AOMedia AV1 Codec
av1_common_int.h
1/*
2 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
3 *
4 * This source code is subject to the terms of the BSD 2 Clause License and
5 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6 * was not distributed with this source code in the LICENSE file, you can
7 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8 * Media Patent License 1.0 was not distributed with this source code in the
9 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10 */
11
12#ifndef AOM_AV1_COMMON_AV1_COMMON_INT_H_
13#define AOM_AV1_COMMON_AV1_COMMON_INT_H_
14
15#include "config/aom_config.h"
16#include "config/av1_rtcd.h"
17
18#include "aom/internal/aom_codec_internal.h"
19#include "aom_util/aom_thread.h"
20#include "av1/common/alloccommon.h"
21#include "av1/common/av1_loopfilter.h"
22#include "av1/common/entropy.h"
23#include "av1/common/entropymode.h"
24#include "av1/common/entropymv.h"
25#include "av1/common/enums.h"
26#include "av1/common/frame_buffers.h"
27#include "av1/common/mv.h"
28#include "av1/common/quant_common.h"
30#include "av1/common/tile_common.h"
31#include "av1/common/timing.h"
32#include "av1/common/odintrin.h"
33#include "av1/encoder/hash_motion.h"
34#include "aom_dsp/grain_synthesis.h"
35#include "aom_dsp/grain_table.h"
36#ifdef __cplusplus
37extern "C" {
38#endif
39
40#if defined(__clang__) && defined(__has_warning)
41#if __has_feature(cxx_attributes) && __has_warning("-Wimplicit-fallthrough")
42#define AOM_FALLTHROUGH_INTENDED [[clang::fallthrough]] // NOLINT
43#endif
44#elif defined(__GNUC__) && __GNUC__ >= 7
45#define AOM_FALLTHROUGH_INTENDED __attribute__((fallthrough)) // NOLINT
46#endif
47
48#ifndef AOM_FALLTHROUGH_INTENDED
49#define AOM_FALLTHROUGH_INTENDED \
50 do { \
51 } while (0)
52#endif
53
54#define CDEF_MAX_STRENGTHS 16
55
56/* Constant values while waiting for the sequence header */
57#define FRAME_ID_LENGTH 15
58#define DELTA_FRAME_ID_LENGTH 14
59
60#define FRAME_CONTEXTS (FRAME_BUFFERS + 1)
61// Extra frame context which is always kept at default values
62#define FRAME_CONTEXT_DEFAULTS (FRAME_CONTEXTS - 1)
63#define PRIMARY_REF_BITS 3
64#define PRIMARY_REF_NONE 7
65
66#define NUM_PING_PONG_BUFFERS 2
67
68#define MAX_NUM_TEMPORAL_LAYERS 8
69#define MAX_NUM_SPATIAL_LAYERS 4
70/* clang-format off */
71// clang-format seems to think this is a pointer dereference and not a
72// multiplication.
73#define MAX_NUM_OPERATING_POINTS \
74 (MAX_NUM_TEMPORAL_LAYERS * MAX_NUM_SPATIAL_LAYERS)
75/* clang-format on */
76
77// TODO(jingning): Turning this on to set up transform coefficient
78// processing timer.
79#define TXCOEFF_TIMER 0
80#define TXCOEFF_COST_TIMER 0
81
84enum {
85 SINGLE_REFERENCE = 0,
86 COMPOUND_REFERENCE = 1,
87 REFERENCE_MODE_SELECT = 2,
88 REFERENCE_MODES = 3,
89} UENUM1BYTE(REFERENCE_MODE);
90
91enum {
95 REFRESH_FRAME_CONTEXT_DISABLED,
100 REFRESH_FRAME_CONTEXT_BACKWARD,
101} UENUM1BYTE(REFRESH_FRAME_CONTEXT_MODE);
102
103#define MFMV_STACK_SIZE 3
104typedef struct {
105 int_mv mfmv0;
106 uint8_t ref_frame_offset;
107} TPL_MV_REF;
108
109typedef struct {
110 int_mv mv;
111 MV_REFERENCE_FRAME ref_frame;
112} MV_REF;
113
114typedef struct RefCntBuffer {
115 // For a RefCntBuffer, the following are reference-holding variables:
116 // - cm->ref_frame_map[]
117 // - cm->cur_frame
118 // - cm->scaled_ref_buf[] (encoder only)
119 // - pbi->output_frame_index[] (decoder only)
120 // With that definition, 'ref_count' is the number of reference-holding
121 // variables that are currently referencing this buffer.
122 // For example:
123 // - suppose this buffer is at index 'k' in the buffer pool, and
124 // - Total 'n' of the variables / array elements above have value 'k' (that
125 // is, they are pointing to buffer at index 'k').
126 // Then, pool->frame_bufs[k].ref_count = n.
127 int ref_count;
128
129 unsigned int order_hint;
130 unsigned int ref_order_hints[INTER_REFS_PER_FRAME];
131
132 // These variables are used only in encoder and compare the absolute
133 // display order hint to compute the relative distance and overcome
134 // the limitation of get_relative_dist() which returns incorrect
135 // distance when a very old frame is used as a reference.
136 unsigned int display_order_hint;
137 unsigned int ref_display_order_hint[INTER_REFS_PER_FRAME];
138
139 MV_REF *mvs;
140 uint8_t *seg_map;
141 struct segmentation seg;
142 int mi_rows;
143 int mi_cols;
144 // Width and height give the size of the buffer (before any upscaling, unlike
145 // the sizes that can be derived from the buf structure)
146 int width;
147 int height;
148 WarpedMotionParams global_motion[REF_FRAMES];
149 int showable_frame; // frame can be used as show existing frame in future
150 uint8_t film_grain_params_present;
151 aom_film_grain_t film_grain_params;
152 aom_codec_frame_buffer_t raw_frame_buffer;
154 int temporal_id; // Temporal layer ID of the frame
155 int spatial_id; // Spatial layer ID of the frame
156 FRAME_TYPE frame_type;
157
158 // This is only used in the encoder but needs to be indexed per ref frame
159 // so it's extremely convenient to keep it here.
160 int interp_filter_selected[SWITCHABLE];
161
162 // Inter frame reference frame delta for loop filter
163 int8_t ref_deltas[REF_FRAMES];
164
165 // 0 = ZERO_MV, MV
166 int8_t mode_deltas[MAX_MODE_LF_DELTAS];
167
168 FRAME_CONTEXT frame_context;
169} RefCntBuffer;
170
171typedef struct BufferPool {
172// Protect BufferPool from being accessed by several FrameWorkers at
173// the same time during frame parallel decode.
174// TODO(hkuang): Try to use atomic variable instead of locking the whole pool.
175// TODO(wtc): Remove this. See
176// https://chromium-review.googlesource.com/c/webm/libvpx/+/560630.
177#if CONFIG_MULTITHREAD
178 pthread_mutex_t pool_mutex;
179#endif
180
181 // Private data associated with the frame buffer callbacks.
182 void *cb_priv;
183
186
187 RefCntBuffer frame_bufs[FRAME_BUFFERS];
188
189 // Frame buffers allocated internally by the codec.
190 InternalFrameBufferList int_frame_buffers;
191} BufferPool;
192
196typedef struct {
199 int cdef_strengths[CDEF_MAX_STRENGTHS];
200 int cdef_uv_strengths[CDEF_MAX_STRENGTHS];
203} CdefInfo;
204
207typedef struct {
208 int delta_q_present_flag;
209 // Resolution of delta quant
210 int delta_q_res;
211 int delta_lf_present_flag;
212 // Resolution of delta lf level
213 int delta_lf_res;
214 // This is a flag for number of deltas of loop filter level
215 // 0: use 1 delta, for y_vertical, y_horizontal, u, and v
216 // 1: use separate deltas for each filter level
217 int delta_lf_multi;
218} DeltaQInfo;
219
220typedef struct {
221 int enable_order_hint; // 0 - disable order hint, and related tools
222 int order_hint_bits_minus_1; // dist_wtd_comp, ref_frame_mvs,
223 // frame_sign_bias
224 // if 0, enable_dist_wtd_comp and
225 // enable_ref_frame_mvs must be set as 0.
226 int enable_dist_wtd_comp; // 0 - disable dist-wtd compound modes
227 // 1 - enable it
228 int enable_ref_frame_mvs; // 0 - disable ref frame mvs
229 // 1 - enable it
230} OrderHintInfo;
231
232// Sequence header structure.
233// Note: All syntax elements of sequence_header_obu that need to be
234// bit-identical across multiple sequence headers must be part of this struct,
235// so that consistency is checked by are_seq_headers_consistent() function.
236// One exception is the last member 'op_params' that is ignored by
237// are_seq_headers_consistent() function.
238typedef struct SequenceHeader {
239 int num_bits_width;
240 int num_bits_height;
241 int max_frame_width;
242 int max_frame_height;
243 // Whether current and reference frame IDs are signaled in the bitstream.
244 // Frame id numbers are additional information that do not affect the
245 // decoding process, but provide decoders with a way of detecting missing
246 // reference frames so that appropriate action can be taken.
