo by bar, and fold foo will
replace bar by foo.

Warning: The nosimpl trick only works if no reduction is apparent in t; in particular, the declaration:

Definition foo x := nosimpl (bar x).

will usually not work. Anyway, the common practice is to tag only the function, and to use the following definition,
which blocks the reduction as expected:

Definition foo x := nosimpl bar x.

A standard example making this technique shine is the case of arithmetic operations. We define for instance:
Definition addn := nosimpl plus.
The operation addn behaves exactly like plus, except that (addn (S n) m) will not simplify spontaneously to

(S (addn n m)) (the two terms, however, are convertible). In addition, the unfolding step: rewrite /addn will
replace addn directly with plus, so the nosimpl form is essentially invisible.

Congruence

Because of the way matching interferes with parameters of type families, the tactic:

apply: my_congr_property.

will generally fail to perform congruence simplification, even on rather simple cases. We therefore provide a more robust
alternative in which the function is supplied:

?
Tactic: congr natural term

This tactic:
* checks that the goal is a Leibniz equality;

» matches both sides of this equality with “term applied to some arguments”, inferring the right number of
arguments from the goal and the type of term. This may expand some definitions or fixpoints;

 generates the subgoals corresponding to pairwise equalities of the arguments present in the goal.

The goal can be a non dependent product P —> Q. In that case, the system asserts the equation P = Q, uses it to
solve the goal, and calls the congr tactic on the remaining goal P = Q. This can be useful for instance to perform
a transitivity step, like in the following situation.

Example

Lemma test (x y z : nat) (H : x =vy) : x = z.
1 subgoal

X, YV, z : nat
H: x =y

(continues on next page)
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X = z
congr (_ = _) : H.
1 focused subgoal
(shelved: 1)
X, YV, 2 nat
y = 2z
Abort.
Lemma test (x y z : nat) : x =y —> x = z.
1 subgoal
X, YV, 2 nat
X =y —> x =z
congr (_ = _).
1 focused subgoal
(shelved: 1)
X, V, 2 nat
Yy = 2

The optional natural forces the number of arguments for which the tactic should generate equality proof obli-
gations.

This tactic supports equalities between applications with dependent arguments. Yet dependent arguments should
have exactly the same parameters on both sides, and these parameters should appear as first arguments.

Example

Definition f n :=
if n is 0 then plus else mult.
f is defined

Definition g (n m : nat) := plus.
g is defined

Lemma test xy : £f 0 xy=9g1l1zxy.
1 subgoal

congr plus.
No more subgoals.

This script shows that the congr tactic matches plus with £ 0 on the left hand side and g 1 1 on the right
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hand side, and solves the goal.

Example

Lemma test nm (Hnhm : m <= n) : Sm + (Sn - S m) =S n.

1 subgoal

congr S; rewrite -/plus.
1 subgoal

n, m : nat

The tactic rewrite -/plus folds back the expansion of plus which was necessary for matching both sides of

the equality with an application of S.

Like most SSReflect arguments, t e rm can contain wildcards.

Example

Lemma test xy : x + (y * (y + x - x)) =x * 1+ (y + 0)
1 subgoal

congr ( _ + (_ * _)).
3 focused subgoals
(shelved: 3)

subgoal 2 is:
y =y + 0
subgoal 3 is:
y + X - X =y
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Contextual patterns

The simple form of patterns used so far, terms possibly containing wild cards, often require an additional occ_switch
to be specified. While this may work pretty fine for small goals, the use of polymorphic functions and dependent types
may lead to an invisible duplication of function arguments. These copies usually end up in types hidden by the implicit
arguments machinery or by user-defined notations. In these situations computing the right occurrence numbers is very
tedious because they must be counted on the goal as printed after setting the Printing A1l flag. Moreover the
resulting script is not really informative for the reader, since it refers to occurrence numbers he cannot easily see.

Contextual patterns mitigate these issues allowing to specify occurrences according to the context they occur in.

Syntax

The following table summarizes the full syntax of c¢_pat tern and the corresponding subterm(s) identified by the pattern.
In the third column we use s.m.r. for “the subterms matching the redex” specified in the second column.

c_pattern redex subterms affected

term term all occurrences of term

ident in term subterm of term se- | all the subterms identified by ident in all the occurrences of
lected by ident term

terml in ident terml in all s.m.r. in all the subterms identified by ident in all the occurrences

in term2 of term2

terml as ident term 1 in all the subterms identified by ident in all the occurrences

in term?2 of term2[term 1 /ident]

The rewrite tactic supports two more patterns obtained prefixing the first two with in. The intended meaning is that the
pattern identifies all subterms of the specified context. The rewrite tactic will infer a pattern for the redex looking at
the rule used for rewriting.

r_pattern redex subterms affected
in term inferred from | in all s.m.r. in all occurrences of term
rule
in ident in inferred from | in all s.m.r. in all the subterms identified by i dent in all the occurrences
term rule of term

The first c_pattern is the simplest form matching any context but selecting a specific redex and has been described
in the previous sections. We have seen so far that the possibility of selecting a redex using a term with holes is already a
powerful means of redex selection. Similarly, any terms provided by the user in the more complex forms of ¢_patterns
presented in the tables above can contain holes.

For a quick glance at what can be expressed with the last »_pattern consider the goal a = b and the tactic

rewrite [in X in _ = X]Jrule.

It rewrites all occurrences of the left hand side of rule inside b only (a, and the hidden type of the equality, are ignored).
Note that the variant rewrite [X in _ = X]rule would have rewritten b exactly (i.e., it would only work if b
and the left hand side of rule can be unified).
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Matching contextual patterns

The c_pattern and r_pattern involving terms with holes are matched against the goal in order to find a closed
instantiation. This matching proceeds as follows:

c_pattern

instantiation order and place for term_i and redex

term term is matched against the goal, redex is unified with the instantiation of term
ident in termis matched against the goal, redex is unified with the subterm of the instantiation of term
term identified by ident

terml in
ident in
term?2

term? is matched against the goal, term1 is matched against the subterm of the instantiation
of terml identified by ident, redex is unified with the instantiation of terml

terml as
ident in
term?2

term2 [terml/ident] is matched against the goal, redex is unified with the instantiation
of terml

In the following patterns, the redex is intended to be inferred from the rewrite rule.

r_pattern

instantiation order and place for term_1i and redex

in ident in

term is matched against the goal, the redex is matched against the subterm of the instantiation

term of term identified by ident
in term term is matched against the goal, redex is matched against the instantiation of term
Examples

Contextual pattern in set and the : tactical

As already mentioned in section Abbreviations the set tactic takes as an argument a term in open syntax. This term is
interpreted as the simplest form of ¢_pattern. To avoid confusion in the grammar, open syntax is supported only for
the simplest form of patterns, while parentheses are required around more complex patterns.

Example

Lemma test a b
1 subgoal

set t := (X in _
1 subgoal
a, b : nat
t = Db +

rewrite {}/t.
1 subgoal

a, b

nat

=b + (a + 1)
= X)

(a + 1) nat
=t

(continues on next page)
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set t = (a + _ in X in _ = X).
1 subgoal

Since the user may define an infix notation for in the result of the former tactic may be ambiguous. The disambiguation
rule implemented is to prefer patterns over simple terms, but to interpret a pattern with double parentheses as a simple
term. For example, the following tactic would capture any occurrence of the term a in A.

set t := ((a in A)).

Contextual patterns can also be used as arguments of the : tactical. For example:

elim: n (n in _ = n) (refl_equal n).

Contextual patterns in rewrite

Example

Notation "n .+1" := (Datatypes.S n) (at level 2, left associativity,
format "n .+1") : nat_scope.

Axiom addSn : forall m n, m.+1 + n = (m + n).+1.

addSn is declared

Axiom addnO : forall m, m + 0 = m.
addn0 is declared

Axiom addnC : forall m n, m + n = n + m.
addnC is declared

Lemma test x y z £ : (x.+1 + vy) + £ (x.+1 + vy) (z + (x + vy).+1) = 0.
1 subgoal
X, Yy, 2z : nat

f : nat -> nat -> nat

x.+1 +y + £ (x.+1 +vy) (z + (x +y).+1) =0
rewrite [in f _ _]addSn.
1 subgoal
X, Y, z : nat
f : nat -> nat —-> nat
x.+1 +yv + £ (x +vy).+1 (z + (x + vy).+1) =0
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Note: the simplification rule addSn is applied only under the £ symbol. Then we simplify also the first addition and
expand 0 into 0 + O.

rewrite addSn - [X in _ = X]addnO.
1 subgoal
X, Y, z : nat
f : nat -> nat -> nat
(x +vy).+1 + £ (x + y).+1 (z + (x + vy).+1) =0 + O

Note that the right hand side of addn0 is undetermined, but the rewrite pattern specifies the redex explicitly. The right
hand side of addnO is unified with the term identified by X, here 0.

The following pattern does not specify a redex, since it identifies an entire region, hence the rewrite rule has to be instan-
tiated explicitly. Thus the tactic:

rewrite -{2}[in X in _ = X] (addnO O0).
1 subgoal
X, Y, z : nat
f : nat -> nat -> nat
(x +y).+1 + £ (x + y).+1 (z + (x +vy).+1) =0 + (0 + 0)

The following tactic is quite tricky:

rewrite [ _.+1 in X in f _ X] (addnC x.+1).
1 subgoal
X, Yy, 2z : nat

f : nat -> nat -> nat

(x + y).+1 + £ (x + y).+1 (z + (y + x.41)) = 0 + (0 + 0)

The explicit redex _ . +1 is important since its head constant S differs from the head constant inferred from (addnC
x.+1) (thatis +). Moreover, the pattern £ __ X is important to rule out the first occurrence of (x + y) .+1. Last,
only the subterms of £ _ X identified by X are rewritten, thus the first argument of f is skipped too. Also note the pattern
_ . +1 is interpreted in the context identified by X, thus it gets instantiated to (y + x) .+l andnot (x + y) .+1.

