AOMedia AV1 Codec
intra_mode_search_utils.h
Go to the documentation of this file.
1/*
2 * Copyright (c) 2020, Alliance for Open Media. All rights reserved
3 *
4 * This source code is subject to the terms of the BSD 2 Clause License and
5 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6 * was not distributed with this source code in the LICENSE file, you can
7 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8 * Media Patent License 1.0 was not distributed with this source code in the
9 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10 */
11
17#ifndef AOM_AV1_ENCODER_INTRA_MODE_SEARCH_UTILS_H_
18#define AOM_AV1_ENCODER_INTRA_MODE_SEARCH_UTILS_H_
19
20#include "av1/common/enums.h"
21#include "av1/common/pred_common.h"
22#include "av1/common/reconintra.h"
23
24#include "av1/encoder/encoder.h"
25#include "av1/encoder/model_rd.h"
26#include "av1/encoder/palette.h"
27#include "av1/encoder/hybrid_fwd_txfm.h"
28
29#ifdef __cplusplus
30extern "C" {
31#endif
32
34#define BINS 32
35static const float av1_intra_hog_model_bias[DIRECTIONAL_MODES] = {
36 0.450578f, 0.695518f, -0.717944f, -0.639894f,
37 -0.602019f, -0.453454f, 0.055857f, -0.465480f,
38};
39
40static const float av1_intra_hog_model_weights[BINS * DIRECTIONAL_MODES] = {
41 -3.076402f, -3.757063f, -3.275266f, -3.180665f, -3.452105f, -3.216593f,
42 -2.871212f, -3.134296f, -1.822324f, -2.401411f, -1.541016f, -1.195322f,
43 -0.434156f, 0.322868f, 2.260546f, 3.368715f, 3.989290f, 3.308487f,
44 2.277893f, 0.923793f, 0.026412f, -0.385174f, -0.718622f, -1.408867f,
45 -1.050558f, -2.323941f, -2.225827f, -2.585453f, -3.054283f, -2.875087f,
46 -2.985709f, -3.447155f, 3.758139f, 3.204353f, 2.170998f, 0.826587f,
47 -0.269665f, -0.702068f, -1.085776f, -2.175249f, -1.623180f, -2.975142f,
48 -2.779629f, -3.190799f, -3.521900f, -3.375480f, -3.319355f, -3.897389f,
49 -3.172334f, -3.594528f, -2.879132f, -2.547777f, -2.921023f, -2.281844f,
50 -1.818988f, -2.041771f, -0.618268f, -1.396458f, -0.567153f, -0.285868f,
51 -0.088058f, 0.753494f, 2.092413f, 3.215266f, -3.300277f, -2.748658f,
52 -2.315784f, -2.423671f, -2.257283f, -2.269583f, -2.196660f, -2.301076f,
53 -2.646516f, -2.271319f, -2.254366f, -2.300102f, -2.217960f, -2.473300f,
54 -2.116866f, -2.528246f, -3.314712f, -1.701010f, -0.589040f, -0.088077f,
55 0.813112f, 1.702213f, 2.653045f, 3.351749f, 3.243554f, 3.199409f,
56 2.437856f, 1.468854f, 0.533039f, -0.099065f, -0.622643f, -2.200732f,
57 -4.228861f, -2.875263f, -1.273956f, -0.433280f, 0.803771f, 1.975043f,
58 3.179528f, 3.939064f, 3.454379f, 3.689386f, 3.116411f, 1.970991f,
59 0.798406f, -0.628514f, -1.252546f, -2.825176f, -4.090178f, -3.777448f,
60 -3.227314f, -3.479403f, -3.320569f, -3.159372f, -2.729202f, -2.722341f,
61 -3.054913f, -2.742923f, -2.612703f, -2.662632f, -2.907314f, -3.117794f,
62 -3.102660f, -3.970972f, -4.891357f, -3.935582f, -3.347758f, -2.721924f,
63 -2.219011f, -1.702391f, -0.866529f, -0.153743f, 0.107733f, 1.416882f,
64 2.572884f, 3.607755f, 3.974820f, 3.997783f, 2.970459f, 0.791687f,
65 -1.478921f, -1.228154f, -1.216955f, -1.765932f, -1.951003f, -1.985301f,