247 uint8_t frame_id_numbers_present_flag;
248 int frame_id_length;
249 int delta_frame_id_length;
250 BLOCK_SIZE sb_size; // Size of the superblock used for this frame
251 int mib_size; // Size of the superblock in units of MI blocks
252 int mib_size_log2; // Log 2 of above.
253
254 OrderHintInfo order_hint_info;
255
256 uint8_t force_screen_content_tools; // 0 - force off
257 // 1 - force on
258 // 2 - adaptive
259 uint8_t still_picture; // Video is a single frame still picture
260 uint8_t reduced_still_picture_hdr; // Use reduced header for still picture
261 uint8_t force_integer_mv; // 0 - Don't force. MV can use subpel
262 // 1 - force to integer
263 // 2 - adaptive
264 uint8_t enable_filter_intra; // enables/disables filterintra
265 uint8_t enable_intra_edge_filter; // enables/disables edge upsampling
266 uint8_t enable_interintra_compound; // enables/disables interintra_compound
267 uint8_t enable_masked_compound; // enables/disables masked compound
268 uint8_t enable_dual_filter; // 0 - disable dual interpolation filter
269 // 1 - enable vert/horz filter selection
270 uint8_t enable_warped_motion; // 0 - disable warp for the sequence
271 // 1 - enable warp for the sequence
272 uint8_t enable_superres; // 0 - Disable superres for the sequence
273 // and no frame level superres flag
274 // 1 - Enable superres for the sequence
275 // enable per-frame superres flag
276 uint8_t enable_cdef; // To turn on/off CDEF
277 uint8_t enable_restoration; // To turn on/off loop restoration
278 BITSTREAM_PROFILE profile;
279
280 // Color config.
281 aom_bit_depth_t bit_depth; // AOM_BITS_8 in profile 0 or 1,
282 // AOM_BITS_10 or AOM_BITS_12 in profile 2 or 3.
283 uint8_t use_highbitdepth; // If true, we need to use 16bit frame buffers.
284 uint8_t monochrome; // Monochorme video
285 aom_color_primaries_t color_primaries;
286 aom_transfer_characteristics_t transfer_characteristics;
287 aom_matrix_coefficients_t matrix_coefficients;
288 int color_range;
289 int subsampling_x; // Chroma subsampling for x
290 int subsampling_y; // Chroma subsampling for y
291 aom_chroma_sample_position_t chroma_sample_position;
292 uint8_t separate_uv_delta_q;
293 uint8_t film_grain_params_present;
294
295 // Operating point info.
296 int operating_points_cnt_minus_1;
297 int operating_point_idc[MAX_NUM_OPERATING_POINTS];
298 int timing_info_present;
299 aom_timing_info_t timing_info;
300 uint8_t decoder_model_info_present_flag;
301 aom_dec_model_info_t decoder_model_info;
302 uint8_t display_model_info_present_flag;
303 AV1_LEVEL seq_level_idx[MAX_NUM_OPERATING_POINTS];
304 uint8_t tier[MAX_NUM_OPERATING_POINTS]; // seq_tier in spec. One bit: 0 or 1.
305
306 // IMPORTANT: the op_params member must be at the end of the struct so that
307 // are_seq_headers_consistent() can be implemented with a memcmp() call.
308 // TODO(urvang): We probably don't need the +1 here.
309 aom_dec_model_op_parameters_t op_params[MAX_NUM_OPERATING_POINTS + 1];
310} SequenceHeader;
311
312typedef struct {
313 int skip_mode_allowed;
314 int skip_mode_flag;
315 int ref_frame_idx_0;
316 int ref_frame_idx_1;
317} SkipModeInfo;
318
319typedef struct {
320 FRAME_TYPE frame_type;
321 REFERENCE_MODE reference_mode;
322
323 unsigned int order_hint;
324 unsigned int display_order_hint;
325 unsigned int frame_number;
326 SkipModeInfo skip_mode_info;
327 int refresh_frame_flags; // Which ref frames are overwritten by this frame
328 int frame_refs_short_signaling;
329} CurrentFrame;
330
336typedef struct {
384 TX_MODE tx_mode;
385 InterpFilter interp_filter;
399 REFRESH_FRAME_CONTEXT_MODE refresh_frame_context;
401
405typedef struct CommonTileParams {
406 int cols;
407 int rows;
415
422
429 int width;
430 int height;
457 int col_start_sb[MAX_TILE_COLS + 1];
462 int row_start_sb[MAX_TILE_ROWS + 1];
466 unsigned int large_scale;
474
490
494 int MBs;
495
506
528 BLOCK_SIZE mi_alloc_bsize;
529
546
553 TX_TYPE *tx_type_map;
554
563 void (*free_mi)(struct CommonModeInfoParams *mi_params);
568 void (*setup_mi)(struct CommonModeInfoParams *mi_params);
575 void (*set_mb_mi)(struct CommonModeInfoParams *mi_params, int width,
576 int height);
578};
579
589
595
604
615
616 /*
617 * Note: The qindex per superblock may have a delta from the qindex obtained
618 * at frame level from parameters above, based on 'cm->delta_q_info'.
619 */
620
628 int16_t y_dequant_QTX[MAX_SEGMENTS][2];
629 int16_t u_dequant_QTX[MAX_SEGMENTS][2];
630 int16_t v_dequant_QTX[MAX_SEGMENTS][2];
640 const qm_val_t *giqmatrix[NUM_QM_LEVELS][3][TX_SIZES_ALL];
644 const qm_val_t *gqmatrix[NUM_QM_LEVELS][3][TX_SIZES_ALL];
654 const qm_val_t *y_iqmatrix[MAX_SEGMENTS][TX_SIZES_ALL];
658 const qm_val_t *u_iqmatrix[MAX_SEGMENTS][TX_SIZES_ALL];
662 const qm_val_t *v_iqmatrix[MAX_SEGMENTS][TX_SIZES_ALL];
682};
683
684typedef struct CommonContexts CommonContexts;
693 PARTITION_CONTEXT **partition;
694
703 ENTROPY_CONTEXT **entropy[MAX_MB_PLANE];
704
711 TXFM_CONTEXT **txfm;
712
720};
721
725typedef struct AV1Common {
729 CurrentFrame current_frame;
733 struct aom_internal_error_info error;
734
750 int width;
751 int height;
783
794 uint32_t buffer_removal_times[MAX_NUM_OPERATING_POINTS + 1];
801
805 RefCntBuffer *prev_frame;
806
811 RefCntBuffer *cur_frame;
812
833 int remapped_ref_idx[REF_FRAMES];
834
840 struct scale_factors sf_identity;
841
848 struct scale_factors ref_scale_factors[REF_FRAMES];
849
857 RefCntBuffer *ref_frame_map[REF_FRAMES];
858
865
873
880
885
890
891#if CONFIG_ENTROPY_STATS
895 int coef_cdf_category;
896#endif // CONFIG_ENTROPY_STATS
897
902
906 struct segmentation seg;
907
912
917 loop_filter_info_n lf_info;
918 struct loopfilter lf;
925 RestorationInfo rst_info[MAX_MB_PLANE];
926 int32_t *rst_tmpbuf;
927 RestorationLineBuffers *rlbs;
935
939 aom_film_grain_t film_grain_params;
940
944 DeltaQInfo delta_q_info;
945
949 WarpedMotionParams global_motion[REF_FRAMES];
950
955 SequenceHeader seq_params;
956
960 FRAME_CONTEXT *fc;
966 FRAME_CONTEXT *default_frame_context;
967
972
976 BufferPool *buffer_pool;
977
985
991 int ref_frame_id[REF_FRAMES];
1001 TPL_MV_REF *tpl_mvs;
1010 int ref_frame_sign_bias[REF_FRAMES];
1016 int8_t ref_frame_side[REF_FRAMES];
1017
1027
1037
1038#if TXCOEFF_TIMER
1039 int64_t cum_txcoeff_timer;
1040 int64_t txcoeff_timer;
1041 int txb_count;
1042#endif // TXCOEFF_TIMER
1043
1044#if TXCOEFF_COST_TIMER
1045 int64_t cum_txcoeff_cost_timer;
1046 int64_t txcoeff_cost_timer;
1047 int64_t txcoeff_cost_count;
1048#endif // TXCOEFF_COST_TIMER
1049
1050#if CONFIG_LPF_MASK
1051 int is_decoding;
1052#endif // CONFIG_LPF_MASK
1053} AV1_COMMON;
1054
1057// TODO(hkuang): Don't need to lock the whole pool after implementing atomic
1058// frame reference count.
