R: A Language and Environment for
Statistical Computing

Reference Index

The R Core Team

Version 4.1.1 (2021-08-10)

Copyright (©) 1999-2012 R Foundation for Statistical Computing.

Permission is granted to make and distribute verbatim copies of this manual provided the copyright
notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions for
verbatim copying, provided that the entire resulting derived work is distributed under the terms of a
permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language, under the
above conditions for modified versions, except that this permission notice may be stated in a translation
approved by the R Core Team.

R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute
it under the terms of the GNU General Public License. For more information about these matters, see
https://www.gnu.org/copyleft/gpl.html.

Contents

I

1

1 The base package 3
base-package 3
Jbincode 3
Device e 4
Machine 5
Platform L L 8
abbreviate L. 9
T4 () o P 11
all . . e 13
allequal L L 15
allnames L e 18
ANY . . o v e e e e e e e e e e e e e e e e 19
APETIINL . .« v v v vt e e e e e e e e e e e e e e e e e e 20
append e e e 22
apply . . e 22
ATES o v e e e e e e e e e e e e e e e e 24
Arithmetic e 26
AITAY © o v o v v e 29
as.dataframe 30
as.Date L e e 32
AS.eNVIFONMENt o ot e e e e e e e e e e 35
as.function L L 37
as.POSIX* e 38
Asls . . e e e e 41
asplit e 42
ASSIZN . . . e e e e e 43
assignOPs L e 45
attach e e e 46
A . . . L e e e e e 48
attributes L. L e 49
autoload L. L 51
backsolve e e e 52
basename L e e e e 53
Bessel 54

il

CONTENTS
bindenv e e e 58
DItwise e e e e 60
body e 61
bquote L 62
Browser e e e e e 63
browserText e e e 65
builtins L e e e 66
DY . e e e 67
C e e e e e e 68
call L e 70
callCC e e 72
CallExternal e 73
capabilities L. 74
CAL . . o e e e e e 76
chind e 78
charexpand L 81
character e 82
charmatch e 84
chartr e e e e 85
chkDots e 87
chol e 88
chol2inv e e 90
class . . .o 91
Col . . e e e 94
Colon e 95
COlSUMS e e e 96
commandArgs 98
COMMENL v v o e o e e e e e e e e e e e e e e e e 99
CompariSOn e e e e e e e e e e 99
complex 102
conditionS L L e e 104
conflicts L e 108
CONNECLIONS . .« . v v v e 109
Constants e e e e e 120
contributors L. e e 121
Control e e e 121
copyright L e e e 123
Crossprod e e e 124
Cstack_info e 125
CUMSUIML . & v v v v v v e 126
curlGetHeaders 127
CUL . . o e e e e e e e 128
cut POSIXt e e 131
data.class e e 132
dataframe 133
datamatriX e e e e e e e e e 135
date e e 137

CONTENTS iii

DateTimeClasses o v i it e e 139
def o e e e e 143
debug L 146
Defunct e 147
delayedAssSign e e e e e e 148
deparse 150
deparseOpts 152
Deprecated e e e 154
det . . . e 155
detach e 156
diag . . .o 158
diff . . e e 160
difftime 161
dim ..o e e 163
dimnames e e e e e 164
do.call e e e 166
dontCheck e 168
dOts . . . e 168
double e 169
dput . . . e e 171
drop . . .o 173
droplevels L e 174
dump . . . 175
duplicated 177
dyndoad e 179
aPPLY . . . e e e 182
CIZEN L e 183
encodeString 185
Encoding e 187
ENVIFONMENL v o v v ot i e e e e e e e e e e e e e e e e e e e 188
EnvVar e 191
eval ..o e 193
BXISES . . . e e e e e e e e e 196
expand.grid 198
EXPIESSION .« . . v vt e e e e e e e 199
Extract e e 201
Extract.dataframe 206
Extractfactor e e e 209
Extremes e e 211
extSoftVersion e e 213
factor e 214
file.access e e 218
file.choose 220
fileinfo 220
filepath L 222
file.show e 223
files e e 224

iv

CONTENTS
find.package e 229
findInterval e 231
force e e e e 233
forceAndCall 234
Foreign e 234
formals e e 237
format L 238
format.info L e 242
formatpval 243
formatC e e e e 244
formatDL e 249
function L L e 250
funprog L e 251
BC o e 254
GCHME e e e e e e e 255
GCLOTTUTE o o 256
BEL . o e e 257
getDLLRegisteredRoutines 259
getLoadedDLLs e e 261
getNativeSymbollnfo L 262
GELEEXE . . o e e 264
getWd . . e e e e 266
gl e 267
BIED .« v i i e e e e e e e e e 268
grepRaw L e e e 274
GrOUPGENETIC v v v et e e e e e e e e e e e e 276
GIOUPING . . . o o v v it e e e e 279
SZCOM . o o v e i e e e e e e e e e e e 280
hexmode 281
Hyperbolic 282
ICONV . . o o o e 283
icuSetCollate L 287
identical L L e 289
identity 292
ifelse oo 292
INEZET . . . v v o e e e e e e e e e e e e e 294
INETACtiON v o e i e i e e e e e e e e e e e e e e e 296
INTETACHIVE o e e e e e e e e 297
Internal 298
InternalMethods 298
nvisible L e e e e e e e 300
isfinite 301
isfunction L 303
isdanguage e 304
1S.ODJECt . . o o e 304
ISR e 305
ISTECUTSIVE . . v v v v v o e e e e e e e e e e e e e e e e e e e 306

is.singleo 307

CONTENTS v

isaunsorted L. L L e e e 307
ISOdatetime e 308
ISSA L e 309
ISSymmetric e 310
JIEET © o o e e e e e e e 311
kappao e 313
kronecker L 315
1HOn_info e e 316
labels e e e 317
lapply o e 318
Lastvalue e e e 321
La_library o e e 322
La version s 322
length o L 323
lengths L L e e 324
levels e e e 326
libcurlVersion e 327
libPaths e 328
library e e 330
library.dynam 334
LICENSE e e e 336
LISt . . e e e e e 337
List.files e e 339
Lst2DE . . . e e 340
LSt2eNV L e e e e e 341
load e e 343
locales e e e 345
1og . o o e 347
Logic e e e 349
logical 351
LongVectors e 352
JOWertri e 353
IS . o e e e e e 354
mMakKe.names e 355
make.unique e e e 357
mapply e e e e e 358
mMarginSUMS oot e e e 359
MALOLVEC . . . v v v v e o e e e e e e e e e e e e e e e e 360
match e e 361
match.arg 363
match.call 364
match.fun L e 365
MathFun e e e e e 367
matmult e e e 368
MAtFIX o e s e e e e e e e e e e e e e e e 369
maxCol e 371
011 o 372

vi

CONTENTS
memlimits e e e e e e e e e e e e 375
Memory e e e e e 376
Memory-limits 377
memory.profile 378
TMETEE . v v v v e 379
IMESSAZE .+ . v v v vt e e e e e e e e e e e e e e e e e 382
MUSSING . . o v vt e e e e e 383
mode e 384
NA . e 386
NAME . . . o v v v v e 388
2 0T 390
NATES . .« v v v v e 391
nchar L e e e 392
nlevels oL 395
NOQUOLE .« v v v o v e 396
107 3 0 0 397
normalizePath 399
NotYet o e 400
NIOW & o vt v v e 401
ns-dblcolon 402
ns-hooks . . . L 403
ns-load . . .o 405
DS-TOPENV o o e e e e e e e 407
NULL . . . 408
NUIMETIC .+ v v v v vt o e e e e e e e e e e e e e e e e e e e 409
NumericConstants o o v vttt e e e e e e e e e 411
NUMETIC_VEISION v o v e e e e e e e e e e s s e 413
octmode 414
OMLEXIL & v v v v e o e e e e e e e e e e e e e e e e e e 415
Ops.Date e 417
OPLIONS v v v e e e 417
OFder o e e 428
OULET © . v v v v e 432
Paren 433
PAISE .« o o o o e e e 434
PASte . . . e e e e 437
patheexpand 439
pere_config e 440
PIPEOD . . . o e e 441
PlOt . o e e 442
pmatch. 444
polyroot 445
POSHOENV . . o o o i e e e e e e e e e e e e 446
PIEILY . o o o e e e e e e 447
Primitive 449
Print . . o e e e 449
print.dataframe 451

print.defaulto 452

CONTENTS vii

PIMAtriX . . . o o o e e e e e e e e e e e e e e e e e 455
Proc.time e e e e e 456
Prod . . .o e e 457
PIOPOItIONS v v ittt e e e e e e e 458
pushBack e 459
6) PP 460
QR.Auxiliaries e e 463
QUIE . o e e e e e e e e e 465
QUOLES e e e e e e e e e 466
R.Version e 470
Random e 472
Random.user 477
TANZE .« ¢ o v e 478
rank ... e e e e 480
TapPLy . . e e 481
TAW o v v o e e e e e e e e e e e e e e e e e 483
rawConnection e e e e e e 484
rawConversion e e e e e e e e e e e 486
RAUtls e 488
readBin L 489
readChar e e e 492
readline L e e e 494
readlines L e e 495
readRDS e e 497
readRenviron L 499
Recall e 500
regfinalizer L 501
TEZEX o ¢ e 502
regmatches L e e 506
TEMOVE . . . v i v i e 509
TEP « v v e 510
TEPlACE e e e 513
Reserved e 513
TEV & v v i e e e e e e e e e 514
Rhome e 515
Tle . . e e e e 516
Round e 517
round.POSIXt e e 519
TOW & vt et e e e e e e e e e e e e e e e e e 520
TOWHCOINAMES e e e 521
TOW.NAMES . . . & v v v e v e 522
TOWSUIM . . o vt vt vt e 524
S3method 525
sample L e e 526
SAVE o b v e e e e e e e 528
scale . .. L e 532
SCAN & o v v i e e e e e e e e e e e e e e e e e e e 533

viii

CONTENTS
seek . .o 538
SEO « « e e e e e e e e e e e e e e 540
seg.Date 542
seq.POSIXt e 543
SEQUENICE .« v v v v v v e 545
serialize e e 546
SEES o L e e e e e 547
setTimeLimit e 549
showConnections e e e 549
shQuote e e 551
SIZN . . o L 553
SignalS. e e e e 554
SINK . . . e 554
slicedndex e 556
SIOtODP . . . e e 557
socketSelect e e 558
SOLVE o e 559
SOTL o v vt e e e e e e e e e 561
SOUICE & v v v v v e e e e e e e e e e e e e e e e e 564
Special 567
SPIIt . . 571
Sprintf . . . oL e 573
SQUOLE L e e 577
srefile . .. L e 579
standardGeneric e 582
startsWith e 583
SEartup . . . o e e e e e e e e 584
170 587
Stopifnot L e e 589
SEIPHIME L e e 591
SUITED « o v o o e e e e e e e e e 597
SIISPIit . . . L e e e e 598
] 110) 600
SIIIIM L e 601
SITUCLUTE o . v o e e e e e e e e 602
SITWIAD .+ v v v e e e e e e e e e e e e e e e e e e e 603
SUDSEL e e e 604
SUbSHItUtE e 606
SUDSLT L e e 608
SUIMN . o v v v e 609
SUMMATY .+« o v o v v v v e e e e e e e e e e e e e e e e e 611
SVA . L e 612
SWEED « v v e 614
SWItCh e 616
SYNAX . . o v o e e e 618
SYS.GEENIV . . . v vt e e e e e e e e e e e 619
Sys.getpido e 620

Sys.glob . . . e 621

CONTENTS ix

Sysinfo e 622
Sys.docaleconv e 624
SYS.PATENL .« o v vt e 625
Sys.readlink 628
SYSSEENV .« v v v v e e e e e e e e e e e e e e e e e 629
Sys.setFileTime 630
Sys.sleep . . . o 631
SYS.SOUICE + « v v v v v e 632
Sys.timeo e e 633
Sys.which 634
SYSIEIM . . v v e e e e e e e e 635
system.file L e 638
SYStEMLLIME oo e e e e 639
SYSIEM2 e e e e 640
b e 642
table e e e e 643
tabulate e e e e e e 646
tapply . . e e e 647
taskCallback 649
taskCallbackManager 651
taskCallbackNames L 653
tempfile L e 654
textCoNNection e e e e e e e e e e e 656
tilde e 658
tIMEZONES v v e et i e e e e e e 659
tOSIIING e e e e e e 663
LrACE . .« o v o e e e e e e e e e e e e e e e e e e e 664
traceback L. 669
18 R211C) 1) ' 671
transform L. L e 673
Trig . . . e 674
MWS . . oo e e e e 676
TY o o e 677
typeof . . .o 678
UNIQUE . . o o oo e e e e e e e e e e e e e e e e e 679
unlink . . .o 681
unliSt e e e e e e 682
UNNAME . . o oo v v e e e e e e e e e e e e e e e e e e 684
UseMethod e 685
userhooks L e e e 687
utf8CONVersion e e e e e e e 689
UTFS8filepaths e e 691
validUTFS e 692
1 1) 694
VeCtorize e e 696
WAIMING . . o v v v e 697
WarNINGs o o o e e e e e e 699

weekdays L 701

X CONTENTS

which e 703
which.min 704
with . . e 706
withVisible 708
WIS . . o o o e e e e e e e e e e e e e e 709
writeLines e 710
XM . . e e 711
zapsmall e 712
Zpackages L e e e e e 713
Zutils . . .o e 714
2 The compiler package 715
compile 715
3 The datasets package 719
datasets-package 719
ability.CoV 719
airmiles L e 720
AirPassengers e 721
airquality L e 722
anscombe L. L L L e e 723
ALCNU o e e e e e e e e e 724
attitude L e 725
AUSITES . . . o v e o e e e e e e e e e e e e e e 726
beavers e e e e 727
Blsales 728
BOD . . . e 729
CATS v v v e e e e e e e e e e e e 730
ChickWeight e 731
ChickWits e 732
CO2 . e e 733
COZ o o e e 734
crimtab L L e e 735
diSCOVEIIES o e e e e e e e 737
DNase e e e e 738
eSOph . . . 739
CUIO . & v v v e e e e e e e e e e e e e e e e e 740
eurodiSt e e 741
EuStockMarkets e 742
faithful e 742
Formaldehyde 743
freeny L 744
HairEyeColor e 745
Harman23.cor e e 746
Harman74.cor e e 747
Indometh 747
inferto e 748
InsectSprays 750

ITIS © o o e e e e e e 750

CONTENTS xi

islandso 752
JohnsonJohnson L 752
LakeHuron e 753
Ih e 754
LifeCycleSavings o o e e 754
Loblolly e 755
longley 756
IyNX . e e e 757
morley 758
MCATS . .« v v v v v e e e e e e e e e e e e e e e e e e e 759
nhtemp L 760
Nile e e 761
0 10]11C) ' 762
NPK . . e 763
occupationalStatus L L L e e 764
Orange e e 765
OrchardSprays e 766
PlantGrowth 767
PIECID . o o o o e e e e e e 767
presidents e 768
PIESSUIC .« « . v v v v et e i e e e e e e e e e e e e 769
Puromycin. oL 770
QUAKES . . . o e e e e e 771
randu e 772
TIVEIS o v v v et e e e e e e e e e e e 773
TOCK . . e 773
sleep e 774
Stackloss L e e 775
SEALE e e e e e 776
sunspotmonth Lo 778
SUNSPOLYEAT « . v o v v v v v e et e e e e e e e e e e e e e e e e 779
SUNSPOLS . v v v v v e 780
SWISS o o v v e e e e e e e e e e e e 781
Theoph e 782
Titanic 784
ToothGrowth e 785
EETING o o o e e e e e e e e e e e e e 786
TEES . o v v o i e e e e e e e e e e e 786
UCBAAMISSIONS o oo e 787
UKDriverDeaths e 788
UKgas e 790
UKLungDeaths 790
USAccDeaths e 791
USAITESES o o o e e e e e e 791
USJudgeRatings e 793
USPersonalExpenditure e 793
USPOD + v v v e e e e e e e e e e e e e e e e 794

VADeaths e 795

xii CONTENTS
volcano e 796
warpbreaks L e e e e e 796
WOIMETL .+ . v v v v v e 797
WorldPhones 798
WWWusage e 799

4 The grDevices package 801
grDevices-package 801
adjustcolor. 801
as.graphicSANNOt 803
e 1] 1) 803
axisTicks 805
boxplot.stats 807
bringToTop 809
CAITO . . v v ot o e 809
cairoSymbolFont 812
check.options L e 813
chull 0 e 814
&) 815
col2rgb . . L e 815
colorRamp. e 817
ColOors . . . e 819
contourLines 820
convertColor 821
densCols e 824
dev . . . e 825
dev.capabilities 827
devcapture L. e e e e 828
devflush e 828
devinteractive L. e e e e e e e e 829
devisize e 830
dev2 . .o e 831
dev2bitmap 833
devAskNewPage 835
Devices e 836
embedFonts 837
extendrangeo e e e e e e 838
getGraphicsEvent 839
SIAY . o e e e e e e e e e e e 843
gray.Colors e e e e e e 844
grSoftVersion L 845
hel .. L e 846
Hershey e 848
WSV . L e 851
Japanese e e e e 852
make.rgb e e 853
msgWindow 855
n2mfrowo e 856

nclass L e e 857

CONTENTS Xiii

paletteo e e 858
Palettes 861
PAf . e 865
pdfioptions 870
PICIEX . . o o e 871
plotmath 873
PIE o o e e e e 878
POSESCIIPL o o o e e e e e e e e 882
postscriptFonts 889
prettyDate 892
PSOPHONS .« . . v v v e e e e e e e 893
QUATEZ . o o o e e e e e e e e e e e e e e 894
quartzFonts e e e e e e 897
recordGraphics L e 898
recordPlot L 899
IED . 901
rgb2hsv . . Lo 902
savePlot L e 904
trans3d e e 905
TypelFont e 906
WINdOWS o o e e e e 907
WIndows.OptionS e 912
windowsFonts L 913
. 1 914
XITFonts e 920
XAZ . e 921
XY.Coordso 923
xyTable 924
Xyz.coords 925
S The graphics package 929
graphics-package 929
abline 930
AITOWS .+ o v v e e e e e e e e e e e e e e e e e e 931
assocplot . . . L L e 933
AXIS . . e e 934
AXIS .« v v e e e e e e e e e e e e e e 935
axis.POSIXct e 939
axTicks L 940
barplot e e e e 942
bOX . . e 946
boxplot 947
boxplot.matrix 951
DXP . e 952
cdplot e e e e e 955
Clip . . e 957
07023101 958
convertXY . . . oL e e e 961

coplot 962

Xiv

CONTENTS
CUIVE . o v e i e e e e e e e e e e e e e 965
dotchart e 967
filled.contour 969
fourfoldplot 972
frame 974
grid . ..o 974
hist. . . . o 976
histPOSIXt e 979
identify 981
IMAZE . . . o o o e e 983
layout e 986
legend L e 988
lines e 993
locator e 995
matplot e e e e e e 996
mosaicplot 999
MEEXE . . . o L e e e e e e e e e e e e e 1002
PAITS . . . o e e e 1004
panel.smooth 1007
PAT - o o e e e e e 1008
PEISP -« o o o e e e e e e 1017
DI€ . o o e e 1021
plotdataframe 1023
plotdefault L 1024
plot.design. e e e e e e 1027
plot.factor L. e 1029
plotformula 1030
plothistogram 1031
PlOtraster e e e e e e e e 1033
plottable 1034
plotwindow 1035
PIOLXY . o o o e e e e e 1036
POINES o o o e e 1037
polygono 1041
polypath 1044
rasterlmage L. e 1046
TECL . o o e e e e e e e e e e 1047
TUZ © o v v e e e e e e e e e e e e e e 1049
SCIECIL . . v v v e it e e e e e e e e e e e e e 1050
SEEMENLS e 1052
smoothScatter L 1053
SPINeplot L e e e e 1055
SEATS e e e e e e e e e e 1058
] 1) ' 1061
stripchart L 1062
strwidth . . . 0 oo e 1064
sunflowerplot L 1066

Symbols 1068

CONTENTS XV

TEXE . . 1071
title . .. 1073
UNIES & o v o v e o e e e e e e e e e e e e e e e e e e e 1075
xspline L e 1076
6 The grid package 1079
grid-package 1079
absolute.size e 1080
AITOW . v v v et e e e e e e e e e e e e e e e 1081
caleStringMetric 1081
dataViewport e e e e e e e e 1083
depth 1084
deviceLoc e 1085
drawDetails L 1087
editDetails 1088
editVIEWDOTT o o e e e e e e e e 1089
explode e e 1089
gEdit. 1090
getNames 1091
0 1092
gPath L 1094
Grid 1095
Grid VIEWpOrts o e e e e e e e e e 1096
gridadd 1099
gridbezier 1101
grid.cap e 1102
gridircle 1103
gridclip . . . L L 1104
grid.CONVETt e e e e e e e e 1106
grid.COPY e 1108
grid.curve e 1108
griddelay 1111
grid.display.ist 1112
grid DLapply e 1113
gridddraw L L e 1114
gridedit 1115
gridforce 1116
gridframe 1118
gridfunction L 1120
grid.get . . . L e e e e 1121
grid.grabo e 1123
grid.grep e e e e 1124
grid.grillo 1126
grid.grob L 1127
gridJayout e 1128
gridines e 1130
griddocator 1132
grid s . ..o e 1133

grid.mMOVe.tO 1136

XVi

CONTENTS
SridNeWPAge e e e e e e e e e 1137
gridnull 1138
gridpack . . . L L 1139
gridipath L 1141
gridoplace L e e 1144
grid.plotaand.degend L. 1145
grid.pOINts e 1145
grid.polygon e e e e 1146
grid.pretty e 1148
gridraster e 1149
gridorecord 1151
gridreCt e e e e e e e 1152
gridrrefresh L 1153
rid.remMOVE e e e 1154
gridareorder L e e e e 1155
grid.segmentsl 1156
grid.Set . . .o 1158
grid.show.dayout L e 1159
grid.show.viewport L. L e 1160
gridteXt e 1161
Grid.XaXiS e e 1163
grid.xspline L. e e e 1165
grid.yaXiS 1167
grobCoords 1169
grobName e e e e e e 1170
grobWidth L 1170
grobX ..o e e e 1171
legendGrob L 1172
makeContent L e e 1173
PALterns e e e e e e e e 1174
plotViewport L 1176
Querying the Viewport Tree e 1177
resolveRasterSize L. 1178
roundrect e e e e e 1179
showGrob 1180
ShOWVIeWpOrt e e e 1182
stringWidth L o oL 1183
UNIE . . L o e e e e 1184
UNILC . . o s e e e e e e 1186
unitlength 0oL 1187
UNIEPMIN . . . oo oo e e e e e 1187
UNIETED « v v v v o e 1188
unitType L e 1189
validjust L 1190
validDetails L 1191
vpPath e 1192
widthDetails e 1193

Working with Viewports 1194

CONTENTS xvii

xDetails e e 1196
xsplinePoints 1197
7 The methods package 1199
methods-package e 1199
BasicFunsList L L e e 1200
AS o e e e e e e e e e e e 1200
BasicClasses e 1202
callGeneric e e e 1203
callNextMethod e 1205
CANCOBICE v v v e o e i e e e e e e e e e e e e e 1209
chind2 1210
Classes e e e e 1211
classesTOAM e e 1212
Classes_Details e 1213
className e e 1217
classRepresentation-class L. e 1219
Documentation e 1220
dotsMethods e 1222
environment-class L. 1225
envRefClass-class 1225
evalSource L. e e 1227
findClass e e e e 1230
findMethods e 1232
fixPrel.8 e 1234
genericFunction-class 1235
GenericFunctions 1236
getClass e e e 1240
getMethod L 1242
getPackageName L 1245
hasArg L 1246
IMplCitGeneric e e 1247
inheritedSlotNames 1249
initialize-methods 1250
Introduction e 1252
IS o e 1254
isSealedMethod 1256
language-class L 1257
LinearMethodsList-class 1258
LocalReferenceClasses o v i i i i i e e 1259
makeClassRepresentation 1260
method.skeleton 1261
MethodDefinition-class 1262
Methods e e 1264
MethodsList-class 1264
Methods_Details 1265
Methods_for_Nongenerics L 1270
Methods_for S3 1275

MethodWithNext-class e e 1277

XViii CONTENTS
NEW . o v e 1278
nonStructure-class L. e e e e e e e e e e 1280
ObjectsWithPackage-class e 1281
promptClass e e e e 1281
promptMethods e 1283
ReferenceClasses o e e 1284
removeMethod L e 1295
TEPIeSentationt e e e e e e e e e e e e e e e e e 1296
SBPart e e e e e 1298
S4groupGeneric e e e e e e e e e e 1301
SClassExtension-class i e e 1303
selectSuperClIasses e e e e e 1304
SBLAS . i e e e e e e e e 1306
SetClass e e 1309
setClassUnion o e e e 1314
SELGENETIC . . . v v v v o e e e e e e e e e e e e 1315
SEtGroupGeNeriC v v i e e e e e e e e e e e 1320
SetlS . .o e e 1321
setLoadActions e e e e 1326
setMethod L e 1328
SetOIdCIass o o e e e 1333
SHOW . . . L e e e 1337
showMethods e 1338
signature-class e e e e 1340
SIOt . . e e e 1341
StructureClasses e e e e e e e e e e 1343
testinheritedMethods L 1346
TraceClasses o v v i e e e e e e e e e e 1347
validObject e 1349

8 The parallel package 1353
parallel-package 1353
clusterApply e 1354
detectCores i e e e e e e e e e e e e e e 1357
makeCluster e e e e e e e 1359
meaffinity 1361
mcchildren L e e 1362
mcfork L e e 1364
melapply . . L 1366
meparallel 1370
PVEC . o o o e e e e e e 1373
RNGSstreams o o e e e e e e e e e 1375

splitindices 1377

CONTENTS Xix

9 The splines package 1379
splines-package L. 1379
asVECIOT e e e e e 1379
backSpline 1380
DS e 1381
interpSpline 1383
DS o v v e e e e e e e e e e e e 1384
periodicSpline e 1385
polySpline 1387
predict.bs 1388
predict.bSpline 1389
splineDesign e e 1390
splineKnots e 1392
splineOrder e e 1392
XyVector 1393

10 The stats package 1395
stats-package L e 1395
.checkMFClasses e e e 1395
act . . e e e e 1397
acf2AR . . e 1399
addl . . . e 1400
addmargins e e e e e e 1402
AZEIEZALEo e e e e e e e e 1404
AIC . . e 1407
alias . . .o e e e e e 1409
ANOVA .+ o vt e e e e e e e e e e e e e e e 1411
anova.glm e e e 1412
anovaldm e 1413
anova.mlm. L e 1415
ansaritest e e e e e e e e e e e e e e e 1417
A0V . o o e e e e e e e e e e e e e e e 1419
approxfun 1421
3 1424
arolS e 1428
110 1430
arima.SIM o e e e e e e e e e e e e e e e e e e e 1434
arima0 e 1435
ARMAacf 1439
ARMAIOMA e e 1441
as.helust L e 1442
asOneSidedFormula 1443
AVE . o o e e e e e e e e e e e e e e e e e 1443
bandwidth L 1444
bartlett.test 1446
Beta e 1448
binomutest L e e e 1451
Binomial e e e e e 1453

biplot e 1455

XX

CONTENTS

biplot.princomp e e e 1456
birthday e 1457
Box.test e 1459
C o e 1460
CANCOT .+t v v i e e e e et e e e e e e e e e e e e 1461
case+variable.names L. L e e 1462
Cauchy e 1463
chisq.test e e e e e 1465
Chisquare e 1468
cmdscale L e e e e e e e e 1471
coef . .. 1473
COMPIELE.CASES . . . v v v v o e 1474
confint L e e e e e e e 1475
constrOptim e e 1476
CONIAST .« v v v v v e e et e e e e e e e e e e 1478
CONIASES o o v o i e e e e e e e e e e e e e e e e e 1480
CONVOIVE o o o e e e e e e e e e e e e e e e e 1481
COPhENELiC o o i e e e e e e e e e 1483
COT v v v ettt e e e e e e e e e 1484
COLIESE . o . v o e e e e e e e e e e e e e e e 1487
COVLWE L v vttt e e e e e 1490
CPEIAM ot v v v v v e e e e e e e e e e e e e e e e e e e 1492
CUITEE . . v v v v v o e e e e e e e e e e e e e e e e 1493
decompose e 1494
delete.reSponse e e e e e e e e e e e 1495
dendrapply L e e 1497
dendrogram 1498
density e 1503
deriv e 1507
deviance e e e e e e e e 1510
dfiresidual 1511
diffinv . . . e 1512
dist. . . . e e e 1513
Distributions e e e e e e e e e 1516
dummy.coef 1517
ecdf . .. e 1518
effaovlist e e 1521
effects L e 1522
embed e 1523
expand.model.frame L oL 1524
Exponential 1525
extractAIC 1527
factanal L. 1529
factor.scope e 1532
family L 1533
FDist . . . e e 1537
L 1540

CONTENTS XX1

fisher.test 1543
fitted e e e e 1546
fivenum e 1547
flignertest 1548
formula 1550
formulanls 1552
friedman.test 1553
ftable e 1555
ftableformula 1557
GammaDist e 1558
GEOMELIIC o i e e e e e e e 1561
getlnitial L e 1562
glm . e 1563
glm.control 1569
glm.summaries e e e e e e e 1570
helust e e e e 1571
heatmap 1575
HoltWinters e 1578
Hypergeometric L e 1581
identify.hclusto 1583
influence.measures 1584
INMEZTALE o i e e e e e e e e e e e e e e e e 1588
interaction.plot 1591
IQR . . e 1593
is.empty.model L. e e 1594
ISOTEZ . v v v e e e e e e e e e e e e e e 1594
KalmanLike e 1596
kernapply 1598
kernel e 1600
kmeans L e e e 1602
kruskal.test L L e e e 1604
KS.teSt e e e 1606
ksmooth e 1609
lag . . . e 1610
lag.plot . . . oL 1611
Line . . . e e e 1612
Listof e e e 1614
Im .. e e e 1614
Imfit . . . e 1618
Im.influence e 1619
Im.Summaries e e 1621
loadings 1623
JOSS . . . o e e e e 1624
loess.control e 1626
Logistic e 1628
logLik e e e 1629
loglin 1631

Lognormal 1633

xxil

CONTENTS
JIOWESS . . o . o e e e e e 1635
Isdiag 1636
ISprint e 1637
Isfit . . e 1638
mad e e e e e e e e e 1639
mahalanobis e e 1640
makelink L 1641
makepredictcall L e 1642
0 F2 0 L0 1643
mantelhaen.test L L L 1644
mauchly.test 1647
MCNEMALLESt o o o e o e e e e e e e e e e e e e e e e e 1649
median e 1650
medpolish 1651
model.extract e e e 1653
model.frame L 1654
model.matrix e e 1656
model.tables 1658
monthplot L e e e e 1659
mood.teSt e e e e e e 1662
Multinom e e e e e e 1663
NA.ACHON vt i e e e e e e e e e e e e e e e 1665
NA.CONLIGUOUS o ottt bttt e e 1666
nafail 1666
NAPTING . . . o v o e e e e e e e e e e e e e e e e 1667
naresid L . e e e e e e e e 1668
NegBinomial 1669
NEXIN . . . o o e e e e e e e e e e e e e e e 1671
1100 0 1672
nlminb L L e e e 1675
NIS . . . e e 1678
nls.control e 1684
NLSStASYymptotic o e 1685
NLSstClosestX e e e e e 1686
NLSStLfASYMpPtote o o o e e e 1687
NLSStRtASYMPLOte o o v o e e e e e e e e e e e e e e e 1687
nobs e e e 1688
Normal e e e e 1689
numericDeriv 1691
offset e e 1693
Oneway.teSt 1693
OPLIM . . o v v e e e e e e e e e e e e e e 1695
OPUMIZE o v i o e e e e e e e e e e e e e e 1701
orderdendrogram L. e e 1703
padjust . ..o 1704
Pair . . . e 1706
PaIrwise.prop.test L. 1707

PAIrWISE.LIESt e e 1707

CONTENTS xxiii

pairwise.table L. L e 1709
pairwise.wilcox.test L. 1709
plotact 1710
plotdensity L 1712
plotHoltWinters e e 1712
plotisoreg 1713
plotdm oL 1715
PIOLDDT . . o e e e e e e e 1718
plotprofilenls 1719
plot.Spec e 1720
plotstepfun 1722
PIOLES . o e e e e 1724
Poisson L 1725
POISSOMLEESt o v o i e e e 1727
POLY . . e e e 1729
POWET i it e e 1731
POWELANOVALESt © o L Lo e e e e e e e e e e 1732
POWELPIOP.LESt . . o o v v o o e 1733
POWELLIESt o L e e e e e e 1735
PPtest 1736
PPOINES .« . . o o e e 1737
PDT - o o e e e e 1739
PICOMD . . . o ot it et e e e e e e e e e e e 1742
predicto e 1745
predict. Arima e e e e e e 1747
predict.glmo 1748
predict.HoltWinters 1750
predict.Im 1751
predictdoess e e e e 1753
predictnls 1755
predict.smooth.spline L 1757
Preplot e e e e 1758
PrINCOMP v v ittt e e e e e e 1759
print.power.htest. L. 1761
PINLES « o o o e e e 1763
printCoefmat 1764
profileo e 1765
profile.nls 1766
PIOJ o v e e e e 1767
PrOp.test e e 1769
prop.trend.test L. e e 1771
0 T T) 0 0 1 1772
quade.test e e e e e e e e e 1774
quantile 1776
r2dtable 1779
read.ftable 1780
recthelust oL 1782

relevel e e 1783

XX1V

CONTENTS
reorderdefaulto 1784
reorder.dendrogram L L Lo e 1786
replications 1787
reshape 1788
residuals L L 1792
runmed ... L L e e e e e e 1793
rWishart L 1796
scatter.smooth 1798
screeploto e 1799
SA 1800
SE.CONIIASE . . o v v v v vt e e e e e e e 1801
selfStart L e 1803
SENAMES e e e e 1805
shapiro.test 1806
SIZMA & v v o o e e e e e e e e e e e e e e e e 1807
SignRank 1809
simulate 1811
SMooth o e 1813
smooth.spline L e e 1815
smoothEnds L 1820
sortedXyData 1821
SPEC.AT & v v v v e 1822
SPEC.PEIAINL . . . o o v v i e e e e e e e e e e e e 1823
SPECLAPET o i e e e e e e e e 1826
SPECIIUIM .+ & v v v v e 1827
splinefun 1829
SSasymp e e e 1833
SSasympOff 1834
SSasympOrig e e e 1836
SSBIEXP . . . o 1838
SSD . 1839
SSfol . e 1841
SSIpl . 1842
SSgompertz e e 1843
SSlogis e 1845
SSmicmenl e e 1846
SSweibull 1848
SEAIT e e e e 1849
StAt.ANOVA L e e e e 1850
stats-deprecated 1851
SIEP « . e e e e e 1851
SEPfUN e e e e 1854
StL 1856
stimethods L. 1858
StructTS . . . o e 1859
SUMMATY.A0V .« o v v v v v e e e e e e e e e e e e e e e e e e e 1862
summary.glm e 1863

summary.Im 1865

CONTENTS XXV

SUMMATY.MANOVA .+ . v« o v v o v v e e e e e e e e e e e e e e e e e 1867
summary.nls e e e e e e e 1869
SUMMArY.PriNCOMP v o v vt vt e e e et e e e e e e e 1870
SUPSITIU . o v v v v vt e 1871
SYMOUIML .+ ¢ v v v vt e e e e et e e e e e e e e e e e e e e e e e e e 1873
LIBSE . o o e 1875
TDist . . . e e 1877
termplot oL e e e e e e e e 1880
TEBIMS . . . o o o o e e e e e e e e e e e e e 1882
terms.formula L. L 1883
terms.ObjJect e e 1884
tME . . . o e e 1886
toeplitz e e e e e 1887
IS e e 1888
tssmethods L. 1890
tS.PIOt . L L 1891
TSUNION oo e e e 1892
tsdiag e e e e e 1893
ISP« o e e e e e e e e e 1894
tsSmooth 1895
Tukey e 1896
TukeyHSD e 1897
Uniform 1899
UNITOOL .« o o o v ot v e e e e e e e e e e e e 1900
update e e e e e e e 1904
updateformula 1905
VALLeSt L e e e e e e e e 1906
VANMAX « 0 v v v v e 1907
VOV o v v et it e e e e e e e e 1909
Weibull o e 1910
weighted.mean L 1912
weighted.residuals 1913
WeEIghts L 1914
WIlCOX.teSt L e 1914
Wilcoxon e 1918
window . . .o e 1921
Xtabs . . .o e 1922
11 The stats4 package 1927
statsd-package e 1927
coef-methods 1927
confint-methods 1928
logLik-methods 1928
mle . ..o 1929
mle-class 1932
plot-methods e 1933
profile-methods 1934
profilemle-class 1935

show-methods e 1935

XXVi CONTENTS
summary-methods oL 1936
summary.mle-class 1936
update-methods 1937
veov-methods 1937

12 The tcltk package 1939
teltk-package 1939
Tcllnterface e e 1940
tclServiceMode L e 1944
TkCommands e e 1945
tkpagero 1949
tkProgressBar L 1950
tkStartGUIL e e 1951
TkWidgetemds 1952
TkWidgets e 1955
tk_choose.dir e 1957
tk_choose.files e 1957
tk_messageBoX L 1958
tk_select.list L e 1959

13 The tools package 1961
tools-package 1961
print.viaformato L 1961
add_datalist 1962
assertCondition e 1963
bibstyle 1965
buildVignette 1967
buildVignettes 1968
charsets L e 1970
checkFF e 1971
checkMDSsums e e 1972
checkPoFiles e 1973
checkRd e 1974
checkRdaFiles e 1976
checkTnF e 1977
checkVignettes 1978
check_packages_in_dir 1979
CodoC . . . e e e e 1982
compactPDF 1984
CRANILOOIS e e e 1986
delimMatch 1988
dependsOnPkgs 1989
encoded_text_to_latex e 1990
fileutils e 1991
find_gs_emd. 1993
getVignetteInfo 1994
HTMLheader e e 1995
HTMLINKS e e 1996
loadRAMaAcCros e e 1997

CONTENTS XXVil

makevars e 1998
make_translations_pkg 1999
mdSsum e e e e 1999
package_dependencies 2000
package_native_routine_registration_skeletono 2002
parselatex 2005
parse_Rd . . . L e 2006
pskill . . e 2008
PSIECE ot e e 2009
QC . e 2010
Remd o e 2012
RAZHTML 2012
Rd2txt_options e e e e 2015
RAiff . . . e 2017
Rdindex e 2018
RdTextFilter e 2018
Rdutils o o e 2020
read.00Index 2021
showNonASCII e 2021
startDynamicHelp Lo 2022
SweaveTeXFilter e 2023
testlnstalledPackage 2024
exi2dvi ... 2025
toHTML e 2027
tools-deprecated e e 2028
toRd e 2029
toTitleCase e 2030
undoC e 2030
update PACKAGES 2031
update_pKg po e e e e e e 2034
userdir L e e e 2035
vignetteEngine L. 2036
vignetteInfo 2038
write_PACKAGES e 2039
XEEMEXE . . o o o e e e e e e 2041
14 The utils package 2043
utils-package 2043
adist e 2043
alarm ... e 2045
APTOPOS + « o v e 2046
ATEZEXEC .+« v v v v v e e e e e e e e e e e e e e e e e e 2047
arrangeWindows L L 2049
askYesNO L 2050
aspell . . . L e e 2051
aspell-utils e e e 2053
available.packages L 2055
BATCH e 2058

bibentry 2059

XX viil

CONTENTS
browseEnv. 2064
browseURL 2065
browseVignettes 2067
bugreport e e 2068
CAPLUTE.OULPUL o v v v o e e e e e e e e e e e e e e e e e e 2070
changedFiles e 2071
charClass e 2074
choose.dir 2076
choose.files 2077
chooseBIioCmirror. e e e e e 2078
chooseCRANmMiIrror 2079
CItation e 2080
CItE . . o v o e e e e e e e e e e 2082
CitEntry 2084
clipboard e 2085
close.socket L 2087
combn e e 2087
CcompareVerSion v v v v e 2089
COMPILE e 2090
contriburl L L L e e e 2091
countfields L 2091
CIEALE.POSE « . v v o v e 2092
data e e e e 2094
dataentry L. e 2097
debugcall e 2099
debugger e 2100
demo e e 2102
DLL.Version o oo e e 2103
download.file 2104
download.packages 2109
edit . .. 2110
edit.dataframe 2112
exampleo e 2114
file.edit e e e e e 2116
file_test e e 2117
findLineNum L 2118
X . e 2120
flush.console L 2121
format L 2121
getAnywhere L 2122
getFromNamespace L e e 2123
getParseData 2125
getS3method L. 2127
getWindowsHandle 2128
getWindowsHandles Lo 2129
glob2rX . .o e e e e 2130
globalVariables 2131

hasName e e 2133

CONTENTS XXiX

head L 2134
help . . . o e 2137
help.request 2140
help.search L 2141
help.start. L e e e 2144
hsearch-utils 2145
INSTALL e 2146
install.packages e 2149
installed.packages 2155
isS3method 2156
isS3stdGeneric 2157
LINK . . e 2158
localeToCharset e 2159
ISSSIr . o o e 2160
Maintainero e e e e 2161
make.packages.html oL o 2162
make.socket 2163
MEMOTY.SIZE . .« + . v v v vt e 2165
81 L 2166
methods 2167
mirrorAdmin 2169
modifyList. e 2170
MEWS & o v o v v e 2171
nsl .o 2173
ODJECL.SIZE . . . o o v i e e e e e e e 2174
package.skeleton 2177
packageDescription Lo 2178
packageName 2180
packageStatus L L e e e 2181
PABE e 2183
PEISOM .« o vttt e e e e 2184
PkgUtils o e 2187
PIOCESS.EVENLS o v v vttt e e e e e e e e 2188
PIOMPL o o e 2189
promptData 2191
promptPackage 2192
QuUEStioN e e e e e e 2194
e8] 1] 0 (<) 2196
readDIF o L e 2201
read.fortran L. e 2204
read Wl . . L L L 2205
read.socket L. 2207
read.table 2208
readRegistry L 2213
TECOVET « v v v v v e e e e e e e e e e e e e e e 2214
relist . . . o e 2216
REMOVE e 2218

remove.packages L. L 2219

XXX

CONTENTS

TEMOVESOUICE . . . v v v v vt e e e e et e e e e e e e e e 2220
RHOME e 2221
TOMAN . . o v vt v i e 2221
Rprof e 2223
Rprofmem 2226
Rscript e 2227
RShowDoc e 2229
RSiteSearch 2230
TEAZS . o o e e e e e e e e e e e e e e e e 2231
Rtangle 2233
Rweavelatex e 2235
Rwin configuration L e 2240
SAVEhIStOTY e e e e e e e e e 2241
select.list . . . L 2243
sessionlnfo L 2244
setRepositories L 2246
setWindowTitle 2248
SHLIB e 2249
shortPathName e 2250
sourceutils L 2251
SEACK e e e 2252
] 3 2254
SIICAPLUIE L e e e 2258
summaryRprof 2259
SWEAVE . . . o i e e e 2261
SweaveSyntConv e e e 2263
71 2264
tolateX e e e e e e e 2267
txtProgressBar. 2268
LYPE.CONVEIT . . o . v v v v v e 2270
101017 2272
UNZIP .« o o o e e e e e e e e e 2275
update.packages 2276
url.show L e e e 2278
URLencode e e 2279
utils-deprecated e 2280
VIBW . . . e 2281
VIgNEte e e 2282
warnErrList e e 2283
winDialog 2284
WINEXITAS . . . v v v v e o e 2285
WINMENnuUs e e 2286
winProgressBar L e 2288
write.table L L L 2289

CONTENTS

15 The KernSmooth package

bkde L

16 The MASS package

abbey . ..
accdeaths L
addterm e
Aids2 . . L e
Animals L. e
ANOTEXIA o v o it e e e e e e e e e e e e e
anova.negbin
Y 2

Belgian-phones
bIOPSY . . .« o e
birthwt e e e e
Boston e
DOXCOX . & v v v o e e e e e e
cabbages e
caith e e e e e
Cars93 . . . e
CALS . . L L e e e e e e e

CONZET . . o o v o e e e e e e e e
confint-MASS e
contr.sdif L e
COOD - v v e e et e e e e e
COTTESP « « o v e e e e e e e e e e e e e e e e e e e
COV.IOD o L e
COV.LTOD L e

DDT e

Xxxil

CONTENTS

dosep
GO0P 2345
o 2346
el 2347
e 2348
D eplon 2349
CASCPIOL - 2351
TS 2352
Bl 2353
QAN 2354
OIDES o 2356
EICHOMS - 2356
galaxies___._______: 2357
e fugersion 2358
el IO vt 2359
TIPS - 2360
RN 2361
BOIOWPS 2362
ARSI 2363
o 2363
e comer, 2365
BTt < 2365
QL 2366
SIMPQL - 2367
PIS 2369
v SRRSO 2369
BOUSING o 2370
BUBST - oo 2372
PUDETS - 2373
PIIEE - e 2374
ISRINCE o 2375
BOMIDS 2376
KA 2377
ML 2378
WINSU 2381
s 2382
e 2383
ST 2384
ey 2386
RIS 2388
S 2389
MMM 2392
e e 2393
MOYEIE 2394
MENOMa 2394
MERACHE o 2395
MUENEISON e 2396
................................ 2397

motors
............................. 2397

CONTENTS XXXiil

muscleo 2398
08 110) 0 o 3 2400
negative.binomial L. 2401
newcomb 2402
nlschools 2402
npK . .o 2403
nprl . .o 2405
Null . .o e 2405
0ALS . . o o e e e e e e e e e e e e e e e 2406
OME . . . e 2407
PAINIEIS e e 2410
pairsddao L e 2411
parcoord oL e e e e e e 2412
petrol . .o 2413
Pimadtr. 2414
plotdda 2415
plotmea 2416
plotprofile e e 2417
POIr . e 2418
predict.glmmPQL L 2421
predict.lda 2422
predictlgso e 2423
predictmeao L e 2424
predict.gda L 2425
profile.glm e e 2426
qda. . .o e e 2428
QUINE . v v vt et e e e e e e e e e e e e e e e 2430
Rabbit e 2430
rational L e 2431
TENUMETALE o v e v et et e e e e e e e e e e e e e e e e e e e 2432
. .o e 2433
TINS.CUIV © v v v v e e it e e e e e e e e e e e 2436
rnegbin 2437
road e 2438
rotifer Lo 2438
Rubber. e 2439
SAMMON . .+« v v v v v e b e 2440
ShipS e 2441
Shoes e 2442
shrimp e 2442
shuttle L 2443
Sitka e 2443
Sitka89 e 2444
SKye . . o 2445
Snails 2446
SP500 e 2447
StATES . . . e e e 2447

XXX1V CONTENTS
StepAIC . . . e e 2449
] 1) 5001 2451
studres L e e e e 2452
summary.loglm L 2452
summary.negbin Lo 2453
summary.rlmo 2454
SUIVEY & v v v v v e 2456
SYNthutr . . . L L e e e 2457
thetamd 2457
tOPO . . . e 2459
Traffic e 2459
truehist 2460
UCV . ot e e e e e e e e e e e e e 2461
UScereal e e e 2462
UScrime e e e 2463
VA e 2464
Waders e e e e 2465
whiteside 2466
width.ST . . . e 2467
WIItE.MALTIX o o o e o e et e e e e e e e e e e e e e e e 2468
WHOSS . . . o e e e e 2469

17 The Matrix package 2471
ablndex-class 2471
ablseq e 2472
all-methods e 2473
allequal-methods 2474
atomicVector-class L. 2475
band e e e 2475
bandSparse 2477
bdiag e 2478
BunchKaufman-methods, 2480
CACX . . e e e 2482
cBind 2483
CHMIfactor-class o i i i e e e e e e e e 2484
chol e 2487
chol2inv-methods 2489
Cholesky e 2490
Cholesky-class e e 2493
COISUMS e 2494
compMatrix-class e e 2496
condest oL e e e 2497
CsparseMatrix-class e 2499
ddenseMatrix-class 2501
ddiMatrix-class e 2501
denseMatrix-class 2502
dgCMatrix-class 2503
dgeMatrix-class e 2504

dgRMatrix-class 2505

CONTENTS XXXV

dgTMatrix-class o e e e e e e 2506
Diagonal e 2508
diagonalMatrix-class 2510
diagU2N . . . oo e 2511
dMatrix-class 2513
dpoMatrix-class 2514
drop0 . . . e 2516
dsCMatrix-class e 2517
dsparseMatrix-class 2519
dsRMatrix-class o i e e e e e e e e 2519
dsyMatrix-class 2521
dtCMatrix-class L 2522
dtpMatrix-class L L 2524
dtRMatrix-class 2526
dtrMatrix-class 2527
expand e e 2528
104 0) 1 1 2529
externalFormats 2530
facmulo 2532
forceSymmetric 2533
formatSparseM L 2534
generalMatrix-class L. L L 2535
graph-sparseMatrix L 2536
Hilbert e e e e e e 2538
image-methods 2538
index-class 2541
indMatrix-class e e e e e e 2542
invPerm 2544
isma-methods L 2545
is.nullDN . . o 2546
isSymmetric-methodso 2548
isTriangular e e 2548
KhatriRao e 2549
KNex . . . e e 2551
kronecker-methods 2552
IdenseMatrix-class 2553
IdiMatrix-class e e 2554
IgeMatrix-class 2555
IsparseMatrix-classes e e e e e e 2556
IsyMatrix-class 2558
ItrMatrix-class e e e e e e e e e 2559
Tu .o 2560
LU-class e 2562
mat2triplet 2563
Matrix oo e e e 2564
Matrix-class e 2566
matrix-products 2568

MatrixClass o e e 2571

XXXVi

CONTENTS
MatrixFactorization-class L 2572
ndenseMatrix-class L. 2573
nearPD . . . L 2574
ngeMatrix-class L. e e e 2577
nMatrix-class e 2578
NNZETO .« « o v v e 2579
1075 1 2581
nsparseMatrix-classes Lo e 2582
nsyMatrix-class 2584
ntrMatrix-class L e 2585
number-class L e 2586
pMatrix-class 2586
printSpMatrix e 2588
gr-methods 2591
rankKMatriX L 2593
reond ... oL L e e e e 2596
rep2abl 2598
replValue-class 2599
rleDiff-class 2599
ISPArSEMALIIX . . o v v v e e e e e e e e e e e e e e e 2600
RsparseMatrix-class 2601
Schur 2602
Schur-class 2604
solve-methods 2605
sparse.model.matrix L. 2608
sparseLU-class e e e 2610
SparseM-CONVErsions it e e e e e e e e e 2612
SparseMatrixX e e e e e e e e e e e 2613
sparseMatrix-class e e e e 2616
sparseQR-class 2618
SPArSEVECIOT v v i i e e e e e e e e e e e e 2620
sparseVector-class L. e e e e 2622
SPMALTIX . . . o v o e e e e e e e e e e e e 2625
symmetricMatrix-class e 2626
SYMMPAT . . o v v v v e 2628
triangularMatrix-class L 2629
TsparseMatrix-class L 2630
uniqTsparse 2631
unpack 2633
Unused-classes e e e 2634
UpdOWn e e e 2634
USCounties o it e 2636
wrld_ldeg e 2637
[Fmethods e 2638
[<=methods e 2639

D& %o-methods e 2640

CONTENTS XXXVil

18 The boot package 2643
ADC.CI . . e e e e e e e 2643
ACINE . . . v vt e e e e e e e e e e e e 2645
alds . . . L e e 2645
aircondit L L e e 2646
AMIS . . . v v e e e e e e e e e 2647
aml . .. L e e e 2648
beaver e e e e e e 2649
bigeity L 2650
boOt . . . e 2651
boot.array e 2657
boOt.Cl e e e 2658
brambles e e 2662
breslow L e e e 2663
calcium L e e e 2664
CANE . & v v v e e e e e e e e e e e e e e e e e e 2664
capability 2665
catsM . . L L L e e 2666
CAV . v o e e e e e e e e e e e e e e e e e 2667
cdd . . e 2667
cddnested e 2668
€ensboot L. e e 2669
channing 2673
claridge 2674
cloth e 2675
cotransfer L e e 2676
coal . .. L e 2677
control e 2677
070 & 2680
CUMS . . o o e e e e e 2680
cv.glm . . L 2681
darwin L e e 2683
dogs e 2684
downs.bc 2684
ducks e 2685
EEFprofile e 2686
empinf L 2687
envelope L L L e 2690
eXp.tlt . . L e e 2692
fir . e 2694
freqarray 2694
frets . . . e 2695
glmdiag L 2696
glmdiagplots L 2697
SIAVILY . . . o o e e e 2698
hirose e e 2699
Imp.Estimates 2700

imp.weights 2702

XXX Viii CONTENTS
INVIOgIt . . . L e e e e e 2704
BSlay . .o e 2704
jackaafterbooto 2705
k3.dinear e 2707
liNear.approX o oo e e e e 2708
lines.saddle.distn 2710
logit . . . e e 2712
MANAUS .+ & o v v v v e 2712
melanoma e e e e 2713
1010 1 0) O 2714
0701 J O 2715
nitrofen L. L e 2716
nodal e 2717
1 T0) ' B o1 2718
nuclear. e e e e 2720
paulsen . . .o oL e 2721
plotboot 2722
POISONS . . . v o ot e e e e e e e e e e e e e e e 2724
polar . . . L e e e 2725
printhboot 2726
print.bootci 2727
printsaddle.distn 2728
print.simplex 2728
TEMISSION v v v e e e e e e e e e e e e 2729
saddle 2730
saddle.distn e e 2732
saddle.distn.object 2735
Salinity e 2736
SIMPIEX o e e 2737
simplex.object L e e e e e 2739
smooth.f 2740
SUNSPOL . v v v vt it e e e e e e e e e e e e e e e 2742
survival ... e 2742
TAU . . . L e e e e e e 2743
tltboot e 2744
tSDOOt e e e e 2747
110122 2751
UMINE . v v v e 2752
varlinear L. e 2753
WOOL . . . e e 2754
19 The class package 2755
batchSOM e 2755
condense e e e e e 2756
knn ..o e e 2757
Knn.ev e e 2758
knnl 2760
vl . o e 2761

CONTENTS XXXIX

Ivg3 e 2763
Ivginit e e e e 2764
Ivgtest L e 2765
multiedit 2766
olvgl . . . e 2767
reduce.nn L. e e 2768
SOM . . 2769
somgrid L e e e e 2771
20 The cluster package 2773
AGNES .« v v v e 2773
agnes.object L L e e e e e e 2777
agriculture L 2779
animals 2780
bannerplot 2781
chorSub L 2782
clara e 2783
clara.object L e 2787
clusGap e 2788
clusplot L 2792
clusplotdefault 2793
coef.hclust o 2798
daisy . . .o e e e 2799
diana. e 2802
dissimilarity.object 2805
ellipsoidhull L 2806
fanny ... 2808
fanny.object L e e e 2810
flower e 2812
lowerto.upper.triinds 2813
00 10) - P 2813
MONA.ObJECt e e e 2815
PAML . . o 2816
pam.object e e e e e e 2820
partition.object L. e e e e 2821
plantTraits 2822
plotagnes 2824
plotdiana 2826
plot.mona e e e e e e e 2828
plotpartition L. e e e e e 2829
PItree e e 2831
plutono 2833
predictellipsoid 2834
PrNLAZNES o e e e e e e e e 2835
print.clara e e e e e e 2836
print.diana e e 2836
print.dissimilarity 2837
print.fanny 2838

PriNLMONA ottt e e e e e e 2838

x1

printpam,
TUSPING . .« ..o
silhouette
sizeDiss
SUMMArY.agNes « « « « o v v v v e o
summary.clara,
summary.diana
SUMMATY.MONA .« « . . v v v e e e e e e e e e
SUMMATY.PAM o v v v e oo e e e e
twins.object Lo
volume.ellipsoid
votes.repub L. L
xclarao

21 The codetools package

checkUsage
codetools
findGlobals
showTree

22 The foreign package

lookup.xport.
readaarffo oL
readdbf oL
readdta
read.epiinfo oL
readmtp
read.octave
read.SpSSo
read.ssd Lo
read.systato Lo
read.Xport
S3read functions,
writearff oo
writedbf
writedta L.
write.foreign. L Lo

23 The lattice package

A_Ol_Lattice
B_00_xyplot
B_Ol_xyplot.ts
B_02 barchart.table
B_03_histogram,
04 qgqmath oo
5 qQQ -« v e e e e e e e e e
6_levelplot
7 cloud
8_splom