66 -1.975881f, -1.985593f, -2.422371f, -2.419978f, -2.531288f, -2.951853f,
67 -3.071380f, -3.277027f, -3.373539f, -4.462010f, -0.967888f, 0.805524f,
68 2.794130f, 3.685984f, 3.745195f, 3.252444f, 2.316108f, 1.399146f,
69 -0.136519f, -0.162811f, -1.004357f, -1.667911f, -1.964662f, -2.937579f,
70 -3.019533f, -3.942766f, -5.102767f, -3.882073f, -3.532027f, -3.451956f,
71 -2.944015f, -2.643064f, -2.529872f, -2.077290f, -2.809965f, -1.803734f,
72 -1.783593f, -1.662585f, -1.415484f, -1.392673f, -0.788794f, -1.204819f,
73 -1.998864f, -1.182102f, -0.892110f, -1.317415f, -1.359112f, -1.522867f,
74 -1.468552f, -1.779072f, -2.332959f, -2.160346f, -2.329387f, -2.631259f,
75 -2.744936f, -3.052494f, -2.787363f, -3.442548f, -4.245075f, -3.032172f,
76 -2.061609f, -1.768116f, -1.286072f, -0.706587f, -0.192413f, 0.386938f,
77 0.716997f, 1.481393f, 2.216702f, 2.737986f, 3.109809f, 3.226084f,
78 2.490098f, -0.095827f, -3.864816f, -3.507248f, -3.128925f, -2.908251f,
79 -2.883836f, -2.881411f, -2.524377f, -2.624478f, -2.399573f, -2.367718f,
80 -1.918255f, -1.926277f, -1.694584f, -1.723790f, -0.966491f, -1.183115f,
81 -1.430687f, 0.872896f, 2.766550f, 3.610080f, 3.578041f, 3.334928f,
82 2.586680f, 1.895721f, 1.122195f, 0.488519f, -0.140689f, -0.799076f,
83 -1.222860f, -1.502437f, -1.900969f, -3.206816f,
84};
85
86static const NN_CONFIG av1_intra_hog_model_nnconfig = {
87 BINS, // num_inputs
88 DIRECTIONAL_MODES, // num_outputs
89 0, // num_hidden_layers
90 { 0 },
91 {
92 av1_intra_hog_model_weights,
93 },
94 {
95 av1_intra_hog_model_bias,
96 },
97};
98
99#define FIX_PREC_BITS (16)
100static AOM_INLINE int get_hist_bin_idx(int dx, int dy) {
101 const int32_t ratio = (dy * (1 << FIX_PREC_BITS)) / dx;
102
103 // Find index by bisection
104 static const int thresholds[BINS] = {
105 -1334015, -441798, -261605, -183158, -138560, -109331, -88359, -72303,
106 -59392, -48579, -39272, -30982, -23445, -16400, -9715, -3194,
107 3227, 9748, 16433, 23478, 31015, 39305, 48611, 59425,
108 72336, 88392, 109364, 138593, 183191, 261638, 441831, INT32_MAX
109 };
110
111 int lo_idx = 0, hi_idx = BINS - 1;
112 // Divide into segments of size 8 gives better performance than binary search
113 // here.
114 if (ratio <= thresholds[7]) {
115 lo_idx = 0;
116 hi_idx = 7;
117 } else if (ratio <= thresholds[15]) {
118 lo_idx = 8;
119 hi_idx = 15;
120 } else if (ratio <= thresholds[23]) {
121 lo_idx = 16;
122 hi_idx = 23;
123 } else {
124 lo_idx = 24;
125 hi_idx = 31;
126 }
127
128 for (int idx = lo_idx; idx <= hi_idx; idx++) {
129 if (ratio <= thresholds[idx]) {
130 return idx;
131 }
132 }
133 assert(0 && "No valid histogram bin found!");
134 return BINS - 1;
135}
136#undef FIX_PREC_BITS
137
138static AOM_INLINE void generate_hog(const uint8_t *src, int stride, int rows,
139 int cols, float *hist) {
140 float total = 0.1f;
141 src += stride;
142 for (int r = 1; r < rows - 1; ++r) {
143 for (int c = 1; c < cols - 1; ++c) {
144 const uint8_t *above = &src[c - stride];
145 const uint8_t *below = &src[c + stride];
146 const uint8_t *left = &src[c - 1];
147 const uint8_t *right = &src[c + 1];
148 // Calculate gradient using Sobel fitlers.