1059static void lock_buffer_pool(BufferPool *const pool) {
1060#if CONFIG_MULTITHREAD
1061 pthread_mutex_lock(&pool->pool_mutex);
1062#else
1063 (void)pool;
1064#endif
1065}
1066
1067static void unlock_buffer_pool(BufferPool *const pool) {
1068#if CONFIG_MULTITHREAD
1069 pthread_mutex_unlock(&pool->pool_mutex);
1070#else
1071 (void)pool;
1072#endif
1073}
1074
1075static INLINE YV12_BUFFER_CONFIG *get_ref_frame(AV1_COMMON *cm, int index) {
1076 if (index < 0 || index >= REF_FRAMES) return NULL;
1077 if (cm->ref_frame_map[index] == NULL) return NULL;
1078 return &cm->ref_frame_map[index]->buf;
1079}
1080
1081static INLINE int get_free_fb(AV1_COMMON *cm) {
1082 RefCntBuffer *const frame_bufs = cm->buffer_pool->frame_bufs;
1083 int i;
1084
1085 lock_buffer_pool(cm->buffer_pool);
1086 for (i = 0; i < FRAME_BUFFERS; ++i)
1087 if (frame_bufs[i].ref_count == 0) break;
1088
1089 if (i != FRAME_BUFFERS) {
1090 if (frame_bufs[i].buf.use_external_reference_buffers) {
1091 // If this frame buffer's y_buffer, u_buffer, and v_buffer point to the
1092 // external reference buffers. Restore the buffer pointers to point to the
1093 // internally allocated memory.
1094 YV12_BUFFER_CONFIG *ybf = &frame_bufs[i].buf;
1095 ybf->y_buffer = ybf->store_buf_adr[0];
1096 ybf->u_buffer = ybf->store_buf_adr[1];
1097 ybf->v_buffer = ybf->store_buf_adr[2];
1098 ybf->use_external_reference_buffers = 0;
1099 }
1100
1101 frame_bufs[i].ref_count = 1;
1102 } else {
1103 // We should never run out of free buffers. If this assertion fails, there
1104 // is a reference leak.
1105 assert(0 && "Ran out of free frame buffers. Likely a reference leak.");
1106 // Reset i to be INVALID_IDX to indicate no free buffer found.
1107 i = INVALID_IDX;
1108 }
1109
1110 unlock_buffer_pool(cm->buffer_pool);
1111 return i;
1112}
1113
1114static INLINE RefCntBuffer *assign_cur_frame_new_fb(AV1_COMMON *const cm) {
1115 // Release the previously-used frame-buffer
1116 if (cm->cur_frame != NULL) {
1117 --cm->cur_frame->ref_count;
1118 cm->cur_frame = NULL;
1119 }
1120
1121 // Assign a new framebuffer
1122 const int new_fb_idx = get_free_fb(cm);
1123 if (new_fb_idx == INVALID_IDX) return NULL;
1124
1125 cm->cur_frame = &cm->buffer_pool->frame_bufs[new_fb_idx];
1126 cm->cur_frame->buf.buf_8bit_valid = 0;
1127 av1_zero(cm->cur_frame->interp_filter_selected);
1128 return cm->cur_frame;
1129}
1130
1131// Modify 'lhs_ptr' to reference the buffer at 'rhs_ptr', and update the ref
1132// counts accordingly.
1133static INLINE void assign_frame_buffer_p(RefCntBuffer **lhs_ptr,
1134 RefCntBuffer *rhs_ptr) {
1135 RefCntBuffer *const old_ptr = *lhs_ptr;
1136 if (old_ptr != NULL) {
1137 assert(old_ptr->ref_count > 0);
1138 // One less reference to the buffer at 'old_ptr', so decrease ref count.
1139 --old_ptr->ref_count;
1140 }
1141
1142 *lhs_ptr = rhs_ptr;
1143 // One more reference to the buffer at 'rhs_ptr', so increase ref count.
1144 ++rhs_ptr->ref_count;
1145}
1146
1147static INLINE int frame_is_intra_only(const AV1_COMMON *const cm) {
1148 return cm->current_frame.frame_type == KEY_FRAME ||
1149 cm->current_frame.frame_type == INTRA_ONLY_FRAME;
1150}
1151
1152static INLINE int frame_is_sframe(const AV1_COMMON *cm) {
1153 return cm->current_frame.frame_type == S_FRAME;
1154}
1155
1156// These functions take a reference frame label between LAST_FRAME and
1157// EXTREF_FRAME inclusive. Note that this is different to the indexing
1158// previously used by the frame_refs[] array.
1159static INLINE int get_ref_frame_map_idx(const AV1_COMMON *const cm,
1160 const MV_REFERENCE_FRAME ref_frame) {
1161 return (ref_frame >= LAST_FRAME && ref_frame <= EXTREF_FRAME)
1162 ? cm->remapped_ref_idx[ref_frame - LAST_FRAME]
1163 : INVALID_IDX;
1164}
1165
1166static INLINE RefCntBuffer *get_ref_frame_buf(
1167 const AV1_COMMON *const cm, const MV_REFERENCE_FRAME ref_frame) {
1168 const int map_idx = get_ref_frame_map_idx(cm, ref_frame);
1169 return (map_idx != INVALID_IDX) ? cm->ref_frame_map[map_idx] : NULL;
1170}
1171
1172// Both const and non-const versions of this function are provided so that it
1173// can be used with a const AV1_COMMON if needed.
1174static INLINE const struct scale_factors *get_ref_scale_factors_const(
1175 const AV1_COMMON *const cm, const MV_REFERENCE_FRAME ref_frame) {
1176 const int map_idx = get_ref_frame_map_idx(cm, ref_frame);
1177 return (map_idx != INVALID_IDX) ? &cm->ref_scale_factors[map_idx] : NULL;
1178}
1179
1180static INLINE struct scale_factors *get_ref_scale_factors(
1181 AV1_COMMON *const cm, const MV_REFERENCE_FRAME ref_frame) {
1182 const int map_idx = get_ref_frame_map_idx(cm, ref_frame);
1183 return (map_idx != INVALID_IDX) ? &cm->ref_scale_factors[map_idx] : NULL;
1184}
1185
1186static INLINE RefCntBuffer *get_primary_ref_frame_buf(
1187 const AV1_COMMON *const cm) {
1188 const int primary_ref_frame = cm->features.primary_ref_frame;
1189 if (primary_ref_frame == PRIMARY_REF_NONE) return NULL;
1190 const int map_idx = get_ref_frame_map_idx(cm, primary_ref_frame + 1);
1191 return (map_idx != INVALID_IDX) ? cm->ref_frame_map[map_idx] : NULL;
1192}
1193
1194// Returns 1 if this frame might allow mvs from some reference frame.
1195static INLINE int frame_might_allow_ref_frame_mvs(const AV1_COMMON *cm) {
1196 return !cm->features.error_resilient_mode &&
1197 cm->seq_params.order_hint_info.enable_ref_frame_mvs &&
1198 cm->seq_params.order_hint_info.enable_order_hint &&
1199 !frame_is_intra_only(cm);
1200}
1201
1202// Returns 1 if this frame might use warped_motion
1203static INLINE int frame_might_allow_warped_motion(const AV1_COMMON *cm) {
1204 return !cm->features.error_resilient_mode && !frame_is_intra_only(cm) &&
1205 cm->seq_params.enable_warped_motion;
1206}
1207
1208static INLINE void ensure_mv_buffer(RefCntBuffer *buf, AV1_COMMON *cm) {
1209 const int buf_rows = buf->mi_rows;
1210 const int buf_cols = buf->mi_cols;
1211 const CommonModeInfoParams *const mi_params = &cm->mi_params;
1212
1213 if (buf->mvs == NULL || buf_rows != mi_params->mi_rows ||
1214 buf_cols != mi_params->mi_cols) {
1215 aom_free(buf->mvs);