B
B_0
B_0
B_0O
B_0

CONTENTS

CONTENTS xli

B_09_tmd 2935
B_10_rfs e e e e 2937
B_11 oneway 2938
C_Ol_trellis.device o o i i e 2939
C_02_trellis.par.@et o v it e e e e e e e e 2942
C_O03_simpleTheme 2945
C_04_lattice.options e 2946
C_O5_print.trellis e e e e e e 2948
C_06_update.trellis e 2952
C_O07_shingles e 2954
D_draw.colorkey 2956
D_drawkey 2957
D_level.colors e 2958
D_make.groups 2959
D_simpleKey e 2960
D_strip.default 2961
D_trellis.object 2964
E_ interaction e 2965
F_1_panelbarchart 2972
F_1_panelbwplot 2973
F_l_panelcloud. 2975
F_l_panel.densityplot. e 2980
F_1 paneldotplot 2981
F_l_panelhistogram 2982
F_l1_panellevelplot e 2983
F_1_panelpairs e 2986
F_1 panelparallel 2989
F_l_panel.qgmath 2991
F_l_panel.stripplot e e 2992
F_1_panel.xyplot 2993
F 2 0lines o e 2996
F_2 panelfunctions. e 2999
F_2 panelldoess e 3002
F_2_panel.qgmathline 3004
F_2_panel.smoothScatter 3005
F_2 panel.spline e e 3006
F_2_panel.superpose e 3007
F_2 panel.violin 3010
F_3_prepanel.default 3011
F_3_prepanel.functions 3013
G axisdefault 3014
G_banking 3018
G_latticeParseFormula 3019
G_packet.panel.default 3021
G_panel.axis e 3022
G_panel.number. e e e e e 3024
G_ROWS e 3025

G utilities.3d 3026

xlii CONTENTS
H_ barley e 3027
H_environmental L 3029
H_ethanol e 3030
H melanoma e 3031
H_singer. e 3032
H_USMortality 3034
LIset . . e 3035

24 The mgcv package 3037
ANOVAZAM .« « « . o v v v e e e e e e e e e e e e e e e e e e 3037
bam e 3039
bam.update L. 3046
bandchol 3048
betar e 3049
blas.thread.test 3050
bug.reportS.Mmgev e e 3051
choldrop e 3052
choosek 3053
columb e 3056
CONCUIVILY v v v vt i ittt e e e e e e e e e e s 3057
COX.Ph . . . e 3059
COX.Pht . . e e 3063
cSplineDes e 3065
dDeta e e 3067
exclude.toofar L 3068
extract.lme.cov L 3069
familymgev L L 3071
FFRdes e 3072
fix.familylink 3073
fixDependence 3074
formula.gam 3075
formXtVIiX . . . L 3077
fStest . . . e 3079
full.score e 3080
GAM . . o st e e e e e e e e e e e e e 3081
gam.check 3091
2am.control 3093
GAM.CONVEIZENCE . . . « « o o v vt e e e e e e e e e e e e e 3096
gam.fit . . . 3097
gam.fit3 . . L L e e e 3099
gam.fitS.pOSt.ProC e e e e e e e e 3101
gam.mho 3102
gammodels 3104
GAMLOULET . . . v v v v e e e e e e e e e e e e e e e e e 3111
GAMLIEPATAM . . . v v v v v e 3113
gam.scale L. e e e e e e 3114
gam.selection 3114
gam.Side e e 3117

GAMLVCOIMP .« ¢ v v v e v v e e e et e e e e e e e e e e e e e e e e 3119

CONTENTS xliii

gam20bJECHIVE e e e e e e e e e e e e e 3121
gamlss.etamu e e e e e e e e e e e 3122
gamlss.gH 3124
SAMM . . . vttt e e e e e e e e e e 3125
gammals L e e e e e e e 3132
gamObject 3133
SAMSIM L e e 3137
gaUlSS . . . e e e e 3138
GELVAL e 3139
GEVISS . . e e 3141
ginla . . .o 3143
gumbls . . . Lo e e e e 3146
identifiability 3148
ILOUEL . . L o o e e 3149
influence.gam L e 3150
nitial.spo 3151
inSide oL 3152
INEIPIEt.aAM o v v o e 3153
JAZAM . . L L e e e e e e e 3154
k.check . . . L 3159
IdetS e 3160
IdTweedie e e 3161
linear.functional.terms Lo e 3163
loghik.gam 3167
[S.S1Z€ o e 3169
MAZIC .+ v v v e 3170
MAZIC.POSEPIOC . . . v v v e i e et e e e e e e e e e 3174
mgcv.FAQ 3176
mgev.package e e e e e e 3178
mgev.parallel 3180
MINLIOOLS o v v o ittt e e e e e 3182
missing.data e e e e 3183
model.matrix.gam L 3184
MONO.COM + . v v v v v e 3185
00 40 3187
multinom e e 3188
00114 1 O 3189
negbin L 3191
NEW.NAME .« « . . o v v v et e e e e e e e e e e e e e e e e e 3193
NotEXp 3194
notEXp2 . . . L 3195
null.space.dimension e e e 3197
OCAL . . v e e e e e e 3198
one.serule e 3200
PCIS o e 3201
pdldnot e 3204
pdTens L 3206

xliv

CONTENTS
place.knots L e e 3208
plotgam 3210
polys.plot 3215
predict.bam 3216
predict.gam e e e e 3219
Predict.matrix 3225
Predict.matrix.c.smooth 3226
Predict.matrix.soap.film 3228
Print.gam e e e e 3230
psum.chisq 3231
QQ-8AM .« ot e e e e e e 3233
randomeeffects 3236
residuals.gam L 3238
TIZ o o o e 3239
TINVIL . o e ot e e e e e e e e e e e e e e e e e e e 3240
Rrank 0 3241
rTweedie e 3242
S e e e e e e e e 3243
SCAL . o L i 3246
sdiag e 3247
shash oL 3248
singledndex L e e e 3251
SLinirep L e e 3252
Shrepara e 3253
SLSEtUD . . . o o e e e e e 3254
slanczos L e 3255
SMOOth.CONSIIUCE o o e e e e 3257
smooth.construct.ad.smooth.spec oL 3262
smooth.construct.bs.smooth.spec L Lo 3265
smooth.construct.cr.smooth.spec oL oL 3268
smooth.construct.ds.smooth.spec oL o 3270
smooth.construct.fs.smooth.spec L . 3273
smooth.construct.gp.smooth.spec oL oL 3275
smooth.construct.mrf.smooth.spec oL 3278
smooth.construct.ps.smooth.spec oL 3281
smooth.construct.re.smooth.spec 3284
smooth.construct.so.smooth.spec 3286
smooth.construct.sos.smooth.spec 3292
smooth.construct.t2.smooth.spec 3295
smooth.construct.tensor.smooth.spec L oL L. 3296
smooth.construct.tp.smooth.speco oo 3298
smooth.nfo 3301
smooth.terms 3302
smooth2randomo 3305
smoothCon 3307
SPVCOV o v o e 3310
SPASIM.CONSITUCEt i e 3311

SEEP.ZAIM L e e e e e e e e e e 3312

CONTENTS xlv

SUMMATY.ZAM .« o . v v v v v e e v e e e e e e e e e e e e e e e 3313
17 3318
B o e e e e 3322
tensor.prod.model.matrix 3327
totalPenaltySpace 3329
trichol L 3329
trind.generator L. e e e e e e e e e e 3330
Tweedie 3331
tWISS . . L e e 3334
uniquecombs L L L 3335
VCOV.ZAML + & v v v v e 3337
VIS.ZAM . . . o e e e e e e 3338
XWXd . .o e 3341
ZIP L e 3344
ZIPISS . . 3346
25 The nlme package 3349
ACF . o e 3349
ACFEgls . . . o e 3350
ACFIme e 3351
Alfalfa o oL 3353
allCoef e 3353
anova.gls ... L e e 3354
anovaldme e e 3357
aS.MAtriX.COrSTIUCt v ot e e e e e e e e 3359
as.matrix.pdMat 3360
as.MatriX.reStruct e e e 3361
asOneFormula 3362
ASSAY . . e e e e e e e 3363
asTable 3364
augPredo L L 3365
balancedGrouped 3366
bdf . . 3367
BodyWeight e 3369
Cefamandole 3370
Coef . . . e 3370
coefcorStruct 3371
coefignls Lo 3373
coefllme L 3374
coeflmList 3375
coef.modelStruct 3377
coefpdMat L 3378
coefreStruct 3379
coefvarFunc L 3380
collapse e e e 3381
collapse.groupedData 3382
compareFits L 3384
comparePred L 3385

corART . . e 3386

x1Ivi

CONTENTS
corARMA e e 3388
corCARIL . . . e e 3389
COrClasses v v i e e e e e e e e e e e e 3391
corCompSymm e e 3392
COTEXp . . . o o e 3393
corFactor e 3395
corFactor.corStruct 3396
COTGAUS o o e e e e e e e 3397
corLin L e e 3399
COrMALtIIX o o e e e e e e e e e e e e e 3400
corMatrix.corStruct e e e 3401
corMatrix.pdMat e e 3403
COrMatrix.reStruct e e e e e e 3404
corNatural 3405
corRatio 3406
corSpatial L 3408
corSpher 3409
COTSYMIM . . . v o vt it e 3411
Covariate o e e e e e 3413
Covariate.varFunc 3414
Dialyzer 3415
Dim . . . e e 3416
Dim.corSpatial 3417
Dim.corStruct e e e e e e 3418
Dim.pdMat e e e e 3419
Earthquake 3420
ergoStool L e e e 3421
Fatigue e 3421
fdHess o e e 3422
fitted.glsStructo 3423
fitted.gnlsStruct 3424
fittedIme e 3425
fitted.ImeStruct L 3426
fittedImList e e e 3427
fitted.nlmeStruct L. 3428
fixedeffects 3429
fixef.lmList e 3430
formula.pdBlocked 3431
formulapdMat e e 3432
formula.reStruct L 3433
gapPLy . . . e 3434
Gasoline e e e 3435
getCovariate e e e e e e e 3436
getCovariate.corStruct Lo 3437
getCovariate.data.frame L 3438
getCovariate.varFunc L. L 3439
getCovariateFormulao oL oo 3440

getData L e e 3440

CONTENTS xlvii

getData.gls e e e 3441
getData.lme L 3442
getData.dmlist 3443
getGIoups e 3444
getGroups.COTSIIUCE o v o ot e e e e e e e e e e e 3445
getGroups.dataframe oo 3446
getGroups.gls 3447
getGroups.dme e e e 3448
getGroups.ImList 3449
getGroups.varFunc L 3450
getGroupsFormula oL 3451
GEtREeSpONSe e e 3452
getResponseFormula L L o 3452
getVarCov L e 3453
IS L e e e e 3454
glsControl e 3456
glsObject e 3458
glsStruct e e e 3459
Glucose e 3460
Glucose2 e e 3460
gnlsS ..o 3461
gnlsControl e e 3463
gnlsObject 3465
gnlsStruct 3466
groupedData L e e 3467
GSUMIMATY © . v v o v v e v e 3469
GUn . .o e e 3471
IGF . . . e 3472
Initialize 3472
Initialize.corStruct L e 3473
Initialize.glsStruct 3474
Initialize.ImeStruct 3475
Initialize.reStruct L. e e 3476
Initialize.varFunc 3477
ntervalS L e 3478
intervals.gls L e 3479
intervalsdme 3480
intervalsdmListo 3481
isBalanced L 3482
islnitialized 3483
LDEsysMat e 3484
Ime e 3485
Ime.groupedData L e 3488
ImedmList oL 3490
ImeControl 3492
ImeObject e e e e e e 3494
ImeStruct e e 3496

ImLISt e e 3497

x1lviii

CONTENTS
ImList.groupedData e e 3498
logDet e 3499
logDet.corStruct 3500
logDet.pdMat 3501
logDetreStruct L e e e 3502
loglik.corStruct 3503
loglik.glsStruct 3504
loglik.gnls e e e e 3505
logLik.gnlsStruct 3506
loghikdme e 3507
logLik.dmeStruct 3508
logLik.ImList o e e e 3509
logLlikreStruct 3510
loglik.varFunc 0 oL 3511
Machines e 3512
MathAchieve 3512
MathAchSchool e 3513
Matrix oo e e 3513
Matrix.pdMat e e 3514
Matrix.reStruct L. e 3515
Meat e 3516
Milk . . . e 3517
model.matrix.teStruct L. e e 3517
Muscle. e 3518
NaAMeSs oo v e e 3519
Names.formula L 3520
Names.pdBlocked 3521
Names.pdMat 3522
Names.reStruct 3523
needUpdate 3524
needUpdate.modelStruct 3524
Nitrendipene e e e e e 3525
nlmMe e e e e e 3526
nlme.nlsList 3529
nlmeControl L 3531
nlmeObject e e e e e e 3533
nlmeStruct e e e 3535
nIsLiSt o 3536
nlsList.selfStart 3538
0ats . . . e e 3539
Orthodont e 3540
OVary . . o o e e e e e e 3541
OXDOYS . . o o e e 3541
Oxide e 3542
pairs.compareFits 3543
pairsdme L. e e 3544
pairs.ImListo 3545

PBG . . . e 3547

CONTENTS xlix

pdBlocked L e 3547
pdClasses e e 3549
pdCompSymm e 3550
pdConstruct 3551
pdConstruct.pdBlocked 3553
pdDiag. 3554
pdFactor 3556
pdFactorreStruct L e e e 3557
pdldent 3558
pdLogChol e 3559
pAMat e 3561
pAMatrix e e e e e 3562
pAMatrix.reStruct L. L e 3563
pdNatural 3564
pASymmo e e e 3565
Phenobarb L 3567
phenoModel L 3568
Pixel 3569
plotACF 3569
plotaugPredo 3570
plotcompareFits 3571
plot.gls . . . e 3572
plotintervals.Imlist Lo 3574
plotlme 3575
plot.ImList. e e 3577
plot.nffGroupedData L 3578
plotnfnGroupedData 3580
plotnmGroupedData L 3582
plotranefdme 3584
plotranefImList 3586
plot.Variogram L 3587
pooledSD L e e e 3589
predict.gls 3589
predict.gnls 3590
predict.lme L 3591
predictdmList oL e 3593
predictnlme 3594
print.summary.pdMat 3595
print.varFunc oL e 3596
qqnorm.gls e 3597
qgnorm.meo 3598
Quinidine 3600
quinModel e 3601
Rail . . . 3602
random.effects 3603
raneflme 3604
ranefdmlist 3605

RatPupWeight 3607

CONTENTS

recalc e 3608
recalc.COrStruct L. 3609
recalc.modelStruct L. e e 3610
recalcreStructo L 3611
recalc.varFunc o oL 3612
Relaxin e 3613
Remifentanil 3613
residuals.gls L e 3615
residuals.glsStructo Lo 3616
residuals.gnlsStructo 3617
residuals.dme oL 3618
residuals.ImeStruct 3619
residuals.dmList L 3620
residuals.nlmeStructo 3621
TESTIUCE .« . . o o o o e e 3622
simulate.lme L. 3624
solve.pdMat L. 3625
SOIVE.reSIIuCt e e 3626
Soybean e e e e 3627
splitFormula 3628
SPruCe o o o e 3628
SUMMATrY.COTSIIUCE o v o v o e e e e e e e e e e e e e e e 3629
summary.gls e 3630
summary.lme 3631
summary.ImList e 3632
summary.modelStruct L 3634
summary.nlsList 3635
summary.pdMat 3636
summary.varFunc oL e 3637
Tetracyclinel 3638
Tetracycline2 3639
update.modelStruct L e e e e 3640
update.varFunco Lo 3641
VarClasses v o o e e e e e e e e e e e e e e e e 3642
varComb 3643
varConstPower 3644
varConstProp L 3645
VarCorro e 3648
VarEXp . . . e e e 3649
varFixed e 3651
varFunc L e e e 3652
varldent L L L e 3652
Variogram e e e e e e 3654
Variogram.corExp 3655
Variogram.corGaus 3656
Variogram.corLin L e e e 3657
Variogram.corRatio L 3658

Variogram.corSpatial L 3659

CONTENTS

Variogram.corSpher L. e
Variogram.default
Variogram.gls e e e
Variogram.lme L e e e
varPower L
varWeights e e e e e e
varWeights.glsStruct L. e
varWeights.ImeStruct L
Wafer e
Wheat
Wheat2
[pdMat e e e e e

26 The nnet package

classind L e e
multinom e e e e e e
NNEL L e
nnetHess e e
predictnnet L e e
which.is.max e e

27 The rpart package

cartest.frame
car90 . .. e
CUSUIMIMALY . .« v v v v vt et e e e e e e e e e e e e e e e
kyphosis
labels.rpart
meanvarrpart L L L L e e e e e e e e e e e
narpart L e e e e e e e e e
pathrpart
plotarpart.
plotcp . . . e
postrpart e e e e e e e
predictrpart e e
PrNLIPArt o e e e e
PINICD .« o o o ot e e e
prune.rpart oL L L e e e e e e e e e e e
residuals.rpart oL
TPArt e e e e e e e e e e e e
rpart.control
TPArt.EXP o e e e e e e e e e e e e e e e e e
rpart.object e e
ISQIPArt e e e e e e e e e e e e
SIP.IPAIt . . o oo e e e e e e e
solderbalance
STAZEC . . . L e e e e e e e e e
summary.rparto Lo e e e e e e e e e
textrpart e e e e e e
Xpred.rpartol e e

lii CONTENTS

28 The spatial package 3717
anova.trls ... oL e e e 3717
correlogram 3718
EXPCOV & v v v v vt e e e e e e e 3719
Kaver e e 3720
Kenvl o 3721
Kfn . e e 3722
PPEELregion e e e e e e e e 3723
PPINIE e 3723
pPlik . . e 3724
PPregION e 3725
predict.trls 3726
PrMat . .. e e e e e e e 3727
Psim . . . e 3728
SEMAL e e e e e e e e e e e e e 3729
SSL . 3730
STAUSS . . v v o e e e e 3731
surf.gls . .o e e 3732
surflls .. oL e 3733
trls.iinfluence 3734
At e e e e e e e e e e e e e e e 3735
VArIOZIaAM . . . o o v v e e e e e e e e e e e e e e e 3736

29 The survival package 3739
| (O 3739
ABASUIV . . . o e e e e e 3742
aggregate.surviit L. L 3743
agregfit e e e e 3744
aml ..o e e e 3745
anova.coxph L 3746
attrassi@n e e 3747
basehaz e e e 3748
bladder 3749
blogit e 3750
cCh . L L e 3752
cgd . . e 3754
cgd0 . .. e 3755
CIPOISSON v v vt et e e 3756
clogit e 3757
CIUSIEr e 3759
colon . .o e e e 3760
CONCOTAANCE v i e e e e e e e e e e e e e e e e e e 3762
concordancefit e e 3764
cox.zph . . .o 3765
COXph . . e e 3767
coxph.control e e 3772
coxphudetail L 3773
coxphobject L 3775

COXPhLWEESE e 3776

CONTENTS liii

coxsurv.fito 3777
diabetic 3778
dsurvrego 3779
finegray 3781
flchain L 3783
frailty 3784
gbSg L e 3786
heart L e 3788
isratetable L. L L e 3789
kidney 3790
levels.Surv. 3791
lines.survfit 3791
logan L 3794
loglik.coxph o 3795
lung . . . e e e 3796
INBUS . . v v v v e 3797
MEUS2 . . o v e e e e e e e e e e e e e e e 3798
model.frame.coxph L e 3799
model.matrix.coxph L e 3800
myeloid L. 3801
nafld o 3802
neardate L. e 3804
NSK . . e 3805
OWICO . o v v it e e e e e e e e e e e e e e 3807
OVATIAN .+« v v vt e e e e e e e e e e e 3808
PbC . o e e e 3809
POCSEq -« o o o e 3810
plotaareg 3812
plot.cox.zph e 3813
plotsurvfit 3814
predict.coxph L 3817
Predict.SUrvreg e e e e e e e e e 3819
PriNtaareg e e e e e e e 3821
print.summary.coxph 3822
Print.sSUMMAry.SUIVEXP .« « « . v v v v e e e e e e e e e e e e e e 3822
print.summary.surviit Lo L e 3823
print.survfit oL 3824
pseudoo e e 3825
PSPne e e e e 3826
PYCATS e e e 3828
quantile.survfit oL 3831
ratetable L 3833
ratetableDate 3834
ratetables L. L L e 3835
TALS . . L e e e e e e e 3836
TALS2 . . e e e 3836
reliability 3837

residuals.coxpho 3838

liv

CONTENTS
residuals.survfito Lo 3840
residuals.survrego 3841
retinopathy L 3843
thDNase 3844
TIAZe . . . o e 3845
rotterdam L L e e e e 3847
0741 o) K 3848
rttright © . 0o 3849
solder L L e e 3850
stanford2 L L 3851
statefig e 3852
SLrata 3854
SUMMATY.QATEZ .« « « v o v v v e v v e e e e e e e e e e e e e e e e e e e 3855
SUMMAry.CoXph e e e 3856
SUMMATY.PYEATS .« « . v v v v v e v v e e e e e e e e e e e e e e e e 3858
SUMMATY.SUIVEXD .« . .« v v v e v v e e e e e e e e e e e e e e e e 3859
summary.surviit L. 3860
SUIV . o e 3862
Surv-methods 3864
SUIV2 L 3867
Surv2data 3868
survcheck oo 3869
survdiff . .o 3870
SUIVEXD .+« v v v v v e e e e e e e e e e e e e e e e e e e 3872
survexp.fit e e 3875
SUIVEXP.ODJECE o o o e e e e e e e e e e 3876
SUVEIL . . . L e 3877
surviit.coxph L. L 3878
survfit.formula oL 3881
surviitmatriX oL e e e e e e 3886
surviit.object 3887
surviitD ... 3889
survfitcoxphfito L 3890
survival-deprecated 3892
SULVODIIEN o v ottt e e s e e 3892
SUIVICZ . v o v v v e 3894
survreg.controlo e 3896
survreg.distributions Lo 3897
SUIVIEZ.ODJECE . . o v v v v ot e 3899
survregDtest Lo L e 3900
survSPlit 3901
TCUL . o o o 3902
1910013 ¢ 3903
tobino e 3906
transplant L. Lo 3906
udea 3908
untangle.specials Lo 3909

USPOP2 .« o o e e 3910

CONTENTS Iv

Index

VCOV.COXPN . . o o o o e e e 3911
VEIETAI . .+ v v v v v e 3911
Xrm.Surv e 3912
YAES . . . e e 3913
VABS_SELUP .« . ot it e e e e e e e e e e e 3914

3917

Ivi CONTENTS

Part I

Chapter 1

The base package

base-package The R Base Package

Description

Base R functions

Details

This package contains the basic functions which let R function as a language: arithmetic, in-
put/output, basic programming support, etc. Its contents are available through inheritance from
any environment.

For a complete list of functions, use 1ibrary (help = "base").

.bincode Bin a Numeric Vector

Description

Bin a numeric vector and return integer codes for the binning.

Usage

.bincode (x, breaks, right = TRUE, include.lowest = FALSE)

4 .Device
Arguments
X a numeric vector which is to be converted to integer codes by binning.
breaks a numeric vector of two or more cut points, sorted in increasing order.
right logical, indicating if the intervals should be closed on the right (and open on the
left) or vice versa.
include.lowest
logical, indicating if an ‘x[i]’ equal to the lowest (or highest, for right =
FALSE) ‘breaks’ value should be included in the first (or last) bin.
Details
This is a ‘barebones’ version of cut .default (labels = FALSE) intended for use in other
functions which have checked the arguments passed. (Note the different order of the arguments
they have in common.)
Unlike cut, the breaks do not need to be unique. An input can only fall into a zero-length
interval if it is closed at both ends, so only if include.lowest = TRUE and it is the first (or last
for right = FALSE) interval.
Value
An integer vector of the same length as x indicating which bin each element falls into (the leftmost
bin being bin 1). NaN and NA elements of x are mapped to NA codes, as are values outside range
of breaks.
See Also
cut, tabulate
Examples
An example with non-unique breaks:
x <- c¢(0, 0.01, 0.5, 0.99, 1)
b <- C(Or OI 1/ 1)
.bincode (x, b, TRUE)
.bincode (x, b, FALSE)
.bincode (x, b, TRUE, TRUE)
.bincode (x, b, FALSE, TRUE)
.Device Lists of Open/Active Graphics Devices
Description

A pairlist of the names of open graphics devices is stored in .Devices. The name of the ac-
tive device (see dev.cur) is stored in .Device. Both are symbols and so appear in the base

namespace.

.Machine 5

Value

.Device is a length-one character vector.

.Devices is apairlist of length-one character vectors. The first entry is always "null device",
and there are as many entries as the maximal number of graphics devices which have been simul-
taneously active. If a device has been removed, its entry will be "" until the device number is
reused.

Devices may add attributes to the character vector: for example devices which write to a file may
record its path in attribute "filepath".

.Machine Numerical Characteristics of the Machine

Description

.Machine is a variable holding information on the numerical characteristics of the machine R is
running on, such as the largest double or integer and the machine’s precision.

Usage

.Machine

Details

The algorithm is based on Cody’s (1988) subroutine MACHAR. As all current implementations
of R use 32-bit integers and use IEC 60559 floating-point (double precision) arithmetic, the
"integer" and "double" related values are the same for almost all R builds.

Note that on most platforms smaller positive values than .Machine$double.xmin can occur.
On a typical R platform the smallest positive double is about 5e—324.

Value
A list with components

double.eps the smallest positive floating-point number x such that 1 +x !=1.
It equals double.base "ulp.digits if either double.base is
2 or double.rounding is 0; otherwise, it is (double.base "
double.ulp.digits) / 2. Normally 2.220446e-16.

double.neg.eps

a small positive floating-point number x such that 1 -x !=1. It
equals double.base » double.neg.ulp.digits if double.base
is 2 or double.rounding is 0; otherwise, it is (double.base
~ double.neg.ulp.digits) /2. Normally 1.110223e-16. As
double.neg.ulp.digits is bounded below by - (double.digits +
3), double.neg.eps may not be the smallest number that can alter 1 by
subtraction.

double.

double.

double.
double.

double.

double.

double.

double.

double.

double

double.

.Machine

xmin the smallest non-zero normalized floating-point number, a power of the radix,
i.e.,,double.base * double.min.exp. Normally 2.225074e-308.

xmax the largest normalized floating-point number. Typically, it is equal to
(1 —double.neg.eps) * double.base ~ double.max.exp, but on
some machines it is only the second or third largest such number, being too small
by 1 or 2 units in the last digit of the significand. Normally 1.797693e+308.
Note that larger unnormalized numbers can occur.

base the radix for the floating-point representation: normally 2.
digits
the number of base digits in the floating-point significand: normally 53.
rounding
the rounding action, one of
0 if floating-point addition chops;
1 if floating-point addition rounds, but not in the IEEE style;
2 if floating-point addition rounds in the IEEE style;
3 if floating-point addition chops, and there is partial underflow;
4 if floating-point addition rounds, but not in the IEEE style, and there is partial
underflow;
5 if floating-point addition rounds in the IEEE style, and there is partial under-
flow.
Normally 5.

guard the number of guard digits for multiplication with truncating arithmetic. It is
1 if floating-point arithmetic truncates and more than double digits base-
double.base digits participate in the post-normalization shift of the floating-
point significand in multiplication, and O otherwise.
Normally 0.
ulp.digits
the largest negative integer i such that 1 + double.base ~ i !=1, except
that it is bounded below by — (double.digits + 3). Normally -52.
neg.ulp.digits
the largest negative integer i such that 1 —double.base ~ i !=1, except
that it is bounded below by — (double.digits + 3). Normally -53.
exponent
the number of bits (decimal places if double.base is 10) reserved for the
representation of the exponent (including the bias or sign) of a floating-point
number. Normally 11.

.min.exp
the largest in magnitude negative integer i such that double.base ~ i is
positive and normalized. Normally -1022.

max.exp

the smallest positive power of double .base that overflows. Normally 1024.

integer.max the largest integer which can be represented. Always 231 — 1 = 2147483647.

sizeof.long the number of bytes in a C long type: 4 or 8 (most 64-bit systems, but not

Windows).

sizeof.longlong

the number of bytes in a C long long type. Will be zero if there is no such
type, otherwise usually 8.

.Machine 7

sizeof.longdouble
the number of bytes in a C 1ong double type. Will be zero if there is no such
type (or its use was disabled when R was built), otherwise possibly 12 (most
32-bit builds) or 16 (most 64-bit builds).

sizeof.pointer
the number of bytes in a C SEXP type. Will be 4 on 32-bit builds and 8 on
64-bit builds of R.

longdouble.eps, longdouble.neg.eps, longdouble.digits, ...
when capabilities ("long.double") is true, there are 10 such
"longdouble.<kind>" values, specifying the long double property
corresponding to its "double. " counterpart, above, see also ‘Note’.

Note

In the (typical) case where capabilities ("long.double") is true, R uses the long
double C type in quite a few places internally for accumulators in e.g. sum, reading non-integer
numeric constants into (binary) double precision numbers, or arithmetic such as x $% v; also, long
double can be read by readBin.

For this reason, in that case, .Machine contains ten further components, longdouble.eps,
*.neg.eps, x.digits, *.rounding x.guard, *.ulp.digits, *.neg.ulp.digits,
*.exponent, *.min.exp, and *.max.exp, computed entirely analogously to their
double. x counterparts, see there.

sizeof.longdouble only tells you the amount of storage allocated for a long double. Often
what is stored is the 80-bit extended double type of IEC 60559, padded to the double alignment used
on the platform — this seems to be the case for the common R platforms using ix86 and x86_64
chips.

Note that it is legal for a platform to have a 1ong double C type which is identical to the double
type — this happens on ARM cpus. In that case capabilities ("long.double") will be
false but .Machine may contain "longdouble.<kind>" elements.

Source
Uses a C translation of Fortran code in the reference, modified by the R Core Team to defeat over-
optimization in modern compilers.

References
Cody, W.J. (1988). MACHAR: A subroutine to dynamically determine machine parameters. Trans-
actions on Mathematical Software, 14(4), 303-311. doi: 10.1145/50063.51907.

See Also

.Plat form for details of the platform.

Examples

.Machine
or for a neat printout
noquote (unlist (format (.Machine)))

https://doi.org/10.1145/50063.51907

8 .Platform
.Platform Platform Specific Variables

Description
.Platform is a list with some details of the platform under which R was built. This provides
means to write OS-portable R code.

Usage
.Platform

Value

A list with at least the following components:

OS.type

file.sep

dynlib.ext

GUI

endian

pkgType

path.sep

r_arch

character string, giving the Operating System (family) of the computer. One of
"unix" or "windows".

character string, giving the file separator used on your platform: " /" on both
Unix-alikes and on Windows (but not on the former port to Classic Mac OS).

character string, giving the file name extension of dymamically loadable
libraries, e.g., ".d11" on Windows and ".so" or ".s1" on Unix-alikes.
(Note for macOS users: these are shared objects as loaded by dyn.load and
not dylibs: see dyn.load.)

character string, giving the type of GUI in use, or "unknown" if no GUI can
be assumed. Possible values are for Unix-alikes the values given via the ‘~g’
command-line flag ("X11", "Tk"), "AQUA" (running under R.app on ma-
cOS), "Rgui" and "RTerm" (Windows) and perhaps others under alternative
front-ends or embedded R.

character string, "big" or "1ittle", giving the ‘endianness’ of the processor
in use. This is relevant when it is necessary to know the order to read/write bytes
of e.g. an integer or double from/to a connection: see readBin.

character string, the preferred setting for options ("pkgType"). Values
"source", "mac.binary" and "win.binary" are currently in use.

This should not be used to identify the OS.
character string, giving the path separator, used on your platform, e.g., ": "

on Unix-alikes and "; " on Windows. Used to separate paths in environment
variables such as PATH and TEXINPUTS.

character string, possibly "". The name of an architecture-specific directory
used in this build of R.

abbreviate 9

AQUA
.Platform$GUT is set to "AQUA" under the macOS GUI, R. app. This has a number of conse-
quences:
* ‘/usr/local/bin’ is appended to the PATH environment variable.
¢ the default graphics device is set to quartz.

* selects native (rather than Tk) widgets for the graphics = TRUE options of menu and
select.list.

HTML help is displayed in the internal browser.

* the spreadsheet-like data editor/viewer uses a Quartz version rather than the X11 one.

See Also

R.version and Sys.info give more details about the OS. In particular,
R.version$platform is the canonical name of the platform under which R was com-
piled.

.Machine for details of the arithmetic used, and system for invoking platform-specific system
commands.

capabilities and extSoftVersion (and links there) for availability of capabilities partly
external to R but used from R functions.

Examples

Note: this can be done in a system-independent way by dir.exists()
if (.Platform$0S.type == "unix") {
system.test <- function(...) system(paste("test", ...)) == 0L
dir.exists2 <- function (dir)
sapply (dir, function(d) system.test ("-d", d))

dir.exists2 (c(R.home (), "/tmp", "~", "/NO")) # > T T T F
}
abbreviate Abbreviate Strings
Description

Abbreviate strings to at least minlength characters, such that they remain unique (if they were),
unless strict = TRUE.

Usage

abbreviate (names.arg, minlength = 4, use.classes = TRUE,
dot = FALSE, strict = FALSE,
method = c("left.kept", "both.sides"), named = TRUE)

10 abbreviate

Arguments
names.arg a character vector of names to be abbreviated, or an object to be coerced to a
character vector by as.character.
minlength the minimum length of the abbreviations.

use.classes logical: should lowercase characters be removed first?

dot logical: should a dot (" . ") be appended?
strict logical: should minlength be observed strictly? Note that setting strict =
TRUE may return non-unique strings.
method a character string specifying the method used with default "1eft .kept", see
‘Details’ below. Partial matches allowed.
named logical: should names (with original vector) be returned.
Details

The default algorithm (method = "left .kept") used is similar to that of S. For a single string
it works as follows. First spaces at the ends of the string are stripped. Then (if necessary) any
other spaces are stripped. Next, lower case vowels are removed followed by lower case consonants.
Finally if the abbreviation is still longer than minlength upper case letters and symbols are
stripped.

Characters are always stripped from the end of the strings first. If an element of names.arg
contains more than one word (words are separated by spaces) then at least one letter from each
word will be retained.

Missing (NA) values are unaltered.

If use.classes is FALSE then the only distinction is to be between letters and space.

Value

A character vector containing abbreviations for the character strings in its first argument. Duplicates
in the original names . arg will be given identical abbreviations. If any non-duplicated elements
have the same minlength abbreviations then, if method = "both.sides" the basic internal
abbreviate () algorithm is applied to the characterwise reversed strings; if there are still du-
plicated abbreviations and if strict = FALSE as by default, ninlength is incremented by one
and new abbreviations are found for those elements only. This process is repeated until all unique
elements of names . arg have unique abbreviations.

If names is true, the character version of names . arg is attached to the returned value as a names
attribute: no other attributes are retained.

If a input element contains non-ASCII characters, the corresponding value will be in UTF-8 and
marked as such (see Encoding).

Warning

If use.classes is true (the default), this is really only suitable for English, and prior to R 3.3.0
did not work correctly with non-ASCII characters in multibyte locales. It will warn if used with
non-ASCII characters (and required to reduce the length). It is unlikely to work well with inputs

agrep 11

not in the Unicode Basic Multilingual Plane nor on (rare) platforms where wide characters are not
encoded in Unicode.

As from R 3.3.0 the concept of ‘vowel’ is extended from English vowels by including characters
which are accented versions of lower-case English vowels (including ‘o with stroke’). Of course,
there are languages (even Western European languages such as Welsh) with other vowels.

See Also

substr.

Examples

x <— c("abcd", "efgh", "abce")
abbreviate (x, 2)
abbreviate (x, 2, strict = TRUE) # >> 1st and 3rd are == "ab"

(st.abb <- abbreviate(state.name, 2))
stopifnot (identical (unname (st.abb),

abbreviate (state.name, 2, named=FALSE)))
table (nchar (st.abb)) # out of 50, 3 need 4 letters
as <- abbreviate(state.name, 3, strict = TRUE)
as[which(as == "Mss")]

and without distinguishing vowels:
st.abb2 <- abbreviate (state.name, 2, FALSE)

cbind (st.abb, st.abb2) [st.abb2 != st.abb,]
method = "both.sides" helps: no 4-letters, and only 4 3-letters:
st.ab2 <- abbreviate (state.name, 2, method = "both")

table (nchar (st.ab2))
Compare the two methods:
cbind(st.abb, st.ab2)

agrep Approximate String Matching (Fuzzy Matching)

Description

Searches for approximate matches to pattern (the first argument) within each element of the
string x (the second argument) using the generalized Levenshtein edit distance (the minimal possi-
bly weighted number of insertions, deletions and substitutions needed to transform one string into
another).

Usage

agrep (pattern, x, max.distance = 0.1, costs = NULL,
ignore.case = FALSE, value = FALSE, fixed = TRUE,
useBytes = FALSE)

12

agrep

agrepl (pattern, x, max.distance = 0.1, costs = NULL,
ignore.case = FALSE, fixed = TRUE, useBytes = FALSE)

Arguments

pattern

max.distance

costs

ignore.case

value

fixed

useBytes

Details

a non-empty character string to be matched. For fixed = FALSE this should
contain an extended regular expression. Coerced by as.character to a
string if possible.

character vector where matches are sought. Coerced by as.character toa
character vector if possible.

Maximum distance allowed for a match. Expressed either as integer, or as a
fraction of the pattern length times the maximal transformation cost (will be
replaced by the smallest integer not less than the corresponding fraction), or a
list with possible components

cost: maximum number/fraction of match cost (generalized Levenshtein dis-
tance)

all: maximal number/fraction of all transformations (insertions, deletions and
substitutions)

insertions: maximum number/fraction of insertions

deletions: maximum number/fraction of deletions

substitutions: maximum number/fraction of substitutions

If cost is not given, all defaults to 10%, and the other transformation number

bounds default to a11. The component names can be abbreviated.

a numeric vector or list with names partially matching ‘insertions’,

‘deletions’and ‘substitutions’ giving the respective costs for comput-

ing the generalized Levenshtein distance, or NULL (default) indicating using unit

cost for all three possible transformations. Coerced to integer via as . integer
if possible.

if FALSE, the pattern matching is case sensitive and if TRUE, case is ignored
during matching.

if FALSE, a vector containing the (integer) indices of the matches determined is
returned and if TRUE, a vector containing the matching elements themselves is
returned.

logical. If TRUE (default), the pattern is matched literally (as is). Otherwise, it
is matched as a regular expression.

logical. in a multibyte locale, should the comparison be character-by-character
(the default) or byte-by-byte.

The Levenshtein edit distance is used as measure of approximateness: it is the (possibly cost-
weighted) total number of insertions, deletions and substitutions required to transform one string

into another.

This uses the t re code by Ville Laurikari (https://github.com/laurikari/tre), which
supports MBCS character matching.

https://github.com/laurikari/tre

all 13

The main effect of useBytes is to avoid errors/warnings about invalid inputs and spurious matches
in multibyte locales. It inhibits the conversion of inputs with marked encodings, and is forced if any
input is found which is marked as "bytes" (see Encoding).

Value

agrep returns a vector giving the indices of the elements that yielded a match, or, if value is
TRUE, the matched elements (after coercion, preserving names but no other attributes).

agrepl returns a logical vector.

Note

Since someone who read the description carelessly even filed a bug report on it, do note that this
matches substrings of each element of x (just as grep does) and not whole elements. See also
adist in package utils, which optionally returns the offsets of the matched substrings.

Author(s)

Original version in R < 2.10.0 by David Meyer. Current version by Brian Ripley and Kurt Hornik.

See Also

grep, adist. A different interface to approximate string matching is provided by aregexec ().

Examples

agrep ("lasy", "1 lazy 2")

agrep("lasy", c(" 1 lazy 2", "1 lasy 2"), max.distance = list(sub = 0))
agrep ("laysy", c("1 lazy", "1", "1 LAZY"), max.distance = 2)

agrep ("laysy", c("1 lazy", "1", "1 LAZY"), max.distance = 2, value = TRUE)
agrep ("laysy", c("1 lazy", "1", "1 LAZY"), max.distance

2, lignore.case = TRUE)

all Are All Values True?

Description

Given a set of logical vectors, are all of the values true?

Usage

all(..., na.rm = FALSE)

Arguments

zero or more logical vectors. Other objects of zero length are ignored, and the
rest are coerced to logical ignoring any class.

na.rm logical. If true NA values are removed before the result is computed.

14 all

Details
This is a generic function: methods can be defined for it directly or via the Summary group generic.
For this to work properly, the arguments . .. should be unnamed, and dispatch is on the first
argument.

Coercion of types other than integer (raw, double, complex, character, list) gives a warning as this
is often unintentional.

This is a primitive function.

Value

The value is a logical vector of length one.

Let x denote the concatenation of all the logical vectors in . . . (after coercion), after removing NAs
if requested by na . rm = TRUE.

The value returned is TRUE if all of the values in x are TRUE (including if there are no values), and
FALSE if at least one of the values in x is FALSE. Otherwise the value is NA (which can only occur

if na.rm=FALSE and . . . contains no FALSE values and at least one NA value).

S4 methods
This is part of the S4 Summary group generic. Methods for it must use the signature
X, ...,0a.rm

Note

That a1l (1logical (0)) is true is a useful convention: it ensures that
all(all(x), all(y)) == all(x, Vv)

even if x has length zero.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

any, the ‘complement’ of all, and stopifnot (*) whichisanall (%) ‘insurance’.

Examples
range (x <- sort (round(stats::rnorm(10) - 1.2, 1)))
if(all(x < 0)) cat("all x values are negative\n")

all(logical(0)) # true, as all zero of the elements are true.

all.equal 15

all.equal Test if Two Objects are (Nearly) Equal

Description

all.equal (x,y) is a utility to compare R objects x and vy testing ‘near equality’. If they are
different, comparison is still made to some extent, and a report of the differences is returned. Do
not use all.equal directly in if expressions—either use 1sTRUE (all.equal(....)) or
identical if appropriate.

Usage

all.equal (target, current, ...)

S3 method for class 'numeric'
all.equal (target, current,
tolerance = sqgrt (.Machine$double.eps), scale = NULL,
countEQ = FALSE,
formatFUN = function(err, what) format (err),
., check.attributes = TRUE)

S3 method for class 'list'
all.equal (target, current, ...,
check.attributes = TRUE, use.names = TRUE)

S3 method for class 'environment'
all.equal (target, current, all.names = TRUE,
evaluate = TRUE, ...)

S3 method for class 'function'
all.equal (target, current, check.environment=TRUE, ...)

S3 method for class 'POSIXt'
all.equal (target, current, ..., tolerance = le-3, scale,
check.tzone = TRUE)

attr.all.equal (target, current, ...,
check.attributes = TRUE, check.names = TRUE)

Arguments
target R object.
current other R object, to be compared with target.

further arguments for different methods, notably the following two, for numeri-
cal comparison:

16 all.equal

tolerance numeric > 0. Differences smaller than tolerance are not reported. The
default value is close to 1 . 5e-8.

scale NULL or numeric > 0, typically of length 1 or length (target). See ‘De-
tails’.

countEQ logical indicating if the target == current cases should be counted when

computing the mean (absolute or relative) differences. The default, FALSE may
seem misleading in cases where target and current only differ in a few
places; see the extensive example.

formatFUN a function of two arguments, err, the relative, absolute or scaled error, and
what, a character string indicating the kind of error; may be used, e.g., to format
relative and absolute errors differently.

check.attributes
logical indicating if the attributes of target and current (other than
the names) should be compared.

use.names logical indicating if 1ist comparison should report differing components by
name (if matching) instead of integer index. Note that this comes after . . . and
so must be specified by its full name.

all.names logical passed to 1s indicating if “hidden” objects should also be considered in
the environments.

evaluate for the environment method: logical indicating if “promises should be
forced”, i.e., typically formal function arguments be evaluated for comparison.
If false, only the names of the objects in the two environments are checked for
equality.

check.environment
logical requiring that the environment () s of functions should be compared,
too. You may need to set check.environment=FALSE in unexpected
cases, such as when comparing two nls () fits.

check.tzone logical indicating if the "t zone" attributes of target and current should
be compared.

check.names logical indicating if the names (.) of target and current should be com-
pared.

Details

all.equal is a generic function, dispatching methods on the target argument. To see the
available methods, use methods ("all.equal"), but note that the default method also does
some dispatching, e.g. using the raw method for logical targets.

Remember that arguments which follow ... must be specified by (unabbreviated) name. It is
inadvisable to pass unnamed arguments in . . . as these will match different arguments in different
methods.

Numerical comparisons for scale = NULL (the default) are typically on relative difference scale
unless the target values are close to zero: First, the mean absolute difference of the two numerical
vectors is computed. If this is smaller than tolerance or not finite, absolute differences are
used, otherwise relative differences scaled by the mean absolute target value. Note that these
comparisons are computed only for those vector elements where target is not NA and differs

all.equal 17

from current. If countEQ is true, the equal and NA cases are counted in determining “sample”
size.

If scale is numeric (and positive), absolute comparisons are made after scaling (dividing) by
scale.

For complex target, the modulus (Mod) of the difference is used: all.equal.numeric is
called so arguments tolerance and scale are available.

The 11ist method compares components of target and current recursively, passing all other
arguments, as long as both are “list-like”, i.e., fulfill either is.vectororis.list.

The environment method works via the 1ist method, and is also used for reference classes
(unless a specific all.equal method is defined).

The method for date-time objects uses all.equal.numeric to compare times (in "POSIXct"
representation) with a default tolerance of 0.001 seconds, ignoring scale. A time zone mis-
match between target and current is reported unless check.tzone = FALSE.

attr.all.equal isused for comparing att ributes, returning NULL or a character vec-
tor.

Value

Either TRUE (NULL for attr.all.equal) or a vector of mode "character" describing the
differences between target and current.

References

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer (for =).

See Also

identical, 1sTRUE, ==, and all for exact equality testing.

Examples

all.equal (pi, 355/113)
not precise enough (default tol) > relative error

d45 <—- pi*(1/4 + 1:10)

stopifnot (

all.equal (tan(d45), rep(l, 10))) # TRUE, but

all (tan (d45) == rep(l, 10)) # FALSE, since not exactly
all.equal (tan(d45), rep(l, 10), tolerance = 0) # to see difference

advanced: equality of environments
ae <- all.equal (as.environment ("package:stats"),
asNamespace ("stats"))
stopifnot (is.character (ae), length(ae) > 10,
were incorrectly "considered equal" in R <= 3.1.1
all.equal (asNamespace ("stats"), asNamespace("stats")))

A situation where 'countEQ = TRUE' makes sense:
x1 <= x2 <= (1:100)/10; =x2[2] <= 1.1%x1[2]

18 all.names

99 out of 100 pairs (x1[i], x2[i]) are equal:

plot (x1,x2, main = "all.equal.numeric () —-- not counting equal parts")
all.equal (x1,x2) ## "Mean relative difference: 0.1"

mtext (paste ("all.equal (x1,x2) :", all.equal(xl,x2)), line= -2)

##' extract the 'Mean relative difference' as number:

all.egNum <- function(...) as.numeric(sub(".x:", '', all.equal(...)))
set.seed (17)

When x2 is Jjittered, typically all pairs (x1[i],x2[1i]) do differ:
summary (r <- replicate (100, all.egNum(xl, x2x (l+rnorm(xl)*le-=7))))

mtext (paste ("mean (all.equal (x1, x2x(1 + eps_k))) {100 x} Mean rel.diff.=",
signif (mean(r), 3)), line = -4, adj=0)

With argument countEQ=TRUE, get "the same" (w/o need for jittering):

mtext (paste ("all.equal (x1,x2, countEQ=TRUE) :",

signif(all.egNum(xl,x2, countEQ=TRUE), 3)), line= -6, col=2)

comparison of date-time objects

now <- Sys.time ()

stopifnot (

all.equal (now, now + le-4) # TRUE (default tolerance = 0.001 seconds)
)

all.equal (now, now + 0.2)

all.equal (now, as.POSIX1lt (now, "UTC"))

stopifnot (

all.equal (now, as.POSIX1lt (now, "UTC"), check.tzone = FALSE) # TRUE
)

all.names Find All Names in an Expression

Description

Return a character vector containing all the names which occur in an expression or call.

Usage
all.names (expr, functions = TRUE, max.names = -1L, unique = FALSE)
all.vars (expr, functions = FALSE, max.names = —-1L, unique = TRUE)
Arguments
expr an expression or call from which the names are to be extracted.
functions a logical value indicating whether function names should be included in the
result.
max.names the maximum number of names to be returned. —1 indicates no limit (other than
vector size limits).
unique a logical value which indicates whether duplicate names should be removed

from the value.

any

Details

These functions differ only in the default values for their arguments.

Value

A character vector with the extracted names.

See Also

substitute to replace symbols with values in an expression.

Examples

all.names (expression (sin (x+y)))
all.names (quote (sin(x+y))) # or a call
all.vars (expression(sin (x+y)))

19

any Are Some Values True?

Description

Given a set of logical vectors, is at least one of the values true?

Usage

any (..., na.rm = FALSE)

Arguments
zero or more logical vectors. Other objects of zero length are ignored, and the
rest are coerced to logical ignoring any class.
na.rm logical. If true NA values are removed before the result is computed.
Details
This is a generic function: methods can be defined for it directly or via the Summary group generic.
For this to work properly, the arguments ... should be unnamed, and dispatch is on the first
argument.

Coercion of types other than integer (raw, double, complex, character, list) gives a warning as this

is often unintentional.

This is a primitive function.

20 aperm

Value

The value is a logical vector of length one.

Let x denote the concatenation of all the logical vectors in . . . (after coercion), after removing NAs
if requested by na . rm = TRUE.

The value returned is TRUE if at least one of the values in x is TRUE, and FALSE if all of the values
in x are FALSE (including if there are no values). Otherwise the value is NA (which can only occur
if na.rm=FALSE and . . . contains no TRUE values and at least one NA value).

S4 methods
This is part of the S4 Summary group generic. Methods for it must use the signature
X, ...,na.rm

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

all, the ‘complement’ of any.

Examples
range (x <- sort (round(stats::rnorm(10) - 1.2, 1)))
if(any(x < 0)) cat("x contains negative values\n")
aperm Array Transposition
Description

Transpose an array by permuting its dimensions and optionally resizing it.

Usage

aperm(a, perm, ...)

Default S3 method:

aperm(a, perm = NULL, resize = TRUE, ...)

S3 method for class 'table'

aperm(a, perm = NULL, resize = TRUE, keep.class = TRUE, ...)

aperm 21

Arguments

a the array to be transposed.

perm the subscript permutation vector, usually a permutation of the integers 1:n,
where n is the number of dimensions of a. When a has named dimnames, it
can be a character vector of length n giving a permutation of those names. The
default (used whenever perm has zero length) is to reverse the order of the
dimensions.

resize a flag indicating whether the vector should be resized as well as having its ele-

ments reordered (default TRUE).
keep.class logical indicating if the result should be of the same class as a.

potential further arguments of methods.

Value

A transposed version of array a, with subscripts permuted as indicated by the array perm. If
resize is TRUE, the array is reshaped as well as having its elements permuted, the dimnames
are also permuted; if resize = FALSE then the returned object has the same dimensions as a, and
the dimnames are dropped. In each case other attributes are copied from a.

The function t provides a faster and more convenient way of transposing matrices.

Author(s)

Jonathan Rougier, <J.C.Rougier@durham. ac.uk> did the faster C implementation.

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

t, to transpose matrices.

Examples

interchange the first two subscripts on a 3-way array x
x <- array(l:24, 2:4)

xt <- aperm(x, c(2,1,3))

stopifnot (t(xt[,,2]) == x[,,2],
t(xtl,,31) == x[,,31,
t(xtl,,4]) == x[,,4])

UCB <- aperm(UCBAdmissions, c(2,1,3))
UCB[1,,]
summary (UCB) # UCB is still a contingency table

22 apply

append Vector Merging

Description

Add elements to a vector.

Usage

append (x, values, after = length(x))
Arguments

X the vector the values are to be appended to.

values to be included in the modified vector.

after a subscript, after which the values are to be appended.
Value

A vector containing the values in x with the elements of values appended after the specified
element of x.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Examples

append(1:5, 0:1, after = 3)

apply Apply Functions Over Array Margins

Description

Returns a vector or array or list of values obtained by applying a function to margins of an array or
matrix.

Usage

apply (X, MARGIN, FUN, ..., simplify = TRUE)

apply 23

Arguments
X an array, including a matrix.
MARGIN a vector giving the subscripts which the function will be applied over. E.g., for
a matrix 1 indicates rows, 2 indicates columns, c (1, 2) indicates rows and
columns. Where X has named dimnames, it can be a character vector selecting
dimension names.
FUN the function to be applied: see ‘Details’. In the case of functions like +, $+%,
etc., the function name must be backquoted or quoted.
optional arguments to FUN.
simplify a logical indicating whether results should be simplified if possible.
Details

If X is not an array but an object of a class with a non-null dim value (such as a data frame), apply
attempts to coerce it to an array via as.matrix if it is two-dimensional (e.g., a data frame) or via
as.array.

FUN is found by a call to match. fun and typically is either a function or a symbol (e.g., a back-
quoted name) or a character string specifying a function to be searched for from the environment of
the call to apply.

Arguments in . .. cannot have the same name as any of the other arguments, and care may be
needed to avoid partial matching to MARGIN or FUN. In general-purpose code it is good practice
to name the first three arguments if . .. is passed through: this both avoids partial matching to
MARGIN or FUN and ensures that a sensible error message is given if arguments named X, MARGIN
or FUN are passed through

Value

If each call to FUN returns a vector of length n, and simplify is TRUE, then apply returns an
array of dimension ¢ (n, dim (X) [MARGIN]) if n > 1. If n equals 1, apply returns a vector
if MARGIN has length 1 and an array of dimension dim (X) [MARGIN] otherwise. If n is 0, the
result has length O but not necessarily the ‘correct” dimension.

If the calls to FUN return vectors of different lengths, or if simplify is FALSE, apply returns a
list of length prod (dim (X) [MARGIN]) with dim set to MARGIN if this has length greater than
one.

In all cases the result is coerced by as . vector to one of the basic vector types before the dimen-
sions are set, so that (for example) factor results will be coerced to a character array.

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

lapply and there, simplify2array; tapply, and convenience functions sweep and
aggregate.

24 args

Examples

Compute row and column sums for a matrix:

x <— cbind(x1l = 3, x2 = c(4:1, 2:5))

dimnames (x) [[1]] <- letters[1:8]

apply(x, 2, mean, trim = .2)

col.sums <- apply(x, 2, sum)

row.sums <- apply(x, 1, sum)

rbind (cbind(x, Rtot = row.sums), Ctot = c(col.sums, sum(col.sums)))

stopifnot (apply(x, 2, is.vector))

Sort the columns of a matrix
apply(x, 2, sort)

keeping named dimnames
names (dimnames (x)) <- c("row", "col")
x3 <- array(x, dim = c(dim(x),3),
dimnames = c(dimnames (x), list(C = pasteO("cop.",1:3))))
identical (x, apply (x, 2, identity))
identical (x3, apply(x3, 2:3, identity))

##- function with extra args:
cave <- function(x, cl, c2) c(mean(x[cl]), mean(x[c2]))

apply(x, 1, cave, cl = "x1", c2 = c("x1","x2"))
ma <- matrix(c(l:4, 1, 6:8), nrow = 2)
ma

apply (ma, 1, table) #--> a list of length 2
apply(ma, 1, stats::quantile) # 5 x n matrix with rownames

stopifnot (dim(ma) == dim(apply(ma, 1:2, sum)))

Example with different lengths for each call

z <—- array(l:24, dim = 2:4)

zseq <- apply(z, 1:2, function(x) seqg_len (max(x)))
zseq ## a 2 x 3 matrix

typeof (zseq) ## list

dim(zseq) ## 2 3

zseq[l,]

apply(z, 3, function(x) seqg_len(max(x)))

a list without a dim attribute

args Argument List of a Function

Description

Displays the argument names and corresponding default values of a function or primitive.

args 25

Usage

args (name)

Arguments
name a function (a closure or a primitive). If name is a character string then the
function with that name is found and used.
Details

This function is mainly used interactively to print the argument list of a function. For programming,
consider using formals instead.

Value

For a closure, a closure with identical formal argument list but an empty (NULL) body.

For a primitive, a closure with the documented usage and NULL body. Note that some primitives
do not make use of named arguments and match by position rather than name.

NULL in case of a non-function.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

formals, help; str also prints the argument list of a function.

