-

=
kea

Kea Administrator Reference Manual
Documentation
Release 2.0.2

Internet Systems Consortium

Mar 08, 2022






1 Introduction

1.1

1.2
1.3

Supported platforms

1.1.1  Regularly tested platforms
1.1.2 Besteffort . . . ... ... ...... ...
1.1.3  Community maintained
1.1.4  Unsupported platforms
Required Software at Run-Time
Kea Software . . . . .. ... ... .. ... ...,

2 Quick Start

2.1
22
23
24

Quick Start Guide Using tarball
Quick Start Guide Using Native Packages
Quick Start Guide for DHCPv4 and DHCPv6 Services
Running the Kea Servers Directly

3 Installation

3.1
3.2
33
34

35

3.6
3.7
3.8

4 Kea Database Administration
Databases and Database Version Numbers

4.1
4.2
4.3

Packages . ... . ... ... L .

Installation Hierarchy
Build Requirements

Installation From Source
3.4.1 Download Tar File
3.4.2  Retrieve From Git
3.43  Configure Before the Build
344 Build .. ... . 0 0 o
345 Install . ... ... oo oo
34.6  Cross-Building
DHCP Database Installation and Configuration
3.5.1  Building with MySQL Support
3.5.2  Building with PostgreSQL support
3.5.3  Building with CQL (Cassandra) Support
Hammer Building Tool
Running Kea From a Non-root Account on Linux

Deprecated Features

3.8.1  Cassandra (CQL) Support

3.8.2  Sysrepo 0.x

The kea-admin Tool
Supported Backends

CONTENTS

Db owoww

Nelie N N




4.3.1

432

433

4.3.4

4.3.5
4.3.6

MySQL
4321

First-Time Creation of the MySQL Database . . . . .

4.3.2.2 Upgrading a MySQL Database From an Earlier Versionof Kea . . . . . ... ...

4323

Improved Performance With MySQL . . . . . .. ..

PostgreSQL . . . . . . . ...

4.3.3.1
4332
4333

4.34.1
4342

4.3.6.1

Kea Configuration
5.1 JSON Configuration . . . . . . .. ... ...
JSON Syntax . . . ... ... .
Comments and User Context . . . . .. ............
Simplified Notation . . . . ... ... ... ... .......
5.2 KeaConfiguration Backend . . . . . .. ... ... ... 0 0.
Applicability . . . ... ... L
CB Capabilities and Limitations . . . . .. ... ... ....
CBComponents . . . . . .. .v v v v v v i
Configuration Sharing and Server Tags . . . . . ... ... ..
Configuration Files Inclusion . . . . . . ... ... .. ....

5.1.1
5.1.2
5.1.3

521
522
523
524
5.2.5

First-Time Creation of the PostgreSQL Database . . .
Initialize the PostgreSQL Database Using kea-admin

Upgrading a PostgreSQL Database From an Earlier Versionof Kea . . . . . . . ..
Cassandra . . . . . ... ... ... Lo

First-Time Creation of the Cassandra Database . . . .

Upgrading a Cassandra Database From an Earlier Versionof Kea . . . . . ... ..
Using Read-Only Databases With Host Reservations . . . . .
Limitations Related to the Use of SQL Databases . . . . . . .

Year 2038 Issue . . . . . . . ... ... ...

Managing Kea with keactrl

6.1 Overview

6.2 Command Line Options . . . . . . . . ... ... ... ...
6.3 The keactrl ConfigurationFile . . . . .. ... ... ... ... ...

6.4 Commands

6.5 Overriding the Server Selection . . . . ... .. ... .........
6.6 Native Packagesand systemd . . . . . ... ... ... ........

The Kea Control Agent
7.1  Overview of the Kea Control Agent . . . . . ... ... ........

7.2 Configuration

7.3 Secure Connections (in Versions Priorto Kea1.9.6) . ... ... ...

7.4 Secure Connections (in Kea 1.9.6 and Newer) . . . . ... .. .....

7.5  Starting the Control Agent . . . . . . ... ... ... L.

7.6  Connecting to the Control Agent . . . . . . . .. ... ... ......
The DHCPv4 Server

8.1  Starting and Stopping the DHCPv4 Server . . . . . ... ... ....

8.2 DHCPv4 Server Configuration . . . . . . . .. ... ... ... ....

82.1 Introduction . . . .. ... ... .. ... ...

8.2.2 LeaseStorage . . . . . . . . i i it

8.2.2.1 Memfile - Basic Storage for Leases . . . . . ... ..

8.2.2.2  Why Is Lease File Cleanup Necessary? . . . . .. ..

8.2.2.3 Lease Database Configuration . . . . . . . ... ...

8.2.2.4  Cassandra-Specific Parameters . . . ... ... ...

8.2.3 HostsStorage . . . . .. . . ...

33
33
33
34
35
36
36
36
38
38
40

41
41
41
41
43
45
46

47
47
47
50
51
52
52




8.3

8.4

8.5

8.2.3.1 DHCPv4 Hosts Database Configuration . . . . . . ... .. ... .. ....... 62

8.2.3.2  Using Read-Only Databases for Host Reservations With DHCPv4 . . . . . . .. .. 63
8.2.4 Imterface Configuration . . . . . . . . . . . . . L e e 64
8.2.5  Issues With Unicast Responses to DHCPINFORM . . . . . .. ... ... ......... 66
8.2.6  IPv4 SubnetIdentifier . . . . . . . . ... 67
827 IPv4SubnetPrefix . . . . . . . . . . e 68
8.2.8  Configuration of IPv4 Address Pools . . . . . . . . . . .. . .. . e 68
8.2.9  Sending T1 (Option 58) and T2 (Option59) . . . . . . . . . . . .. v i i .. 70
8.2.10 Standard DHCPv4 Options . . . . . . . . . . . . .. i it e e 70
8.2.11 Custom DHCPv4 Options . . . . . . . .. . .. . ittt 80
8.2.12 DHCPv4 Private Options . . . . . . . . . . o 0 vt et e e e e e e 82
8.2.13 DHCPv4 Vendor-Specific Options . . . . . . . . . . . . oo 85
8.2.14 Nested DHCPv4 Options (Custom Option Spaces) . . . . . . . . . v v v v v v v v v v oo .. 87
8.2.15 Unspecified Parameters for DHCPv4 Option Configuration . . . . . . ... ... ... ... 89
8.2.16 Stateless Configuration of DHCPv4 Clients . . . . . . ... .. ... ... .. ....... 90
8.2.17 Client Classificationin DHCPv4 . . . . . . . ... .. .. . 90

8.2.17.1 Setting Fixed Fields in Classification . . . . . ... .. ... ... .. ....... 91

8.2.17.2 Using Vendor Class Information in Classification . . . ... ... ... ... ... 92

8.2.17.3 Defining and Using Custom Classes . . . . . . . . . ..., 92

8.2.17.4 Required Classification . . . . . . . .. ... ... ... ... 93
8.2.18 DDNSfor DHCPv4 . . . . . . . . e e 94

8.2.18.1 DHCP-DDNS Server Connectivity . . . . . . ... ... ... ... ........ 97

8.2.18.2 When Does the kea-dhcp4 Server Generate a DDNS Request? . . . . ... .. .. 97

8.2.18.3 kea-dhcp4 Name Generation for DDNS Update Requests . . . . . . ... ... .. 99

8.2.18.4 Sanitizing Client Host Name and FQDN Names . . . . .. ... ... ... .. .. 100
8.2.19 NextServer (siaddr) . . . . . . . . . . . e e e e e 101
8.2.20 Echoing Client-ID (RFC 6842) . . . . . . . . . . . ittt 102
8.2.21 Using Client Identifier and Hardware Address . . . . . . . . ... . ... ... ... ... 102
8.2.22 Authoritative DHCPv4 Server Behavior . . . . . ... ... ... ... . ......... 104
8.2.23 DHCPv4-over-DHCPv6: DHCPv4 Side . . . . . . . . .. .. ... .. . ... 104
8.2.24 Sanity Checks in DHCPv4 . . . . . . . ... ... 105
8.2.25 Storing Extended Lease Information . . . . . .. . ... ... 106
8.2.26 Multi-Threading Settings . . . . . . . . . . . o . e 107
8.2.27 Multi-Threading Settings in Different Backends . . . . . . . ... ... .. ... ... ... 107
8.2.28 IPv6-Only Preferred Networks . . . . . . . . . . . . . o e 108
8.2.29 LeaseCaching . . . . . . . . . . i e e e e 108
Host Reservation in DHCPv4 . . . . . . 0 o . 0 o e 109
8.3.1  Address Reservation Types . . . . . . . . . . o . e 110
8.3.2  Conflicts in DHCPv4 Reservations . . . . . . . . . . . . oo v it i 111
8.3.3 ReservingaHostname . . . . . . . . . . . e e e 112
8.3.4  Including Specific DHCPv4 Options in Reservations . . . . . . ... ... .. ....... 113
8.3.5 Reserving Next Server, Server Hostname, and Boot File Name . . . ... ... ... .... 114
8.3.6  Reserving Client Classes in DHCPv4 . . . . . . . . . ... ... . .. ... . ..., 114
8.3.7  Storing Host Reservations in MySQL, PostgreSQL, or Cassandra . . . . . . ... ... ... 116
8.3.8  Fine-Tuning DHCPv4 Host Reservation . . . . . ... ... ... .. ... ......... 116
8.3.9 Global Reservationsin DHCPv4 . . . . . . . .. ... ... . 121
8.3.10 Pool Selection with Client Class Reservations . . . . . .. .. ... ... ... ....... 123
8.3.11 Subnet Selection with Client Class Reservations . . . . . . .. ... ... ... ....... 124
8.3.12 Multiple Reservations for the Same IP . . . . . . .. ... ... . o 125
Shared Networks in DHCPv4 . . . . . . . . . 0 e 126
8.4.1  Local and Relayed Traffic in Shared Networks . . . . . . . ... ... ... ... ...... 129
8.4.2  Client Classification in Shared Networks . . . . . . . . .. .. ... ... ... .. .... 131
8.4.3  Host Reservations in Shared Networks . . . . . . .. ... .. ... ... ... 133
Server Identifier in DHCPv4 . . . . . . . . . 0 e 134




8.6  How the DHCPv4 Server Selects a Subnet for the Client . . . . . .. ... ... ... .. ...... 135
8.6.1  Using a Specific Relay AgentforaSubnet . . . . . .. ... ... .. ... ......... 135

8.6.2  Segregating [IPv4 Clients in a Cable Network . . . . . . ... ... ... ... ....... 136

8.7 Duplicate Addresses (DHCPDECLINE Support) . . . . . . .. .. .. ... ... 137
8.8  Statistics in the DHCPv4 Server . . . . . . . . . . o 0 e e 138
8.9 Management API for the DHCPv4 Server . . . . . . . . . . . it 141
8.10 User ContextsinIPv4 . . . . . . . . e 142
8.11 Supported DHCP Standards . . . . . . . . . . . . . e e e e e e 143
8.11.1 KnownRFC Violations . . . . . . . .. .. ... ... e 143

8.12 DHCPv4 Server Limitations . . . . . . . . . . . . . 0 e e 144
8.13 Kea DHCPv4 Server Examples . . . . . . . . . o e e 144
8.14 Configuration Backend in DHCPv4 . . . . . . . . . . .. . e 144
8.14.1 Supported Parameters . . . . . . . . ... e e e e e e e e 144
8.14.2 Enabling the Configuration Backend . . . . . . . ... ... ... ... ... .. 146

8.15 Kea DHCPv4 Compatibility Configuration Parameters . . . . . . . .. . ... ... ... ... ... 147
8.15.1 Lenient Option Parsing . . . . . . . . . . . . ... 147

The DHCPv6 Server 149
9.1 Starting and Stopping the DHCPv6 Server . . . . . . .. ... ... ... ... ... 149
9.2 DHCPv6 Server Configuration . . . . . . . . . . . .o i e e e 150
9.2.1 Introduction . . . . . . .. e e e e 150

0.2.2  Lease Storage . . . . . v v e e e e e e e e e e e e e e e e 152
9.2.2.1 Memfile - Basic Storage forLeases . . . . . . . .. ... ... ... ... 152

9.2.2.2  Lease Database Configuration . . . . . . .. ... ... ... ... ........ 154

9.2.2.3 Cassandra-Specific Parameters . . . . . . ... ... ... . ... ... 156

9.2.3  Hosts Storage . . . . . . ... e e e e 156
9.2.3.1 DHCPv6 Hosts Database Configuration . . . . .. ... ... ... ........ 156

9.2.3.2  Using Read-Only Databases for Host Reservations with DHCPv6 . . . . . . .. .. 158

9.2.4 Interface Configuration . . . . . . . . . . . ... L e 158

9.2.5 IPv6 SubnetIdentifier . . . . . . . . . ... 159

9.2.6 IPv6SubnetPrefix . . . . . . .. . . e 160

9.2.7  Unicast Traffic Support . . . . . . . . . . e e e e 160

9.2.8  Configuration of IPv6 AddressPools . . . . . . ... ... . ... Lo . 161

9.2.9  Subnet and Prefix Delegation Pools . . . . . .. .. ... L. o Lo oL 163
9.2.10 Prefix Exclude Option . . . . . . . . .. . ... e 163
9.2.11 Standard DHCPvO Options . . . . . . . . . . . it ittt et i e e e 164
9.2.12 Common Softwire46 Options . . . . . . . . . . . . i e e 170
9.2.12.1 Softwired6 Container Options . . . . . . . . . . . . o 0 vt vt e 171