1216 buf->mi_rows = mi_params->mi_rows;
1217 buf->mi_cols = mi_params->mi_cols;
1218 CHECK_MEM_ERROR(cm, buf->mvs,
1219 (MV_REF *)aom_calloc(((mi_params->mi_rows + 1) >> 1) *
1220 ((mi_params->mi_cols + 1) >> 1),
1221 sizeof(*buf->mvs)));
1222 aom_free(buf->seg_map);
1223 CHECK_MEM_ERROR(
1224 cm, buf->seg_map,
1225 (uint8_t *)aom_calloc(mi_params->mi_rows * mi_params->mi_cols,
1226 sizeof(*buf->seg_map)));
1227 }
1228
1229 const int mem_size =
1230 ((mi_params->mi_rows + MAX_MIB_SIZE) >> 1) * (mi_params->mi_stride >> 1);
1231 int realloc = cm->tpl_mvs == NULL;
1232 if (cm->tpl_mvs) realloc |= cm->tpl_mvs_mem_size < mem_size;
1233
1234 if (realloc) {
1235 aom_free(cm->tpl_mvs);
1236 CHECK_MEM_ERROR(cm, cm->tpl_mvs,
1237 (TPL_MV_REF *)aom_calloc(mem_size, sizeof(*cm->tpl_mvs)));
1238 cm->tpl_mvs_mem_size = mem_size;
1239 }
1240}
1241
1242void cfl_init(CFL_CTX *cfl, const SequenceHeader *seq_params);
1243
1244static INLINE int av1_num_planes(const AV1_COMMON *cm) {
1245 return cm->seq_params.monochrome ? 1 : MAX_MB_PLANE;
1246}
1247
1248static INLINE void av1_init_above_context(CommonContexts *above_contexts,
1249 int num_planes, int tile_row,
1250 MACROBLOCKD *xd) {
1251 for (int i = 0; i < num_planes; ++i) {
1252 xd->above_entropy_context[i] = above_contexts->entropy[i][tile_row];
1253 }
1254 xd->above_partition_context = above_contexts->partition[tile_row];
1255 xd->above_txfm_context = above_contexts->txfm[tile_row];
1256}
1257
1258static INLINE void av1_init_macroblockd(AV1_COMMON *cm, MACROBLOCKD *xd) {
1259 const int num_planes = av1_num_planes(cm);
1260 const CommonQuantParams *const quant_params = &cm->quant_params;
1261
1262 for (int i = 0; i < num_planes; ++i) {
1263 if (xd->plane[i].plane_type == PLANE_TYPE_Y) {
1264 memcpy(xd->plane[i].seg_dequant_QTX, quant_params->y_dequant_QTX,
1265 sizeof(quant_params->y_dequant_QTX));
1266 memcpy(xd->plane[i].seg_iqmatrix, quant_params->y_iqmatrix,
1267 sizeof(quant_params->y_iqmatrix));
1268
1269 } else {
1270 if (i == AOM_PLANE_U) {
1271 memcpy(xd->plane[i].seg_dequant_QTX, quant_params->u_dequant_QTX,
1272 sizeof(quant_params->u_dequant_QTX));
1273 memcpy(xd->plane[i].seg_iqmatrix, quant_params->u_iqmatrix,
1274 sizeof(quant_params->u_iqmatrix));
1275 } else {
1276 memcpy(xd->plane[i].seg_dequant_QTX, quant_params->v_dequant_QTX,
1277 sizeof(quant_params->v_dequant_QTX));
1278 memcpy(xd->plane[i].seg_iqmatrix, quant_params->v_iqmatrix,
1279 sizeof(quant_params->v_iqmatrix));
1280 }
1281 }
1282 }
1283 xd->mi_stride = cm->mi_params.mi_stride;
1284 xd->error_info = &cm->error;
1285 cfl_init(&xd->cfl, &cm->seq_params);
1286}
1287
1288static INLINE void set_entropy_context(MACROBLOCKD *xd, int mi_row, int mi_col,
1289 const int num_planes) {
1290 int i;
1291 int row_offset = mi_row;
1292 int col_offset = mi_col;
1293 for (i = 0; i < num_planes; ++i) {
1294 struct macroblockd_plane *const pd = &xd->plane[i];
1295 // Offset the buffer pointer
1296 const BLOCK_SIZE bsize = xd->mi[0]->bsize;
1297 if (pd->subsampling_y && (mi_row & 0x01) && (mi_size_high[bsize] == 1))
1298 row_offset = mi_row - 1;
1299 if (pd->subsampling_x && (mi_col & 0x01) && (mi_size_wide[bsize] == 1))
1300 col_offset = mi_col - 1;
1301 int above_idx = col_offset;
1302 int left_idx = row_offset & MAX_MIB_MASK;
1303 pd->above_entropy_context =
1304 &xd->above_entropy_context[i][above_idx >> pd->subsampling_x];
1305 pd->left_entropy_context =
1306 &xd->left_entropy_context[i][left_idx >> pd->subsampling_y];
1307 }
1308}
1309
1310static INLINE int calc_mi_size(int len) {
1311 // len is in mi units. Align to a multiple of SBs.
1312 return ALIGN_POWER_OF_TWO(len, MAX_MIB_SIZE_LOG2);
1313}
1314
1315static INLINE void set_plane_n4(MACROBLOCKD *const xd, int bw, int bh,
1316 const int num_planes) {
1317 int i;
1318 for (i = 0; i < num_planes; i++) {
1319 xd->plane[i].width = (bw * MI_SIZE) >> xd->plane[i].subsampling_x;
1320 xd->plane[i].height = (bh * MI_SIZE) >> xd->plane[i].subsampling_y;
1321
1322 xd->plane[i].width = AOMMAX(xd->plane[i].width, 4);
1323 xd->plane[i].height = AOMMAX(xd->plane[i].height, 4);
1324 }
1325}
1326
1327static INLINE void set_mi_row_col(MACROBLOCKD *xd, const TileInfo *const tile,
1328 int mi_row, int bh, int mi_col, int bw,
1329 int mi_rows, int mi_cols) {
1330 xd->mb_to_top_edge = -GET_MV_SUBPEL(mi_row * MI_SIZE);
1331 xd->mb_to_bottom_edge = GET_MV_SUBPEL((mi_rows - bh - mi_row) * MI_SIZE);
1332 xd->mb_to_left_edge = -GET_MV_SUBPEL((mi_col * MI_SIZE));
1333 xd->mb_to_right_edge = GET_MV_SUBPEL((mi_cols - bw - mi_col) * MI_SIZE);
1334
1335 xd->mi_row = mi_row;
1336 xd->mi_col = mi_col;
1337
1338 // Are edges available for intra prediction?
1339 xd->up_available = (mi_row > tile->mi_row_start);
1340
1341 const int ss_x = xd->plane[1].subsampling_x;
1342 const int ss_y = xd->plane[1].subsampling_y;
1343
1344 xd->left_available = (mi_col > tile->mi_col_start);
1347 if (ss_x && bw < mi_size_wide[BLOCK_8X8])
1348 xd->chroma_left_available = (mi_col - 1) > tile->mi_col_start;
1349 if (ss_y && bh < mi_size_high[BLOCK_8X8])
1350 xd->chroma_up_available = (mi_row - 1) > tile->mi_row_start;
1351 if (xd->up_available) {
1352 xd->above_mbmi = xd->mi[-xd->mi_stride];
1353 } else {
1354 xd->above_mbmi = NULL;
1355 }
1356
1357 if (xd->left_available) {
1358 xd->left_mbmi = xd->mi[-1];
1359 } else {
1360 xd->left_mbmi = NULL;
1361 }
1362
1363 const int chroma_ref = ((mi_row & 0x01) || !(bh & 0x01) || !ss_y) &&
1364 ((mi_col & 0x01) || !(bw & 0x01) || !ss_x);
1365 xd->is_chroma_ref = chroma_ref;
1366 if (chroma_ref) {
1367 // To help calculate the "above" and "left" chroma blocks, note that the
1368 // current block may cover multiple luma blocks (eg, if partitioned into
1369 // 4x4 luma blocks).
1370 // First, find the top-left-most luma block covered by this chroma block
1371 MB_MODE_INFO **base_mi =
1372 &xd->mi[-(mi_row & ss_y) * xd->mi_stride - (mi_col & ss_x)];
1373
1374 // Then, we consider the luma region covered by the left or above 4x4 chroma
1375 // prediction. We want to point to the chroma reference block in that
1376 // region, which is the bottom-right-most mi unit.