The last rewrite pattern allows to specify exactly the shape of the term identified by X, that is thus unified with the left
hand side of the rewrite rule.

rewrite [x.+1 + y as X in f X _JaddnC.
1 subgoal

X, Y, z : nat
f : nat -> nat -> nat
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Patterns for recurrent contexts

The user can define shortcuts for recurrent contexts corresponding to the ident in term part. The notation scope
identified with $pattern provides a special notation (X in t) the user must adopt in order to define context shortcuts.

The following example is taken from ssreflect . v where the LHS and RHS shortcuts are defined.

Notation RHS := (X in _ = X) %pattern.
Notation LHS (X in X = _)%pattern.

Shortcuts defined this way can be freely used in place of the trailing ident in term part of any contextual pattern.
Some examples follow:

set rhs := RHS.
rewrite [in RHS]rule.
case: (a + _ in RHS).

Views and reflection

The bookkeeping facilities presented in section Basic tactics are crafted to ease simultaneous introductions and general-
izations of facts and operations of casing, naming etc. It also a common practice to make a stack operation immediately
followed by an interpretation of the fact being pushed, that is, to apply a lemma to this fact before passing it to a tactic for
decomposition, application and so on.

SSReflect provides a convenient, unified syntax to combine these interpretation operations with the proof stack operations.
This view mechanism relies on the combination of the / view switch with bookkeeping tactics and tacticals.

Interpreting eliminations
The view syntax combined with the e 1 im tactic specifies an elimination scheme to be used instead of the default, gener-
ated, one. Hence the SSReflect tactic:

elim/V.

is a synonym for:

intro top; elim top using V; clear top.

where top is a fresh name and V any second-order lemma.

Since an elimination view supports the two bookkeeping tacticals of discharge and introduction (see section Basic tactics),
the SSReflect tactic:

elim/V: x => y.

is a synonym for:
elim x using V; clear x; intro y.
where x is a variable in the context, v a fresh name and V any second order lemma; SSReflect relaxes the syntactic

restrictions of the Coq elim. The first pattern following : can be a _ wildcard if the conclusion of the view V specifies
a pattern for its last argument (e.g., if V is a functional induction lemma generated by the Funct i on command).

The elimination view mechanism is compatible with the equation name generation (see section Generation of equations).

Example
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The following script illustrates a toy example of this feature. Let us define a function adding an element at
the end of a list:

Variable d : Type.
d is declared

Fixpoint add_last (s : list d) (z : d) {struct s} : list d :=
if s is cons x s' then cons x (add_last s' z) else z :: nil.
add_last is defined
add_last is recursively defined (guarded on 1st argument)

One can define an alternative, reversed, induction principle on inductively defined lists, by proving the following lemma:

Axiom last_ind_list : forall P : list d —-> Prop,
P nil -> (forall s (x : d), P s —> P (add_last s x)) —>
forall s : list d, P s.
last_ind_list is declared

Then the combination of elimination views with equation names result in a concise syntax for reasoning inductively using
the user-defined elimination scheme.

Lemma test (x : d) (1 : list d): 1 = 1.

1 subgoal

d Type

b4 d

1 list d

1 =1

elim/last_ind_list E : 1=> [| u v]; last first.

2 subgoals

d Type

x : d

u : list d

v d

1 list d

E 1l = add_last u v

subgoal 2 is:
nil = nil

User-provided eliminators (potentially generated with Coq’s Funct i on command) can be combined with the type family
switches described in section Type families. Consider an eliminator foo_ind of type:

foo_ind : forall .., forall x : T, P pl .. pm.

and consider the tactic:

elim/foo_ind: el .. / en.

The elim/ tactic distinguishes two cases:

truncated eliminator when x does not occur in P pl .. pm and the type of en unifies with T and en is
not _. In that case, en is passed to the eliminator as the last argument (x in foo_ind) and en-1
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el are used as patterns to select in the goal the occurrences that will be bound by the predicate P, thus
it must be possible to unify the subterm of the goal matched by en—1 with pm , the one matched by
en—2 with pm-1 and so on.

regular eliminator in all the other cases. Here it must be possible to unify the term matched by en with
pm , the one matched by en—1 with pm—1 and so on. Note that standard eliminators have the shape
..forall x, P .. x,thus en is the pattern identifying the eliminated term, as expected.

As explained in section Type families, the initial prefix of ei can be omitted.

Here is an example of a regular, but nontrivial, eliminator.

Example

Here is a toy example illustrating this feature.

Function plus (m n : nat) {struct n} : nat :=
if n is S p then S (plus m p) else m.
plus is defined
plus is recursively defined (guarded on 2nd argument)
plus_equation is defined
plus_rect is defined
plus_ind is defined
plus_rec is defined
R_plus_correct is defined
R_plus_complete is defined

About plus_ind.

plus_ind
forall [m : nat] [P : nat —-> nat -> Prop],
(forall n p : nat, n = S p > P p (plus mp) —> P (S p) (S (plus mp))) —>
(forall n _x : nat,
n = _x —> match _x with
| 0 => True
| S _ => False

end -> P _x m) -> forall n : nat, P n (plus m n)

plus_ind is not universe polymorphic

Arguments plus_ind [m]%nat_scope [P]%function_scope (_ _)%function_scope
_%nat_scope

plus_ind is transparent

Expands to: Constant Top.Test.plus_ind

Lemma test x y z : plus (plus x y) z = plus x (plus vy z).
1 subgoal

The following tactics are all valid and perform the same elimination on this goal.

elim/plus_ind: z / (plus _ z).
elim/plus_ind: {z} (plus _ z).
elim/plus_ind: {z}_.
elim/plus_ind: z / _.
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elim/plus_ind: z / _
2 subgoals

forall n p : nat,

n=3Sp —>
plus (plus x y) p = plus x (plus y p) —>
S (plus (plus x y) p) = plus x (plus y (S p))

subgoal 2 is:

forall n _x : nat,

n=_x —>

match x with

| 0 => True

| § => False

end —> plus x y = plus x (plus y _x)

The two latter examples feature a wildcard pattern: in this case, the resulting pattern is inferred from the type of the
eliminator. In both these examples, it is (plus _ _), which matches the subterm plus (plus x y) z thus
instantiating the last _ with z. Note that the tactic:

Fail elim/plus_ind: y / _.
The command has indeed failed with message:
The given pattern matches the term y while the inferred pattern z doesn't

triggers an error: in the conclusion of the plus_ ind eliminator, the first argument of the predicate P should be the same
as the second argument of plus, in the second argument of P, but y and z do no unify.

Here is an example of a truncated eliminator:

Example

Consider the goal:

Lemma test p n (n_gt0 : 0 < n) (pr_p : prime p)

p % \prod_(i <- prime_decomp n | i \in prime_decomp n) i.1 ~ i.2 —>
exists2 x : nat * nat, x \in prime_decomp n & p = x.1.
Proof.
elim/big_prop: _ => [| u v IHu IHv | [gq e] /=].

where the type of the big_prop eliminator is

big_prop: forall (R : Type) (Pb : R -> Type)
(idx : R) (opl : R -—> R -> R), Pb idx —>

(forall x vy : R, Pb x —> Pb y —> Pb (opl x y)) ->
forall (I : Type) (r : seq I) (P : pred I) (F : I —-> R),
(forall i : I, P i -> Pb (F 1i)) —>

Pb (\big[opl/idx]_(i <- r | P i) F 1i).

Since the pattern for the argument of Pb is not specified, the inferred one is used instead: big[_/_]_ (i <- _ B
i) _ 1, and after the introductions, the following goals are generated:

subgoal 1 is:
p %] 1 —> exists2 x : nat * nat, x \in prime_decomp n & p = x.1
subgoal 2 is:

(continues on next page)
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°

p %l u * v —> exists2 x : nat * nat, x \in prime_decomp n & p = x.1
subgoal 3 is:

(g, e) \in prime_decomp n -> p %| g

exists2 x : nat * nat, x \in prime_decomp n & p = x.1.

A

e —>

Note that the pattern matching algorithm instantiated all the variables occurring in the pattern.

Interpreting assumptions

Interpreting an assumption in the context of a proof consists in applying to it a lemma before generalizing, and/or decom-
posing this assumption. For instance, with the extensive use of boolean reflection (see section Views and reflection), it is
quite frequent to need to decompose the logical interpretation of (the boolean expression of) a fact, rather than the fact
itself. This can be achieved by a combination of move : _ => _ switches, like in the following example, where | |

is a notation for the boolean disjunction.

Example

Variables P Q : bool —> Prop.
P is declared
Q is declared

Hypothesis P2Q : forall a b, P (a || b) —> Q a.
P2Q is declared
Lemma test a : P (a || a) —> True.

1 subgoal

P, Q : bool —-> Prop

P2Q : forall a b : bool, P (a || b) —> Q a
a : bool
P (a || a) —> True

move=> HPa; move: {HPa} (P2Q HPa) => HQa.
1 subgoal

P, Q : bool —-> Prop

P2Q : forall a b : bool, P (a || b) —> Q a
a : bool

HQa Q a

True

which transforms the hypothesis HPa : P a which has been introduced from the initial statement into HQa : Q a.
This operation is so common that the tactic shell has specific syntax for it. The following scripts:

move=> HPa; move/P2Q: HPa => HQa.
1 subgoal

P, Q : bool —-> Prop
P2Q : forall a b : bool, P (a || b) —> Q a
a : bool
(continues on next page)
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or more directly:

move/P20=> HQa.
1 subgoal

P, Q : bool -> Prop

P2Q : forall a b : bool, P (a || b) —> Q a
a : bool

HQa : Q a

True

are equivalent to the former one. The former script shows how to interpret a fact (already in the context), thanks to
the discharge tactical (see section Discharge) and the latter, how to interpret the top assumption of a goal. Note that
the number of wildcards to be inserted to find the correct application of the view lemma to the hypothesis has been
automatically inferred.