9.2.122 S46RuleOption . . . . . . .. L 171

90.2.12.3 S46BROption . . . . . . . . e 172

9.2.124 S46DMR Option . . . . . . . . .. 172

9.2.12.5 S46 IPv4/IPv6 Address Binding Option . . . . . . . ... ... ... ... ..... 172

9.2.12.6 S46 PortParameters . . . . . . . . . ... ... e 172

9.2.13 Custom DHCPv6 Options . . . . . . . . . i i it e e e e e e e e e 173
9.2.14 DHCPv6 Vendor-Specific Options . . . . . . . . .. ... ... 175
9.2.15 Nested DHCPv6 Options (Custom Option Spaces) . . . . . . .. ... ... ... ...... 176
9.2.16 Unspecified Parameters for DHCPv6 Option Configuration . . . . . . ... ... .. .... 178
9.2.17 Controlling the Values Sent for Tl and T2 Times . . . . . . .. ... ... ... ...... 178
9.2.18 IPv6 Subnet Selection. . . . . . . . . ... e 180
9.2.19 Rapid Commit . . . . . . o . i e e e e e e e e e e 180
9.220 DHCPvORelays . . . . . . . . o e e e e e e 181
9.2.21 Relay-Supplied Options . . . . . . . . . . . . e 181
9.2.22 Client Classification in DHCPv6 . . . . . ... .. ... .. . . . . . ... . ... 182
9.2.22.1 Defining and Using Custom Classes . . . . . . . ... ... ... ... 183




9.2.22.2 Required Classification . . . . . . . .. .. ... . 184

9.223 DDNSfor DHCPVO . . . . . . . o e 185
9.2.23.1 DHCP-DDNS Server Connectivity . . . . . . . . . . .o 187

9.2.23.2 When Does the kea-dhcp6 Server Generate a DDNS Request? . . . . . .. ... .. 188

9.2.23.3 kea-dhcp6 Name Generation for DDNS Update Requests . . . . . ... ... ... 189

9.2.23.4 Sanitizing Client FQDN Names . . . . . . .. ... ... .. . . ... ... 191

9.2.24 DHCPv4-over-DHCPv6: DHCPv6 Side . . . . . .. ... . ... ... ... 192
9.2.25 Sanity Checksin DHCPvG . . . . . . . . . . . e 193
9.2.26 Storing Extended Lease Information . . . . . . . .. ... ... L 0oL, 194
9.2.27 Multi-Threading Settings . . . . . . . . . . ... e 195
9.2.28 Multi-Threading Settings in Different Backends . . . . . . . ... .. ... ... ... ... 195
9.229 LeaseCaching . . . . . . . . . . . e 196

9.3 HostReservationin DHCPvG . . . . . . . .. ... e 197
9.3.1  Address/Prefix Reservation Types . . . . . . . . . .. . . e 198

9.3.2  Conflicts in DHCPv6 Reservations . . . . . . . . . ... ... .. ... 199

9.33 ReservingaHostname . . . ... .. ... ... ... ... oo 199

9.3.4  Including Specific DHCPv6 Options in Reservations . . . . . ... . ... ... ...... 201

9.3.5 Reserving Client Classesin DHCPv6 . . . . . .. .. ... ... ... ... ... . .... 202

9.3.6  Storing Host Reservations in MySQL, PostgreSQL, or Cassandra . . . . . . ... ... ... 203

9.3.7  Fine-Tuning DHCPv6 Host Reservation . . . . . .. ... ... .. .. ........... 203

9.3.8 Global Reservationsin DHCPv6 . . . . . .. ... ... ... .. .. . ... 209

9.3.9  Pool Selection with Client Class Reservations . . . . . . ... ... ... .......... 210
9.3.10 Subnet Selection with Client Class Reservations . . . . . . ... ... ... ......... 211
9.3.11 Multiple Reservations forthe Same IP . . . . . .. . ... ... ... ... ... ..... 212

9.4  Shared Networks in DHCPvVO . . . . . . . . . . . e 214
9.4.1 Local and Relayed Traffic in Shared Networks . . . . . . ... ... ... ... ....... 217

9.4.2  Client Classification in Shared Networks . . . . . . . . ... ... ... ... ... .... 219

9.4.3  Host Reservations in Shared Networks . . . . . . ... ... ... ... ... ... .... 221

9.5 Server Identifierin DHCPvO . . . . . . . . . . .. e 222
9.6 DHCPv6 Data Directory . . . . . . . . o i v it e e e e e e e e e e e 225
9.7  Stateless DHCPv6 (Information-Request Message) . . . . . . . . . . ... . ... .. ... .... 225
9.8  Support for RFC 7550 (now partof RFC 8415) . . . . . . . .. ... ... ... ... ..... 226
9.9 Using a Specific Relay AgentforaSubnet . . . . . . . .. ... ... ... o 226
9.10 Segregating IPv6 Clients in a Cable Network . . . . . . . . .. .. .. ... .. .. ... . ..... 227
9.11 MAC/Hardware Addresses in DHCPvG . . . . . . . . ... ... ... .. ... ... 228
9.12 Duplicate Addresses (DECLINE Support) . . . . . . . . . .. i 229
9.13 Statistics in the DHCPv6 Server . . . . . . . . . . . . e 230
9.14 Management API for the DHCPvO Server . . . . . . . . . . .. .. . . i 234
9.15 UserContextsinIPVO . . . . . . . . . . e e 235
9.16 Supported DHCPv6 Standards . . . . . . . . . . . 0 o e e e e e 236
9.17 DHCPv6 Server Limitations . . . . . . . . . o . o 0o e e e e e e e e e e e 237
9.18 Kea DHCPv6 Server Examples . . . . . . .. ... ... e 237
9.19 Configuration Backend in DHCPv6 . . . . . . . ... ... . . 237
9.19.1 Supported Parameters . . . . . . . . . ... e e 238
9.19.2 Enabling Configuration Backend . . . . . . . . .. . ... ... .. ... 239

9.20 Kea DHCPv6 Compatibility Configuration Parameters . . . . . . . . . ... ... ... ....... 240
9.20.1 LenientOption Parsing . . . . . . . . . . . ... o 240

10 Database Connectivity 241
11 Lease Expiration 243
11.1 Lease Reclamation . . . . . . . . . . . . . e e e 243
11.2 Lease Reclamation Configuration Parameters . . . . . . . . . . .. ... .. .. ... 244
11.3 Configuring Lease Reclamation . . . . . . . . . . . .. .. . e 244




11.4 Configuring Lease Affinity . . . . . . . . . . . . e e e e
11.5 Reclaiming Expired Leases viaCommand . . . . . . . . ... ... ... .. ... ... ...,
12 Congestion Handling
12.1 Whatis Congestion? . . . . . . . . i i e e e e e e e e e e e e e e e e
12.2 Configuring Congestion Handling . . . . . . . .. .. ... .. .. .
13 The DHCP-DDNS Server
I3.1 OVEIVIEW . . . o o o e e e e e e e e e e e e e
13.1.1 DNS Server Selection . . . . . . . . . . e e
13.1.2 ConflictResolution . . . . . . . . . . L e
13.1.3 Dual-Stack Environments . . . . . . . . . . . Lo e e e
13.2 Starting and Stopping the DHCP-DDNS Server . . . . . . . ... ... ...
13.3 Configuring the DHCP-DDNS Server . . . . . . . . . . 0 i e e e e e e e e
13.3.1 Global Server Parameters . . . . . . . . . . ... e e
13.3.2 Management APl forthe D2 Server . . . . ... ... ... ... ...
1333 TSIGKeyList. . . . . o o o e e e e
13.3.4 Forward DDNS . . . . . . o e e
13.3.4.1 Adding Forward DDNS Domains . . . . . . ... ... ... ... .........
13.3.4.1.1 Adding Forward DNS Servers . . . . ... ... ... ... ...
13.3.5 Reverse DDNS . . . . . o e
13.3.5.1 Adding Reverse DDNS Domains . . . . .. ... ... .. .............
13.3.5.1.1 Adding Reverse DNS Servers . . . . . . ... .. ... ... .......
13.3.5.2 Per DNS server TSIGkeys . . . . . . .. . o o o
13.3.6 User Contexts in DDNS . . . . . . . . e
13.3.7 Example DHCP-DDNS Server Configuration . . . . ... ... ... .. ..........
13.4 DHCP-DDNS Server StatisticS . . . . . . . . . . . . o it e e
13.4.1 NCR Statistics . . . .« o v v v i e e e e e e e e e e
13.4.2 DNS Update Statistics . . . . . . . . o oo o e e e
13.4.3 Per TSIG key DNS Update Statistics . . . . . . . . .« o v v i it i e et e e e e o
13.5 DHCP-DDNS Server Limitations . . . . . . . .. . ... e
13.6 Supported Standards . . . . . ... e e
14 The LFC Process
I4.1 OVerview . . . . . o ot e e e e e e e e
142 Command-Line Options . . . . . . . . . . .. .. e
15 Client Classification
15.1 Client Classification Overview . . . . . . . . . . . . . ittt e et e
15.2 Built-in Client Classes . . . . . . . . . . i it e e e
15.3 Using Expressions in Classification . . . . . . . . . .. ... . L e
15.3.1 Logical operators . . . . . . . . . i it e e e e e e e e e
15.3.2 Substring . . . . . . e e e e e e e
1533 Concat. . . . .. o e
1534 Ifelse . . . . o o o e
15.3.5 Hexstring . . . . . . o o e e e e e e e e e e e
15.4 Configuring Classes . . . . . . . . o i i i e e e e e
15.5 Using Static Host Reservations In Classification . . . . . . .. ... ... ... ... .. ......
15.6 Configuring Subnets With Class Information . . . . . .. ... ... ... .. ... ... ......
15.7 Configuring Pools With Class Information . . . . . ... ... ... ... ... ... . ....
158 Using Classes . . . . . . . o v i it e e e e e e
159 Classesand Hooks . . . . . . . . . . o o e e
15.10 Debugging EXpressions . . . . . . . . . o e e e e

16 Hooks Libraries

249
249
249

251
251
251
252
252
252
253
253
254
255
257
257
258
258
259
259
260
261
262
264
264
264
265
265
265

267
267
267

269
269
270
271
274
274
275
275
275
275
277
277
278
280
280
280

283

vi



16.1 Introduction . . . . . . . . . e e e e e e e 283

16.2 Installing Hook Packages . . . . . . . . . . . o e e e 283
16.3 Configuring Hooks Libraries . . . . . . . . . . . . o e e 285
16.4 Available Hooks Libraries . . . . . . . . . . . e e e e e 286
16.5 wuser_chk: Checking User ACCESS . . . . . . o v v v v i ittt e e e e e 289
16.6 legal_log: Forensic Logging Hooks . . . . . . . ... ... . . . . . . . 290
16.6.1 LogFile Naming . . . . . . . . . i i i i e e e e e e e e e e e 290
16.6.2 Configuring the Forensic Log Hooks . . . . . . . ... .. .. ... ... ... 291
16.6.3 DHCPv4 Log Entries . . . . . . . . . . . . 0 e e e 294
16.6.4 DHCPv6 LogEntries . . . . . . . .. ... .. e 297
16.6.5 Database Backend . . . . . . . . . . . .. e e e e e 301
16.7 flex_id: Flexible Identifiers for Host Reservations . . . . . . . . . . . . . . . . v v v v i 301
16.8 flex_option Flexible Option for Option value settings . . . . . . . . . .. ... ... ... .. .... 304
16.9 host_cmds: Host Commands . . . . . . . . . . . 0L e e e e e e e 305
16.9.1 The subnet-id Parameter . . . . . . . . . . . . . . .. 306
16.9.2 Thereservation-add Command . . . . . . . . . . . .. . L e 307
16.9.3 Thereservation-get Command . . . . . . . . ... oL e 308
16.9.4 Thereservation-get-all Command . . . . . . . . . . ... .. e 309
16.9.5 The reservation-get-page command . . . . . . ... oL e e e e 310
16.9.6 The reservation-get-by-hostname Command . . . . . . ... ... ... ... ... ..., 312
16.9.7 The reservation-get-by-id Command . . . . . . .. ... ... o 314
16.9.8 Thereservation-del Command . . . . . . . . . . .. . ... e 315
16.10 lease_cmds: Lease CommandsS . . . . . . . . . . vt e e e e e e e e e e e e 316
16.10.1 The leased4-add, lease6-add Commands . . . . . . . . . . . . . v v i v i i 317
16.10.2 The lease6-bulk-apply Command . . . . . . . .. .. ... ... oo 319
16.10.3 The lease4-get, lease6-get Commands . . . . . . . . ... ... oL 321
16.10.4 The lease4-get-all, lease6-get-all Commands . . . . . . . .. ... .. ... ... ... 322
16.10.5 The lease4-get-page, lease6-get-page Commands . . . . . . . . . . .. ... 324
16.10.6 The lease4-get-by-*, lease6-get-by-* Commands . . . . . . . ... ... ... ... ..... 325
16.10.7 The lease4-del, lease6-del Commands . . . . . . . . . . . . . ... 326
16.10.8 The lease4-update, lease6-update Commands . . . . . . . ... ... ... ... 327
16.10.9 The lease4-wipe, lease6-wipe Commands . . . . . . . . .. .. ... ... 328
16.10.10The lease4-resend-ddns, lease6-resend-ddns Commands . . . . . . . . . . . . . ... ... 328
16.11 subnet_cmds: Subnet Commands . . . . . . . . . ... e e e e e e e 329
16.11.1 The subnetd-list Command . . . . . . . . . . . . . . o i e e e 330
16.11.2 The subnet6-list Command . . . . . . . . . . ... e e 330
16.11.3 The subnetd-get Command . . . . . . . . .. .. ..ottt i 331
16.11.4 The subnet6-get Command . . . . . . . . . . .. e e 332
16.11.5 The subnetd-add Command . . . . . . . . . . . . . . i i it e e e 332
16.11.6 The subnet6-add Command . . . . . . . . . . . . .. o e e e 333
16.11.7 The subnetd-update Command . . . . . . . . .. . ... ... 334
16.11.8 The subnet6-update Command . . . . . . . . .. .. ... oL 335
16.11.9 The subnetd-del Command . . . . . . . . . . . . . . i e e 336
16.11.10The subnet6-del Command . . . . . . . . . . . . . . i e e 336
16.11.11The network4-list, network6-list Commands . . . . . . . . . ... ... ... ... ..... 337
16.11.12The network4-get, network6-get Commands . . . . . . . . ... .. ... ... ... 338
16.11.13The network4-add, network6-add Commands . . . . . . .. ... ... ... ........ 339
16.11.14The network4-del, network6-del Commands . . . . . . . . . . . . . . . . 340
16.11.15The network4-subnet-add, network6-subnet-add Commands . . . . . . . .. ... ... .. 341
16.11.16The network4-subnet-del, network6-subnet-del Commands . . . . . . . . . . .. ... ... 342
16.12 BOOTP Support . . . . . o o e e e e e e e e e e e e e e e e e e e e e 342
16.12.1 BOOTP Hooks Limitation . . . . . . . .. . ... ... i 343
16.13 class_cmds: Class Commands . . . . . . . . . . . e e e e e e e e 344
16.13.1 Theclass-add Command . . . . . . . . . . . 0 i it et e e e e 344