1377 // This leads to the following offsets:
1378 MB_MODE_INFO *chroma_above_mi =
1379 xd->chroma_up_available ? base_mi[-xd->mi_stride + ss_x] : NULL;
1380 xd->chroma_above_mbmi = chroma_above_mi;
1381
1382 MB_MODE_INFO *chroma_left_mi =
1383 xd->chroma_left_available ? base_mi[ss_y * xd->mi_stride - 1] : NULL;
1384 xd->chroma_left_mbmi = chroma_left_mi;
1385 }
1386
1387 xd->height = bh;
1388 xd->width = bw;
1389
1390 xd->is_last_vertical_rect = 0;
1391 if (xd->width < xd->height) {
1392 if (!((mi_col + xd->width) & (xd->height - 1))) {
1393 xd->is_last_vertical_rect = 1;
1394 }
1395 }
1396
1398 if (xd->width > xd->height)
1399 if (!(mi_row & (xd->width - 1))) xd->is_first_horizontal_rect = 1;
1400}
1401
1402static INLINE aom_cdf_prob *get_y_mode_cdf(FRAME_CONTEXT *tile_ctx,
1403 const MB_MODE_INFO *above_mi,
1404 const MB_MODE_INFO *left_mi) {
1405 const PREDICTION_MODE above = av1_above_block_mode(above_mi);
1406 const PREDICTION_MODE left = av1_left_block_mode(left_mi);
1407 const int above_ctx = intra_mode_context[above];
1408 const int left_ctx = intra_mode_context[left];
1409 return tile_ctx->kf_y_cdf[above_ctx][left_ctx];
1410}
1411
1412static INLINE void update_partition_context(MACROBLOCKD *xd, int mi_row,
1413 int mi_col, BLOCK_SIZE subsize,
1414 BLOCK_SIZE bsize) {
1415 PARTITION_CONTEXT *const above_ctx = xd->above_partition_context + mi_col;
1416 PARTITION_CONTEXT *const left_ctx =
1417 xd->left_partition_context + (mi_row & MAX_MIB_MASK);
1418
1419 const int bw = mi_size_wide[bsize];
1420 const int bh = mi_size_high[bsize];
1421 memset(above_ctx, partition_context_lookup[subsize].above, bw);
1422 memset(left_ctx, partition_context_lookup[subsize].left, bh);
1423}
1424
1425static INLINE int is_chroma_reference(int mi_row, int mi_col, BLOCK_SIZE bsize,
1426 int subsampling_x, int subsampling_y) {
1427 assert(bsize < BLOCK_SIZES_ALL);
1428 const int bw = mi_size_wide[bsize];
1429 const int bh = mi_size_high[bsize];
1430 int ref_pos = ((mi_row & 0x01) || !(bh & 0x01) || !subsampling_y) &&
1431 ((mi_col & 0x01) || !(bw & 0x01) || !subsampling_x);
1432 return ref_pos;
1433}
1434
1435static INLINE aom_cdf_prob cdf_element_prob(const aom_cdf_prob *cdf,
1436 size_t element) {
1437 assert(cdf != NULL);
1438 return (element > 0 ? cdf[element - 1] : CDF_PROB_TOP) - cdf[element];
1439}
1440
1441static INLINE void partition_gather_horz_alike(aom_cdf_prob *out,
1442 const aom_cdf_prob *const in,
1443 BLOCK_SIZE bsize) {
1444 (void)bsize;
1445 out[0] = CDF_PROB_TOP;
1446 out[0] -= cdf_element_prob(in, PARTITION_HORZ);
1447 out[0] -= cdf_element_prob(in, PARTITION_SPLIT);
1448 out[0] -= cdf_element_prob(in, PARTITION_HORZ_A);
1449 out[0] -= cdf_element_prob(in, PARTITION_HORZ_B);
1450 out[0] -= cdf_element_prob(in, PARTITION_VERT_A);
1451 if (bsize != BLOCK_128X128) out[0] -= cdf_element_prob(in, PARTITION_HORZ_4);
1452 out[0] = AOM_ICDF(out[0]);
1453 out[1] = AOM_ICDF(CDF_PROB_TOP);
1454}
1455
1456static INLINE void partition_gather_vert_alike(aom_cdf_prob *out,
1457 const aom_cdf_prob *const in,
1458 BLOCK_SIZE bsize) {
1459 (void)bsize;
1460 out[0] = CDF_PROB_TOP;
1461 out[0] -= cdf_element_prob(in, PARTITION_VERT);
1462 out[0] -= cdf_element_prob(in, PARTITION_SPLIT);
1463 out[0] -= cdf_element_prob(in, PARTITION_HORZ_A);
1464 out[0] -= cdf_element_prob(in, PARTITION_VERT_A);
1465 out[0] -= cdf_element_prob(in, PARTITION_VERT_B);
1466 if (bsize != BLOCK_128X128) out[0] -= cdf_element_prob(in, PARTITION_VERT_4);
1467 out[0] = AOM_ICDF(out[0]);
1468 out[1] = AOM_ICDF(CDF_PROB_TOP);
1469}
1470
1471static INLINE void update_ext_partition_context(MACROBLOCKD *xd, int mi_row,
1472 int mi_col, BLOCK_SIZE subsize,
1473 BLOCK_SIZE bsize,
1474 PARTITION_TYPE partition) {
1475 if (bsize >= BLOCK_8X8) {
1476 const int hbs = mi_size_wide[bsize] / 2;
1477 BLOCK_SIZE bsize2 = get_partition_subsize(bsize, PARTITION_SPLIT);
1478 switch (partition) {
1479 case PARTITION_SPLIT:
1480 if (bsize != BLOCK_8X8) break;
1481 AOM_FALLTHROUGH_INTENDED;
1482 case PARTITION_NONE:
1483 case PARTITION_HORZ:
1484 case PARTITION_VERT:
1485 case PARTITION_HORZ_4:
1486 case PARTITION_VERT_4:
1487 update_partition_context(xd, mi_row, mi_col, subsize, bsize);
1488 break;
1489 case PARTITION_HORZ_A:
1490 update_partition_context(xd, mi_row, mi_col, bsize2, subsize);
1491 update_partition_context(xd, mi_row + hbs, mi_col, subsize, subsize);
1492 break;
1493 case PARTITION_HORZ_B:
1494 update_partition_context(xd, mi_row, mi_col, subsize, subsize);
1495 update_partition_context(xd, mi_row + hbs, mi_col, bsize2, subsize);
1496 break;
1497 case PARTITION_VERT_A:
1498 update_partition_context(xd, mi_row, mi_col, bsize2, subsize);
1499 update_partition_context(xd, mi_row, mi_col + hbs, subsize, subsize);
1500 break;
1501 case PARTITION_VERT_B:
1502 update_partition_context(xd, mi_row, mi_col, subsize, subsize);
1503 update_partition_context(xd, mi_row, mi_col + hbs, bsize2, subsize);
1504 break;
1505 default: assert(0 && "Invalid partition type");
1506 }
1507 }
1508}
1509
1510static INLINE int partition_plane_context(const MACROBLOCKD *xd, int mi_row,
1511 int mi_col, BLOCK_SIZE bsize) {
1512 const PARTITION_CONTEXT *above_ctx = xd->above_partition_context + mi_col;
1513 const PARTITION_CONTEXT *left_ctx =
1514 xd->left_partition_context + (mi_row & MAX_MIB_MASK);
1515 // Minimum partition point is 8x8. Offset the bsl accordingly.
1516 const int bsl = mi_size_wide_log2[bsize] - mi_size_wide_log2[BLOCK_8X8];
1517 int above = (*above_ctx >> bsl) & 1, left = (*left_ctx >> bsl) & 1;
1518
1519 assert(mi_size_wide_log2[bsize] == mi_size_high_log2[bsize]);
1520 assert(bsl >= 0);
1521
1522 return (left * 2 + above) + bsl * PARTITION_PLOFFSET;
1523}
1524
1525// Return the number of elements in the partition CDF when
1526// partitioning the (square) block with luma block size of bsize.
1527static INLINE int partition_cdf_length(BLOCK_SIZE bsize) {
1528 if (bsize <= BLOCK_8X8)
1529 return PARTITION_TYPES;
1530 else if (bsize == BLOCK_128X128)
1531 return EXT_PARTITION_TYPES - 2;
1532 else
1533 return EXT_PARTITION_TYPES;
1534}
1535
1536static INLINE int max_block_wide(const MACROBLOCKD *xd, BLOCK_SIZE bsize,
1537 int plane) {
1538 assert(bsize < BLOCK_SIZES_ALL);
1539 int max_blocks_wide = block_size_wide[bsize];
1540
1541 if (xd->mb_to_right_edge < 0) {
1542 const struct macroblockd_plane *const pd = &xd->plane[plane];
1543 max_blocks_wide += xd->mb_to_right_edge >> (3 + pd->subsampling_x);
1544 }
1545
1546 // Scale the width in the transform block unit.
1547 return max_blocks_wide >> MI_SIZE_LOG2;
1548}
1549
1550static INLINE int max_block_high(const MACROBLOCKD *xd, BLOCK_SIZE bsize,
1551 int plane) {
1552 int max_blocks_high = block_size_high[bsize];
1553
1554 if (xd->mb_to_bottom_edge < 0) {
1555 const struct macroblockd_plane *const pd = &xd->plane[plane];
1556 max_blocks_high += xd->mb_to_bottom_edge >> (3 + pd->subsampling_y);
1557 }
1558
1559 // Scale the height in the transform block unit.
1560 return max_blocks_high >> MI_SIZE_LOG2;
1561}
1562
1563static INLINE void av1_zero_above_context(AV1_COMMON *const cm,
1564 const MACROBLOCKD *xd,
1565 int mi_col_start, int mi_col_end,
1566 const int tile_row) {
1567 const SequenceHeader *const seq_params = &cm->seq_params;
1568 const int num_planes = av1_num_planes(cm);
1569 const int width = mi_col_end - mi_col_start;
1570 const int aligned_width =
1571 ALIGN_POWER_OF_TWO(width, seq_params->mib_size_log2);
1572 const int offset_y = mi_col_start;
1573 const int width_y = aligned_width;
1574 const int offset_uv = offset_y >> seq_params->subsampling_x;
1575 const int width_uv = width_y >> seq_params->subsampling_x;
1576 CommonContexts *const above_contexts = &cm->above_contexts;
1577
1578 av1_zero_array(above_contexts->entropy[0][tile_row] + offset_y, width_y);
1579 if (num_planes > 1) {
1580 if (above_contexts->entropy[1][tile_row] &&
1581 above_contexts->entropy[2][tile_row]) {
1582 av1_zero_array(above_contexts->entropy[1][tile_row] + offset_uv,
1583 width_uv);
1584 av1_zero_array(above_contexts->entropy[2][tile_row] + offset_uv,
1585 width_uv);
1586 } else {
1587 aom_internal_error(xd->error_info, AOM_CODEC_CORRUPT_FRAME,
1588 "Invalid value of planes");
1589 }
1590 }
1591
1592 av1_zero_array(above_contexts->partition[tile_row] + mi_col_start,
1593 aligned_width);
1594
1595 memset(above_contexts->txfm[tile_row] + mi_col_start,
1596 tx_size_wide[TX_SIZES_LARGEST], aligned_width * sizeof(TXFM_CONTEXT));
1597}
1598
1599static INLINE void av1_zero_left_context(MACROBLOCKD *const xd) {
1600 av1_zero(xd->left_entropy_context);
1601 av1_zero(xd->left_partition_context);
1602
1603 memset(xd->left_txfm_context_buffer, tx_size_high[TX_SIZES_LARGEST],
1604 sizeof(xd->left_txfm_context_buffer));
1605}
1606
1607// Disable array-bounds checks as the TX_SIZE enum contains values larger than
1608// TX_SIZES_ALL (TX_INVALID) which make extending the array as a workaround
1609// infeasible. The assert is enough for static analysis and this or other tools
1610// asan, valgrind would catch oob access at runtime.