149 const int dx = (right[-stride] + 2 * right[0] + right[stride]) -
150 (left[-stride] + 2 * left[0] + left[stride]);
151 const int dy = (below[-1] + 2 * below[0] + below[1]) -
152 (above[-1] + 2 * above[0] + above[1]);
153 if (dx == 0 && dy == 0) continue;
154 const int temp = abs(dx) + abs(dy);
155 if (!temp) continue;
156 total += temp;
157 if (dx == 0) {
158 hist[0] += temp / 2;
159 hist[BINS - 1] += temp / 2;
160 } else {
161 const int idx = get_hist_bin_idx(dx, dy);
162 assert(idx >= 0 && idx < BINS);
163 hist[idx] += temp;
164 }
165 }
166 src += stride;
167 }
168
169 for (int i = 0; i < BINS; ++i) hist[i] /= total;
170}
171
172static AOM_INLINE void generate_hog_hbd(const uint8_t *src8, int stride,
173 int rows, int cols, float *hist) {
174 float total = 0.1f;
175 uint16_t *src = CONVERT_TO_SHORTPTR(src8);
176 src += stride;
177 for (int r = 1; r < rows - 1; ++r) {
178 for (int c = 1; c < cols - 1; ++c) {
179 const uint16_t *above = &src[c - stride];
180 const uint16_t *below = &src[c + stride];
181 const uint16_t *left = &src[c - 1];
182 const uint16_t *right = &src[c + 1];
183 // Calculate gradient using Sobel fitlers.
184 const int dx = (right[-stride] + 2 * right[0] + right[stride]) -
185 (left[-stride] + 2 * left[0] + left[stride]);
186 const int dy = (below[-1] + 2 * below[0] + below[1]) -
187 (above[-1] + 2 * above[0] + above[1]);
188 if (dx == 0 && dy == 0) continue;
189 const int temp = abs(dx) + abs(dy);
190 if (!temp) continue;
191 total += temp;
192 if (dx == 0) {
193 hist[0] += temp / 2;
194 hist[BINS - 1] += temp / 2;
195 } else {
196 const int idx = get_hist_bin_idx(dx, dy);
197 assert(idx >= 0 && idx < BINS);
198 hist[idx] += temp;
199 }
200 }
201 src += stride;
202 }
203
204 for (int i = 0; i < BINS; ++i) hist[i] /= total;
205}
206
207static INLINE void collect_hog_data(const MACROBLOCK *x, BLOCK_SIZE bsize,
208 int plane, float *hog) {
209 const MACROBLOCKD *xd = &x->e_mbd;
210 const struct macroblockd_plane *const pd = &xd->plane[plane];
211 const int ss_x = pd->subsampling_x;
212 const int ss_y = pd->subsampling_y;
213 const int bh = block_size_high[bsize];
214 const int bw = block_size_wide[bsize];
215 const int rows =
216 ((xd->mb_to_bottom_edge >= 0) ? bh : (xd->mb_to_bottom_edge >> 3) + bh) >>
217 ss_y;
218 const int cols =
219 ((xd->mb_to_right_edge >= 0) ? bw : (xd->mb_to_right_edge >> 3) + bw) >>
220 ss_x;
221 const int src_stride = x->plane[plane].src.stride;
222 const uint8_t *src = x->plane[plane].src.buf;
223 if (is_cur_buf_hbd(xd)) {
224 generate_hog_hbd(src, src_stride, rows, cols, hog);
225 } else {
226 generate_hog(src, src_stride, rows, cols, hog);
227 }
228
229 // Scale the hog so the luma and chroma are on the same scale
230 for (int b = 0; b < BINS; ++b) {
231 hog[b] *= (1 + ss_x) * (1 + ss_y);
232 }
233}
234
235static AOM_INLINE void prune_intra_mode_with_hog(
236 const MACROBLOCK *x, BLOCK_SIZE bsize, float th,
237 uint8_t *directional_mode_skip_mask, int is_chroma) {
238 aom_clear_system_state();
239
240 const int plane = is_chroma ? AOM_PLANE_U : AOM_PLANE_Y;
241 float hist[BINS] = { 0.0f };
242 collect_hog_data(x, bsize, plane, hist);
243
244 // Make prediction for each of the mode
245 float scores[DIRECTIONAL_MODES] = { 0.0f };
246 aom_clear_system_state();
247 av1_nn_predict(hist, &av1_intra_hog_model_nnconfig, 1, scores);
248 for (UV_PREDICTION_MODE uv_mode = UV_V_PRED; uv_mode <= UV_D67_PRED;
249 uv_mode++) {
250 if (scores[uv_mode - UV_V_PRED] <= th) {
251 directional_mode_skip_mask[uv_mode] = 1;
252 }
253 }
254
255 aom_clear_system_state();
256}
257#undef BINS
258
259// Returns the cost needed to send a uniformly distributed r.v.