The view mechanism is compatible with the case tactic and with the equation name generation mechanism (see section
Generation of equations):

Example

Variables P Q: bool -> Prop.
P is declared
Q is declared

Hypothesis Q2P : forall a b, Q (a || b) > P a \/ P b.
Q2P is declared

Lemma test a b : Q (a || b) —-> True.
1 subgoal

P, Q : bool —> Prop
Q2P : forall a b : bool, Q (a || b) > P a \/ P b
a, b : bool

case/Q2P=> [HPa | HPDb].
2 subgoals

P, Q : bool —> Prop

Q2P : forall a b : bool, Q (a || b) > P a \/ P b
a, b : bool

HPa : P a

True

subgoal 2 is:
True
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This view tactic performs:

move=> HQ; case: {HQ} (Q2P HQ) => [HPa | HPDb].

The term on the right of the / view switch is called a view lemma. Any SSReflect term coercing to a product type can be
used as a view lemma.

The examples we have given so far explicitly provide the direction of the translation to be performed. In fact, view lemmas
need not to be oriented. The view mechanism is able to detect which application is relevant for the current goal.

Example

Variables P Q: bool -> Prop.
P is declared
Q is declared

Hypothesis PQequiv : forall a b, P (a || b) <> Q a.
PQequiv is declared

Lemma test a b : P (a || b) —-> True.
1 subgoal

P, Q : bool —> Prop
PQequiv : forall a b : bool, P (a || b) <> Q a
a, b : bool

move/PQequiv=> HQab.
1 subgoal

P, Q : bool -> Prop

PQequiv : forall a b : bool, P (a || b) <> Q a
a, b : bool

HQab : Q a

True

has the same behavior as the first example above.

The view mechanism can insert automatically a view hint to transform the double implication into the expected simple
implication. The last script is in fact equivalent to:

Lemma test a b : P (a || b) —-> True.
move/ (1ffLR (PQequiv _ _)).

where:

Lemma iffLR P Q : (P <-> Q) —-> P —> Q.
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Specializing assumptions

The special case when the head symbol of the view lemma is a wildcard is used to interpret an assumption by specializing
it. The view mechanism hence offers the possibility to apply a higher-order assumption to some given arguments.

Example

Lemma test z : (forall x vy, x +y =12z —> 2z =2x) —> 2z = 0.
1 subgoal

move/ (_ 0 z).
1 subgoal

Interpreting goals

In a similar way, it is also often convenient to changing a goal by turning it into an equivalent proposition. The view
mechanism of SSReflect has a special syntax apply/ for combining in a single tactic simultaneous goal interpretation
operations and bookkeeping steps.

Example

The following example use the ~~ prenex notation for boolean negation:
Variables P Q: bool -> Prop.
P is declared

Q is declared

Hypothesis PQequiv : forall a b, P (a || b) <> Q a.
PQequiv is declared
Lemma test a : P ((~~ a) || a).

1 subgoal

P, Q : bool —-> Prop

PQequiv : forall a b : bool, P (a || b) <> Q a
a : bool
P (~~a |l a)
apply/PQequiv.
1 focused subgoal
(shelved: 1)

P, Q : bool -> Prop
(continues on next page)
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PQequiv forall a b bool, P (a || b) <> Q a
a bool
Q (~~ a)
thus in this case, the tactic apply/PQequivisequivalentto apply: (iffRL (PQequiv _ _)),where iffRL

is the analogue of i £ fRL for the converse implication.

Any SSReflect term whose type coerces to a double implication can be used as a view for goal interpretation.

Note that the goal interpretation view mechanism supports both apply and exact tactics. As expected, a goal inter-
pretation view command exact/term should solve the current goal or it will fail.

Warning: Goal interpretation view tactics are not compatible with the bookkeeping tactical => since this would be
redundant with the apply: term => _ construction.

Boolean reflection

In the Calculus of Inductive Constructions, there is an obvious distinction between logical propositions and boolean values.
On the one hand, logical propositions are objects of sort Prop which is the carrier of intuitionistic reasoning. Logical
connectives in Prop are types, which give precise information on the structure of their proofs; this information is auto-
matically exploited by Coq tactics. For example, Coq knows that a proof of A \/ B is either a proof of A or a proof of
B. The tactics 1eft and right change the goal 2 \/ B to A and B, respectively; dually, the tactic case reduces the
goalA \/ B => GtotwosubgoalsA => GandB => G.

On the other hand, bool is an inductive datatype with two constructors true and false. Logical connectives on bool are
computable functions, defined by their truth tables, using case analysis:

Example

Definition orb (bl b2 : bool) := if bl then true else b2.
orb is defined

Properties of such connectives are also established using case analysis

Example
Lemma test b : b || ~~ b = true.
1 subgoal
b bool
b Il b= true
by case: Db.

No more subgoals.

Once b is replaced by t rue in the first goal and by false in the second one, the goals reduce by computations to the
trivial true = true.
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Thus, Prop and bool are truly complementary: the former supports robust natural deduction, the latter allows brute-
force evaluation. SSReflect supplies a generic mechanism to have the best of the two worlds and move freely from a
propositional version of a decidable predicate to its boolean version.

First, booleans are injected into propositions using the coercion mechanism:

Coercion is_true (b : bool) := b = true.

This allows any boolean formula b to be used in a context where Coq would expect a proposition, e.g., after Lemma ...
:. Itis then interpreted as (is_true b),i.e., the proposition b = true. Coercions are elided by the pretty-printer,
so they are essentially transparent to the user.

The reflect predicate
To get all the benefits of the boolean reflection, it is in fact convenient to introduce the following inductive predicate
reflect to relate propositions and booleans:

Inductive reflect (P: Prop): bool -> Type :=
| Reflect_true : P —> reflect P true
| Reflect_false : ~P —-> reflect P false.

The statement (reflect P Db) assertsthat (is_true b) and P are logically equivalent propositions.

For instance, the following lemma:

Lemma andP: forall bl b2, reflect (bl /\ b2) (bl && b2).

relates the boolean conjunction to the logical one /\. Note that in andP, b1 and b2 are two boolean variables and the
proposition b1l /\ b2 hides two coercions. The conjunction of b1 and b2 can then be viewed asbl /\ b2orasbl
&& b2.

Expressing logical equivalences through this family of inductive types makes possible to take benefit from rewritable
equations associated to the case analysis of Coq’s inductive types.

Since the equivalence predicate is defined in Coq as:

Definition iff (A B:Prop) := (A -> B) /\ (B —> A).

where /\ is a notation for and:

Inductive and (A B:Prop) : Prop := conj : A -> B —> and A B.

This make case analysis very different according to the way an equivalence property has been defined.

Lemma andE (bl b2 : bool) : (bl /\ b2) <-> (bl && b2).

Let us compare the respective behaviors of andE and andP.

Example
Lemma test (bl b2 : bool) : if (bl && b2) then bl else ~~(bl||b2).
1 subgoal
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case: (CandE bl b2).
1 subgoal

(b1 /\ b2 -> bl && b2) —>
(bl && b2 —> bl /\ b2) —> if bl && b2 then bl else ~~ (bl || b2)

case: (@andP bl b2).
2 subgoals

bl /\ b2 -> bl

subgoal 2 is:
~ (bl /\ b2) —> ~~ (bl || b2)

Expressing reflection relation through the reflect predicate is hence a very convenient way to deal with classical
reasoning, by case analysis. Using the reflect predicate allows moreover to program rich specifications inside its two
constructors, which will be automatically taken into account during destruction. This formalisation style gives far more
efficient specifications than quantified (double) implications.

A naming convention in SSReflect is to postfix the name of view lemmas with P. For example, orP relates | | and \ /,
negP relates ~~ and ~.

The view mechanism is compatible with reflect predicates.

Example
Lemma test (a b : bool) (Ha : a) (Hb : b) : a /\ b.
1 subgoal

a, b : bool

apply/andP.
1 focused subgoal
(shelved: 1)

a, b : bool

Conversely

Lemma test (a b : bool) : a /\ b —> a.
1 subgoal

(continues on next page)
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a/\b->a

move/andP.
1 subgoal

The same tactics can also be used to perform the converse operation, changing a boolean conjunction into a logical one.
The view mechanism guesses the direction of the transformation to be used i.e., the constructor of the reflect predicate
which should be chosen.

General mechanism for interpreting goals and assumptions
Specializing assumptions

The SSReflect tactic:

move/ (_ terml .. termn) .

is equivalent to the tactic:

intro top; generalize (top terml .. termn); clear top.

where top is a fresh name for introducing the top assumption of the current goal.

Interpreting assumptions

The general form of an assumption view tactic is:
Variant: move | case| / term
The term , called the view lemma can be:
¢ a (term coercible to a) function;
¢ a (possibly quantified) implication;
¢ a (possibly quantified) double implication;
* a (possibly quantified) instance of the reflect predicate (see section Views and reflection).
Let t op be the top assumption in the goal.
There are three steps in the behavior of an assumption view tactic:
e It first introduces t op.

* If the type of termis neither a double implication nor an instance of the reflect predicate, then the tactic automat-
ically generalises a term of the form: term terml .. termn where the terms terml .. termn instantiate
the possible quantified variables of term, in order for (term terml .. termn top) to be well typed.

* If the type of term is an equivalence, or an instance of the reflect predicate, it generalises a term of the form:
(termvh (term terml .. termn )) where the term termvh inserted is called an assumption interpreta-
tion view hint.

384 Chapter 3. Proofs



The Coq Reference Manual, Release 8.13.2

* It finally clears top.
For a case/term tactic, the generalisation step is replaced by a case analysis step.

View hints are declared by the user (see section Views and reflection) and are stored in the Hint View database. The proof
engine automatically detects from the shape of the top assumption top and of the view lemma term provided to the
tactic the appropriate view hint in the database to be inserted.