1611#if defined(__GNUC__) && __GNUC__ >= 4
1612#pragma GCC diagnostic ignored "-Warray-bounds"
1613#endif
1614
1615#if defined(__GNUC__) && __GNUC__ >= 4
1616#pragma GCC diagnostic warning "-Warray-bounds"
1617#endif
1618
1619static INLINE void set_txfm_ctx(TXFM_CONTEXT *txfm_ctx, uint8_t txs, int len) {
1620 int i;
1621 for (i = 0; i < len; ++i) txfm_ctx[i] = txs;
1622}
1623
1624static INLINE void set_txfm_ctxs(TX_SIZE tx_size, int n4_w, int n4_h, int skip,
1625 const MACROBLOCKD *xd) {
1626 uint8_t bw = tx_size_wide[tx_size];
1627 uint8_t bh = tx_size_high[tx_size];
1628
1629 if (skip) {
1630 bw = n4_w * MI_SIZE;
1631 bh = n4_h * MI_SIZE;
1632 }
1633
1634 set_txfm_ctx(xd->above_txfm_context, bw, n4_w);
1635 set_txfm_ctx(xd->left_txfm_context, bh, n4_h);
1636}
1637
1638static INLINE int get_mi_grid_idx(const CommonModeInfoParams *const mi_params,
1639 int mi_row, int mi_col) {
1640 return mi_row * mi_params->mi_stride + mi_col;
1641}
1642
1643static INLINE int get_alloc_mi_idx(const CommonModeInfoParams *const mi_params,
1644 int mi_row, int mi_col) {
1645 const int mi_alloc_size_1d = mi_size_wide[mi_params->mi_alloc_bsize];
1646 const int mi_alloc_row = mi_row / mi_alloc_size_1d;
1647 const int mi_alloc_col = mi_col / mi_alloc_size_1d;
1648
1649 return mi_alloc_row * mi_params->mi_alloc_stride + mi_alloc_col;
1650}
1651
1652// For this partition block, set pointers in mi_params->mi_grid_base and xd->mi.
1653static INLINE void set_mi_offsets(const CommonModeInfoParams *const mi_params,
1654 MACROBLOCKD *const xd, int mi_row,
1655 int mi_col) {
1656 // 'mi_grid_base' should point to appropriate memory in 'mi'.
1657 const int mi_grid_idx = get_mi_grid_idx(mi_params, mi_row, mi_col);
1658 const int mi_alloc_idx = get_alloc_mi_idx(mi_params, mi_row, mi_col);
1659 mi_params->mi_grid_base[mi_grid_idx] = &mi_params->mi_alloc[mi_alloc_idx];
1660 // 'xd->mi' should point to an offset in 'mi_grid_base';
1661 xd->mi = mi_params->mi_grid_base + mi_grid_idx;
1662 // 'xd->tx_type_map' should point to an offset in 'mi_params->tx_type_map'.
1663 xd->tx_type_map = mi_params->tx_type_map + mi_grid_idx;
1664 xd->tx_type_map_stride = mi_params->mi_stride;
1665}
1666
1667static INLINE void txfm_partition_update(TXFM_CONTEXT *above_ctx,
1668 TXFM_CONTEXT *left_ctx,
1669 TX_SIZE tx_size, TX_SIZE txb_size) {
1670 BLOCK_SIZE bsize = txsize_to_bsize[txb_size];
1671 int bh = mi_size_high[bsize];
1672 int bw = mi_size_wide[bsize];
1673 uint8_t txw = tx_size_wide[tx_size];
1674 uint8_t txh = tx_size_high[tx_size];
1675 int i;
1676 for (i = 0; i < bh; ++i) left_ctx[i] = txh;
1677 for (i = 0; i < bw; ++i) above_ctx[i] = txw;
1678}
1679
1680static INLINE TX_SIZE get_sqr_tx_size(int tx_dim) {
1681 switch (tx_dim) {
1682 case 128:
1683 case 64: return TX_64X64; break;
1684 case 32: return TX_32X32; break;
1685 case 16: return TX_16X16; break;
1686 case 8: return TX_8X8; break;
1687 default: return TX_4X4;
1688 }
1689}
1690
1691static INLINE TX_SIZE get_tx_size(int width, int height) {
1692 if (width == height) {
1693 return get_sqr_tx_size(width);
1694 }
1695 if (width < height) {
1696 if (width + width == height) {
1697 switch (width) {
1698 case 4: return TX_4X8; break;
1699 case 8: return TX_8X16; break;
1700 case 16: return TX_16X32; break;
1701 case 32: return TX_32X64; break;
1702 }
1703 } else {
1704 switch (width) {
1705 case 4: return TX_4X16; break;
1706 case 8: return TX_8X32; break;
1707 case 16: return TX_16X64; break;
1708 }
1709 }
1710 } else {
1711 if (height + height == width) {
1712 switch (height) {
1713 case 4: return TX_8X4; break;
1714 case 8: return TX_16X8; break;
1715 case 16: return TX_32X16; break;
1716 case 32: return TX_64X32; break;
1717 }
1718 } else {
1719 switch (height) {
1720 case 4: return TX_16X4; break;
1721 case 8: return TX_32X8; break;
1722 case 16: return TX_64X16; break;
1723 }
1724 }
1725 }
1726 assert(0);
1727 return TX_4X4;
1728}
1729
1730static INLINE int txfm_partition_context(const TXFM_CONTEXT *const above_ctx,
1731 const TXFM_CONTEXT *const left_ctx,
1732 BLOCK_SIZE bsize, TX_SIZE tx_size) {
1733 const uint8_t txw = tx_size_wide[tx_size];
1734 const uint8_t txh = tx_size_high[tx_size];
1735 const int above = *above_ctx < txw;
1736 const int left = *left_ctx < txh;
1737 int category = TXFM_PARTITION_CONTEXTS;
1738
1739 // dummy return, not used by others.
1740 if (tx_size <= TX_4X4) return 0;
1741
1742 TX_SIZE max_tx_size =
1743 get_sqr_tx_size(AOMMAX(block_size_wide[bsize], block_size_high[bsize]));
1744
1745 if (max_tx_size >= TX_8X8) {
1746 category =
1747 (txsize_sqr_up_map[tx_size] != max_tx_size && max_tx_size > TX_8X8) +
1748 (TX_SIZES - 1 - max_tx_size) * 2;
1749 }
1750 assert(category != TXFM_PARTITION_CONTEXTS);
1751 return category * 3 + above + left;
1752}
1753
1754// Compute the next partition in the direction of the sb_type stored in the mi
1755// array, starting with bsize.
1756static INLINE PARTITION_TYPE get_partition(const AV1_COMMON *const cm,
1757 int mi_row, int mi_col,
1758 BLOCK_SIZE bsize) {
1759 const CommonModeInfoParams *const mi_params = &cm->mi_params;
1760 if (mi_row >= mi_params->mi_rows || mi_col >= mi_params->mi_cols)
1761 return PARTITION_INVALID;
1762
1763 const int offset = mi_row * mi_params->mi_stride + mi_col;
1764 MB_MODE_INFO **mi = mi_params->mi_grid_base + offset;
1765 const BLOCK_SIZE subsize = mi[0]->bsize;
1766
1767 assert(bsize < BLOCK_SIZES_ALL);
1768
1769 if (subsize == bsize) return PARTITION_NONE;
1770
1771 const int bhigh = mi_size_high[bsize];
1772 const int bwide = mi_size_wide[bsize];
1773 const int sshigh = mi_size_high[subsize];
1774 const int sswide = mi_size_wide[subsize];
1775
1776 if (bsize > BLOCK_8X8 && mi_row + bwide / 2 < mi_params->mi_rows &&
1777 mi_col + bhigh / 2 < mi_params->mi_cols) {
1778 // In this case, the block might be using an extended partition
1779 // type.
1780 const MB_MODE_INFO *const mbmi_right = mi[bwide / 2];
1781 const MB_MODE_INFO *const mbmi_below = mi[bhigh / 2 * mi_params->mi_stride];
1782
1783 if (sswide == bwide) {
1784 // Smaller height but same width. Is PARTITION_HORZ_4, PARTITION_HORZ or
1785 // PARTITION_HORZ_B. To distinguish the latter two, check if the lower
1786 // half was split.