260static AOM_INLINE int write_uniform_cost(int n, int v) {
261 const int l = get_unsigned_bits(n);
262 const int m = (1 << l) - n;
263 if (l == 0) return 0;
264 if (v < m)
265 return av1_cost_literal(l - 1);
266 else
267 return av1_cost_literal(l);
268}
275static AOM_INLINE int intra_mode_info_cost_y(const AV1_COMP *cpi,
276 const MACROBLOCK *x,
277 const MB_MODE_INFO *mbmi,
278 BLOCK_SIZE bsize, int mode_cost) {
279 int total_rate = mode_cost;
280 const ModeCosts *mode_costs = &x->mode_costs;
281 const int use_palette = mbmi->palette_mode_info.palette_size[0] > 0;
282 const int use_filter_intra = mbmi->filter_intra_mode_info.use_filter_intra;
283 const int use_intrabc = mbmi->use_intrabc;
284 // Can only activate one mode.
285 assert(((mbmi->mode != DC_PRED) + use_palette + use_intrabc +
286 use_filter_intra) <= 1);
287 const int try_palette = av1_allow_palette(
289 if (try_palette && mbmi->mode == DC_PRED) {
290 const MACROBLOCKD *xd = &x->e_mbd;
291 const int bsize_ctx = av1_get_palette_bsize_ctx(bsize);
292 const int mode_ctx = av1_get_palette_mode_ctx(xd);
293 total_rate +=
294 mode_costs->palette_y_mode_cost[bsize_ctx][mode_ctx][use_palette];
295 if (use_palette) {
296 const uint8_t *const color_map = xd->plane[0].color_index_map;
297 int block_width, block_height, rows, cols;
298 av1_get_block_dimensions(bsize, 0, xd, &block_width, &block_height, &rows,
299 &cols);
300 const int plt_size = mbmi->palette_mode_info.palette_size[0];
301 int palette_mode_cost =
302 mode_costs
303 ->palette_y_size_cost[bsize_ctx][plt_size - PALETTE_MIN_SIZE] +
304 write_uniform_cost(plt_size, color_map[0]);
305 uint16_t color_cache[2 * PALETTE_MAX_SIZE];
306 const int n_cache = av1_get_palette_cache(xd, 0, color_cache);
307 palette_mode_cost +=
309 n_cache, cpi->common.seq_params.bit_depth);
310 palette_mode_cost +=
311 av1_cost_color_map(x, 0, bsize, mbmi->tx_size, PALETTE_MAP);
312 total_rate += palette_mode_cost;
313 }
314 }
315 if (av1_filter_intra_allowed(&cpi->common, mbmi)) {
316 total_rate += mode_costs->filter_intra_cost[mbmi->bsize][use_filter_intra];
317 if (use_filter_intra) {
318 total_rate +=
320 .filter_intra_mode];
321 }
322 }
323 if (av1_is_directional_mode(mbmi->mode)) {
324 if (av1_use_angle_delta(bsize)) {
325 total_rate +=
326 mode_costs->angle_delta_cost[mbmi->mode - V_PRED]
327 [MAX_ANGLE_DELTA +
328 mbmi->angle_delta[PLANE_TYPE_Y]];
329 }
330 }
331 if (av1_allow_intrabc(&cpi->common))
332 total_rate += mode_costs->intrabc_cost[use_intrabc];
333 return total_rate;
334}
335
340static AOM_INLINE int intra_mode_info_cost_uv(const AV1_COMP *cpi,
341 const MACROBLOCK *x,
342 const MB_MODE_INFO *mbmi,
343 BLOCK_SIZE bsize, int mode_cost) {
344 int total_rate = mode_cost;
345 const ModeCosts *mode_costs = &x->mode_costs;
346 const int use_palette = mbmi->palette_mode_info.palette_size[1] > 0;
347 const UV_PREDICTION_MODE mode = mbmi->uv_mode;
348 // Can only activate one mode.