Examples

"regular" (non-primitive) functions "print their arguments"

(by returning another function with NULL body which you also see):
args (ls)

args (graphics::plot.default)

utils::str(ls) # (just "prints": does not show a NULL)

You can also pass a string naming a function.

args ("scan")

...but :: package specification doesn't work in this case.
tryCatch (args ("graphics::plot.default"), error = print)

As explained above, args() gives a function with empty body:
list(is.f = is.function(args(scan)), body = body(args(scan)))

Primitive functions mostly behave like non-primitive functions.
args(c)

args ("+7)

primitive functions without well-defined argument list return NULL:
args (Tif")

26 Arithmetic

Arithmetic Arithmetic Operators

Description

These unary and binary operators perform arithmetic on numeric or complex vectors (or objects
which can be coerced to them).

Usage

|
+ X X

> x|
MK KKK

KoM X X X X X
o\
=

o° o
~

o
=

Arguments
X,y numeric or complex vectors or objects which can be coerced to such, or other
objects for which methods have been written.
Details

The unary and binary arithmetic operators are generic functions: methods can be written for them
individually or via the Ops group generic function. (See Ops for how dispatch is computed.)

If applied to arrays the result will be an array if this is sensible (for example it will not if the
recycling rule has been invoked).

Logical vectors will be coerced to integer or numeric vectors, FALSE having value zero and TRUE
having value one.

1 ~yandy ”~ 0are 1, always. x ~ y should also give the proper limit result when either (numeric)
argument is infinite (one of Inf or —Inf).

Objects such as arrays or time-series can be operated on this way provided they are conformable.

For double arguments, $% can be subject to catastrophic loss of accuracy if x is much larger than
v, and a warning is given if this is detected.

%% and x %$/% y can be used for non-integer v, e.g. 1 $/% 0.2, but the results are subject to
representation error and so may be platform-dependent. Because the IEC 60559 representation of
0.2 is a binary fraction slightly larger than 0.2, the answer to 1 $/% 0.2 should be 4 but most
platforms give 5.

Users are sometimes surprised by the value returned, for example why (-8) ~ (1/3) is NaN. For
double inputs, R makes use of IEC 60559 arithmetic on all platforms, together with the C system
function ‘pow’ for the ~ operator. The relevant standards define the result in many corner cases. In

Arithmetic 27

particular, the result in the example above is mandated by the C99 standard. On many Unix-alike
systems the command man pow gives details of the values in a large number of corner cases.

Arithmetic on type double in R is supposed to be done in ‘round to nearest, ties to even’ mode, but
this does depend on the compiler and FPU being set up correctly.

Value

Unary + and unary - return a numeric or complex vector. All attributes (including class) are pre-
served if there is no coercion: logical x is coerced to integer and names, dims and dimnames are
preserved.

The binary operators return vectors containing the result of the element by element operations.
If involving a zero-length vector the result has length zero. Otherwise, the elements of shorter
vectors are recycled as necessary (with a warning when they are recycled only fractionally).
The operators are + for addition, — for subtraction, = for multiplication, / for division and ~ for
exponentiation.

%% indicates x mod y (“x modulo y”’) and % /% indicates integer division. It is guaranteed that
x==(x%%y) +y* (x%/%y) (uptorounding error)

unless y == 0 where the result of $% is NA_integer_ or NaN (depending on the t ypeof of the
arguments) or for some non-finite arguments, e.g., when the RHS of the identity above amounts to
Inf -Inf.

If either argument is complex the result will be complex, otherwise if one or both arguments are
numeric, the result will be numeric. If both arguments are of type integer, the type of the result of /
and * is numeric and for the other operators it is integer (with overflow, which occurs at :I:(231 —1),
returned as NA_integer_ with a warning).

The rules for determining the attributes of the result are rather complicated. Most attributes are taken
from the longer argument. Names will be copied from the first if it is the same length as the answer,
otherwise from the second if that is. If the arguments are the same length, attributes will be copied
from both, with those of the first argument taking precedence when the same attribute is present
in both arguments. For time series, these operations are allowed only if the series are compatible,
when the class and t sp attribute of whichever is a time series (the same, if both are) are used. For
arrays (and an array result) the dimensions and dimnames are taken from first argument if it is an
array, otherwise the second.

S4 methods

These operators are members of the S4 Arith group generic, and so methods can be written for
them individually as well as for the group generic (or the Ops group generic), with arguments
c(el,e2) (with e2 missing for a unary operator).

Implementation limits

R is dependent on OS services (and they on FPUs) for floating-point arithmetic. On all current R
platforms IEC 60559 (also known as IEEE 754) arithmetic is used, but some things in those stan-
dards are optional. In particular, the support for denormal aka subnormal numbers (those outside
the range given by .Machine) may differ between platforms and even between calculations on a
single platform.

28

Arithmetic

Another potential issue is signed zeroes: on IEC 60559 platforms there are two zeroes with internal
representations differing by sign. Where possible R treats them as the same, but for example direct
output from C code often does not do so and may output ‘~0.0’ (and on Windows whether it does
so or not depends on the version of Windows). One place in R where the difference might be seen
is in division by zero: 1/x is Inf or —Inf depending on the sign of zero x. Another place is
identical (0,-0,num.eq=FALSE).

Note

All logical operations involving a zero-length vector have a zero-length result.

The binary operators are sometimes called as functions as e.g. ~ &~ (x, y) : see the description of
how argument-matching is done in Ops.

** is translated in the parser to *, but this was undocumented for many years. It appears as an index
entry in Becker et al (1988), pointing to the help for Deprecated but is not actually mentioned
on that page. Even though it had been deprecated in S for 20 years, it was still accepted in R in
2008.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

D. Goldberg (1991). What Every Computer Scientist Should Know about Floating-Point Arith-
metic. ACM Computing Surveys, 23(1), 5-48. doi: 10.1145/103162.103163.

Also available at https://docs.oracle.com/cd/E19957-01/806-3568/ncg_
goldberg.html.

For the IEC 60559 (aka IEEE 754) standard: https://www.iso.org/standard/57469.
html and https://en.wikipedia.org/wiki/IEEE_754.

See Also

sqgrt for miscellaneous and Special for special mathematical functions.
Syntax for operator precedence.

%% for matrix multiplication.

Examples
x <= =-1:12
x + 1
2 x + 3
X %% 2 #-—- is periodic
X %/% 5
x %% Inf # now is defined by limit (gave NaN in earlier versions of R)

https://doi.org/10.1145/103162.103163
https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
https://www.iso.org/standard/57469.html
https://www.iso.org/standard/57469.html
https://en.wikipedia.org/wiki/IEEE_754

array 29

array Multi-way Arrays

Description

Creates or tests for arrays.

Usage

array(data = NA, dim = length(data), dimnames = NULL)
as.array(x, ...)
is.array (x)

Arguments
data a vector (including a list or expression vector) giving data to fill the array.
Non-atomic classed objects are coerced by as.vector.
dim the dim attribute for the array to be created, that is an integer vector of length
one or more giving the maximal indices in each dimension.
dimnames either NULL or the names for the dimensions. This must a list (or it will be
ignored) with one component for each dimension, either NULL or a character
vector of the length given by dim for that dimension. The list can be named,
and the list names will be used as names for the dimensions. If the list is shorter
than the number of dimensions, it is extended by NULLs to the length required.
x an R object.
additional arguments to be passed to or from methods.
Details

An array in R can have one, two or more dimensions. It is simply a vector which is stored with
additional attributes giving the dimensions (attribute "dim") and optionally names for those di-
mensions (attribute "dimnames™").

A two-dimensional array is the same thing as amatrix.

One-dimensional arrays often look like vectors, but may be handled differently by some functions:
str does distinguish them in recent versions of R.

The "dim" attribute is an integer vector of length one or more containing non-negative values: the
product of the values must match the length of the array.

The "dimnames™" attribute is optional: if present it is a list with one component for each dimen-
sion, either NULL or a character vector of the length given by the element of the "dim" attribute
for that dimension.

is.array is a primitive function.

For a list array, the print methods prints entries of length not one in the form ‘integer, 7°
indicating the type and length.

30 as.data.frame

Value

array returns an array with the extents specified in dim and naming information in dimnames.
The values in data are taken to be those in the array with the leftmost subscript moving fastest.
If there are too few elements in data to fill the array, then the elements in data are recycled. If
data has length zero, NA of an appropriate type is used for atomic vectors (0 for raw vectors) and
NULL for lists.

Unlike matrix, array does not currently remove any attributes left by as.vector from a
classed list data, so can return a list array with a class attribute.

as.array is a generic function for coercing to arrays. The default method does so by attaching a
dim attribute to it. It also attaches dimnames if x has names. The sole purpose of this is to make
it possible to access the dim [names] attribute at a later time.

is.array returns TRUE or FALSE depending on whether its argument is an array (i.e., hasa dim
attribute of positive length) or not. It is generic: you can write methods to handle specific classes of
objects, see InternalMethods.

Note

is.array is a primitive function.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

aperm,matrix, dim, dimnames.

Examples

dim(as.array(letters))
array(1:3, c(2,4)) # recycle 1:3 "2 2/3 times"

(11 [,2] [,3] [,4]
#01,1 1 3 2 1
#[2,] 2 1 3 2
as.data.frame Coerce to a Data Frame
Description

Functions to check if an object is a data frame, or coerce it if possible.

as.data.frame 31
Usage

as.data.frame (x, row.names = NULL, optional = FALSE, ...)

S3 method for class 'character'

as.data.frame(x, ...,

stringsAsFactors = FALSE)

S3 method for class 'list'

as.data.frame (x, row.names = NULL, optional = FALSE, ...,
cut .names = FALSE, col.names = names (x), fix.empty.names = TRUE,
check.names = !optional,
stringsAsFactors = FALSE)
S3 method for class 'matrix'
as.data.frame(x, row.names = NULL, optional = FALSE,
make.names = TRUE, ...,
stringsAsFactors = FALSE)
is.data.frame (x)
Arguments
x any R object.
row.names NULL or a character vector giving the row names for the data frame. Missing
values are not allowed.
optional logical. If TRUE, setting row names and converting column names (to syn-
tactic names: see make.names) is optional. Note that all of R’s base pack-
age as.data.frame () methods use optional only for column names
treatment, basically with the meaning of data.frame (%, check.names =
loptional). See also the make .names argument of the mat rix method.
additional arguments to be passed to or from methods.
stringsAsFactors
logical: should the character vector be converted to a factor?
cut .names logical or integer; indicating if column names with more than 256 (or
cut .names if that is numeric) characters should be shortened (and the last
6 characters replaced by " ... ").
col.names (optional) character vector of column names.

fix.empty.names
logical indicating if empty column names, i.e., "" should be fixed up (in
data.frame) or not.

check.names logical; passed to the data. frame () call.

make.names a logical,i.e., one of FALSE, NA, TRUE, indicating what should happen if
the row names (of the matrix x) are invalid. If they are invalid, the default,
TRUE, calls make.names (*, unique=TRUE) ; make .names=NA will use
“automatic” row names and a FALSE value will signal an error for invalid row
names.

32 as.Date

Details

as.data.frame is a generic function with many methods, and users and packages can supply
further methods. For classes that act as vectors, often a copy of as.data.frame.vector will
work as the method.

If a list is supplied, each element is converted to a column in the data frame. Similarly, each column
of a matrix is converted separately. This can be overridden if the object has a class which has a
method for as.data.frame: two examples are matrices of class "model .matrix" (which
are included as a single column) and list objects of class "POSIX1t" which are coerced to class
"POSIXct".

Arrays can be converted to data frames. One-dimensional arrays are treated like vectors and two-
dimensional arrays like matrices. Arrays with more than two dimensions are converted to matrices
by ‘flattening’ all dimensions after the first and creating suitable column labels.

Character variables are converted to factor columns unless protected by I.

If a data frame is supplied, all classes preceding "data.frame" are stripped, and the row names
are changed if that argument is supplied.

If row.names = NULL, row names are constructed from the names or dimnames of x, otherwise
are the integer sequence starting at one. Few of the methods check for duplicated row names.
Names are removed from vector columns unless I.

Value

as.data. frame returns a data frame, normally with all row names " " if optional = TRUE.

is.data.frame returns TRUE if its argument is a data frame (that is, has "data.frame"
amongst its classes) and FALSE otherwise.

References
Chambers, J. M. (1992) Data for models. Chapter 3 of Statistical Models in S eds J. M. Chambers
and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

data.frame, as.data.frame.table for the table method (which has additional argu-
ments if called directly).

as.Date Date Conversion Functions to and from Character

Description

Functions to convert between character representations and objects of class "Date" representing
calendar dates.

as.Date

Usage

as.Date (x,

33

.)

S3 method for class 'character'

as.Date (x,

format, tryFormats = c("$Y-%m-%d", "%Y/%m/%d"),

optional = FALSE, ...)
S3 method for class 'numeric'

as.Date (x,

origin, ...)

S3 method for class 'POSIXct'

as.Date (x,

tz = "UTIC", ...)

S3 method for class 'Date'

format (x,

.)

S3 method for class 'Date'
as.character(x, ...)

Arguments

X

format

tryFormats

optional

origin

tz

Details

an object to be converted.

character string. If not specified, it will try tryFormats one by one on
the first non-NA element, and give an error if none works. Otherwise, the pro-
cessing is via strptime () whose help page describes available conversion
specifications.

character vector of format strings to try if format is not specified.

logical indicating to return NA (instead of signalling an error) if the format
guessing does not succeed.

a Date object, or something which can be coerced by
as.Date (origin, ...) to such an object.

a time zone name.

further arguments to be passed from or to other methods, including format for
as.character and as.Date methods.

The usual vector re-cycling rules are applied to x and format so the answer will be of length that
of the longer of the vectors.

Locale-specific conversions to and from character strings are used where appropriate and available.
This affects the names of the days and months.

The as.Date methods accept character strings, factors, logical NA and objects of classes
"POSIX1t" and "POSIXct". (The lastis converted to days by ignoring the time after midnight
in the representation of the time in specified time zone, default UTC.) Also objects of class "date"
(from package date) and "dates" (from package chron). Character strings are processed as far
as necessary for the format specified: any trailing characters are ignored.

as.Date will accept numeric data (the number of days since an epoch), but only if origin is

supplied.

The format and as.character methods ignore any fractional part of the date.

34 as.Date

Value

The format and as.character methods return a character vector representing the date. NA
dates are returned as NA_character_.

The as .Date methods return an object of class "Date".

Conversion from other Systems

Most systems record dates internally as the number of days since some origin, but this is fraught
with problems, including

* Is the origin day O or day 1?7 As the ‘Examples’ show, Excel manages to use both choices for
its two date systems.

* If the origin is far enough back, the designers may show their ignorance of calendar systems.
For example, Excel’s designer thought 1900 was a leap year (claiming to copy the error from
earlier DOS spreadsheets), and Matlab’s designer chose the non-existent date of ‘January
0, 0000’ (there is no such day), not specifying the calendar. (There is such a year in the
‘Gregorian’ calendar as used in ISO 8601:2004, but that does say that it is only to be used for
years before 1582 with the agreement of the parties in information exchange.)

The only safe procedure is to check the other systems values for known dates: reports on the Internet
(including R-help) are more often wrong than right.

Note

The default formats follow the rules of the ISO 8601 international standard which expresses a day
as "2001-02-03".

If the date string does not specify the date completely, the returned answer may be system-specific.
The most common behaviour is to assume that a missing year, month or day is the current one. If
it specifies a date incorrectly, reliable implementations will give an error and the date is reported as
NA. Unfortunately some common implementations (such as ‘glibc’) are unreliable and guess at
the intended meaning.

Years before 1CE (aka 1AD) will probably not be handled correctly.

References

International Organization for Standardization (2004, 1988, 1997, ...) ISO 8601. Data elements
and interchange formats — Information interchange — Representation of dates and times. For links
to versions available on-line see (at the time of writing) https://www.gsl.net/glsmd/
isopdf.htm.

See Also

Date for details of the date class; 1ocales to query or set a locale.

Your system’s help pages on strftime and strptime to see how to specify their formats.
Windows users will find no help page for st rpt ime: code based on ‘glibc’ is used (with cor-
rections), so all the format specifiers described here are supported, but with no alternative number
representation nor era available in any locale.

https://www.qsl.net/g1smd/isopdf.htm
https://www.qsl.net/g1smd/isopdf.htm

as.environment 35

Examples

locale-specific version of the date
format (Sys.Date (), "%a %b %d")

read in date info in format 'ddmmmyyyy'

This will give NA(s) in some locales; setting the C locale

as in the commented lines will overcome this on most systems.
lct <- Sys.getlocale("LC_TIME"); Sys.setlocale("LC_TIME", "C")
x <- c¢("1ljanl960", "23janl960", "31marl960", "30julloe0")

z <- as.Date(x, "%d%b%Y")

Sys.setlocale("LC_TIME", lct)

z

read in date/time info in format 'm/d/y'
dates <- c("02/27/92", "02/27/92", "01/14/92", "02/28/92", "02/01/92")
as.Date (dates, "%m/%d/%y")

date given as number of days since 1900-01-01 (a date in 1989)
as.Date (32768, origin = "1900-01-01")

Excel i1s said to use 1900-01-01 as day 1 (Windows default) or

1904-01-01 as day 0 (Mac default), but this is complicated by Excel
incorrectly treating 1900 as a leap year.

So for dates (post-1901) from Windows Excel

as.Date (35981, origin = "1899-12-30") # 1998-07-05

and Mac Excel

as.Date (34519, origin = "1904-01-01") # 1998-07-05

(these values come from http://support.microsoft.com/kb/214330)

Experiment shows that Matlab's origin is 719529 days before ours,

(it takes the non-existent 0000-01-01 as day 1)

so Matlab day 734373 can be imported as

as.Date (734373, origin = "1970-01-01") - 719529 # 2010-08-23

(value from

http://www.mathworks.de/de/help/matlab/matlab_prog/represent-date-and-times—-in-MATLAB.htn

Time zone effect

z <- ISOdate (2010, 04, 13, c¢(0,12)) # midnight and midday UTC
as.Date(z) # in UTC

these time zone names are common

as.Date(z, tz = "Nz2")

as.Date(z, tz "HST") # Hawaii

as.environment Coerce to an Environment Object

Description

A generic function coercing an R object to an environment. A number or a character string is
converted to the corresponding environment on the search path.

36

Usage

as.environment

as.environment (x)

Arguments

X

Details

an R object to convert. If it is already an environment, just return it. If it is
a positive number, return the environment corresponding to that position on the
search list. If it is —1, the environment it is called from. If it is a character string,
match the string to the names on the search list.

If it is a list, the equivalent of 1ist2env (x, parent = emptyenv ()) is
returned.

If is.object(x) 1is true and it has a class for which an
as.environment method is found, that is used.

This is a primitive generic function: you can write methods to handle specific classes of objects, see

InternalMethods.

Value

The corresponding environment object.

Author(s)

John Chambers

See Also

environment for creation and manipulation, search; 1ist2env.

Examples

as.environment (1) ## the global environment
identical (globalenv (), as.environment (1)) ## is TRUE
try(## <<- stats need not be attached
as.environment ("package:stats"))
ee <- as.environment (list(a = "A", b = pi, ch = letters([1:8]))
ls (ee) # names of objects in ee
utils::1ls.str (ee)

as.function 37

as.function Convert Object to Function

Description

as.function is a generic function which is used to convert objects to functions.

as.function.default works on a list x, which should contain the concatenation of a formal
argument list and an expression or an object of mode "call" which will become the function
body. The function will be defined in a specified environment, by default that of the caller.

Usage

as.function(x, ...)

Default S3 method:

as.function(x, envir = parent.frame(), ...)
Arguments
x object to convert, a list for the default method.

additional arguments, depending on object

envir environment in which the function should be defined

Value

The desired function.

Note

For ancient historical reasons, envir = NULL uses the global environment rather than the base
environment. Please use envir = globalenv () instead if this is what you want, as the special
handling of NULL may change in a future release.

Author(s)

Peter Dalgaard

See Also

function; alist which is handy for the construction of argument lists, etc.

Examples

as.function(alist(a = , b = 2, a+b))
as.function(alist(a = , b = atb)) (3)

|
N
~

38

as.POSIX*

as.POSIXx*

Date-time Conversion Functions

Description

Functions to manipulate

dates and times.

objects of classes "POSIX1t" and "POSIXct" representing calendar

Usage
as.POSIXct(x, tz ="", ...)
as.POSIX1lt (x, tz |
S3 method for class 'character'
as.POSIXlt(x, tz = "", format,
tryFormats = c("%$Y-%m-%d %H:%M:%0S",
"$Y/%m/%d $H:%M:%0S",
"SY-3m-3d $H:%$M",
"$Y/%m/%d SH:SM",
"sY-sm-3d",
"SY/%m/%d"),
optional = FALSE, ...)
Default S3 method:
as.POSIX1lt (x, tz = "",
optional = FALSE, ...)
S3 method for class 'numeric'
as.POSIX1lt(x, tz = "", origin, ...)
S3 method for class 'POSIX1t'
as.double (x,)
Arguments
x R object to be converted.
tz time zone specification to be used for the conversion, if one is required. System-
specific (see time zones), but "" is the current time zone, and "GMT" is UTC
(Universal Time, Coordinated). Invalid values are most commonly treated as
UTC, on some platforms with a warning.
further arguments to be passed to or from other methods.
format character string giving a date-time format as used by st rpt ime.
tryFormats character vector of format strings to try if format is not specified.
optional logical indicating to return NA (instead of signalling an error) if the format
guessing does not succeed.
origin a date-time object, or something which can be coerced by as .POSIXct (tz =

"GMT") to such an object.

as.POSIX* 39

Details

The as .POSIX« functions convert an object to one of the two classes used to represent date/times
(calendar dates plus time to the nearest second). They can convert objects of the other class and of
class "Date™" to these classes. Dates without times are treated as being at midnight UTC.

They can also convert character strings of the formats "2001-02-03" and "2001/02/03"
optionally followed by white space and a time in the format "14:52" or "14:52:03". (For-
mats such as "01/02/03" are ambiguous but can be converted via a format specification by
strptime.) Fractional seconds are allowed. Alternatively, format can be specified for charac-
ter vectors or factors: if it is not specified and no standard format works for all non-NA inputs an
error is thrown.

If format is specified, remember that some of the format specifications are locale-specific, and
you may need to set the LC__TIME category appropriately via Sys.setlocale. This most often
affects the use of $b, $B (month names) and $p (AM/PM).

Logical NAs can be converted to either of the classes, but no other logical vectors can be.
If you are given a numeric time as the number of seconds since an epoch, see the examples.

Character input is first converted to class "POSIX1t" by strptime: numeric input is first con-
verted to "POSIXct". Any conversion that needs to go between the two date-time classes requires
a time zone: conversion from "POSIX1t" to "POSIXct" will validate times in the selected time
zone. One issue is what happens at transitions to and from DST, for example in the UK

as.POSIXct (strptime("2011-03-27 01:30:00", "
as.POSIXct (strptime ("2010-10-31 01:30:00", "

are respectively invalid (the clocks went forward at 1:00 GMT to 2:00 BST) and ambiguous (the
clocks went back at 2:00 BST to 1:00 GMT). What happens in such cases is OS-specific: one
should expect the first to be NA, but the second could be interpreted as either BST or GMT (and
common OSes give both possible values). Note too (see st rftime) that OS facilities may not
format invalid times correctly.

Value

as.POSIXct and as.POSIX1t return an object of the appropriate class. If tz was specified,
as.POSIX1t will give an appropriate "t zone™" attribute. Date-times known to be invalid will be
returned as NA.

Note

Some of the concepts used have to be extended backwards in time (the usage is said to be ‘pro-
leptic’). For example, the origin of time for the "POSIXct™" class, ‘1970-01-01 00:00.00 UTC’,
is before UTC was defined. More importantly, conversion is done assuming the Gregorian cal-
endar which was introduced in 1582 and not used universally until the 20th century. One of the
re-interpretations assumed by ISO 8601:2004 is that there was a year zero, even though current
year numbering (and zero) is a much later concept (525 AD for year numbers from 1 AD).

Conversions between "POSIX1t" and "POSIXct" of future times are speculative exceptin UTC.
The main uncertainty is in the use of and transitions to/from DST (most systems will assume the
continuation of current rules but these can be changed at short notice).

40 as.POSIX*

If you want to extract specific aspects of a time (such as the day of the week) just convert it to
class "POSIX1t" and extract the relevant component(s) of the list, or if you want a character
representation (such as a named day of the week) use the format method.

If a time zone is needed and that specified is invalid on your system, what happens is system-specific
but attempts to set it will probably be ignored.

Conversion from character needs to find a suitable format unless one is supplied (by trying common
formats in turn): this can be slow for long inputs.

See Also

DateTimeClasses for details of the classes; st rpt ime for conversion to and from character repre-
sentations.

Sys.timezone for details of the (system-specific) naming of time zones.

locales for locale-specific aspects.

Examples

(z <= Sys.time())

unclass (z)

floor (unclass (z)/86400)

(now <- as.POSIX1lt (Sys.time())
unlist (unclass (now))

nowSyear + 1900

months (now); weekdays (now)

the current datetime, as class "POSIXct"

a large integer

the number of days since 1970-01-01 (UTC)
the current datetime, as class "POSIX1t"
a list shown as a named vector

see ?DateTimeClasses

see 7?months

S e e — = o =

suppose we have a time in seconds since 1960-01-01 00:00:00 GMT
(the origin used by SAS)

z <— 1472562988

ways to convert this

as.POSIXct (z, origin = "1960-01-01") # local
as.POSIXct (z, origin = "1960-01-01", tz = "GMT") # in UTC

SPSS dates (R-help 2006-02-16)
z <- c(10485849600, 10477641600, 10561104000, 10562745600)
as.Date(as.POSIXct (z, origin = "1582-10-14", tz = "GMTI"))

Stata date-times: milliseconds since 1960-01-01 00:00:00 GMT
format %tc excludes leap-seconds, assumed here

For format %tC including leap seconds, see foreign::read.dta()
z <- 1579598122120

op <- options(digits.secs = 3)
avoid rounding down: milliseconds are not exactly representable
as.POSIXct ((z+0.1) /1000, origin = "1960-01-01")

options (op)

Matlab 'serial day number' (days and fractional days)

z <= 7.343736909722223e5 # 2010-08-23 16:35:00

as.POSIXct ((z — 719529)%86400, origin = "1970-01-01", tz = "UTC")

as.POSIX1lt (Sys.time (), "GMT") # the current time in UTC

Asls

##

as.
as.

as
as

as.

41

These may not be correct names on your system

POSIX1t (Sys.time (), "America/New_York") # in New York
POSIX1t (Sys.time (), "ESTS5EDT") # alternative.
.POSIX1t (Sys.time (), "EST") # somewhere in Eastern Canada
.POSIX1lt (Sys.time (), "HST") # in Hawaii

POSIX1t (Sys.time (), "Australia/Darwin")

tab <- file.path(R.home ("share"), "zoneinfo", "zonel970.tab")
if(file.exists (tab)) {

cols <- c("code", "coordinates", "Tz", "comments")
tmp <- read.delim(file.path(R.home ("share"), "zoneinfo", "zonel970.tab"),

header = FALSE, comment.char = "#", col.names = cols)
if (interactive()) View (tmp)
head (tmp, 10)
}
AsIs Inhibit Interpretation/Conversion of Objects
Description

Change the class of an object to indicate that it should be treated ‘as is’.

Usage

)

I(x)

Arguments

X

an object

Details

Function I has two main uses.

* In function data.frame. Protecting an object by enclosing it in I () in a call to
data.frame inhibits the conversion of character vectors to factors and the dropping of
names, and ensures that matrices are inserted as single columns. I can also be used to
protect objects which are to be added to a data frame, or converted to a data frame via
as.data.frame.

It achieves this by prepending the class "AsIs" to the object’s classes. Class "AsIs" has a
few of its own methods, including for [, as.data.frame, print and format.

* In function formula. There it is used to inhibit the interpretation of operators such as "+",
"—m_mimand "~" as formula operators, so they are used as arithmetical operators. This is
interpreted as a symbol by terms . formula.

42 asplit
Value

A copy of the object with class "AsIs" prepended to the class(es).

References

Chambers, J. M. (1992) Linear models. Chapter 4 of Statistical Models in S eds J. M. Chambers
and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

data.frame, formula

asplit Split Array/Matrix By Its Margins

Description

Split an array or matrix by its margins.

Usage

asplit (x, MARGIN)

Arguments

X an array, including a matrix.

MARGIN a vector giving the margins to split by. E.g., for a matrix 1 indicates rows, 2
indicates columns, c (1, 2) indicates rows and columns. Where x has named
dimnames, it can be a character vector selecting dimension names.

Details

The values of the splits can also be obtained (less efficiently) by
split (x,slice.index (x,MARGIN)).

apply always simplifies common length results, so attempting to split via
apply (x,MARGIN, identity) does not work (as it simply gives x). By chaining asplit
with lapply or vapply, one can obtain variants of apply which do not auto-simplify.

Value

A “list array” with dimension dv and each element an array of dimension de and dimnames pre-
served as available, where dv and de are, respectively, the dimensions of x included and not included
in MARGIN.

assign 43

Examples

A 3-dimensional array of dimension 2 x 3 x 4:

d<-2 : 4
x <- array(seqg_len(prod(d)), d)
X

Splitting by margin 2 gives a 1-d list array of length 3
consisting of 2 x 4 arrays:

asplit (x, 2)

Spltting by margins 1 and 2 gives a 2 x 3 list array

consisting of 1-d arrays of length 4:a

asplit (x, c(1, 2))

Compare to

split(x, slice.index(x, c (1, 2)))

A 2 x 3 matrix:

(x <= matrix(1 : 6, 2, 3))

To split x by its rows, one can use
asplit(x, 1)

or less efficiently

split(x, slice.index(x, 1))

split(x, row(x))

assign Assign a Value to a Name

Description

Assign a value to a name in an environment.

Usage
assign(x, value, pos = -1, envir = as.environment (pos),
inherits = FALSE, immediate = TRUE)
Arguments
x a variable name, given as a character string. No coercion is done, and the first
element of a character vector of length greater than one will be used, with a
warning.
value a value to be assigned to x.
pos where to do the assignment. By default, assigns into the current environment.
See ‘Details’ for other possibilities.
envir the environment to use. See ‘Details’.
inherits should the enclosing frames of the environment be inspected?

immediate an ignored compatibility feature.

44 assign

Details

There are no restrictions on the name given as x: it can be a non-syntactic name (see
make.names).

The pos argument can specify the environment in which to assign the object in any of several ways:
as —1 (the default), as a positive integer (the position in the search list); as the character string
name of an element in the search list; or as an environment (including using sys.frame to
access the currently active function calls). The envir argument is an alternative way to specify an
environment, but is primarily for back compatibility.

assign does not dispatch assignment methods, so it cannot be used to set elements of vectors,
names, attributes, etc.

Note that assignment to an attached list or data frame changes the attached copy and not the original
object: see attach and with.

Value

This function is invoked for its side effect, which is assigning value to the variable x. If noenvir
is specified, then the assignment takes place in the currently active environment.

If inherits is TRUE, enclosing environments of the supplied environment are searched until the
variable x is encountered. The value is then assigned in the environment in which the variable
is encountered (provided that the binding is not locked: see lockBinding: if it is, an error is
signaled). If the symbol is not encountered then assignment takes place in the user’s workspace (the
global environment).

If inherits is FALSE, assignment takes place in the initial frame of envir, unless an existing
binding is locked or there is no existing binding and the environment is locked (when an error is
signaled).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

<—, get, the inverse of assign (), exists, environment.

Examples

for(i in 1:6) { #-- Create objects 'r.1', 'r.2', ... 'r.6' —-
nam <- paste("r", i, sep = ".")
assign (nam, 1:i)

}

ls (pattern = ""r..s$")
##-— Global assignment within a function:
myf <- function(x) {
innerf <- function(x) assign("Global.res", x"2, envir = .GlobalEnv)

innerf (x+1)

assignOps 45

myf (3)
Global.res # 16

a <- 1:4
assign("al[l]l", 2)
al[l] == 2 # FALSE
get ("a[l]") == 2 # TRUE
assignOps Assignment Operators
Description

Assign a value to a name.

Usage

x <- value
x <<- wvalue
value —-> x
value —->> x

x = value
Arguments
X a variable name (possibly quoted).
value a value to be assigned to x.
Details

There are three different assignment operators: two of them have leftwards and rightwards forms.

The operators <— and = assign into the environment in which they are evaluated. The operator
<— can be used anywhere, whereas the operator = is only allowed at the top level (e.g., in the
complete expression typed at the command prompt) or as one of the subexpressions in a braced list
of expressions.

The operators <<— and —>> are normally only used in functions, and cause a search to be made
through parent environments for an existing definition of the variable being assigned. If such a
variable is found (and its binding is not locked) then its value is redefined, otherwise assignment
takes place in the global environment. Note that their semantics differ from that in the S language,
but are useful in conjunction with the scoping rules of R. See ‘The R Language Definition’ manual
for further details and examples.

In all the assignment operator expressions, x can be a name or an expression defining a part of an
object to be replaced (e.g., z[[1]]). A syntactic name does not need to be quoted, though it can
be (preferably by backticks).

The leftwards forms of assignment <—= <<- group right to left, the other from left to right.

46 attach

Value

value. Thus one can use a <-b <—c <—6.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer (for =).

See Also
assign (and its inverse get), for “subassignment” such as x[i] <-v, see [<—; further,
environment.
attach Attach Set of R Objects to Search Path
Description

The database is attached to the R search path. This means that the database is searched by R when
evaluating a variable, so objects in the database can be accessed by simply giving their names.

Usage
attach (what, pos = 2L, name = deparsel (substitute (what), backtick=FALSE),
warn.conflicts = TRUE)
Arguments
what ‘database’. This can be adata.frame ora list ora R data file created with
save or NULL or an environment. See also ‘Details’.
pos integer specifying position in search () where to attach.
name name to use for the attached database. Names starting with package: are

reserved for 1ibrary.

warn.conflicts
logical. If TRUE, warnings are printed about conflicts from attaching the
database, unless that database contains an object . conflicts.OK. A conflict
is a function masking a function, or a non-function masking a non-function.

attach 47

Details

When evaluating a variable or function name R searches for that name in the databases listed by
search. The first name of the appropriate type is used.

By attaching a data frame (or list) to the search path it is possible to refer to the variables in the
data frame by their names alone, rather than as components of the data frame (e.g., in the example
below, height rather than womenS$height).

By default the database is attached in position 2 in the search path, immediately after the user’s
workspace and before all previously attached packages and previously attached databases. This can
be altered to attach later in the search path with the pos option, but you cannot attach at pos = 1.

The database is not actually attached. Rather, a new environment is created on the search path and
the elements of a list (including columns of a data frame) or objects in a save file or an environment
are copied into the new environment. If you use <<- or assign to assign to an attached database,
you only alter the attached copy, not the original object. (Normal assignment will place a modified
version in the user’s workspace: see the examples.) For this reason at tach can lead to confusion.

One useful ‘trick’ is to use what = NULL (or equivalently a length-zero list) to create a new
environment on the search path into which objects can be assigned by assign or load or
Sys.source.

Names starting "package : " are reserved for 1 ibrary and should not be used by end users. At-
tached files are by default given the name f£ile: what. The name argument given for the attached
environment will be used by search and can be used as the argument to as . environment.

There are hooks to attach user-defined table objects of class "UserDefinedDatabase", sup-
ported by the Omegahat package RObjectTables.

Value

The environment is returned invisibly with a "name™" attribute.

Good practice
attach has the side effect of altering the search path and this can easily lead to the wrong object
of a particular name being found. People do often forget to detach databases.

In interactive use, with is usually preferable to the use of attach/detach, unless what is a
save () -produced file in which case attach () is a (safety) wrapper for load ().

In programming, functions should not change the search path unless that is their purpose. Often
with can be used within a function. If not, good practice is to

* Always use a distinctive name argument, and

* To immediately follow the attach call by an on.exit call to detach using the distinctive

name.

This ensures that the search path is left unchanged even if the function is interrupted or if code after
the at tach call changes the search path.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

48

See Also

attr

library, detach, search, objects, environment, with.

Examples

require (utils)

summary (women$height)
attach (women)

summary (height)
height <- heightx2.54

find ("height")

summary (height)

rm (height)

summary (height)

height <<- height=*25.4
find ("height")

summary (height)

detach ("women")
summary (womenS$Sheight)

#

#

refers to variable 'height' in the data frame
The same variable now available by name

Don't do this. It creates a new variable

in the user's workspace

The new variable in the workspace

The original variable.
Change the copy in the attached environment

The changed copy

unchanged

Not run: ## create an environment on the search path and populate it

sys.source ("myfuns.R", envir = attach (NULL, name = "myfuns"))
End (Not run)
attr Object Attributes

Description

Get or set specific attributes of an object.

Usage

attr (x, which, exact
attr(x, which) <- wvalue

FALSE)

Arguments
x an object whose attributes are to be accessed.
which a non-empty character string specifying which attribute is to be accessed.
exact logical: should which be matched exactly?

value an object, the new value of the attribute, or NULL to remove the attribute.

attributes 49

Details

These functions provide access to a single attribute of an object. The replacement form causes the
named attribute to take the value specified (or create a new attribute with the value given).

The extraction function first looks for an exact match to which amongst the attributes of x, then
(unless exact = TRUE) a unique partial match. (Setting opt ions (warnPartialMatchAttr
= TRUE) causes partial matches to give warnings.)

The replacement function only uses exact matches.

Note that some attributes (namely class, comment, dim, dimnames, names, row.names
and t sp) are treated specially and have restrictions on the values which can be set. (Note that this
is not true of 1evels which should be set for factors via the 1evels replacement function.)

The extractor function allows (and does not match) empty and missing values of which: the re-
placement function does not.

NULL objects cannot have attributes and attempting to assign one by attr gives an error.

Both are primitive functions.

Value
For the extractor, the value of the attribute matched, or NULL if no exact match is found and no or
more than one partial match is found.

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

attributes

Examples

create a 2 by 5 matrix
x <-= 1:10
attr (x,"dim") <- c(2, 5)

attributes Object Attribute Lists

Description

These functions access an object’s attributes. The first form below returns the object’s attribute
list. The replacement forms uses the list on the right-hand side of the assignment as the object’s
attributes (if appropriate).

50

attributes

Usage

attributes (x)
attributes (x) <- value
mostattributes (x) <- wvalue

Arguments

x any R object

value an appropriate named 1ist of attributes, or NULL.
Details

Unlike at t r itis not an error to set attributes on a NULL object: it will first be coerced to an empty
list.

Note that some attributes (namely class, comment, dim, dimnames, names, row.names
and t sp) are treated specially and have restrictions on the values which can be set. (Note that this
is not true of 1levels which should be set for factors via the 1evels replacement function.)

Attributes are not stored internally as a list and should be thought of as a set and not a vec-
tor, i.e, the order of the elements of attributes () does not matter. This is also reflected
by identical ()’s behaviour with the default argument attrib.as.set = TRUE. Attributes
must have unique names (and NA is taken as "NA", not a missing value).

Assigning attributes first removes all attributes, then sets any dim attribute and then the remain-
ing attributes in the order given: this ensures that setting a dim attribute always precedes the
dimnames attribute.

The mostattributes assignment takes special care for the dim, names and dimnames at-
tributes, and assigns them only when known to be valid whereas an attributes assignment
would give an error if any are not. It is principally intended for arrays, and should be used with care
on classed objects. For example, it does not check that row . names are assigned correctly for data
frames.

The names of a pairlist are not stored as attributes, but are reported as if they were (and can be set
by the replacement form of attributes).

NULL objects cannot have attributes and attempts to assign them will promote the object to an empty
list.

Both assignment and replacement forms of att ributes are primitive functions.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

attr, structure.

autoload 51

Examples

x <- cbind(a = 1:3, pi = pi) # simple matrix with dimnames
attributes (x)

strip an object's attributes:
attributes (x) <- NULL
x # now just a vector of length 6

mostattributes (x) <- list (mycomment = "really special", dim = 3:2,
dimnames = 1list (LETTERS[1:3], letters[l:5]), names = paste(l:6))
x # dim(), but not {dim}names
autoload On-demand Loading of Packages
Description

autoload creates a promise-to-evaluate autoloader and stores it with name name in
.AutoloadEnv environment. When R attempts to evaluate name, autoloader is run, the
package is loaded and name is re-evaluated in the new package’s environment. The result is that R
behaves as if package was loaded but it does not occupy memory.

.Autoloaded contains the names of the packages for which autoloading has been promised.

Usage

autoload (name, package, reset = FALSE, ...)
autoloader (name, package, ...)

.AutoloadEnv
.Autoloaded
Arguments
name string giving the name of an object.
package string giving the name of a package containing the object.
reset logical: for internal use by autoloader.

other arguments to 1ibrary.

Value

This function is invoked for its side-effect. It has no return value.

See Also

delayedAssign, library

52 backsolve

Examples

require (stats)
autoload("interpSpline", "splines")
search ()

1s ("Autoloads")

.Autoloaded

x <—- sort(stats::rnorm(1l2))
y <= x"2

is <- interpSpline(x, V)
search () ## now has splines
detach ("package:splines")
search ()

is2 <- interpSpline(x, y+x)
search () ## and again
detach ("package:splines")

backsolve Solve an Upper or Lower Triangular System

Description

Solves a triangular system of linear equations.

Usage

backsolve(r, x, k = ncol(r), upper.tri = TRUE,
transpose = FALSE)

forwardsolve(l, x, k = ncol(l), upper.tri = FALSE,
transpose = FALSE)

Arguments
r, 1 an upper (or lower) triangular matrix giving the coefficients for the system to be
solved. Values below (above) the diagonal are ignored.
X a matrix whose columns give the right-hand sides for the equations.
k The number of columns of r and rows of x to use.
upper.tri logical; if TRUE (default), the upper triangular part of r is used. Otherwise, the
lower one.
transpose logical; if TRUE, solve 7’ x y = x for y, i.e., t (r) $*% y == x.
Details

Solves a system of linear equations where the coefficient matrix is upper (or ‘right’, ‘R’) or lower
(‘left’, ‘L) triangular.

x <-backsolve (R, b) solves Rx = b, and
x <-forwardsolve (L, Db) solves Lz = b, respectively.

basename 53

The r/1 must have at least k rows and columns, and x must have at least k rows.

This is a wrapper for the level-3 BLAS routine dt rsm.

Value

The solution of the triangular system. The result will be a vector if x is a vector and a matrix if x is
a matrix.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Dongarra, J. J., Bunch, J. R., Moler, C. B. and Stewart, G. W. (1978) LINPACK Users Guide.
Philadelphia: STAM Publications.

See Also

chol, gr, solve.

Examples

upper triangular matrix 'r':
r <- rbind(c(1,2,3),

c(0,1,1),

c(0,0,2))
(y <- backsolve(r, x <- c(8,4,2))) # -1 3 1
r $+x% y # == x = (8,4,2)

backsolve (r, x, transpose = TRUE) # 8 -12 -5

basename Manipulate File Paths

Description

basename removes all of the path up to and including the last path separator (if any).

dirname returns the part of the path up to but excluding the last path separator, or " . " if there
is no path separator.

Usage
basename (path)
dirname (path)
Arguments

path character vector, containing path names.

54 Bessel

Details

tilde expansion of the path is done except on Windows.

Trailing path separators are removed before dissecting the path, and for dirname any trailing file
separators are removed from the result.

Value

A character vector of the same length as path. A zero-length input will give a zero-length output
with no error.

Paths not containing any separators are taken to be in the current directory, so dirname returns

mw . ".
If an element of path is NA, so is the result.

" " is not a valid pathname, but is returned unchanged.

Behaviour on Windows

On Windows this will accept either \ or / as the path separator, but di rname will return a path
using / (except if on a network share, when the leading \ \ will be preserved). Expect these only to
be able to handle complete paths, and not for example just a network share or a drive.

UTF-8-encoded path names not valid in the current locale can be used.

Note
These are not wrappers for the POSIX system functions of the same names: in particular they do
not have the special handling of the path " /" and of returning " . " for empty strings.

See Also

file.path, path.expand.

Examples

basename (file.path ("", "pl", "p2", "p3", c("filel", "file2")))
dirname (file.path("","pl","p2","p3", "filename"))

Bessel Bessel Functions

Description

Bessel Functions of integer and fractional order, of first and second kind, J,, and Y,,, and Modified
Bessel functions (of first and third kind), I,, and K.

Bessel 55

Usage
besselI(x, nu, expon.scaled = FALSE)
besselK(x, nu, expon.scaled = FALSE)
besselJ (x, nu)
besselY (x, nu)
Arguments
x numeric, > 0.
nu numeric; The order (maybe fractional and negative) of the corresponding Bessel
function.

expon.scaled logical; if TRUE, the results are exponentially scaled in order to avoid overflow
(1) or underflow (K,), respectively.

Details

If expon.scaled = TRUE, e %], (), or e K, (z) are returned.

For v < 0, formulae 9.1.2 and 9.6.2 from Abramowitz & Stegun are applied (which is probably
suboptimal), except for besselK which is symmetric in nu.

The current algorithms will give warnings about accuracy loss for large arguments. In some cases,
these warnings are exaggerated, and the precision is perfect. For large nu, say in the order of
millions, the current algorithms are rarely useful.

Value

Numeric vector with the (scaled, if expon.scaled = TRUE) values of the corresponding Bessel
function.

The length of the result is the maximum of the lengths of the parameters. All parameters are recycled
to that length.

Author(s)

Original Fortran code: W. J. Cody, Argonne National Laboratory
Translation to C and adaptation to R: Martin Maechler <maechler@stat.math.ethz.ch>.

Source

The C code is a translation of Fortran routines from https://www.netlib.org/specfun/
ribesl, ‘. ./rjbesl’, etc. The four source code files for bessel[IJKY] each contain a paragraph
“Acknowledgement” and “References”, a short summary of which is

bessell based on (code) by David J. Sookne, see Sookne (1973). .. Modifications. . . An earlier ver-
sion was published in Cody (1983).

bessel] as bessell

besselK based on (code) by J. B. Campbell (1980). .. Modifications. ..

besselY draws heavily on Temme’s Algol program for Y'...and on Campbell’s programs for Y,, ()
....... heavily modified.

https://www.netlib.org/specfun/ribesl
https://www.netlib.org/specfun/ribesl

56 Bessel

References

Abramowitz, M. and Stegun, 1. A. (1972). Handbook of Mathematical Functions. Dover, New
York; Chapter 9: Bessel Functions of Integer Order.

In order of “Source” citation above:

Sookne, David J. (1973). Bessel Functions of Real Argument and Integer Order. Journal of Re-
search of the National Bureau of Standards, TTB, 125—-132. doi: 10.6028/jres.077B.012.

Cody, William J. (1983). Algorithm 597: Sequence of modified Bessel functions of the first kind.
ACM Transactions on Mathematical Software, 9(2), 242-245. doi: 10.1145/357456.357462.

Campbell, J.B. (1980). On Temme’s algorithm for the modified Bessel function of the third kind.
ACM Transactions on Mathematical Software, 6(4), 581-586. doi: 10.1145/355921.355928.

Campbell, J.B. (1979). Bessel functions J_nu(x) and Y_nu(x) of float order and float argument.
Computer Physics Communications, 18, 133—142. doi: 10.1016/00104655(79)900304.

Temme, Nico M. (1976). On the numerical evaluation of the ordinary Bessel function of the second
kind. Journal of Computational Physics, 21, 343-350. doi: 10.1016/00219991(76)900322.

See Also

Other special mathematical functions, such as gamma, I'(z), and beta, B(z).
Examples

require (graphics)

nus <- c(0:5, 10, 20)

x <- seq(0, 4, length.out = 501)

plot(x, x, ylim = c(0, 6), ylab = "", type = "n",
main = "Bessel Functions I_nu(x)")
for(nu in nus) lines(x, besselI(x, nu = nu), col = nu + 2)

legend (0, 6, legend = paste("nu=", nus), col = nus + 2, lwd = 1)

x <- seq(0, 40, length.out = 801); yl <= c(-.5, 1)
plot(x, x, ylim = yl, ylab = "", type = "n",
main = "Bessel Functions J_nu(x)")
abline (h=0, v=0, lty=3)
for(nu in nus) lines(x, besselJ(x, nu = nu), col = nu + 2)
legend ("topright", legend = paste("nu=", nus), col = nus + 2, lwd = 1, bty="n")

Negative nu's ————————————————————— -
Xx <= 2:7

nu <- seq(-10, 9, length.out = 2001)

— I() —— ——— ——— ———

matplot (nu, t (outer (xx, nu, bessell)), type = "1", ylim = c(-50, 200),
[nu] (x), " for fixed ", x,

main = expression(paste("Bessel ", I
", as ", f(nu))),
xlab = expression(nu))
abline(v = 0, col = "light gray", 1lty = 3)

legend (5, 200, legend = paste("x=", xx), col=seq(xx), lty=1:5)

https://doi.org/10.6028/jres.077B.012
https://doi.org/10.1145/357456.357462
https://doi.org/10.1145/355921.355928
https://doi.org/10.1016/0010-4655(79)90030-4
https://doi.org/10.1016/0021-9991(76)90032-2

Bessel 57

R R
bJ <- t(outer(xx, nu, besselld))
matplot (nu, bJ, type = "1", ylim = c(-500,

200),
xlab = quote(nu), ylab = quote(J[nu] (x))
main = expression(paste("Bessel ", J[nu]
abline(v = 0, col = "light gray", lty = 3)
legend ("topright", legend = paste("x=", xx), col=seqg(xx), lty=1:5)

(x), " for fixed ", x)))

ZOOM into right part:

matplot (nu[nu > -2], bJ[nu > -2,], type = "1",

xlab = quote(nu), ylab = quote(J[nu] (x)),

main = expression (paste("Bessel ", J[nu] (x), " for fixed ", x)))
abline (h=0, v = 0, col = "gray60", lty = 3)

legend ("topright", legend = paste("x=", xx), col=seqg(xx), lty=1:5)

- X —=> 0 =
x0 <- 2”seqg(-16, 5, length.out=256)
plot (range (x0), c(le-40, 1), log = "xy", xlab = "x", ylab = "", type = "n",
main = "Bessel Functions J_nu(x) near 0\n log - log scale") ; axis (2, at=1)
for(nu in sort (c(nus, nus+0.5)))
lines (x0, besselJ(x0, nu = nu), col = nu + 2, lty= 1+ (nu%%l > 0))
legend ("right", legend = paste("nu=", paste(nus, nus+0.5, sep=", ")),

col = nus + 2, lwd = 1, bty="n")

x0 <= 2”seg(-10, 8, length.out=256)

plot (range (x0), 10”%c(-100, 80), log = "xy", xlab = "x", ylab = "", type = "n",

main = "Bessel Functions K _nu(x) near 0\n log - log scale") ; axis(2, at=1)
for(nu in sort (c(nus, nus+0.5)))

lines (x0, besselK(x0, nu = nu), col = nu + 2, lty= 1+ (nu%%l > 0))
legend ("topright", legend = paste("nu=", paste(nus, nus + 0.5, sep =", ")),

col = nus + 2, 1lwd = 1, bty="n")

x <- x[x > 0]

plot (x, x, ylim = c(le-18, 1lell), log = "y", ylab = "", type = "n",
main = "Bessel Functions K_nu(x)"); axis (2, at=1)

for(nu in nus) lines(x, besselK(x, nu = nu), col = nu + 2)

legend (0, le-5, legend=paste("nu=", nus), col = nus + 2, lwd = 1)

vyl <- c(-1.6, .6)
plot(x, x, ylim = yl, ylab = "", type = "n",
main = "Bessel Functions Y _nu(x)")
for (nu in nus) {
Xxx <— X[x > .6*xnu]
lines (xx, besselY (xx, nu=nu), col = nu+2)
}
legend (25, -.5, legend = paste("nu=", nus), col = nus+2, lwd = 1)

negative nu in bessel_Y —-- was bogus for a long time
curve (besselY (x, -0.1), 0, 10, ylim = c(-3,1), ylab = "")
for(nu in c(seq(-0.2, -2, by = -0.1)))

curve (besselY (x, nu), add = TRUE)
title (expression (besselY (x, nu) * " "ok

58

bindenv

{nu == 1list(-0.1, -0.2, ..., -2)1}))

bindenv Binding and Environment Locking, Active Bindings

Description

These functions represent an interface for adjustments to environments and bindings within envi-
ronments. They allow for locking environments as well as individual bindings, and for linking a
variable to a function.

Usage

lockEnvironment (env, bindings = FALSE)
environmentIsLocked (env)

lockBinding (sym, env)
unlockBinding (sym, env)
bindingIsLocked (sym, env)

makeActiveBinding (sym, fun, env)
bindingIsActive (sym, env)
activeBindingFunction (sym, env)

Arguments
env an environment.
bindings logical specifying whether bindings should be locked.
sym a name object or character string.
fun a function taking zero or one arguments.
Details

The function lockEnvironment locks its environment argument. Locking the environment pre-
vents adding or removing variable bindings from the environment. Changing the value of a variable
is still possible unless the binding has been locked. The namespace environments of packages with
namespaces are locked when loaded.

lockBinding locks individual bindings in the specified environment. The value of a locked
binding cannot be changed. Locked bindings may be removed from an environment unless the
environment is locked.

makeActiveBinding installs fun in environment env so that getting the value of sym calls
fun with no arguments, and assigning to sym calls fun with one argument, the value to be as-
signed. This allows the implementation of things like C variables linked to R variables and variables
linked to databases, and is used to implement setRefClass. It may also be useful for making
thread-safe versions of some system globals. Currently active bindings are not preserved during
package installation, but they can be created in . onLoad.

bindenv 59

Value

The bindingIsLocked and environmentIsLocked return alength-one logical vector. The
remaining functions return NULL, invisibly.

Author(s)

Luke Tierney

Examples

locking environments
e <- new.env()

assign("x", 1, envir = e)

get ("x", envir = e)

lockEnvironment (e)

get ("x", envir = e)

assign("x", 2, envir = e)
try(assign("y", 2, envir = e)) # error

locking bindings

e <— new.env ()

assign("x", 1, envir = e)

get ("x", envir = e)

lockBinding ("x", e)

try(assign("x", 2, envir = e)) # error
unlockBinding ("x", e)

assign("x", 2, envir = e)

get ("x", envir = e)

active bindings
f <- local({
x <=1
function (v) {
if (missing(v))
cat ("get\n")
else {
cat ("set\n")
X <<— v

})

makeActiveBinding ("fred", f, .GlobalEnv)
bindingIsActive ("fred", .GlobalEnv)

fred

fred <- 2

fred

60 bitwise

bitwise Bitwise Logical Operations

Description

Logical operations on integer vectors with elements viewed as sets of bits.

Usage

bitwNot (a)
bitwAnd(a, b)
bitwOr (a, b)
bitwXor (a, b)

bitwShiftL (a, n)
bitwShiftR(a, n)

Arguments
a, b integer vectors; numeric vectors are coerced to integer vectors.
n non-negative integer vector of values up to 31.

Details

Each element of an integer vector has 32 bits.
Pairwise operations can result in integer NA.

Shifting is done assuming the values represent unsigned integers.

Value

An integer vector of length the longer of the arguments, or zero length if one is zero-length.

The output element is NA if an input is NA (after coercion) or an invalid shift.

See Also

The logical operators, !, &, |, xor. Notably these do work bitwise for raw arguments.

The classes "octmode" and "hexmode" whose implementation of the standard logical operators
is based on these functions.

Package bitops has similar functions for numeric vectors which differ in the way they treat integers
231 or larger.

https://CRAN.R-project.org/package=bitops

body 61

Examples
bitwNot (0:12) # -1 -2 ... -13
bitwAnd (15L, 7L) # 7
bitwOr (15L, 7L) # 15
bitwXor (15L, 7L) # 8
bitwXor (-1L, 1L) # -2

The "same" for 'raw' instead of integer
rrl2 <- as.raw(0:12) ; rbind(rrl2, !'rrl2)
c(rl5 <- as.raw(l5), r7 <- as.raw(7)) # Of 07
rl5 & r7 # 07

rl5 | r7 # 0f

xor (rl5, r7)# 08

bitwShiftR(-1, 1:31) # shifts of 2732-1 = 4294967295

body Access to and Manipulation of the Body of a Function

Description

Get or set the body of a function which is basically all of the function definition but its formal
arguments (formals), see the ‘Details’.

Usage

body (fun = sys.function(sys.parent()))

body (fun, envir = environment (fun)) <- value
Arguments

fun a function object, or see ‘Details’.

envir environment in which the function should be defined.

value an object, usually a language object: see section ‘Value’.
Details

For the first form, fun can be a character string naming the function to be manipulated, which is
searched for from the parent frame. If it is not specified, the function calling body is used.

The bodies of all but the simplest are braced expressions, that is calls to {: see the ‘Examples’
section for how to create such a call.

62 bquote

Value

body returns the body of the function specified. This is normally a language object, most often a
call to {, but it can also be a symbo1l such as pi or a constant (e.g., 3 or "R") to be the return
value of the function.