1787 if (sshigh * 4 == bhigh) return PARTITION_HORZ_4;
1788 assert(sshigh * 2 == bhigh);
1789
1790 if (mbmi_below->bsize == subsize)
1791 return PARTITION_HORZ;
1792 else
1793 return PARTITION_HORZ_B;
1794 } else if (sshigh == bhigh) {
1795 // Smaller width but same height. Is PARTITION_VERT_4, PARTITION_VERT or
1796 // PARTITION_VERT_B. To distinguish the latter two, check if the right
1797 // half was split.
1798 if (sswide * 4 == bwide) return PARTITION_VERT_4;
1799 assert(sswide * 2 == bhigh);
1800
1801 if (mbmi_right->bsize == subsize)
1802 return PARTITION_VERT;
1803 else
1804 return PARTITION_VERT_B;
1805 } else {
1806 // Smaller width and smaller height. Might be PARTITION_SPLIT or could be
1807 // PARTITION_HORZ_A or PARTITION_VERT_A. If subsize isn't halved in both
1808 // dimensions, we immediately know this is a split (which will recurse to
1809 // get to subsize). Otherwise look down and to the right. With
1810 // PARTITION_VERT_A, the right block will have height bhigh; with
1811 // PARTITION_HORZ_A, the lower block with have width bwide. Otherwise
1812 // it's PARTITION_SPLIT.
1813 if (sswide * 2 != bwide || sshigh * 2 != bhigh) return PARTITION_SPLIT;
1814
1815 if (mi_size_wide[mbmi_below->bsize] == bwide) return PARTITION_HORZ_A;
1816 if (mi_size_high[mbmi_right->bsize] == bhigh) return PARTITION_VERT_A;
1817
1818 return PARTITION_SPLIT;
1819 }
1820 }
1821 const int vert_split = sswide < bwide;
1822 const int horz_split = sshigh < bhigh;
1823 const int split_idx = (vert_split << 1) | horz_split;
1824 assert(split_idx != 0);
1825
1826 static const PARTITION_TYPE base_partitions[4] = {
1827 PARTITION_INVALID, PARTITION_HORZ, PARTITION_VERT, PARTITION_SPLIT
1828 };
1829
1830 return base_partitions[split_idx];
1831}
1832
1833static INLINE void set_sb_size(SequenceHeader *const seq_params,
1834 BLOCK_SIZE sb_size) {
1835 seq_params->sb_size = sb_size;
1836 seq_params->mib_size = mi_size_wide[seq_params->sb_size];
1837 seq_params->mib_size_log2 = mi_size_wide_log2[seq_params->sb_size];
1838}
1839
1840// Returns true if the frame is fully lossless at the coded resolution.
1841// Note: If super-resolution is used, such a frame will still NOT be lossless at
1842// the upscaled resolution.
1843static INLINE int is_coded_lossless(const AV1_COMMON *cm,
1844 const MACROBLOCKD *xd) {
1845 int coded_lossless = 1;
1846 if (cm->seg.enabled) {
1847 for (int i = 0; i < MAX_SEGMENTS; ++i) {
1848 if (!xd->lossless[i]) {
1849 coded_lossless = 0;
1850 break;
1851 }
1852 }
1853 } else {
1854 coded_lossless = xd->lossless[0];
1855 }
1856 return coded_lossless;
1857}
1858
1859static INLINE int is_valid_seq_level_idx(AV1_LEVEL seq_level_idx) {
1860 return seq_level_idx == SEQ_LEVEL_MAX ||
1861 (seq_level_idx < SEQ_LEVELS &&
1862 // The following levels are currently undefined.
1863 seq_level_idx != SEQ_LEVEL_2_2 && seq_level_idx != SEQ_LEVEL_2_3 &&
1864 seq_level_idx != SEQ_LEVEL_3_2 && seq_level_idx != SEQ_LEVEL_3_3 &&
1865 seq_level_idx != SEQ_LEVEL_4_2 && seq_level_idx != SEQ_LEVEL_4_3 &&
1866 seq_level_idx != SEQ_LEVEL_7_0 && seq_level_idx != SEQ_LEVEL_7_1 &&
1867 seq_level_idx != SEQ_LEVEL_7_2 && seq_level_idx != SEQ_LEVEL_7_3);
1868}
1869
1872#ifdef __cplusplus
1873} // extern "C"
1874#endif
1875
1876#endif // AOM_AV1_COMMON_AV1_COMMON_INT_H_
int(* aom_get_frame_buffer_cb_fn_t)(void *priv, size_t min_size, aom_codec_frame_buffer_t *fb)
get frame buffer callback prototype
Definition: aom_frame_buffer.h:64
int(* aom_release_frame_buffer_cb_fn_t)(void *priv, aom_codec_frame_buffer_t *fb)
release frame buffer callback prototype
Definition: aom_frame_buffer.h:77
#define AOM_PLANE_U
Definition: aom_image.h:200
enum aom_chroma_sample_position aom_chroma_sample_position_t
List of chroma sample positions.
enum aom_transfer_characteristics aom_transfer_characteristics_t
List of supported transfer functions.
enum aom_color_primaries aom_color_primaries_t
List of supported color primaries.
enum aom_matrix_coefficients aom_matrix_coefficients_t
List of supported matrix coefficients.
enum aom_bit_depth aom_bit_depth_t
Bit depth for codecThis enumeration determines the bit depth of the codec.
@ AOM_CODEC_CORRUPT_FRAME
The coded data for this stream is corrupt or incomplete.
Definition: aom_codec.h:195
Top level common structure used by both encoder and decoder.
Definition: av1_common_int.h:725
uint8_t * last_frame_seg_map
Definition: av1_common_int.h:911
RestorationInfo rst_info[3]
Definition: av1_common_int.h:925
WarpedMotionParams global_motion[REF_FRAMES]
Definition: av1_common_int.h:949
int superres_upscaled_width
Definition: av1_common_int.h:774
bool buffer_removal_time_present
Definition: av1_common_int.h:787
int8_t ref_frame_side[REF_FRAMES]
Definition: av1_common_int.h:1016
struct scale_factors ref_scale_factors[REF_FRAMES]
Definition: av1_common_int.h:848
RefCntBuffer * prev_frame
Definition: av1_common_int.h:805
FRAME_CONTEXT * default_frame_context
Definition: av1_common_int.h:966
int ref_frame_id[REF_FRAMES]
Definition: av1_common_int.h:991
int superres_upscaled_height
Definition: av1_common_int.h:775
DeltaQInfo delta_q_info
Definition: av1_common_int.h:944
int width
Definition: av1_common_int.h:750
RefCntBuffer * cur_frame
Definition: av1_common_int.h:811
CdefInfo cdef_info
Definition: av1_common_int.h:934
loop_filter_info_n lf_info
Definition: av1_common_int.h:917
CurrentFrame current_frame
Definition: av1_common_int.h:729
unsigned int number_spatial_layers
Definition: av1_common_int.h:1031
int remapped_ref_idx[REF_FRAMES]
Definition: av1_common_int.h:833
unsigned int number_temporal_layers
Definition: av1_common_int.h:1021
RestorationLineBuffers * rlbs
Definition: av1_common_int.h:927
aom_film_grain_t film_grain_params
Definition: av1_common_int.h:939
int show_existing_frame
Definition: av1_common_int.h:879
uint32_t buffer_removal_times[(8 *4)+1]
Definition: av1_common_int.h:794
int temporal_layer_id
Definition: av1_common_int.h:1026
SequenceHeader seq_params
Definition: av1_common_int.h:955
int showable_frame
Definition: av1_common_int.h:872
int tpl_mvs_mem_size
Definition: av1_common_int.h:1005
uint32_t frame_presentation_time
Definition: av1_common_int.h:800
struct aom_internal_error_info error
Definition: av1_common_int.h:733
struct loopfilter lf
Definition: av1_common_int.h:918
int spatial_layer_id
Definition: av1_common_int.h:1036
FeatureFlags features
Definition: av1_common_int.h:884
struct scale_factors sf_identity
Definition: av1_common_int.h:840
YV12_BUFFER_CONFIG rst_frame
Definition: av1_common_int.h:928
CommonModeInfoParams mi_params
Definition: av1_common_int.h:889
uint8_t superres_scale_denominator
Definition: av1_common_int.h:782
int show_frame
Definition: av1_common_int.h:864
struct segmentation seg
Definition: av1_common_int.h:906
CommonQuantParams quant_params
Definition: av1_common_int.h:901
TPL_MV_REF * tpl_mvs
Definition: av1_common_int.h:1001
int current_frame_id
Definition: av1_common_int.h:990
int32_t * rst_tmpbuf
Definition: av1_common_int.h:926
RefCntBuffer * ref_frame_map[REF_FRAMES]
Definition: av1_common_int.h:857
CommonContexts above_contexts
Definition: av1_common_int.h:984
CommonTileParams tiles
Definition: av1_common_int.h:971
BufferPool * buffer_pool
Definition: av1_common_int.h:976
int ref_frame_sign_bias[REF_FRAMES]
Definition: av1_common_int.h:1010
FRAME_CONTEXT * fc
Definition: av1_common_int.h:960
int height
Definition: av1_common_int.h:751
int render_width
Definition: av1_common_int.h:761
int render_height
Definition: av1_common_int.h:762
Parameters related to CDEF.