If termis a double implication, then the view hint will be one of the defined view hints for implication. These hints are
by default the ones present in the file ssreflect.v:

Lemma iffLR : forall P Q, (P <-> Q) -> P —-> Q.

which transforms a double implication into the left-to-right one, or:

Lemma iffRL : forall P Q, (P <-> Q) -> Q —-> P.

which produces the converse implication. In both cases, the two first Prop arguments are implicit.

If termis an instance of the re f 1ect predicate, then A will be one of the defined view hints for the ref 1ect predicate,
which are by default the ones present in the file ssrbool . v. These hints are not only used for choosing the appropriate
direction of the translation, but they also allow complex transformation, involving negations.

Example

Check introN.

introN
forall (P : Prop) (b : bool), reflect P b -> ~ P -> ~~ Db
Lemma test (a b : bool) (Ha : a) (Hb : b) : ~~ (a && b).
1 subgoal

a, b : bool

apply/andP.
1 focused subgoal
(shelved: 1)

a, b : bool

Ha a
Hbo : Db
~ (a /\ Db)

In fact this last script does not exactly use the hint int roN, but the more general hint:

Check introNTF.

introNTF
forall (P : Prop) (b c : bool),
reflect P b -—> (if ¢ then ~ P else P) —> ~~ b = c
The lemma int roN is an instantiation of introNF using ¢ := true.
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Note that views, being part of i_pattern, can be used to interpret assertions too. For example the following script
asserts a && b but actually uses its propositional interpretation.

Example
Lemma test (a b : bool) (pab : b && a) : Db.
1 subgoal

a, b : bool

b
have /andP [pa ->] : (a && b) by rewrite andbC.
1 subgoal

a, b : bool
pab : b && a

Interpreting goals

A goal interpretation view tactic of the form:

Variant: apply/term

applied to a goal top is interpreted in the following way:

* If the type of term is not an instance of the reflect predicate, nor an equivalence, then the term term is
applied to the current goal t op, possibly inserting implicit arguments.

« If the type of termis an instance of the reflect predicate or an equivalence, then a goal interpretation view hint can
possibly be inserted, which corresponds to the application of a term (termvh (term _ .. _)) to the current
goal, possibly inserting implicit arguments.

Like assumption interpretation view hints, goal interpretation ones are user-defined lemmas stored (see section Views and
reflection) in the Hint View database bridging the possible gap between the type of term and the type of the goal.

Interpreting equivalences

Equivalent boolean propositions are simply equal boolean terms. A special construction helps the user to prove boolean
equalities by considering them as logical double implications (between their coerced versions), while performing at the
same time logical operations on both sides.

The syntax of double views is:
Variant: apply/term/term

The first term is the view lemma applied to the left hand side of the equality, while the second term is the one applied to
the right hand side.

In this context, the identity view can be used when no view has to be applied:

Lemma idP : reflect bl bl.
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Example
Lemma test (bl b2 b3 : bool) : ~~ (bl || b2) = b3.
1 subgoal

apply/idP/idP.
2 focused subgoals
(shelved: 2)

subgoal 2 is:
b3 —> ~~ (bl || b2)

The same goal can be decomposed in several ways, and the user may choose the most convenient interpretation.

Lemma test (bl b2 b3 : bool) : ~~ (bl || b2) = b3.
1 subgoal

apply/norP/idP.
2 focused subgoals
(shelved: 2)

subgoal 2 is:
b3 -> ~~ bl /\ ~~ b2

Declaring new Hint Views

?
Command: Hint View for move / ident | natural

)
Command: Hint View for apply / ident || natural

This command can be used to extend the database of hints for the view mechanism.

As library ssrbool . v already declares a corpus of hints, this feature is probably useful only for users who define
their own logical connectives.

The ident is the name of the lemma to be declared as a hint. If move is used as tactic, the hint is declared for
assumption interpretation tactics, app 1y declares hints for goal interpretations. Goal interpretation view hints are
declared for both simple views and left hand side views. The optional natural number is the number of implicit
arguments to be considered for the declared hint view lemma.
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?
Variant: Hint View for apply//ident || natural

This variant with a double slash //, declares hint views for right hand sides of double views.

See the files ssreflect.v and ssrbool . v for examples.

Multiple views
The hypotheses and the goal can be interpreted by applying multiple views in sequence. Both move and apply can be
followed by an arbitrary number of /term. The main difference between the following two tactics

apply/v1/v2/v3.
apply/vl; apply/v2; apply/v3.

is that the former applies all the views to the principal goal. Applying a view with hypotheses generates new goals, and
the second line would apply the view v2 to all the goals generated by apply/v1.

Note that the NO-OP intro pattern — can be used to separate two views, making the two following examples equivalent:

move=> /vl; move=> /v2.
move=> /vl - /v2.

The tactic move can be used together with the in tactical to pass a given hypothesis to a lemma.

Example

Variable P2Q : P —> Q.
P2Q is declared

Variable Q2R : Q —> R.
Q2R is declared

Lemma test (p : P) : True.
1 subgoal

P, O, R : Prop
P20 : P —> Q
Q2R : Q0 —> R

move/P2Q/Q2R in p.
1 subgoal

P, O, R : Prop
P20 : P —> Q
Q2R : Q —> R

If the list of views is of length two, Hint Views for interpreting equivalences are indeed taken into account, otherwise
only single Hint Views are used.
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SSReflect searching tool

Command:

= +

? ?
Search pattern = string pattern| |% ident in =7 qualid

Changed in version 8.12: This command is only available when loading a separate plugin (ssrsearch).

Deprecated since version 8.12: This command is deprecated since all the additional features it provides have been
integrated in the standard Search command.

This is the SSReflect extension of the Search command. qualid is the name of an open module. This command
returns the list of lemmas:

» whose conclusion contains a subterm matching the optional first pattern. A — reverses the test, producing the
list of lemmas whose conclusion does not contain any subterm matching the pattern;

* whose name contains the given string. A — prefix reverses the test, producing the list of lemmas whose name
does not contain the string. A string that contains symbols or is followed by a scope key, is interpreted as
the constant whose notation involves that string (e.g., + for addn), if this is unambiguous; otherwise the
diagnostic includes the output of the Locate command.

* whose statement, including assumptions and types, contains a subterm matching the next patterns. If a pattern
is prefixed by —, the test is reversed;

* contained in the given list of modules, except the ones in the modules prefixed by a —.

Note:

* As for regular terms, patterns can feature scope indications. For instance, the command: Search _ (_ +
_) $N. lists all the lemmas whose statement (conclusion or hypotheses) involves an application of the binary oper-
ation denoted by the infix + symbol in the N scope (which is SSReflect scope for natural numbers).

Patterns with holes should be surrounded by parentheses.

Search always volunteers the expansion of the notation, avoiding the need to execute Locate independently. More-
over, a string fragment looks for any notation that contains fragment as a substring. If the ssrbool. v library is
imported, the command: Search "~~". answers :

Require Import ssrsearch.

Search "~~"
Toplevel input, characters 0-12:
> Search "~~"
S AAAAAAAAAAAA
Warning: SSReflect's Search command is deprecated.
[deprecated-ssr—-search, deprecated]
"~~" is part of notation ("~~ _")

In bool_scope, ("~~ b") denotes negb b

Toplevel input, characters 0-12:

> Search "~~"

S AAAAAAAAAAAA

Warning: Listing only lemmas with conclusion matching (~~ ?b)
negbT: forall b : bool, b = false -> ~~ b

contra: forall c¢c b : bool, (¢ -> b) —> ~~ b -> ~~ C

contraNN: forall c¢c b : bool, (¢ —> b) -> ~~ b —> ~~ ¢C

(continues on next page)
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contral: forall ¢ b : bool, (¢ —> ~~ b) -> b —> ~~ cC

contraTN: forall ¢ b : bool, (c —-> ~~ Db) -> ~~ C

contrafFN: forall c¢c b : bool, (¢ —> b) -> Db false —> ~~ ¢
contra_notN: forall (P : Prop) (b bool), -> P) -—> ~ P —> ~~ Db
contraPN: forall (P : Prop) (b bool), -> ~ P) -=> P -> ~~ D
introN: forall (P : Prop) (b bool), reflect P b -> ~ P -> ~~ b

* A diagnostic is issued if there are different matching notations; it is an error if all matches are partial.

* Similarly, a diagnostic warns about multiple interpretations, and signals an error if there is no default one.

e The command Search in M. isa way of obtaining the complete signature of the module M.

« Strings and pattern indications can be interleaved, but the first indication has a special status if it is a pattern, and

only filters the conclusion of lemmas:

— The command : Search (_ =1 _) "bij". lists all the lemmas whose conclusion features a =1 and

whose name contains the string bij.

— Thecommand: Search "bij" (_ =1 _
features a =1 and whose name contains the string bi j.

) . lists all the lemmas whose statement, including hypotheses,

Synopsis and Index

Parameters

SSReflect tactics

d_tactic ::=

Notation scope

key ::= ident

Module name

modname ::= qualid

Natural number

nat_or_ident ::= |natural \ ident

elim ‘ case ‘ congr apply exact

move

where ident is an Ltac variable denoting a standard Coq number (should not be the name of a tactic which can be

followed by a bracket [, like do, have,...)

390

Chapter 3. Proofs



The Coq Reference Manual, Release 8.13.2

Items and switches

=
ssr_binder ::= |ident (ident|: term | )

binder see Abbreviations.