The replacement form sets the body of a function to the object on the right hand side, and (poten-
tially) resets the environment of the function, and drops attributes. If value is of class
"expression" the first element is used as the body: any additional elements are ignored, with a
warning.

See Also

The three parts of a (non-primitive) function are its formals, body, and environment.

Further, see alist, args, function.

Examples

body (body)

f <- function(x) x"5

body (f) <- quote (5"x)

or equivalently body(f) <- expression (57x)
£f(3) # = 125

body ()

creating a multi-expression body

e <- expression(y <- x"2, return(y)) # or a list
body (f) <- as.call(c(as.name("{"), e))

f

£(8)

Using substitute() may be simpler than 'as.call(c(as.name("{",..)))"':
stopifnot (identical (body (f), substitute({ y <- x"2; return(y) })))

bquote Partial substitution in expressions

Description

An analogue of the LISP backquote macro. bquote quotes its argument except that terms wrapped
in . () are evaluated in the specified where environment. If splice = TRUE then terms wrapped
in .. () are evaluated and spliced into a call.

Usage

bquote (expr, where = parent.frame(), splice = FALSE)

browser 63

Arguments

expr A language object.
where An environment.

splice Logical; if TRUE splicing is enabled.

Value

A language object.

See Also

quote, substitute

Examples

require (graphics)

bquote (a == . (a))
substitute(a == A, list(A = a))

plot(1:10, a%x(1:10), main = bquote(a == .(a)))
to set a function default arg
default <=1

bquote (function(x, y = . (default)) x+y)

exprs <- expression(x <- 1, y <= 2, x + V)
bgquote (function() {.. (exprs)}, splice = TRUE)

browser Environment Browser

Description

Interrupt the execution of an expression and allow the inspection of the environment where
browser was called from.

Usage

browser (text = "", condition = NULL, expr = TRUE, skipCalls = 0L)

64 browser
Arguments
text a text string that can be retrieved once the browser is invoked.
condition a condition that can be retrieved once the browser is invoked.
expr a “condition”. By default, and whenever not false after being coerced to
logical, the debugger will be invoked, otherwise control is returned directly.
skipCalls how many previous calls to skip when reporting the calling context.
Details

A call to browser can be included in the body of a function. When reached, this causes a pause
in the execution of the current expression and allows access to the R interpreter.

The purpose of the text and condition arguments are to allow helper programs (e.g., external
debuggers) to insert specific values here, so that the specific call to browser (perhaps its location in
a source file) can be identified and special processing can be achieved. The values can be retrieved
by calling browserText and browserCondition.

The purpose of the expr argument is to allow for the illusion of conditional debugging. It is an
illusion, because execution is always paused at the call to browser, but control is only passed to the
evaluator described below if expr is not FALSE after coercion to logical. In most cases it is going
to be more efficient to use an if statement in the calling program, but in some cases using this
argument will be simpler.

The skipCalls argument should be used when the browser () call is nested within another
debugging function: it will look further up the call stack to report its location.

At the browser prompt the user can enter commands or R expressions, followed by a newline. The
commands are

c exit the browser and continue execution at the next statement.
cont synonym for c.

£ finish execution of the current loop or function

help print this list of commands

n evaluate the next statement, stepping over function calls. For byte compiled functions interrupted
by browser calls, n is equivalent to c.

s evaluate the next statement, stepping into function calls. Again, byte compiled functions make s
equivalent to c.

where print a stack trace of all active function calls.

r invoke a "resume" restart if one is available; interpreted as an R expression otherwise. Typi-
cally "resume" restarts are established for continuing from user interrupts.

Q exit the browser and the current evaluation and return to the top-level prompt.

Leading and trailing whitespace is ignored, except for an empty line. Handling of empty lines
depends on the "browserNLdisabled" option; if it is TRUE, empty lines are ignored. If not,
an empty line is the same as n (or s, if it was used most recently).

Anything else entered at the browser prompt is interpreted as an R expression to be evaluated in
the calling environment: in particular typing an object name will cause the object to be printed, and

browserText 65

1s () lists the objects in the calling frame. (If you want to look at an object with a name such as n,
print it explicitly, or use autoprint via (n).

The number of lines printed for the deparsed call can be limited by setting
options (deparse.max.lines).

The browser prompt is of the form Browse [n]>: here var {n} indicates the ‘browser level’. The
browser can be called when browsing (and often is when debug is in use), and each recursive call
increases the number. (The actual number is the number of ‘contexts’ on the context stack: this is
usually 2 for the outer level of browsing and 1 when examining dumps in debugger.)

This is a primitive function but does argument matching in the standard way.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer.

See Also
debug, and traceback for the stack on error. browserText for how to retrieve the text and
condition.
browserText Functions to Retrieve Values Supplied by Calls to the Browser
Description

A call to browser can provide context by supplying either a text argument or a condition argument.
These functions can be used to retrieve either of these arguments.

Usage

browserText (n = 1)
browserCondition(n = 1)
browserSetDebug(n = 1)

Arguments

n The number of contexts to skip over, it must be non-negative.

Details

Each call to browser can supply either a text string or a condition. The functions browserText
and browserCondition provide ways to retrieve those values. Since there can be multiple
browser contexts active at any time we also support retrieving values from the different contexts.
The innermost (most recently initiated) browser context is numbered 1: other contexts are numbered
sequentially.

66 builtins

browserSetDebug provides a mechanism for initiating the browser in one of the calling
functions. See sys.frame for a more complete discussion of the calling stack. To use
browserSetDebug you select some calling function, determine how far back it is in the call
stack and call browserSetDebug with n set to that value. Then, by typing c at the browser
prompt you will cause evaluation to continue, and provided there are no intervening calls to browser
or other interrupts, control will halt again once evaluation has returned to the closure specified. This
is similar to the up functionality in gdb or the "step out" functionality in other debuggers.

Value

browserText returns the text, while browserCondit ion returns the condition from the spec-
ified browser context.

browserSetDebug returns NULL, invisibly.

Note

It may be of interest to allow for querying further up the set of browser contexts and this function-
ality may be added at a later date.

Author(s)

R. Gentleman

See Also

browser

builtins Returns the Names of All Built-in Objects

Description

Return the names of all the built-in objects. These are fetched directly from the symbol table of the
R interpreter.

Usage

builtins (internal = FALSE)

Arguments

internal a logical indicating whether only ‘internal’ functions (which can be called via
.Internal) should be returned.

by 67

Details

builtins () returns an unsorted list of the objects in the symbol table, that is all the objects in
the base environment. These are the built-in objects plus any that have been added subsequently
when the base package was loaded. It is less confusing to use 1s (baseenv () ,all.names =

TRUE).
builtins (TRUE) returns an unsorted list of the names of internal functions, that is those which
can be accessed as . Internal (foo (args ...)) for foo in the list.

Value

A character vector.

by Apply a Function to a Data Frame Split by Factors

Description

Function by is an object-oriented wrapper for tapply applied to data frames.

Usage
by (data, INDICES, FUN, ..., simplify = TRUE)
Arguments
data an R object, normally a data frame, possibly a matrix.
INDICES a factor or a list of factors, each of length nrow (data).
FUN a function to be applied to (usually data-frame) subsets of data.
further arguments to FUN.
simplify logical: see tapply.
Details

A data frame is split by row into data frames subsetted by the values of one or more factors, and
function FUN is applied to each subset in turn.

For the default method, an object with dimensions (e.g., a matrix) is coerced to a data frame and
the data frame method applied. Other objects are also coerced to a data frame, but FUN is applied
separately to (subsets of) each column of the data frame.

Value

An object of class "by", giving the results for each subset. This is always a list if simplify is
false, otherwise a list or array (see tapply).

68 c

See Also

tapply, simplify2array. ave also applies a function block-wise.

Examples

require (stats)
by (warpbreaks[, 1:2], warpbreaks[,"tension"], summary)

by (warpbreaks[, 117, warpbreaks([, -1], summary)
by (warpbreaks, warpbreaks[, "tension"],
function(x) 1lm(breaks ~ wool, data = x))

now suppose we want to extract the coefficients by group
tmp <- with (warpbreaks,
by (warpbreaks, tension,
function(x) 1lm(breaks ~ wool, data = x)))
sapply (tmp, coef)

c Combine Values into a Vector or List

Description

This is a generic function which combines its arguments.

The default method combines its arguments to form a vector. All arguments are coerced to a com-
mon type which is the type of the returned value, and all attributes except names are removed.

Usage
S3 Generic function

c(...)

Default S3 method:
c(..., recursive = FALSE, use.names = TRUE)

Arguments

objects to be concatenated. All NULL entries are dropped before method dis-
patch unless at the very beginning of the argument list.

recursive logical. If recursive = TRUE, the function recursively descends through lists
(and pairlists) combining all their elements into a vector.

use.names logical indicating if names should be preserved.

69

Details

The output type is determined from the highest type of the components in the hierarchy NULL <
raw < logical < integer < double < complex < character < list < expression. Pairlists are treated
as lists, whereas non-vector components (such as names / symbols and calls) are treated as
one-element 11 sts which cannot be unlisted even if recursive = TRUE.

Note that in R < 4.1.0, factors were treated only via their internal integer codes: now there is
c.factor method which combines factors into a factor.

c is sometimes used for its side effect of removing attributes except names, for example to turn
an array into a vector. as.vector is a more intuitive way to do this, but also drops names.
Note that methods other than the default are not required to do this (and they will almost certainly
preserve a class attribute).

This is a primitive function.

Value

NULL or an expression or a vector of an appropriate mode. (With no arguments the value is NULL.)

S4 methods

This function is S4 generic, but with argument list (x, . ..).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

unlist and as.vector to produce attribute-free vectors.

Examples

c(l,7:9)
c(l:5, 10.5, "next")

uses with a single argument to drop attributes

x <- 1:4

names (x) <— letters[1l:4]
X

c(x) # has names
as.vector(x) # no names
dim(x) <= c(2,2)

X

c(x)

as.vector (x)

append to a list:

11 <= list(A =1, c = "C")

do *not* use

c(ll, d = 1:3) # which is == c (11, as.list(c(d = 1:3)))

70 call
but rather
c(ll, d = 1list(1:3)) # c() combining two lists
c(list (A = ¢c(B = 1)), recursive = TRUE)
c(options (), recursive = TRUE)
c(list(A = c(B =1, C =2), B =c(E = 7)), recursive = TRUE)
call Function Calls
Description
Create or test for objects of mode "call™" (or " (", see Details).
Usage
call (name, ...)
is.call (x)
as.call (x)
Arguments
name a non-empty character string naming the function to be called.
arguments to be part of the call.
x an arbitrary R object.
Details

call returns an unevaluated function call, that is, an unevaluated expression which consists of the
named function applied to the given arguments (name must be a string which gives the name

of a function to be called). Note that although the call is unevaluated, the arguments . . .

evaluated.

are

call is a primitive, so the first argument is taken as name and the remaining arguments as
arguments for the constructed call: if the first argument is named the name must partially

match name.

is.call isused to determine whether x is a call (i.e., of mode "call" or " ("). Note that

* is.call (x) is strictly equivalent to typeof (x) == "language".

* is.language () is also true for calls (but also for symbols and expressions

where is.call () is false).

as.call (x): Objects of mode "1ist" can be coerced to mode "call". The first element of

the list becomes the function part of the call, so should be a function or the name of one (as a
symbol; a character string will not do).

If you think of using as.call (<string>), consider using str2lang (*) which is an
efficient version of parse (text=«). Note that call () and as.call (), when applica-
ble, are much preferable to these parse () based approaches.

call 71

All three are primitive functions.

as.call is generic: you can write methods to handle specific classes of objects, see InternalMeth-
ods.

Warning

call should not be used to attempt to evade restrictions on the use of . Internal and other
non-API calls.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

do.call for calling a function by name and argument list; Recall for recursive calling of func-
tions; further is.language, expression, function.

Producing calls etc from character: str2lang and parse.

Examples

is.call(call) #-> FALSE: Functions are NOT calls

set up a function call to round with argument 10.5

cl <= call("round", 10.5)

is.call(cl) # TRUE

cl

identical (quote (round (10.5)), # <- less functional, but the same
cl) # TRUE

such a call can also be evaluated.

eval (cl) # [1] 10

class(cl) # "call"
typeof (cl) # "language"
is.call(cl) && is.language(cl) # always TRUE for "call"s

A <- 10.5

call ("round", A) # round(10.5)
call ("round", quote(A)) # round(A)

f <- "round"

call (f, quote (A)) # round (A)

1f we want to supply a function we need to use as.call or similar
f <- round

Not run: call(f, quote(Ad)) # error: first arg must be character
(g <—= as.call(list(f, quote(A))))
eval (g)

alternatively but less transparently
g <- list(f, quote(A))

mode (g) <-— "call"

g

72 callCC

eval (g)
see also the examples in the help for do.call

callccC Call With Current Continuation

Description

A downward-only version of Scheme’s call with current continuation.

Usage

callCC (fun)

Arguments

fun function of one argument, the exit procedure.

Details

callCcC provides a non-local exit mechanism that can be useful for early termination of a com-
putation. callCC calls fun with one argument, an exit function. The exit function takes a single
argument, the intended return value. If the body of fun calls the exit function then the call to
callcc immediately returns, with the value supplied to the exit function as the value returned by
callcCC.

Author(s)

Luke Tierney

Examples

The following all return the value 1
callCC (function (k) 1)

(
callCC (function (k) k(1))
callCC (function(k) {k(1); 21})
callCC (function (k) repeat k(1))

CallExternal 73

CallExternal Modern Interfaces to C/C++ code

Description

Functions to pass R objects to compiled C/C++ code that has been loaded into R.

Usage
.Call (.NAME, ..., PACKAGE)
.External (.NAME, ..., PACKAGE)
Arguments
.NAME a character string giving the name of a C function, or an object
of class "NativeSymbolInfo", "RegisteredNativeSymbol" or
"NativeSymbol" referring to such a name.
arguments to be passed to the compiled code. Up to 65 for .Call.
PACKAGE if supplied, confine the search for a character string . NAME to the DLL given by
this argument (plus the conventional extension, ‘. so’, *.d11’,...).
This argument follows . . . and so its name cannot be abbreviated.
This is intended to add safety for packages, which can ensure by using this
argument that no other package can override their external symbols, and also
speeds up the search (see ‘Note’).
Details

The functions are used to call compiled code which makes use of internal R objects, passing the
arguments to the code as a sequence of R objects. They assume C calling conventions, so can
usually also be used for C++ code.

For details about how to write code to use with these functions see the chapter on ‘System and
foreign language interfaces’ in the ‘Writing R Extensions’ manual. They differ in the way the
arguments are passed to the C code: .External allows for a variable or unlimited number of
arguments.

These functions are primitive, and . NAME is always matched to the first argument supplied (which
should not be named). For clarity, avoid using names in the arguments passed to . . . that match or
partially match . NAME.

Value

An R object constructed in the compiled code.

Header files for external code

Writing code for use with these functions will need to use internal R structures defined in
‘Rinternals.h’ and/or the macros in ‘Rdefines.h’.

74 capabilities

Note

If one of these functions is to be used frequently, do specify PACKAGE (to confine the search to a
single DLL) or pass .NAME as one of the native symbol objects. Searching for symbols can take a
long time, especially when many namespaces are loaded.

You may see PACKAGE = "base™" for symbols linked into R. Do not use this in your own code:
such symbols are not part of the API and may be changed without warning.

PACKAGE = "" used to be accepted (but was undocumented): it is now an error.

References

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer. (.Call.)

See Also

dyn.load, .C, .Fortran.

The ‘Writing R Extensions’ manual.

capabilities Report Capabilities of this Build of R

Description

Report on the optional features which have been compiled into this build of R.

Usage

capabilities (what = NULL,

Xchk = any(nas %in% c("X11", "jpeg", "png", "tiff")))
Arguments

what character vector or NULL, specifying required components. NULL implies that
all are required.

Xchk logical with a smart default, indicating if X11-related capabilities should
be fully checked, notably on macOS. If set to false, may avoid a warning “No
protocol specified” and e.g., the "X 11" capability may be returned as NA.

Value

A named logical vector. Current components are

jpeg is the jpeg function operational?

png is the png function operational?

tiff is the t 1 £ £ function operational?

tcltk is the teltk package operational? Note that to make use of Tk you will almost

always need to check that "X11" is also available.

capabilities

X11

aqua

http/ftp

sockets

libxml

fifo
cledit

iconv

NLS

Rprof

profmem

cairo

ICU

long.double

libcurl

75

are the X1 1 graphics device and the X11-based data editor available? This loads
the X11 module if not already loaded, and checks that the default display can be
contacted unless a X11 device has already been used.

is the quartz function operational? Only on some macOS builds, including
CRAN binary distributions of R.

Note that this is distinct from .Platform$GUI == "AQUA", which is true
only when using the Mac R. app GUI console.

does the internal method for url and download.file support ‘http://’
and ‘ftp://’ URLs? Always TRUE as from R 3.3.0.

are make . socket and related functions available? Always TRUE as from R
3.3.0.

is there support for integrating 1ibxml with the R event loop? Always TRUE
as from R 3.3.0.

are FIFO connections supported?

is command-line editing available in the current R session? This is false in non-
interactive sessions. It will be true for the command-line interface if readline
support has been compiled in and ‘-—no-readline’ was not used when R
was invoked. (If ‘“——interactive’ was used, command-line editing will not
actually be available.)

is internationalization conversion via i conv supported? Always true in current

R.
is there Natural Language Support (for message translations)?

is there support for Rprof () profiling? This is true if R was configured (before
compilation) with default settings which include ——enable-R-profiling.

is there support for memory profiling? See t racemem.

is there support for the svg, cairo_pdf and cairo_ps devices, and for
type = "cairo" inthe bmp, jpeqg, png and tif £ devices? Prior to R 4.1.0
this also indicated Cairo support in the X11 device, but it is now possible to
build R with Cairo support for the bitmap devices without support for the X11
device (usually when that is not supported at all).

is ICU available for collation? See the help on Comparison and
icuSetCollate: itis never used for a C locale.

does this build use a C long double type which is longer than double?
Some platforms do not have such a type, and on others its use can be suppressed
by the configure option ‘~-disable-long-double’.

Although not guaranteed, it is a reasonable assumption that if present long dou-
bles will have at least as much range and accuracy as the ISO/IEC 60559 80-bit
‘extended precision’ format. Since R 4.0.0 .Machine gives information on the
long-double type (if present).

is 1ibcurl available in this build? Used by function curlGetHeaders and
optionally by download.file and url. As from R 3.3.0 always true for
Unix-alikes, and true for CRAN Windows builds.

76 cat

Note to macOS users

Capabilities " jpeg", "png" and "tiff" refer to the X11-based versions of these devices. If
capabilities ("aqua") is true, then these devices with type = "quartz" will be avail-
able, and out-of-the-box will be the default type. Thus for example the tiff device will be
available if capabilities ("aqua") || capabilities ("tiff") if the defaults are un-
changed.

See Also

.Platform, extSoftVersion, and grSoftVersion (and links there) for availability of
capabilities external to R but used from R functions.

Examples

capabilities()

if(!capabilities ("ICU"))
warning ("ICU is not available")

Does not call the internal Xll-checking function:
capabilities (Xchk = FALSE)

See also the examples for 'connections'.

cat Concatenate and Print

Description

Outputs the objects, concatenating the representations. cat performs much less conversion than
print.

Usage

cat (... , file = "", sep =" ", fill = FALSE, labels = NULL,
append = FALSE)

Arguments

R objects (see ‘Details’ for the types of objects allowed).

file A connection, or a character string naming the file to print to. If " " (the default),
cat prints to the standard output connection, the console unless redirected by
sink. Ifitis " | cmd", the output is piped to the command given by ‘cmd’, by
opening a pipe connection.

sep a character vector of strings to append after each element.

cat 77

fill a logical or (positive) numeric controlling how the output is broken into suc-
cessive lines. If FALSE (default), only newlines created explicitly by “"\n"’
are printed. Otherwise, the output is broken into lines with print width equal to
the option width if £i11 is TRUE, or the value of £111 if this is numeric.
Linefeeds are only inserted between elements, strings wider than £i11 are not
wrapped. Non-positive £111 values are ignored, with a warning.

labels character vector of labels for the lines printed. Ignored if £i11 is FALSE.

append logical. Only used if the argument £ile is the name of file (and not a connec-
tion or " | cmd"). If TRUE output will be appended to £i1le; otherwise, it will
overwrite the contents of file.

Details

cat is useful for producing output in user-defined functions. It converts its arguments to character
vectors, concatenates them to a single character vector, appends the given sep = string(s) to each
element and then outputs them.

No linefeeds are output unless explicitly requested by ‘" \n"’ or if generated by filling (if argument
f£i11 is TRUE or numeric).

If £ile is a connection and open for writing it is written from its current position. If it is not open,
it is opened for the duration of the call in "wt " mode and then closed again.

Currently only atomic vectors and names are handled, together with NULL and other zero-length
objects (which produce no output). Character strings are output ‘as is’ (unlike print.default
which escapes non-printable characters and backslash — use encodeString if you want to
output encoded strings using cat). Other types of R object should be converted (e.g., by
as.character or format) before being passed to cat. That includes factors, which are output
as integer vectors.

cat converts numeric/complex elements in the same way as print (and not in the same way as
as.character which is used by the S equivalent), so options "digits" and "scipen"
are relevant. However, it uses the minimum field width necessary for each element, rather than the
same field width for all elements.

Value

None (invisible NULL).

Note

If any element of sep contains a newline character, it is treated as a vector of terminators rather
than separators, an element being output after every vector element and a newline after the last.
Entries are recycled as needed.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

78 cbind

See Also

print, format, and paste which concatenates into a string.

Examples

iter <- stats::rpois(l, lambda = 10)
print an informative message
cat ("iteration = ", iter <- iter 4+ 1, "\n")

'fill' and label lines:

cat (paste(letters, 100+ 1:26), fill = TRUE, labels = pasteO("{", 1:10, "}:"))

cbind Combine R Objects by Rows or Columns

Description

Take a sequence of vector, matrix or data-frame arguments and combine by columns or rows, re-
spectively. These are generic functions with methods for other R classes.

Usage
cbind (..., deparse.level = 1)
rbind (..., deparse.level = 1)
S3 method for class 'data.frame'
rbind (..., deparse.level = 1, make.row.names = TRUE,
stringsAsFactors = FALSE, factor.exclude = TRUE)
Arguments

(generalized) vectors or matrices. These can be given as named argu-
ments. Other R objects may be coerced as appropriate, or S4 methods
may be used: see sections ‘Details’ and ‘Value’. (For the "data.frame"
method of cbind these can be further arguments to data.frame such as
stringsAsFactors.)
deparse.level
integer controlling the construction of labels in the case of non-matrix-like ar-
guments (for the default method):
deparse.level = 0 constructs no labels; the default,
deparse.level =1 or 2 constructs labels from the argument names, see
the ‘Value’ section below.
make.row.names
(only for data frame method:) logical indicating if unique and valid
row.names should be constructed from the arguments.
stringsAsFactors
logical, passed to as.data.frame; only has an effect when the . .. argu-
ments contain a (non-data.frame) character.

cbind 79

factor.exclude
if the data frames contain factors, the default TRUE ensures that NA levels of
factors are kept, see PR#17562 and the ‘Data frame methods’. In R versions up
to 3.6.x, factor.exclude = NA has been implicitly hardcoded (R <= 3.6.0)
or the default (R =3.6.x, x >=1).

Details

The functions cbind and rbind are S3 generic, with methods for data frames. The data frame
method will be used if at least one argument is a data frame and the rest are vectors or matrices.
There can be other methods; in particular, there is one for time series objects. See the section on
‘Dispatch’ for how the method to be used is selected. If some of the arguments are of an S4 class,
i.e., 1sS4 (.) istrue, S4 methods are sought also, and the hidden cbind / rbind functions from
package methods maybe called, which in turn build on cbind2 or rbind2, respectively. In that
case, deparse. level is obeyed, similarly to the default method.

In the default method, all the vectors/matrices must be atomic (see vector) or lists. Expressions
are not allowed. Language objects (such as formulae and calls) and pairlists will be coerced to lists:
other objects (such as names and external pointers) will be included as elements in a list result.
Any classes the inputs might have are discarded (in particular, factors are replaced by their internal
codes).

If there are several matrix arguments, they must all have the same number of columns (or rows)
and this will be the number of columns (or rows) of the result. If all the arguments are vectors,
the number of columns (rows) in the result is equal to the length of the longest vector. Values in
shorter arguments are recycled to achieve this length (with a warning if they are recycled only
fractionally).

When the arguments consist of a mix of matrices and vectors the number of columns (rows) of the
result is determined by the number of columns (rows) of the matrix arguments. Any vectors have
their values recycled or subsetted to achieve this length.

For cbind (rbind), vectors of zero length (including NULL) are ignored unless the result would
have zero rows (columns), for S compatibility. (Zero-extent matrices do not occur in S3 and are not
ignored in R.)

Matrices are restricted to less than 23! rows and columns even on 64-bit systems. So input vectors
have the same length restriction: as from R 3.2.0 input matrices with more elements (but meeting
the row and column restrictions) are allowed.

Value

For the default method, a matrix combining the . . . arguments column-wise or row-wise. (Excep-
tion: if there are no inputs or all the inputs are NULL, the value is NULL.)

The type of a matrix result determined from the highest type of any of the inputs in the hierarchy
raw < logical < integer < double < complex < character < list .

For cbind (rbind) the column (row) names are taken from the colnames (rownames) of
the arguments if these are matrix-like. Otherwise from the names of the arguments or where
those are not supplied and deparse.level > 0, by deparsing the expressions given, for
deparse.level = 1 only if that gives a sensible name (a ‘symbol’, see is.symbol).

For cbind row names are taken from the first argument with appropriate names: rownames for a
matrix, or names for a vector of length the number of rows of the result.

https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17562

80 cbind

For rbind column names are taken from the first argument with appropriate names: colnames for
a matrix, or names for a vector of length the number of columns of the result.

Data frame methods

The cbind data frame method is just a wrapper for data.frame(...,check.names =
FALSE) . This means that it will split matrix columns in data frame arguments, and convert charac-
ter columns to factors unless st ringsAsFactors = FALSE is specified.

The rbind data frame method first drops all zero-column and zero-row arguments. (If that leaves
none, it returns the first argument with columns otherwise a zero-column zero-row data frame.)
It then takes the classes of the columns from the first data frame, and matches columns by name
(rather than by position). Factors have their levels expanded as necessary (in the order of the levels
of the level sets of the factors encountered) and the result is an ordered factor if and only if all
the components were ordered factors. (The last point differs from S-PLUS.) Old-style categories
(integer vectors with levels) are promoted to factors.

Note that for result column j, factor (., exclude = X (7)) is applied, where

X(j) := 1if(isTRUE (factor.exclude)) {
if (INA.lev[j]) NA # else NULL
} else factor.exclude

where NA . 1lev [j] is true iff any contributing data frame has had a factor in column j with an
explicit NA level.

Dispatch

The method dispatching is not done via UseMethod (), but by C-internal dispatching. Therefore
there is no need for, e.g., rbind.default.

The dispatch algorithm is described in the source file (‘. . . /src/main/bind.c’) as

1. For each argument we get the list of possible class memberships from the class attribute.
2. We inspect each class in turn to see if there is an applicable method.

3. If we find a method, we use it. Otherwise, if there was an S4 object among the arguments, we
try S4 dispatch; otherwise, we use the default code.

(Before R 4.0.0, an applicable method found was used only if identical to any method determined
for prior arguments.)

If you want to combine other objects with data frames, it may be necessary to coerce them to data
frames first. (Note that this algorithm can result in calling the data frame method if all the arguments
are either data frames or vectors, and this will result in the coercion of character vectors to factors.)

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

char.expand

81

See Also
c to combine vectors (and lists) as vectors, data.frame to combine vectors and matrices as a
data frame.
Examples
m <- cbind (1, 1:7) # the 'l' (= shorter vector) is recycled
m
m <— cbind(m, 8:14)[, c(1, 3, 2)] # insert a column
m
cbind(1:7, diag(3)) # vector 1is subset -> warning

cbind (0, rbind(1l, 1:3))

cbind(I = 0, X = rbind(a = 1, b = 1:3)) # use some names

xx <— data.frame(I = rep(0,2))

cbind(xx, X = rbind(a = 1, b = 1:3)) # named differently

cbind (0, matrix(l, nrow = 0, ncol = 4)) #> Warning (making sense)

dim(cbind (0, matrix(l, nrow = 2, ncol = 0))) #-—> 2 x 1

deparse.level

dd <- 10

rbind(1:4, c = 2, "a++"
rbind(l:4, c = 2, "a++"
rbind(1:4, c = 2, "a++"

10, dd, deparse.level
10, dd, deparse.level

I
=

Il
N

cheap row names:
b0 <= gl (3,4, labels=letters[1:3])

bf <- setNames (b0, pastelO("o", seq_along(b0)))
df <- data.frame(a =1, B = b0, £ = gl(4,3))
df. <- data.frame(a = 1, B = bf, £ = gl(4,3))
new <- data.frame (a 8, B ="B", £ ="1")
(dfl <- rbind(df , new))
(df .1 <= rbind(df., new))

stopifnot (identical (dfl, rbind(df, new, make.row.names=FALSE)),
identical (dfl, rbind(df., new, make.row.names=FALSE)))

3 rownames
4 rownames

10, dd, deparse.level = 0) # middle 2 rownames

(default)

char.expand Expand a String with Respect to a Target Table

Description

Seeks a unique match of its first argument among the elements of its second. If successful, it returns

this element; otherwise, it performs an action specified by the third argument.

Usage

char.expand (input, target, nomatch = stop("no match"))

82 character

Arguments

input a character string to be expanded.

target a character vector with the values to be matched against.

nomatch an R expression to be evaluated in case expansion was not possible.
Details

This function is particularly useful when abbreviations are allowed in function arguments, and need
to be uniquely expanded with respect to a target table of possible values.

Value
A length-one character vector, one of the elements of target (unless nomatch is changed to be
a non-error, when it can be a zero-length character string).

See Also

charmatch and pmatch for performing partial string matching.

Examples

locPars <- c("mean", "median", "mode")
char.expand("me", locPars, warning("Could not expand!"))
char.expand("mo", locPars)

character Character Vectors

Description

Create or test for objects of type "character".

Usage

character (length = 0)
as.character (x,)
is.character (x)

Arguments
length A non-negative integer specifying the desired length. Double values will be
coerced to integer: supplying an argument of length other than one is an error.
X object to be coerced or tested.

further arguments passed to or from other methods.

character 83

Details

as.character and is.character are generic: you can write methods to handle specific
classes of objects, see InternalMethods. Further, for as.character the default method calls
as.vector, so dispatch is first on methods for as.character and then for methods for
as.vector.

as.character represents real and complex numbers to 15 significant digits (technically the
compiler’s setting of the ISO C constant DBL_DIG, which will be 15 on machines supporting
IEC60559 arithmetic according to the C99 standard). This ensures that all the digits in the result will
be reliable (and not the result of representation error), but does mean that conversion to character
and back to numeric may change the number. If you want to convert numbers to character with the
maximum possible precision, use format.

Value

character creates a character vector of the specified length. The elements of the vector are all
equalto "".

as.character attempts to coerce its argument to character type; like as.vector it strips at-
tributes including names. For lists and pairlists (including language objects such as calls) it deparses
the elements individually, except that it extracts the first element of length-one character vectors.

is.character returns TRUE or FALSE depending on whether its argument is of character type
or not.

Note

as.character breaks lines in language objects at 500 characters, and inserts newlines. Prior to
2.15.0 lines were truncated.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

options: option scipen affects the conversion of numbers.

paste, substr and strsplit for character concatenation and splitting, chartr for character
translation and casefolding (e.g., upper to lower case) and sub, grep etc for string matching and
substitutions. Note that help.search (keyword = "character") gives even more links.

deparse, which is normally preferable to as . character for language objects.

Quotes on how to specify character / string constants, including raw ones.

Examples

form <-y ~a + b + c
as.character (form) ## length 3
deparse (form) ## like the input

84 charmatch

a0 <— 11/999 # has a repeating decimal representation
(al <- as.character (a0))
format (a0, digits = 16) # shows one more digit

a2 <- as.numeric(al)

a2 - a0 # normally around -le-17
as.character (a2) # normally different from al
print (c(a0, a2), digits = 16)

charmatch Partial String Matching

Description

charmat ch seeks matches for the elements of its first argument among those of its second.

Usage

charmatch (x, table, nomatch = NA_integer_)

Arguments
X the values to be matched: converted to a character vector by as.character.
Long vectors are supported.
table the values to be matched against: converted to a character vector. Long vectors
are not supported.
nomatch the (integer) value to be returned at non-matching positions.
Details

Exact matches are preferred to partial matches (those where the value to be matched has an exact
match to the initial part of the target, but the target is longer).

If there is a single exact match or no exact match and a unique partial match then the index of the
matching value is returned; if multiple exact or multiple partial matches are found then 0 is returned
and if no match is found then nomatch is returned.

NA values are treated as the string constant "NA".

Value

An integer vector of the same length as x, giving the indices of the elements in table which
matched, or nomatch.

Author(s)

This function is based on a C function written by Terry Therneau.

chartr 85

See Also

pmatch, match.

startsWith for another matching of initial parts of strings; grep or regexpr for more general
(regexp) matching of strings.

Examples
charmatch ("", "") # returns 1
charmatch ("m", c("mean", "median", "mode")) # returns O
charmatch ("med", c("mean", "median", "mode")) # returns 2
chartr Character Translation and Casefolding
Description

Translate characters in character vectors, in particular from upper to lower case or vice versa.

Usage

chartr (old, new, Xx)
tolower (x)

toupper (x)

casefold(x, upper = FALSE)

Arguments
X a character vector, or an object that can be coerced to character by
as.character.
old a character string specifying the characters to be translated. If a character vector
of length 2 or more is supplied, the first element is used with a warning.
new a character string specifying the translations. If a character vector of length 2 or
more is supplied, the first element is used with a warning.
upper logical: translate to upper or lower case?.
Details

chartr translates each character in x that is specified in old to the corresponding character
specified in new. Ranges are supported in the specifications, but character classes and repeated
characters are not. If o1d contains more characters than new, an error is signaled; if it contains
fewer characters, the extra characters at the end of new are ignored.

tolower and toupper convert upper-case characters in a character vector to lower-case, or vice
versa. Non-alphabetic characters are left unchanged. More than one character can be mapped to a
single upper-case character.

casefoldis a wrapper for tolower and toupper provided for compatibility with S-PLUS.

86 chartr

Value

A character vector of the same length and with the same attributes as x (after possible coercion).

Elements of the result will be have the encoding declared as that of the current locale (see
Encoding) if the corresponding input had a declared encoding and the current locale is either
Latin-1 or UTF-8. The result will be in the current locale’s encoding unless the corresponding input
was in UTF-8 or Latin-1, when it will be in UTF-8.

Note

These functions are platform-dependent, usually using OS services. The latter can be quite defi-
cient, for example only covering ASCII characters in 8-bit locales. The definition of ‘alphabetic’ is
platform-dependent and liable to change over time as most platforms are based on the frequently-
updated Unicode tables.

See Also

sub and gsub for other substitutions in strings.

Examples

X <— "MiXeD cAsE 123"
chartr ("iXs", "why", x)
chartr ("a-cX", "D-Fw", x)
tolower (x)

toupper (x)

"Mixed Case" Capitalizing - toupper(every first letter of a word)

.simpleCap <- function(x) {

s <— strsplit(x, " ")[[1]]
paste (toupper (substring(s, 1, 1)), substring(s, 2),
sep = "", collapse =" ")

}
.simpleCap ("the quick red fox jumps over the lazy brown dog")
-> [1] "The Quick Red Fox Jumps Over The Lazy Brown Dog"

and the better, more sophisticated version:
capwords <- function (s, strict = FALSE) {

cap <- function(s) paste (toupper (substring(s, 1, 1)),

{s <- substring(s, 2); if(strict) tolower(s) else s},
sep = "", collapse =" ")

sapply (strsplit (s, split = " "), cap, USE.NAMES = !is.null (names(s)))
}
capwords (c ("using AIC for model selection"))
—-> [1] "Using AIC For Model Selection"
capwords (c ("using AIC", "for MODEL selection"), strict = TRUE)
-> [1] "Using Aic" "For Model Selection"

AAN AAAAA

#4 'bad'’ 'good'

—— Very simple insecure crypto —-—

chkDots 87

rot <- function(ch, k = 13) {
pO0 <- function(...) paste(c(...), collapse = "")
A <- c(letters, LETTERS, " 'M)
I <- seqg_len(k); chartr(p0O(A), pO(c(A[-I], A[I])), ch)

pw <- "my secret pass phrase"
(crypw <- rot(pw, 13)) #-> you can send this off

now ~“decrypt''
rot (crypw, 54 - 13) # -> the original:
stopifnot (identical (pw, rot (crypw, 54 - 13)))

chkDots Warn About Extraneous Arguments in the "..." of Its Caller
Description
Warn about extraneous arguments in the . . . of its caller. A utility to be used e.g., in S3 methods
which need a formal . . . argument but do not make any use of it. This helps catching user errors

in calling the function in question (which is the caller of chkDots ()).

Usage

chkDots (..., which.call = -1, allowed = character(0))

Arguments

“the dots”, as passed from the caller.

which.call passedto sys.call (). A caller may use -2 if the message should mention its
caller.

allowed not yet implemented: character vector of named elements in ... which are
“allowed” and hence not warned about.

Author(s)

Martin Maechler, first version outside base, June 2012.

See Also

warning,

88 chol

Examples
seqg.default ## <- you will see ' chkDots(...) '
seq(l,5, foo = "bar") # gives warning via chkDots ()

warning with more than one ...-entry:
density.f <- function(x, ...) NextMethod("density")
x <- density (structure(rnorm(10), class="f"), bar=TRUE, baz=TRUE)

chol The Choleski Decomposition

Description

Compute the Choleski factorization of a real symmetric positive-definite square matrix.

Usage

chol (x, ...)

Default S3 method:

chol (x, pivot = FALSE, LINPACK = FALSE, tol = -1, ...)
Arguments
X an object for which a method exists. The default method applies to numeric (or

logical) symmetric, positive-definite matrices.

arguments to be based to or from methods.

pivot Should pivoting be used?

LINPACK logical. Should LINPACK be used (now an error)?

tol A numeric tolerance for use with pivot = TRUE.
Details

chol is generic: the description here applies to the default method.
Note that only the upper triangular part of x is used, so that R’ R = x when x is symmetric.

If pivot = FALSE and x is not non-negative definite an error occurs. If x is positive semi-definite
(i.e., some zero eigenvalues) an error will also occur as a numerical tolerance is used.

If pivot = TRUE, then the Choleski decomposition of a positive semi-definite x can be computed.
The rank of x is returned as attr (Q, "rank"), subject to numerical errors. The pivot is returned
as attr (Q, "pivot"). It is no longer the case that t (Q) %$+% Q equals x. However, setting
pivot <-attr (Q, "pivot") and oo <-order (pivot), it is true that t (Q[, 00]) %$*%
Q[,o0] equals x, or, alternatively, t (Q) $+% Q equals x [pivot,pivot]. See the examples.

chol 89

The value of tol is passed to LAPACK, with negative values selecting the default tolerance of
(usually) nrow (x) * .Machine$double.neg.eps x max (diag(x)). The algorithm ter-
minates once the pivot is less than tol.

Unsuccessful results from the underlying LAPACK code will result in an error giving a positive
error code: these can only be interpreted by detailed study of the FORTRAN code.

Value

The upper triangular factor of the Choleski decomposition, i.e., the matrix R such that R'R = x
(see example).

If pivoting is used, then two additional attributes "pivot" and "rank" are also returned.

Warning

The code does not check for symmetry.

If pivot = TRUE and x is not non-negative definite then there will be a warning message but a
meaningless result will occur. So only use pivot = TRUE when x is non-negative definite by
construction.

Source

This is an interface to the LAPACK routines DPOTRF and DPSTREF,

LAPACK is from https://www.netlib.org/lapack/ and its guide is listed in the refer-
ences.

References

Anderson. E. and ten others (1999) LAPACK Users’ Guide. Third Edition. SIAM.
Available on-line at https://www.netlib.org/lapack/lug/lapack_lug.html.

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

chol2inv for its inverse (without pivoting), backsolve for solving linear systems with upper
triangular left sides.

qr, svd for related matrix factorizations.

Examples

(m <- matrix(c(5,1,1,3),2,2))
(cm <= chol (m))

t(cm) %$*% cm #-—— = 'm'
crossprod(cm) #-— = 'm'

now for something positive semi-definite
x <—- matrix(c(l:5, (1:5)72), 5, 2)

x <= cbind(x, x[, 1] + 3*x[, 2])
colnames (x) <- letters[20:22]

https://www.netlib.org/lapack/
https://www.netlib.org/lapack/lug/lapack_lug.html

90 chol2inv

m <- crossprod(x)
gr (m) Srank # is 2, as it should be

chol () may fail, depending on numerical rounding:
chol () unlike gr() does not use a tolerance.
try (chol (m))

(Q <= chol(m, pivot = TRUE))

we can use this by

pivot <- attr(Q, "pivot")

crossprod(Q[, order(pivot)]) # recover m

now for a non-positive-definite matrix
(m <- matrix(c(5,-5,-5,3), 2, 2))

try(chol(m)) # fails
(Q <= chol(m, pivot = TRUE)) # warning
crossprod(Q) # not equal to m
chol2inv Inverse from Choleski (or QR) Decomposition
Description

Invert a symmetric, positive definite square matrix from its Choleski decomposition. Equivalently,
compute (X’X)~! from the (R part) of the QR decomposition of X

Usage

chol2inv (x, size = NCOL(x), LINPACK = FALSE)

Arguments
X a matrix. The first size columns of the upper triangle contain the Choleski
decomposition of the matrix to be inverted.
size the number of columns of x containing the Choleski decomposition.
LINPACK logical. Defunct and gives an error.
Value

The inverse of the matrix whose Choleski decomposition was given.

Unsuccessful results from the underlying LAPACK code will result in an error giving a positive
error code: these can only be interpreted by detailed study of the FORTRAN code.
Source

This is an interface to the LAPACK routine DPOTRI. LAPACK is from https://www.
netlib.org/lapack/ and its guide is listed in the references.

https://www.netlib.org/lapack/
https://www.netlib.org/lapack/

class 91

References

Anderson. E. and ten others (1999) LAPACK Users’ Guide. Third Edition. SIAM. Available on-line
athttps://www.netlib.org/lapack/lug/lapack_lug.html.

Dongarra, J. J., Bunch, J. R., Moler, C. B. and Stewart, G. W. (1978) LINPACK Users Guide.
Philadelphia: STAM Publications.

See Also

chol, solve

Examples

cma <- chol(ma <- cbind(1, 1:3, c(1,3,7)))
ma %$*% chol2inv (cma)

class Object Classes

Description

R possesses a simple generic function mechanism which can be used for an object-oriented style of
programming. Method dispatch takes place based on the class of the first argument to the generic
function.

Usage

class (x)

class (x) <— value

unclass (x)

inherits(x, what, which = FALSE)
isa(x, what)

oldClass
oldClass
.class2(

)

(x
(x) <- value
x)
Arguments

x a R object

what, value acharacter vector naming classes. value can also be NULL.

which logical affecting return value: see ‘Details’.

https://www.netlib.org/lapack/lug/lapack_lug.html

92 class

Details

Here, we describe the so called “S3” classes (and methods). For “S4” classes (and methods), see
‘Formal classes’ below.

Many R objects have a class attribute, a character vector giving the names of the classes from
which the object inherits. (Functions oldClass and oldClass<- get and set the attribute,
which can also be done directly.)

If the object does not have a class attribute, it has an implicit class, notably "matrix", "array",
"function" or "numeric" or the result of typeof (x) (which is similar to mode (x)), but
for type "language" and mode "call", where the following extra classes exist for the corre-
sponding function calls: if, while, for, =, <—, (, {, call.

Note that for objects x of an implicit (or an S4) class, when a (S3) generic function foo (x) is
called, method dispatch may use more classes than are returned by class (x), e.g., for a numeric
matrix, the foo.numeric () method may apply. The exact full character vector of the classes
which UseMethod () uses, is available as . class2 (x) since R version 4.0.0. (This also applies
to S4 objects when S3 dispatch is considered, see below.)

Beware that using .class2 () for other reasons than didactical, diagnostical or for debugging
may rather be a misuse than smart.

NULL objects (of implicit class "NULL") cannot have attributes (hence no class attribute) and
attempting to assign a class is an error.

When a generic function fun is applied to an object with class attribute
c("first", "second"), the system searches for a function called fun.first and, if
it finds it, applies it to the object. If no such function is found, a function called fun.second
is tried. If no class name produces a suitable function, the function fun.default is used (if it
exists). If there is no class attribute, the implicit class is tried, then the default method.

The function class prints the vector of names of classes an object inherits from. Correspondingly,
class<- sets the classes an object inherits from. Assigning NULL removes the class attribute.

unclass returns (a copy of) its argument with its class attribute removed. (It is not allowed for
objects which cannot be copied, namely environments and external pointers.)

inherits indicates whether its first argument inherits from any of the classes specified in the
what argument. If which is TRUE then an integer vector of the same length as what is returned.
Each element indicates the position in the class (x) matched by the element of what; zero
indicates no match. If which is FALSE then TRUE is returned by inherits if any of the names
in what match with any class.

isa tests whether x is an object of class(es) as given in what by using is if x is an S4 object, and
otherwise giving TRUE iff all elements of class (x) are contained in what.

All but inherits are primitive functions.

Formal classes

An additional mechanism of formal classes, nicknamed “S4”, is available in package methods
which is attached by default. For objects which have a formal class, its name is returned by class
as a character vector of length one and method dispatch can happen on several arguments, instead
of only the first. However, S3 method selection attempts to treat objects from an S4 class as if they
had the appropriate S3 class attribute, as does inherits. Therefore, S3 methods can be defined

class 93

for S4 classes. See the ‘Introduction’ and ‘Methods_for_S3’ help pages for basic information on
S4 methods and for the relation between these and S3 methods.

The replacement version of the function sets the class to the value provided. For classes that have
a formal definition, directly replacing the class this way is strongly deprecated. The expression
as (object, value) is the way to coerce an object to a particular class.

The analogue of inherits for formal classes is is. The two functions behave consistently with
one exception: S4 classes can have conditional inheritance, with an explicit test. In this case, is
will test the condition, but inherits ignores all conditional superclasses.

Note

Functions o1dClass and oldClass<- behave in the same way as functions of those names
in S-PLUS 5/6, but in R UseMethod dispatches on the class as returned by class (with some
interpolated classes: see the link) rather than o1dClass. However, group generics dispatch on the
oldClass for efficiency, and internal generics only dispatch on objects for which is.object is
true.

In older versions of R, assigning a zero-length vector with class removed the class: it is now an
error (whereas it still works for o1dClass). It is clearer to always assign NULL to remove the
class.

See Also

UseMethod, NextMethod, ‘group generic’, ‘internal generic’

Examples

x <= 10

class (x) # "numeric"

oldClass (x) # NULL

inherits(x, "a") #FALSE

class(x) <= c("a", "b")

inherits (x,"a") #TRUE

inherits(x, "a", TRUE) # 1

inherits(x, c("a", "b", "c"), TRUE) # 1 2 O

class (quote (pi)) # "name"
regular calls
class(quote (sin(pi*x))) # "call"

special calls

class(quote(x <- 1)) # <=
class(quote((1 < 2))) # "("
class(quote(1if(8<3) pi)) # "if"

.class2 (pi) # "double" "numeric"
.class2 (matrix(1l:6, 2,3)) # "matrix" "array" "integer" "numeric"

94 col

col Column Indexes

Description

Returns a matrix of integers indicating their column number in a matrix-like object, or a factor of
column labels.

Usage
col (x, as.factor = FALSE)
.col (dim)
Arguments
X a matrix-like object, that is one with a two-dimensional dim.
dim a matrix dimension, i.e., an integer valued numeric vector of length two (with
non-negative entries).
as.factor a logical value indicating whether the value should be returned as a factor of
column labels (created if necessary) rather than as numbers.
Value

An integer (or factor) matrix with the same dimensions as x and whose i j-th element is equal to j
(or the j-th column label).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

row to get rows; slice.index for a general way to get slice indices in an array.

Examples

extract an off-diagonal of a matrix
ma <- matrix(1:12, 3, 4)

ma[row(ma) == col(ma) + 1]

create an identity 5-by-5 matrix more slowly than diag(n = 5):
x <- matrix (0, nrow = 5, ncol = 5)

x[row(x) == col(x)] <=1

(134 <= .col(3:4))
stopifnot (identical (i34, .col(c(3,4)))) # 'dim' maybe "double"

Colon 95

Colon Colon Operator

Description

Generate regular sequences.

Usage

from:to
a:b

Arguments

from starting value of sequence.
to (maximal) end value of the sequence.
a, b factors of the same length.

Details
The binary operator : has two meanings: for factors a : b is equivalent to interaction (a, b)
(but the levels are ordered and labelled differently).

For other arguments from: to is equivalent to seq (from, to), and generates a sequence from
fromto to in steps of 1 or —1. Value t o will be included if it differs from from by an integer up
to a numeric fuzz of about 1e—7. Non-numeric arguments are coerced internally (hence without
dispatching methods) to numeric—complex values will have their imaginary parts discarded with a
warning.

Value

For numeric arguments, a numeric vector. This will be of type integer if from is integer-valued
and the result is representable in the R integer type, otherwise of type "double™ (aka mode
"numeric").

For factors, an unordered factor with levels labelled as 1a: 1b and ordered lexicographically (that
is, 1b varies fastest).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.
(for numeric arguments: S does not have : for factors.)

See Also

seq (a generalization of from:to).
As an alternative to using : for factors, interaction.

For : used in the formal representation of an interaction, see formula.

96 colSums
Examples
1:4
pi:6 # real
6:pi # integer
fl <= gl(2, 3); f1
£2 <- gl(3, 2); £2
fl:f2 # a factor, the "cross" fl x f2
colSums Form Row and Column Sums and Means
Description
Form row and column sums and means for numeric arrays (or data frames).
Usage
colSums (x, na.rm = FALSE, dims = 1)
rowSums (X, na.rm = FALSE, dims = 1)
colMeans (x, na.rm = FALSE, dims = 1)
rowMeans (x, na.rm = FALSE, dims = 1)
.colSums (x, m, n, na.rm = FALSE)
.rowSums (X, m, n, na.rm = FALSE)
.colMeans(x, m, n, na.rm = FALSE)
. rowMeans (x, m, n, na.rm = FALSE)
Arguments
X an array of two or more dimensions, containing numeric, complex, integer or
logical values, or a numeric data frame. For .colSums () etc, a numeric,
integer or logical matrix (or vector of length m % n).
na.rm logical. Should missing values (including NaN) be omitted from the calcula-
tions?
dims integer: Which dimensions are regarded as ‘rows’ or ‘columns’ to sum over. For
rowx*, the sum or mean is over dimensions dims+1, . . .; for col« itis over
dimensions 1 :dims.
m, n the dimensions of the matrix x for . colSums () etc.
Details

These functions are equivalent to use of apply with FUN = mean or FUN = sum with appropriate
margins, but are a lot faster. As they are written for speed, they blur over some of the subtleties of
NaN and NA. If na. rm = FALSE and either NaN or NA appears in a sum, the result will be one of
NaN or N2, but which might be platform-dependent.

colSums 97

Notice that omission of missing values is done on a per-column or per-row basis, so column means
may not be over the same set of rows, and vice versa. To use only complete rows or columns, first
select them with na.omit or complete.cases (possibly on the transpose of x).

The versions with an initial dot in the name (. colSums () etc) are ‘bare-bones’ versions for use
in programming: they apply only to numeric (like) matrices and do not name the result.

Value

A numeric or complex array of suitable size, or a vector if the result is one-dimensional. For the
first four functions the dimnames (or names for a vector result) are taken from the original array.

If there are no values in a range to be summed over (after removing missing values with na . rm =
TRUE), that component of the output is set to 0 (* Sums) or NaN (xMeans), consistent with sum
and mean.

See Also

apply, rowsum

Examples

Compute row and column sums for a matrix:

x <— cbind(x1l = 3, x2 = c(4:1, 2:5))

rowSums (x); colSums (x)

dimnames (x) [[1]] <—- letters[1:8]

rowSums (x); colSums (x); rowMeans (x); colMeans (x)
x[] <- as.integer (x)

rowSums (x); colSums (x)

x[] <= x < 3

rowSums (x); colSums (x)

x <— cbind(x1l = 3, x2 = c(4:1, 2:5))

x[3,] <= NA; x[4, 2] <- NA

rowSums (x); colSums (x); rowMeans (x); colMeans (x)
rowSums (x, na.rm = TRUE); colSums(x, na.rm = TRUE)
rowMeans (x, na.rm = TRUE); colMeans(x, na.rm = TRUE)

an array
dim (UCBAdmissions)
rowSums (UCBAdmissions); rowSums (UCBAdmissions, dims

2)
colSums (UCBAdmissions); colSums (UCBAdmissions, dims = 2)

complex case

x <— cbind(x1 = 3 + 2i, x2 = c(4:1, 2:5) - 5i)

x[3,] <= NA; x[4, 2] <- NA

rowSums (x); colSums (x); rowMeans (x); colMeans (x)
rowSums (x, na.rm = TRUE); colSums(x, na.rm = TRUE)
rowMeans (x, na.rm = TRUE); colMeans (x, na.rm = TRUE)

98 commandArgs

commandArgs Extract Command Line Arguments

Description

Provides access to a copy of the command line arguments supplied when this R session was invoked.

Usage

commandArgs (trailingOnly = FALSE)

Arguments

trailingOnly logical. Should only arguments after ‘——args’ be returned?

Details

These arguments are captured before the standard R command line processing takes place. This
means that they are the unmodified values. This is especially useful with the ‘——args’ command-
line flag to R, as all of the command line after that flag is skipped.

Value

A character vector containing the name of the executable and the user-supplied command line argu-
ments. The first element is the name of the executable by which R was invoked. The exact form of
this element is platform dependent: it may be the fully qualified name, or simply the last component
(or basename) of the application, or for an embedded R it can be anything the programmer supplied.

If trailingOnly = TRUE, a character vector of those arguments (if any) supplied after
‘——args’.

See Also

R.home (), Startup and BATCH

Examples

commandArgs ()

Spawn a copy of this application as it was invoked,
subject to shell quoting issues

system(paste (commandArgs (), collapse = " "))

comment 99

comment Query or Set a "comment " Attribute

Description

These functions set and query a comment attribute for any R objects. This is typically useful for
data. frames or model fits.
Contrary to other attributes, the comment is not printed (by print or print.default).

Assigning NULL or a zero-length character vector removes the comment.

Usage

comment (x)
comment (x) <- value

Arguments

x any R object

value a character vector, or NULL.
See Also

attributes and attr for other attributes.

Examples

x <- matrix(1:12, 3, 4)

comment (x) <- c("This is my very important data from experiment #0234",
"Jun 5, 1998")

X

comment (x)

Comparison Relational Operators

Description

Binary operators which allow the comparison of values in atomic vectors.

XXX X X X
VvV A
I

Il
Il
KK KK

100 Comparison

Arguments
X, Y atomic vectors, symbols, calls, or other objects for which methods have been
written.
Details

The binary comparison operators are generic functions: methods can be written for them individu-
ally or via the Ops group generic function. (See Ops for how dispatch is computed.)

Comparison of strings in character vectors is lexicographic within the strings using the collating
sequence of the locale in use: see 1ocales. The collating sequence of locales such as ‘en_US’
is normally different from ‘C’ (which should use ASCII) and can be surprising. Beware of making
any assumptions about the collation order: e.g. in Estonian Z comes between S and T, and collation
is not necessarily character-by-character — in Danish aa sorts as a single letter, after z. In Welsh
ng may or may not be a single sorting unit: if it is it follows g. Some platforms may not respect the
locale and always sort in numerical order of the bytes in an 8-bit locale, or in Unicode code-point
order for a UTF-8 locale (and may not sort in the same order for the same language in different
character sets). Collation of non-letters (spaces, punctuation signs, hyphens, fractions and so on) is
even more problematic.

Character strings can be compared with different marked encodings (see Encoding): they are
translated to UTF-8 before comparison.

Raw vectors should not really be considered to have an order, but the numeric order of the byte
representation is used.

At least one of x and y must be an atomic vector, but if the other is a list R attempts to coerce it to
the type of the atomic vector: this will succeed if the list is made up of elements of length one that
can be coerced to the correct type.

If the two arguments are atomic vectors of different types, one is coerced to the type of the other,
the (decreasing) order of precedence being character, complex, numeric, integer, logical and raw.