vii



16.13.2 The class-update Command . . . . . . . . . .. L 344

16.13.3 The class-del Command . . . . . . . . . . ... e 345
16.13.4 Theclass-list Command . . . . . . . ... ... e 346
16.13.5 The class-get Command . . . . . . . ... ... L e 346
16.14 cb_cmds: Configuration Backend Commands . . . . . . . . .. .. ... ... oL 347
16.14.1 Commands Structure . . . . . . . . . o o vttt e e e e e e e 347
16.14.2 Control Commands for DHCP Servers . . . . . . . . . .. ... . 348
16.14.3 Metadata . . . . . . . L e e e e e e e 348
16.14.4 remote-serverd-del, remote-server6-del commands . . . . . . ... ... . ... ... ... 349
16.14.5 remote-server4-get, remote-server6-get commands . . . . ... .o L. 350
16.14.6 remote-server4-get-all, remote-server6-get-all commands . . . . . . . ... ... ... ... 351
16.14.7 remote-serverd-set, remote-servero-setcommands . . . . . . . . . .o e e e e 351
16.14.8 The remote-global-parameter4-del, remote-global-parameter6-del Commands . . . . . . . . 352
16.14.9 The remote-global-parameter4-get, remote-global-parameter6-get Commands . . . . . . . . 353
16.14.10The remote-global-parameter4-get-all, remote-global-parameter6-get-all Commands . . . . 354
16.14.11The remote-global-parameter4-set, remote-global-parameter6-set Commands . . . . . . . . 355
16.14.12The remote-network4-del, remote-network6-del Commands . . . . . . . . . . . . .. ... 356
16.14.13The remote-network4-get, remote-network6-get Commands . . . . . . . .. ... ... ... 357
16.14.14The remote-network4-list, remote-network6-list Commands . . . . . . ... ... ... ... 357
16.14.15The remote-network4-set, remote-network6-set Commands . . . . . . .. . ... ... ... 359
16.14.16The remote-option-def4-del, remote-option-def6-del Commands . . . . . . . .. ... ... 360
16.14.17The remote-option-def4-get, remote-option-def6-get Commands . . . . . . ... ... ... 360
16.14.18The remote-option-def4-get-all, remote-option-def6-get-all Commands . . . . . . . ... .. 361
16.14.19The remote-option-def4-set, remote-option-def6-set Commands . . . . . . . ... ... .. 362
16.14.20The remote-option4-global-del, remote-option6-global-del Commands . . . . . . . . .. .. 362
16.14.21The remote-option4-global-get, remote-option6-global-get Commands . . . . . ... .. .. 363
16.14.22The remote-option4-global-get-all, remote-option6-global-get-all Commands . . . . . . . . 363
16.14.23The remote-option4-global-set, remote-option6-global-set Commands . . . . . .. ... .. 364
16.14.24The remote-option4-network-del, remote-option6-network-del Commands . . . . . ... .. 365
16.14.25The remote-option4-network-set, remote-option6-network-set Commands . . . . . . . . .. 366
16.14.26The remote-option6-pd-pool-del Command . . . . . . . ... .. ... .. ... ... ... 366
16.14.27The remote-option6-pd-pool-set Command . . . . . . ... .. ... ... L. 367
16.14.28The remote-option4-pool-del, remote-option6-pool-del Commands . . . . . . . .. .. ... 368
16.14.29The remote-option4-pool-set, remote-option6-pool-set Commands . . . . . . ... ... .. 368
16.14.30The remote-option4-subnet-del, remote-option6-subnet-del Commands . . . . . . ... .. 369
16.14.31The remote-option4-subnet-set, remote-option6-subnet-set Commands . . . . . . . . .. .. 370
16.14.32The remote-subnet4-del-by-id, remote-subnet6-del-by-id Commands . . . . . . ... .. .. 370
16.14.33The remote-subnet4-del-by-prefix, remote-subnet6-del-by-prefix Commands . . . . . . . .. 371
16.14.34The remote-subnet4-get-by-id, remote-subnet6-get-by-id Commands . . . . . ... ... .. 371
16.14.35The remote-subnet4-get-by-prefix, remote-subnet6-get-by-prefix Commands . . . . . . . . . 372
16.14.36The remote-subnet4-list, remote-subnet6-list Commands . . . . . . . ... ... ... ... 372
16.14.37The remote-subnet4-set, remote-subnet6-set Commands . . . . . . . . . . ... ... ... 374
16.14.38The remote-class4-del, remote-class6-del Commands . . . . . . . . . . . . . .. ... ... 375
16.14.39The remote-class4-get, remote-class6-get Commands . . . . . . . . ... ... ... .... 375
16.14.40The remote-class4-get-all, remote-class6-get-all Commands . . . . . ... ... ... ... 376
16.14.41The remote-class4-set, remote-class6-set Commands . . . . . . . . . . . . . . . ... ... 377
16.15 ha: High Availability . . . . . . . .. . . 379
16.15.1 Supported Configurations . . . . . . . . . . . . ... e 379
16.15.2 Clocks on ACHVE SEIVEIS . . . . . v v v v v it e e e et e e e e e e e e 381
16.15.3 HTTPS Support . . . . . o v o ot e e e e e e e e e e e e e e e e e e e e e 381
16.15.4 Server States . . . . . . . e e e e e e 382
16.15.5 Scope Transition in a Partner-Down Case . . . . . . ... ... ... ... ... ..... 384
16.15.6 Load-Balancing Configuration . . . . . . . . . .. ... .. 385

16.15.7 Load Balancing with Advanced Classification . . . . . . ... ... ... ... ....... 389

viii



16.15.8 Hot-Standby Configuration . . . . . . . . .. ... ... 390

16.15.9 Passive-Backup Configuration . . . . . . . . . . . . . e e e 392
16.15.10Lease Information Sharing . . . . . . . . . . . . . e 393
16.15.11Controlling Lease-Page Size Limit . . . . . . . . . ... .. ... ... ... ... 394
16.15.12TiMEOULS . . . . v v o o e e e e e e e e e e e e e e e e e e e e e e e 395
16.15.13Pausing the HA State Machine . . . . . . .. ... ... ... . . . .. . . ... ... 396
16.15.14Control Agent Configuration . . . . . . . . . . . . . i i v i e e e e 399
16.15.15Multi-threaded Configuration (HA+MT) . . . . . . . . . . . . . o it i e 399
16.15.16Parked Packet Limit . . . . . . . . . . . .. . e e 401
16.15.17Controlled Shutdown and Maintenance of DHCP servers . . . . . ... ... ... ..... 402
16.15.18Upgrading from Older HA Versions . . . . . . . . . . ... ... ... ... 403
16.15.19Control Commands for High Availability . . . . ... ... ... ... .. ... ... 403
16.15.19.1The ha-sync Command . . . . . . . . . . . o0 vttt i e et e 403
16.15.19.2The ha-scopes Command . . . . . . . . . ... .. ... .. 404
16.15.19.3The ha-continue Command . . . . . . .. .. .. . ... ... ... 404
16.15.19.4The ha-heartbeat Command . . . . . . . . . . . . . .. .. i 405
16.15.19.5The status-get Command . . . . . . . . . ... 406
16.15.19.6T'he ha-maintenance-start Command . . . . . . . . .. ... ... .. ....... 408
16.15.19.7The ha-maintenance-cancel Command . . . . . . . ... ... ... ... ..... 408
16.15.19.8The ha-maintenance-notifty Command . . . . . . . .. ... ... ... ...... 409
16.15.19.9The ha-reset Command . . . . . . . . . . . ... ... . e 409
16.15.19.10he ha-sync-complete-notify Command . . . . . . .. . ... ... ... ..... 410

16.16 stat_cmds: Supplemental Statistics Commands . . . . . . . . . ... . e 410
16.16.1 The stat-lease4-get, stat-lease6-get Commands . . . . . . . . . . . ... ... ... 411

16.17 radius: RADIUS Server Support . . . . . . . . . .. o 413
16.17.1 Compilation and Installation of the RADIUSHook . . . . ... ... ... ......... 414
16.17.2 RADIUS Hook Configuration . . . . . . . . . . ... it 418

16.18 host_cache: Caching Host Reservations . . . . . . . . . . ... ... . ... 422
16.18.1 The cache-flushCommand . . . . . . . .. ... ... . 423
16.18.2 The cache-clear Command . . . . . . . . . . . . . . e e 423
16.18.3 The cache-size Command . . . . . . . . . . . . . . . i it e e 423
16.18.4 The cache-write Command . . . . . . . . . . . . . . i e e e 423
16.18.5 The cache-load Command . . . . . . . . .. .. e 424
16.18.6 The cache-get Command . . . . . . . . . . . . . 0 i i e e e e e 424
16.18.7 The cache-get-by-id Command . . . . . . . . . . . . .. . e 424
16.18.8 The cache-insert Command . . . . . . . . . . . . . . . e 425
16.18.9 The cache-remove Command . . . . . . . . . . . . . . o i it e 426

16.19 lease_query: Leasequery . . . . . . . . o o it e e e e e e e 426
16.19.1 DHCPVA LeasequUery . . . . ¢ v v v v v e i e e e e e e e e e e e e e e e e e 427
16.19.2 DHCPv4 Leasequery Configuration . . . . . . . . . . . . oo v v i it v et e oo 428
16.19.3 DHCPvO Leasequery . . . . . . . .« oo it ittt it e e e e e e e 428
16.19.4 DHCPv6 Leasequery Configuration . . . . . . . .. ... ... 430

16.20 Run Script Support . . . . . . . L e e e e e e 430
16.21 User Contexts in Hooks . . . . . . . . . . o o e 441
17 Statistics 443
17.1  Statistics OVEIVIEW . . . . o o o o o e e e e e e e e e e e e e e e e e e e e e e e 443
17.2 Statistics Lifecycle . . . . . . . o e e e e e e e 444
17.3 Commands for Manipulating Statistics . . . . . . . . . . . . . e e 444
17.3.1 The statistic-get Command . . . . . . . . . ... L e 444
17.3.2 The statistic-reset Command . . . . . . . . . . .. Lo e e e e e e e 445
17.3.3 The statistic-remove Command . . . . . . . . . .. ... e e e 445
17.3.4 The statistic-get-all Command . . . . . . . . ... L e 446
17.3.5 The statistic-reset-all Command . . . . . . ... ... oL 446




17.3.6
17.3.7
17.3.8
17.3.9

The statistic-remove-all Command . . . . . . . . . ... oL
The statistic-sample-age-set Command . . . . . . . . . . . . .. e
The statistic-sample-age-set-all Command . . . . . . . . ... ... ... ... ...
The statistic-sample-count-set Command . . . . . . . ... ... ... 0oL L.

17.3.10 The statistic-sample-count-set-all Command . . . . . . . . . . ... ... ... ... ...,
174 Time Series . . . . . . . e e

18 Management API
18.1 DataSyntax . . . . . . . . L e e e e e e e e e e e e e
18.2 Usingthe Control Channel . . . . . . . . . . .. . e
18.3 Commands Supported by Both the DHCPv4 and DHCPv6 Servers . . . . . ... ... ... .....

18.3.1
18.3.2
18.3.3
18.3.4
18.3.5
18.3.6
18.3.7
18.3.8
18.3.9
18.3.10
18.3.11
18.3.12
18.3.13
18.3.14
18.3.15
18.3.16

The build-report Command . . . . . . . . . . . . e e e
The config-get Command . . . . . . .. .. . ...
The config-reload Command . . . . . . . . . .. ...
The config-test Command . . . . . . . . . .. L
The config-write Command . . . . . . . . . . . . . e e e
The leases-reclaim Command . . . . . . . . . . ... ... L.
The libreload Command . . . . . . . . .. .. L
The list-commands Command . . . . . . . .. . ... . L e
The config-set Command . . . . . . . . . . .. e
The shutdown Command . . . . . . . . ... e
The dhep-disable Command . . . . . . . . . . . e e e
The dhep-enable Command . . . . . . . . . 0L oL e
The status-get Command . . . . . . . . ..o e e e e
The server-tag-get Command: . . . . . . . .. ... L e e
The config-backend-pull Command: . . . . . . . ... ... ... ... . ...
The version-get Command . . . . . . . . . . . e e e e e e

18.4 Commands Supported by the D2 Server . . . . . . . . . . ... e
18.5 Commands Supported by the Control Agent . . . . . . . . ... .. ... ... .. ...

19 Logging

19.1 Logging Configuration . . . . . . . . . . . . i i e e e e e e e e

19.1.1

19.1.2

19.1.3

Loggers . . . . . e
19.1.1.1 The name (string) Logger . . . . . . . . .. ... . ... ... ..
19.1.1.2 The severity (string) Logger . . . . . . . . . . . .. L
19.1.1.3 The debuglevel (integer) Logger . . . . . . . . . . . . i
19.1.1.4 The output_options (list) Logger . . . . . . .. . . ... . ... ...

19.1.1.4.1 The output (string) Option . . . . . . . ... ... ... ... .....
19.1.1.4.2 The flush (true or false) Option . . . . . . ... .. ... ... .. ....
19.1.1.4.3 The maxsize (integer) Option . . . . . . . . . .. ... ... ... ....
19.1.1.4.4 The maxver (integer) Option . . . . . . . . . ... ... .. ... ....
19.1.1.4.5 The pattern (string) Option . . . . . . . . . ... .. ...,

Logging Message Format . . . . . . .. .. ... .. L L e
19.1.2.1 Example Logger Configurations . . . . . . . ... ... .. ... .. . .......