349 assert(((mode != UV_DC_PRED) + use_palette + mbmi->use_intrabc) <= 1);
350
351 const int try_palette = av1_allow_palette(
353 if (try_palette && mode == UV_DC_PRED) {
354 const PALETTE_MODE_INFO *pmi = &mbmi->palette_mode_info;
355 total_rate +=
356 mode_costs->palette_uv_mode_cost[pmi->palette_size[0] > 0][use_palette];
357 if (use_palette) {
358 const int bsize_ctx = av1_get_palette_bsize_ctx(bsize);
359 const int plt_size = pmi->palette_size[1];
360 const MACROBLOCKD *xd = &x->e_mbd;
361 const uint8_t *const color_map = xd->plane[1].color_index_map;
362 int palette_mode_cost =
363 mode_costs
364 ->palette_uv_size_cost[bsize_ctx][plt_size - PALETTE_MIN_SIZE] +
365 write_uniform_cost(plt_size, color_map[0]);
366 uint16_t color_cache[2 * PALETTE_MAX_SIZE];
367 const int n_cache = av1_get_palette_cache(xd, 1, color_cache);
368 palette_mode_cost += av1_palette_color_cost_uv(
369 pmi, color_cache, n_cache, cpi->common.seq_params.bit_depth);
370 palette_mode_cost +=
371 av1_cost_color_map(x, 1, bsize, mbmi->tx_size, PALETTE_MAP);
372 total_rate += palette_mode_cost;
373 }
374 }
375 if (av1_is_directional_mode(get_uv_mode(mode))) {
376 if (av1_use_angle_delta(bsize)) {
377 total_rate +=
378 mode_costs->angle_delta_cost[mode - V_PRED]
379 [mbmi->angle_delta[PLANE_TYPE_UV] +
380 MAX_ANGLE_DELTA];
381 }
382 }
383 return total_rate;
384}
385
390static void av1_quick_txfm(int use_hadamard, TX_SIZE tx_size, int is_hbd,
391 int bd, const int16_t *src_diff, int src_stride,
392 tran_low_t *coeff) {
393 if (use_hadamard) {
394 switch (tx_size) {
395 case TX_4X4: aom_hadamard_4x4(src_diff, src_stride, coeff); break;
396 case TX_8X8: aom_hadamard_8x8(src_diff, src_stride, coeff); break;
397 case TX_16X16: aom_hadamard_16x16(src_diff, src_stride, coeff); break;
398 case TX_32X32: aom_hadamard_32x32(src_diff, src_stride, coeff); break;
399 default: assert(0);
400 }
401 } else {
402 assert(IMPLIES(!is_hbd, bd == 8));
403 TxfmParam txfm_param;
404 txfm_param.tx_type = DCT_DCT;
405 txfm_param.tx_size = tx_size;
406 txfm_param.lossless = 0;
407 txfm_param.bd = bd;
408 txfm_param.is_hbd = is_hbd;
409 txfm_param.tx_set_type = EXT_TX_SET_ALL16;
410 av1_fwd_txfm(src_diff, coeff, src_stride, &txfm_param);
411 }
412}
413
415// Makes a quick intra prediction and estimate the rdcost with a model without
416// going through the whole txfm/quantize/itxfm process.