+
clear_switch ::= { ident}

clear switch see Discharge

5
c_pattern ::= |termin | termas ? ident in term

context pattern see Contextual patterns

[?] ?
d_item ::= ‘occ_switch | clear_switch\ ‘term | ( c_pattern)

discharge item see Discharge
® %
@ ? ident (ident) (@ 7 ident := c_pattern )

generalization item see Structure

gen_item

ident > _ ? i + occ_switch [|i_item 1 ] - [: lident T ]

i_pattern

intro pattern Introduction in the context

i_item ::= ‘clear_switch | s_item | i_pattern | i_view | i_block‘

view Introduction in the context

i_view ::= @ ‘/term | Mtac:( tactic)‘

intro block Introduction in the context

i_block ::= |[Nident] | [*~|ident | naturall]

intro item see Introduction in the context
int_mult ::= |natural | mult_mark

multiplier see lteration

occ_switch ::= {[+ - natural | }

occur. switch see Occurrence selection
mult ::= |natural | mult_mark

multiplier see /teration
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mult_mark ::= [? | !
multiplier mark see Iteration
?

r_item ::= ||/ | term s_item

rewrite item see Rewriting

2 2 9

r_prefix ::= [= ? int_mult | |occ_switch ‘ clear_switch [ r_pattern ]

rewrite prefix see Rewriting
?

r_pattern ::= |term c_pattern in |identin | term

rewrite pattern see Rewriting
¥

r_step ::= |r_prefix | r_item
rewrite step see Rewriting

s_item ::= |I= | Il | =

simplify switch see Introduction in the context

Tactics

Note: without loss and suffices are synonyms for wlog and suf f respectively.

Tactic: move
idtacor hnf (see Bookkeeping)

Tactic: apply
Tactic: exact
application (see The defective tactics)

Variant: abstract: |d_item
see The abstract tactic and Generating let in context entries with have

Variant: elim
induction (see The defective tactics)

Variant: case
case analysis (see The defective tactics)
. - +
Variant: rewrite r_step
rewrite (see Rewriting)

? + *

Tactic: under r prefix I term |=> i_item do |tactic [ tacticI 1

under (see Rewriting under binders)

Tactic: over
over (see The over tactic)
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* 2 + ?
Tactic: have i_item i_pattern s_item ‘ ssr_binder : term := term
?
* ? + ?
Tactic: have i_item i_pattern s_item ssr_binder : term by tactic
? ? ?
Tactic: have suff clear switch i_pattern : term := term
? ? ?
Tactic: have suff clear switch i_pattern : term |by tactic
? ? + 2
Tactic: gen have ident , i_pattern : |gen_item / term by tactic
? ? + ?
Tactic: generally have ident , i_pattern : |gen_item / term |by tactic
forward chaining (see Structure)
2 ? *
Tactic: wlog suff i item : |gen_item clear_switch / term
specializing (see Structure)
* ? + ?
Tactic: suff i_item i_pattern ssr_binder : term |by tactic
* ? + ?
Tactic: suffices i_item i_pattern ssr_binder : term |by tactic
? ? ? ?
Tactic: suff have clear_switch i_pattern : term by tactic
? ? ? ?
Tactic: suffices have clear_switch i_pattern : term by tactic
backchaining (see Structure)
Variant: pose ident := term
local definition (see Definitions)
. - - +
Variant: pose ident |ssr binder := term
local function definition
Variant: pose fix fix decl
local fix definition
Variant: pose cofix fix decl
local cofix definition
? ?
Tactic: set ident |: term := |occ_switch term | ( c_pattern)

abbreviation (see Abbreviations)

?
Tactic: unlock | r prefix ident

unlock (see Locking, unlocking)

?
Tactic: congr natural term

congruence (see Congruence)
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Tacticals
? + ?
tactic += d_tactic|ident | : |d_item clear_switch
discharge Discharge
. . . . +
tactic += tactic => |i_item

introduction see Introduction in the context

+
tactic += tactic in|gen_item ‘ clear_switch *

localization see Localization

9
tactic +=  do mult tactic [ |tactic

+
il

iteration see Iferation

9
tactic += tactic ;|first | last||natural | |tactic [ | tactic

T 1
I
selector see Selectors

9
tactic += tactic ;| first | last| natural

rotation see Selectors

*
tactic += by |tactic [ | tactic | ]

closing see Terminators

Commands

Command: Hint View for move ‘ apply / ident || natural
view hint declaration (see Declaring new Hint Views)
?
Command: Hint View for apply // ident natural
right hand side double , view hint declaration (see Declaring new Hint Views)

Command: Prenex Implicits  ident
prenex implicits declaration (see Parametric polymorphism)
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Settings

Flag: Debug Ssreflect
Developer only. Print debug information on reflect.

Flag: Debug SsrMatching
Developer only. Print debug information on SSR matching.

3.1.5 Detailed examples of tactics

This chapter presents detailed examples of certain tactics, to illustrate their behavior.

dependent induction

The tactics dependent induction and dependent destruction are another solution for inverting induc-
tive predicate instances and potentially doing induction at the same time. It is based on the BasicE1 im tactic of Conor
McBride which works by abstracting each argument of an inductive instance by a variable and constraining it by equal-
ities afterwards. This way, the usual induction and destruct tactics can be applied to the abstracted instance and after
simplification of the equalities we get the expected goals.

The abstracting tactic is called generalize_eqs and it takes as argument a hypothesis to generalize. It uses the JMeq
datatype defined in Coq.Logic.JMeq, hence we need to require it before. For example, revisiting the first example of the
inversion documentation:

Require Import Cog.Logic.JMeq.

Inductive Le : nat -> nat —-> Set :=
| LeO : forall n:nat, Le 0 n
| LeS : forall n m:nat, Le nm —> Le (S n) (S m).

Parameter P : nat —-> nat -> Prop.
Goal forall n m:nat, Le (S n) m —> P n m.

intros n m H.

generalize_eqgs H.
1 subgoal

n, m, gen_x : nat
H : Le gen_x m

The index S n gets abstracted by a variable here, but a corresponding equality is added under the abstract instance so
that no information is actually lost. The goal is now almost amenable to do induction or case analysis. One should indeed
first move n into the goal to strengthen it before doing induction, or n will be fixed in the inductive hypotheses (this does
not matter for case analysis). As a rule of thumb, all the variables that appear inside constructors in the indices of the
hypothesis should be generalized. This is exactly what the generalize_egs_vars variant does:

generalize_eqgs_vars H.
induction H.
2 subgoals

(continues on next page)
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(continued from previous page)

subgoal 2 is:
Sn0 =S n->Pn (S m

As the hypothesis itself did not appear in the goal, we did not need to use an heterogeneous equality to relate the new
hypothesis to the old one (which just disappeared here). However, the tactic works just as well in this case, e.g.:

Parameter Q : forall (nm : nat), Le n m —-> Prop.
Goal forall nm (p : Le (S n) m), Q (S n) mp.

intros n m p.
1 subgoal

generalize_eqgs_vars p.
1 subgoal

m, gen_x : nat
p : Le gen_x m

forall (n : nat) (pO : Le (S n) m), gen_.x = S n —> p ~=p0 —> Q (S n) m p0

One drawback of this approach is that in the branches one will have to substitute the equalities back into the instance
to get the right assumptions. Sometimes injection of constructors will also be needed to recover the needed equalities.
Also, some subgoals should be directly solved because of inconsistent contexts arising from the constraints on indexes.
The nice thing is that we can make a tactic based on discriminate, injection and variants of substitution to automatically
do such simplifications (which may involve the axiom K). This is what the simplify_dep_elim tactic from Coq.
Program.Equality does. For example, we might simplify the previous goals considerably:

induction p ; simplify_dep_elim.
1 subgoal
n, m : nat

p : Lenm
IHp : forall (nO : nat) (pO : Le (S n0O) m),
n=Sn0->p ~=p0 >0 (S n0d) mpO

The higher-order tactic do_depind defined in Cog.Program.Equality takes a tactic and combines the building
blocks we have seen with it: generalizing by equalities calling the given tactic with the generalized induction hypothesis
as argument and cleaning the subgoals with respect to equalities. Its most important instantiations are dependent
inductionand dependent destruction thatdoinduction or simply case analysis on the generalized hypothesis.
For example we can redo what we’ve done manually with dependent destruction:

Lemma ex : forall n m:nat, Le (S n) m —> P n m.

intros n m H.
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dependent destruction H.
1 subgoal

This gives essentially the same result as inversion. Now if the destructed hypothesis actually appeared in the goal, the
tactic would still be able to invert it, contrary to dependent inversion. Consider the following example on vectors:

Set Implicit Arguments.
Parameter A : Set.

Inductive vector : nat -> Type :=
| vnil : vector 0
| vcons : A -> forall n, vector n —-> vector (S n).

Goal forall n, forall v : vector (S n),
exists v' : vector n, exists a : A, v = vcons a v'.

intros n v.

dependent destruction v.
1 subgoal

exists (v' : vector n) (a0 : A), vcons a v = vcons a0 v'

In this case, the v variable can be replaced in the goal by the generalized hypothesis only when it has a type of the form
vector (S n), thatis only in the second case of the destruct. The first one is dismissed because S n <> 0.

A larger example
Let’s see how the technique works with induction on inductive predicates on a real example. We will develop an example
application to the theory of simply-typed lambda-calculus formalized in a dependently-typed style:

Inductive type : Type :=
| base : type
| arrow : type —-> type —> type.

Notation " ¢t ——> t' " := (arrow t t') (at level 20, t' at next level).

Inductive ctx : Type :=
| empty : ctx
| snoc : ctx -> type -> ctx.

Notation " G , tau " := (snoc G tau) (at level 20, tau at next level).
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Fixpoint conc (G D : ctx) : ctx :=
match D with
| empty => G

| snoc D' x => snoc (conc G D') x
end.
Notation " G ; D " := (conc G D) (at level 20).

Inductive term : ctx —-> type —> Type :=
| ax : forall G tau, term (G, tau) tau
| weak : forall G tau,
term G tau —> forall tau', term (G, tau') tau
| abs : forall G tau tau',

term (G , tau) tau' -> term G (tau ——> tau')
| app : forall G tau tau',
term G (tau —-—> tau') -> term G tau —-> term G tau'.