Logging During Kea Startup . . . . . . . . .. . .. L

19.2 Logginglevels . . . . . . e e

20 The Kea Shell
20.1 Overview of the Kea Shell . . . . . . . . . . . . e

20.2 Shell U

SAZE + v v e e e e e e e e e e e e e e e e e e e

20.3 TLS SUPPOTT . . o v o o e e e e e e e e e e e e e e e e e e e e e e e e

21 Integration with external systems
21.1 YANG/NETCONF . . . . . e e e

21.1.1

OVEIVIEW . . . o v o o e e e e e e e e e e e e e e e




21.1.2 Installing NETCONF . . . . . . . . . e e e e 475

21.1.2.1 Installing libyang From Sources . . . . . . . ... ... ... ... .. ...... 475

21.1.2.2 [Installing sysrepo From Sources . . . . . . . ... ... ... ... ... .. 476

21.1.3  Quick Sysrepo Overview . . . . . . . . . e 476
21.1.4 Supported YANG Models . . . . . . ... ... 480
21.1.5 Usingthe NETCONF Agent . . . . . . . . . it 480
21.1.6  Configuration . . . . . . . . o 0 i e e e e e e e e e e e e 481
21.1.7 A kea-netconf Configuration Example . . . . . . .. ... ... ... ... .. ... 482
21.1.8 Starting and Stopping the NETCONF Agent . . . . . . .. .. ... ... ... ....... 485
21.1.9 A Step-by-Step NETCONF Agent Operation Example . . . . . . ... ... .. ... ... .. 485
21.1.9.1 Setup of NETCONF Agent Operation Example . . . . ... ... ... ...... 485

21.1.9.2 Error Handling in NETCONF Operation Example . . . . .. ... ... ...... 487

21.1.9.3 NETCONF Operation Example with TwoPools . . . . . .. ... ... ... ... 489

21.1.9.4 NETCONF Operation Example with Two Subnets . . . . . . ... .. ... .. .. 489

21.1.9.5 NETCONF Operation Example with Logging . . . . . ... ... ... ...... 490

21.1.9.6 Migrating YANG data from sysrepo vO.xtovl.x . . . . . . ... ... ... 491

21.2 GSS-TSIG . . . o 492
21.2.1 GSS-TSIG OVErview . . . . . v v vt e e e et e e e e e e e e e e e e e 492
21.2.2 GSS-TSIG Compilation. . . . . . . . . o0 e e e e e e e e e 493
21.2.3 GSS-TSIG Deployment . . . . . . . oo v vttt e e e e e e e 494
21.23.1 Kerberos5Setup . . . . . ... 494

21.2.3.2 Bind 9 with GSS-TSIG Configuration . . . . . .. ... ... .. ... ...... 497

21.2.3.3 Windows Active Directory Configuration . . . . . . ... ... ... ........ 498

21.2.3.4 GSS-TSIG Troubleshooting . . . . . . . . . . . . . i it 499

21.2.4 Using GSS-TSIG . . . . . . . . e 499
21.2.4.1 GSS-TSIG Automatic Key Removal . . . . ... ... ... ... ... ... 505

21.2.4.2 GSS-TSIG Configuration for Deployment . . . . . .. ... ... ... ...... 505

21.2.5 GSS-TSIG Statistics . . . . . o o vt 506
21.2.6  GSS-TSIG Commands . . . . . . . . . i ittt e e e e e 506
21.2.6.1 The gss-tsig-get-all Command . . . . . ... .. .. ... ... .. ... 506

21.2.6.2 The gss-tsig-get Command . . . . . . . .. ... oL oo 507

21.2.6.3 The gss-tsig-list Command . . . . . . . .. .. ... Lo 508

21.2.6.4 The gss-tsig-key-get Command . . . . . .. ... ... oo 508

21.2.6.5 The gss-tsig-key-expire Command . . . . .. ... ... ... ... ... 509

21.2.6.6 The gss-tsig-key-del Command . . . . . ... ... ... ... ... ... ... 509

21.2.6.7 The gss-tsig-purge-all Command . . . . .. ... ... ... ... ... .. 510

21.2.6.8 The gss-tsig-purge Command . . . . . . .. ... oL 0oL 510

21.2.6.9 The gss-tsig-rekey-all Command . . . . .. ... ... ... ... ... 510

21.2.6.10 The gss-tsig-rekey Command . . . . . . . . .. . ... e 511

22 Monitoring Kea With Stork 513
22.1 KeaStatisticsin Grafana . . . . . . . ... o e 513
23 Kea Security 515
23.1 TLS/HTTPS Support . . . . . o ot e e e e e e e e e e e e e e e e e e e e 515
23.1.1 Building Kea with TLS/HTTPS support . . . . . . . .. . oo 515
23.1.2 TLS/HTTPS configuration . . . . . . . . . . . . .. i i it 516

23.2 Securing Keadeployment . . . . . . . . . . L e 517
23.2.1 Component-based design . . . . . . . . ... L e 517
23.2.2 Limiting application permissions . . . . . . . . . . . ... oL Lo e e e 517
23.2.3 Securing Kea administrative access . . . . . . . . ... oLl 517
23.2.4 Securing database connections . . . . . . ... ..o e e e e e e e e e e 518
23.2.5 Information leakage through logging . . . . . . . . . .. . .. .. ... ... .. 518
23.2.6 Cryptography cOmponents . . . . . . . . . . . ..t v ittt 518

Xi



24

23.2.7 TSIGSINAMUIES . . . v v v v o e e e e e e e e e e e e e e e e e e e e e e e e 519

23.2.8 Raw SOCKEt SUPPOTL . . . . v v v v e o e et e e e e e e e e e e e e e e e e e e 519

23.2.9 Remote Administrative ACCESS . . . . . . v v v it e e e e e e e e e e e e 519

23.2.10 Authentication for Kea’s REST APT . . . . .. ... . ... ... .. .. .. . ..., 520
23.3 Kea SeCUrity PrOCESSES . . v v v v v v v v e e e e e e e e e e e e e e e e e e e e e e e e e e 520

23.3.1 Vulnerability Handling . . . . . . . . . . . e 520

23.3.2 Code quality and testing . . . . . . . . L. e e e e e e e e e e 520

2333 Fuzztesting . . . . . . o i i e e e e e e e e e e e e e e e e 521

23.3.4 Releaseintegrity . . . . . . . . ... e e 521

2335 BusFactor. . . . . . . e e 521
API Reference 523
24.1 build-report . . . . . ... e e 525
242 cache-clear . . . . . . .. e e e e 525
243 cache-flush . . . . . . L . 526
244 cache-get . . . . . . e e e e e e e e e e e e 526
24.5 cache-get-by-id . . . . . . L e e e e e 527
24.6 cache-InSert . . . . . . . . L e e e e e e e e 528
247 cache-load . . . . . . .. e e e e 529
24.8 cache-remove . . . . . . ... e e e e e e 530
249 cache-size. . . . . . . .. e e 531
2410 cache-write . . . . . . .. L e e e e e e 531
2411 class-add . . . . L. e e e e e e e e 532
2412 class-del . . . . L. e e e e 533
2413 Class-Zet . . . . o e e 533
2414 class-list . . . .o e 534
24,15 class-update . . . . ... e e e e e e e e e e e e e e e e e e 535
24.16 config-backend-pull . . . . . . L L e e e e e 536
2417 config-get . . . . . L. L e 536
2418 config-reload . . . . . ... e 537
2419 config-Set . . . . . L. L e e e e 538
24.20 config-test . . . . . i e e e e e e e e e e e e e e e e e e e e 538
2421 config-Write . . . . . L . e e e e e e e e e e e e e e e e 539
2422 dhep-disable . . ..o e e e e e e e 540
2423 dhep-enable . . . . Lo L e 540
2424 @sS-tSI-GEt . . . . .. e e 541
24.25 gss-tsig-get-all . . . . L. e e e e e e e e 542
24.26 gss-tsig-key-del . . . . .. e e e e e e 543
24.27 gss-tsig-key-expire . . . . . . oL e e 544
24.28 gss-tsig-key-get . . . . ... e 545
24.20 gss-tsig-list . . . . Lo L e 545
2430 @SS-ISIZ-PUIZE . « « . v v v v e e e e e e e e e e 546
2431 gss-tsig-purge-all . . . . . L e e e e e e 547
2432 ha-continue . . . . . . . ..o e e e e e e e 548
24.33 ha-heartbeat . . . . . . . . L L e e e e e e e 548
24.34 ha-maintenance-cancel . . . . . . . . . L L. oL e e e e e e e e e e e 549
24.35 ha-maintenance-notify . . . . . . ... L Lo e e e e 550
24.36 ha-maintenance-start . . . . . . . . . ... e e e e e e e e e e e e e e e e e e e e 550
2437 ha-TSEt . . . . o i o e e e e e e e e e e 551
2438 ha-SCOPLS .+« v v v v e e e e e e e e e e e e e e e e e e e e 552
2430 ha-Sync . . . ..o e e 552
24.40 ha-sync-complete-notify . . . . . . . ... 553
2441 leased-add . . . . . L L e e e 554
2442 leased-del . . . . . oL e e 555

Xii



2443 18aSe4-8L . . . . . e e e e e e e e e e e e e e e e e e e e e e 555

24.44 leased-get-all . . . . . .. e e e e e e e e e e 556
24.45 leased-get-by-client-id . . . . . . .. L. Lo e 557
24.46 leased-get-by-hostname . . . . . .. L. Lo e e 558
24.47 leased-get-by-hw-address . . . . . . . ..o e 559
2448 1eased-Zet-PAZE . « . . .t i e e e e e e e e e e e e e e 560
24.49 leased-resend-ddns . . . . . . L e e e 561
24.50 leased-update . . . . . .. e e e e e e e e e e e e e e e 562
24.51 leased-Wipe . . . . . oL e e e e e e e e e e e e 563
24.52 lease6-add . . . . .o L. e e e e 563
24.53 lease6-bulk-apply . . . . . . . 564
2454 Tease6-del . . . . . . L. e e 566
2455 18AaSE0-ZCL . . . . . . e e e e e e e e e e e e e e e e e e e 566
24.56 lease6-get-all . . . . . .. e e e e e e 567
24.57 lease6-get-by-duid . . . . . .. oL e 569
24.58 lease6-get-by-hostname . . . . . . .. L. e 570
24.50 1easeO-Zet-PAZE . « . . .t i e e e e e e e e e e e e e e e 571
24.60 lease6-resend-ddns . . . . . . .l e e e 572
24.61 leaseO-update . . . . . . . L e e e e e e e e e e e e e e e e 573
24.62 leaseb-Wipe . . . . . ... e e e 573
24.63 leases-reclaim . . . . . . ... e 574
24.64 libreload . . . . . .. L e e 575
24.65 list-commands . . . . .. ..o e e e e e e e e e e 575
24.66 network4-add . . . ... L L e e 576
24.67 network4-del . . . .. L. e 577
24.68 network4-get . . . .. oL L e 578
24.69 network4-list . . . . ... e e e 579
24.70 network4-subnet-add . . . . . .. L 580
2471 network4-subnet-del . . . . . . .. e 581
2472 network6-add . . . . ... L e e 581
2473 network6-del . . . . oL e e e e e e 583
2474 networkO-get . . . .. L L e e e e 583
2475 networkO-list . . . . .. L e e e e 585
2476 network6-subnet-add . . . . . .. L. e 585
2477 network6-subnet-del . . . . . . ... L e 586
2478 remote-classd-del . . . . . . L L e e e e 587
24779 remote-class4-get . . . ... e e 588
24.80 remote-classd-get-all . . . . . ... e 589
2481 remote-class4-Set . . . . .. . e e e e e e e 590
24.82 remote-class6-del . . . . . .. L e 591
24.83 remote-classO-et . . . . ... L e e e e e e 592
24.84 remote-class6-get-all . . . . . .. L. e 593
24.85 remote-ClassO-Set . . . . ... L e e e e e e e e 594
24.86 remote-global-parameterd-del . . . . . . . . ... L e e 595
24.87 remote-global-parameterd-get . . . . . . . . . e e e e e e e e e e 596
24.88 remote-global-parameterd-get-all . . . . . . . ... oL 597
24.89 remote-global-parameterd-set . . . . . . ..o Lo e 598
24.90 remote-global-parameter6-del . . . . . . . .. ... Lo 599
2491 remote-global-parametero-get . . . . . . . ... e e e e e 600
24.92 remote-global-parameter6-get-all . . . . . . ... L e e 601
24.93 remote-global-parameter6-set . . . . . . . . L. e e e e e e e e e e e e e 602
24.94 remote-network4-del . . . . ..o e 603
24.95 remote-network4-get . . . ..o L e 604
24.96 remote-network4-list . . . . . L e 605