Missing values (N2) and NaN values are regarded as non-comparable even to themselves, so com-
parisons involving them will always result in NA. Missing values can also result when character
strings are compared and one is not valid in the current collation locale.

Language objects such as symbols and calls are deparsed to character strings before comparison.

Value

A logical vector indicating the result of the element by element comparison. The elements of shorter
vectors are recycled as necessary.

Objects such as arrays or time-series can be compared this way provided they are conformable.

S4 methods

These operators are members of the S4 Compare group generic, and so methods can be written
for them individually as well as for the group generic (or the Ops group generic), with arguments
c(el,e2).

Comparison 101

Note

Do not use == and != for tests, such as in if expressions, where you must get a single TRUE
or FALSE. Unless you are absolutely sure that nothing unusual can happen, you should use the
identical function instead.

For numerical and complex values, remember == and ! = do not allow for the finite representation
of fractions, nor for rounding error. Using all.equal with identical or 1sTRUE is almost
always preferable; see the examples. (This also applies to the other comparison operators.)

These operators are sometimes called as functions as e.g. < (x, y) : see the description of how
argument-matching is done in Ops.

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Collation of character strings is a complex topic. For an introduction see https://
en.wikipedia.org/wiki/Collating_sequence. The Unicode Collation Algorithm
(https://unicode.org/reports/trl0/) is likely to be increasingly influential. Where
available R by default makes use of ICU (http://site.icu-project.org/) for collation
(except in a C locale).

See Also

Logic on how to combine results of comparisons, i.e., logical vectors.
factor for the behaviour with factor arguments.
Syntax for operator precedence.

capabilities for whether ICU is available, and icuSetCollate to tune the string collation
algorithm when it is.

Examples
x <— stats::rnorm(20)
x < 1
x[x > 0]
x1l <= 0.5 - 0.3
x2 <= 0.3 - 0.1
x1 == x2 # FALSE on most machines
isTRUE (all.equal (x1, x2)) # TRUE everywhere

range of most 8-bit charsets, as well as of Latin-1 in Unicode
<- c(32:126, 160:255)

N

x <— if (110n_info () SMBCS) {
intToUtf8 (z, multiple = TRUE)
} else rawToChar(as.raw(z), multiple = TRUE)
by number
writelLines (strwrap (paste (x, collapse=" "), width = 60))

by locale collation
writeLines (strwrap (paste(sort (x), collapse=" "), width = 60))

https://en.wikipedia.org/wiki/Collating_sequence
https://en.wikipedia.org/wiki/Collating_sequence
https://unicode.org/reports/tr10/
http://site.icu-project.org/

102 complex

complex Complex Numbers and Basic Functionality

Description

Basic functions which support complex arithmetic in R, in addition to the arithmetic operators +,

-, %, /,and ".
Usage
complex (length.out = 0, real = numeric(), imaginary = numeric(),
modulus = 1, argument = 0)

as.complex(x, ...)
is.complex (x)

Re (
Im (

z)

z)
Mod (z
Z

(

Arg (

)
)
Conij(z

)
Arguments

length.out numeric. Desired length of the output vector, inputs being recycled as needed.

real numeric vector.

imaginary numeric vector.

modulus numeric vector.

argument numeric vector.

X an object, probably of mode complex.

z an object of mode complex, or one of a class for which a methods has been
defined.

further arguments passed to or from other methods.

Details

Complex vectors can be created with complex. The vector can be specified either by giving its
length, its real and imaginary parts, or modulus and argument. (Giving just the length generates a
vector of complex zeroes.)

as.complex attempts to coerce its argument to be of complex type: like as.vector it strips
attributes including names. Up to R versions 3.2.x, all forms of NA and NaN were coerced to a
complex NA, i.e., the NA__complex__ constant, for which both the real and imaginary parts are NA.
Since R 3.3.0, typically only objects which are NA in parts are coerced to complex NA, but others
with NaN parts, are not. As a consequence, complex arithmetic where only NaN’s (but no NA’s) are
involved typically will not give complex NA but complex numbers with real or imaginary parts of
NaN.

complex 103

Note that is.complex and is.numeric are never both TRUE.

The functions Re, Im, Mod, Arg and Conj have their usual interpretation as returning the real
part, imaginary part, modulus, argument and complex conjugate for complex values. The modulus
and argument are also called the polar coordinates. 1f z = x + iy with real x and y, for r =
Mod(z) = v/z% 4+ y2, and ¢ = Arg(z), z = r * cos(¢) and y = r * sin(¢). They are all internal
generic primitive functions: methods can be defined for them individually or via the Complex
group generic.

In addition to the arithmetic operators (see Arithmetic) +, —, x, /, and *, the elementary trigono-
metric, logarithmic, exponential, square root and hyperbolic functions are implemented for complex
values.

Matrix multiplications ($+%, crossprod, tcrossprod) are also defined for complex matrices
(matrix), and so are solve, eigen or svd.

Internally, complex numbers are stored as a pair of double precision numbers, either or both of
which can be NaN (including NA, see NA_complex_ and above) or plus or minus infinity.
S4 methods

as.complex is primitive and can have S4 methods set.

Re, Im, Mod, Arg and Conj constitute the S4 group generic Complex and so S4 methods can be
set for them individually or via the group generic.
Note

Operations and functions involving complex NaN mostly rely on the C library’s handling of
‘double complex’ arithmetic, which typically returns complex (re=NaN, im=NaN) (but we
have not seen a guarantee for that). For + and —, R’s own handling works strictly “coordinate wise”.

Operations involving complex NA, i.e., NA_complex_, return NA_complex_.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

Arithmetic;polyroot finds all n complex roots of a polynomial of degree n.

Examples
require (graphics)
0i ~ (-3:3)

matrix (1i® (-6:5), nrow = 4) #- all columns are the same
0 ~ 1i # a complex NaN

create a complex normal vector
z <- complex(real = stats::rnorm(100), imaginary = stats::rnorm(100))

104 conditions

or also (less efficiently):
z2 <— 1:2 + 1i%(8:9)

The Arg(.) is an angle:
zz <— (rep(l:4, length.out = 9) + 1ix(9:1))/10
zz.shift <- complex (modulus = Mod(zz), argument = Arg(zz) + pi)
plot(zz, xlim = c(-1,1), ylim = c(-1,1), col = "red", asp = 1,
main = expression(paste ("Rotation by "," ", pi == 180"0)))
abline(h = 0, v = 0, col = "blue", lty = 3)
points(zz.shift, col = "orange")
showC <- function(z) noquote (sprintf("(R = %g, I = %g9)", Re(z), Im(z)))

The exact result of this *depends* on the platform, compiler, math-library:

(NpNA <- NaN + NA_complex_) ; str (NpNA) # xbehaves* as 'cplx NA'
stopifnot (is.na (NpNA), is.na (NA_complex_), is.na(Re(NA_complex_)), is.na(Im(NA_complex_)))
showC (NpNA) # but not always is {shows '(R =NaN, I = NA)' on some platforms}

and this is not TRUE everywhere:
identical (NpNA, NA_complex_)

showC (NA_complex_) # always == (R = NA, I = NA)
conditions Condition Handling and Recovery
Description

These functions provide a mechanism for handling unusual conditions, including errors and warn-
ings.
Usage

tryCatch (expr, ..., finally)
withCallingHandlers (expr, ...)
globalCallingHandlers(...)

signalCondition (cond)

simpleCondition (message, call = NULL)

simpleError (message, call = NULL)

simpleWarning (message, call = NULL)

simpleMessage (message, call = NULL)

errorCondition (message, ..., class = NULL, call = NULL)
warningCondition (message, ..., class = NULL, call = NULL)

S3 method for class 'condition'
as.character(x, ...)

S3 method for class 'error'
as.character(x, ...)

conditions 105

S3 method for class 'condition'
print(x, ...)

S3 method for class 'restart'
print(x, ...)

conditionCall (c)

S3 method for class 'condition'
conditionCall (c)
conditionMessage (c)

S3 method for class 'condition'
conditionMessage (c)

withRestarts (expr, ...)

computeRestarts (cond = NULL)
findRestart (name, cond = NULL)
invokeRestart (r, ...)
tryInvokeRestart (r, ...)
invokeRestartInteractively (r)

isRestart (x)
restartDescription (r)
restartFormals (r)

suspendInterrupts (expr)
allowInterrupts (expr)

.signalSimpleWarning (msg, call)
.handleSimpleError (h, msg, call)
.tryResumeInterrupt ()

Arguments
c a condition object.
call call expression.
cond a condition object.
expr expression to be evaluated.
finally expression to be evaluated before returning or exiting.
h function.
message character string.
msg character string.
name character string naming a restart.
r restart object.
x object.
class character string naming a condition class.

additional arguments; see details below.

106 conditions

Details

The condition system provides a mechanism for signaling and handling unusual conditions, includ-
ing errors and warnings. Conditions are represented as objects that contain information about the
condition that occurred, such as a message and the call in which the condition occurred. Currently
conditions are S3-style objects, though this may eventually change.

Conditions are objects inheriting from the abstract class condition. Errors and warnings are
objects inheriting from the abstract subclasses error and warning. The class simpleError
is the class used by stop and all internal error signals. Similarly, simpleWarning is used
by warning, and simpleMessage is used by message. The constructors by the same
names take a string describing the condition as argument and an optional call. The functions
conditionMessage and conditionCall are generic functions that return the message and
call of a condition.

The function errorCondition can be used to construct error conditions of a particular class
with additional fields specified as the ... argument. warningCondition is analogous for
warnings.

Conditions are signaled by signalCondition. In addition, the stop and warning functions
have been modified to also accept condition arguments.

The function tryCatch evaluates its expression argument in a context where the handlers pro-
vided in the . . . argument are available. The finally expression is then evaluated in the context
in which tryCatch was called; that is, the handlers supplied to the current t ryCatch call are
not active when the finally expression is evaluated.

Handlers provided in the . . . argument to t ryCatch are established for the duration of the eval-
uation of expr. If no condition is signaled when evaluating expr then tryCatch returns the
value of the expression.

If a condition is signaled while evaluating expr then established handlers are checked, starting
with the most recently established ones, for one matching the class of the condition. When several
handlers are supplied in a single t ryCatch then the first one is considered more recent than the
second. If a handler is found then control is transferred to the t ryCatch call that established the
handler, the handler found and all more recent handlers are disestablished, the handler is called with
the condition as its argument, and the result returned by the handler is returned as the value of the
tryCatch call.

Calling handlers are established by withCallingHandlers. If a condition is signaled and the
applicable handler is a calling handler, then the handler is called by signalCondition in the
context where the condition was signaled but with the available handlers restricted to those below
the handler called in the handler stack. If the handler returns, then the next handler is tried; once
the last handler has been tried, signalCondition returns NULL.

globalCallingHandlers establishes calling handlers globally. These handlers are only called
as a last resort, after the other handlers dynamically registered with withCallingHandlers
have been invoked. They are called before the error global option (which is the legacy interface
for global handling of errors). Registering the same handler multiple times moves that handler on
top of the stack, which ensures that it is called first. Global handlers are a good place to define a
general purpose logger (for instance saving the last error object in the global workspace) or a general
recovery strategy (e.g. installing missing packages via the retry_loadNamespace restart).

Like withCallingHandlers and tryCatch, globalCallingHandlers takes named
handlers. Unlike these functions, it also has an options-like interface: you can estab-
lish handlers by passing a single list of named handlers. To unregister all global handlers,

conditions 107

supply a single ‘NULL‘. The list of deleted handlers is returned invisibly. Finally, calling
globalCallingHandlers without arguments returns the list of currently established handlers,
visibly.

User interrupts signal a condition of class interrupt that inherits directly from class
condition before executing the default interrupt action.

Restarts are used for establishing recovery protocols. They can be established using
withRestarts. One pre-established restart is an abort restart that represents a jump to top
level.

findRestart and computeRestarts find the available restarts. findRestart returns the
most recently established restart of the specified name. computeRestarts returns a list of all
restarts. Both can be given a condition argument and will then ignore restarts that do not apply to
the condition.

invokeRestart transfers control to the point where the specified restart was established
and calls the restart’s handler with the arguments, if any, given as additional arguments to
invokeRestart. The restart argument to invokeRestart can be a character string, in which
case findRestart is used to find the restart. If no restart is found, an error is thrown.

tryInvokeRestart is a variant of invokeRestart that returns silently when the restart
cannot be found with findRestart. Because a condition of a given class might be signalled
with arbitrary protocols (error, warning, etc), it is recommended to use this permissive variant
whenever you are handling conditions signalled from a foreign context. For instance, invocation
of a "muffleWarning" restart should be optional because the warning might have been sig-
nalled by the user or from a different package with the stop or message protocols. Only use
invokeRestart when you have control of the signalling context, or when it is a logical error if
the restart is not available.

New restarts for withRestarts can be specified in several ways. The simplest is in name =
function form where the function is the handler to call when the restart is invoked. Another
simple variant is as name = st ring where the string is stored in the description field of the
restart object returned by findRestart;in this case the handler ignores its arguments and returns
NULL. The most flexible form of a restart specification is as a list that can include several fields,
including handler, description, and test. The test field should contain a function of one
argument, a condition, that returns TRUE if the restart applies to the condition and FALSE if it does
not; the default function returns TRUE for all conditions.

One additional field that can be specified for a restart is interactive. This should
be a function of no arguments that returns a list of arguments to pass to the restart han-
dler. The list could be obtained by interacting with the user if necessary. The function
invokeRestartInteractively calls this function to obtain the arguments to use when in-
voking the restart. The default interactive method queries the user for values for the formal
arguments of the handler function.

Interrupts can be suspended while evaluating an expression using suspendInterrupts. Subex-
pression can be evaluated with interrupts enabled using allowInterrupts. These functions can
be used to make sure cleanup handlers cannot be interrupted.

.signalSimpleWarning, .handleSimpleError, and .tryResumelInterrupt are
used internally and should not be called directly.

108 conflicts

References

The t ryCatch mechanism is similar to Java error handling. Calling handlers are based on Com-
mon Lisp and Dylan. Restarts are based on the Common Lisp restart mechanism.

See Also

stop and warning signal conditions, and t ry is essentially a simplified version of t ryCatch.
assertCondition in package tools fests that conditions are signalled and works with several
of the above handlers.

Examples

tryCatch(l, finally = print ("Hello"))
e <- simpleError ("test error")

Not run:

stop (e)

tryCatch(stop(e), finally = print("Hello"))
tryCatch (stop ("fred"), finally = print ("Hello"))

End(Not run)

tryCatch (stop(e), error = function(e) e, finally = print ("Hello"))
tryCatch(stop("fred"), error = function(e) e, finally = print ("Hello"))
withCallingHandlers ({ warning("A"); 1+2 }, warning = function(w) {})

Not run:

{ withRestarts(stop("A"), abort = function() {}); 1 }

End (Not run)
withRestarts (invokeRestart ("foo", 1, 2), foo = function(x, y) {x + vyv})

##-—> More examples are part of

#h——> demo (error.catching)
conflicts Search for Masked Objects on the Search Path
Description

conflicts reports on objects that exist with the same name in two or more places on the search
path, usually because an object in the user’s workspace or a package is masking a system object of
the same name. This helps discover unintentional masking.

Usage

conflicts (where = search(), detail = FALSE)

Arguments
where A subset of the search path, by default the whole search path.
detail If TRUE, give the masked or masking functions for all members of the search

path.

connections 109

Value

If detail = FALSE, a character vector of masked objects. If detail = TRUE, a list of character
vectors giving the masked or masking objects in that member of the search path. Empty vectors are
omitted.

Examples

Im <- 1:3

conflicts(, TRUE)

gives something like
$.GlobalEnv

[l] "lm"

#
#
Spackage:base

[1] "1lm"

Remove things from your "workspace" that mask others:
remove (list = conflicts(detail = TRUE)S$.GlobalEnv)

connections Functions to Manipulate Connections (Files, URLs, ...)

Description

Functions to create, open and close connections, i.e., “generalized files”, such as possibly com-
pressed files, URLs, pipes, etc.

Usage
file(description = "", open = "", blocking = TRUE,
encoding = getOption ("encoding"), raw = FALSE,
method = getOption("url.method", "default"))
url (description, open = "", blocking = TRUE,

encoding = getOption ("encoding"),
method = getOption ("url.method", "default"),
headers = NULL)

gzfile (description, open "" encoding getOption ("encoding"),

compression = 6)

bzfile(description, open = "", encoding = getOption ("encoding"),
compression = 9)

xzfile (description, open = "", encoding = getOption ("encoding"),
compression = 6)

unz (description, filename, open = "", encoding = getOption ("encoding"))

110 connections
pipe (description, open = "", encoding = getOption ("encoding"))
fifo(description, open = "", blocking = FALSE,

encoding = getOption ("encoding"))
socketConnection (host = "localhost", port, server = FALSE,
blocking = FALSE, open = "a+",
encoding = getOption ("encoding"),
timeout = getOption ("timeout"),
options = getOption ("socketOptions"))

serverSocket (port)

socketAccept (socket, blocking = FALSE, open = "at",
encoding = getOption("encoding"),
timeout = getOption("timeout"),
options = getOption("socketOptions"))

open (con,

-)

S3 method for class 'connection'
open (con, open = "r", blocking = TRUE, ...)

close (con,

.)

S3 method for class 'connection'

close(con,
flush (con)

isOpen (con,

type = "rw", ...)

rw = "")

isIncomplete (con)

socketTimeout (socket, timeout = -1)
Arguments

description character string. A description of the connection: see ‘Details’.

open character string. A description of how to open the connection (if it should be
opened initially). See section ‘Modes’ for possible values.

blocking logical. See the ‘Blocking’ section.

encoding The name of the encoding to be assumed. See the ‘Encoding’ section.

raw logical. If true, a ‘raw’ interface is used which will be more suitable for argu-
ments which are not regular files, e.g. character devices. This suppresses the
check for a compressed file when opening for text-mode reading, and asserts
that the ‘file’ may not be seekable.

method character string, partially matchedto c ("default", "internal", "wininet", "libcurl"):

see ‘Details’.

connections 111

headers named character vector of HTTP headers to use in HTTP requests. It is ig-
nored for non-HTTP URLs. The User-Agent header, coming from the
HTTPUserAgent option (see opt ions) is used as the first header, automati-
cally.

compression integer in 0-9. The amount of compression to be applied when writing, from
none to maximal available. For xzfile can also be negative: see the ‘Com-
pression’ section.

timeout numeric: the timeout (in seconds) to be used for this connection. Beware that
some OSes may treat very large values as zero: however the POSIX standard
requires values up to 31 days to be supported.

options optional character vector with options. Currently only "no-delay" is sup-
ported on TCP sockets.

filename a filename within a zip file.

host character string. Host name for the port.

port integer. The TCP port number.

server logical. Should the socket be a client or a server?

socket a server socket listening for connections.

con a connection.

type character string. Currently ignored.

rw character string. Empty or "read" or "write", partial matches allowed.

arguments passed to or from other methods.

Details

The first eleven functions create connections. By default the connection is not opened (except for
a socket connection created by socketConnection or socketAccept and for server socket
connection created by serverSocket), but may be opened by setting a non-empty value of
argument open.

For file the description is a path to the file to be opened (when tilde expansion is done) or a
complete URL (when it is the same as calling url), or "" (the default) or "clipboard" (see
the ‘Clipboard’ section). Use "stdin" to refer to the C-level ‘standard input’ of the process
(which need not be connected to anything in a console or embedded version of R, and is not in
RGui on Windows). See also stdin () for the subtly different R-level concept of stdin. See
nullfile () for a platform-independent way to get filename of the null device.

For url the description is a complete URL including scheme (such as ‘http://’, ‘https://’,
‘ftp:// or ‘file://’). Method "internal™" is that available since connections were in-
troduced.. Method "wininet" is only available on Windows (it uses the WinINet functions
of that OS) and method "libcurl" (using the library of that name: https://curl.se/
libcurl/) is required on a Unix-alike but optional on Windows. Method "default" uses
method "internal” for ‘file://’ URLs and uses "libcurl" (if available) for ‘ftp://’
and ‘ftps://’ URLs. On a Unix-alike it uses "1ibcurl" for ‘http://’ and ‘https://’
URLs; on Windows "wininet™" for ‘http://’ and ‘https://’ URLs (and for ‘ftp://’ if
"libcurl" isunavailable). Which methods support which schemes has varied by R version — cur-
rently "internal" supports ‘file://’, ‘http://’ (deprecated) and ‘ftp://’ (deprecated);

https://curl.se/libcurl/
https://curl.se/libcurl/

112 connections

"wininet" supports ‘file://’, ‘http://’, ‘https:// and ‘ftp://’ (deprecated). Prox-
ies can be specified: see download.file.

For gz file the description is the path to a file compressed by gzip: it can also open for reading
uncompressed files and those compressed by bzip2, xz or 1zma.

For bz file the description is the path to a file compressed by bzip2.

For xz f1i1e the description is the path to a file compressed by xz (https://en.wikipedia.
org/wiki/Xz) or (for reading only) 1zma (https://en.wikipedia.org/wiki/LZMA).

unz reads (only) single files within zip files, in binary mode. The description is the full path to the
zip file, with ‘. zip’ extension if required.

For pipe the description is the command line to be piped to or from. This is run in a shell, on
Windows that specified by the COMSPEC environment variable.

For fi fo the description is the path of the fifo. (Support for £1ifo connections is optional but they
are available on most Unix platforms and on Windows.)

The intention is that £i 1e and gz £i 1e can be used generally for text input (from files, ‘http://’
and ‘https://° URLs) and binary input respectively.

open, close and seek are generic functions: the following applies to the methods relevant to
connections.

open opens a connection. In general functions using connections will open them if they are not
open, but then close them again, so to leave a connection open call open explicitly.

close closes and destroys a connection. This will happen automatically in due course (with a
warning) if there is no longer an R object referring to the connection.

A maximum of 128 connections can be allocated (not necessarily open) at any one time. Three of
these are pre-allocated (see stdout). The OS will impose limits on the numbers of connections of
various types, but these are usually larger than 125.

f1lush flushes the output stream of a connection open for write/append (where implemented, cur-
rently for file and clipboard connections, stdout and stderr).

If for a file or (on most platforms) a £ifo connection the description is "", the file/fifo is
immediately opened (in "w+" mode unless open = "w+b" is specified) and unlinked from the file
system. This provides a temporary file/fifo to write to and then read from.

socketConnection (server=TRUE) creates a new temporary server socket listening on the
given port. As soon as a new socket connection is accepted on that port, the server socket is automat-
ically closed. serverSocket creates a listening server socket which can be used for accepting
multiple socket connections by socketAccept. To stop listening for new connections, a server
socket needs to be closed explicitly by close.

socketConnection and socketAccept support setting of socket-specific options. Currently
only "no-delay" is implemented which enables the TCP_NODELAY socket option, causing the
socket to flush send buffers immediately (instead of waiting to collect all output before sending).
This option is useful for protocols that need fast request/response turn-around times.

socketTimeout sets connection timeout of a socket connection. A negative t imeout can be
given to query the old value.

https://en.wikipedia.org/wiki/Xz
https://en.wikipedia.org/wiki/Xz
https://en.wikipedia.org/wiki/LZMA

connections 113

Value

file, pipe, fifo, url, gzfile, bzfile, xzfile, unz, socketConnection,
socketAccept and serverSocket return a connection object which inherits from class
"connection" and has a first more specific class.

open and flush return NULL, invisibly.

close returns either NULL or an integer status, invisibly. The status is from when the connection
was last closed and is available only for some types of connections (e.g., pipes, files and fifos):
typically zero values indicate success. Negative values will result in a warning; if writing, these
may indicate write failures and should not be ignored.

isOpen returns a logical value, whether the connection is currently open.

isIncomplete returns alogical value, whether the last read attempt was blocked, or for an output
text connection whether there is unflushed output.

socketTimeout returns the old timeout value of a socket connection.

URLs

url and £ile support URL schemes ‘file://’, ‘http://’, ‘https:// and ‘ftp:// .

method = "libcurl" allows more schemes: exactly which schemes is platform-dependent (see
libcurlVersion), but all Unix-alike platforms will support ‘https://’ and most platforms
will support ‘ftps://’ .

Support for the ‘ftp://’ scheme by the "internal" method was deprecated for R 4.1.1.

Most methods do not percent-encode special characters such as spaces in ‘http://’ URLs (see
URLencode), but it seems the "wininet" method does.

A note on ‘file://’ URLs. The most general form (from RFC1738) is
‘file://host/path/to/file’, but R only accepts the form with an empty host
field referring to the local machine.

On a Unix-alike, this is then ‘file:///path/to/file’, where ‘path/to/file’ is relative
to °/’. So although the third slash is strictly part of the specification not part of the path, this can
be regarded as a way to specify the file ‘*/path/to/file’. Itis not possible to specify a relative
path using a file URL.

In this form the path is relative to the root of the filesystem, not a Windows concept. The stan-
dard form on Windows is ‘file:///d:/R/repos’: for compatibility with earlier versions of
R and Unix versions, any other form is parsed as R as ‘file://’ plus path_to_file. Also,
backslashes are accepted within the path even though RFC1738 does not allow them.

No attempt is made to decode a percent-encoded ‘file:’ URL: call URLdecode if necessary.

All the methods attempt to follow redirected HTTP URLs, but the "internal" method is unable
to follow redirections to HTTPS URLs.

Server-side cached data is always accepted.

Function download. file and several contributed packages provide more comprehensive facili-
ties to download from URLs.

114 connections

Modes

Possible values for the argument open are

"r"or "rt" Open for reading in text mode.

"w" or "wt" Open for writing in text mode.

"a" or "at" Open for appending in text mode.

"rb" Open for reading in binary mode.

"wb" Open for writing in binary mode.

"ab" Open for appending in binary mode.

"r+", "r+b" Open for reading and writing.

"w+", "w+b" Open for reading and writing, truncating file initially.

"a+", "a+b" Open for reading and appending.

Not all modes are applicable to all connections: for example URLs can only be opened for reading.
Only file and socket connections can be opened for both reading and writing. An unsupported mode
is usually silently substituted.

If a file or fifo is created on a Unix-alike, its permissions will be the maximal allowed by the current
setting of umask (see Sys .umask).

For many connections there is little or no difference between text and binary modes. For file-like
connections on Windows, translation of line endings (between LF and CRLF) is done in text mode
only (but text read operations on connections such as readLines, scan and source work
for any form of line ending). Various R operations are possible in only one of the modes: for
example pushBack is text-oriented and is only allowed on connections open for reading in text
mode, and binary operations such as readBin, load and save can only be done on binary-mode
connections.

The mode of a connection is determined when actually opened, which is deferred if open = "" is
given (the default for all but socket connections). An explicit call to open can specify the mode,
but otherwise the mode willbe "r". (gzfile,bzfile and xzfile connections are exceptions,
as the compressed file always has to be opened in binary mode and no conversion of line-endings
is done even on Windows, so the default mode is interpreted as "rb".) Most operations that need
write access or text-only or binary-only mode will override the default mode of a non-yet-open
connection.

Append modes need to be considered carefully for compressed-file connections. They do not pro-
duce a single compressed stream on the file, but rather append a new compressed stream to the file.
Readers may or may not read beyond end of the first stream: currently R does so for gzfile,
bzfile and xzfile connections.

Compression

R supports gzip, bzip2 and xz compression (also read-only support for its precursor, 1zma
compression).

For reading, the type of compression (if any) can be determined from the first few bytes of the
file. Thus for file (raw = FALSE) connections, if openis "", "r" or "rt" the connection
can read any of the compressed file types as well as uncompressed files. (Using "rb" will allow

connections 115

compressed files to be read byte-by-byte.) Similarly, gzfile connections can read any of the
forms of compression and uncompressed files in any read mode.

(The type of compression is determined when the connection is created if open is unspecified and a
file of that name exists. If the intention is to open the connection to write a file with a different form
of compression under that name, specify open = "w" when the connection is created or unlink
the file before creating the connection.)

For write-mode connections, compress specifies how hard the compressor works to minimize the
file size, and higher values need more CPU time and more working memory (up to ca 800Mb for
xzfile (compress = 9)). For xzfile negative values of compress correspond to adding
the xz argument ‘—e’: this takes more time (double?) to compress but may achieve (slightly) better
compression. The default (6) has good compression and modest (100Mb memory) usage: but if
you are using xz compression you are probably looking for high compression.

Choosing the type of compression involves tradeoffs: gzip, bzip2 and xz are successively less
widely supported, need more resources for both compression and decompression, and achieve more
compression (although individual files may buck the general trend). Typical experience is that
bzip2 compression is 15% better on text files than gzip compression, and xz with maximal
compression 30% better. The experience with R save files is similar, but on some large ‘. rda’
files xz compression is much better than the other two. With current computers decompression
times even with compress = 9 are typically modest and reading compressed files is usually faster
than uncompressed ones because of the reduction in disc activity.

Encoding

The encoding of the input/output stream of a connection can be specified by name in the same
way as it would be given to iconv: see that help page for how to find out what encoding names
are recognized on your platform. Additionally, "" and "native.enc" both mean the ‘native’
encoding, that is the internal encoding of the current locale and hence no translation is done.

When writing to a text connection, the connections code always assumes its input is in native encod-
ing, so e.g. writeLines has to convert text to native encoding. writeLines does not do the
conversion when useBytes=TRUE (for expert use only), but the connections code still behaves as
if the text was in native encoding, so any attempt to convert encoding (encoding argument other
than "" and "native.enc") in connections will produce incorrect results.

When reading from a text connection, the connections code, after re-encoding based on the
encoding argument, returns text that is assumed to be in native encoding; an encoding mark
is only added by functions that read from the connection, so e.g. readLines can be instructed to
mark the text as "UTF-8" or "latinl", but readLines does no further conversion. To allow
reading text in "UTF-8" on a system that cannot represent all such characters in native encoding
(currently only Windows), a connection can be internally configured to return the read text in UTF-
8 even though it is not the native encoding; currently readLines and scan use this feature when
given a connection that is not yet open and, when using the feature, they unconditionally mark the
textas "UTF-8".

Re-encoding only works for connections in text mode: reading from a connection with re-encoding
specified in binary mode will read the stream of bytes, but mixing text and binary mode reads (e.g.,
mixing calls to readLines and readChar) is likely to lead to incorrect results.

The encodings "UCS-2LE" and "UTF-16LE" are treated specially, as they are appropriate values
for Windows ‘Unicode’ text files. If the first two bytes are the Byte Order Mark OxFEFF then these
are removed as some implementations of iconv do not accept BOMs. Note that whereas most

116 connections

implementations will handle BOMs using encoding "UCS-2" and choose the appropriate byte
order, some (including earlier versions of glibc) will not. There is a subtle distinction between
"UTF-16" and "UCS-2" (see https://en.wikipedia.org/wiki/UTF~-16): the use of
characters in the ‘Supplementary Planes’ which need surrogate pairs is very rare so "UCS-2LE"
is an appropriate first choice (as it is more widely implemented).

As from R 3.0.0 the encoding "UTF-8-BOM" is accepted for reading and will remove
a Byte Order Mark if present (which it often is for files and webpages generated by
Microsoft applications). If a BOM is required (it is not recommended) when writing
it should be written explicitly, e.g. by writeChar ("\ufeff",con,eos =NULL) or
writeBin (as.raw(c (Oxef, Oxbb, Oxbf)),binary_con)

Encoding names "ut£8", "mac" and "macroman" are not portable, and not supported on all
current R platforms. "UTF-8" is portable and "macintosh" is the official (and most widely
supported) name for ‘Mac Roman’. (As from R 3.4.0, R maps "ut £8" to "UTF-8" internally.)

Requesting a conversion that is not supported is an error, reported when the connection is opened.
Exactly what happens when the requested translation cannot be done for invalid input is in general
undocumented. On output the result is likely to be that up to the error, with a warning. On input, it
will most likely be all or some of the input up to the error.

It may be possible to deduce the current native encoding from
Sys.getlocale ("LC_CTYPE"), but not all OSes record it.

Blocking

Whether or not the connection blocks can be specified for file, url (default yes), fifo and socket
connections (default not).

In blocking mode, functions using the connection do not return to the R evaluator until the
read/write is complete. In non-blocking mode, operations return as soon as possible, so on in-
put they will return with whatever input is available (possibly none) and for output they will return
whether or not the write succeeded.

The function readLines behaves differently in respect of incomplete last lines in the two modes:
see its help page.

Even when a connection is in blocking mode, attempts are made to ensure that it does not block the
event loop and hence the operation of GUI parts of R. These do not always succeed, and the whole
R process will be blocked during a DNS lookup on Unix, for example.

Most blocking operations on HTTP/FTP URLs and on sockets are subject to the timeout set by
options ("timeout"). Note that this is a timeout for no response, not for the whole operation.
The timeout is set at the time the connection is opened (more precisely, when the last connection of
that type — ‘http:’, ‘ftp:’ or socket — was opened).

Fifos

Fifos default to non-blocking. That follows S version 4 and is probably most natural, but it does
have some implications. In particular, opening a non-blocking fifo connection for writing (only)
will fail unless some other process is reading on the fifo.

Opening a fifo for both reading and writing (in any mode: one can only append to fifos) connects
both sides of the fifo to the R process, and provides an similar facility to file ().

https://en.wikipedia.org/wiki/UTF-16

connections 117

Clipboard

file can be used with description="clipboard" in mode "r" only. This
reads the X11 primary selection (see https://specifications.freedesktop.
org/clipboards-spec/clipboards—latest.txt), which can also be specified as
"X11l_primary" and the secondary selection as "X11_secondary". On most sys-
tems the clipboard selection (that used by ‘Copy’ from an ‘Edit’ menu) can be specified as
"X11l_clipboard".

When a clipboard is opened for reading, the contents are immediately copied to internal storage in
the connection.

Unix users wishing to write to one of the X11 selections may be able to do so via xclip (https:
//github.com/astrand/xclip)or xsel (http://www.vergenet .net/~conrad/
software/xsel/), for example by pipe ("xclip —-i", "w") for the primary selection.

macOS users can use pipe ("pbpaste") and pipe ("pbcopy", "w") toread from and write
to that system’s clipboard.

File paths

In most cases these are translated to the native encoding.

The exceptions are £ile and pipe on Windows, where a description which is marked as
being in UTF-8 is passed to Windows as a ‘wide’ character string. This allows files with names not
in the native encoding to be opened on file systems which use Unicode file names (such as NTFS
but not FAT32).

Note

R’s connections are modelled on those in S version 4 (see Chambers, 1998). However R goes
well beyond the S model, for example in output text connections and URL, compressed and socket
connections. The default open mode in R is "r" except for socket connections. This differs from
S, where it is the equivalent of "r+", known as " ".

On (rare) platforms where vsnprintf does not return the needed length of output there is a
100,000 byte output limit on the length of a line for text output on fifo, gzfile, bzfile and
xzfile connections: longer lines will be truncated with a warning.

References

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer.

Ripley, B. D. (2001). “Connections.” R News, 1(1), 16-7. https://www.r-project.org/
doc/Rnews/Rnews_2001-1.pdf.

See Also

textConnection, seek, showConnections, pushBack.

Functions making direct use of connections are (text-mode) readLines, writeLines, cat,
sink, scan, parse, read.dcf, dput, dump and (binary-mode) readBin, readChar,
writeBin, writeChar, load and save.

capabilities to see if £ifo connections are supported by this build of R.

https://specifications.freedesktop.org/clipboards-spec/clipboards-latest.txt
https://specifications.freedesktop.org/clipboards-spec/clipboards-latest.txt
https://github.com/astrand/xclip
https://github.com/astrand/xclip
http://www.vergenet.net/~conrad/software/xsel/
http://www.vergenet.net/~conrad/software/xsel/
https://www.r-project.org/doc/Rnews/Rnews_2001-1.pdf
https://www.r-project.org/doc/Rnews/Rnews_2001-1.pdf

118 connections

gzcon to wrap gz ip (de)compression around a connection.

options HTTPUserAgent, internet.info and t imeout are used by some of the methods
for URL connections.

memCompress for more ways to (de)compress and references on data compression.
extSoftVersion for the versions of the z1ib (for gzfile), bzip2 and xz libraries in use.

To flush output to the Windows and macOS consoles, see f1lush.console.

Examples

zzfil <- tempfile(fileext=".data")

zz <- file(zzfil, "w" # open an output file connection
cat ("TITLE extra line", "2 3 5 7", "", "11 13 17", file = zz, sep = "\n")
cat ("One more line\n", file = zz)

close(zz)
readLines (zzfil)
unlink (zzfil)

zzfil <- tempfile(fileext=".gz")

zz <— gzfile(zzfil, "w") # compressed file

cat ("TITLE extra line", "2 3 5 7", "", w11 13 17", file = zz, sep = "\n")
close(zz)

readLines (zz <- gzfile(zzfil))

close(zz)

unlink (zzfil)

zz # an invalid connection

zzfil <- tempfile(fileext=".bz2")

zz <— bzfile(zzfil, "w") # bzip2-ed file

cat ("TITLE extra line", "2 3 5 7", "", "11 13 17", file = zz, sep = "\n")
close(zz)

zz # print () method: invalid connection

print (readLines (zz <- bzfile(zzfil)))
close(zz)
unlink (zzfil)

An example of a file open for reading and writing
Tpath <- tempfile("test")

Tfile <- file(Tpath, "w+")

c(isOpen(Tfile, "r"), isOpen(Tfile, "w")) # both TRUE
cat ("abc\ndef\n", file = Tfile)

readLines (Tfile)

seek (Tfile, 0, rw = "r") # reset to beginning
readLines (Tfile)

cat ("ghi\n", file = Tfile)

readLines (Tfile)

Tfile # —-> print () : "valid" connection

close (Tfile)

Tfile # -> print () : "invalid" connection

unlink (Tpath)

We can do the same thing with an anonymous file.

connections 119

Tfile <- file ()

cat ("abc\ndef\n", file = Tfile)
readLines (Tfile)

close (Tfile)

Not run: ## fifo example —-- may hang even with OS support for fifos
if (capabilities("fifo")) {
zzfil <- tempfile(fileext="-fifo")
zz <— fifo(zzfil, "w+")
writeLines ("abc", zz)
print (readLines (zz))
close(zz)
unlink (zzfil)
}
End (Not run)

Unix examples of use of pipes

read listing of current directory
readLines (pipe("1ls —-1"))

remove trailing commas. Suppose

Not run: % cat data2_

450, 390, 467, 654, 30, 542, 334, 432, 421,
357, 497, 493, 550, 549, 467, 575, 578, 342,
446, 547, 534, 495, 979, 479

End (Not run)

Then read this by

scan (pipe("sed -e s/,$// data2_"), sep = ",")

convert decimal point to comma in output: see also write.table
both R strings and (probably) the shell need \ doubled

zzfil <- tempfile ("outfile")

zz <- pipe (paste("sed s/\\\\./,/ >", zzfil), "w")

cat (format (round (stats::rnorm(48), 4)), fill = 70, file = zz)
close(zz)

file.show(zzfil, delete.file = TRUE)

Not run:
example for a machine running a finger daemon

con <- socketConnection (port = 79, blocking = TRUE)
writeLines (pasteO (system("whoami", intern = TRUE), "\r"), con)
gsub (" %$", "", readLines(con))

close (con)

End (Not run)
Not run:

Two R processes communicating via non-blocking sockets
R process 1

120 Constants

conl <- socketConnection (port = 6011, server = TRUE)
writeLines (LETTERS, conl)
close (conl)

R process 2
con2 <- socketConnection(Sys.info () ["nodename"], port = 6011)
as non-blocking, may need to loop for input
readLines (con2)
while (isIncomplete (con2)) {
Sys.sleep (1)
z <- readLines (con2)
if (length(z)) print(z)
}

close (con2)

examples of use of encodings
write a file in UTF-8

cat (x, file = (con <- file("foo", "w", encoding = "UTF-8"))); close(con)
read a 'Windows Unicode' file
A <- read.table(con <- file("students", encoding = "UCS-2LE")); close(con)

End (Not run)

Constants Built-in Constants

Description

Constants built into R.

Usage

LETTERS
letters
month.abb
month.name

pi

Details

R has a small number of built-in constants.

The following constants are available:

* LETTERS: the 26 upper-case letters of the Roman alphabet;

* letters: the 26 lower-case letters of the Roman alphabet;

* month.abb: the three-letter abbreviations for the English month names;
* month.name: the English names for the months of the year;

* pi: the ratio of the circumference of a circle to its diameter.

These are implemented as variables in the base namespace taking appropriate values.

contributors 121

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

data,DateTimeClasses.

Quotes for the parsing of character constants, NumericConstants for numeric constants.

Examples

John Machin (ca 1706) computed pi to over 100 decimal places
using the Taylor series expansion of the second term of
pi - 4% (4xatan(l/5) - atan(1/239))

months in English

month.name

months in your current locale
format (ISOdate (2000, 1:12, 1), "%B")
format (ISOdate (2000, 1:12, 1), "%b")

contributors R Project Contributors

Description

The R Who-is-who, describing who made significant contributions to the development of R.

Usage

contributors ()

Control Control Flow

Description

These are the basic control-flow constructs of the R language. They function in much the same way
as control statements in any Algol-like language. They are all reserved words.

122 Control

Usage

if (cond) expr
if (cond) cons.expr else alt.expr

for(var in seq) expr
while (cond) expr
repeat expr

break
next
Arguments

cond A length-one logical vector that is not NA. Conditions of length greater
than one are currently accepted with a warning, but only the first ele-
ment is used. An error is signalled instead when the environment variable
_R_CHECK_LENGTH_1_CONDITION_ is set to true. Other types are coerced
to logical if possible, ignoring any class.

var A syntactical name for a variable.

seq An expression evaluating to a vector (including a list and an expression) or to a

pairlist or NULL. A factor value will be coerced to a character vector. As from
R 4.0.0 this can be a long vector.

expr, cons.expr, alt.expr

An expression in a formal sense. This is either a simple expression or a so-called
compound expression, usually of the form { exprl ; expr2 }.

Details

break breaks out of a for, while or repeat loop; control is transferred to the first statement
outside the inner-most loop. next halts the processing of the current iteration and advances the
looping index. Both break and next apply only to the innermost of nested loops.

Note that it is a common mistake to forget to put braces ({ . . }) around your statements, e.g., after
if(..) or for(....). In particular, you should not have a newline between } and else to
avoid a syntax error in entering a 1 f . .. else construct at the keyboard or via source. For that
reason, one (somewhat extreme) attitude of defensive programming is to always use braces, e.g.,
for if clauses.

The seqgin a for loop is evaluated at the start of the loop; changing it subsequently does not affect
the loop. If seq has length zero the body of the loop is skipped. Otherwise the variable var is
assigned in turn the value of each element of seq. You can assign to var within the body of the
loop, but this will not affect the next iteration. When the loop terminates, var remains as a variable
containing its latest value.

Value

if returns the value of the expression evaluated, or NULL invisibly if none was (which may happen
if there isno else).

for,while and repeat return NULL invisibly. for sets var to the last used element of seq,
or to NULL if it was of length zero.

copyright 123

break and next do not return a value as they transfer control within the loop.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

Syntax for the basic R syntax and operators, Paren for parentheses and braces.

ifelse, switch for other ways to control flow.

Examples

for(i in 1:5) print(l:1i)
for(n in c¢(2,5,10,20,50)) {
x <— stats::rnorm(n)
cat(n, ": ", sum(x"2), "\n", sep = "")
t
f <- factor (sample(letters[1l:5], 10, replace = TRUE))

for(i in unique(f)) print (i)
copyright Copyrights of Files Used to Build R
Description

R is released under the ‘GNU Public License’: see 1icense for details. The license describes
your right to use R. Copyright is concerned with ownership of intellectual rights, and some of the
software used has conditions that the copyright must be explicitly stated: see the ‘Details’ section.
We are grateful to these people and other contributors (see cont ributors) for the ability to use
their work.

Details

The file ‘R_HOME/COPYRIGHTS’ lists the copyrights in full detail.

124 crossprod

crossprod Matrix Crossproduct

Description
Given matrices x and y as arguments, return a matrix cross-product. This is formally equiv-
alent to (but usually slightly faster than) the call t (x) $*% v (crossprod) or x $*% t (y)
(tcrossprod).

Usage

crossprod(x, y = NULL)

tcrossprod(x, y = NULL)

Arguments
X, Y numeric or complex matrices (or vectors): y = NULL is taken to be the same
matrix as x. Vectors are promoted to single-column or single-row matrices,
depending on the context.
Value

A double or complex matrix, with appropriate dimnames taken from x and y.

Note

When x or y are not matrices, they are treated as column or row matrices, but their names are
usually not promoted to dimnames. Hence, currently, the last example has empty dimnames.

In the same situation, these matrix products (also % * %) are more flexible in promotion of vectors to
row or column matrices, such that more cases are allowed, since R 3.2.0.

The propagation of NaN/Inf values, precision, and performance of matrix products can be controlled
by options ("matprod").

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

%*% and outer product $0%.

Cstack_info 125

Examples
(z <— crossprod(l:4)) # = sum(l + 272 + 372 4+ 4"2)
drop (z) # scalar
x <= 1:4; names (x) <- letters[1l:4]; x
tcrossprod(as.matrix(x)) # is

identical (tcrossprod(as.matrix (x)),
crossprod (t (x)))
tcrossprod (x) # no dimnames

m <- matrix(l:6, 2,3) ; v <= 1:3; v2 <= 2:1

stopifnot (identical (tcrossprod(v, m), v %*% t(m)),
identical (tcrossprod(v, m), crossprod(v, t(m))),
identical (crossprod(m, v2), t(m) %$x% v2))

Cstack_info Report Information on C Stack Size and Usage

Description

Report information on the C stack size and usage (if available).

Usage

Cstack_info ()

Details

On most platforms, C stack information is recorded when R is initialized and used for stack-
checking. If this information is unavailable, the size will be returned as NA, and stack-checking
is not performed.

The information on the stack base address is thought to be accurate on Windows, Linux (using
glibc), macOS and FreeBSD but a heuristic is used on other platforms. Because this might be
slightly inaccurate, the current usage could be estimated as negative. (The heuristic is not used on
embedded uses of R on platforms where the stack base information is not thought to be accurate.)

The ‘evaluation depth’ is the number of nested R expressions currently under evaluation: this has a
limit controlled by options ("expressions").

Value

An integer vector. This has named elements

size The size of the stack (in bytes), or NA if unknown.
current The estimated current usage (in bytes), possibly NA.
direction 1 (stack grows down, the usual case) or —1 (stack grows up).

eval_depth The current evaluation depth (including two calls for the call to
Cstack_info).

126 cumsum

Examples

Cstack_info ()

cumsum Cumulative Sums, Products, and Extremes

Description

Returns a vector whose elements are the cumulative sums, products, minima or maxima of the
elements of the argument.

Usage

cumsum (x)
cumprod (x)
cummax (x)
cummin (x)

Arguments
x a numeric or complex (not cummin or cummax) object, or an object that can
be coerced to one of these.
Details

These are generic functions: methods can be defined for them individually or via the Math group
generic.

Value

A vector of the same length and type as x (after coercion), except that cumprod returns a numeric
vector for integer input (for consistency with). Names are preserved.

An NA value in x causes the corresponding and following elements of the return value to be NA, as
does integer overflow in cumsum (with a warning).

S4 methods
cumsum and cumprod are S4 generic functions: methods can be defined for them individually or

via the Math group generic. cummax and cummin are individually S4 generic functions.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole. (cumsum only.)

curlGetHeaders 127

Examples

cumsum (1:10)
cumprod (1:10)
cummin (c(3:1, 2:0, 4:2))
cummax (c(3:1, 2:0, 4:2))

curlGetHeaders Retrieve Headers from URLs

Description

Retrieve the headers for a URL for a supported protocol such as http://, ftp://, https://
and ftps://. An optional function not supported on all platforms.

Usage
curlGetHeaders (url, redirect = TRUE, verify = TRUE,
timeout = 0L, TLS = "")
Arguments
url character string specifying the URL.
redirect logical: should redirections be followed?
verify logical: should certificates be verified as valid and applying to that host?
timeout integer: the maximum time in seconds the request is allowed to take. Non-
positive and invalid values are ignored (including the default). (Added in R
4.1.0.)
TLS character: the minimum version of the TLS protocol to be used for https: //
URLs: the default (" ") is no restriction beyond that of the underlying 1ibcurl
(usually 1.0). Other valid valuesare "1.1","1.2" (both for 1ibcurl 7.34.0
and later) and "1 .3" (7.52.0 and later), if supported by the underlying version
of 1ibcurl and the SSL library it uses.
Details

This reports what curl —-I —L or curl —I would report. For a ftp:// URL the ‘headers’ are a
record of the conversation between client and server before data transfer.

Only 500 header lines will be reported: there is a limit of 20 redirections so this should suffice (and
even 20 would indicate problems).

If argument t imeout is not set to a positive integer this uses getOption ("timeout") which
defaults to 60 seconds. As the request cannot be interrupted you may want to consider a shorter
value.

To see all the details of the interaction with the server(s) set options (internet.info=1).

HTTP[S] servers are allowed to refuse requests to read the headers and some do: this will result in
astatus of 405.

128 cut

For possible issues with secure URLs (especially on Windows) see download.file.

There is a security risk in not verifying certificates, but as only the headers are captured it is slight.
Usually looking at the URL in a browser will reveal what the problem is (and it may well be
machine-specific).

Value

A character vector with integer attribute "status" (the last-received ‘status’ code). If redirection
occurs this will include the headers for all the URLSs visited.

For the interpretation of ‘status’ codes see https://en.wikipedia.org/wiki/List_
of _HTTP_status_codes and https://en.wikipedia.org/wiki/List_of FTP_
server_return_codes. A successful FTP connection will usually have status 250, 257 or
350.

See Also

capabilities ("libcurl") to see if this is supported. 1ibcurlVersion for the version
of 1ibcurl in use.

options HTTPUserAgent and t imeout are used.

Examples

needs Internet access, results vary

curlGetHeaders ("http://bugs.r-project.org") ## this redirects to https://
curlGetHeaders ("https://httpbin.org/status/404") ## returns status
curlGetHeaders ("ftp://cran.r-project.org")

cut Convert Numeric to Factor

Description

cut divides the range of x into intervals and codes the values in x according to which interval they
fall. The leftmost interval corresponds to level one, the next leftmost to level two and so on.

Usage

cut (x, ...)

Default S3 method:

cut (x, breaks, labels = NULL,
include.lowest = FALSE, right = TRUE, dig.lab = 3,
ordered_result FALSE, ...)

https://en.wikipedia.org/wiki/List_of_HTTP_status_codes
https://en.wikipedia.org/wiki/List_of_HTTP_status_codes
https://en.wikipedia.org/wiki/List_of_FTP_server_return_codes
https://en.wikipedia.org/wiki/List_of_FTP_server_return_codes

cut 129

Arguments
X a numeric vector which is to be converted to a factor by cutting.
breaks either a numeric vector of two or more unique cut points or a single number
(greater than or equal to 2) giving the number of intervals into which x is to be
cut.
labels labels for the levels of the resulting category. By default, labels are constructed

using " (a, b] " interval notation. If labels = FALSE, simple integer codes
are returned instead of a factor.

include.lowest
logical, indicating if an ‘x[i]’ equal to the lowest (or highest, for right =
FALSE) ‘breaks’ value should be included.

right logical, indicating if the intervals should be closed on the right (and open on the
left) or vice versa.

dig.lab integer which is used when labels are not given. It determines the number of
digits used in formatting the break numbers.

ordered_result
logical: should the result be an ordered factor?

further arguments passed to or from other methods.

Details

When breaks is specified as a single number, the range of the data is divided into breaks pieces
of equal length, and then the outer limits are moved away by 0.1% of the range to ensure that the
extreme values both fall within the break intervals. (If x is a constant vector, equal-length intervals
are created, one of which includes the single value.)

If a 1abels parameter is specified, its values are used to name the factor levels. If none is specified,
the factor level labels are constructed as " (b1,b2]", " (b2,b3]" etc. for right = TRUE and
as "[bl,b2)",...if right = FALSE. In this case, dig. lab indicates the minimum number of
digits should be used in formatting the numbers b1, b2, A larger value (up to 12) will be used
if needed to distinguish between any pair of endpoints: if this fails labels such as "Range3" will
be used. Formatting is done by formatcC.

The default method will sort a numeric vector of breaks, but other methods are not required to
and labels will correspond to the intervals after sorting.

As from R3.2.0, getOption ("OutDec") is consulted when labels are constructed for 1abels
= NULL.
Value

A factor isreturned, unless labels = FALSE which results in an integer vector of level codes.

Values which fall outside the range of breaks are coded as NA, as are NaN and NA values.

Note

Instead of table (cut (x,br)), hist (x,br,plot =FALSE) is more efficient and less
memory hungry. Instead of cut (*, labels = FALSE), findInterval () is more efficient.

130 cut

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

split for splitting a variable according to a group factor; factor, tabulate, table,
findInterval.

quantile for ways of choosing breaks of roughly equal content (rather than length).

.bincode for a bare-bones version.

Examples

7 <— stats::rnorm(10000)

table (cut (Z, breaks = -6:06))
sum (table (cut (Zz, breaks = -6:6, labels = FALSE)))
sum (graphics::hist (Z, breaks = -6:6, plot = FALSE) $counts)

cut (rep(1,5), 4) #-- dummy

tx0 <- c(9, 4, 6, 5, 3, 10, 5, 3, 5)
x <— rep(0:8, tx0)

stopifnot (table(x) == tx0)

table(cut (x, breaks = 8))
table (cut (x, breaks 3% (=2:5)))
table(cut(x, breaks = 3x(-2:5), right = FALSE))

##-—— some values OUTSIDE the breaks
table <- cut (x, breaks = 2%x(0:4)))
table cxl <- cut (x, breaks = 2x(0:4), right = FALSE))

(c
(
which(is.na(cx)); x[is.na(cx)] #-— the first 9 wvalues 0
which(is.na(cx1l)); x[is.na(cxl)] #-— the last 5 wvalues 8

Label construction:

y <- stats::rnorm(100)

table (cut (y, breaks = pi/3*(-3:3)))

table (cut (y, breaks pi/3%(-3:3), dig.lab = 4))

table (cut (y, breaks 1% (=3:3), dig.lab = 4))

extra digits don't "harm" here

table (cut (y, breaks = 1%(-3:3), right = FALSE))
#—- the same, since no exact INT!

sometimes the default dig.lab is not enough to be avoid confusion:
aaa <- ¢(1,2,3,4,5,2,3,4,5,6,7)

cut (aaa, 3)

cut (aaa, 3, dig.lab = 4, ordered_result = TRUE)

one way to extract the breakpoints
labs <- levels (cut (aaa, 3))

cut. POSIXt

cbind (lower =
upper =

131

as.numeric(sub ("\\((.+),.x", "\\1", labs)),
as.numeric(sub("[*, 1, ([*11*)\\]1", "\\1", labs)))

cut .POSIXt

Convert a Date or Date-Time Object to a Factor

Description

Method for cut applied to date-time objects.

Usage

S3 method for class 'POSIXt'

cut (x, breaks, labels = NULL, start.on.monday
FALSE, ...)

right =

TRUE,

S3 method for class 'Date'
cut (x, breaks, labels = NULL, start.on.monday = TRUE,

right =

Arguments

X

breaks

labels

FALSE, ...)

an object inheriting from class "POSIXt" or "Date".

a vector of cut points or number giving the number of intervals which x is to be
cut into or an interval specification, one of "sec", "min", "hour", "day",
"DSTday", "week", "month", "quarter" or "year", optionally pre-
ceded by an integer and a space, or followed by "s". (For "Date" objects
only interval specifications using "day", "week", "month", "quarter"
and "year" are allowed.)

labels for the levels of the resulting category. By default, labels are constructed
from the left-hand end of the intervals (which are included for the default value
of right). If labels = FALSE, simple integer codes are returned instead of
a factor.

start.on.monday

right, ...

Details

logical. If breaks = "weeks", should the week start on Mondays or Sun-
days?

arguments to be passed to or from other methods.

Note that the default for right differs from the default method. Using include.lowest =
TRUE will include both ends of the range of dates.

Using breaks = "quarter" will create intervals of 3 calendar months, with the intervals begin-
ning on January 1, April 1, July 1 or October 1 (based upon min (x)) as appropriate.

A vector of breaks will be sorted before use: 1abels should correspond to the sorted vector.

132 data.class

Value

A factor is returned, unless 1abels = FALSE which returns the integer level codes.

Values which fall outside the range of breaks are coded as NA, as are and NA values.

See Also

seq.POSIXt, seg.Date, cut

Examples

random dates in a 10-week period
cut (ISOdate (2001, 1, 1) + 70%x86400xstats::runif (100), "weeks")
cut (as.Date ("2001/1/1") + 70xstats::runif (100), "weeks")

The standards all have midnight as the start of the day, but some

people incorrectly interpret it at the end of the previous day

tm <- seg(as.POSIXct ("2012-06-01 06:00"), by = "6 hours", length.out = 24)
aggregate (1:24, list(day = cut(tm, "days")), mean)

and a version with midnight included in the previous day:

aggregate (1:24, list (day = cut (tm, "days", right = TRUE)), mean)

data.class Object Classes

Description

Determine the class of an arbitrary R object.