We have defined types and contexts which are snoc-lists of types. We also have a conc operation that concatenates two
contexts. The term datatype represents in fact the possible typing derivations of the calculus, which are isomorphic to
the well-typed terms, hence the name. A term is either an application of:

« the axiom rule to type a reference to the first variable in a context
* the weakening rule to type an object in a larger context

* the abstraction or lambda rule to type a function

* the application to type an application of a function to an argument

Once we have this datatype we want to do proofs on it, like weakening:

Lemma weakening : forall G D tau, term (G ; D) tau —>
forall tau', term (G , tau' ; D) tau.

The problem here is that we can’t just use induction on the typing derivation because it will forget about the G ; D
constraint appearing in the instance. A solution would be to rewrite the goal as:

Lemma weakening' : forall G' tau, term G' tau —>
forall G D, (G ; D) = G' —>
forall tau', term (G, tau' ; D) tau.

With this proper separation of the index from the instance and the right induction loading (putting G and D after the
inducted-on hypothesis), the proof will go through, but it is a very tedious process. One is also forced to make a wrapper
lemma to get back the more natural statement. The dependent induction tactic alleviates this trouble by doing all
of this plumbing of generalizing and substituting back automatically. Indeed we can simply write:

Require Import Cog.Program.Tactics.
Require Import Cog.Program.Equality.

Lemma weakening : forall G D tau, term (G ; D) tau —>
forall tau', term (G , tau' ; D) tau.

Proof with simpl in * ; simpl_depind ; auto.
intros G D tau H. dependent induction H generalizing G D ; intros.

This call to dependent induction has an additional arguments which is a list of variables appearing in the instance that
should be generalized in the goal, so that they can vary in the induction hypotheses. By default, all variables appearing
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inside constructors (except in a parameter position) of the instantiated hypothesis will be generalized automatically but
one can always give the list explicitly.

Show.
4 subgoals

GO : ctx

tau : type

G, D : ctx

x : GO, tau = G; D

subgoal 2 is:

term ((G, tau'O); D) tau

subgoal 3 is:

term ((G, tau'O); D) (tau ——> tau')
subgoal 4 is:

term ((G, tau'O); D) tau'

The simpl_depind tactic includes an automatic tactic that tries to simplify equalities appearing at the beginning of
induction hypotheses, generally using trivial applications of reflexivity. In cases where the equality is not between
constructor forms though, one must help the automation by giving some arguments, using the specialize tactic for
example.

destruct D... apply weak; apply ax. apply ax.
destruct D...

Show.
4 subgoals

GO : ctx
tau : type
H : term GO tau

tau' : type
IHterm : forall G D : ctx,
GO = G; D —> forall tau' : type, term ((G, tau'); D) tau

subgoal 2 is:

term (((G, tau'O); D), t) tau
subgoal 3 is:
term ((G, tau'O); D) (tau ——> tau')

subgoal 4 is:
term ((G, tau'O); D) tau'

specialize (IHterm GO empty eq_refl).
4 subgoals

GO : ctx
tau : type
H : term GO tau
tau' : type
(continues on next page)

3.1. Basic proof writing 399



The Coq Reference Manual, Release 8.13.2

IHterm
tau'l

forall tau'
type

tau');

subgoal 2 is:
term (((G, tau'O);
subgoal 3 is:
term ((G, tau'O);
subgoal 4 is:
((G, tau'O0);

D), t)

D) (tau —--> tau')

term D) tau'

empty)

(continued from previous page)

tau

Once the induction hypothesis has been narrowed to the right equality, it can be used directly.

apply weak, IHterm.
3 subgoals
tau type
G, D ctx
IHterm forall GO DO ctx,
G; D = GO; DO —-> forall tau' type, term
H term (G; D) tau
t, tau'0 type
term (((G, tau'O); D), t) tau
subgoal 2 is:
term ((G, tau'O); D) (tau —-> tau')
subgoal 3 is:
term ((G, tau'O); D) tau'
Now concluding this subgoal is easy.
constructor; apply IHterm; reflexivity.
See also:

The induction, case,and inversion tactics.

autorewrite

((GO, tau'); DO) tau

Here are two examples of autorewrite use. The first one ( Ackermann function) shows actually a quite basic use
where there is no conditional rewriting. The second one ( Mac Carthy function) involves conditional rewritings and shows
how to deal with them using the optional tactic of the Hint Rewrite command.

Example: Ackermann function

Require Import Arith.

Parameter Ack nat —-> nat —> nat.

Axiom AckO forall m:nat, Ack 0 m = S m.
Axiom Ackl forall n:nat, Ack (S n) 0 = Ack n 1.
Axiom Ack2 forall n m:nat, Ack (S n) (S m) = Ack n (Ack

400
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Hint Rewrite AckO Ackl Ack2 : baseO.

Lemma ResAckO : Ack 3 2 = 29.
1 subgoal

autorewrite with baseO using try reflexivity.
No more subgoals.

Example: MacCarthy function

Require Import Lia.
Parameter g : nat —-> nat —-> nat.

Axiom g0 : forall m:nat, g O m = m.
Axiom gl : forall n m:nat, (n > 0) -> (m > 100) -> gnm =g (pred n) (m — 10).
Axiom g2 : forall n m:nat, (n > 0) -> (m <= 100) -> gnm=g (S n) (m + 11).

Hint Rewrite g0 gl g2 using lia : basel.
Lemma Resg0 : g 1 110 = 100.

1 subgoal

autorewrite with basel using reflexivity || simpl.
No more subgoals.

Lemma Resgl : g 1 95 = 91.
1 subgoal

autorewrite with basel using reflexivity || simpl.
No more subgoals.
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3.1.6 Proof schemes

Generation of induction principles with Scheme

? ?
Command: Scheme ident := scheme_kind |with |ident := scheme_kind

scheme_kind Equality for reference

\ Induction ‘ Minimality Elimination Case for reference
Sort sort_family

Set

Prop

\ SProp

\ Type

sort_family

A high-level tool for automatically generating (possibly mutual) induction principles for given types and sorts. Each
reference is a different inductive type identifier belonging to the same package of mutual inductive definitions.
The command generates the i dents as mutually recursive definitions. Each term ident proves a general principle
of mutual induction for objects in type reference.

ident The name of the scheme. If not provided, the scheme name will be determined automatically from the
sorts involved.

Minimality for reference Sort sort_family Defines a non-dependent elimination principle
more natural for inductively defined relations.

Equality for reference Tries to generate a Boolean equality and a proof of the decidability of the usual
equality. If re ference involves other inductive types, their equality has to be defined first.

Example
Induction scheme for tree and forest.

A mutual induction principle for tree and forest in sort Set can be defined using the command

Inductive tree : Set := node : A -> forest —-> tree
with forest : Set :=
leaf : B —> forest
| cons : tree -> forest -> forest.
tree, forest are defined
tree_rect is defined
tree_ind is defined
tree_rec is defined
tree_sind is defined
forest_rect is defined
forest_ind is defined
forest_rec is defined
forest_sind is defined

Scheme tree_forest_rec := Induction for tree Sort Set
with forest_tree_rec Induction for forest Sort Set.
forest_tree_rec is defined
tree_forest_rec is defined
tree_forest_rec, forest_tree_rec are recursively defined

You may now look at the type of tree_forest_rec:
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Check tree_forest_rec.
tree_forest_rec
forall (P : tree -> Set) (PO : forest -> Set),

(forall (a : A) (f : forest), PO £ -—> P (node a f)) —>
(forall b : B, PO (leaf b)) —>
(forall t : tree, P t -> forall f1 : forest, PO f1 -> PO (cons t f1)) ->

forall t : tree, P t

This principle involves two different predicates for trees andforests; it also has three premises each one corresponding to
a constructor of one of the inductive definitions.

The principle forest_tree_rec shares exactly the same premises, only the conclusion now refers to the property of
forests.

Example
Predicates odd and even on naturals.

Let odd and even be inductively defined as:

Inductive odd : nat -> Prop := oddS : forall n:nat, even n —-> odd (S n)
with even : nat -> Prop :=

| evenO : even 0

| evenS : forall n:nat, odd n —-> even (S n).

odd, even are defined
odd_ind is defined
odd_sind is defined
even_ind is defined
even_sind is defined

The following command generates a powerful elimination principle:

Scheme odd_even := Minimality for odd Sort Prop
with even_odd := Minimality for even Sort Prop.
even_odd is defined
odd_even is defined
odd_even, even_odd are recursively defined

The type of odd_even for instance will be:

Check odd_even.
odd_even
forall P PO : nat —-> Prop,

(forall n : nat, even n —> PO n —> P (S n)) —>
PO 0O —>
(forall n : nat, odd n > P n —> PO (S n)) —>

forall n : nat, odd n -> P n

The type of even_odd shares the same premises but the conclusion is (n:nat) (even n)->(P0 n).
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Automatic declaration of schemes

Flag: Elimination Schemes
Enables automatic declaration of induction principles when defining a new inductive type. Defaults to on.

Flag: Nonrecursive Elimination Schemes
Enables automatic declaration of induction principles for types declared with the Variant and Record com-
mands. Defaults to off.

Flag: Case Analysis Schemes
This flag governs the generation of case analysis lemmas for inductive types, i.e. corresponding to the pattern
matching term alone and without fixpoint.

Flag: Boolean Equality Schemes
Flag: Decidable Equality Schemes
These flags control the automatic declaration of those Boolean equalities (see the second variant of Scheme).

Warning: You have to be careful with these flags since Coq may now reject well-defined inductive types because it
cannot compute a Boolean equality for them.

Flag: Rewriting Schemes
This flag governs generation of equality-related schemes such as congruence.

Combined Scheme

+
Command: Combined Scheme ident, . from  ident

This command is a tool for combining induction principles generated by the Scheme command. Each ident is
a different inductive principle that must belong to the same package of mutual inductive principle definitions. This
command generates ident . as the conjunction of the principles: it is built from the common premises of the
principles and concluded by the conjunction of their conclusions. In the case where all the inductive principles used
are in sort Prop, the propositional conjunction and is used, otherwise the simple product prod is used instead.