24.97 remote-network4-set . . . . . . . e e e e e e e e e 606

24.98 remote-network6-del . . . . ... 607
24.99 remote-networkO-get . . . . . . . L L e e e e e e e e e e 608
24.100remote-networkO-1ist . . . . . . . L e e e 609
24.10Iremote-network6-set . . . . . . . L L L e e e e 610
24.10Zremote-option-defd-del . . . . . . . . . L 611
24.103%remote-option-defd-get . . . . . . . . . L e e e e e e e e 612
24.104dremote-option-defd-get-all . . . . . . . . .. oL e e e 613
24.105emote-option-defd-set . . . . . . . ... e 614
24.10@emote-option-def6-del . . . . . . . . ..o 615
24.107emote-option-def6-get . . . . . . . L L. e e 616
24.10&emote-option-def6-get-all . . . . . . . . . .. e e e e e e 617
24.10%emote-option-defO-set . . . . . . . . . L. e e e e e e e e e e e e 618
24.110remote-optiond-global-del . . . . . . . . . . . L 619
24 11lremote-option4-global-get . . . . . . . . . . . L e 620
24.11Zremote-optiond-global-get-all . . . . . . . . . . ... 621
24.113remote-optiond-global-set . . . . . . . . . L 622
24.114remote-optiond-network-del . . . . . . . . . L e e e e e e 623
24.115remote-optiond-network-Set . . . . . . . . . oL e e e e e e e e e e e e e e 624
24.11@remote-optiond-pool-del . . . . . . . ... e e e 625
24 11remote-option4-pool-set . . . . . . . . .. 626
24.118&emote-optiond-subnet-del . . . . . . . .. L 627
24.11%emote-optiond-subnet-Set . . . . . . . o i i e e e e e e e e e e e e e e e e e 628
24.12(0remote-option6-global-del . . . . . . . . .. L e e e 629
24.12Iremote-option6-global-get . . . . . . . .. oL e 630
24.12Zemote-option6-global-get-all . . . . . . . .. ..o 631
24.123remote-option6-global-set . . . . . . ... e 632
24.124remote-option6-network-del . . . . . . . L. L e e e e e 633
24.125remote-optionO-Network-Set . . . . . . . . . o e e e e e e e e e e e e e e 634
24.12@emote-option6-pd-pool-del . . . . . ... 635
24 12remote-option6-pd-pool-set . . . . . ... oL e 636
24.128&emote-option6-pool-del . . . . . L L L 637
24.12%emote-option6-pool-Set . . . . . . . . e e e e e e e e e e e e e e 638
24.13(0remote-option6-subnet-del . . . . . . . ... e e e 639
24.13Iremote-optionO-subNet-Set . . . . . . . L L .o e e e e e e e e e e e e e e e e 640
24 13Zremote-serverd-del . . . . . .. 641
24.133remote-Serverd-get . . . ... oL L e e e e 642
24.134remote-serverd-get-all . . . . . oL 643
24.135emote-SerVerd-Set . . . . . . o i e e e e e e e e e e e e e e e e e 644
24.13@emote-servero-del . . . . . . L e e e 645
24 13remote-Servert-get . . . . . . . ..o e e e e e e e e e e e e e e 646
24.13&emote-servero-get-all . . . . . ... Lo e 647
24 13Hemote-SeIrVerO-SCt . . . . . . . o i e e e e e e e e e e e e e e e e 648
24.140remote-subnetd-del-by-id . . . . . . . L. e e e 649
24.14Iremote-subnetd-del-by-prefix . . . . . . .. e e e 650
24.14Zremote-subnetd-get-by-id . . . . . . . L. oL e 651
24.143remote-subnetd-get-by-prefix . . . . . ..o 652
24 144remote-subnetd-list . . . . . . . L e e 653
24.145emote-subnetd-set . . . . .. oL e e e e 654
24.14aremote-subneto-del-by-id . . . . . L. L e e e 655
24.14Tremote-subnet6o-del-by-prefix . . . . . . L. oL e e 656
24.14&emote-subnet6o-get-by-id . . . . . . .. Lo 657
24.14%emote-subneto-get-by-prefix . . . . . ..o 658
24.150remote-subnetO-list . . . . . .. oL e e 659

Xiv



24.15Iremote-subnetO-Set . . . . . . . . e e e e e e e e e e e e 660

24 15%reservation-add . . . . ... L e e e 661
24.153reservation-del . . . . ... e e 662
24.154reservation-Get . . . . . . L Lt e e e e e e e e e e e e e e e e e e e e e 663
24 155eservation-get-all . . . . .. L e 664
24.15@eservation-get-by-hostname . . . . . . . ..o e e e 664
24.15Treservation-get-by-id . . . . . . L L e e e e e e 665
24, 158 eservation-get-PAge . . . . . . . i i e e e e e e e e e e e e e e e e e e e e e e e 665
24 15Kerver-tag-get . . . . . . . e e e e e e e e e e e e e e e e e e e e 666
24.160hutdown . . . . L. L e e e e e e e e e e 667
24.161stat-leased-get . . .. ... e e e e 668
24.1625tat-1ease0-Get . . . . . . e e e e e e e e e e e e e e e e e e e e e e 669
24, 1636tatiStiC-GEL . . . . v o e e e e e e e e e e e e e e e e e e e e e 670
24 164statistic-get-all . . . . . ..o e e e 670
24, 1656tatiStIC-TEMOVE . .« v v v v v e it e e e e e e e e e e e e e e e e e e e e e e e e e 671
24 166statistic-remove-all . . . . . Lo L e 672
24 167BtatiStIC-TESEL . . . . . L . e e e e e e e e e e e e e e 673
24.16&tatistic-reset-all . . ... Lo e e 673
24.16%tatistic-sample-age-set . . . . . . . ... e e e e e e e e e 674
24 170statistic-sample-age-set-all . . . . . . . . . . L e 675
24 171statistic-sample-count-set . . . . . . ... oL e e 676
24 17Xtatistic-sample-count-set-all . . . . . . . . .o 676
24 1736tAtUS-ZEL .+« v v e e e e e e e e e e e e e e e e e e e e e e e e e e e e 677
24.174subnetd-add . . . . ... e 678
24 175ubnetd-del . . . . ... e 679
24.176subnetd-get . . . L. L e e e 680
24 177ubnetd-list . . . . . L. e e e 681
24.178&ubnetd-update . . . . .. e e e e e e e e e e e e e e e e 682
24.17%ubnet6-add . . . . .. L L e e e 683
24.180subneto-del . . . . ... e e 684
24.181subneto-get . . . . ... e e e 684
24.18%ubnetO-list . . . . ... e e e 685
24.183subneto-update . . . . . . e e e e e e e e e e e e e e e e e 686
24 184AVErsiON-ZEL . . . . . . i e e e e e e e e e e e e e e e e e e e e e e e e 687
25 Manual Pages 689
25.1 kea-dhcpd - DHCPv4 serverinKea . . . . . . . . . . . e 689
25.1.1 SynopsSiS . . . v o e e e e e e e e e e e e e e e e e 689
25.1.2 Description . . . . . . e e e e e e e e e 689
25.1.3 Arguments . . ... .o e e e e e 689
25.1.4 Documentation . . . . . . . ... oL e e e e e e e e e e e e e 690
25.1.5 Mailing Lists and Support . . . . . . . . L 690
25.1.6  HiStOTY . . . . o o e e e e e e e e e e e e e e e e e 690
25.1.7 See AISO . . . . o L e e e e 690

25.2 kea-dhcp6 - DHCPv6serverinKea . . . . . . ... ... .. 690
2521 Synopsis. . ... e 690
25.2.2 Description . . . . ... e e e e e e 690
2523 ATZUMENLS . . v v vt o e e e e e e e e e e e e e e e e e e e e e e e e 691
25.2.4 Documentation . . . . . . . ... L. e e e e e e e e e e 691
25.2.5 Mailing Lists and Support . . . . . . .. L e 691
25.2.6 HIistory . . . . ... e 691
25277 See AlsO . . . . o e e e e 692

25.3 kea-ctrl-agent - Control Agent processinKea . . . . . ... ... ... ... ... .. ..., 692
2531 SynopSiS . . . . e e e e e e e e e e e e e e e 692

XV



25.3.2 DesCription . . . . . . o i e e e e e e e e e e e e e e e e e e 692

2533 ATZUMENLS . . v v v i e e e e e e e e e e e e e e e e e e e e e e e e e e 692
25.3.4 Documentation . . . . . ... ... e e e e e e e e 692
25.3.5 Mailing Lists and Support . . . . . . . . ..o e 693
25.3.6 History . . . . . .. 693
2537 See AlSO . . . o o i e 693
25.4 keactrl - Shell script for managing Kea . . . . . . . ... ... .. . ... . . e 693
2541 SYnopSiS . . . v v e e e e e e e e e e e e e e e e 693
2542 Description . . . . . . oL e e e e e e e e e e e e 693
2543 Configuration File . . . . . . . ... oo 693
2544 OpLons . . . . o e e e 693
2545 Documentation . . . . ... ..l e 694
25.4.6 Mailing Lists and Support . . . . . . . . L. e e e e 694
2547 See AlSO . . . . . L. e e e 694
25.5 kea-admin - Shell script for managing Kea databases . . . . . ... ... ... ... ... .. ... 695
25.5.1 Synopsis. . . ... e 695
25.5.2 DesCription . . . . . . o i e e e e e e e e e e e e e e e e 695
25.5.3 ATZUMENLS . . . v v i e e e e e e e e e e e e e e e e e e e e e e e 695
25.5.4 Documentation . . . . . .. ... L. e e e e e e e 696
25.5.5 Mailing Lists and Support . . . . . . ... e 696
2556 See AlsO . . . . . oL e e e e e 696
25.6 kea-dhcp-ddns - DHCP-DDNS processinKea . . . . .. ... ... ... ... ... ... .... 696
25.6.1  SYnopSiS . . . .. e e e e e e e e e e e e e e e 696
25.6.2 DesCcription . . . . . . oL e e e e e e e e e e 696
25.6.3 ATQUMENLS . . . . o it e e e e e e e e e e e e e e e e e e e e e e 696
25.6.4 Documentation . . . . . . . ... oo e e e e e e e e e e e e e 697
25.6.5 Mailing Lists and Support . . . . . . . . ... e 697
25.6.6 HiStOTY . . . . . o i e e e e e e e e e e e e e 697
25.6.7 See AlsOo. . . . . 697
25.7 kea-Ifc - Lease File Cleanup processinKea . . . . . ... ... ... ... ... ... . .... 697
2571 Synopsis. . ... e e 697
25772 Description . . . . . . ... e e 698
2573 ArgUMENtS . . . ... e e e e e e e e e e 698
2574 Documentation . . . . . . ... 698
25.7.5 Mailing Lists and Support . . . . . . . . .. e e e e 699
25.7.6 HIiStOory . . . . . .. e e e 699
25777 See AlsO . . . . o o e e e e e e 699
25.8 kea-shell - Text client for Control Agent process . . . . . . . . . . o v v v v v v v v v v e 699
25.8.1  SynopsSiS . . . ..o e e e e e e e e e e e e e e e e 699
25.8.2 Description . . . . . . oL e e e e e e e e e e e e 699
25.8.3 ATgUMENLS . . . . .. e e e e e e e e e e e e e e e e e 699
25.8.4 Documentation . . . . . . . ... oo e e e e e e e e e e e e 700
25.8.5 Mailing Lists and Support . . . . . . . .o 700
25.8.6  HiStOTY . . . . . o i e e e e e e e e e e e 700
25877 See Also. . . . . 700
25.9 kea-netconf - NETCONF agent for configuringKea . . . . . . ... ... ... ... ... . .... 701
25.9.1 Synopsis. . . . ... e e 701
25.9.2 DesCcription . . . . . . o L i e e e e e e e e e e e 701
2593 ArgUMENtS . . . ... e e e e e e e e e e e e e e e e 701
25.9.4 Documentation . . . . . . . ... 701
25.9.5 Mailing Lists and Support . . . . . . . . L. e e e e e 701
25.9.6 HIistory . . . . . ... e e 702
2597 See AlSO . . . . o o e e e e 702
25.10 perfdhcp - DHCP benchmarking tool . . . . . . . . . . .. .. 702

xvi



25.10.1 Synopsis . . v v v o e e e e e e e e e e e e e e e e e e e 702

25.10.2 Description . . . . . . v v e e e e e e e e e e e e e e e e e e e e 702
25.10.3 Templates . . . . . . o o i e e e e e e e e e e e e e e e 703
25.10.4 Options . . . . . . .. e e 704
25.10.5 DHCPv4-Only Options . . . . . .« o 0 v i i it e e e e e e e e e e 706
25.10.6 DHCPvO-Only Options . . . . . . . . . ittt e e e e e e e e e e e e 706
25.10.7 Template-Related Options . . . . . . . . . . i i i e e e e e e e e e e e 706
25.10.8 Options Controlling a Test . . . . . . . . . . 0 0 i e e e e e e e e 706
25.10.9 Arguments . . . . .. L. e e e e e e e e e e e e e e 707
25.10.10EIT01S . . . o oL e e e e e e e e e e e e e e e e e e e 707
25.00.11EXIt Status . . . . o v o e e e e e e e e e e e e e e e e e e e e e e e 707
25.10.12Usage Examples . . . . . . . o i e e e e e e e e e e e e e 707
25.10.13Mailing Lists and Support . . . . . . . . . . e e e e e 708
25.10.T4HIStOTY .« . o o e e e e e e e e e e e e e e e e e e 708
2510158 ALSO . . . o v it e e e e e 708

26 Kea Messages Manual 709
26.1 ALLOC . . . . o e e 709
26.2 ASIODNS . . . e 719
263 BOOTP . . . . 722
264 COMMAND . . . . . 723
20.5 CTRL . . . . o 726
26.6 DATABASE . . . . 727
207 DCTL . . . . . e e 729
26.8 DHCP4 . . . . e e 732
2609 DHCPO . . . . . e 750
26.10 DHCPSRYV . . e 769
20.11 DHCP . . . . e 797
20,12 EVAL . . . . . e 807
2013 FLEX . . . . . e 812
20.14 HA . o o e 812
26.15 HOOKS . . . e 825
26.16 HOSTS . . . . o e 829
26.17 HTTPS . . e e 835
20,18 HTTP . . . . . o e 835
26.19 LEASE . . . . 839
2020 LEC . . . o o e 840
26.21 LOGIMPL . . . . . 841
2022 LOG . . . o e 842
260.23 MYSQL . . . e 844
26.24 NETCONF . . . . . o e e e e e 860
260.25 STAT . . o o e 863
20.26 USER . . . . . e e 865
27 Configuration Templates 867
27.1 Template: Home network of apoweruser . . . . . . . . . . . . o v i i it e e 867
27.1.1 Deployment Considerations . . . . . . . . . . . o v i v v it e e e 868
27.1.2 Possible eXtensions . . . . . . . ..o e e e e e e e e e e e e e e 869

28 Kea Flow Diagrams 883
28.1 MainLoop . . . . . . L e e 883
28.2 DHCPv4 Packet Processing . . . . . . . . . o o o i e e e e e 883
28.3 DHCP Request Processing . . . . . . . . . . 0 o i e e e e e e 883
28.4 DHCPv4 Subnet Selection . . . . . . . . . . o 0 e e e e e e e e e 887

XVii



28.5 DHCPv4 Special Case of Double-booting . . . . . . . . . ... ... ... . 887
28.6 DHCPv4 Allocate Lease . . . . . . . . o v v i i e e e e e e e e e e e e e e e e 887
287 Lease States . . . . o it e e e e e e e e e e e e e e e e e 887
28.8 Checking for Host Reservations . . . . . . . . .. . . ... L e 887
28.9 Building the Options List . . . . . . . . . ..o L e 894
29 Kea Configuration File Syntax (BNF) 899
29.1 BNF Grammar for DHCPv4 . . . . . . . . . . e 899
29.2 BNF Grammar for DHCPVO . . . . . . . . . . e e e e e e 917
29.3 BNF Grammar for Control Agent . . . . . . . . . . . . i e e e 937
29.4 BNF Grammar for DHCP-DDNS . . . . . . . . . e e e e 941
29.5 BNF Grammar for Kea-netconf . . . . . . . .. . ... . e 947
30 Acknowledgments 951

xviii



Kea Administrator Reference Manual Documentation, Release 2.0.2

Kea is an open source implementation of the Dynamic Host Configuration Protocol (DHCP) servers, developed and
maintained by Internet Systems Consortium (ISC).