417static int64_t intra_model_rd(const AV1_COMMON *cm, MACROBLOCK *const x,
418 int plane, BLOCK_SIZE plane_bsize,
419 TX_SIZE tx_size, int use_hadamard) {
420 MACROBLOCKD *const xd = &x->e_mbd;
421 int row, col;
422 assert(!is_inter_block(xd->mi[0]));
423 const int stepr = tx_size_high_unit[tx_size];
424 const int stepc = tx_size_wide_unit[tx_size];
425 const int txbw = tx_size_wide[tx_size];
426 const int txbh = tx_size_high[tx_size];
427 const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane);
428 const int max_blocks_high = max_block_high(xd, plane_bsize, plane);
429 int64_t satd_cost = 0;
430 struct macroblock_plane *p = &x->plane[plane];
431 struct macroblockd_plane *pd = &xd->plane[plane];
432 // Prediction.
433 for (row = 0; row < max_blocks_high; row += stepr) {
434 for (col = 0; col < max_blocks_wide; col += stepc) {
435 av1_predict_intra_block_facade(cm, xd, plane, col, row, tx_size);
436 // Here we use p->src_diff and p->coeff as temporary buffers for
437 // prediction residue and transform coefficients. The buffers are only
438 // used in this for loop, therefore we don't need to properly add offset
439 // to the buffers.
440 av1_subtract_block(
441 xd, txbh, txbw, p->src_diff, block_size_wide[plane_bsize],
442 p->src.buf + (((row * p->src.stride) + col) << 2), p->src.stride,
443 pd->dst.buf + (((row * pd->dst.stride) + col) << 2), pd->dst.stride);
444 av1_quick_txfm(use_hadamard, tx_size, is_cur_buf_hbd(xd), xd->bd,
445 p->src_diff, block_size_wide[plane_bsize], p->coeff);
446 satd_cost += aom_satd(p->coeff, tx_size_2d[tx_size]);
447 }
448 }
449 return satd_cost;
450}
463static AOM_INLINE int model_intra_yrd_and_prune(const AV1_COMP *const cpi,
464 MACROBLOCK *x, BLOCK_SIZE bsize,
465 int64_t *best_model_rd) {
466 const TX_SIZE tx_size = AOMMIN(TX_32X32, max_txsize_lookup[bsize]);
467 const int plane = 0;
468 const AV1_COMMON *cm = &cpi->common;
469 const int64_t this_model_rd =
470 intra_model_rd(cm, x, plane, bsize, tx_size, /*use_hadamard=*/1);
471 if (*best_model_rd != INT64_MAX &&
472 this_model_rd > *best_model_rd + (*best_model_rd >> 2)) {
473 return 1;
474 } else if (this_model_rd < *best_model_rd) {
475 *best_model_rd = this_model_rd;
476 }
477 return 0;
478}
479
480#ifdef __cplusplus
481} // extern "C"
482#endif
483
484#endif // AOM_AV1_ENCODER_INTRA_MODE_SEARCH_UTILS_H_
#define AOM_PLANE_U
Definition: aom_image.h:200
#define AOM_PLANE_Y
Definition: aom_image.h:199
Declares top-level encoder structures and functions.
static int model_intra_yrd_and_prune(const AV1_COMP *const cpi, MACROBLOCK *x, BLOCK_SIZE bsize, int64_t *best_model_rd)
Estimate the luma rdcost of a given intra mode and try to prune it.
Definition: intra_mode_search_utils.h:463
int av1_palette_color_cost_y(const PALETTE_MODE_INFO *const pmi, const uint16_t *color_cache, int n_cache, int bit_depth)
Gets the rate cost for transmitting luma palette color values.
Definition: palette.c:125
int av1_palette_color_cost_uv(const PALETTE_MODE_INFO *const pmi, const uint16_t *color_cache, int n_cache, int bit_depth)
Gets the rate cost for transmitting luma palette chroma values.
Definition: palette.c:139
static int intra_mode_info_cost_uv(const AV1_COMP *cpi, const MACROBLOCK *x, const MB_MODE_INFO *mbmi, BLOCK_SIZE bsize, int mode_cost)
Return the rate cost for chroma prediction mode info of intra blocks.