Definition: av1_common_int.h:196
int cdef_bits
Definition: av1_common_int.h:202
int nb_cdef_strengths
Definition: av1_common_int.h:198
int cdef_damping
Definition: av1_common_int.h:197
Contexts used for transmitting various symbols in the bitstream.
Definition: av1_common_int.h:688
PARTITION_CONTEXT ** partition
Definition: av1_common_int.h:693
int num_planes
Definition: av1_common_int.h:717
ENTROPY_CONTEXT ** entropy[3]
Definition: av1_common_int.h:703
int num_tile_rows
Definition: av1_common_int.h:718
int num_mi_cols
Definition: av1_common_int.h:719
TXFM_CONTEXT ** txfm
Definition: av1_common_int.h:711
Params related to MB_MODE_INFO arrays and related info.
Definition: av1_common_int.h:479
int mb_cols
Definition: av1_common_int.h:489
MB_MODE_INFO * mi_alloc
Definition: av1_common_int.h:513
int mi_rows
Definition: av1_common_int.h:500
void(* setup_mi)(struct CommonModeInfoParams *mi_params)
Definition: av1_common_int.h:568
void(* free_mi)(struct CommonModeInfoParams *mi_params)
Definition: av1_common_int.h:563
int mi_cols
Definition: av1_common_int.h:505
int mi_alloc_size
Definition: av1_common_int.h:517
int MBs
Definition: av1_common_int.h:494
TX_TYPE * tx_type_map
Definition: av1_common_int.h:553
void(* set_mb_mi)(struct CommonModeInfoParams *mi_params, int width, int height)
Definition: av1_common_int.h:575
int mi_alloc_stride
Definition: av1_common_int.h:521
int mi_grid_size
Definition: av1_common_int.h:541
int mi_stride
Definition: av1_common_int.h:545
int mb_rows
Definition: av1_common_int.h:484
MB_MODE_INFO ** mi_grid_base
Definition: av1_common_int.h:537
BLOCK_SIZE mi_alloc_bsize
Definition: av1_common_int.h:528
Parameters related to quantization at the frame level.
Definition: av1_common_int.h:584
int u_ac_delta_q
Definition: av1_common_int.h:609
const qm_val_t * u_iqmatrix[8][TX_SIZES_ALL]
Definition: av1_common_int.h:658
int qmatrix_level_v
Definition: av1_common_int.h:680
const qm_val_t * giqmatrix[(1<< 4)][3][TX_SIZES_ALL]
Definition: av1_common_int.h:640
int16_t u_dequant_QTX[8][2]
Definition: av1_common_int.h:629
const qm_val_t * y_iqmatrix[8][TX_SIZES_ALL]
Definition: av1_common_int.h:654
int qmatrix_level_y
Definition: av1_common_int.h:678
int v_ac_delta_q
Definition: av1_common_int.h:614
bool using_qmatrix
Definition: av1_common_int.h:671
int u_dc_delta_q
Definition: av1_common_int.h:599
int qmatrix_level_u
Definition: av1_common_int.h:679
int base_qindex
Definition: av1_common_int.h:588
int16_t v_dequant_QTX[8][2]
Definition: av1_common_int.h:630
const qm_val_t * v_iqmatrix[8][TX_SIZES_ALL]
Definition: av1_common_int.h:662
int16_t y_dequant_QTX[8][2]
Definition: av1_common_int.h:628
int v_dc_delta_q
Definition: av1_common_int.h:603
int y_dc_delta_q
Definition: av1_common_int.h:594
const qm_val_t * gqmatrix[(1<< 4)][3][TX_SIZES_ALL]
Definition: av1_common_int.h:644
Params related to tiles.
Definition: av1_common_int.h:405
int uniform_spacing
Definition: av1_common_int.h:421
int max_width_sb
Definition: av1_common_int.h:408
int log2_rows
Definition: av1_common_int.h:428
int min_log2_rows
Definition: av1_common_int.h:440
int width
Definition: av1_common_int.h:429
int max_log2_rows
Definition: av1_common_int.h:448
int row_start_sb[MAX_TILE_ROWS+1]
Definition: av1_common_int.h:462
int cols
Definition: av1_common_int.h:406
int max_height_sb
Definition: av1_common_int.h:409
unsigned int large_scale
Definition: av1_common_int.h:466
unsigned int single_tile_decoding
Definition: av1_common_int.h:472
int max_log2_cols
Definition: av1_common_int.h:444
int log2_cols
Definition: av1_common_int.h:427
int min_log2
Definition: av1_common_int.h:452
int rows
Definition: av1_common_int.h:407
int min_inner_width
Definition: av1_common_int.h:414
int min_log2_cols
Definition: av1_common_int.h:436
int col_start_sb[MAX_TILE_COLS+1]
Definition: av1_common_int.h:457
int height
Definition: av1_common_int.h:430
Frame level features.
Definition: av1_common_int.h:336
InterpFilter interp_filter
Definition: av1_common_int.h:385
bool allow_ref_frame_mvs
Definition: av1_common_int.h:359
bool allow_warped_motion
Definition: av1_common_int.h:355
bool allow_screen_content_tools
Definition: av1_common_int.h:353
bool switchable_motion_mode
Definition: av1_common_int.h:383
TX_MODE tx_mode
Definition: av1_common_int.h:384
bool reduced_tx_set_used
Definition: av1_common_int.h:372
bool allow_intrabc
Definition: av1_common_int.h:354
int byte_alignment
Definition: av1_common_int.h:394
bool coded_lossless
Definition: av1_common_int.h:363
REFRESH_FRAME_CONTEXT_MODE refresh_frame_context
Definition: av1_common_int.h:399
bool error_resilient_mode
Definition: av1_common_int.h:378
int primary_ref_frame
Definition: av1_common_int.h:390
bool disable_cdf_update
Definition: av1_common_int.h:340
bool allow_high_precision_mv
Definition: av1_common_int.h:345
bool cur_frame_force_integer_mv
Definition: av1_common_int.h:349
bool all_lossless
Definition: av1_common_int.h:367
Stores the prediction/txfm mode of the current coding block.
Definition: blockd.h:216
BLOCK_SIZE bsize
The block size of the current coding block.
Definition: blockd.h:222
Parameters related to Restoration Info.
Definition: restoration.h:255
External frame buffer.
Definition: aom_frame_buffer.h:40
Variables related to current coding block.
Definition: blockd.h:568
bool left_available
Definition: blockd.h:624
uint8_t * tx_type_map
Definition: blockd.h:664
int mb_to_bottom_edge
Definition: blockd.h:678
TXFM_CONTEXT * left_txfm_context
Definition: blockd.h:738
struct macroblockd_plane plane[3]
Definition: blockd.h:604
int mb_to_top_edge
Definition: blockd.h:677
int mb_to_right_edge
Definition: blockd.h:676
bool up_available
Definition: blockd.h:620
MB_MODE_INFO * above_mbmi
Definition: blockd.h:643
bool chroma_up_available
Definition: blockd.h:628
TXFM_CONTEXT * above_txfm_context
Definition: blockd.h:731
bool chroma_left_available
Definition: blockd.h:632
PARTITION_CONTEXT * above_partition_context
Definition: blockd.h:716
MB_MODE_INFO * chroma_left_mbmi
Definition: blockd.h:650
TXFM_CONTEXT left_txfm_context_buffer[MAX_MIB_SIZE]
Definition: blockd.h:745
int tx_type_map_stride
Definition: blockd.h:669
MB_MODE_INFO * chroma_above_mbmi
Definition: blockd.h:657
int mi_row
Definition: blockd.h:573
int mi_stride
Definition: blockd.h:580
bool is_last_vertical_rect
Definition: blockd.h:785
bool is_first_horizontal_rect
Definition: blockd.h:790
uint8_t width
Definition: blockd.h:763
struct aom_internal_error_info * error_info
Definition: blockd.h:836
CFL_CTX cfl
Definition: blockd.h:892
int lossless[8]
Definition: blockd.h:815
ENTROPY_CONTEXT left_entropy_context[3][MAX_MIB_SIZE]
Definition: blockd.h:708
ENTROPY_CONTEXT * above_entropy_context[3]
Definition: blockd.h:701
MB_MODE_INFO ** mi
Definition: blockd.h:615
uint8_t height
Definition: blockd.h:764
MB_MODE_INFO * left_mbmi
Definition: blockd.h:638
PARTITION_CONTEXT left_partition_context[MAX_MIB_SIZE]
Definition: blockd.h:723
bool is_chroma_ref
Definition: blockd.h:599
int mi_col
Definition: blockd.h:574
int mb_to_left_edge
Definition: blockd.h:675
YV12 frame buffer data structure.
Definition: yv12config.h:38