This is the reference guide for Kea version 2.0.2. Links to the most up-to-date version of this document (in PDF,
HTML, and plain text formats) can be found on Read the Docs. Other useful Kea information can be found in our
Knowledgebase.

CONTENTS 1


https://kea.readthedocs.io
https://kb.isc.org

Kea Administrator Reference Manual Documentation, Release 2.0.2

2 CONTENTS



CHAPTER
ONE

INTRODUCTION

Kea is the next generation of DHCP software, developed by Internet Systems Consortium (ISC). It supports both the
DHCPv4 and DHCPv6 protocols along with their extensions, e.g. prefix delegation and dynamic updates to DNS.

This guide covers Kea version 2.0.2.

For information about supported platforms see Supported platforms.

1.1 Supported platforms

In general, this version of Kea will build and run on any POSIX-compliant system with a C++ compiler (with C++11
support), the Botan cryptographic library, the logdcplus logging library and the Boost system library.

The Kea build has been checked with GCC g++ 4.8.5 and some later versions, and Clang 800.0.38 and some later
versions.

ISC regularly tests Kea on many operating systems and architectures, but lacks the resources to test all of them. Con-
sequently, ISC is only able to offer support on a “best effort” basis for some.

1.1.1 Regularly tested platforms
Kea is officially supported on Alpine, CentOS, Fedora, Ubuntu, Debian, and FreeBSD systems. Kea-2.0.2 builds have
been tested on:

e Alpine - 3.12, 3.13

e CentOS —7

e Debian — 9, 10, 11

e Fedora — 33, 34

* FreeBSD — 12.1, 13.0

* Ubuntu — 18.04, 20.04, 21.04

There are currently no plans to port Kea to Windows systems.




Kea Administrator Reference Manual Documentation, Release 2.0.2

1.1.2 Best effort

The following are platforms on which Kea is known to build and run. ISC makes every effort to fix bugs on these
platforms, but may be unable to do so quickly due to lack of hardware, less familiarity on the part of engineering staff,
and other constraints.

* Alpine — 3.11
e FreeBSD - 11.4
¢ macOS — 10.13, 10.14

1.1.3 Community maintained

These systems may not all have the required dependencies for building Kea easily available, although it will be pos-
sible in many cases to compile those directly from source. The community and interested parties may wish to help
with maintenance, and we welcome patch contributions, although we cannot guarantee that we will accept them. All
contributions will be assessed against the risk of adverse effect on officially supported platforms.

Platforms past their respective EOL dates, such as:
e Alpine — 3.10 (1 May 2021)
¢ CentOS — 6 (30 November 2020)
¢ Fedora — 31, 32
* Ubuntu — 14.04, 18.10, 19.04, 19.10
¢ Debian — 8 (30 June 2020)
* FreeBSD — 10 (31 October 2018)

1.1.4 Unsupported platforms

These are platforms on which Kea 1.7+ is known not to build or run:
¢ Windows (all versions)
* Windows Server (all versions)
* Any platform with OpenSSL 1.0.1 or earlier, which does not also have Botan as an alternative

* Any platform with log4cplus version 1.0.2 or earlier.

1.2 Required Software at Run-Time

Running Kea uses various extra software packages which may not be provided in the default installation of some
operating systems, nor in the standard package collections. You may need to install this required software separately.
(For the build requirements, also see Build Requirements.)

» Kea supports two cryptographic libraries: Botan and OpenSSL. Only one of them is required to be installed
during compilation. Kea uses the Botan library for C++ (https://botan.randombit.net/), version 2.0 or later. Note
that support for Botan versions earlier than 2.0 was removed in Kea 1.7.0 and later. As an alternative to Botan,
Kea can use the OpenSSL cryptographic library (https://www.openssl.org/), version 1.0.2 or later.

* Kea uses the logdcplus C++ logging library (https://sourceforge.net/p/log4cplus/wiki/Home/). It requires
log4cplus version 1.0.3 or later.

4 Chapter 1. Introduction


https://botan.randombit.net/
https://www.openssl.org/
https://sourceforge.net/p/log4cplus/wiki/Home/

Kea Administrator Reference Manual Documentation, Release 2.0.2

Kea requires the Boost system library (https://www.boost.org/). Building with the header-only version of Boost
is no longer recommended.

Some optional features of Kea have additional dependencies.

1.3

To store lease information in a MySQL database, Kea requires MySQL headers and libraries. This is an optional
dependency; Kea can be built without MySQL support.

To store lease information in a PostgreSQL database, Kea requires PostgreSQL headers and libraries. This is an
optional dependency; Kea can be built without PostgreSQL support.

To store lease information in a Cassandra database (CQL), Kea requires Cassandra headers and libraries. This is
an optional dependency; Kea can be built without Cassandra support.

Integration with RADIUS is provided in Kea via the hooks library available to our paid support customers. Use
of this library requires the FreeRadius-client library to be present on the system where Kea is running. This is
an optional dependency; Kea can be built without RADIUS support.

Kea provides a NETCONF interface with the kea-netconf agent. This Kea module requires Sysrepo software
when used. Building Kea with NETCONF support requires many dependencies to be installed, which are de-
scribed in more detail in /nstalling NETCONF . This is an optional dependency; Kea can be built without NET-
CONF support.

To sign and verify DNS updates, Kea DDNS server may use GSS-TSIG which requires MIT Kerberos 5 or Heim-
dal libraries. The dependencies required to be installed are described in more detail in GSS-7SIG Compilation.
This is an optional dependency; Kea can be built without GSS-TSIG support.

Kea Software

Kea is a modular DHCP server solution. This modularity is accomplished using multiple cooperating processes which,
together, provide the server functionality. The following software is included with Kea:

keactrl — This tool starts, stops, reconfigures, and reports the status of the Kea servers.
kea-dhcp4 — The DHCPv4 server process. This process responds to DHCPv4 queries from clients.
kea-dhcp6 — The DHCPv6 server process. This process responds to DHCPv6 queries from clients.

kea-dhcp-ddns — The DHCP Dynamic DNS process. This process acts as an intermediary between the DHCP
servers and external DNS servers. It receives name update requests from the DHCP servers and sends DNS update
messages to the DNS servers.

kea-admin — This is a useful tool for database backend maintenance (creating a new database, checking ver-
sions, upgrading, etc.).

kea-1fc — This process removes redundant information from the files used to provide persistent storage for the
memfile database backend. While it can be run standalone, it is normally run as and when required by the Kea
DHCP servers.

kea-ctrl-agent — The Kea Control Agent (CA) is a daemon that exposes a RESTful control interface for
managing Kea servers.

kea-netconf - kea-netconf is an agent that provides a YANG/NETCONTF interface for configuring Kea.
kea-shell — This simple text client uses the REST interface to connect to the Kea Control Agent.

perfdhcp — This is a DHCP benchmarking tool which simulates multiple clients to test both DHCPv4 and
DHCPv6 server performance.

The tools and modules are covered in full detail in this guide. In addition, manual pages are also provided in the default
installation.

1.3. Kea Software 5


https://www.boost.org/

Kea Administrator Reference Manual Documentation, Release 2.0.2

Kea also provides C++ libraries and programmer interfaces for DHCP. These include detailed developer documentation
and code examples.

6 Chapter 1. Introduction



CHAPTER
TWO

QUICK START

This section describes the basic steps needed to get Kea up and running. For further details, full customizations, and
troubleshooting, see the respective chapters elsewhere in this Kea Administrator Reference Manual (ARM).

2.1

Quick Start Guide Using tarball

. Install required run-time and build dependencies. See Build Requirements for details.

Download the Kea source tarball from the ISC.org downloads page or the ISC downloads site.
Extract the tarball. For example:

$ tar -xvzf kea-2.0.2.tar.gz

Go into the source directory and run the configure script:

$ cd kea-2.0.2
$ ./configure [your extra parameters]

Build it:

$ make

Install it (by default it will be placed in /usr/local/, so root privileges are likely required for this step):

$ make install

2.2 Quick Start Guide Using Native Packages

As of Kea 1.6.0, ISC provides native RPM, deb, and APK packages, which make Kea installation much easier. Unless
specific compilation options are desired, it is usually easier to install Kea using native packages.

1.
2.
3.

4.

Go to Kea on cloudsmith.io, choose the Kea version, and enter the repository.
Use Set Me Up and follow instructions to add the repository to the local system.

Update system repositories. For example:

$ apt-get update

Kea s splitinto various packages. The entire list is available on cloudsmith.io or using apt/yum/dnf. For example:



https://www.isc.org/download/
https://downloads.isc.org/isc/kea/
https://cloudsmith.io/~isc/repos/
https://cloudsmith.io/~isc/repos/

Kea Administrator Reference Manual Documentation, Release 2.0.2

$ apt-cache search isc-kea

5. Install specific packages:

$ sudo apt-get install isc-kea-dhcp6-server

or all packages:

$ sudo apt-get install isc-kea*

or all packages with a specified version number:

$ sudo apt-get install isc-kea*=1.8.1-isc0000920201106154401

6. All installed packages should be now available directly; for example:

# kea-dhcp6 -c /path/to/your/kea6/config/file. json

or using systemd:

# systemctl restart isc-kea-dhcp6-server

keactrl is not available in packages as similar functionality is provided by the native systemctl scripts.

2.3 Quick Start Guide for DHCPv4 and DHCPv6 Services

1. Edit the Kea configuration files, which by default are installed in the [kea-install-dir]/etc/kea/ direc-
tory. These are: kea-dhcp4.conf, kea-dhcp6.conf, kea-dhcp-ddns.conf and kea-ctrl-agent.conf,
keactrl.conf for DHCPv4 server, DHCPvVG6 server, D2, Control Agent, and the keactrl script, respectively.

2. To start the DHCPv4 server in the background, run the following command (as root):

# keactrl start -s dhcp4

Or run the following command to start the DHCPv6 server:

# keactrl start -s dhcp6

Note that it is also possible to start all servers simultaneously:

# keactrl start

3. Verify that the Kea server(s) is/are running:

# keactrl status

A server status of “inactive” may indicate a configuration error. Please check the log file (by default named
[kea-install-dir]/var/log/kea-dhcp4.1log, [kea-install-dir]/var/log/kea-dhcp6.1log,
[kea-install-dir]/var/log/kea-ddns.log, or [kea-install-dir]/var/log/kea-ctrl-agent.
log) for the details of any errors.

4. If the server has started successfully, test that it is responding to DHCP queries and that the client receives a
configuration from the server; for example, use the ISC DHCP client.

5. To stop running the server(s):

8 Chapter 2. Quick Start


https://www.isc.org/download/

Kea Administrator Reference Manual Documentation, Release 2.0.2

# keactrl stop

For system-specific instructions, please read the system-specific notes, available in the Kea section of ISC’s Knowl-
edgebase.

The details of keactrl script usage can be found in Managing Kea with keactrl.

Once Kea services are up and running, consider deploying a dashboard solution to monitor running services. For more
details, see Monitoring Kea With Stork.

2.4 Running the Kea Servers Directly

The Kea servers can be started directly, without the need to use keactrl or systemctl. To start the DHCPv4 server
run the following command:

# kea-dhcp4 -c /path/to/your/kead4/config/file.json

Similarly, to start the DHCPv6 server, run the following command:

# kea-dhcp6 -c /path/to/your/kea6/config/file. json

2.4. Running the Kea Servers Directly 9



https://kb.isc.org/docs/installing-kea
https://kb.isc.org/docs
https://kb.isc.org/docs

Kea Administrator Reference Manual Documentation, Release 2.0.2

10 Chapter 2. Quick Start



CHAPTER
THREE

3.1

Packages

INSTALLATION

ISC publishes native RPM, deb, and APK packages, along with the tarballs with the source code. The packages are
available on Cloudsmith at https://cloudsmith.io/~isc/repos. The native packages can be downloaded and installed
using the system available in a specific distribution (such as dpkg or rpm). The Kea repository can also be added to
the system, making it easier to install updates. For details, please go to https://cloudsmith.io/~isc/repos, choose the
repository of interest, and then click the Set Me Up button for detailed instructions.

3.2

Installation Hierarchy

The following is the directory layout of the complete Kea installation. (All directory paths are relative to the installation
directory.)

etc/kea/ — configuration files.

include/ — C++ development header files.
lib/ — libraries.

lib/kea/hooks — additional hooks libraries.

sbin/ — server software and commands used by the system administrator.

share/doc/kea/ — this guide, other supplementary documentation, and examples.

share/kea/ — API command examples and database schema scripts.
share/man/ — manual pages (online documentation).
var/lib/kea/ — server identification and lease database files.
var/log/ - log files.

var/run/kea - PID file and logger lock file.