Usage

data.class (x)

Arguments

x an R object.

Value

character string giving the class of x.

The class is the (first element) of the class attribute if this is non-NULL, or inferred from the
object’s dim attribute if this is non-NULL, or mode (x) .

Simply speaking, data.class (x) returns what is typically useful for method dispatching. (Or,
what the basic creator functions already and maybe eventually all will attach as a class attribute.)
Note

For compatibility reasons, there is one exception to the rule above: When x is integer, the result
of data.class (x) is "numeric" even when x is classed.

data.frame

See Also

class

Examples

x <— LETTERS

133

data.class (factor (x)) # has a class attribute
data.class (matrix(x, ncol = 13)) # has a dim attribute
data.class (list (x)) # the same as mode (x)
data.class (x) # the same as mode (x)
stopifnot (data.class(1:2) == "numeric") # compatibility "rule"

data.frame

Data Frames

Description

The function data. frame () creates data frames, tightly coupled collections of variables which
share many of the properties of matrices and of lists, used as the fundamental data structure by most
of R’s modeling software.

Usage

data.frame (.

., row.names = NULL, check.rows = FALSE,

check.names = TRUE, fix.empty.names = TRUE,
stringsAsFactors = FALSE)

default.stringsAsFactors () # << this is deprecated !

Arguments

row.names

check.rows

check.names

these arguments are of either the form value or tag = value. Component
names are created based on the tag (if present) or the deparsed argument itself.

NULL or a single integer or character string specifying a column to be used as
row names, or a character or integer vector giving the row names for the data
frame.

if TRUE then the rows are checked for consistency of length and names.

logical. If TRUE then the names of the variables in the data frame are checked
to ensure that they are syntactically valid variable names and are not duplicated.
If necessary they are adjusted (by make . names) so that they are.

fix.empty.names

logical indicating if arguments which are “unnamed” (in the sense of not being
formally called as someName = arg) get an automatically constructed name
or rather name "". Needs to be set to FALSE even when check .names is
false if " " names should be kept.

134 data.frame

stringsAsFactors
logical: should character vectors be converted to factors? The ‘factory-fresh’
default has been TRUE previously but has been changed to FALSE for R 4.0.0.

Details

A data frame is a list of variables of the same number of rows with unique row names, given class
"data.frame". If no variables are included, the row names determine the number of rows.

The column names should be non-empty, and attempts to use empty names will have unsupported
results. Duplicate column names are allowed, but you need to use check .names = FALSE for
data.frame to generate such a data frame. However, not all operations on data frames will
preserve duplicated column names: for example matrix-like subsetting will force column names in
the result to be unique.

data.frame converts each of its arguments to a data frame by calling
as.data.frame (optional = TRUE). As that is a generic function, methods can be
written to change the behaviour of arguments according to their classes: R comes with many such
methods. Character variables passed to data.frame are converted to factor columns unless
protected by I or argument stringsAsFactors is false. If a list or data frame or matrix is
passed to data.frame it is as if each component or column had been passed as a separate
argument (except for matrices protected by I).

Objects passed to data . frame should have the same number of rows, but atomic vectors (see
is.vector), factors and character vectors protected by I will be recycled a whole number of
times if necessary (including as elements of list arguments).

If row names are not supplied in the call to data . frame, the row names are taken from the first
component that has suitable names, for example a named vector or a matrix with rownames or a
data frame. (If that component is subsequently recycled, the names are discarded with a warning.)
If row.names was supplied as NULL or no suitable component was found the row names are the
integer sequence starting at one (and such row names are considered to be ‘automatic’, and not
preserved by as .matrix).

If row names are supplied of length one and the data frame has a single row, the row.names is
taken to specify the row names and not a column (by name or number).

Names are removed from vector inputs not protected by I.

default.stringsAsFactorsisautility that takes getOption ("stringsAsFactors")
and ensures the result is TRUE or FALSE (or throws an error if the value is not NULL). This
function is deprecated now and will no longer be available in the future.

Value

A data frame, a matrix-like structure whose columns may be of differing types (numeric, logical,
factor and character and so on).

How the names of the data frame are created is complex, and the rest of this paragraph is only the ba-
sic story. If the arguments are all named and simple objects (not lists, matrices of data frames) then
the argument names give the column names. For an unnamed simple argument, a deparsed version
of the argument is used as the name (with an enclosing I (...) removed). For a named ma-
trix/list/data frame argument with more than one named column, the names of the columns are the
name of the argument followed by a dot and the column name inside the argument: if the argument
is unnamed, the argument’s column names are used. For a named or unnamed matrix/list/data frame

data.matrix 135

argument that contains a single column, the column name in the result is the column name in the ar-
gument. Finally, the names are adjusted to be unique and syntactically valid unless check . names
= FALSE.

Note

In versions of R prior to 2.4.0 row.names had to be character: to ensure compatibility with such
versions of R, supply a character vector as the row . names argument.

References

Chambers, J. M. (1992) Data for models. Chapter 3 of Statistical Models in S eds J. M. Chambers
and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

I,plot.data.frame, print.data.frame, row.names, names (for the column names),
[.data. frame for subsetting methods and I (matrix (..)) examples;Math.data.frame
etc, about Group methods for data. frames; read.table, make.names, 11ist2DF for cre-
ating data frames from lists of variables.

Examples

1.3 <-— LETTERS[1:3]

fac <- sample (L3, 10, replace = TRUE)

(d <- data.frame(x =1, y = 1:10, fac = fac))

The "same" with automatic column names:
data.frame(l, 1:10, sample (L3, 10, replace = TRUE))

is.data.frame (d)

do not convert to factor, using I()

(dd <-= cbind(d, char = I(letters[1:10])))

rbind(class = sapply(dd, class), mode = sapply(dd, mode))
stopifnot (1:10 == row.names (d)) # {coercion}

(d0 <- d[, FALSE]) # data frame with 0 columns and 10 rows

(d.0 <- d[FALSE,]) # <0 rows> data frame (3 named cols)
(d00 <- dO[FALSE,]) # data frame with 0 columns and 0 rows

data.matrix Convert a Data Frame to a Numeric Matrix

Description

Return the matrix obtained by converting all the variables in a data frame to numeric mode and then
binding them together as the columns of a matrix. Factors and ordered factors are replaced by their
internal codes.

136 data.matrix

Usage
data.matrix (frame, rownames.force = NA)
Arguments
frame a data frame whose components are logical vectors, factors or numeric or char-

acter vectors.

rownames.force
logical indicating if the resulting matrix should have character (rather than
NULL) rownames. The default, NA, uses NULL rownames if the data frame
has ‘automatic’ row.names or for a zero-row data frame.

Details

Logical and factor columns are converted to integers. Character columns are first converted to
factors and then to integers. Any other column which is not numeric (according to is.numeric)
is converted by as.numeric or, for S4 objects, as (, "numeric"). If all columns are integer
(after conversion) the result is an integer matrix, otherwise a numeric (double) matrix.

Value

If frame inherits from class "data.frame", an integer or numeric matrix of the same di-
mensions as frame, with dimnames taken from the row.names (or NULL, depending on
rownames . force) and names.

Otherwise, the result of as .matrix.

Note

The default behaviour for data frames differs from R < 2.5.0 which always gave the result character
rownames.

References

Chambers, J. M. (1992) Data for models. Chapter 3 of Statistical Models in S eds J. M. Chambers
and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

as.matrix,data.frame, matrix.

Examples

DF <- data.frame(a = 1:3, b = letters[10:12],
c = seg(as.Date("2004-01-01"), by = "week", length.out =
stringsAsFactors = TRUE)

data.matrix (DF[1:2])

data.matrix (DF)

date 137

date System Date and Time

Description

Returns a character string of the current system date and time.

Usage

date ()

Value

The string has the form "Fri Aug2011:11:001999", i.e., length 24, since it relies on
POSIX’s ct ime ensuring the above fixed format. Timezone and Daylight Saving Time are taken
account of, but not indicated in the result.

The day and month abbreviations are always in English, irrespective of locale.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also
Sys.Date and Sys.time; Date and DateTimeClasses for objects representing date and
time.
Examples
(d <- date())
nchar (d) == 24

something similar in the current locale
format (Sys.time (), "%a %$b %d $H:$M:%S SY")

Dates Date Class

Description

Description of the class "Date" representing calendar dates.

138 Dates

Usage

S3 method for class 'Date’
summary (object, digits = 12, ...)

S3 method for class 'Date'

print (x, max = NULL, ...)
Arguments
object, x a Date object to be summarized or printed.
digits number of significant digits for the computations.
max numeric or NULL, specifying the maximal number of entries to be printed. By

default, when NULL, getOption ("max.print™) used.

further arguments to be passed from or to other methods.

Details

Dates are represented as the number of days since 1970-01-01, with negative values for earlier
dates. They are always printed following the rules of the current Gregorian calendar, even though
that calendar was not in use long ago (it was adopted in 1752 in Great Britain and its colonies).

It is intended that the date should be an integer, but this is not enforced in the internal representation.
Fractional days will be ignored when printing. It is possible to produce fractional days via the mean
method or by adding or subtracting (see Ops .Date).

From the many methods, see methods (class = "Date"), a few are documented separately,
see below.

See Also

Sys.Date for the current date.
weekdays for convenience extraction functions.

Methods with extra arguments and documentation:

Ops.Date for operators on "Date" objects.
format .Date for conversion to and from character strings.
axis.Date and hist.Date for plotting.

seq.Date , cut.Date, and round.Date for utility operations.

DateTimeClasses for date-time classes.

Examples

(today <- Sys.Date())

format (today, "%d %$b %Y") # with month as a word

(tenweeks <- seqg(today, length.out=10, by="1 week")) # next ten weeks
weekdays (today)

DateTimeClasses 139

months (tenweeks)
(Dls <- as.Date(.leap.seconds))

length(<Date>) <- n now works
ls <= Dls; length(ls) <- 12
12 <= Dls; length(l2) <- 5 + length(Dls)
stopifnot (exprs = {
length(.) <- % is compatible to subsetting/indexing:
identical(ls, Dls[seqg_along(ls)])
identical (12, Dls[seqg_along(l2)1])
has filled with NA's
is.na(l2[(length(Dls)+1) :1length(12)])

DateTimeClasses Date-Time Classes

Description

Description of the classes "POSIX1t" and "POSIXct" representing calendar dates and times.

Usage

S3 method for class 'POSIXct'
print(x, tz = "", usetz = TRUE, max = NULL, ...)

S3 method for class 'POSIXct'
summary (object, digits = 15, ...)

time + z
z + time
time - z
timel lop time2

Arguments

x, object an object to be printed or summarized from one of the date-time classes.

tz, usetz for timezone formatting, passed to format .POSIXct.

max numeric or NULL, specifying the maximal number of entries to be printed. By
default, when NULL, getOption ("max.print™) used.

digits number of significant digits for the computations: should be high enough to
represent the least important time unit exactly.
further arguments to be passed from or to other methods.

time date-time objects

timel, time2 date-time objects or character vectors. (Character vectors are converted by
as.POSIXct.)

140 DateTimeClasses

z a numeric vector (in seconds)
lop one of ==, I=, <, <=, > or >=,
Details

There are two basic classes of date/times. Class "POSIXct " represents the (signed) number of sec-
onds since the beginning of 1970 (in the UTC time zone) as a numeric vector. Class "POSIX1t"
is a named list of vectors representing

sec 0-61: seconds.

min 0-59: minutes.

hour 0-23: hours.

mday 1-31: day of the month

mon 0-11: months after the first of the year.

year years since 1900.

wday 0-6 day of the week, starting on Sunday.

yday 0-365: day of the year (365 only in leap years).

isdst Daylight Saving Time flag. Positive if in force, zero if not, negative if unknown.

zone (Optional.) The abbreviation for the time zone in force at that time: " " if unknown (but " "
might also be used for UTC).

gmtoff (Optional.) The offset in seconds from GMT: positive values are East of the meridian.
Usually NA if unknown, but 0 could mean unknown.

(The last two components are not present for times in UTC and are platform-dependent: they are
supported on platforms based on BSD or glibc (including Linux and macOS) and those using the
tzcode implementation shipped with R (including Windows). But they are not necessarily set.).
Note that the internal list structure is somewhat hidden, as many methods (including 1ength (x),
print () and str) apply to the abstract date-time vector, as for "POSTIXct". As from R 3.5.0,
one can extract and replace single components via [indexing with two indices (see the examples).
The classes correspond to the POSIX/C99 constructs of ‘calendar time’ (the time_t data type)
and ‘local time’ (or broken-down time, the st ruct tm data type), from which they also inherit
their names. The components of "POSIX1t" are integer vectors, except sec and zone.

"POSIXct" is more convenient for including in data frames, and "POSIX1t " is closer to human-
readable forms. A virtual class "POSIXt " exists from which both of the classes inherit: it is used
to allow operations such as subtraction to mix the two classes.

Components wday and yday of "POSIX1t" are for information, and are not used in the conver-
sion to calendar time. However, i sdst is needed to distinguish times at the end of DST: typically
lam to 2am occurs twice, first in DST and then in standard time. At all other times i sdst can be
deduced from the first six values, but the behaviour if it is set incorrectly is platform-dependent.

Logical comparisons and some arithmetic operations are available for both classes. One can add or
subtract a number of seconds from a date-time object, but not add two date-time objects. Subtraction
of two date-time objects is equivalent to using difft ime. Be aware that "POSIX1t " objects will
be interpreted as being in the current time zone for these operations unless a time zone has been
specified.

DateTimeClasses 141

"POSIX1t" objects will often have an attribute "tzone", a character vector of length 3 giv-
ing the time zone name (from the TZ environment variable or argument t z of functions creating

"POSIX1t" objects; "" marks the current time zone) and the names of the base time zone and
the alternate (daylight-saving) time zone. Sometimes this may just be of length one, giving the time
zone name.

"POSIXct" objects may also have an attribute "tzone", a character vector of length one. If
set to a non-empty value, it will determine how the object is converted to class "POSIX1t" and
in particular how it is printed. This is usually desirable, but if you want to specify an object in
a particular time zone but to be printed in the current time zone you may want to remove the
"tzone" attribute (e.g., by c (x)).

Unfortunately, the conversion is complicated by the operation of time zones and leap seconds (ac-
cording to this version of R’s data, 27 days have been 86401 seconds long so far, the last being
on (actually, immediately before) 2017-01-01: the times of the extra seconds are in the object
.leap.seconds). The details of this are entrusted to the OS services where possible. It seems
that some rare systems used to use leap seconds, but all known current platforms ignore them (as
required by POSIX). This is detected and corrected for at build time, so "POSIXct" times used
by R do not include leap seconds on any platform.

Using c on "POSIX1t" objects converts them to the current time zone, and on "POSIXct"
objects drops any "t zone" attributes, unless they are all marked with the same time zone.

A few times have specific issues. First, the leap seconds are ignored, and real times
such as "2005-12-3123:59:60" are (probably) treated as the next second. However,
they will never be generated by R, and are unlikely to arise as input. Second, on some
OSes there is a problem in the POSIX/C99 standard with "1969-12-31 23:59:59 UTC",
which is -1 in calendar time and that value is on those OSes also used as an error code.
Thus as.POSIXct ("1969-12-3123:59:59", format = "$Y-%m—%d $H:%M:%S", tz
="UTC") may give NA, and hence as.POSIXct ("1969-12-3123:59:59",tz =
"UTC") will give "1969-12-31 23:59:00". Other OSes (including the code used by R on
Windows) report errors separately and so are able to handle that time as valid.

The print methods respect options ("max.print™").

Sub-second Accuracy

Classes "POSIXct" and "POSIX1t" are able to express fractions of a second. (Conversion of
fractions between the two forms may not be exact, but will have better than microsecond accuracy.)

Fractional seconds are printed only if options ("digits.secs") isset: see strftime.

Valid ranges for times

The "POSIX1t" class can represent a very wide range of times (up to billions of years), but such
times can only be interpreted with reference to a time zone.

The concept of time zones was first adopted in the nineteenth century, and the Gregorian calen-
dar was introduced in 1582 but not universally adopted until 1927. OS services almost invariably
assume the Gregorian calendar and may assume that the time zone that was first enacted for the
location was in force before that date. (The earliest legislated time zone seems to have been London
on 1847-12-01.) Some OSes assume the previous use of ‘local time’ based on the longitude of a
location within the time zone.

142 DateTimeClasses

Most operating systems represent POSIXct times as C type long. This means that on 32-bit
OSes this covers the period 1902 to 2037. On all known 64-bit platforms and for the code we
use on 32-bit Windows, the range of representable times is billions of years: however, not all can
convert correctly times before 1902 or after 2037. A few benighted OSes used a unsigned type and
so cannot represent times before 1970.

Where possible the platform limits are detected, and outside the limits we use our own C code.
This uses the offset from GMT in use either for 1902 (when there was no DST) or that predicted
for one of 2030 to 2037 (chosen so that the likely DST transition days are Sundays), and uses the
alternate (daylight-saving) time zone only if isdst is positive or (if —1) if DST was predicted to
be in operation in the 2030s on that day.

Note that there are places (e.g., Rome) whose offset from UTC varied in the years prior to 1902,
and these will be handled correctly only where there is OS support.

There is no reason to suppose that the DST rules will remain the same in the future, and indeed
the US legislated in 2005 to change its rules as from 2007, with a possible future reversion. So
conversions for times more than a year or two ahead are speculative.

Warnings

Some Unix-like systems (especially Linux ones) do not have environment variable TZ set, yet have
internal code that expects it (as does POSIX). We have tried to work around this, but if you get
unexpected results try setting TZ. See Sys .t imezone for valid settings.

Great care is needed when comparing objects of class "POSIX1t". Not only are components and
attributes optional; several components may have values meaning ‘not yet determined’ and the same
time represented in different time zones will look quite different.

Currently the order of the list components of "POSIX1t" objects must not be changed, as several
C-based conversion methods rely on the order for efficiency.

References

Ripley, B. D. and Hornik, K. (2001). “Date-time classes.” R News, 1(2), 8—11. https://www.
r-project.org/doc/Rnews/Rnews_2001-2.pdf.

See Also

Dates for dates without times.

as.POSIXct and as.POSIX1t for conversion between the classes.
strptime for conversion to and from character representations.
Sys.time for clock time as a "POSIXct" object.

difftime for time intervals.

cut.POSIXt, seq.POSIXt, round.POSIXt and trunc.POSIXt for methods for these
classes.

weekdays for convenience extraction functions.

https://www.r-project.org/doc/Rnews/Rnews_2001-2.pdf
https://www.r-project.org/doc/Rnews/Rnews_2001-2.pdf

dcf 143

Examples
(z <= Sys.time()) # the current date, as class "POSIXct"
Sys.time () - 3600 # an hour ago

as.POSIX1lt (Sys.time(), "GMT") # the current time in GMT
format (.leap.seconds) # the leap seconds in your time zone
print (.leap.seconds, tz = "PST8PDT") # and in Seattle's

look at xinternalx representation of "POSIX1t"
leapS <- as.POSIXlt(.leap.seconds)

names (leapS) ; is.list (leapS)

str() "too smart" --> need unclass(.):
utils::str(unclass (leapS), vec.len = 7)

Extracting *singlex components of POSIX1lt objects:
leapS[1l : 5, "year"]

length(.) <= n now works for "POSIXct" and "POSIXI1t"
for (lpS in list(.leap.seconds, leapS)) {
ls <= 1lpS; length(ls) <- 12
12 <= 1pS; length(l2) <- 5 + length(1pS)
stopifnot (exprs = {
length(.) <- % 1s compatible to subsetting/indexing:
identical (ls, 1lpS[seg_along(ls)])
identical (12, lpS[seqg_along(l2)])
has filled with NA's
is.na(l2[(length(1lpS)+1) :1length(12)])

dcf Read and Write Data in DCF Format

Description

Reads or writes an R object from/to a file in Debian Control File format.

Usage

read.dcf (file, fields = NULL, all = FALSE, keep.white = NULL)

write.dcf(x, file = "", append = FALSE, useBytes = FALSE,
indent = 0.1 % getOption("width"),
width = 0.9 x getOption("width"),
keep.white = NULL)

144 dcf
Arguments
file either a character string naming a file or a connection. " " indicates output to the
console. For read.dcf this can name a compressed file (see gzfile).
fields Fields to read from the DCF file. Default is to read all fields.
all alogical indicating whether in case of multiple occurrences of a field in a record,

all these should be gathered. If a1l is false (default), only the last such occur-
rence is used.

keep.white a character string with the names of the fields for which whitespace should be

kept as is, or NULL (default) indicating that there are no such fields. Coerced
to character if possible. For fields where whitespace is not to be kept as is,
read.dcf removes leading and trailing whitespace, and write.dcf folds
using strwrap.

X the object to be written, typically a data frame. If not, it is attempted to coerce
x to a data frame.

append logical. If TRUE, the output is appended to the file. If FALSE, any existing file
of the name is destroyed.

useBytes logical to be passed to writeLines (), see there: “for expert use”.

indent a positive integer specifying the indentation for continuation lines in output en-
tries.

width a positive integer giving the target column for wrapping lines in the output.

Details

DCEF is a simple format for storing databases in plain text files that can easily be directly read and
written by humans. DCEF is used in various places to store R system information, like descriptions
and contents of packages.

The DCEF rules as implemented in R are:

1.

A database consists of one or more records, each with one or more named fields. Not every
record must contain each field. Fields may appear more than once in a record.

. Regular lines start with a non-whitespace character.

3. Regular lines are of form tag:value, i.e., have a name tag and a value for the field, sepa-

rated by : (only the first : counts). The value can be empty (i.e., whitespace only).

. Lines starting with whitespace are continuation lines (to the preceding field) if at least one

character in the line is non-whitespace. Continuation lines where the only non-whitespace
characteris a ‘.’ are taken as blank lines (allowing for multi-paragraph field values).

5. Records are separated by one or more empty (i.e., whitespace only) lines.

. Individual lines may not be arbitrarily long; prior to R 3.0.2 the length limit was approximately

8191 bytes per line.

Note that read.dcf (all = FALSE) reads the file byte-by-byte. This allows a ‘DESCRIPTION’
file to be read and only its ASCII fields used, or its ‘Encoding’ field used to re-encode the re-
maining fields.

write.dcf does not write NA fields.

145

Value

The default read.dcf (all = FALSE) returns a character matrix with one row per record and
one column per field. Leading and trailing whitespace of field values is ignored unless a field is
listed in keep .white. If a tag name is specified in the file, but the corresponding value is empty,
then an empty string is returned. If the tag name of a field is specified in fields but never used
in a record, then the corresponding value is NA. If fields are repeated within a record, the last one
encountered is returned. Malformed lines lead to an error.

For read.dcf (all = TRUE) a data frame is returned, again with one row per record and one
column per field. The columns are lists of character vectors for fields with multiple occurrences,
and character vectors otherwise.

Note that an empty £1ile is a valid DCF file, and read . dcf will return a zero-row matrix or data
frame.

For write.dcf, invisible NULL.

Note

As from R 3.4.0, ‘whitespace’ in all cases includes newlines.

References

https://www.debian.org/doc/debian-policy/ch-controlfields.html.

Note that R does not require encoding in UTF-8, which is a recent Debian requirement. Nor does it
use the Debian-specific sub-format which allows comment lines starting with ‘#’.

See Also

write.table.

available.packages, which uses read.dcf to read the indices of package repositories.

Examples

Create a reduced version of the DESCRIPTION file in package 'splines'

x <- read.dcf(file = system.file ("DESCRIPTION", package = "splines"),
fields = c("Package", "Version", "Title"))

write.dcf (x)

An online DCF file with multiple records

con <- url ("https://cran.r-project.org/src/contrib/PACKAGES")
y <- read.dcf(con, all = TRUE)

close (con)

utils::str(y)

https://www.debian.org/doc/debian-policy/ch-controlfields.html

146 debug

debug Debug a Function

Description

Set, unset or query the debugging flag on a function. The text and condition arguments are the
same as those that can be supplied via a call to browser. They can be retrieved by the user once
the browser has been entered, and provide a mechanism to allow users to identify which breakpoint
has been activated.

Usage
debug (fun, text = "", condition = NULL, signature = NULL)
debugonce (fun, text = "", condition = NULL, signature = NULL)

undebug (fun, signature = NULL)
isdebugged (fun, signature = NULL)
debuggingState (on = NULL)

Arguments
fun any interpreted R function.
text a text string that can be retrieved when the browser is entered.
condition a condition that can be retrieved when the browser is entered.
signature an optional method signature. If specified, the method is debugged, rather than
its generic.
on logical; a call to the support function debuggingState returns TRUE if de-
bugging is globally turned on, FALSE otherwise. An argument of one or the
other of those values sets the state. If the debugging state is FALSE, none of
the debugging actions will occur (but explicit browser calls in functions will
continue to work).
Details

When a function flagged for debugging is entered, normal execution is suspended and the body of
function is executed one statement at a time. A new browser context is initiated for each step
(and the previous one destroyed).

At the debug prompt the user can enter commands or R expressions, followed by a newline. The
commands are described in the browser help topic.

To debug a function which is defined inside another function, single-step through to the end of its
definition, and then call debug on its name.

If you want to debug a function not starting at the very beginning, use trace (..., at = x) or
setBreakpoint.

Using debug is persistent, and unless debugging is turned off the debugger will be entered on every
invocation (note that if the function is removed and replaced the debug state is not preserved). Use
debugonce () to enter the debugger only the next time the function is invoked.

Defunct 147

To debug an S4 method by explicit signature, use signature. When specified, signature indicates
the method of fun to be debugged. Note that debugging is implemented slightly differently for this
case, as it uses the trace machinery, rather than the debugging bit. As such, text and condition
cannot be specified in combination with a non-null signature. For methods which implement
the . local rematching mechanism, the . local closure itself is the one that will be ultimately
debugged (see i sRematched).

isdebugged returns TRUE if a) signature is NULL and the closure fun has been debugged,
or b) signature is not NULL, fun is an S4 generic, and the method of fun for that signature
has been debugged. In all other cases, it returns FALSE.

The number of lines printed for the deparsed call when a function is entered for debugging can be
limited by setting options (deparse.max.lines).

When debugging is enabled on a byte compiled function then the interpreted version of the function
will be used until debugging is disabled.

Value

debug and undebug invisibly return NULL.
isdebugged returns TRUE if the function or method is

marked for debugging, and FALSE otherwise.

See Also
debugcall for conveniently debugging methods, browser notably for its ‘commands’, trace;
traceback to see the stack after an Error: ... message; recover for another debugging
approach.

Examples

Not run:
debug (library)
library (methods)

End (Not run)

Not run:

debugonce (sample)

only the first call will be debugged
sampe (10, 1)

sample (10, 1)

End (Not run)

Defunct Marking Objects as Defunct

Description

When a function is removed from R it should be replaced by a function which calls .Defunct.

148 delayedAssign

Usage

.Defunct (new, package = NULL, msqg)

Arguments
new character string: A suggestion for a replacement function.
package character string: The package to be used when suggesting where the defunct
function might be listed.
msg character string: A message to be printed, if missing a default message is used.
Details
.Defunct is called from defunct functions. Functions should be listed in

help ("pkg-defunct") for an appropriate pkg, including base (with the alias added
to the respective Rd file).

.Defunct signals an error of class defunctError with fields o1d, new, and package.

See Also

Deprecated.

base-defunct and so on which list the defunct functions in the packages.

delayedAssign Delay Evaluation

Description

delayedAssign creates a promise to evaluate the given expression if its value is requested. This
provides direct access to the lazy evaluation mechanism used by R for the evaluation of (interpreted)

functions.
Usage
delayedAssign (x, value, eval.env = parent.frame(l),
assign.env = parent.frame (1))
Arguments
x a variable name (given as a quoted string in the function call)
value an expression to be assigned to x
eval.env an environment in which to evaluate value

assign.env anenvironment in which to assign x

delayedAssign 149

Details

Both eval.env and assign.env default to the currently active environment.

The expression assigned to a promise by delayedAssign will not be evaluated until it is even-
tually ‘forced’. This happens when the variable is first accessed.

When the promise is eventually forced, it is evaluated within the environment specified by
eval.env (whose contents may have changed in the meantime). After that, the value is fixed
and the expression will not be evaluated again.

Value

This function is invoked for its side effect, which is assigning a promise to evaluate value to the
variable x.

See Also

substitute, to see the expression associated with a promise, if assign.env is not the
.GlobalEnv.

Examples

msg <- "old"

delayedAssign ("x", msqg)

substitute (x) # shows only 'x', as it is in the global env.
msg <- "new!"

X # new!

delayedAssign ("x", {
for(i in 1:3)
cat ("yippee!\n")
10
})

x"2 #- yippee
x"2 #- simple number

ne <- new.env ()

delayedAssign ("x", pi + 2, assign.env = ne)

See the promise {without "forcing" (i.e. evaluating) it}:
substitute (x, ne) # 'pi + 2'

Promises in an environment [for advanced users]: —-————————————————————

e <- (function(x, y = 1, z) environment()) (cos, "y", {cat(" HO!'\n"); pi+2})
How can we look at all promises in an env (w/o forcing them)?
gete <- function(e_)
lapply (lapply(ls(e_), as.name),
function(n) eval (substitute(substitute(X, e_), list (X=n))))

(exps <- gete(e))

150 deparse

sapply (exps, typeof)

(le <- as.list(e)) # evaluates ("force"s) the promises
stopifnot (identical (unname (le), lapply(exps, eval))) # and another "Ho!"

deparse Expression Deparsing

Description

Turn unevaluated expressions into character strings.

Usage
deparse (expr, width.cutoff = 60L,
backtick = mode (expr) %$in% c("call", "expression", " (", "function"),
control = c("keepNA", "keepInteger", "niceNames", "showAttributes"),
nlines = -1L)
deparsel (expr, collapse = " ", width.cutoff = 500L, ...)
Arguments
expr any R expression.
width.cutoff integer in [20,500] determining the cutoff (in bytes) at which line-breaking is
tried.
backtick logical indicating whether symbolic names should be enclosed in backticks if
they do not follow the standard syntax.
control character vector (or NULL) of deparsing options. See . deparseOpts.
nlines integer: the maximum number of lines to produce. Negative values indicate no
limit.
collapse a string, passed to paste ().

further arguments passed to deparse ().

Details

These functions turn unevaluated expressions (where ‘expression’ is taken in a wider sense than the
strict concept of a vector of mode and type (typeof) "expression" used in expression)
into character strings (a kind of inverse to parse).

A typical use of this is to create informative labels for data sets and plots. The example shows a
simple use of this facility. It uses the functions deparse and substitute to create labels for a
plot which are character string versions of the actual arguments to the function myplot.

The default for the backtick option is not to quote single symbols but only composite expres-
sions. This is a compromise to avoid breaking existing code.

deparse 151

Using control =c ("all", "hexDigits") comes closest to making deparse () aninverse
of parse () (but we have not yet seen an example where "al1l", now including "digitsl17",
would not have been as good). However, not all objects are deparse-able even with these options
and a warning will be issued if the function recognizes that it is being asked to do the impossible.

Unless control contains "digitsl7" or "hexDigits", (or "all" or "exact" which
include one of these), numeric and complex vectors are converted using 15 significant digits: see
as.character for more details.

width.cutoff is a lower bound for the line lengths: deparsing a line proceeds until at least
width.cutoff byteshave been output and e.g. arg = value expressions will not be split across
lines.

deparsel () is a simple utility added in R 4.0.0 to ensure a string result (character vector of
length one), typically used in name construction, as deparsel (substitute(.)).

Note
To avoid the risk of a source attribute out of sync with the actual function definition, the source
attribute of a function will never be deparsed as an attribute.

Deparsing internal structures may not be accurate: for example the graphics display list recorded
by recordPlot is not intended to be deparsed and . Internal calls will be shown as primitive
calls.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also
.deparseOpts for available control settings; dput () and dump () for related functions
using identical internal deparsing functionality.
substitute, parse, expression.

Quotes for quoting conventions, including backticks.

Examples

require (stats); require(graphics)

deparse (args (1lm))
deparse (args (1lm), width.cutoff = 500)

myplot <- function(x, y) {
plot (x, y, xlab = deparsel (substitute(x)),
ylab = deparsel (substitute(y)))

e <- quote (" foo bar")
deparse (e)

deparse (e, backtick = TRUE)
e <— quote(foo bar +1)

152 deparseOpts

deparse (e)

deparse (e, control = "all") # wraps it w/ quote(.)
deparseOpts Options for Expression Deparsing
Description

Process the deparsing options for deparse, dput and dump.

Usage

.deparseOpts (control)

. .deparseOpts

Arguments

control character vector of deparsing options.

Details

. .deparseOpts is the character vector of possible deparsing options used by
.deparseOpts ().

.deparseOpts () iscalled by deparse, dput and dump to process their cont rol argument.

The control argument is a vector containing zero or more of the following strings (exactly those
in . .deparseOpts). Partial string matching is used.

"keepInteger": Either surround integer vectors by as.integer () or use suffix L, so they
are not converted to type double when parsed. This includes making sure that integer
NAs are preserved (via NA_integer_ if there are no non-NA values in the vector, unless
"S_compatible" is set).

"quoteExpressions": Surround unevaluated expressions, but not formulas, with
quote (), so they are not evaluated when re-parsed.

"showAttributes": If the object has attributes (other than a source attribute, see
srcref), use structure () to display them as well as the object value unless the only
such attribute is names and the "niceNames" option is set. This ("showAttributes™)
is the default for deparse and dput.

"useSource": Ifthe object has a source attribute (srcref), display that instead of deparsing
the object. Currently only applies to function definitions.

"warnIncomplete™: Some exotic objects such as environments, external pointers, etc. can not
be deparsed properly. This option causes a warning to be issued if the deparser recognizes one
of these situations.

Also, the parser in R < 2.7.0 would only accept strings of up to 8192 bytes, and this option
gives a warning for longer strings.

deparseOpts 153

"keepNA": Integer, real and character NAs are surrounded by coercion functions where necessary
to ensure that they are parsed to the same type. Since e.g. NA_real_ can be output in R, this
is mainly used in connection with S_compatible.

"niceNames": If true, 1ists and atomic vectors with non-NA names (see names) are de-
parsed ase.g., c (A = 1) instead of structure (1, .Names = "A"), independently of the
"showAttributes" setting.

"all": An abbreviated way to specify all of the options listed above plus "digits17" (since R
version 4.0.0). This is the default for dump, and, without "digits17", the options used by
edit (which are fixed).

"delayPromises": Deparse promises in the form <promise: expression> rather than evaluat-
ing them. The value and the environment of the promise will not be shown and the deparsed
code cannot be sourced.

"S_compatible": Make deparsing as far as possible compatible with S and R < 2.5.0. For
compatibility with S, integer values of double vectors are deparsed with a trailing decimal
point. Backticks are not used.

"hexNumeric": Real and finite complex numbers are output in ‘"$a"’ format as binary frac-
tions (coded as hexadecimal: see sprint f) with maximal opportunity to be recorded exactly
to full precision. Complex numbers with one or both non-finite components are output as if
this option were not set.

(This relies on that format being correctly supported: known problems on Windows are
worked around as from R 3.1.2.)

"digits1l7": Real and finite complex numbers are output using format ‘"% .17g"’ which may
give more precision than the default (but the output will depend on the platform and there
may be loss of precision when read back). Complex numbers with one or both non-finite
components are output as if this option were not set.

"exact": An abbreviated way to specify control =c("all", "hexNumeric") which is
guaranteed to be exact for numbers, see also below.

For the most readable (but perhaps incomplete) display, use control = NULL. This displays the
object’s value, but not its attributes. The default in deparse is to display the attributes as well, but
not to use any of the other options to make the result parseable. (dput and dump do use more de-
fault options, and printing of functions without sources uses c ("keepInteger", "keepNA").)

Using control =c("all", "hexNumeric") comes closest to making deparse () an in-
verse of parse (), as representing double and complex numbers as decimals may well not be
exact. However, not all objects are deparse-able even with this option. A warning will be issued if
the function recognizes that it is being asked to do the impossible.

Only one of "hexNumeric" and "digitsl17" can be specified.

Value

An integer value corresponding to the cont rol options selected.

Examples

(i0Opt.all <- .deparseOpts("all")) # a four digit integer

one integer —--> vector binary bits

154 Deprecated

int2bits <- function(x, base
ndigits
r <- numeric(ndigits)
for (i in ndigits:1) {
r[i] <- x%%base
if (i > 1L)
x <— x%/%base

2L,
1 + floor(le-9 + log(max(x,1l), base))) {

}
rev(r) # smallest bit at left
}
int2bits (iOpt.all)
what options does "all" contain ?
depO.indiv <- setdiff(..deparseOpts, c("all", "exact"))
(oa <—- depO.indiv[int2bits (iOpt.all) == 1])
stopifnot (identical (iOpt.all, .deparseOpts(oa)))

ditto for "exact" instead of "all":

int2bits (i0pt.X <- .deparseOpts ("exact"))

(0X <- depO.indiv[int2bits (iOpt.X) == 11])

diffXall <- oa != oX

stopifnot (identical (iOpt.X, .deparseOpts (oX)),
identical (oX[diffXall], "hexNumeric"),
identical (ca[diffXall], "digitsl7"))

Deprecated Marking Objects as Deprecated

Description

When an object is about to be removed from R it is first deprecated and should include a call to
.Deprecated.

Usage

.Deprecated (new, package=NULL, msg,
old = as.character(sys.call(sys.parent())) [1L])

Arguments
new character string: A suggestion for a replacement function.
package character string: The package to be used when suggesting where the deprecated
function might be listed.
msg character string: A message to be printed, if missing a default message is used.
old character string specifying the function (default) or usage which is being depre-

cated.

det 155

Details

.Deprecated ("<new name>") is called from deprecated functions. The original help page
for these functions is often available at help ("oldName—-deprecated") (note the quotes).
Functions should be listed in help ("pkg-deprecated") for an appropriate pkg, including
base.

.Deprecated signals a warning of class deprecatedWarning with fields o1d, new, and
package.

See Also

Defunct

base-deprecated and so on which list the deprecated functions in the packages.

det Calculate the Determinant of a Matrix

Description

det calculates the determinant of a matrix. determinant is a generic function that returns
separately the modulus of the determinant, optionally on the logarithm scale, and the sign of the
determinant.

Usage

det (x, ...)
determinant (x, logarithm = TRUE, ...)

Arguments
x numeric matrix: logical matrices are coerced to numeric.
logarithm logical; if TRUE (default) return the logarithm of the modulus of the determi-
nant.
Optional arguments. At present none are used. Previous versions of det al-
lowed an optional method argument. This argument will be ignored but will
not produce an error.
Details

The determinant function uses an LU decomposition and the det function is simply a wrapper
around a call to determinant.

Often, computing the determinant is not what you should be doing to solve a given problem.

156 detach

Value

For det, the determinant of x. For determinant, a list with components

modulus a numeric value. The modulus (absolute value) of the determinant if
logarithmis FALSE; otherwise the logarithm of the modulus.

sign integer; either +1 or —1 according to whether the determinant is positive or
negative.
Examples
(x <-— matrix(1l:4, ncol = 2))
unlist (determinant (x))
det (x)

det (print (cbind (1, 1:3, c(2,0,1))))

detach Detach Objects from the Search Path

Description

Detach a database, i.e., remove it from the search () path of available R objects. Usually this is
either a data . frame which has been attached or a package which was attached by 1ibrary.

Usage

detach (name, pos = 2L, unload = FALSE, character.only = FALSE,
force = FALSE)

Arguments
name The object to detach. Defaults to search () [pos]. This can be an unquoted
name or a character string but not a character vector. If a number is supplied this
is taken as pos.
pos Index position in search () of the database to detach. When name is a num-
ber, pos = name is used.
unload A logical value indicating whether or not to attempt to unload the names-

pace when a package is being detached. If the package has a namespace and
unload is TRUE, then detach will attempt to unload the namespace via
unloadNamespace: if the namespace is imported by another namespace or
unload is FALSE, no unloading will occur.

character.only
a logical indicating whether name can be assumed to be a character string.

force logical: should a package be detached even though other attached packages de-
pend on it?

detach 157

Details

This is most commonly used with a single number argument referring to a position on the search
list, and can also be used with a unquoted or quoted name of an item on the search list such as
package:tools.

If a package has a namespace, detaching it does not by default unload the namespace (and may
not even with unload = TRUE), and detaching will not in general unload any dynamically loaded
compiled code (DLLs); see getLoadedDLLs and library.dynam.unload. Further, regis-
tered S3 methods from the namespace will not be removed, and because S3 methods are not tagged
to their source on registration, it is in general not possible to safely un-register the methods asso-
ciated with a given package. If you use 1ibrary on a package whose namespace is loaded, it
attaches the exports of the already loaded namespace. So detaching and re-attaching a package may
not refresh some or all components of the package, and is inadvisable. The most reliable way to
completely detach a package is to restart R.

Value

The return value is invisible. It is NULL when a package is detached, otherwise the environment
which was returned by attach when the object was attached (incorporating any changes since it
was attached).

Good practice

detach () without an argument removes the first item on the search path after the workspace. It
is all too easy to call it too many or too few times, or to not notice that the search path has changed
since an attach call.

Use of attach/detach is best avoided in functions (see the help for at tach) and in interactive
use and scripts it is prudent to detach by name.

Note

You cannot detach either the workspace (position 1) nor the base package (the last item in the search
list), and attempting to do so will throw an error.

Unloading some namespaces has undesirable side effects: e.g. unloading grid closes all graphics
devices, and on some systems teltk cannot be reloaded once it has been unloaded and may crash R
if this is attempted.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

attach, library, search, objects, unloadNamespace, library.dynam.unload.

158

Examples

require (splines) # package
detach (package:splines)

or also
library(splines)

pkg <- "package:splines"

detach (pkg, character.only = TRUE)

careful: do not do this unless 'splines'

library(splines)
detach (2) # 'pos' used for 'name'

an example of the name argument to attach
and of detaching a database named by a character vector

attach_and_detach <- function(db, pos

{

}

name <- deparsel (substitute (db))
attach(db, pos = pos, name = name)
print (search () [pos])

detach (name, character.only = TRUE)

attach_and_detach (women, pos = 3)

is not already attached.

diag

diag

Matrix Diagonals

Description

Extract or replace the diagonal of a matrix, or construct a diagonal matrix.

Usage

diag(x = 1, nrow, ncol, names = TRUE)

diag(x) <- wvalue

Arguments

X

nrow, ncol

names

value

a matrix, vector or 1D array, or missing.

optional dimensions for the result when x is not a matrix.

(when x is a matrix) logical indicating if the resulting vector, the diagonal of x,
should inherit names from dimnames (x) if available.

either a single value or a vector of length equal to that of the current diagonal.
Should be of a mode which can be coerced to that of x.

diag 159

Details
diag has four distinct usages:

1. x is a matrix, when it extracts the diagonal.
2. x is missing and nrow is specified, it returns an identity matrix.

3. x is a scalar (length-one vector) and the only argument, it returns a square identity matrix of
size given by the scalar.

4. x is a ‘numeric’ (complex, numeric, integer, logical, or raw) vector, either of
length at least 2 or there were further arguments. This returns a matrix with the given diagonal
and zero off-diagonal entries.

It is an error to specify nrow or ncol in the first case.

Value

If x is a matrix then diag (x) returns the diagonal of x. The resulting vector will have names if
the matrix x has matching column and rownames.

The replacement form sets the diagonal of the matrix x to the given value(s).

In all other cases the value is a diagonal matrix with nrow rows and ncol columns (if ncol is not
given the matrix is square). Here nrow is taken from the argument if specified, otherwise inferred
from x: if that is a vector (or 1D array) of length two or more, then its length is the number of rows,
but if it is of length one and neither nrow nor ncol is specified, nrow = as.integer (x).

When a diagonal matrix is returned, the diagonal elements are one except in the fourth case, when
x gives the diagonal elements: it will be recycled or truncated as needed, but fractional recycling
and truncation will give a warning.

Note
Using diag (x) can have unexpected effects if x is a vector that could be of length one. Use
diag (x,nrow = length (x)) for consistent behaviour.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

upper.tri, lower.tri,matrix.

Examples
dim(diag(3))
diag (10, 3, 4) # guess what?
all(diag(l:3) == {m <- matrix(0,3,3); diag(m) <- 1:3; m})

other "numeric"-like diagonal matrices
diag(c(1li,21i)) # complex

160 diff

) # logical
1:3)) # raw
2:1, 4)); typeof(D2) # "integer"

diag (TRUE, 3
diag(as.raw(
(D2 <- diag(
require (stats)

diag(<var—-cov-matrix>) = variances
diag(var(M <- cbind(X = 1:5, Y = rnorm(5))))
#-> vector with names "X" and "Y"
rownames (M) <- c(colnames (M), rep("", 3))

M; diag(M) # named as well

diag (M, names = FALSE) # w/o names

diff Lagged Differences

Description

Returns suitably lagged and iterated differences.
Usage
diff(x, ...)

Default S3 method:
diff(x, lag = 1, differences = 1, ...)

S3 method for class 'POSIXt'
diff(x, lag = 1, differences =1, ...)

S3 method for class 'Date'

diff(x, lag = 1, differences =1, ...)

Arguments
X a numeric vector or matrix containing the values to be differenced.
lag an integer indicating which lag to use.

differences aninteger indicating the order of the difference.

further arguments to be passed to or from methods.

Details

diff is a generic function with a default method and ones for classes "ts", "POSIXt" and
"Date".

NA’s propagate.

difftime 161

Value

If x is a vector of length n and differences = 1, then the computed result is equal to the
successive differences x [(1+1ag) :n] —x[1: (n-lag)].

If difference is larger than one this algorithm is applied recursively to x. Note that the returned
value is a vector which is shorter than x.

If x is a matrix then the difference operations are carried out on each column separately.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

diff.ts,diffinv.

Examples

diff(1:10, 2)

diff(1:10, 2, 2)

x <— cumsum (cumsum(1:10))
diff(x, lag = 2)

diff (x, differences = 2)

diff (.leap.seconds)

difftime Time Intervals / Differences

Description
Time intervals creation, printing, and some arithmetic. The print () method calls these “time
differences”.
Usage
timel - time2
difftime (timel, time2, tz,

units = c("auto", "secs", "mins", "hours",
"days", "weeks"))

as.difftime (tim, format = "%$X", units = "auto", tz = "UTC")
S3 method for class 'difftime'

format (x, ...)
S3 method for class 'difftime'

162 difftime

units (x)

S3 replacement method for class 'difftime'
units(x) <- wvalue

S3 method for class 'difftime'
as.double (x, units = "auto", ...)

Group methods, notably for round(), signif (), floor(),

ceiling(), trunc(), abs(); called directly, xnotx as Math():
S3 method for class 'difftime'

Math (x, ...)

Arguments

timel, time2 date-time or date objects.

tz an optional time zone specification to be used for the conversion, mainly for
"POSIX1t" objects.

units character string. Units in which the results are desired. Can be abbreviated.

value character string. Like units, except that abbreviations are not allowed.

tim character string or numeric value specifying a time interval.

format character specifying the format of t im: see st rpt ime. The default is a locale-

specific time format.
X an object inheriting from class "difftime".

arguments to be passed to or from other methods.

Details

Function di fft ime calculates a difference of two date/time objects and returns an object of class
"difftime" with an attribute indicating the units. The Math group method provides round,
signif, floor, ceiling, trunc, abs, and sign methods for objects of this class, and there
are methods for the group-generic (see Ops) logical and arithmetic operations.

If units ="auto", a suitable set of units is chosen, the largest possible (excluding "weeks")
in which all the absolute differences are greater than one.

Subtraction of date-time objects gives an object of this class, by calling difftime with units
= "auto". Alternatively, as.difftime () works on character-coded or numeric time intervals;
in the latter case, units must be specified, and format has no effect.

Limited arithmetic is available on "difftime" objects: they can be added or subtracted, and
multiplied or divided by a numeric vector. In addition, adding or subtracting a numeric vector by
a"difftime" object implicitly converts the numeric vector to a "difftime" object with the
same units as the "difftime" object. There are methods for mean and sum (via the Summary
group generic), and diff via diff.default building on the "difftime" method for arith-
metic, notably —.

The units of a "difftime" object can be extracted by the units function, which also has a
replacement form. If the units are changed, the numerical value is scaled accordingly. The replace-
ment version keeps attributes such as names and dimensions.

Note that units = "days" means a period of 24 hours, hence takes no account of Daylight Sav-
ings Time. Differences in objects of class "Date" are computed as if in the UTC time zone.

dim 163

The as.double method returns the numeric value expressed in the specified units. Using units
= "auto" means the units of the object.

The format method simply formats the numeric value and appends the units as a text string.

Note

Units such as "months" are not possible as they are not of constant length. To create intervals of
months, quarters or years use seq.Date or seq.POSIXt.

See Also

DateTimeClasses.

Examples

(z <- Sys.time () - 3600)
Sys.time() - z # just over 3600 seconds.

time interval between release days of R 1.2.2 and 1.2.3.
ISOdate (2001, 4, 26) - ISOdate (2001, 2, 26)

as.difftime(c("0:3:20", "11:23:15"))

as.difftime(c("3:20", "23:15", "2:"), format = "$H:%M") # 3rd gives NA
(z <= as.difftime(c(0,30,60), units = "mins"))

as.numeric(z, units = "secs")

as.numeric(z, units = "hours")

format (z)

dim Dimensions of an Object

Description

Retrieve or set the dimension of an object.

Usage

dim (x)
dim(x) <- value

Arguments
X an R object, for example a matrix, array or data frame.
value For the default method, either NULL or a numeric vector, which is coerced to

integer (by truncation).

164 dimnames

Details

The functions dim and dim<- are internal generic primitive functions.

dim has a method for data . f rames, which returns the lengths of the row . names attribute of x
and of x (as the numbers of rows and columns respectively).

Value

For an array (and hence in particular, for a matrix) dim retrieves the dim attribute of the object. It
is NULL or a vector of mode integer.

The replacement method changes the "dim" attribute (provided the new value is compatible) and
removes any "dimnames" and "names" attributes.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

ncol, nrow and dimnames.

Examples

x <= 1:12 ; dim(x) <- c(3,4)
X

simple versions of nrow and ncol could be defined as follows
nrow0 <- function(x) dim(x) [1]
ncol0 <- function(x) dim(x) [2]

dimnames Dimnames of an Object

Description

Retrieve or set the dimnames of an object.

Usage

dimnames (x)
dimnames (x) <- value

provideDimnames (x, sep = "", base = list (LETTERS), unique = TRUE)

dimnames 165

Arguments
X an R object, for example a matrix, array or data frame.
value a possible value for dimnames (x) : see the ‘Value’ section.
sep a character string, used to separate base symbols and digits in the constructed
dimnames.
base a non-empty 11ist of character vectors. The list components are used in turn
(and recycled when needed) to construct replacements for empty dimnames
components. See also the examples.
unique logical indicating that the dimnames constructed are unique within each dimen-
sion in the sense of make .unique.
Details

The functions dimnames and dimnames<- are generic.

For an array (and hence in particular, for a mat rix), they retrieve or set the dimnames attribute
(see attributes) of the object. A list value can have names, and these will be used to label the
dimensions of the array where appropriate.

The replacement method for arrays/matrices coerces vector and factor elements of value to char-
acter, but does not dispatch methods for as.character. It coerces zero-length elements to
NULL, and a zero-length list to NULL. If value is a list shorter than the number of dimensions, it
is extended with NULLs to the needed length.

Both have methods for data frames. The dimnames of a data frame are its row.names
and its names. For the replacement method each component of value will be coerced by
as.character.

For a 1D matrix the names are the same thing as the (only) component of the dimnames.
Both are primitive functions.

provideDimnames (x) provides dimnames where “missing”, such that its result has
character dimnames for each component. If unique is true as by default, they are unique
within each component via make .unique (%, sep=sep).

Value

The dimnames of a matrix or array can be NULL (which is not stored) or a list of the same length as
dim (x). If alist, its components are either NULL or a character vector with positive length of the
appropriate dimension of x. The list can have names. It is possible that all components are NULL:
such dimnames may get converted to NULL.

For the "data.frame" method both dimnames are character vectors, and the rownames must
contain no duplicates nor missing values.

provideDimnames (x) returns x, with “NULL - free” dimnames, i.e. each component a char-
acter vector of correct length.

Note

Setting components of the dimnames, e.g., dimnames (A) [[1]] <-value is a common
paradigm, but note that it will not work if the value assigned is NULL. Use rownames instead,
or (as it does) manipulate the whole dimnames list.

166

References

do.call

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &

Brooks/Cole.

See Also

rownames, colnames; array,matrix, data.frame.

Examples

simple versions of rownames and colnames
could be defined as follows

rownames(0 <- function(x) dimnames (x) [[1]]
colnames0 <- function(x) dimnames (x) [

(dn <- dimnames (A <- provideDimnames (N <- array(l:24, dim = 2:4))))

A0 <- A; dimnames (A) [2:3] <- list (NULL)

stopifnot (identical (A0, provideDimnames (A)))

strd <- function(x) utils::str (dimnames (x))

strd(provideDimnames (A, base= list (letters[-(1:9)], tail (LETTERS))))
strd(provideDimnames (N, base= list (letters[-(1:9)], tail (LETTERS)))) # recycling

strd(provideDimnames (A, base= list (c("AA","BB")))) # recycling on both levels
set "empty dimnames":
provideDimnames (rbind (1, 2:3), base = 1list(""), unique=FALSE)

do.call Execute a Function Call

Description

do.call constructs and executes a function call from a name or a function and a list of arguments

to be passed to it.

Usage

do.call (what,

Arguments

what

args

quote

envir

args, quote = FALSE, envir = parent.frame())

either a function or a non-empty character string naming the function to be
called.

a list of arguments to the function call. The names attribute of args gives the
argument names.

a logical value indicating whether to quote the arguments.

an environment within which to evaluate the call. This will be most useful if
what is a character string and the arguments are symbols or quoted expressions.

do.call 167

Details

If quote is FALSE, the default, then the arguments are evaluated (in the calling environment, not
in envir). If quote is TRUE then each argument is quoted (see quote) so that the effect of
argument evaluation is to remove the quotes — leaving the original arguments unevaluated when the
call is constructed.

The behavior of some functions, such as subst itute, will not be the same for functions evaluated
using do . call as if they were evaluated from the interpreter. The precise semantics are currently
undefined and subject to change.

Value

The result of the (evaluated) function call.

Warning

This should not be used to attempt to evade restrictions on the use of . Internal and other non-
API calls.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

call which creates an unevaluated call.

Examples

do.call ("complex", list (imaginary = 1:3))

if we already have a list (e.g., a data frame)
we need c() to add further arguments

tmp <- expand.grid(letters([1:2], 1:3, c("+", "-"))
do.call ("paste", c(tmp, sep = ""))

do.call (paste, list (as.name("A"), as.name("B")), gquote = TRUE)

examples of where objects will be found.
A <- 2

f <- function(x) print (x"2)

env <- new.env ()

assign("A", 10, envir = env)

assign("f", £, envir = env)

f <- function(x) print (x)

f(n) # 2
do.call("f", list(A)) # 2
do.call("f", list(A), envir = env) + 4
do.call(£, 1list(A), envir = env) # 2
do.call("f", list(quote(A)), envir = env) # 100

168 dots

do.call(£, list (quote(A)), envir = env) # 10

do.call("f", list(as.name("A")), envir = env) # 100
eval (call("f", A)) # 2
eval (call("f", quote(A))) # 2
eval (call("f", A), envir = env) # 4
eval (call("f", quote(A)), envir = env) # 100
dontCheck Identity Function to Suppress Checking
Description

The dontCheck function is the same as identity, but is interpreted by R CMD check
code analysis as a directive to suppress checking of x. Currently this is only used by
checkFF (registration = TRUE) when checking the .NAME argument of foreign function
calls.

Usage

dontCheck (x)

Arguments

x an R object.

See Also

suppressForeignCheck which explains why that and dontCheck are undesirable and
should be avoided if at all possible.

dots ..., . .1, etc used in Functions

Description

...and ..1, ..2 etc are used to refer to arguments passed down from a calling function. These
(and the following) can only be used inside a function which has . . . among its formal arguments.

...elt(n) 1is a functional way to get ..<n> and basically the same as
eval (paste0("..",n)), just more elegant and efficient. Note that switch(n, ...)
is very close, differing by returning NULL invisibly instead of an error when n is zero or too large.
...length () returns the number of expressions in . . ., and . ..names () the names. These
are the same as length (list (...)) or names (list (...)) but without evaluating the
expressions in . . . (which happens with 1ist (...)).