Definition: intra_mode_search_utils.h:340
static int intra_mode_info_cost_y(const AV1_COMP *cpi, const MACROBLOCK *x, const MB_MODE_INFO *mbmi, BLOCK_SIZE bsize, int mode_cost)
Returns the rate cost for luma prediction mode info of intra blocks.
Definition: intra_mode_search_utils.h:275
static void av1_quick_txfm(int use_hadamard, TX_SIZE tx_size, int is_hbd, int bd, const int16_t *src_diff, int src_stride, tran_low_t *coeff)
Apply Hadamard or DCT transform.
Definition: intra_mode_search_utils.h:390
Declares functions used in palette search.
Top level common structure used by both encoder and decoder.
Definition: av1_common_int.h:725
SequenceHeader seq_params
Definition: av1_common_int.h:955
FeatureFlags features
Definition: av1_common_int.h:884
Top level encoder structure.
Definition: encoder.h:2095
AV1_COMMON common
Definition: encoder.h:2138
bool allow_screen_content_tools
Definition: av1_common_int.h:353
Stores the prediction/txfm mode of the current coding block.
Definition: blockd.h:216
PREDICTION_MODE mode
The prediction mode used.
Definition: blockd.h:226
UV_PREDICTION_MODE uv_mode
The UV mode when intra is used.
Definition: blockd.h:228
PALETTE_MODE_INFO palette_mode_info
Stores the size and colors of palette mode.
Definition: blockd.h:274
int8_t angle_delta[PLANE_TYPES]
Directional mode delta: the angle is base angle + (angle_delta * step).
Definition: blockd.h:266
FILTER_INTRA_MODE_INFO filter_intra_mode_info
The type of filter intra mode used (if applicable).
Definition: blockd.h:268
BLOCK_SIZE bsize
The block size of the current coding block.
Definition: blockd.h:222
TX_SIZE tx_size
Transform size when fixed size txfm is used (e.g. intra modes).
Definition: blockd.h:284
uint8_t use_intrabc
Whether intrabc is used.
Definition: blockd.h:312
Holds the entropy costs for various modes sent to the bitstream.
Definition: block.h:583
int intrabc_cost[2]
intrabc_cost
Definition: block.h:618
int palette_uv_mode_cost[2][2]
palette_uv_mode_cost
Definition: block.h:633
int palette_y_size_cost[7][PALETTE_SIZES]
palette_y_size_cost
Definition: block.h:621
int palette_uv_size_cost[7][PALETTE_SIZES]
palette_uv_size_cost
Definition: block.h:623
int filter_intra_cost[BLOCK_SIZES_ALL][2]
filter_intra_cost
Definition: block.h:603
int filter_intra_mode_cost[FILTER_INTRA_MODES]
filter_intra_mode_cost
Definition: block.h:605
int angle_delta_cost[DIRECTIONAL_MODES][2 *MAX_ANGLE_DELTA+1]
angle_delta_cost
Definition: block.h:607
int palette_y_mode_cost[7][3][2]
palette_y_mode_cost
Definition: block.h:631
Each source plane of the current macroblock.
Definition: block.h:103
struct buf_2d src
A buffer containing the source frame.
Definition: block.h:117
tran_low_t * coeff
Transformed coefficients.
Definition: block.h:111
int16_t * src_diff
Stores source - pred so the txfm can be computed later.
Definition: block.h:105
Encoder's parameters related to the current coding block.
Definition: block.h:846
MACROBLOCKD e_mbd
Decoder's view of current coding block.
Definition: block.h:864
ModeCosts mode_costs
The rate needed to signal a mode to the bitstream.
Definition: block.h:959
struct macroblock_plane plane[3]
Each of the encoding plane.
Definition: block.h:856
Variables related to current coding block.
Definition: blockd.h:568
int mb_to_bottom_edge
Definition: blockd.h:678
struct macroblockd_plane plane[3]
Definition: blockd.h:604
int mb_to_right_edge
Definition: blockd.h:676
int bd
Definition: blockd.h:806
MB_MODE_INFO ** mi
Definition: blockd.h:615