11


https://cloudsmith.io/~isc/repos/
https://cloudsmith.io/~isc/repos
https://cloudsmith.io/~isc/repos

Kea Administrator Reference Manual Documentation, Release 2.0.2

3.3

Build Requirements

In addition to the run-time requirements (listed in Required Software at Run-Time), building Kea from source code
requires various development include headers and program development tools.

Note:

Some operating systems have split their distribution packages into a run-time and a development package. The

development package versions, which include header files and libraries, must be installed to build Kea from the source

code.

Building from source code requires the following software installed on the system:

Boost C++ libraries (https://www.boost.org/). The oldest Boost version used for testing is 1.57 (although Kea
may also work with older versions). The Boost system library must also be installed. Installing a header-only
version of Boost is not recommended.

OpenSSL (at least version 1.0.2) or Botan (at least version 2). OpenSSL version 1.1.1 or later is strongly recom-
mended.

log4cplus (at least version 1.0.3) development include headers.

A C++ compiler (with C++11 support) and standard development headers. The Kea build has been checked with
GCC g++ 4.8.5 and some later versions, and Clang 800.0.38 and some later versions.

The development tools automake, libtool, and pkg-config.

The MySQL client and the client development libraries, when using the --with-mysql configuration flag to
build the Kea MySQL database backend. In this case, an instance of the MySQL server running locally or on a
machine reachable over a network is required. Note that running the unit tests requires a local MySQL server.

The PostgreSQL client and the client development libraries, when using the --with-pgsql configuration flag to
build the Kea PostgreSQL database backend. In this case an instance of the PostgreSQL server running locally or
on a machine reachable over a network is required. Note that running the unit tests requires a local PostgreSQL
server.

The cpp-driver from DataStax is needed when using the --with-cql configuration flag to build Kea with the
Cassandra database backend. In this case, an instance of the Cassandra server running locally or on a machine
reachable over a network is required. Note that running the unit tests requires a local Cassandra server.

The FreeRADIUS client library is required to connect to a RADIUS server. This is specified using the
--with-freeradius configuration switch.

Sysrepo v1.4.140 and libyang v1.0.240 are needed to connect to a Sysrepo datastore. Earlier versions are no
longer supported. When compiling from sources, the configure switches that can be used are --with-1libyang
and --with-sysrepo without any parameters. If these dependencies were installed in custom paths, point the
switches to them.

The MIT Kerberos 5 or Heimdal libraries are needed by Kea DDNS server to sign and verify DNS updates
using GSS-TSIG. The configuration switch which enables this functionality is --with-gssapi without any
parameters. If these dependencies were installed in custom paths, point the switch to them.

googletest (version 1.8 or later) is required when using the --with-gtest configuration option to build the unit
tests.

The documentation generation tools Sphinx, texlive with its extensions, and Doxygen, if using the
--enable-generate-docs configuration option to create the documentation. Specifically, with Fedora,
python3-sphinx, texlive, and texlive-collection-latexextra are necessary; with Ubuntu, python3-sphinx, python3-
sphinx-rtd-theme, and texlive-binaries are needed. If LaTeX packages are missing, Kea skips PDF generation
and produces only HTML documents.

12

Chapter 3. Installation


https://www.boost.org/
https://www.sphinx-doc.org/

Kea Administrator Reference Manual Documentation, Release 2.0.2

Visit ISC’s Knowledgebase at https://kb.isc.org/docs/installing-kea for system-specific installation tips.

3.4 Installation From Source

Although Kea may be available in pre-compiled, ready-to-use packages from operating system vendors, it is open
source software written in C++. As such, it is freely available in source code form from ISC as a downloadable tar file.
The source code can also be obtained from the Kea GitLab repository at https://gitlab.isc.org/isc-projects/kea. This
section describes how to build Kea from the source code.

3.4.1 Download Tar File

The Kea release tarballs may be downloaded from: https://downloads.isc.org/isc/kea/.

3.4.2 Retrieve From Git

The latest development code is available on GitLab (see https://gitlab.isc.org/isc-projects/kea). The Kea source is
public and development is done in the “master” branch.

Downloading this “bleeding edge” code is recommended only for developers or advanced users. Using development
code in a production environment is not recommended.

Note: When building from source code retrieved via git, additional software is required: automake (v1.11 or later),
libtoolize, and autoconf (v2.69 or later). These may need to be installed.

The code can be checked out from https://gitlab.isc.org/isc-projects/kea.git:

$ git clone https://gitlab.isc.org/isc-projects/kea.git

The code checked out from the git repository does not include the generated configure script or the Makefile.in files,
nor their related build files. They can be created by running autoreconf with the --install switch. This will run
autoconf, aclocal, 1libtoolize, autoheader, automake, and related commands.

Write access to the Kea repository is only granted to ISC staff. Developers planning to contribute to Kea should check
our Contributor’s Guide. The Kea Developer’s Guide contains more information about the process, and describes the
requirements for contributed code to be accepted by ISC.

3.4.3 Configure Before the Build

Kea uses the GNU Build System to discover build environment details. To generate the makefiles using the defaults,
simply run:

$ ./configure

Run . /configure with the --help switch to view the different options. Some commonly used options are:
¢ —-prefix Define the installation location (the default is /usr/local).
e --with-mysql Build Kea with code to allow it to store leases and host reservations in a MySQL database.

* --with-pgsql Build Kea with code to allow it to store leases and host reservations in a PostgreSQL database.

3.4. Installation From Source 13



https://kb.isc.org/docs/installing-kea
https://gitlab.isc.org/isc-projects/kea
https://downloads.isc.org/isc/kea/
https://gitlab.isc.org/isc-projects/kea
https://gitlab.isc.org/isc-projects/kea/blob/master/contributors-guide.md
https://reports.kea.isc.org/dev_guide/

Kea Administrator Reference Manual Documentation, Release 2.0.2

--with-cql Build Kea with code to allow it to store leases and host reservations in a Cassandra (CQL) database.
Support for Cassandra is now deprecated.

--with-log4cplus Define the path to find the Log4cplus headers and libraries. Normally this is not necessary.
--with-boost-include Define the path to find the Boost headers. Normally this is not necessary.

--with-botan-config Specify the path to the botan-config script to build with Botan for cryptographic func-
tions. It is preferable to use OpenSSL (see below).

--with-openssl Use the OpenSSL cryptographic library instead of Botan. By default configure searches
for a valid Botan installation; if one is not found, Kea searches for OpenSSL. Normally this is not necessary.

--enable-shell Build the optional kea-shell tool (more in 7he Kea Shell). The default is to not build it.

--with-site-packages Only useful when kea-shell is enabled, this switch causes the kea-shell Python
packages to be installed in the specified directory. This is mostly useful for Debian-related distributions. While
most systems store Python packages in ${prefix}/usr/lib/pythonX/site-packages, Debian introduced
a separate directory for packages installed from DEB. Such Python packages are expected to be installed in
/usr/lib/python3/dist-packages.

--enable-perfdhcp Build the optional perfdhcp DHCP benchmarking tool. The default is to not build it.

--with-freeradius Build the optional RADIUS hook. This option specifies the path to the patched version
of the FreeRADIUS client. This feature is available in the subscriber-only version of Kea, and requires the
subscription-only RADIUS hook.

--with-freeradius-dictionary Specify a non-standard location for a FreeRADIUS dictionary file, which
contains a list of supported RADIUS attributes. This feature is available in the subscriber-only version of Kea,
and requires the subscription-only RADIUS hook.

If the RADIUS options are not available, ensure that the RADIUS hook sources are in the premium directory and rerun
autoreconf -i.

Note: For instructions concerning the installation and configuration of database backends for Kea, see DHCP Database
Installation and Configuration.

There are many options that are typically not necessary for regular users. However, they may be useful for package
maintainers, developers, or people who want to extend Kea code or send patches:

e --with-gtest, --with-gtest-source Enable the building of C++ unit tests using the Google Test frame-

work. This option specifies the path to the gtest source. (If the framework is not installed on the system, it can
be downloaded from https://github.com/google/googletest.)

--enable-generate-docs Enable the rebuilding of Kea documentation. ISC publishes Kea documentation
for each release; however, in some cases it may be desirable to rebuild it: for example, to change something in
the docs, or to generate new ones from git sources that are not yet released.

--enable-generate-parser Enable the generation of parsers using flex or bison. Kea sources include .cc and
.h parser files, pre-generated for users’ convenience. By default Kea does not use flex or bison, to avoid requiring
installation of unnecessary dependencies for users. However, if anything in the parsers is changed (such as adding
a new parameter), flex and bison are required to regenerate parsers. This option permits that.

--enable-generate-messages Enable the regeneration of messages files from their messages source files, e.g.
regenerate xxx_messages.h and xxx_messages.cc from xxx_messages.mes using the Kea message compiler. By
default Kea is built using these .h and .cc files from the distribution. However, if anything in a .mes file is changed
(such as adding a new message), the Kea message compiler needs to be built and used. This option permits that.

--with-benchmark, --with-benchmark-source Enable the building of the database backend benchmarks
using the Google Benchmark framework. This option specifies the path to the gtest source. (If the framework is

14

Chapter 3. Installation


https://github.com/google/googletest

Kea Administrator Reference Manual Documentation, Release 2.0.2

not installed on the system, it can be downloaded from https://github.com/google/benchmark.) This support is
experimental.

As an example, the following command configures Kea to find the Boost headers in /ust/pkg/include, specifies that
PostgreSQL support should be enabled, and sets the installation location to /opt/kea:

$ ./configure \
--with-boost-include=/usr/pkg/include \
--with-pgsql=/usr/local/bin/pg_config \
--prefix=/opt/kea

Users who have any problems with building Kea using the header-only Boost code, or who would like to use the Boost
system library (assumed for the sake of this example to be located in /ust/pkg/lib), should issue these commands:

$ ./configure \
--with-boost-libs=-1boost_system \
--with-boost-1lib-dir=/usr/pkg/lib

If configure fails, it may be due to missing or old dependencies.

When configure succeeds, it displays a report with the parameters used to build the code. This report is saved into
the file config.report and is also embedded into the executable binaries, e.g., kea-dhcp4.

3.4.4 Build

After the configure step is complete, build the executables from the C++ code and prepare the Python scripts by running
the command:

$ make

3.4.5 Install

To install the Kea executables, support files, and documentation, issue the command:

$ make install

Do not use any form of parallel or job server options (such as GNU make’s - j option) when performing this step; doing
SO may cause errors.

Note: The install step may require superuser privileges.

If required, run 1dconfig as root with /usr/local/1lib (or with prefix/lib if configured with --prefix) in /etc/
1d.so.conf (or the relevant linker cache configuration file for the OS):

$ ldconfig

Note: If 1dconfig is not run where required, users may see errors like the following:

program: error while loading shared libraries: libkea-something.so.l:
cannot open shared object file: No such file or directory

3.4. Installation From Source 15



https://github.com/google/benchmark

Kea Administrator Reference Manual Documentation, Release 2.0.2

3.4.6 Cross-Building

It is possible to cross-build Kea, i.e. to create binaries in a separate system (the build system) from the one where Kea
runs (the host system).

It is outside of the scope of common administrator operations and requires some developer skills, but the Developer
Guide explains how to do that using an x86_64 Linux system to build Kea for a Raspberry Pi box running Raspbian:
Kea Cross-Compiling Example.

3.5 DHCP Database Installation and Configuration

Kea stores its leases in a lease database. The software has been written in a way that makes it possible to choose
which database product should be used to store the lease information. Kea supports four database backends: MySQL,
PostgreSQL, Cassandra[1], and memfile. To limit external dependencies, MySQL, PostgreSQL, and Cassandra support
are disabled by default and only memfile is available. Support for the optional external database backend must be
explicitly included when Kea is built. This section covers the building of Kea with one of the optional backends and
the creation of the lease database.

[1] As of Kea 1.9.9, support for Cassandra is deprecated.

Note: When unit tests are built with Kea (i.e. the --with-gtest configuration option is specified), the databases
must be manually pre-configured for the unit tests to run. The details of this configuration can be found in the Kea
Developer’s Guide.

3.5.1 Building with MySQL Support

Install MySQL according to the instructions for the system. The client development libraries must be installed.

Build and install Kea as described in Installation, with the following modification. To enable the MySQL database
code, at the “configure” step (see Configure Before the Build), the --with-mysql switch should be specified:

$ ./configure [other-options] --with-mysql

If MySQL was not installed in the default location, the location of the MySQL configuration program “mysql_config”
should be included with the switch:

$ ./configure [other-options] --with-mysgl=path-to-mysql_config

See First-Time Creation of the MySQL Database for details regarding MySQL database configuration.

3.5.2 Building with PostgreSQL support
Install PostgreSQL according to the instructions for the system. The client development libraries must be installed.
Client development libraries are often packaged as “libpq”.

Build and install Kea as described in Installation, with the following modification. To enable the PostgreSQL database
code, at the “configure” step (see Configure Before the Build), the --with-pgsql switch should be specified:

$ ./configure [other-options] --with-pgsql

If PostgreSQL was not installed in the default location, the location of the PostgreSQL configuration program
“pg_config” should be included with the switch:

16 Chapter 3. Installation



https://reports.kea.isc.org/dev_guide/de/d9a/crossCompile.html
https://reports.kea.isc.org/dev_guide/
https://reports.kea.isc.org/dev_guide/

Kea Administrator Reference Manual Documentation, Release 2.0.2

$ ./configure [other-options] --with-pgsgl=path-to-pg_config

See First-Time Creation of the PostgreSQL Database for details regarding PostgreSQL database configuration.

3.5.3 Building with CQL (Cassandra) Support

As of Kea 1.9.9, support for Cassandra is deprecated. It is still available in current versions, but the support will be
removed in a future version; new users are encouraged to choose an alternative.

Install Cassandra according to the instructions for the system. The Cassandra project website contains useful pointers:
https://cassandra.apache.org.