Evaluating elements of ... with ..1, ..2, ...elt (n), etc. propagates visibility. This is

consistent with the evaluation of named arguments which also propagates visibility.

double 169
Usage
...length ()
.. .names ()
...elt (n)
Arguments
n a positive integer, not larger than the number of expressions in ..., which is the
same as . . .length () whichis the same as length (1ist (...)), butthe
latter evaluates all expressions in
See Also
.and . .1, ..2 are reserved words in R, see Reserved.

For more, see the ‘Introduction to R’ manual for usage of these syntactic elements, and dotsMethods

for their use in formal (S4) methods.

Examples
tst <- function(n, ...) ...elt(n)
tst(l, pi=pix0:1, 2:4) ## [1] 0.000000 3.141593
tst (2, pi=pix0:1, 2:4) ## [1] 2 3 4
try(tst(l)) # -> Error about '...' not containing an element.
tst.dl <- function(x, ...) ...length()
tst.dns <- function(x, ...) . .names ()
tst.dl(1:10) # 0 (because the first argument is 'x')
tst.dl (4, 5) # 1
tst.dl(4, 5, 6) # 2 namely '5, 6'
tst.dl(4, 5, 6, 7, sin(1:10), "foo"/"bar") # 5. Note: no evaluation!
tst.dns (4, foo=5, 6, bar=7, sini = sin(1:10), "foo"/"bar")
"foo" NA "bar" "sini" NA
double Double-Precision Vectors
Description

Create, coerce to or test for a double-precision vector.

Usage

double (length
as.double(x, ...)
is.double (x)

single (length =
as.single(x, ...)

170 double

Arguments
length A non-negative integer specifying the desired length. Double values will be
coerced to integer: supplying an argument of length other than one is an error.
X object to be coerced or tested.
further arguments passed to or from other methods.
Details

double creates a double-precision vector of the specified length. The elements of the vector are
all equal to 0. It is identical to numeric.

as.double is a generic function. It is identical to as.numeric. Methods should return an
object of base type "double".

is.double is a test of double type.

R has no single precision data type. All real numbers are stored in double precision format. The
functions as . single and single are identical to as.double and double except they set the
attribute Csingle that is used in the .C and .Fortran interface, and they are intended only to
be used in that context.

Value

double creates a double-precision vector of the specified length. The elements of the vector are
all equal to 0.

as.double attempts to coerce its argument to be of double type: like as.vector it strips at-
tributes including names. (To ensure that an object is of double type without stripping attributes, use
storage.mode.) Character strings containing optional whitespace followed by either a decimal
representation or a hexadecimal representation (starting with 0x or 0X) can be converted, as can
special values such as "NA", "NaN", "Inf" and "infinity", irrespective of case.

as.double for factors yields the codes underlying the factor levels, not the numeric representation
of the labels, see also factor.

is.double returns TRUE or FALSE depending on whether its argument is of double type or not.

Double-precision values

All R platforms are required to work with values conforming to the IEC 60559 (also known as IEEE
754) standard. This basically works with a precision of 53 bits, and represents to that precision a
range of absolute values from about 2 x 107398 to 2 x 10398, It also has special values NaN (many
of them), plus and minus infinity and plus and minus zero (although R acts as if these are the same).
There are also denormal(ized) (or subnormal) numbers with absolute values above or below the
range given above but represented to less precision.

See .Machine for precise information on these limits. Note that ultimately how double precision
numbers are handled is down to the CPU/FPU and compiler.

In IEEE 754-2008/IEC60559:2011 this is called ‘binary64’ format.

dput 171

Note on names

It is a historical anomaly that R has two names for its floating-point vectors, double and numeric
(and formerly had real).

double is the name of the type. numeric is the name of the mode and also of the implicit class.
As an S4 formal class, use "numeric".

The potential confusion is that R has used mode "numeric" to mean ‘double or integer’, which
conflicts with the S4 usage. Thus is.numeric tests the mode, not the class, but as.numeric
(which is identical to as . double) coerces to the class.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

https://en.wikipedia.org/wiki/IEEE_754-1985, https://en.wikipedia.
org/wiki/IEEE_754-2008, https://en.wikipedia.org/wiki/IEEE_
754-2019, https://en.wikipedia.org/wiki/Double_precision, https:
//en.wikipedia.org/wiki/Denormal_number.

See Also

integer, numeric, storage.mode.

Examples

is.double (1)
all (double (3) == 0)

dput Write an Object to a File or Recreate it

Description
Writes an ASCII text representation of an R object to a file, the R console, or a connection, or uses
one to recreate the object.

Usage

dput (x, file
control = c("keepNA", "keepInteger", "niceNames", "showAttributes"))

nmnn
4

dget (file, keep.source = FALSE)

https://en.wikipedia.org/wiki/IEEE_754-1985
https://en.wikipedia.org/wiki/IEEE_754-2008
https://en.wikipedia.org/wiki/IEEE_754-2008
https://en.wikipedia.org/wiki/IEEE_754-2019
https://en.wikipedia.org/wiki/IEEE_754-2019
https://en.wikipedia.org/wiki/Double_precision
https://en.wikipedia.org/wiki/Denormal_number
https://en.wikipedia.org/wiki/Denormal_number

172 dput

Arguments
x an object.
file either a character string naming a file or a connection. " " indicates output to the
console.
control character vector indicating deparsing options. See .deparseOpts for their
description.

keep.source logical: should the source formatting be retained when parsing functions, if
possible?

Details

dput opens £ile and deparses the object x into that file. The object name is not written (unlike
dump). If x is a function the associated environment is stripped. Hence scoping information can be
lost.

Deparsing an object is difficult, and not always possible. With the default control, dput ()
attempts to deparse in a way that is readable, but for more complex or unusual objects (see dump),
not likely to be parsed as identical to the original. Use control = "all" for the most complete
deparsing; use control = NULL for the simplest deparsing, not even including attributes.

dput will warn if fewer characters were written to a file than expected, which may indicate a full
or corrupt file system.

To display saved source rather than deparsing the internal representation include "useSource" in
control. R currently saves source only for function definitions. If you do not care about source
representation (e.g., for a data object), for speed set options (keep.source = FALSE) when
calling source.

Value

For dput, the first argument invisibly.
For dget, the object created.

Note

This is not a good way to transfer objects between R sessions. dump is better, but the functions
save and saveRDS are designed to be used for transporting R data, and will work with R objects
that dput does not handle correctly as well as being much faster.

To avoid the risk of a source attribute out of sync with the actual function definition, the source
attribute of a function will never be written as an attribute.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

deparse, dump, write.

drop 173

Examples

fil <- tempfile()

Write an ASCII version of the 'base' function mean() to our temp file,
dput (base::mean, fil)
... read it back into 'bar' and confirm it is the same

bar <- dget (fil)
stopifnot (all.equal (bar, base::mean, check.environment = FALSE))

Create a function with comments
baz <- function(x) {
Subtract from one
1-x
}
and display it

dput (baz)
and now display the saved source
dput (baz, control = "useSource")

Numeric values:
xx <— pi”(1:3)

dput (xx)

dput (xx, control = "digitsl7")

dput (xx, control = "hexNumeric")

dput (xx, fil); dget (fil) - xx # slight rounding on all platforms
dput (xx, fil, control = "digitsl7")

dget (fil) - xx # slight rounding on some platforms

dput (xx, fil, control = "hexNumeric"); dget (fil) - xx

unlink (£i1)

xn <- setNames (xx, pasteO("pi~",1:3))

dput (xn) # nicer, now "niceNames" being part of default 'control'
dput (xn, control = "S_compat") # no names

explicitly asking for output as in R < 3.5.0:

dput (xn, control = c("keepNA", "keepInteger", "showAttributes"))

drop Drop Redundant Extent Information

Description

Delete the dimensions of an array which have only one level.

Usage

drop (x)

Arguments

X an array (including a matrix).

174 droplevels

Value

If x is an object with a dim attribute (e.g., a matrix or array), then drop returns an object like x,
but with any extents of length one removed. Any accompanying dimnames attribute is adjusted
and returned with x: if the result is a vector the names are taken from the dimnames (if any). If
the result is a length-one vector, the names are taken from the first dimension with a dimname.

Array subsetting ([) performs this reduction unless used with drop = FALSE, but sometimes it is
useful to invoke drop directly.

See Also

dropl which is used for dropping terms in models.

Examples

dim(drop (array(1:12, dim = c¢(1,3,1,1,2,1,2)))) # =3 2 2
drop(l:3 %$x% 2:4) # scalar product

droplevels Drop Unused Levels from Factors

Description

The function droplevels is used to drop unused levels from a factor or, more commonly,
from factors in a data frame.

Usage
S3 method for class 'factor'
droplevels (x, exclude = if (anyNA(levels(x))) NULL else NA, ...)
S3 method for class 'data.frame'
droplevels (x, except, exclude, ...)
Arguments
X an object from which to drop unused factor levels.
exclude passed to factor (); factor levels which should be excluded from the result

even if present. Note that this was implicitly NA in R <= 3.3.1 which did drop
NA levels even when present in x, contrary to the documentation. The current
default is compatible with x [, drop=TRUE].

further arguments passed to methods

except indices of columns from which not to drop levels

Details

The method for class "factor" is currently equivalent to factor (x, exclude=exclude).
For the data frame method, you should rarely specify exclude “globally” for all factor columns;
rather the default uses the same factor-specific exclude as the factor method itself.

The except argument follow the usual indexing rules.

dump 175

Value

droplevels returns an object of the same class as x

Note

This function was introduced in R 2.12.0. It is primarily intended for cases where one or more
factors in a data frame contains only elements from a reduced level set after subsetting. (Notice that
subsetting does not in general drop unused levels). By default, levels are dropped from all factors in
a data frame, but the except argument allows you to specify columns for which this is not wanted.

See Also

subset for subsetting data frames. factor for definition of factors. drop for dropping array
dimensions. drop1l for dropping terms from a model. [. factor for subsetting of factors.

Examples

aqg <- transform(airquality, Month = factor (Month, labels = month.abb[5:9]))
ag <- subset (ag, Month != "Jul")

table (ag $Month)

table (droplevels (ag) SMonth)

dump Text Representations of R Objects

Description

This function takes a vector of names of R objects and produces text representations of the objects
on a file or connection. A dump file can usually be sourced into another R session.

Usage
dump (1list, file = "dumpdata.R", append = FALSE,
control = "all", envir = parent.frame(), evaluate = TRUE)
Arguments
list character vector. The names of one or more R objects to be dumped.
file either a character string naming a file or a connection. " " indicates output to the
console.
append if TRUE and file is a character string, output will be appended to £i1le; oth-
erwise, it will overwrite the contents of £ile.
control character vector indicating deparsing options. See .deparseOpts for their
description.
envir the environment to search for objects.

evaluate logical. Should promises be evaluated?

176 dump

Details

If some of the objects named do not exist (in scope), they are omitted, with a warning. If fileisa
file and no objects exist then no file is created.

sourceing may not produce an identical copy of dumped objects. A warning is issued if it is likely
that problems will arise, for example when dumping exotic or complex objects (see the Note).

dump will also warn if fewer characters were written to a file than expected, which may indicate a
full or corrupt file system.

A dump file can be sourced into another R (or perhaps S) session, but the functions save and
saveRDS are designed to be used for transporting R data, and will work with R objects that dump
does not handle. For maximal reproducibility use control = c ("all", "hexNumeric").

To produce a more readable representation of an object, use control = NULL. This will skip
attributes, and will make other simplifications that make source less likely to produce an identical
copy. See deparse for details.

To deparse the internal representation of a function rather than displaying the saved source, use
control =c ("keepInteger", "warnIncomplete", "keepNA"). This will lose all for-
matting and comments, but may be useful in those cases where the saved source is no longer correct.

Promises will normally only be encountered by users as a result of lazy-loading (when the de-
fault evaluate = TRUE is essential) and after the use of delayedAssign, when evaluate
= FALSE might be intended.

Value

An invisible character vector containing the names of the objects which were dumped.

Note

As dump is defined in the base namespace, the base package will be searched before the global
environment unless dump is called from the top level prompt or the envir argument is given
explicitly.

To avoid the risk of a source attribute becoming out of sync with the actual function definition, the
source attribute of a function will never be dumped as an attribute.

Currently environments, external pointers, weak references and objects of type S4 are not deparsed
in a way that can be sourced. In addition, language objects are deparsed in a simple way what-
ever the value of control, and this includes not dumping their attributes (which will result in a
warning).

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

.deparseOpts for available control settings; dput (), dget () and deparse () for re-
lated functions using identical internal deparsing functionality.

write,write.table, etc for “dumping” data to (text) files.

duplicated 177
save and saveRDS for a more reliable way to save R objects.
Examples

x <= 1; y <= 1:10
fil <- tempfile(fileext=".Rdmped")

dump (1ls (pattern = '"*[xyz]'), fil)
print (.Last.value)
unlink (£i1)
duplicated Determine Duplicate Elements
Description

duplicated () determines which elements of a vector or data frame are duplicates of elements
with smaller subscripts, and returns a logical vector indicating which elements (rows) are duplicates.

anyDuplicated(.) is a “generalized” more efficient version any (duplicated(.)), re-
turning positive integer indices instead of just TRUE.

Usage

duplicated(x, incomparables = FALSE, ...)

Default S3 method:
duplicated(x, incomparables = FALSE,
fromLast = FALSE, nmax = NA, ...)

S3 method for class 'array'
duplicated(x, incomparables = FALSE, MARGIN = 1,
fromLast = FALSE, ...)

anyDuplicated(x, incomparables = FALSE, ...)

Default S3 method:

anyDuplicated(x, incomparables
fromLast = FALSE, ...)

S3 method for class 'array'

anyDuplicated(x, incomparables = FALSE,
MARGIN = 1, fromLast = FALSE, ...)

FALSE,

Arguments

X a vector or a data frame or an array or NULL.

incomparables
a vector of values that cannot be compared. FALSE is a special value, meaning
that all values can be compared, and may be the only value accepted for methods
other than the default. It will be coerced internally to the same type as x.

178 duplicated

fromLast logical indicating if duplication should be considered from the reverse side, i.e.,
the last (or rightmost) of identical elements would correspond to duplicated
=FALSE.

nmax the maximum number of unique items expected (greater than one).

arguments for particular methods.

MARGIN the array margin to be held fixed: see apply, and note that MARGIN = 0 may
be useful.

Details

These are generic functions with methods for vectors (including lists), data frames and arrays (in-
cluding matrices).

For the default methods, and whenever there are equivalent method definitions for
duplicated and anyDuplicated, anyDuplicated(x, ...) is a “generalized” shortcut
for any (duplicated(x, ...)), in the sense that it returns the index i of the first duplicated
entry x [1] if there is one, and 0 otherwise. Their behaviours may be different when at least one of
duplicated and anyDuplicated has a relevant method.

duplicated (x, fromLast = TRUE) is equivalent to but faster than
rev (duplicated (rev(x))).

The array method calculates for each element of the sub-array specified by MARGIN if the remaining
dimensions are identical to those for an earlier (or later, when fromLast = TRUE) element (in
row-major order). This would most commonly be used to find duplicated rows (the default) or
columns (with MARGIN = 2). Note that MARGIN = O returns an array of the same dimensionality
attributes as x.

Missing values ("NA") are regarded as equal, numeric and complex ones differing from NaN; char-
acter strings will be compared in a “common encoding”; for details, see match (and unique)
which use the same concept.

Values in incomparables will never be marked as duplicated. This is intended to be used for a
fairly small set of values and will not be efficient for a very large set.

Except for factors, logical and raw vectors the default nmax = NA is equivalent to nmax =
length (x). Since a hash table of size 8 nmax bytes is allocated, setting nmax suitably can
save large amounts of memory. For factors it is automatically set to the smaller of length (x)
and the number of levels plus one (for NA). If nmax is set too small there is liable to be an error:
nmax = 1 is silently ignored.

Long vectors are supported for the default method of duplicated, but may only be usable if
nmax is supplied.

Value

duplicated(): For a vector input, a logical vector of the same length as x. For a data frame,
a logical vector with one element for each row. For a matrix or array, and when MARGIN = 0, a
logical array with the same dimensions and dimnames.

anyDuplicated (): an integer or real vector of length one with value the 1-based index of the
first duplicate if any, otherwise 0.

dyn.load 179

Warning

Using this for lists is potentially slow, especially if the elements are not atomic vectors (see
vector) or differ only in their attributes. In the worst case it is O(n?).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

unique.

Examples

x <= c¢(9:20, 1:5, 3:7, 0:8)

extract unique elements

(xu <—- x[!duplicated(x)])

similar, same elements but different order:
(xu2 <- x[!duplicated(x, fromLast = TRUE)])

xu == unique (x) but unique (x) is more efficient
stopifnot (identical (xu, unique(x)),
identical (xu2, unique (x, fromLast = TRUE)))

duplicated(iris) [140:143]

duplicated(iris3, MARGIN = c (1, 3))
anyDuplicated (iris) ## 143

anyDuplicated (x)
anyDuplicated(x, fromLast = TRUE)

dyn.load Foreign Function Interface

Description
Load or unload DLLs (also known as shared objects), and test whether a C function or Fortran
subroutine is available.

Usage

dyn.load(x, local = TRUE, now = TRUE, ...)
dyn.unload (x)

is.loaded (symbol, PACKAGE = "", type = "")

180 dyn.load

Arguments

X a character string giving the pathname to a DLL, also known as a dynamic shared
object. (See ‘Details’ for what these terms mean.)

local a logical value controlling whether the symbols in the DLL are stored in their
own local table and not shared across DLLs, or added to the global symbol table.
Whether this has any effect is system-dependent.

now a logical controlling whether all symbols are resolved (and relocated) immedi-
ately the library is loaded or deferred until they are used. This control is useful
for developers testing whether a library is complete and has all the necessary
symbols, and for users to ignore missing symbols. Whether this has any effect
is system-dependent.

other arguments for future expansion.
symbol a character string giving a symbol name.

PACKAGE if supplied, confine the search for the name to the DLL given by this argument
(plus the conventional extension, ‘.so’, ‘.s1’, *.d11’,...). This is intended
to add safety for packages, which can ensure by using this argument that no
other package can override their external symbols. This is used in the same way
asin .C, .Call, .Fortran and .External functions.

type The type of symbol to look for: can be any ("", the default), "Fortran",
"Call" or "External".

Details

The objects dyn.load loads are called ‘dynamically loadable libraries’ (abbreviated to ‘DLL’)
on all platforms except macOS, which uses the term for a different sort of object. On Unix-alikes
they are also called ‘dynamic shared objects’ (‘DSO’), or ‘shared objects’ for short. (The POSIX
standards use ‘executable object file’, but no one else does.)

See ‘See Also’ and the ‘Writing R Extensions’ and ‘R Installation and Administration’ manuals for
how to create and install a suitable DLL.

Unfortunately a very few platforms (e.g., Compaq Tru64) do not handle the PACKAGE argument
correctly, and may incorrectly find symbols linked into R.

The additional arguments to dyn . load mirror the different aspects of the mode argument to the
dlopen () routine on POSIX systems. They are available so that users can exercise greater control
over the loading process for an individual library. In general, the default values are appropriate and
you should override them only if there is good reason and you understand the implications.

The local argument allows one to control whether the symbols in the DLL being attached are
visible to other DLLs. While maintaining the symbols in their own namespace is good practice, the
ability to share symbols across related ‘chapters’ is useful in many cases. Additionally, on certain
platforms and versions of an operating system, certain libraries must have their symbols loaded
globally to successfully resolve all symbols.

One should be careful of the potential side-effect of using lazy loading via the now argument as
FALSE. If a routine is called that has a missing symbol, the process will terminate immediately.
The intended use is for library developers to call with value TRUE to check that all symbols are
actually resolved and for regular users to call with FALSE so that missing symbols can be ignored
and the available ones can be called.

dyn.load 181

The initial motivation for adding these was to avoid such termination in the _init () routines
of the Java virtual machine library. However, symbols loaded locally may not be (read probably)
available to other DLLs. Those added to the global table are available to all other elements of the
application and so can be shared across two different DLLs.

Some (very old) systems do not provide (explicit) support for local/global and lazy/eager symbol
resolution. This can be the source of subtle bugs. One can arrange to have warning messages
emitted when unsupported options are used. This is done by setting either of the options verbose
or warn to be non-zero via the opt ions function.

There is a short discussion of these additional arguments with some example code available at
http://www.stat.ucdavis.edu/~duncan/R/dynload/.

Value

The function dyn. load is used for its side effect which links the specified DLL to the executing
R image. Callsto .C, .Call, .Fortranand .External can then be used to execute compiled
C functions or Fortran subroutines contained in the library. The return value of dyn.load is an
object of class DLLInfo. See get LoadedDLLs for information about this class.

The function dyn.unload unlinks the DLL. Note that unloading a DLL and then re-loading a
DLL of the same name may or may not work: on Solaris it uses the first version loaded. Note also
that some DLLs cannot be safely unloaded at all: unloading a DLL which implements C finalizers
but does not unregister them on unload causes R to crash.

is.loaded checks if the symbol name is loaded and searchable and hence available for use as
a character string value for argument .NAME in .C or .Fortranor .Call or .External. It
will succeed if any one of the four calling functions would succeed in using the entry point unless
type is specified. (See .Fortran for how Fortran symbols are mapped.) Note that symbols in
base packages are not searchable, and other packages can be so marked.

Warning

Do not wuse dyn.unload on a DLL loaded by library.dynam: use
library.dynam.unload. This is needed for system housekeeping.

Note

is.loaded requires the name you would give to .C etc and not (as in S) that remapped by the
defunct functions symbol.C or symbol.For.

By default, the maximum number of DLLs that can be loaded is now 614 when the OS limit on the
number of open files allows or can be increased, but less otherwise (but it will be at least 100). A
specific maximum can be requested via the environment variable R_MAX_NUM_DLLS, which has to
be set (to a value between 100 and 1000 inclusive) before starting an R session. If the OS limit on the
number of open files does not allow using this maximum and cannot be increased, R will fail to start
with an error. The maximum is not allowed to be greater than 60% of the OS limit on the number
of open files (essentially unlimited on Windows, on Unix typically 1024, but 256 on macOS). The
limit can sometimes (including on macOS) be modified using command ulimit —n (sh, bash)
or limit descriptors (csh) in the shell used to launch R. Increasing R_MAX_NUM_DLLS
comes with some memory overhead.

If the OS limit on the number of open files cannot be determined, the DLL limit is 100 and cannot
be changed via R_MAX_NUM_DLLS.

http://www.stat.ucdavis.edu/~duncan/R/dynload/

182 eapply

The creation of DLLs and the runtime linking of them into executing programs is very platform de-
pendent. In recent years there has been some simplification in the process because the C subroutine
call dlopen has become the POSIX standard for doing this. Under Unix-alikes dyn.load uses
the dlopen mechanism and should work on all platforms which support it. On Windows it uses
the standard mechanism (LoadLibrary) for loading DLLs.

The original code for loading DLLs in Unix-alikes was provided by Heiner Schwarte.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

library.dynam to be used inside a package’s . onLoad initialization.
SHLIB for how to create suitable DLLs.

.C, .Fortran, .External, .Call.

Examples

expect all of these to be false in R >= 3.0.0.

is.loaded("supsmu") # Fortran entry point in stats
is.loaded ("supsmu", "stats", "Fortran")
is.loaded ("PDF", type = "External") # pdf() device in grDevices
eapply Apply a Function Over Values in an Environment
Description

eapply applies FUN to the named values from an environment and returns the results as a list.
The user can request that all named objects are used (normally names that begin with a dot are not).
The output is not sorted and no enclosing environments are searched.

Usage
eapply(env, FUN, ..., all.names = FALSE, USE.NAMES = TRUE)
Arguments
env environment to be used.
FUN the function to be applied, found via match. fun. In the case of functions like
+, $*%, etc., the function name must be backquoted or quoted.
optional arguments to FUN.
all.names a logical indicating whether to apply the function to all values.

USE.NAMES logical indicating whether the resulting list should have names.

eigen 183

Value

A named (unless USE .NAMES = FALSE) list. Note that the order of the components is arbitrary
for hashed environments.

See Also

environment, lapply.

Examples

require (stats)

env <—- new.env (hash = FALSE) # so the order is fixed
envSa <—- 1:10

envSbeta <- exp(-3:3)

envS$logic <- ¢ (TRUE, FALSE, FALSE, TRUE)

what have we there?

utils::1ls.str (env)

compute the mean for each list element
eapply (env, mean)
unlist (eapply (env, mean, USE.NAMES = FALSE))

median and quartiles for each element (making use of "..." passing):
eapply (env, quantile, probs = 1:3/4)
eapply (env, quantile)

eigen Spectral Decomposition of a Matrix

Description

Computes eigenvalues and eigenvectors of numeric (double, integer, logical) or complex matrices.

Usage

eigen(x, symmetric, only.values = FALSE, EISPACK = FALSE)

Arguments
X a numeric or complex matrix whose spectral decomposition is to be computed.
Logical matrices are coerced to numeric.
symmetric if TRUE, the matrix is assumed to be symmetric (or Hermitian if complex) and

only its lower triangle (diagonal included) is used. If symmetric is not speci-
fied, isSymmetric (x) is used.

only.values if TRUE, only the eigenvalues are computed and returned, otherwise both eigen-
values and eigenvectors are returned.

EISPACK logical. Defunct and ignored.

184 eigen

Details
If symmetric is unspecified, isSymmetric (x) determines if the matrix is symmetric up to
plausible numerical inaccuracies. It is surer and typically much faster to set the value yourself.
Computing the eigenvectors is the slow part for large matrices.

Computing the eigendecomposition of a matrix is subject to errors on a real-world computer: the
definitive analysis is Wilkinson (1965). All you can hope for is a solution to a problem suitably
close to x. So even though a real asymmetric x may have an algebraic solution with repeated real
eigenvalues, the computed solution may be of a similar matrix with complex conjugate pairs of
eigenvalues.

Unsuccessful results from the underlying LAPACK code will result in an error giving a positive
error code (most often 1): these can only be interpreted by detailed study of the FORTRAN code.

Value

The spectral decomposition of x is returned as a list with components

values a vector containing the p eigenvalues of x, sorted in decreasing order, according
to Mod (values) in the asymmetric case when they might be complex (even
for real matrices). For real asymmetric matrices the vector will be complex only
if complex conjugate pairs of eigenvalues are detected.

vectors either a p X p matrix whose columns contain the eigenvectors of x, or NULL if
only.values is TRUE. The vectors are normalized to unit length.

Recall that the eigenvectors are only defined up to a constant: even when the
length is specified they are still only defined up to a scalar of modulus one (the
sign for real matrices).

When only.values is not true, as by default, the result is of S3 class "eigen".

If r <—eigen(A),and V <-r$vectors; lam <-rS$values, then
A=VAV~!

(up to numerical fuzz), where A =diag (lam).

Source

eigen uses the LAPACK routines DSYEVR, DGEEV, ZHEEV and ZGEEV.

LAPACK is from https://www.netlib.org/lapack/ and its guide is listed in the refer-
ences.

References

Anderson. E. and ten others (1999) LAPACK Users’ Guide. Third Edition. SIAM.
Available on-line at https://www.netlib.org/lapack/lug/lapack_lug.html.

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Wilkinson, J. H. (1965) The Algebraic Eigenvalue Problem. Clarendon Press, Oxford.

https://www.netlib.org/lapack/
https://www.netlib.org/lapack/lug/lapack_lug.html

encodeString 185

See Also

svd, a generalization of eigen; gr, and chol for related decompositions.

To compute the determinant of a matrix, the gr decomposition is much more efficient: det.

Examples

eigen (cbind(c(1,-1), c(-1,1)))
eigen (cbind(c(1,-1), c(-1,1)), symmetric = FALSE)
same (different algorithm).

eigen(cbind (1, c(1,-1)), only.values = TRUE)

eigen (cbind (- l, 2:1)) # complex values

eigen (print (cbind(c (0, 11i), c(-11i, 0)))) # Hermite ==> real Eigenvalues
3 x 3:

eigen(cbind(1, 3:1, 1:3))
eigen(cbind (-1, c(1:2,0), 0:2)) # complex values

encodeString Encode Character Vector as for Printing

Description

encodeString escapes the strings in a character vector in the same way print.default
does, and optionally fits the encoded strings within a field width.

Usage
encodeString(x, width = 0, quote = "", na.encode = TRUE,
Justify = c("left", "right", "centre", "none"))
Arguments
X A character vector, or an object that can be coerced to one by as . character.
width integer: the minimum field width. If NULL or NA, this is taken to be the largest
field width needed for any element of x.
quote character: quoting character, if any.
na.encode logical: should NA strings be encoded?
justify character: partial matches are allowed. If padding to the minimum field width

is needed, how should spaces be inserted? justify == "none" is equivalent
to width = 0, for consistency with format .default.

186 encodeString

Details

This escapes backslash and the control characters ‘\a’ (bell), ‘\b’ (backspace), ‘\ £’ (formfeed),
‘An’ (line feed), ‘\r’ (carriage return), ‘\t’ (tab) and ‘\v’ (vertical tab) as well as any non-
printable characters in a single-byte locale, which are printed in octal notation (‘\xyz’ with leading
Zeroes).

Which characters are non-printable depends on the current locale. Windows’ reporting of printable
characters is unreliable, so there all other control characters are regarded as non-printable, and all
characters with codes 32-255 as printable in a single-byte locale. See print .default for how
non-printable characters are handled in multi-byte locales.

If quote is a single or double quote any embedded quote of the same type is escaped. Note that
justification is of the quoted string, hence spaces are added outside the quotes.

Value

A character vector of the same length as x, with the same attributes (including names and dimen-
sions) but with no class set.

Marked UTF-8 encodings are preserved.

Note

The default for width is different from format .default, which does similar things for char-
acter vectors but without encoding using escapes.

See Also

print.default

Examples

x <- "ab\bc\ndef"

print (x)
cat (x) # interprets escapes
cat (encodeString(x), "\n", sep = "") # similar to print ()

factor (x) # makes use of this to print the levels

X <_ c("a", "ab", llabcde")
encodeString(x) # width = 0: use as little as possible

(
encodeString(x, 2) # use two or more (left justified)
encodeString(x, width = NA) # left justification
encodeString(x, width = NA, justify = "c")
encodeString(x, width = NA, justify = "r")
encodeString(x, width = NA, quote = "'", Justify = "r")

Encoding 187

Encoding Read or Set the Declared Encodings for a Character Vector

Description

Read or set the declared encodings for a character vector.
Usage

Encoding (x)

Encoding(x) <- value

enc2native (x)
enc2utf8 (x)

Arguments

X A character vector.

value A character vector of positive length.
Details

Character strings in R can be declared to be encoded in "1atinl" or "UTF-8" or as "bytes".
These declarations can be read by Encoding, which will return a character vector of values
"latinl", "UTF-8" "bytes" or "unknown", or set, when value is recycled as needed
and other values are silently treated as "unknown". ASCII strings will never be marked with
a declared encoding, since their representation is the same in all supported encodings. Strings
marked as "bytes" are intended to be non-ASCII strings which should be manipulated as bytes,
and never converted to a character encoding (so writing them to a text file is supported only by
writeLines (useBytes = TRUE)).

enc2native and enc2utf8 convert elements of character vectors to the native encoding or
UTF-8 respectively, taking any marked encoding into account. They are primitive functions, de-
signed to do minimal copying.

There are other ways for character strings to acquire a declared encoding apart from explicitly
setting it (and these have changed as R has evolved). The parser marks strings containing ‘\u’ or
‘\U’ escapes. Functions scan, read.table, readLines, and parse have an encoding
argument that is used to declare encodings, i conv declares encodings from its t o argument, and
console input in suitable locales is also declared. intToUt £8 declares its output as "UTF-8",
and output text connections (see textConnection) are marked if running in a suitable locale.
Under some circumstances (see its help page) source (encoding=) will mark encodings of
character strings it outputs.

Most character manipulation functions will set the encoding on output strings if it was declared on
the corresponding input. These include chartr, strsplit (useBytes = FALSE), tolower
and toupper as well as sub (useBytes = FALSE) and gsub (useBytes = FALSE) . Note

188 environment

that such functions do not preserve the encoding, but if they know the input encoding and that the
string has been successfully re-encoded (to the current encoding or UTF-8), they mark the output.

substr does preserve the encoding, and chartr, tolower and toupper preserve UTF-
8 encoding on systems with Unicode wide characters. With their fixed and perl options,
strsplit, sub and gsub will give a marked UTF-8 result if any of the inputs are UTF-8.

paste and sprint f return elements marked as bytes if any of the corresponding inputs is marked
as bytes, and otherwise marked as UTF-8 if any of the inputs is marked as UTF-8.

match, pmatch, charmatch, duplicated and unique all match in UTF-8 if any of the
elements are marked as UTF-8.

There is some ambiguity as to what is meant by a ‘Latin-1" locale, since some OSes (notably
Windows) make use of character positions undefined (or used for control characters) in the ISO
8859-1 character set. How such characters are interpreted is system-dependent but as from R 3.5.0
they are if possible interpreted as per Windows codepage 1252 (which Microsoft calls ‘Windows
Latin 1 (ANSI)’) when converting to e.g. UTF-8.

Value

A character vector.

For enc2ut £8 encodings are always marked: they are for enc2native in UTF-8 and Latin-1
locales.

Examples

x is intended to be in latinl
X. <— x <— "fa\xE7ile"

Encoding(x.) # "unknown" (UTF-8 loc.) | "latinl" (8859-1/CP-1252 loc.) |
Encoding(x) <-— "latinl"
X

xx <- iconv(x, "latinl", "UTF-8")

Encoding(c(x., x, xx))

c(x, xXx)

xb <- xx; Encoding(xb) <- "bytes"

xb # will be encoded in hex

cat("x = ", x, ", xx =", xx, ", xb =", xb, "\n", sep = "")

(Ex <- Encoding(c(x.,x,xx,xDb)))

stopifnot (identical (Ex, c(Encoding(x.), Encoding(x),
Encoding (xx), Encoding(xb))))

environment Environment Access

Description

Get, set, test for and create environments.

environment

Usage

189

environment (fun = NULL)

environment (fun) <- wvalue

is.environment (x)

.GlobalEnv
globalenv ()

.BaseNamespaceEnv

emptyenv ()
baseenv ()

new.env (hash

= TRUE, parent = parent.frame(), size = 29L)

parent.env (env)
parent.env(env) <- value

environmentName (env)

env.profile (env)

Arguments

fun
value
b 4
hash
parent
env

size

Details

a function, a formula, or NULL, which is the default.

an environment to associate with the function

an arbitrary R object.

a logical, if TRUE the environment will use a hash table.

an environment to be used as the enclosure of the environment created.
an environment

an integer specifying the initial size for a hashed environment. An internal de-
fault value will be used if size is NA or zero. This argument is ignored if hash
is FALSE.

Environments consist of a frame, or collection of named objects, and a pointer to an enclosing envi-
ronment. The most common example is the frame of variables local to a function call; its enclosure
is the environment where the function was defined (unless changed subsequently). The enclos-
ing environment is distinguished from the parent frame: the latter (returned by parent . frame)
refers to the environment of the caller of a function. Since confusion is so easy, it is best never to use
‘parent’ in connection with an environment (despite the presence of the function parent .env).

When get or exists search an environment with the default inherits = TRUE, they look for
the variable in the frame, then in the enclosing frame, and so on.

The global environment . G1obalEnv, more often known as the user’s workspace, is the first item
on the search path. It can also be accessed by globalenv (). On the search path, each item’s
enclosure is the next item.

190 environment

The object .BaseNamespaceEnv is the namespace environment for the base package. The en-
vironment of the base package itself is available as baseenv ().

If one follows the chain of enclosures found by repeatedly calling parent .env from any envi-
ronment, eventually one reaches the empty environment emptyenv (), into which nothing may be
assigned.

The replacement function parent .env<- is extremely dangerous as it can be used to destruc-
tively change environments in ways that violate assumptions made by the internal C code. It may
be removed in the near future.

The replacement form of environment, is.environment, baseenv, emptyenv and
globalenv are primitive functions.

System environments, such as the base, global and empty environments, have names as do the
package and namespace environments and those generated by attach (). Other environments
can be named by giving a "name™" attribute, but this needs to be done with care as environments
have unusual copying semantics.

Value

If fun is a function or a formula then environment (fun) returns the environment associated
with that function or formula. If fun is NULL then the current evaluation environment is returned.

The replacement form sets the environment of the function or formula fun to the value given.
is.environment (obj) returns TRUE if and only if obj is an environment.

new.env returns a new (empty) environment with (by default) enclosure the parent frame.
parent .env returns the enclosing environment of its argument.

parent .env<- sets the enclosing environment of its first argument.

environmentName returns a character string, that given when the environment is printed or " "
if it is not a named environment.

env.profile returns a list with the following components: size the number of chains that can
be stored in the hash table, nchains the number of non-empty chains in the table (as reported
by HASHPRI), and counts an integer vector giving the length of each chain (zero for empty
chains). This function is intended to assess the performance of hashed environments. When env is
a non-hashed environment, NULL is returned.

See Also

For the performance implications of hashing or not, see https://en.wikipedia.org/
wiki/Hash_table.

The envir argument of eval, get, and exists.

1s may be used to view the objects in an environment, and hence 1s. str may be useful for an
overview.

sys.source can be used to populate an environment.

https://en.wikipedia.org/wiki/Hash_table
https://en.wikipedia.org/wiki/Hash_table

EnvVar 191

Examples

f <- function() "top level function"
##-— all three give the same:
environment ()

environment (f)

.GlobalEnv

ls(envir = environment (stats::approxfun(l:2, 1:2, method = "const")))

is.environment (.GlobalEnv) # TRUE

el <- new.env(parent = baseenv()) # this one has enclosure package:base.
e2 <- new.env(parent = el)

assign("a", 3, envir = el)

1s(el)

1s (e2)

exists("a", envir = e2) # this succeeds by inheritance

exists("a", envir = e2, inherits = FALSE)

exists ("+", envir e2) # this succeeds by inheritance

eh <- new.env(hash = TRUE, size = NA)

with (env.profile(eh), stopifnot(size == length(counts)))
EnvVar Environment Variables
Description

Details of some of the environment variables which affect an R session.

Details

It is impossible to list all the environment variables which can affect an R session: some affect
the OS system functions which R uses, and others will affect add-on packages. But here are notes
on some of the more important ones. Those that set the defaults for options are consulted only at
startup (as are some of the others).

HOME: The user’s ‘home’ directory.

LANGUAGE: Optional. The language(s) to be used for message translations. This is consulted
when needed.

LC_ALL: (etc) Optional. Use to set various aspects of the locale — see Sys.getlocale. Con-
sulted at startup.

MAKEINDEX: The path to makeindex. If unset to a value determined when R was built. Used
by the emulation mode of texi2dvi and texi2pdf.

R_BATCH: Optional — set in a batch session, that is one started by R CMD BATCH. Most often set
to " ", so test by something like ! is.na (Sys.getenv ("R_BATCH",NA)).

192

EnvVar

R_BROWSER: The path to the default browser. Used to set the default value of
options ("browser").

R_COMPLETION: Optional. If set to FALSE, command-line completion is not used. (Not used by
the macOS GUI)

R_DEFAULT_PACKAGES: A comma-separated list of packages which are to be attached in every
session. See options.

R_DOC_DTIR: The location of the R ‘doc’ directory. Set by R.
R_ENVIRON: Optional. The path to the site environment file: see Startup. Consulted at startup.

R_GSCMD: Optional. The path to Ghostscript, used by dev2bitmap, bitmap and
embedFonts. Consulted when those functions are invoked. Since it will be treated as if
passed to system, spaces and shell metacharacters should be escaped.

R_HISTFILE: Optional. The path of the history file: see Startup. Consulted at startup and when
the history is saved.

R_HISTSIZE: Optional. The maximum size of the history file, in lines. Exactly how this is used
depends on the interface.

On Unix-alikes, for the readline command-line interface it takes effect when the history
is saved (by savehistory or at the end of a session).

On Windows, for Rgui it controls the number of lines saved to the history file: the size of the
history used in the session is controlled by the console customization: see Rconsole.

R_HOME: The top-level directory of the R installation: see R.home. Set by R.
R_INCLUDE_DIR: The location of the R ‘include’ directory. Set by R.
R_LIBS: Optional. Used for initial setting of . 1ibPaths.

R_LIBS_SITE: Optional. Used for initial setting of . libPaths.
R_LIBS_USER: Optional. Used for initial setting of . 1ibPaths.

R_PAPERSIZE: Optional. Used to set the default for options ("papersize"), e.g. used by
pdf and postscript.

R_PCRE_JIT_STACK_MAXSIZE: Optional. Consulted when PCRE’s JIT pattern compiler is
first used. See grep.

R_PDFVIEWER: The path to the default PDF viewer. Used by R CMD Rd2pdf.
R_PLATFORM: The platform — a string of the form cpu-vendor-os, see R.Version.
R_PROFILE: Optional. The path to the site profile file: see Startup. Consulted at startup.
R_RD4PDF: Options for pdflatex processing of Rd files. Used by R CMD Rd2pdf.
R_SHARE_DIR: The location of the R ‘share’ directory. Set by R.

R_TEXI2DVICMD: The path to texi2dvi. Defaults to the value of TEXI2DVI, and if that is
unset to a value determined when R was built.
Only on Unix-alikes:
Consulted at startup to set the default for options ("texi2dvi"), used by texi2dvi
and texi2pdf in package tools.

R_UNZIPCMD: The path to unzip. Sets the initial value for options ("unzip") on a Unix-
alike when namespace utils is loaded.

R_ZIPCMD: The pathto zip. Used by zip and by R CMD INSTALL ——build on Windows.

eval 193

TMPDIR, TMP, TEMP: Consulted (in that order) when setting the temporary directory for the ses-
sion: see tempdir. TMPDIR is also used by some of the utilities see the help for build.

TZ: Optional. The current time zone. See Sys . timezone for the system-specific formats. Con-
sulted as needed.

no_proxy, http_proxy, ftp_proxy: (and more). Optional. Settings for
download. file: see its help for further details.

Unix-specific
Some variables set on Unix-alikes, and not (in general) on Windows.

DISPLAY: Optional: used by X11, Tk (in package tcltk), the data editor and various packages.

EDITOR: The path to the default editor: sets the default for options ("editor") when names-
pace utils is loaded.

PAGER: The path to the pager with the default setting of options ("pager"). The default
value is chosen at configuration, usually as the path to 1ess.

R_PRINTCMD: Sets the default for options ("printcmd"), which sets the default print com-
mand to be used by postscript.

R_SUPPORT_OLD_TARS logical. Sets the default for the support_old_tars argument of
untar. Should be set to TRUE if an old system tar command is used which does not
support either xz compression or automagically detecting compression type.

Windows-specific
Some Windows-specific variables are

GSC: Optional: the path to Ghostscript, used if R_GSCMD is not set.

R_USER: The user’s ‘home’ directory. Set by R. (HOME will be set to the same value if not already
set.)

TZDIR: Optional. The top-level directory of the time-zone database. See Sys.timezone.

See Also

Sys.getenv and Sys . setenv to read and set environmental variables in an R session.

gctorture for environment variables controlling garbage collection.

eval Evaluate an (Unevaluated) Expression

Description

Evaluate an R expression in a specified environment.

194 eval

Usage

eval (expr, envir = parent.frame(),
enclos = if(is.list (envir) || is.pairlist(envir))
parent.frame () else baseenv())
evalg(expr, envir, enclos)
eval.parent (expr, n = 1)
local (expr, envir = new.env())

Arguments

expr an object to be evaluated. See ‘Details’.

envir the environment in which expr is to be evaluated. May also be NULL, a
list, a data frame, a pairlist or an integer as specified to sys.call.

enclos Relevant when envir is a (pair)list or a data frame. Specifies the enclosure, i.e.,
where R looks for objects not found in envir. This can be NULL (interpreted
as the base package environment, baseenv ()) or an environment.

n number of parent generations to go back

Details

eval evaluates the expr argument in the environment specified by envir and returns the com-
puted value. If envir is not specified, then the default is parent . frame () (the environment
where the call to eval was made).

Objects to be evaluated can be of types call or expression or name (when the name is looked
up in the current scope and its binding is evaluated), a promise or any of the basic types such as
vectors, functions and environments (which are returned unchanged).

The evalqgformis equivalentto eval (quote (expr), . ..). eval evaluates its first argument
in the current scope before passing it to the evaluator: evalq avoids this.

eval .parent (expr,n) is a shorthand for eval (expr, parent.frame (n)).

If envir is alist (such as a data frame) or pairlist, it is copied into a temporary environment (with
enclosure enclos), and the temporary environment is used for evaluation. So if expr changes
any of the components named in the (pair)list, the changes are lost.

If envir is NULL it is interpreted as an empty list so no values could be found in envir and
look-up goes directly to enclos.

local evaluates an expression in a local environment. It is equivalent to evalqg except that its
default argument creates a new, empty environment. This is useful to create anonymous recursive
functions and as a kind of limited namespace feature since variables defined in the environment are
not visible from the outside.

Value

The result of evaluating the object: for an expression vector this is the result of evaluating the last
element.

eval

Note

195

Due to the difference in scoping rules, there are some differences between R and S in this area. In
particular, the default enclosure in S is the global environment.

When evaluating expressions in a data frame that has been passed as an argument

to a function,

eval (x,data,parent.frame()).

References

the relevant enclosure is often the caller’s environment,

i.e.,

one needs

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole. (eval only.)

See Also

expression, quote, sys.frame, parent.frame, environment.

Further, force to force evaluation, typically of function arguments.

)y

list(a = 1)
(b

-1), list

a in el
<-1; ev() }

from the 1list,

Examples
eval (2 ~ 2 ©~ 3)
mEx <- expression(27273); mEx; 1 + eval (mEx)
eval ({ xx <= pi; xx"2}) ; xx
a <- 3 ; aa <- 4 ; evalg(evalg(atb+taa,
a <- 3 ; aa <- 4 ; evalg(evalg(atb+taa,
ev <— function() {
el <- parent.frame /()
Evaluate a in el
aa <- eval (expression(a), el)
evaluate the expression bound to
a <- expression (x+y)
list (aa = aa, eval = eval(a, el))
}
tst.ev <- function(a = 7) { x <= pi; vy
tst.ev () #-> aa : 7, eval : 4.14
a <- list(a = 3, b = 4)
with(a, a <= 5) # alters the copy of a
##
Example of evalqg()
##
N <- 3
env <- new.env ()
assign("N", 27, envir = env)

this version changes the visible copy of N only,

pas

sed to eval is '4'.

eval (N <- 4, env)

N

discarded.

since the argument

196 exists

get ("N", envir = env)
this version does the assignment in env, and changes N only there.
evalg(N <= 5, env)

N

get ("N", envir = env)
##

Uses of local()

##

Mutually recursive.
gg gets value of last assignment, an anonymous version of f.

gg <- local ({
k <= function(y) f(y)
f <- function(x) 1f(x) xxk(x-1) else 1
})
gg (10)
sapply (1:5, gg)

Nesting locals: a is private storage accessible to k
gg <- local ({
k <= local ({
a <-1
function (y) {print (a <<- a+1);f(y)}
})

f <- function(x) if(x) xxk(x-1) else 1

sapply (1:5, gg)

ls (envir = environment (gg))
ls (envir environment (get ("k", envir = environment (gg))))

exists Is an Object Defined?

Description

Look for an R object of the given name and possibly return it

Usage
exists(x, where = -1, envir = , frame, mode = "any",
inherits = TRUE)
get0(x, envir = pos.to.env(-1L), mode = "any", inherits = TRUE,

ifnotfound = NULL)

exists 197

Arguments

x a variable name (given as a character string or a symbol).

where where to look for the object (see the details section); if omitted, the function will
search as if the name of the object appeared unquoted in an expression.

envir an alternative way to specify an environment to look in, but it is usually simpler
to just use the where argument.

frame a frame in the calling list. Equivalent to giving where as
sys.frame (frame).

mode the mode or type of object sought: see the ‘Details’ section.

inherits should the enclosing frames of the environment be searched?

ifnotfound the return value of get 0 (x,) when x does not exist.

Details

The where argument can specify the environment in which to look for the object in any of several
ways: as an integer (the position in the search list); as the character string name of an element
in the search list; or as an environment (including using sys. frame to access the currently
active function calls). The envir argument is an alternative way to specify an environment, but is
primarily there for back compatibility.

This function looks to see if the name x has a value bound to it in the specified environment. If
inherits is TRUE and a value is not found for x in the specified environment, the enclosing
frames of the environment are searched until the name x is encountered. See environment
and the ‘R Language Definition’ manual for details about the structure of environments and their
enclosures.

Warning: inherits = TRUE is the default behaviour for R but not for S.

If mode is specified then only objects of that type are sought. The mode may specify one of the
collections "numeric" and "function" (see mode): any member of the collection will suffice.
(This is true even if a member of a collection is specified, so for example mode = "special" will
seek any type of function.)

Value

exists () : Logical, true if and only if an object of the correct name and mode is found.

getO0 () : The object—as from get (x,) —if exists (x,) istrue, otherwise i fnot found.

Note

With get0 (), instead of the easy to read but somewhat inefficient

if (exists (myVarName, envir = myEnvir)) {
r <- get (myVarName, envir = myEnvir)
... deal with r

you now can use the more efficient (and slightly harder to read)

198 expand.grid

if (!'is.null(r <- getO(myVarName, envir = myEnvir))) {
... deal with r

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

get and hasName. For quite a different kind of “existence” checking, namely if function
arguments were specified, missing; and for yet a different kind, namely if a file exists,
file.exists.

Examples

Define a substitute function if necessary:

if ('exists ("some.fun", mode = "function"))

some.fun <- function(x) { cat("some.fun(x)\n"); x }
search ()
exists("1ls", 2) # true even though 1ls is in pos = 3

exists("1ls", 2, inherits = FALSE) # false

These are true (in most circumstances) :
identical (1ls, get0("1ls"))

identical (NULL, getO(".foo.bar.")) # default ifnotfound = NULL (!)
expand.grid Create a Data Frame from All Combinations of Factor Variables
Description

Create a data frame from all combinations of the supplied vectors or factors. See the description of
the return value for precise details of the way this is done.

Usage

expand.grid(..., KEEP.OUT.ATTRS = TRUE, stringsAsFactors = TRUE)

Arguments

.. vectors, factors or a list containing these.

KEEP.OUT.ATTRS
a logical indicating the "out .attrs" attribute (see below) should be com-
puted and returned.

stringsAsFactors
logical specifying if character vectors are converted to factors.

expression 199

Value

A data frame containing one row for each combination of the supplied factors. The first factors vary
fastest. The columns are labelled by the factors if these are supplied as named arguments or named
components of a list. The row names are ‘automatic’.

Attribute "out .attrs" is a list which gives the dimension and dimnames for use by predict
methods.

Note
Conversion to a factor is done with levels in the order they occur in the character vectors (and not
alphabetically, as is most common when converting to factors).

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth & Brooks/Cole.

See Also

combn (package ut ils) for the generation of all combinations of n elements, taken m at a time.

Examples

require (utils)

expand.grid(height = seq(60, 80, 5), weight = seq(100, 300, 50),
sex = c("Male", "Female"))

x <- seq(0, 10, length.out = 100)

y <= seq(-1, 1, length.out = 20)

dl <- expand.grid(x = x, y = V)

d2 <- expand.grid(x = x, y = y, KEEP.OUT.ATTRS = FALSE)
object.size(dl) - object.size(d2)

##-> 5992 or 8832 (on 32- / 64-bit platform)

expression Unevaluated Expressions

Description

Creates or tests for objects of mode "expression".

Usage

expression(...)

is.expression (x)
as.expression(x, ...)

200

expression

Arguments
expression: R objects, typically calls, symbols or constants.
as.expression: arguments to be passed to methods.
x an arbitrary R object.
Details

‘Expression’ here is not being used in its colloquial sense, that of mathematical expressions. Those
are calls (see call)in R, and an R expression vector is a list of calls, symbols etc, for example as
returned by parse.

As an object of mode "expression" is a list, it can be subsetted by [, [[or $, the latter two
extracting individual calls etc. The replacement forms of these operators can be used to replace or
delete elements.

expressionand is.expression are primitive functions. expression is ‘special’: it does
not evaluate its arguments.

Value

expression returns a vector of type "expression" containing its arguments (unevaluated).
is.expression returns TRUE if expr is an expression object and FALSE otherwise.

as.expression attempts to coerce its argument into an expression object. It is generic, and
only the default method is described here. (The default method calls as.vector (type =
"expression") and so may dispatch methods for as.vector.) NULL, calls, symbols (see
as.symbol) and pairlists are returned as the element of a length-one expression vector. Atomic
vectors are placed element-by-element into an expression vector (without using any names): lists
are changed type to an expression vector (keeping all attributes). Other types are not currently
supported.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

call, eval, function. Further, text and 1legend for plotting mathematical expressions.

Examples

length (exl <— expression(l + 0:9)) # 1
exl
eval (ex1l) # 1:10

length (ex3 <- expression(u, 2, u + 0:9)) # 3
mode (ex3 [3]) # expression

mode (ex3[[3]]) # call

but not all components are 'call's

sapply (ex3, mode) # name numeric call

Extract 201

sapply (ex3, typeof) # symbol double language
rm(ex3)

Extract Extract or Replace Parts of an Object

Description

Operators acting on vectors, matrices, arrays and lists to extract or replace parts.

Usage
x[1]
x[i, 3, ... , drop = TRUE]
x[[1, exact = TRUE]]
x[[i, J, ..., exact = TRUE]]
xS$name

getElement (object, name)

[[1]] <- wvalue
xSname <—- value

Arguments

X, object object from which to extract element(s) or in which to replace element(s).

i, 3, ... indices specifying elements to extract or replace. Indices are numeric or
character vectors or empty (missing) or NULL. Numeric values are coerced
to integer as by as.integer (and hence truncated towards zero). Character
vectors will be matched to the names of the object (or for matrices/arrays, the
dimnames): see ‘Character indices’ below for further details.

For [-indexing only: i, j, ... can be logical vectors, indicating ele-
ments/slices to select. Such vectors are recycled if necessary to match the
corresponding extent. i, j, ... can also be negative integers, indicating el-
ements/slices to leave out of the selection.

When indexing arrays by [a single argument i can be a matrix with as many
columns as there are dimensions of x; the result is then a vector with elements
corresponding to the sets of indices in each row of 1.

An index value of NULL is treated as if it were integer (0).

name A literal character string or a name (possibly backtick quoted). For extraction,
this is normally (see under ‘Environments’) partially matched to the names of
the object.

drop For matrices and arrays. If TRUE the result is coerced to the lowest possible
dimension (see the examples). This only works for extracting elements, not for
the replacement. See drop for further details.

202 Extract
exact Controls possible partial matching of [[when extracting by a character vec-
tor (for most objects, but see under ‘Environments’). The default is no partial
matching. Value NA allows partial matching but issues a warning when it occurs.
Value FALSE allows partial matching without any warning.
value typically an array-like R object of a similar class as x.
Details

These operators are generic. You can write methods to handle indexing of specific classes of objects,
see InternalMethods as well as [. data.frame and [. factor. The descriptions here apply only
to the default methods. Note that separate methods are required for the replacement functions [<-,
[[<— and $<- for use when indexing occurs on the assignment side of an expression.

The most important distinction between [, [[and $ is that the [can select more than one element
whereas the other two select a single element.

The default methods work somewhat differently for atomic vectors, matrices/arrays and for recur-
sive (list-like, see is.recursive) objects. $ is only valid for recursive objects (and NULL), and
is only discussed in the section below on recursive objects.

Subsetting (except by an empty index) will drop all attributes except names, dim and dimnames.

Indexing can occur on the right-hand-side of an expression for extraction, or on the left-hand-side
for replacement. When an index expression appears on the left side of an assignment (known as
subassignment) then that part of x is set to the value of the right hand side of the assignment. In this
case no partial matching of character indices is done, and the left-hand-side is coerced as needed
to accept the values. For vectors, the answer will be of the higher of the types of x and value in
the hierarchy raw < logical < integer < double < complex < character < list < expression. Attributes
are preserved (although names, dim and dimnames will be adjusted suitably). Subassignment is
done sequentially, so if an index is specified more than once the latest assigned value for an index
will result.

It is an error to apply any of these operators to an object which is not subsettable (e.g., a function).

Atomic vectors

The usual form of indexing is [. [[can be used to select a single element dropping names,
whereas [keeps them, e.g.,in c (abc =123) [1].

The index object i can be numeric, logical, character or empty. Indexing by factors is allowed and
is equivalent to indexing by the numeric codes (see factor) and not by the character values which
are printed (for which use [as.character (i)]).

An empty index selects all values: this is most often used to replace all the entries but keep the
attributes.