Example

We can define the induction principles for trees and forests using:

Scheme tree_forest_ind := Induction for tree Sort Prop

with forest_tree_ind := Induction for forest Sort Prop.
forest_tree_ind is defined
tree_forest_ind is defined
tree_forest_ind, forest_tree_ind are recursively defined

Then we can build the combined induction principle which gives the conjunction of the conclusions of each individual
principle:

Combined Scheme tree_forest_mutind from tree_forest_ind, forest_tree_ind.
tree_forest_mutind is defined
tree_forest_mutind is recursively defined

The type of tree_forest_mutind will be:
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Check tree_forest_mutind.
tree_forest_mutind
forall (P : tree -> Prop) (PO : forest —-> Prop),

(forall (a : A) (f : forest), PO £ -—> P (node a f)) —>

(forall b : B, PO (leaf b)) —>

(forall t : tree, P t -> forall f1 : forest, PO f1 -> PO (cons t f1)) ->
(

forall t : tree, P t) /\ (forall f2 : forest, PO f2)

Example

We can also combine schemes at sort Type:

Scheme tree_forest_rect := Induction for tree Sort Type

with forest_tree_rect Induction for forest Sort Type.
forest_tree_rect is defined
tree_forest_rect is defined
tree_forest_rect, forest_tree_rect are recursively defined

Combined Scheme tree_forest_mutrect from tree_forest_rect, forest_tree_rect.
tree_forest_mutrect is defined
tree_forest_mutrect is recursively defined

Check tree_forest_mutrect.
tree_forest_mutrect
: forall (P : tree —> Type) (PO : forest —> Type),

(forall (a : A) (f : forest), PO f -> P (node a f)) —>

(forall b : B, PO (leaf b)) ->

(forall t : tree, P t —-> forall f1 : forest, PO f1 -> PO (cons t f1)) —>
(

forall t : tree, P t) * (forall f2 : forest, PO £f2)

See also:

Generation of induction principles with Functional Scheme

Generation of inversion principles with Derive Inversion

?
Command: Derive Inversion ident with one term Sort sort family

Generates an inversion lemma for the inversion ... using ... tactic. ident is the name of the gener-
+
ated lemma. one_ termshould be in the form qualidor (forall binder | , qualid term) where

qualid is the name of an inductive predicate and binder | binds the variables occurring in the term term.
The lemma is generated for the sort sort_ family corresponding to one_ term. Applying the lemma is equiv-
alent to inverting the instance with the i nversion tactic.

?

Command: Derive Inversion_clear ident with one_ term Sort sort family

When applied, it is equivalent to having inverted the instance with the tactic inversion replaced by the tactic
inversion_clear.

Command: Derive Dependent Inversion ident with one_term Sort sort_family
When applied, it is equivalent to having inverted the instance with the tactic dependent inversion.

Command: Derive Dependent Inversion_clear ident with one_term Sort sort family
When applied, it is equivalent to having inverted the instance with the tactic dependent inversion_clear.
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Example
Consider the relation Le over natural numbers and the following parameter P:

Inductive Le : nat -> nat —-> Set :=
| LeO : forall n:nat, Le 0 n
| LeS : forall n m:nat, Le nm —> Le (S n) (S m).
Le is defined
Le_rect is defined
Le_ind is defined
Le_rec is defined
Le_sind is defined

Parameter P : nat -> nat —-> Prop.
P is declared

To generate the inversion lemma for the instance (Le (S n) m) and the sort Prop, we do:

Derive Inversion_clear leminv with (forall n m:nat, Le (S n) m) Sort Prop.
leminv is defined

Check leminv.
leminv
forall (nm : nat) (P : nat -> nat -> Prop),
(forall mO : nat, Le n m0O —> P n (S mO)) -> Le (Sn) m —>P nm

Then we can use the proven inversion lemma:

Show.
1 subgoal

inversion H using leminv.
1 subgoal

forall mO : nat, Le n mO -> P n (S mO)
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3.2 Automatic solvers and programmable tactics

Some tactics are largely automated and are able to solve complex goals. This chapter presents both built-in solvers that
can be used on specific categories of goals and programmable tactics that the user can instrument to handle complex goals
in new domains.

3.2.1 Solvers for logic and equality

Tactic: tauto
This tactic implements a decision procedure for intuitionistic propositional calculus based on the contraction-free
sequent calculi LIT* of Roy Dyckhoft [[Dyc92]]. Note that t aut o succeeds on any instance of an intuitionistic
tautological proposition. taut o unfolds negations and logical equivalence but does not unfold any other definition.

Example

The following goal can be proved by tauto whereas aut o would fail:

Goal forall (x:nat) (P:nat -> Prop), x = 0 \/ P x —> x <> 0 -> P x.
1 subgoal

forall (x : nat) (P : nat -> Prop), x = 0 \/ P x —> x <> 0 -> P x

intros.
1 subgoal

x : nat
P : nat —-> Prop
H: x=0\/Px

tauto.
No more subgoals.

Moreover, if it has nothing else to do, tauto performs introductions. Therefore, the use of intros in the
previous proof is unnecessary. taut o can for instance for:

Example
Goal forall (A:Prop) (P:nat -> Prop), A \/ (forall x:nat, ~ A -> P x) —> forall.
»x:nat, ~ A -> P x.
1 subgoal

forall (A : Prop) (P : nat —-> Prop),
A \/ (forall x : nat, ~ A -> P x) —-> forall x : nat, ~ A —> P x

tauto.
No more subgoals.
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Note: In contrast, tauto cannot solve the following goal Goal forall (A:Prop) (P:nat ->
Prop), A \/ (forall x:nat, ~ A -> P x) -> forall x:nat, ~ ~ (A \/ P x). be-
cause (forall x:nat, ~ A —-> P x) cannot be treated as atomic and an instantiation of x is necessary.

Tactic: dtauto
While taut o recognizes inductively defined connectives isomorphic to the standard connectives and, prod,
or, sum, False, Empty_set, unit and True, dtauto also recognizes all inductive types with one
constructor and no indices, i.e. record-style connectives.
?
Tactic: intuition |ltac expr
Uses the search tree built by the decision procedure for tauto to generate a set of subgoals equivalent to the
original one (but simpler than it) and applies I1tac_expr to them [[Mun94]]. If 1tac_expr is not specified, it
defaults to auto with *If 1tac_ expr fails on some goals then intuitionfails. Infact, tautois simply
intuition fail.

intuition recognizes inductively defined connectives isomorphic to the standard connectives and, prod, or,
sum, False, Empty_set,unit and True.

Example

For instance, the tactic intuition auto applied to the goal:

(forall (x:nat), P x) /\ B —> (forall (y:nat), P y) /\ P O\N/ B /\ PO

internally replaces it by the equivalent one:

(forall (x:nat), P x), B |- P O

and then uses aut o which completes the proof.

?
Tactic: dintuition |ltac_expr

In addition to the inductively defined connectives recognized by intuition, dintuit ion alsorecognizes
all inductive types with one constructor and no indices, i.e. record-style connectives.

Flag: Intuition Negation Unfolding
Controls whether intuition unfolds inner negations which do not need to be unfolded. The flag is on by
default.

Tactic: rtauto
Solves propositional tautologies similarly to tauto, but the proof term is built using a reflection scheme applied
to a sequent calculus proof of the goal. The search procedure is also implemented using a different technique.

Users should be aware that this difference may result in faster proof search but slower proof checking, and rtauto
might not solve goals that ¢ aut o would be able to solve (e.g. goals involving universal quantifiers).

Note that this tactic is only available after a Require Import Rtauto.
? ?

? + +
Tactic: firstorder Iltac expr using qualid with ident

An experimental extension of tauto to first-order reasoning. It is not restricted to usual logical connectives but
instead can reason about any first-order class inductive definition.

ltac_expr Tries to solve the goal with 1tac_expr when no logical rule applies. If unspecified, the tactic
uses the default from the Fi rstorder Solver option.
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+ +
using qualid | Adds the lemmas gqualid | to the proof search environment. If gqualid refers to an

inductive type, its constructors are added to the proof search environment.

+ +
with |ident | Addslemmas from auto hint bases ident | to the proof search environment.

Option: Firstorder Solver Iltac_expr
The default tactic used by £irstorder when no rule applies in auto with core. It can be set locally
or globally using this option.

Command: Print Firstorder Solver
Prints the default tactic used by i rstorder when no rule applies.

Option: Firstorder Depth natural
Controls the proof search depth bound.

2 +
Tactic: congruence natural with (one_term

natural Specifies the maximum number of hypotheses stating quantified equalities that may be added to the
problem in order to solve it. The default is 1000.

?
+ +
with one term Adds one_term | to the pool of terms used by congruence. This helps in case

you have partially applied constructors in your goal.

Implements the standard Nelson and Oppen congruence closure algorithm, which is a decision procedure
for ground equalities with uninterpreted symbols. It also includes constructor theory (see injection and
discriminate). If the goal is a non-quantified equality, congruence tries to prove it with non-quantified equal-
ities in the context. Otherwise it tries to infer a discriminable equality from those in the context. Alternatively,
congruence tries to prove that a hypothesis is equal to the goal or to the negation of another hypothesis.

congruence is also able to take advantage of hypotheses stating quantified equalities, but you have to provide a
bound for the number of extra equalities generated that way. Please note that one of the sides of the equality must
contain all the quantified variables in order for congruence to match against it.

Increasing the maximum number of hypotheses may solve problems that would have failed with a smaller value. It
will make failures slower but it won’t make successes found with the smaller value any slower. You may want to
use assert to add some lemmas as hypotheses so that congruence can use them.