Matrices and arrays

Matrices and arrays are vectors with a dimension attribute and so all the vector forms of indexing
can be used with a single index. The result will be an unnamed vector unless x is one-dimensional
when it will be a one-dimensional array.

The most common form of indexing a k-dimensional array is to specify & indices to [. As for vector
indexing, the indices can be numeric, logical, character, empty or even factor. And again, indexing
by factors is equivalent to indexing by the numeric codes, see ‘Atomic vectors’ above.

Extract 203

An empty index (a comma separated blank) indicates that all entries in that dimension are selected.
The argument drop applies to this form of indexing.

A third form of indexing is via a numeric matrix with the one column for each dimension: each row
of the index matrix then selects a single element of the array, and the result is a vector. Negative
indices are not allowed in the index matrix. NA and zero values are allowed: rows of an index matrix
containing a zero are ignored, whereas rows containing an NA produce an NA in the result.

Indexing via a character matrix with one column per dimensions is also supported if the array has
dimension names. As with numeric matrix indexing, each row of the index matrix selects a single
element of the array. Indices are matched against the appropriate dimension names. NA is allowed
and will produce an NA in the result. Unmatched indices as well as the empty string (" ") are not
allowed and will result in an error.

A vector obtained by matrix indexing will be unnamed unless x is one-dimensional when the row
names (if any) will be indexed to provide names for the result.

Recursive (list-like) objects

Indexing by [is similar to atomic vectors and selects a list of the specified element(s).

Both [[and $ select a single element of the list. The main difference is that $ does not allow
computed indices, whereas [[does. x$name is equivalentto x [["name", exact = FALSE]].
Also, the partial matching behavior of [[can be controlled using the exact argument.

getElement (x,name) is a version of x[[name, exact = TRUE]] which for formally
classed (S4) objects returns s1ot (x, name) , hence providing access to even more general list-like
objects.

[and [[are sometimes applied to other recursive objects such as calls and expressions. Pairlists
are coerced to lists for extraction by [, but all three operators can be used for replacement.

[[can be applied recursively to lists, so that if the single index i is a vector of length p,
alist[[i]] is equivalentto alist [[11]]...[[ip]] providing all but the final indexing
results in a list.

Note that in all three kinds of replacement, a value of NULL deletes the corresponding item of the
list. To set entries to NULL, youneed x [1] <-1ist (NULL).

When $<- is applied to a NULL x, it first coerces x to 1ist (). This is what also happens with
[[<— where in R versions less than 4.y.z, a length one value resulted in a length one (atomic)
vector.

Environments

Both $ and [[can be applied to environments. Only character indices are allowed and no partial
matching is done. The semantics of these operations are those of get (1, env = x, inherits =
FALSE) . If no match is found then NULL is returned. The replacement versions, $<— and [[<-,
can also be used. Again, only character arguments are allowed. The semantics in this case are those
of assign (i, value, env =x, inherits = FALSE). Such an assignment will either create
a new binding or change the existing binding in x.

204 Extract

NAs in indexing

When extracting, a numerical, logical or character NA index picks an unknown element and so
returns NA in the corresponding element of a logical, integer, numeric, complex or character result,
and NULL for a list. (It returns 00 for a raw result.)

When replacing (that is using indexing on the lhs of an assignment) NA does not select any element
to be replaced. As there is ambiguity as to whether an element of the rhs should be used or not,
this is only allowed if the rhs value is of length one (so the two interpretations would have the same
outcome). (The documented behaviour of S was that an NA replacement index ‘goes nowhere’
but uses up an element of value: Becker et al p. 359. However, that has not been true of other
implementations.)

Argument matching

Note that these operations do not match their index arguments in the standard way: argument names
are ignored and positional matching only is used. Som[j=2,1 = 1] is equivalent tom[2, 1]
andnottom[1,2].

This may not be true for methods defined for them; for example it is not true for the data. frame
methods described in [.data.frame which warn if i or j is named and have undocumented
behaviour in that case.

To avoid confusion, do not name index arguments (but drop and exact must be named).

S4 methods

These operators are also implicit S4 generics, but as primitives, S4 methods will be dispatched only
on S4 objects x.

The implicit generics for the $ and $<- operators do not have name in their signature because the
grammar only allows symbols or string constants for the name argument.

Character indices

Character indices can in some circumstances be partially matched (see pmatch) to the names or
dimnames of the object being subsetted (but never for subassignment). Unlike S (Becker et al
p. 358), R never uses partial matching when extracting by [, and partial matching is not by default
used by [[(see argument exact).

Thus the default behaviour is to use partial matching only when extracting from recursive
objects (except environments) by $. Even in that case, warnings can be switched on by
options (warnPartialMatchDollar = TRUE).

Neither empty (" ") nor NA indices match any names, not even empty nor missing names. If any
object has no names or appropriate dimnames, they are taken as all " " and so match nothing.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Extract 205

See Also

names for details of matching to names, and pmat ch for partial matching.

list, array,matrix.

[.data.frame and [. factor for the behaviour when applied to data.frame and factors.
Syntax for operator precedence, and the ‘R Language Definition” manual about indexing details.

NULL for details of indexing null objects.

Examples

x <= 1:12
m <— matrix(l:6, nrow
1li <= list(pi = pi, e =
x[10] # the tenth element of x
x <- x[-1] # delete the 1st element of x
] # the first row of matrix m

#

#

#

2, dimnames = list(c("a", "b"), LETTERS[1:3]))
exp (1))

4

, , drop = FALSE] is a 1l-row matrix

c (TRUE, FALSE, TRUE)] logical indexing
m[cbind(c(1,2,1),3:1)]1# matrix numeric index
ci <- cbind(c("a", "b", "a"), c("a", "Cc", "B"))

m[1l
m[1l
mf,

m[ci] # matrix character index

m <—- m[,-1] # delete the first column of m

1i[[1]] # the first element of list 11

y <- list(l, 2, a = 4, 5)

ylic(3, 4)] # a list containing elements 3 and 4 of y
ySa # the element of y named a

non-integer indices are truncated:
(1 <= 3.999999999) # "4" is printed
(1:5)[1]1 # 3

named atomic vectors, compare "[" and "[["
nx <- c(Abc = 123, pi = pi)
nx[1] ; nx["pi"] # keeps names, whereas "[[" does not:

nx[[1]] ; nx[["pi"]]

recursive indexing into lists

z <- list(a = list(b = 9, ¢ = "hello"), d = 1:5)
unlist (z)

z[[c(1l, 2)1]

z[[c(l, 2, 1)]] # both "hello"

z[[c("a", "b")]] <-= "new"

unlist (z)

check $ and [[for environments
el <- new.env()

el$a <- 10

el[["a"]]

el[["b"]] <- 20

elsb

1s (el)

206

Extract.data.frame

partial matching - possibly with warning
stopifnot (identical (1i$p, pi))
op <- options(warnPartialMatchDollar = TRUE)

stopifnot (identical (1i$p, pi), #-—- a warning

inherits (tryCatch (1i$p, warning = identity), "warning"))
revert the warning option:
if(is.null(opl[1]])) opl[l]] <- FALSE; options (op)

Extract.data.frame Extract or Replace Parts of a Data Frame

Description

Usage

S3 method for class 'data.frame'

x[i, j, drop = 1]

S3 replacement method for class 'data.frame'

x[i, J] <= value

S3 method for class 'data.frame'

x[[..., exact = TRUE]]

S3 replacement method for class 'data.frame'

x[[1, J11 <= value

S3 replacement method for class 'data.frame'

x$name <- value

Arguments

X data frame.

i, 3, ... elements to extract or replace. For [and [[, these are numeric or
character or, for [only, empty or logical. Numeric values are coerced
to integer as if by as.integer. For replacement by [, a logical matrix is
allowed.

name A literal character string or a name (possibly backtick quoted).

drop logical. If TRUE the result is coerced to the lowest possible dimension. The
default is to drop if only one column is left, but not to drop if only one row is
left.

value A suitable replacement value: it will be repeated a whole number of times if

Extract or replace subsets of data frames.

necessary and it may be coerced: see the Coercion section. If NULL, deletes the
column if a single column is selected.

exact logical: see [, and applies to column names.

Extract.data.frame 207

Details

Data frames can be indexed in several modes. When [and [[are used with a single vector index
(x[1] orx[[1]1),they index the data frame as if it were a list. In this usage a drop argument is
ignored, with a warning.

There is no data. frame method for $, so x$name uses the default method which treats x as a
list (with partial matching of column names if the match is unique, see Ext ract). The replacement
method (for $) checks value for the correct number of rows, and replicates it if necessary.

When [and [[are used with two indices (x[1, j] and x[[1, 7] 1) they act like indexing a
matrix: [[can only be used to select one element. Note that for each selected column, x j say,
typically (if it is not matrix-like), the resulting column will be x j [1], and hence rely on the corre-
sponding [method, see the examples section.

If [returns a data frame it will have unique (and non-missing) row names, if necessary transforming
the row names using make .unique. Similarly, if columns are selected column names will be
transformed to be unique if necessary (e.g., if columns are selected more than once, or if more than
one column of a given name is selected if the data frame has duplicate column names).

When drop = TRUE, this is applied to the subsetting of any matrices contained in the data frame
as well as to the data frame itself.

The replacement methods can be used to add whole column(s) by specifying non-existent col-
umn(s), in which case the column(s) are added at the right-hand edge of the data frame and numer-
ical indices must be contiguous to existing indices. On the other hand, rows can be added at any
row after the current last row, and the columns will be in-filled with missing values. Missing values
in the indices are not allowed for replacement.

For [the replacement value can be a list: each element of the list is used to replace (part of) one
column, recycling the list as necessary. If columns specified by number are created, the names (if
any) of the corresponding list elements are used to name the columns. If the replacement is not
selecting rows, list values can contain NULL elements which will cause the corresponding columns
to be deleted. (See the Examples.)

Matrix indexing (x [1] with a logical or a 2-column integer matrix i) using [is not recommended.
For extraction, x is first coerced to a matrix. For replacement, logical matrix indices must be of the
same dimension as x. Replacements are done one column at a time, with multiple type coercions
possibly taking place.

Both [and [[extraction methods partially match row names. By default neither partially match
column names, but [[will if exact = FALSE (and with a warning if exact = N3). If you want
to exact matching on row names use match, as in the examples.

Value

For [a data frame, list or a single column (the latter two only when dimensions have been dropped).
If matrix indexing is used for extraction a vector results. If the result would be a data frame an error
results if undefined columns are selected (as there is no general concept of a "missing’ column in a
data frame). Otherwise if a single column is selected and this is undefined the result is NULL.

For [[a column of the data frame or NULL (extraction with one index) or a length-one vector
(extraction with two indices).

For $, a column of the data frame (or NULL).

For [<-, [[<- and $<-, a data frame.

208 Extract.data.frame

Coercion
The story over when replacement values are coerced is a complicated one, and one that has changed
during R’s development. This section is a guide only.

When [and [[are used to add or replace a whole column, no coercion takes place but value will
be replicated (by calling the generic function rep) to the right length if an exact number of repeats
can be used.

When [is used with a logical matrix, each value is coerced to the type of the column into which it
is to be placed.

When [and [[are used with two indices, the column will be coerced as necessary to accommodate
the value.

Note that when the replacement value is an array (including a matrix) it is not treated as a series of
columns (as data. frame and as.data. frame do) but inserted as a single column.

Warning

The default behaviour when only one row is left is equivalent to specifying drop = FALSE. To
drop from a data frame to a list, drop = TRUE has to be specified explicitly.

Arguments other than drop and exact should not be named: there is a warning if they are and
the behaviour differs from the description here.

See Also

subset which is often easier for extraction, data.frame, Extract.

Examples
sw <- swiss[1l:5, 1:4] # select a manageable subset
sw[l:3] # select columns
sw[, 1:3] # same
sw[4:5, 1:3] # select rows and columns
swl[l] # a one-column data frame
sw[, 1, drop = FALSE] # the same
sw[, 1] # a (unnamed) vector
swl[1]] # the same
sw$Fert # the same (possibly w/ warning, see ?Extract)
swll,] # a one-row data frame

sw[l,, drop = TRUE] # a list
sw["C",] # partially matches

swmatch ("C", row.names(sw)),] # no exact match
try(sw[, "Ferti"]) # column names must match exactly

swlsw$Fertility > 90,] # logical indexing, see also ?subset
swlc(l, 1:2), 1] # duplicate row, unique row names are created

swisw <= 6] <- 6 # logical matrix indexing

Extract.factor 209

SW

adding a column

sw["newl"] <— LETTERS[1:5] # adds a character column
sw[["new2"]] <- letters[1l:5] # ditto

sw[, "new3"] <- LETTERS[1:5] # ditto

swSnewd <- 1:5

sapply (sw, class)

sw$new # —> NULL: no unique partial match
swSnewd4 <- NULL # delete the column
sSw

sw[6:8] <- list(letters[10:14], NULL, aa = 1:5)
update col. 6, delete 7, append

sw

matrices in a data frame
A <- data.frame(x = 1:3, y = I(matrix(4:9, 3, 2)),
z = I(matrix (letters[1:9], 3, 3)))

A[l:3, "y"] # a matrix
A[l1:3, "z"] # a matrix
A, "y"] # a matrix
stopifnot (identical (colnames (A), c("x", "y", "z")), ncol(A) == 3L,

identical (A[,"y"], A[1l:3, "y"1),
inherits (A[,"y"], "AsIs"))

keeping special attributes: use a class with a

"as.data.frame" and "[" method;

"avector" := vector that keeps attributes. Could provide a constructor
avector <- function(x) { class(x) <- c("avector", class(x)); x }
as.data.frame.avector <- as.data.frame.vector

“[.avector® <- function(x,1i,...) {
r <- NextMethod ("[")
mostattributes (r) <- attributes (x)
r

d <- data.frame (i 0:7, £ =gl(2,4),
u = structure(l11:18, unit = "kg", class = "avector"))
str(d[2:4, -1]) # 'u' keeps its "unit"

Extract.factor Extract or Replace Parts of a Factor

Description

Extract or replace subsets of factors.

210 Extract.factor

Usage
S3 method for class 'factor'
x[..., drop = FALSE]
S3 method for class 'factor'
x[[...]]
S3 replacement method for class 'factor'
x[...] <= value
S3 replacement method for class 'factor'
x[[...]] <= value
Arguments
X a factor

a specification of indices — see Extract.

drop logical. If true, unused levels are dropped.
value character: a set of levels. Factor values are coerced to character.
Details

When unused levels are dropped the ordering of the remaining levels is preserved.
If valueisnotin levels (x), a missing value is assigned with a warning.
Any contrasts assigned to the factor are preserved unless drop = TRUE.

The [[method supports argument exact.

Value

A factor with the same set of levels as x unless drop = TRUE.

See Also

factor, Extract.

Examples

following example (factor)

(ff <- factor(substring("statistics", 1:10, 1:10), levels = letters))
ff[, drop = TRUE]

factor (letters[7:10]) [2:3, drop = TRUE]

Extremes 211

Extremes Maxima and Minima

Description

Returns the (regular or parallel) maxima and minima of the input values.

pmaxx () and pminx () take one or more vectors as arguments, recycle them to common length
and return a single vector giving the ‘parallel’ maxima (or minima) of the argument vectors.

Usage

max(..., na.rm = FALSE)
min(..., na.rm = FALSE)

pmax (..., na.rm = FALSE)

pmin(..., na.rm = FALSE)

pmax.int (..., na.rm = FALSE)

pmin.int (..., na.rm = FALSE)
Arguments

numeric or character arguments (see Note).

na.rm a logical indicating whether missing values should be removed.

Details

max and min return the maximum or minimum of all the values present in their arguments, as
integerifallare logical or integer, as double if all are numeric, and character otherwise.

If na.rmis FALSE an NA value in any of the arguments will cause a value of NA to be returned,
otherwise NA values are ignored.

The minimum and maximum of a numeric empty set are +Inf and —Inf (in this order!) which
ensures framnsitivity, e.g., min (x1,min (x2)) ==min (x1,x2). For numeric x max (x) ==
—Inf and min (x) == +Inf whenever length (x) == 0 (after removing missing values if re-
quested). However, pmax and pmin return NA if all the parallel elements are NA even for na . rm
= TRUE.

pmax and pmin take one or more vectors (or matrices) as arguments and return a single vector
giving the ‘paralle]’ maxima (or minima) of the vectors. The first element of the result is the
maximum (minimum) of the first elements of all the arguments, the second element of the result is
the maximum (minimum) of the second elements of all the arguments and so on. Shorter inputs (of
non-zero length) are recycled if necessary. Attributes (see attributes: such as names or dim)
are copied from the first argument (if applicable, e.g., not for an S4 object).

pmax.int and pmin.int are faster internal versions only used when all arguments are atomic
vectors and there are no classes: they drop all attributes. (Note that all versions fail for raw and
complex vectors since these have no ordering.)

212 Extremes

max and min are generic functions: methods can be defined for them individually or via the
Summary group generic. For this to work properly, the arguments . . . should be unnamed, and
dispatch is on the first argument.

By definition the min/max of a numeric vector containing an NaN is NaN, except that the min/max
of any vector containing an NA is NA even if it also contains an NaN. Note that max (NA, Inf) ==
NA even though the maximum would be Inf whatever the missing value actually is.

Character versions are sorted lexicographically, and this depends on the collating sequence of the
locale in use: the help for ‘Comparison’ gives details. The max/min of an empty character vector
is defined to be character NA. (One could argue that as "" is the smallest character element, the
maximum should be " ", but there is no obvious candidate for the minimum.)

Value

For min or max, a length-one vector. For pmin or pmax, a vector of length the longest of the input
vectors, or length zero if one of the inputs had zero length.

The type of the result will be that of the highest of the inputs in the hierarchy integer < double <
character.

For min and max if there are only numeric inputs and all are empty (after possible removal of NAs),
the result is double (Inf or —Inf).

S4 methods
max and min are part of the S4 Summary group generic. Methods for them must use the signature
X, ...,Na.rm

Note

‘Numeric’ arguments are vectors of type integer and numeric, and logical (coerced to integer). For
historical reasons, NULL is accepted as equivalent to integer (0).

pmax and pmin will also work on classed S3 or S4 objects with appropriate methods for compari-
son, is.na and rep (if recycling of arguments is needed).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

range (both min and max) and which.min (which.max) for the arg min, i.e., the location
where an extreme value occurs.

‘plotmath’ for the use of min in plot annotation.

Examples

require (stats); require (graphics)
min(5:1, pi) #-> one number
pmin(5:1, pi) #-> 5 numbers

extSoftVersion 213

x <— sort (rnorm(100)); cH <- 1.35
pmin (cH, quantile(x)) #
pmin (quantile (x), cH) #
plot (x, pmin(cH, pmax

no names
has names
(-cH, x)), type = "b", main = "Huber's function")

cut0l <- function(x) pmax(pmin(x, 1), O0)

curve (x~2 - 1/4, -1.4, 1.5, col = 2)
curve (cut01 (x*2 - 1/4), col = "blue", add = TRUE, n = 500)
pmax (), pmin() preserve attributes of *xfirst* argument
D <- diag(x = (3:1)/4) ; n0 <- numeric/()
stopifnot (identical (D, cut01 (D)),

identical cut01 (n0)),

identical pmax(3:1, n0, 2)),

(n0
identical (n0, cutOl (NULL)),
(n0
identical (n0, pmax(n0, 4)))

extSoftVersion Report Versions of Third-Party Software

Description

Report versions of (external) third-party software used.

Usage

extSoftVersion ()

Details

The reports the versions of third-party software libraries in use. These are often external but might
have been compiled into R when it was installed.

With dynamic linking, these are the versions of the libraries linked to in this session: with static
linking, of those compiled in.

Value

A named character vector, currently with components

z1lib The version of z1ib in use.

bzlib The version of bz1ib (from bzip2) in use.

XZ The version of 1iblzma (from xz) in use.

PCRE The version of PCRE in use. PCRE1 has versions < 10.00, PCRE2 has versions
>=10.00.

ICU The version of ICU in use (if any, otherwise "").

TRE The version of 1ibtre in use.

iconv The implementation and version of the i conv library in use (if known).

214 factor

readline The version of readline in use (if any, otherwise " "). If using the emulation
by libedit aka editline this will be "EditLine wrapper" preceded
by the readline version it emulates: that is most likely to be seen on macOS.

BLAS Name of the binary/executable file with the implementation of BLAS in use (if
known, otherwise "").

Note that the values for bz1ib and pcre normally contain a date as well as the version number,

and that for t re includes several items separated by spaces, the version number being the second.

For iconv this will give the implementation as well as the version, for example "GNU libiconv
1.14","glibc 2.18" or "win_iconv" (which has no version number).

The name of the binary/executable file for BLAS can be used as an indication of which implemen-
tation is in use. Typically, the R version of BLAS will appear as 1ibR.so (1ibR.dylib), R or
libRblas.so (1ibRblas.dylib), depending on how R was built. Note that 1ibRblas. so
(1ibRblas.dylib) may also be shown for an external BLAS implementation that had been
copied, hard-linked or renamed by the system administrator. For an external BLAS, a shared object
file will be given and its path/name may indicate the vendor/version. The detection does not work
on Windows.

See Also

libcurlVersion for the version of 1ibCurl.
La_version for the version of LAPACK in use.
La_library for binary/executable file with LAPACK in use.
grSoftVersion for third-party graphics software.
tclVersion for the version of Tcl/Tk.

pcre_config for PCRE configuration options.

Examples
extSoftVersion ()
the PCRE version
sub (" .*", "", extSoftVersion() ["PCRE"])
factor Factors
Description

The function factor is used to encode a vector as a factor (the terms ‘category’ and ‘enumerated
type’ are also used for factors). If argument ordered is TRUE, the factor levels are assumed to be
ordered. For compatibility with S there is also a function ordered.

is.factor, is.ordered, as.factor and as.ordered are the membership and coercion
functions for these classes.

factor

Usage

215

factor (x = character (), levels, labels = levels,
exclude = NA, ordered = is.ordered(x), nmax = NA)

ordered (x,

is.factor (x)
is.ordered (x)

as.factor (x)
as.ordered (x)

addNA (x, ifany = FALSE)

Arguments

X

levels

labels

exclude

ordered

nmax

ifany

Details

a vector of data, usually taking a small number of distinct values.

an optional vector of the unique values (as character strings) that x might have
taken. The default is the unique set of values taken by as.character (x),
sorted into increasing order of x. Note that this set can be specified as smaller
than sort (unique (x)).

either an optional character vector of labels for the levels (in the same order as
levels after removing those in exclude), or a character string of length 1.
Duplicated values in 1abels can be used to map different values of x to the
same factor level.

a vector of values to be excluded when forming the set of levels. This may be
factor with the same level set as x or should be a character.

logical flag to determine if the levels should be regarded as ordered (in the order
given).

an upper bound on the number of levels; see ‘Details’.
(in ordered (.)): any of the above, apart from ordered itself.

only add an NA level if it is used, i.e. if any (is.na (x)).

The type of the vector x is not restricted; it only must have an as.character method and be
sortable (by order).

Ordered factors differ from factors only in their class, but methods and the model-fitting functions
treat the two classes quite differently.

The encoding of the vector happens as follows. First all the values in exclude are removed from

levels. If x[1]
found for x[1] in
result is set to NA.

equals levels|[j], then the i-th element of the result is j. If no match is
levels (which will happen for excluded values) then the i-th element of the

Normally the ‘levels’ used as an attribute of the result are the reduced set of levels after removing
those in exclude, but this can be altered by supplying Labels. This should either be a set of

216 factor

new labels for the levels, or a character string, in which case the levels are that character string with
a sequence number appended.

factor (x, exclude = NULL) applied to a factor without NAs is a no-operation unless there are
unused levels: in that case, a factor with the reduced level set is returned. If exclude is used, since
R version 3.4.0, excluding non-existing character levels is equivalent to excluding nothing, and
when exclude is a character vector, that is applied to the levels of x. Alternatively, exclude
can be factor with the same level set as x and will exclude the levels present in exclude.

The codes of a factor may contain NA. For a numeric x, set exclude = NULL to make NA an extra
level (prints as <NA>); by default, this is the last level.

If NA is a level, the way to set a code to be missing (as opposed to the code of the missing level)
is to use is.na on the left-hand-side of an assignment (as in is.na (f) [1] <-TRUE; indexing
inside is.na does not work). Under those circumstances missing values are currently printed as
<NA>, i.e., identical to entries of level NA.

is.factor is generic: you can write methods to handle specific classes of objects, see Internal-
Methods.

Where levels is not supplied, unique is called. Since factors typically have quite a small
number of levels, for large vectors x it is helpful to supply nmax as an upper bound on the number
of unique values.

Since R 4.1.0, when using ¢ to combine a (possibly ordered) factor with other objects, if all objects
are (possibly ordered) factors, the result will be a factor with levels the union of the level sets of
the elements, in the order the levels occur in the level sets of the elements (which means that if all
the elements have the same level set, that is the level set of the result), equivalent to how unlist
operates on a list of factor objects.

Value

factor returns an object of class "factor" which has a set of integer codes the length
of x with a "levels" attribute of mode character and unique (!anyDuplicated(.))
entries. If argument ordered is true (or ordered() is used) the result has class
c("ordered", "factor"). Undocumentedly for a long time, factor (x) loses all
attributes (x) but "names", and resets "levels" and "class".

Applying factor to an ordered or unordered factor returns a factor (of the same type) with just
the levels which occur: see also [. factor for a more transparent way to achieve this.

is.factor returns TRUE or FALSE depending on whether its argument is of type factor or not.
Correspondingly, is.ordered returns TRUE when its argument is an ordered factor and FALSE
otherwise.

as.factor coerces its argument to a factor. It is an abbreviated (sometimes faster) form of
factor.

as.ordered (x) returns x if this is ordered, and ordered (x) otherwise.

addNA modifies a factor by turning NA into an extra level (so that NA values are counted in tables,
for instance).

.valid.factor (object) checks the validity of a factor, currently only levels (object),
and returns TRUE if it is valid, otherwise a string describing the validity problem. This function is
used for validObject (<factor>).

factor 217

Warning

The interpretation of a factor depends on both the codes and the "1levels" attribute. Be careful
only to compare factors with the same set of levels (in the same order). In particular, as .numeric
applied to a factor is meaningless, and may happen by implicit coercion. To transform a factor £
to approximately its original numeric values, as.numeric (levels (f)) [£] is recommended
and slightly more efficient than as .numeric (as.character (f)).

The levels of a factor are by default sorted, but the sort order may well depend on the locale at the
time of creation, and should not be assumed to be ASCII.

There are some anomalies associated with factors that have NA as a level. It is suggested to use
them sparingly, e.g., only for tabulation purposes.

Comparison operators and group generic methods

There are "factor" and "ordered" methods for the group generic Ops which provide meth-
ods for the Comparison operators, and for the min, max, and range generics in Summary of
"ordered". (The rest of the groups and the Math group generate an error as they are not mean-
ingful for factors.)

Only == and != can be used for factors: a factor can only be compared to another factor with an
identical set of levels (not necessarily in the same ordering) or to a character vector. Ordered factors
are compared in the same way, but the general dispatch mechanism precludes comparing ordered
and unordered factors.

All the comparison operators are available for ordered factors. Collation is done by the levels of the
operands: if both operands are ordered factors they must have the same level set.

Note

In earlier versions of R, storing character data as a factor was more space efficient if there is even
a small proportion of repeats. However, identical character strings now share storage, so the dif-
ference is small in most cases. (Integer values are stored in 4 bytes whereas each reference to a
character string needs a pointer of 4 or 8 bytes.)

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth & Brooks/Cole.

See Also

[. factor for subsetting of factors.

gl for construction of balanced factors and C for factors with specified contrasts. levels and
nlevels for accessing the levels, and unclass to get integer codes.

Examples
(ff <- factor(substring("statistics", 1:10, 1:10), levels = letters))
as.integer (ff) # the internal codes
(f. <= factor (ff)) # drops the levels that do not occur

ff[, drop = TRUE] # the same, more transparently

218 file.access

factor (letters[1:20], labels = "letter")

class (ordered(4:1)) # "ordered", inheriting from "factor"
z <- factor (LETTERS[3:1], ordered = TRUE)

and "relational" methods work:

stopifnot (sort(z) [c(1,3)] == range(z), min(z) < max(z))

suppose you want "NA" as a level, and to allow missing values.
(x <= factor(c(l, 2, NA), exclude = NULL))

is.na(x) [2] <- TRUE

x # [1] 1 <NA> <NA>

is.na (x)

[1] FALSE TRUE FALSE

More rational, since R 3.4.0

factor(c(l:2, NA), exclude = "") # keeps <NA> , as
factor(c(l1:2, NA), exclude = NULL) # always did

exclude = <character>

z # ordered levels 'A < B < C'

factor(z, exclude = "C") # does exclude

factor(z, exclude = "B") # ditto

Now, labels maybe duplicated:

factor() with duplicated labels allowing to "merge levels"

x <— c("Man", "Male", "Man", "Lady", "Female")

Map from 4 different values to only two levels:

(xf <- factor(x, levels = c("Male", "Man" , "Lady", "Female"),
labels c("Male", "Male", "Female", "Female")))

#> [1] Male Male Male Female Female

#> Levels: Male Female

Using addNA ()

Month <- airquality$Month

table (addNA (Month))

table (addNA (Month, ifany = TRUE))

file.access Ascertain File Accessibility

Description

Utility function to access information about files on the user’s file systems.

Usage

file.access (names, mode = 0)

file.access 219

Arguments
names character vector containing file names. Tilde-expansion will be done: see
path.expand.
mode integer specifying access mode required: see ‘Details’.
Details

The mode value can be the exclusive or of the following values

0 test for existence.
1 test for execute permission.
2 test for write permission.

4 test for read permission.

Permission will be computed for real user ID and real group ID (rather than the effective IDs).

Please note that it is not a good idea to use this function to test before trying to open a file. On a
multi-tasking system, it is possible that the accessibility of a file will change between the time you
call file.access () and the time you try to open the file. It is better to wrap file open attempts
intry.

Value

An integer vector with values 0 for success and -1 for failure.

Note

This is intended as a replacement for the S-PLUS function access, a wrapper for the C function
of the same name, which explains the return value encoding. Note that the return value is false for
success.

See Also

file.info for more details on permissions, Sys.chmod to change permissions, and try for a
‘test it and see’ approach.

file_test for shell-style file tests.

Examples

fa <- file.access(dir("."))
table (fa) # count successes & failures

220

file.info

file.choose Choose a File Interactively

Description

Choose

Usage

a file interactively.

file.choose (new = FALSE)

Arguments

new

Value

A chara

See Also

Logical: choose the style of dialog box presented to the user: at present only

new = FALSE is used.

cter vector of length one giving the file path.

list.files for non-interactive selection.

file.info Extract File Information

Description

Utility function to extract information about files on the user’s file systems.

Usage
file.
file.

file.
file.

Arguments

info (..., extra_cols = TRUE)

mode (...)
mtime (...)
size(...)

character vectors containing file paths. Tilde-expansion is done:

path.expand.

extra_cols Logical: return all cols rather than just the first six.

see

file.info 221

Details

What constitutes a ‘file’ is OS-dependent but includes directories. (However, directory names
must not include a trailing backslash or slash on Windows.) See also the section in the help for
file.exists on case-insensitive file systems.

The file ‘mode’ follows POSIX conventions, giving three octal digits summarizing the permissions
for the file owner, the owner’s group and for anyone respectively. Each digit is the logical or of read
(4), write (2) and execute/search (1) permissions.

See files for how file paths with marked encodings are interpreted.

On most systems symbolic links are followed, so information is given about the file to which the
link points rather than about the link.

Value

For file.info, data frame with row names the file names and columns

size double: File size in bytes.

isdir logical: Is the file a directory?

mode integer of class "octmode". The file permissions, printed in octal, for example
644.

mtime, ctime, atime
object of class "POSIXct": file modification, ‘last status change’ and last ac-

cess times.
uid integer: the user ID of the file’s owner.
gid integer: the group ID of the file’s group.
uname character: uid interpreted as a user name.
grname character: gid interpreted as a group name.

Unknown user and group names will be NA.

If extra_cols is false, only the first six columns are returned: as these can all be found from
a single C system call this can be faster. (However, properly configured systems will use a ‘name
service cache daemon’ to speed up the name lookups.)

Entries for non-existent or non-readable files will be NA. The uid, gid, uname and grname
columns may not be supplied on a non-POSIX Unix-alike system, and will not be on Windows.

What is meant by the three file times depends on the OS and file system. On Windows native file
systems ctime is the file creation time (something which is not recorded on most Unix-alike file
systems). What is meant by ‘file access’ and hence the ‘last access time’ is system-dependent.

The resolution of the file times depends on both the OS and the type of the file system. Modern file
systems typically record times to an accuracy of a microsecond or better: notable exceptions are
HFS+ on macOS (recorded in seconds) and modification time on older FAT systems (recorded in
increments of 2 seconds). Note that "POSIXct" times are by default printed in whole seconds: to
change that see strftime.

file.mode, file.mtime and file. size are convenience wrappers returning just one of the
columns.

222 file.path

Note

Some (now old) systems allow files of more than 2Gb to be created but not accessed by the stat
system call. Such files may show up as non-readable (and very likely not be readable by any of R’s
input functions).

See Also

Sys.readlink to find out about symbolic links, files, file.access, list.files, and
DateTimeClasses for the date formats.

Sys.chmod to change permissions.

Examples

ncol (finf <- file.info(dir())) # at least six

finf # the whole list

Those that are more than 100 days old

finf <- file.info(dir (), extra_cols = FALSE)

finf[difftime (Sys.time (), finf[,"mtime"], units = "days") > 100 , 1:4]

file.info("no-such-file—-exists")

file.path Construct Path to File

Description

Construct the path to a file from components in a platform-independent way.

Usage
file.path(..., fsep = .Platform$file.sep)
Arguments
character vectors. Long vectors are not supported.
fsep the path separator to use (assumed to be ASCII).
Details

The implementation is designed to be fast (faster than paste) as this function is used extensively
in R itself.

It can also be used for environment paths such as PATH and R_LIBS with fsep=
.PlatformS$Spath. sep.

Trailing path separators are invalid for Windows file paths apart from ‘/* and ‘d: /’ (although some
functions/utilities do accept them), so a trailing / or \ is removed there.

file.show 223

Value

A character vector of the arguments concatenated term-by-term and separated by fsep if all argu-
ments have positive length; otherwise, an empty character vector (unlike paste).

An element of the result will be marked (see Encoding) as UTF-8 if run in a UTF-8 locale (when
marked inputs are converted to UTF-8) or if a component of the result is marked as UTF-8, or as
Latin-1 in a non-Latin-1 locale.

Note

The components are by default separated by / (not \) on Windows.

See Also

basename, normalizePath, path.expand.

file.show Display One or More Text Files

Description

Display one or more (plain) text files, in a platform specific way, typically via a ‘pager’.

Usage
file.show(..., header = rep("", nfiles),
title = "R Information",
delete.file = FALSE, pager = getOption ("pager"),
encoding = "")
Arguments
one or more character vectors containing the names of the files to be displayed.
Paths with have tilde expansion.
header character vector (of the same length as the number of files specified in . . .)
giving a header for each file being displayed. Defaults to empty strings.
title an overall title for the display. If a single separate window is used for the display,

title will be used as the window title. If multiple windows are used, their
titles should combine the title and the file-specific header.

delete.file should the files be deleted after display? Used for temporary files.
pager the pager to be used: not used on all platforms

encoding character string giving the encoding to be assumed for the file(s).

224 files

Details

This function provides the core of the R help system, but it can be used for other purposes as well,
such as page.

How the pager is implemented is highly system-dependent.

The basic Unix version concatenates the files (using the headers) to a temporary file, and displays
it in the pager selected by the pager argument, which is a character vector specifying a system
command (a full path or a command found on the PATH) to run on the set of files. The ‘factory-
fresh’ default is to use ‘R_HOME /bin/pager’, which is a shell script running the command-line
specified by the environment variable PAGER whose default is set at configuration, usually to less.
On a Unix-alike more is used if pager is empty.

Most GUI systems will use a separate pager window for each file, and let the user leave
it up while R continues running. The selection of such pagers could either be done us-
ing special pager names being intercepted by lower-level code (such as "internal" and
"console" on Windows), or by letting pager be an R function which will be called with ar-
guments (files, header,title,delete.file) corresponding to the first four arguments
of file.show and take care of interfacing to the GUIL.

The R. app GUI on macOS uses its internal pager irrespective of the setting of pager.

Not all implementations will honour delete.file. In particular, using an external pager on
Windows does not, as there is no way to know when the external application has finished with the
file.

Author(s)

Ross Thaka, Brian Ripley.

See Also

files, list.files, help; RShowDoc call file.show () for type = "text". Consider
getOption ("pdfviewer") ande.g., system for displaying pdf files.

file.edit.

Examples

file.show(file.path (R.home ("doc"), "COPYRIGHTS"))

files File Manipulation

Description

These functions provide a low-level interface to the computer’s file system.

files 225

Usage

file.create

file.exists

file.remove(...)

file.rename (from, to)

file.append(filel, file2)

file.copy(from, to, overwrite = recursive, recursive = FALSE,
copy.mode = TRUE, copy.date = FALSE)

file.symlink (from, to)

file.link (from, to)

..., showWarnings = TRUE)
cel)

—~ e~~~

Arguments
., filel, file2
character vectors, containing file names or paths.

from, to character vectors, containing file names or paths. For file.copy and
file.symlink to can alternatively be the path to a single existing directory.

overwrite logical; should existing destination files be overwritten?

showWarnings logical; should the warnings on failure be shown?

recursive logical. If to is a directory, should directories in from be copied (and their
contents)? (Like cp —R on POSIX OSes.)

copy .mode logical: should file permission bits be copied where possible?

copy.date logical: should file dates be preserved where possible? See

Sys.setFileTime.

Details

The . .. arguments are concatenated to form one character string: you can specify the files sepa-
rately or as one vector. All of these functions expand path names: see path.expand.

file.create creates files with the given names if they do not already exist and truncates them if
they do. They are created with the maximal read/write permissions allowed by the ‘umask’ setting
(where relevant). By default a warning is given (with the reason) if the operation fails.

file.exists returns a logical vector indicating whether the files named by its argument exist.
(Here ‘exists’ is in the sense of the system’s stat call: a file will be reported as existing only if
you have the permissions needed by stat. Existence can also be checked by file.access,
which might use different permissions and so obtain a different result. Note that the existence of
a file does not imply that it is readable: for that use file.access.) What constitutes a ‘file’ is
system-dependent, but should include directories. (However, directory names must not include a
trailing backslash or slash on Windows.) Note that if the file is a symbolic link on a Unix-alike, the
result indicates if the link points to an actual file, not just if the link exists. Lastly, note the different
function exi st s which checks for existence of R objects.

file.remove attempts to remove the files named in its argument. On most Unix platforms ‘file’
includes empty directories, symbolic links, fifos and sockets. On Windows, ‘file’ means a regular
file and not, say, an empty directory.

file.rename attempts to rename files (and £ rom and t o must be of the same length). Where file
permissions allow this will overwrite an existing element of to. This is subject to the limitations

226 files

of the OS’s corresponding system call (see something like man 2 rename on a Unix-alike): in
particular in the interpretation of ‘file’: most platforms will not rename files from one file system to
another. NB: This means that renaming a file from a temporary directory to the user’s filespace or
during package installation will often fail. (On Windows, £ile . rename can rename files but not
directories across volumes.) On platforms which allow directories to be renamed, typically neither
or both of from and to must a directory, and if t o exists it must be an empty directory.

file.append attempts to append the files named by its second argument to those named by its
first. The R subscript recycling rule is used to align names given in vectors of different lengths.

file.copy works in a similar way to £ile.append but with the arguments in the natural order
for copying. Copying to existing destination files is skipped unless overwrite = TRUE. The to
argument can specify a single existing directory. If copy.mode = TRUE file read/write/execute
permissions are copied where possible, restricted by ‘umask’. (On Windows this applies only to
files.) Other security attributes such as ACLs are not copied. On a POSIX filesystem the targets of
symbolic links will be copied rather than the links themselves, and hard links are copied separately.
Using copy .date = TRUE may or may not copy the timestamp exactly (for example, fractional
seconds may be omitted), but is more likely to do so as from R 3.4.0.

file.symlink and file.link make symbolic and hard links on those file systems which
support them. For file.symlink the t o argument can specify a single existing directory. (Unix
and macOS native filesystems support both. Windows has hard links to files on NTFS file systems
and concepts related to symbolic links on recent versions: see the section below on the Windows
version of this help page. What happens on a FAT or SMB-mounted file system is OS-specific.)

File arguments with a marked encoding (see Encoding are if possible translated to the native
encoding, except on Windows where Unicode file operations are used (so marking as UTF-8 can be
used to access file paths not in the native encoding on suitable file systems).

Value

These functions return a logical vector indicating which operation succeeded for each of the files
attempted. Using a missing value for a file or path name will always be regarded as a failure.

If showWarnings = TRUE, file.create will give a warning for an unexpected failure.

Case-insensitive file systems

Case-insensitive file systems are the norm on Windows and macOS, but can be found on all OSes
(for example a FAT-formatted USB drive is probably case-insensitive).

These functions will most likely match existing files regardless of case on such file systems: how-
ever this is an OS function and it is possible that file names might be mapped to upper or lower
case.

Warning

Always check the return value of these functions when used in package code. This is especially im-
portant for £ile.rename, which has OS-specific restrictions (and note that the session temporary
directory is commonly on a different file system from the working directory): it is only portable to
use file.rename to change file name(s) within a single directory.

files2 227

Author(s)

Ross Thaka, Brian Ripley

See Also

file.info, file.access, file.path, file.show, list.files, unlink,
basename, path.expand.

dir.create.
Sys.glob to expand wildcards in file specifications.
file_test, Sys.readlink (for ‘symlink’s).

https://en.wikipedia.org/wiki/Hard_link and https://en.wikipedia.
org/wiki/Symbolic_1link for the concepts of links and their limitations.

Examples

cat ("file A\n", file = "A")

cat ("file B\n", file "B")

file.append ("A", "B")

file.create ("A") # (trashing previous)

file.append ("A", rep("B", 10))

if (interactive()) file.show("A") # -> the 10 lines from 'B'
file.copy ("A", "C")

dir.create("tmp")

file.copy(c("A", "B"), "tmp")

list.files ("tmp") # -> "A" and "B"

setwd ("tmp")
file.remove ("A") # the tmp/A file
file.symlink (file.path("..", c("A", "B")), ".")
|-—> (TRUE,FALSE) : ok for A but not B as it exists already
setwd ("..")
unlink ("tmp", recursive = TRUE)

file.remove ("A", "B", "C")

files?2 Manipulation of Directories and File Permissions

Description

These functions provide a low-level interface to the computer’s file system.

Usage
dir.exists (paths)
dir.create(path, showWarnings = TRUE, recursive = FALSE, mode = "0777")
Sys.chmod (paths, mode = "0777", use_umask = TRUE)

Sys.umask (mode = NA)

https://en.wikipedia.org/wiki/Hard_link
https://en.wikipedia.org/wiki/Symbolic_link
https://en.wikipedia.org/wiki/Symbolic_link

228 files2
Arguments
path a character vector containing a single path name. Tilde expansion (see
path.expand) is done.
paths character vectors containing file or directory paths. Tilde expansion (see
path.expand) is done.
showWarnings logical; should the warnings on failure be shown?
recursive logical. Should elements of the path other than the last be created? If true, like
the Unix command mkdir —p.
mode the mode to be used on Unix-alikes: it will be coerced by as.octmode. For
Sys.chmod itis recycled along paths.
use_umask logical: should the mode be restricted by the umask setting?
Details

dir.exists checks that the paths exist (in the same sense as file.exists) and are directo-
ries.

dir.create creates the last element of the path, unless recursive = TRUE. Trailing path
separators are discarded. The mode will be modified by the umask setting in the same way as for
the system function mkdir. What modes can be set is OS-dependent, and it is unsafe to assume
that more than three octal digits will be used. For more details see your OS’s documentation on the
system call mkdir, e.g. man 2 mkdir (and not that on the command-line utility of that name).

One of the idiosyncrasies of Windows is that directory creation may report success but create a
directory with a different name, for example dir.create ("G.S.") creates ‘"G.S"’. This
is undocumented, and what are the precise circumstances is unknown (and might depend on the
version of Windows). Also avoid directory names with a trailing space.

Sys.chmod sets the file permissions of one or more files. It may not be supported on a system
(when a warning is issued). See the comments for dir.create for how modes are interpreted.
Changing mode on a symbolic link is unlikely to work (nor be necessary). For more details see your
OS’s documentation on the system call chmod, e.g. man 2 chmod (and not that on the command-
line utility of that name). Whether this changes the permission of a symbolic link or its target is
OS-dependent (although to change the target is more common, and POSIX does not support modes
for symbolic links: BSD-based Unixes do, though).

Sys.umask sets the umask and returns the previous value: as a special case mode = NA just
returns the current value. It may not be supported (when a warning is issued and "0" is returned).
For more details see your OS’s documentation on the system call umask, e.g. man 2 umask.

How modes are handled depends on the file system, even on Unix-alikes (although their documen-
tation is often written assuming a POSIX file system). So treat documentation cautiously if you are
using, say, a FAT/FAT32 or network-mounted file system.

See files for how file paths with marked encodings are interpreted.

Value

dir.exists returns a logical vector of TRUE or FALSE values (without names).

dir.create and Sys.chmod return invisibly a logical vector indicating if the operation suc-
ceeded for each of the files attempted. Using a missing value for a path name will always

find.package 229

be regarded as a failure. dir.create indicates failure if the directory already exists. If
showWarnings = TRUE, dir.create will give a warning for an unexpected failure (e.g., not
for a missing value nor for an already existing component for recursive = TRUE).

Sys .umask returns the previous value of the uma sk, as a length-one object of class "octmode":
the visibility flag is off unless mode is NA.

See also the section in the help for file.exists on case-insensitive file systems for the inter-
pretation of path and paths.

Author(s)

Ross Thaka, Brian Ripley

See Also

file.info, file.exists, file.path, 1list.files, wunlink, basename,
path.expand.

Examples

Not run:
Fix up maximal allowed permissions in a file tree

Sys.chmod (list.dirs("."), "777")
f <- list.files(".", all.files = TRUE, full.names = TRUE, recursive = TRUE)
Sys.chmod (f, (file.info(f)Smode | "664"))

End(Not run)

find.package Find Packages

Description

Find the paths to one or more packages.

Usage

find.package (package, lib.loc = NULL, quiet = FALSE,
verbose = getOption ("verbose"))

path.package (package, quiet = FALSE)

packageNotFoundError (package, lib.loc, call = NULL)

230 find.package

Arguments
package character vector: the names of packages.
lib.loc a character vector describing the location of R library trees to search through, or
NULL. The default value of NULL corresponds to checking the loaded names-
pace, then all libraries currently known in . LibPaths ().
quiet logical. Should this not give warnings or an error if the package is not found?
verbose a logical. If TRUE, additional diagnostics are printed, notably when a package
is found more than once.
call call expression.
Details

find.package returns path to the locations where the given packages are found. If 1ib.loc
is NULL, then loaded namespaces are searched before the libraries. If a package is found more
than once, the first match is used. Unless quiet = TRUE a warning will be given about the named
packages which are not found, and an error if none are. If verbose is true, warnings about
packages found more than once are given. For a package to be returned it must contain a either a
‘Meta’ subdirectory or a ‘DESCRIPTION’ file containing a valid version field, but it need not
be installed (it could be a source package if 1ib.loc was set suitably).

find.package is not usually the right tool to find out if a package is available for use: the only
way to do that is to use require to try to load it. It need not be installed for the correct platform, it
might have a version requirement not met by the running version of R, there might be dependencies
which are not available,

path.package returns the paths from which the named packages were loaded, or if none were
named, for all currently attached packages. Unless quiet = TRUE it will warn if some of the
packages named are not attached, and given an error if none are.

packageNotFoundError creates an error condition object of class
packageNotFoundError for signaling errors. The condition object contains the fields
packageand 1ib.loc.

Value

A character vector of paths of package directories.

See Also

path.expand and normalizePath for path standardization.

Examples

try (find.package ("knitr"))
will not give an error, maybe a warning about xallx locations it is found:
find.package ("kitty", quiet=TRUE, verbose=TRUE)

Find all .libPaths () entries a package is found:
findPkgAll <- function (pkg)
unlist (lapply (.libPaths (), function(lib)

findInterval 231

find.package (pkg, 1lib, gquiet=TRUE, verbose=FALSE)))

findPkgAll ("MASS")
findPkgAll ("knitr")

findInterval Find Interval Numbers or Indices

Description

Given a vector of non-decreasing breakpoints in vec, find the interval containing each element of
x;i.e.,if 1 <-findInterval (x, V), for eachindex jin x Vi; S x5 < V41 where v := —o0,
UN+1 := 400, and N <-length (v). At the two boundaries, the returned index may differ by 1,
depending on the optional arguments rightmost.closedand all.inside.

Usage

findInterval (x, vec, rightmost.closed = FALSE, all.inside = FALSE,
left.open = FALSE)

Arguments
X numeric.
vec numeric, sorted (weakly) increasingly, of length N, say.

rightmost.closed
logical; if true, the rightmost interval, vec [N-1] .. vec[N] is treated as
closed, see below.

all.inside logical; if true, the returned indices are coerced into 1, ...,N-1, i.e., O is
mapped to 1 and N to N-1.

left.open logical; if true all the intervals are open at left and closed at right; in
the formulas below, < should be swapped with < (and > with >), and
rightmost.closed means ‘leftmost is closed’. This may be useful, e.g.,
in survival analysis computations.

Details

The function findInterval finds the index of one vector x in another, vec, where
the latter must be non-decreasing. Where this is trivial, equivalent to apply (
outer (x,vec, ">="), 1, sum), as a matter of fact, the internal algorithm uses interval search
ensuring O(nlog N) complexity where n <—length (x) (and N <-length (vec)). For (al-
most) sorted x, it will be even faster, basically O(n).

This is the same computation as for the empirical distribution function, and indeed,
findInterval (t, sort (X)) is identical to nF,(t; X1,...,X,) where F, is the empirical
distribution function of X1, ..., X,,.

When rightmost.closed = TRUE, the result for x [j] = vec [N] (= maxwvec), is N -1 as
for all other values in the last interval.

232 findInterval

left.open = TRUE is occasionally useful, e.g., for survival data. For (anti-)symmetry reasons, it
is equivalent to using “mirrored” data, i.e., the following is always true:

identical (

findInterval (x, v, left.open= TRUE, ...)
N - findInterval(-x, -v[N:1], left.open=FALSE, ...))

where N <-length (vec) as above.

Value

vector of length length (x) with values in 0 : N (and NA) where N <-length (vec), or values
coerced to 1: (N-1) if and only if all.inside = TRUE (equivalently coercing all x values

inside the intervals). Note that NAs are propagated from x, and Inf values are allowed in both x
and vec.

Author(s)

Martin Maechler

See Also

approx (x,method = "constant") which is a generalization of findInterval (), ecdf
for computing the empirical distribution function which is (up to a factor of n) also basically the
same as findInterval (.).

Examples

X <- 2:18
v <- c(5, 10, 15) # create two bins [5,10) and [10,15)
cbind (x, findInterval (x, Vv))

N <- 100

X <- sort (round(stats::rt (N, df = 2)
tt <= ¢ (=100, seg(-2, 2, length.out
it <- findInterval (tt, X)

I4

2))
201), +100)
tt[it < 1 | it >= N] # only first and last are outside range (X)

'left.open = TRUE' means "mirroring"
N <- length (v)
stopifnot (identical (
findInterval (x, v, left.open=TRUE)
N - findInterval (-x, -vI[N:1])))

’

force 233

force Force Evaluation of an Argument

Description

Forces the evaluation of a function argument.

Usage

force (x)

Arguments

x a formal argument of the enclosing function.

Details

force forces the evaluation of a formal argument. This can be useful if the argument will be
captured in a closure by the lexical scoping rules and will later be altered by an explicit assignment
or an implicit assignment in a loop or an apply function.

Note

This is semantic sugar: just evaluating the symbol will do the same thing (see the examples).

force does not force the evaluation of other promises. (It works by forcing the promise that is
created when the actual arguments of a call are matched to the formal arguments of a closure, the
mechanism which implements lazy evaluation.)

Examples

f <- function(y) function() vy

1f <- vector("list", 5)

for (i in seqg_along(lf)) 1f[[1i]] <- £(1)
1£f[[111() # returns 5

g <— function(y) { force(y); function() y }
lg <- vector("list", 5)

for (i in seg_along(lg)) 1g[[i]] <- g(i)
1g[[1]1]1() # returns 1

This is identical to
g <- function(y) { y; function() vy }

234 Foreign

forceAndCall Call a function with Some Arguments Forced

Description

Call a function with a specified number of leading arguments forced before the call if the function
is a closure.

Usage
forceAndCall (n, FUN, ...)
Arguments
n number of leading arguments to force.
FUN function to call.
arguments to FUN.
Details
forceAndCall calls the function FUN with arguments specified in If the value of FUN

is a closure then the first n arguments to the function are evaluated (i.e. their delayed evaluation
promises are forced) before executing the function body. If the value of FUN is a primitive then the
call FUN (. . .) is evaluated in the usual way.

forceAndCall is intended to help defining higher order functions like apply to behave more
reasonably when the result returned by the function applied is a closure that captured its arguments.

See Also

force,promise, closure.

Foreign Foreign Function Interface

Description

Functions to make calls to compiled code that has been loaded into R.

Usage

.C(.NAME, ..., NAOK = FALSE, DUP = TRUE, PACKAGE, ENCODING)
.Fortran(.NAME, ..., NAOK FALSE, DUP TRUE, PACKAGE, ENCODING)

Foreign

Arguments

.NAME

NAOK

PACKAGE

DUP, ENCODING

Details

235

a character string giving the name of a C function or Fortran subroutine, or an
object of class "NativeSymbolInfo", "RegisteredNativeSymbol"
or "NativeSymbol" referring to such a name.

arguments to be passed to the foreign function. Up to 65.

if TRUE then any NA or NaN or Inf values in the arguments are passed on to
the foreign function. If FALSE, the presence of NA or NaN or Inf values is
regarded as an error.

if supplied, confine the search for a character string . NAME to the DLL given by
this argument (plus the conventional extension, ‘. so’, *.d11’,...).

This is intended to add safety for packages, which can ensure by using this
argument that no other package can override their external symbols, and also
speeds up the search (see ‘Note’).

For back-compatibility, accepted but ignored.

These functions can be used to make calls to compiled C and Fortran code. Later interfaces are
.Call and .External which are more flexible and have better performance.

These functions are primitive, and . NAME is always matched to the first argument supplied (which

should not be named). The other named arguments follow . . . and so cannot be abbreviated. For
clarity, should avoid using names in the arguments passed to . .. that match or partially match
.NAME.

Value

A list similar to the . .

. list of arguments passed in (including any names given to the arguments),

but reflecting any changes made by the C or Fortran code.

Argument types

The mapping of the types of R arguments to C or Fortran arguments is

Note: The C types

R C Fortran

integer int * integer

numeric double * double precision
—or— float * real

complex Rcomplex * double complex
logical int * integer
character char ** [see below]

raw unsigned char * not allowed

list SEXP * not allowed
other SEXP not allowed

corresponding to integer and logical are int, not long as in S. This

236 Foreign

difference matters on most 64-bit platforms, where int is 32-bit and 1ong is 64-bit (but not on
64-bit Windows).

Note: The Fortran type corresponding to 1logical is integer, not logical: the difference
matters on some Fortran compilers.

Numeric vectors in R will be passed as type double * to C (and as double precision to
Fortran) unless the argument has attribute Csingle set to TRUE (use as.single or single).
This mechanism is only intended to be used to facilitate the interfacing of existing C and Fortran
code.

The C type Rcomplex is defined in ‘Complex.h’ as a typedef struct {double r;
double i; }. It may or may not be equivalent to the C99 double complex type, depending
on the compiler used.

Logical values are sent as 0 (FALSE), 1 (TRUE) or INT_MIN=-2147483648 (NA, but only if
NAOK = TRUE), and the compiled code should return one of these three values: however non-zero
values other than INT_MIN are mapped to TRUE.

Missing (N2) string values are passed to . C as the string "NA". As the C char type can represent
all possible bit patterns there appears to be no way to distinguish missing strings from the string
"NA". If this distinction is important use .Call.

Using a character string with . Fortran is deprecated and will give a warning. It passes the first
(only) character string of a character vector as a C character array to Fortran: that may be usable
as character*255 if its true length is passed separately. Only up to 255 characters of the string
are passed back. (How well this works, and even if it works at all, depends on the C and Fortran
compilers and the platform.)

Lists, functions or other R objects can (for historical reasons) be passed to .C, but the .Call
interface is much pr