Example
Theorem T (A:Type) (f:A -> A) (g: A —> A -> A) a b: a=(f a) —> (gb (f a))=(f (f_
a)) —> (g ab)=(f (gba)) > (g a b)=a.
1 subgoal
A : Type

f : A ->A
g : A ->A > A

a, b A
a=fa->gb (fa =f (fa ->gab=1f (gba ->gab-=a
intros.
1 subgoal
A : Type
f : A -—>A

(continues on next page)
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g : A ->A —>A
a, b : A
H:a=1fa
HO gb (fa =1f (f a)
H1 gab=1f (gb a)
gab-=a
congruence.
No more subgoals.
Qed.
Theorem inj (A:Type) (f:A -> A * A)
- (f d) —> c=d.
1 subgoal
A Type
f : A —>A * A
a, c, d A
f = pair a —> Some (f c) = Some
intros.
1 subgoal
A : Type
f : A ->A * A
a, c, d A
H : f = pair a
HO : Some (f c) = Some (f d)
c =d
congruence.

No more su

Qed.

bgoals.

(£ d)

(a ¢ d: A)

-> c

£

d

pair a -> Some

(continued from previous page)

(f ¢) = Some.

Error: I don’t know how to handle dependent equality.

The decision procedure managed to find a proof of the goal or of a discriminable equality but this proof could
not be built in Coq because of dependently-typed functions.

Error: Goal is solvable by congruence but some arguments are missing.

+
Try congruence with term

Flag: Congruence Verbose
Makes congruence print debug information.

Tactic: btauto

The tactic bt aut o implements a reflexive solver for boolean tautologies. It solves goals of the formt =
t and u are constructed over the following grammar:

, replacing metavariables by arbitrary terms.

The decision procedure could solve the goal with the provision that additional arguments are supplied for some
partially applied constructors. Any term of an appropriate type will allow the tactic to successfully solve the
goal. Those additional arguments can be given to congruence by filling in the holes in the terms given in the
error message, using the with clause.

u where

410
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btauto_term ::= ident
| true
| false
| orb btauto_term btauto_term
| andb btauto_term btauto_term
| xorb btauto_term btauto_term
| negb btauto_term
| if btauto_term then btauto_term else btauto_term

Whenever the formula supplied is not a tautology, it also provides a counter-example.
Internally, it uses a system very similar to the one of the ring tactic.
Note that this tactic is only available after a Require Import Btauto.

Error: Cannot recognize a boolean equality.
The goal is not of the form t = u. Especially note that bt aut o doesn’t introduce variables into the context
on its own.

3.2.2 Omega: a (deprecated) solver for arithmetic

Author Pierre Crégut

Warning: The omega tactic is deprecated in favor of the 11ia tactic. The goal is to consolidate the arithmetic
solving capabilities of Coq into a single engine; moreover, 1ia is in general more powerful than omega (it is a
complete Presburger arithmetic solver while omega was known to be incomplete).

It is recommended to switch from omega to 1ia in existing projects. We also ask that you report (in our bug
tracker*’) any issue you encounter, especially if the issue was not present in omega. If no new issues are reported,
omega will be removed soon.

Note that replacing omega with 1 i a can break non-robust proof scripts which rely on incompleteness bugs of omega
(e.g. using the pattern ; try omega).

Description of omega
Tactic: omega
Deprecated since version 8.12: Use 1 ia instead.

omega is a tactic for solving goals in Presburger arithmetic, i.e. for proving formulas made of equations and
inequalities over the type nat of natural numbers or the type Z of binary-encoded integers. Formulas on nat are
automatically injected into Z. The procedure may use any hypothesis of the current proof session to solve the goal.

Multiplication is handled by omega but only goals where at least one of the two multiplicands of products is a
constant are solvable. This is the restriction meant by “Presburger arithmetic”.

If the tactic cannot solve the goal, it fails with an error message. In any case, the computation eventually stops.

40 https://github.com/coq/cog/issues
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Arithmetical goals recognized by omega

omega applies only to quantifier-free formulas built from the connectives:

/NN~ >

on atomic formulas. Atomic formulas are built from the predicates:

on nat or Z. In expressions of type nat, omega recognizes:

+ - * S O pred

and in expressions of type Z, omega recognizes numeral constants and:
+ - * Z.succ Z.pred

All expressions of type nat or Z not built on these operators are considered abstractly as if they were arbitrary variables
of type nat or Z.

Messages from omega

When omega does not solve the goal, one of the following errors is generated:

Error: omega can't solve this system.
This may happen if your goal is not quantifier-free (if it is universally quantified, try int ros first; if it contains
existentials quantifiers too, omega is not strong enough to solve your goal). This may happen also if your goal
contains arithmetical operators not recognized by omega. Finally, your goal may be simply not true!

Error: omega: Not a quantifier-free goal.
If your goal is universally quantified, you should first apply i nt ro as many times as needed.

Error: omega: Unrecognized predicate or connective: ident.
Error: omega: Unrecognized atomic proposition:

Error: omega: Can't solve a goal with proposition variables.
Error: omega: Unrecognized proposition.

Error: omega: Can't solve a goal with non-linear products.

Error: omega: Can't solve a goal with equality on type

Using omega

The omega tactic does not belong to the core system. It should be loaded by

Require Import Omega.

Example

Require Import Omega.
Open Scope Z_scope.

(continues on next page)
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(continued from previous page)

Goal forall m n:Z, 1 + 2 * m <> 2 * n.
1 subgoal

forall mn : 72, 1 + 2 * m <> 2 * n

intros; omega.
Toplevel input, characters 0-14:
> intros; omega.
S AAAAAAAAAAAAAA
Warning: omega is deprecated since 8.12; use “lia” instead.
[omega-is-deprecated, deprecated]
No more subgoals.

Abort.

Goal forall z:Z, z > 0 —> 2 * z + 1 > z.
1 subgoal

forall z : 2, z >0 —> 2 * z + 1 > z

intro; omega.
Toplevel input, characters 0-13:
> intro; omega.
S AAAAAAAAAAAAA
Warning: omega is deprecated since 8.12; use “lia” instead.
[omega-is—deprecated, deprecated]
No more subgoals.

Abort.

Options
Flag: Stable Omega
Deprecated since version 8.5.

This deprecated flag (on by default) is for compatibility with Coq pre 8.5. It resets internal name counters to make
executions of omega independent.

Flag: Omega UseLocalDefs
This flag (on by default) allows omega to use the bodies of local variables.

Flag: Omega System
This flag (off by default) activate the printing of debug information

Flag: Omega Action
This flag (off by default) activate the printing of debug information
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Technical data

Overview of the tactic

The goal is negated twice and the first negation is introduced as a hypothesis.
Hypotheses are decomposed in simple equations or inequalities. Multiple goals may result from this phase.

Equations and inequalities over nat are translated over Z, multiple goals may result from the translation of sub-
traction.

Equations and inequalities are normalized.
Goals are solved by the OMEGA decision procedure.

The script of the solution is replayed.

Overview of the OMEGA decision procedure

The OMEGA decision procedure involved in the omega tactic uses a small subset of the decision procedure presented
in [[Pug92]] Here is an overview, refer to the original paper for more information.

Equations and inequalities are normalized by division by the GCD of their coefficients.
Equations are eliminated, using the Banerjee test to get a coefficient equal to one.
Note that each inequality cuts the Euclidean space in half.

Inequalities are solved by projecting on the hyperspace defined by cancelling one of the variables. They are parti-
tioned according to the sign of the coefficient of the eliminated variable. Pairs of inequalities from different classes
define a new edge in the projection.

Redundant inequalities are eliminated or merged in new equations that can be eliminated by the Banerjee test.

The last two steps are iterated until a contradiction is reached (success) or there is no more variable to eliminate
(failure).

It may happen that there is a real solution and no integer one. The last steps of the Omega procedure are not implemented,
so the decision procedure is only partial.

Bugs

The simplification procedure is very dumb and this results in many redundant cases to explore.
Much too slow.

Certainly other bugs! You can report them to https://coq.inria.fr/bugs/.

3.2.3 Micromega: solvers for arithmetic goals over ordered rings

Authors Frédéric Besson and Evgeny Makarov
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Short description of the tactics

The Psatz module (Require Import Psatz.) gives access to several tactics for solving arithmetic goals over @,
R, and Z but also nat and N. It also possible to get the tactics for integers by a Require Import Lia, rationals
Require Import Lga andreals Require Import Lra.

e 1iais adecision procedure for linear integer arithmetic;

* niais an incomplete proof procedure for integer non-linear arithmetic;

e Irais adecision procedure for linear (real or rational) arithmetic;

e nra is an incomplete proof procedure for non-linear (real or rational) arithmetic;

e psatzD nwhereDis Zor Q or R, and n is an optional integer limiting the proof search depth, is an incomplete
proof procedure for non-linear arithmetic. It is based on John Harrison’s HOL Light driver to the external prover
csdp®*!. Note that the csdp driver generates a proof cache which makes it possible to rerun scripts even without
csdp.

Flag: Simplex
This flag (set by default) instructs the decision procedures to use the Simplex method for solving linear goals. If it
is not set, the decision procedures are using Fourier elimination.

Option: Dump Arith
This option (unset by default) may be set to a file path where debug info will be written.

Command: Show Lia Profile
This command prints some statistics about the amount of pivoting operations needed by 1 i a and may be useful to
detect inefficiencies (only meaningful if flag Simplex is set).

Flag: Lia Cache
This flag (set by default) instructs 11 a to cache its results in the file . 1ia.cache

Flag: Nia Cache
This flag (set by default) instructs nia to cache its results in the file .nia.cache

Flag: Nra Cache
This flag (set by default) instructs nra to cache its results in the file .nra.cache

The tactics solve propositional formulas parameterized by atomic arithmetic expressions interpreted over a domain D €
{Z,Q,R}. The syntax for formulas over Z is:

F ::= A | P | True | False | FAF | FVF | F<>F | F>F | ~F | F=F
A ::= |[p=p | p>p | p<p | p>=p | p<=p
p