If a cpp-driver package is available as binary or as source, simply install or build and install the package. Then build
and install Kea as described in Installation. To enable the Cassandra (CQL) database code, at the “configure” step (see
Configure Before the Build), enter:

$ ./configure [other-options] --with-cql=path-to-pkg-config

If pkg-config is at its standard location (and thus in the shell path), the path does not need to be specified. If it does
not work (e.g. no pkg-config, package not available in pkg-config with the cassandra name), the cql_config script in
the tools/ directory can still be used as described below.

Download and compile cpp-driver from DataStax. For details regarding dependencies for building cpp-driver, see the
project homepage https://github.com/datastax/cpp-driver.

git clone https://github.com/datastax/cpp-driver.git
cd cpp-driver

mkdir build

cd build

cmake ..

make

L L - -

Kea’s cpp-driver does not include the cql_config script. A cql_config script is present in the tools/ directory of the Kea
sources. Before using it, please create a cql_config_defines.sh file in the same directory (there is an example available
in cql_config_define.sh.sample; copy it over to cql_config_defines.sh and edit the path specified in it) and change the
environment variable CPP_DRIVER_PATH to point to the directory where the cpp-driver sources are located. Make
sure that appropriate access rights are set on this file; it should be executable by the system user building Kea.

Build and install Kea as described in Installation, with the following modification. To enable the Cassandra (CQL)
database code, at the “configure” step (see Configure Before the Build), enter:

$ ./configure [other-options] --with-cql=path-to-cql_config

3.6 Hammer Building Tool

An optional building tool called Hammer was introduced with Kea 1.6.0. It is a Python 3 script that lets users automate
tasks related to building Kea, such as setting up virtual machines, installing Kea dependencies, compiling Kea with
various options, running unit-tests and more. This tool was created primarily for internal QA purposes at ISC and
it is not included in the Kea distribution. However, it is available in the Kea git repository. This tool was developed
primarily for internal purposes and ISC cannot guarantee its proper operation. If you decide to use it, please do so with
care.

3.6. Hammer Building Tool 17



https://cassandra.apache.org
https://github.com/datastax/cpp-driver

Kea Administrator Reference Manual Documentation, Release 2.0.2

Note: Use of this tool is completely optional. Everything it does can be done manually.

The first-time user is strongly encouraged to look at Hammer’s built-in help:

$ ./hammer.py --help

It will list available parameters.

Hammer is able to set up various operating systems running either in LXC or in VirtualBox. For a list of supported
systems, use the supported-systems command:

$ ./hammer.py supported-systems
fedora:

- 27: 1xc, virtualbox

- 28: 1xc, virtualbox

- 29: 1xc, virtualbox

centos:

- 7: 1lxc, virtualbox
rhel

- 8: virtualbox
ubuntu:

- 16.04: 1xc, virtualbox

- 18.04: 1xc, virtualbox

- 18.10: 1xc, virtualbox
debian:

- 8: 1xc, virtualbox

- 9: 1xc, virtualbox
freebsd:

- 11.2: virtualbox

- 12.0: virtualbox

It is also possible to run the build locally, in the current system (if the OS is supported).

First, you must install the Hammer dependencies: Vagrant and either VirtualBox or LXC. To make life easier, Hammer
can install Vagrant and the required Vagrant plugins using the command:

$ ./hammer.py ensure-hammer-deps

VirtualBox and LXC need to be installed manually.

The basic functions provided by Hammer are to prepare the build environment and perform the actual build, and to run
the unit tests locally in the current system. This can be achieved by running the command:

$ ./hammer.py build -p local

The scope of the process can be defined using —with (-w) and —without (-x) options. By default the build command
will build Kea with documentation, install it locally, and run unit tests.

To exclude the installation and generation of docs, type:

$ ./hammer.py build -p local -x install docs

The basic scope can be extended by: mysql, pgsql, cql, native-pkg, radius, shell, and forge.

18 Chapter 3. Installation




Kea Administrator Reference Manual Documentation, Release 2.0.2

Note: To build Kea locally, Hammer dependencies like Vagrant are not needed.

Hammer can be told to set up a new virtual machine with a specified operating system, without the build:

$ ./hammer.py prepare-system -p virtualbox -s freebsd -r 12.0

This way we can prepare a system for our own use. To get to such a system using SSH, invoke:

$ ./hammer.py ssh -p virtualbox -s freebsd -r 12.0

It is possible to speed up subsequent Hammer builds. To achieve this Hammer employs ccache. During compilation,
ccache stores objects in a shared folder. In subsequent runs, instead of doing an actual compilation, ccache returns the
stored earlier objects. The cache with these objects for reuse needs to be stored outside of VM or LXC. To indicate
the folder, you must indicate the —ccache-dir parameter for Hammer. In the indicated folder, there are separate stored
objects for each target operating system.

$ ./hammer.py build -p 1lxc -s ubuntu -r 18.04 --ccache-dir ~/kea-ccache

Note: ccache is currently only supported for LXC in Hammer; support for VirtualBox may be added later.

For more information check:

$ ./hammer.py --help

3.7 Running Kea From a Non-root Account on Linux

Both Kea DHCPv4 and DHCPV6 servers perform operations that in general require root access privileges. In particular,
DHCPv4 opens raw sockets and both DHCPv4 and DHCPv6 open UDP sockets on privileged ports. However, with
some extra system configuration, it is possible to run Kea from non-root accounts.

First, a regular user account must be created:

useradd admin

Then, change the binaries’ ownership and group to the new user. Note that the specific path may be different. Please
refer to the --prefix parameter passed to the configure script:

chown -R admin /opt/kea
chgrp -R admin /opt/kea
chown -R admin /var/log/kea-dhcp4.log
chgrp -R admin /var/log/kea-dhcp4.1log
chown -R admin /var/log/kea-dhcp6.log
chgrp -R admin /var/log/kea-dhcp6.log

If using systemd, modify its service file (e.g. /etc/systemd/system/kea-dhcp6.service):

User=admin
Group=admin

The most important step is to set the capabilities of the binaries. Refer to man capabilities to get more information.

3.7. Running Kea From a Non-root Account on Linux 19



https://ccache.samba.org/

Kea Administrator Reference Manual Documentation, Release 2.0.2

setcap 'cap_net_bind_service,cap_net_raw=+ep' /opt/kea/sbin/kea-dhcp4
setcap 'cap_net_bind_service=+ep' /opt/kea/sbin/kea-dhcp6

If using systemd, also add this to the service file (e.g. /etc/systemd/system/kea-dhcpb.service):

ExecStartPre=setcap 'cap_net_bind_service=+ep' /opt/kea/sbin/kea-dhcp6

After this step is complete, the admin user should be able to run Kea. Note that the DHCPv4 server by default opens
raw sockets. If the network is only using relayed traffic, Kea can be instructed to use regular UDP sockets (refer
to dhcp-socket-type parameter in the Interface Configuration section) and the cap_net_raw capability can be
skipped.

Note: It is possible to avoid running Kea with root privileges by instructing Kea to use non-privileged (greater than
1024) ports and redirecting traffic. This, however, only works for relayed traffic. This approach in general is considered
experimental and has not been tested for deployment in production environments. Use with caution!

To use this approach, configure the server to listen on other non-privileged ports (e.g. 1547 and 1548) by running the
process with the -p option in /etc/systemd/system/kea-dhcp4.service:

ExecStart=/opt/kea/sbin/kea-dhcp4 -d -c /etc/kea/kea-dhcp4.conf -p 2067

and /etc/systemd/system/kea-dhcp4.service:

ExecStart=/opt/kea/sbin/kea-dhcp6 -d -c /etc/kea/kea-dhcp6.conf -p 1547

Then configure port redirection with iptables and ip6tables for new ports (e.g. 1547 and 1548). Be sure to replace
ens4 with the specific interface name.

iptables -t nat -A PREROUTING -i ens4 -p udp --dport 67 -j REDIRECT --to-port 2067
iptables -t nat -A PREROUTING -i ens4 -p udp --dport 2068 -j REDIRECT --to-port 68
ip6tables -t nat -A PREROUTING -i ens4 -p udp --dport 547 -j REDIRECT --to-port 1547
ip6tables -t nat -A PREROUTING -i ens4 -p udp --dport 1548 -j REDIRECT --to-port 548

3.8 Deprecated Features

This section lists significant features that have been or will be removed. We try to deprecate features before removing
them to signal to current users to plan a migration. New users should not rely on deprecated features.

3.8.1 Cassandra (CQL) Support

Cassandra is a non-relational NoSQL database. Kea added support for the CQL lease backend in Kea 1.1.0-betal and
the CQL host backend in 1.4.0-betal. This feature never gained much traction with users, particularly compared to the
level of interest in and deployments of the alternatives, MySQL and PostgreSQL.

The non-relational nature of Cassandra makes it exceedingly difficult to implement more complex DHCP features, such
as the configuration backend. Cassandra also introduces performance degradation, is complicated to set up, and is an
ongoing maintenance burden.

Cassandra support is deprecated as of Kea 1.9.9. The feature will function as before in the Kea 2.0.x and 2.1.x series,
but will print a warning. The feature will be removed entirely in a future release.

20 Chapter 3. Installation




Kea Administrator Reference Manual Documentation, Release 2.0.2

3.8.2 Sysrepo 0.x

Kea versions 1.9.9 and earlier required Sysrepo 0.7.x to run, when optional support for NETCONF was enabled. Kea
versions 1.9.10 and later now require Sysrepo 1.4.x and the related libyang 1.x library to run. The earlier Sysrepo
versions are no longer supported. The latest Sysrepo 2.x version does not provide C++ bindings, and as such, is not
usable for Kea.

3.8. Deprecated Features 21



Kea Administrator Reference Manual Documentation, Release 2.0.2

22

Chapter 3. Installation



CHAPTER
FOUR

KEA DATABASE ADMINISTRATION

4.1 Databases and Database Version Numbers

Kea may be configured to use a database as storage for leases or as a source of servers’ configurations and host reser-
vations (i.e. static assignments of addresses, prefixes, options, etc.). As Kea is updated, new database schemas are
introduced to facilitate new features and correct discovered issues with the existing schemas.

Each version of Kea expects a particular structure in the backend and checks for this by examining the version of the
database it is using. Separate version numbers are maintained for the backends, independent of the version of Kea itself.
It is possible that the backend version will stay the same through several Kea revisions; similarly, it is possible that the
version of the backend may go up several revisions during a single Kea version upgrade. Versions for each backend are
also independent, so an increment in the MySQL backend version does not imply an increment in that of PostgreSQL.

Backend versions are specified in a major.minor format. The minor number is increased when there are backward-
compatible changes introduced: for example, when a new index is added. It is desirable but not mandatory to apply
such a change; running an older backend version is possible. (Although, in the example given, running without the new
index may introduce a performance penalty.) On the other hand, the major number is increased when an incompatible
change is introduced: for example, an extra column is added to a table. If Kea attempts to run on a backend that is
too old (as indicated by a mismatched backend major version number), it will fail; administrative action is required to
upgrade the backend.

4.2 The kea-admin Tool

To manage the databases, Kea provides the kea-admin tool. It can initialize a new backend, check its version number,
perform a backend upgrade, and dump lease data to a text file.

kea-admin takes two mandatory parameters: command and backend. Additional, non-mandatory options may be
specified. The currently supported commands are:

e db-init — Initializes a new database schema. This is useful during a new Kea installation. The database is
initialized to the latest version supported by the version of the software being installed.

* db-version — Reports the database backend version number. This is not necessarily equal to the Kea version
number, as each backend has its own versioning scheme.

* db-upgrade — Conducts a database schema upgrade. This is useful when upgrading Kea.

e lease-dump — Dumps the contents of the lease database (for MySQL, PostgreSQL, or CQL backends) to a
CSV (comma-separated values) text file. The first line of the file contains the column names. This is meant to
be used as a diagnostic tool, so it provides a portable, human-readable form of the lease data.

23



Kea Administrator Reference Manual Documentation, Release 2.0.2

Note: In versions of Kea earlier than 1.6.0, the db-init, db-version, and db-upgrade commands were named lease-init,
lease-version, and lease-upgrade, respectively.

backend specifies the type of backend database. The currently supported types are:
* memfile — Lease information is stored on disk in a text file.
* mysql — Information is stored in a MySQL relational database.
* pgsql — Information is stored in a PostgreSQL relational database.
* cql — Information is stored in an Apache Cassandra database. This backend is deprecated.

Additional parameters may be needed, depending on the setup and specific operation: username, password, and
database name or the directory where specific files are located. See the appropriate manual page for details (man
8 kea-admin).

4.3 Supported Backends

The following table presents the capabilities of available backends. Please refer to the specific sections dedicated to
each backend to better understand their capabilities and limitations. Choosing the right backend is essential for the
success of the deployment.

Table 1: List of available backends

Feature Memfile | MySQL PostgreSQL | CQL (Cassandra)

Status Stable Stable Stable Deprecated

Data format CSV file | SQLRMDB | SQL RMDB | NoSQL database (Cassandra)
Leases yes yes yes yes

Host reservations no yes yes yes

Options defined on per host basis | no yes yes yes

Configuration backend no yes no no

4.3.1 Memfile

The memfile backend is able to store lease information, but cannot store host reservation details; these must be stored
in the configuration file. (There are no plans to add a host reservations storage capability to this backend.)

No special initialization steps are necessary for the memfile backend. During the first run, both kea-dhcp4 and
kea-dhcp6 create an empty lease file if one is not present. Necessary disk-write permission is required.

4.3.1.1 Upgrading Memfile Lease Files From an Earlier Version of Kea

There are no special steps required to upgrade memfile lease files between versions of Kea. During startup, the servers
check the schema version of the lease files against their own. If there is a mismatch, the servers automatically launch
the LFC process to convert the files to the server’s schema version. While this mechanism is primarily meant to ease
the process of upgrading to newer versions of Kea, it can also be used for downgrading should the need arise. When
upgrading, any values not present in the original lease files are assigned appropriate default values. When downgrading,
any data present in the files but not in the server’s schema are dropped. To convert the files manually prior to starting
the servers, run the lease file cleanup (LFC) process. See The LFC Process for more information.

24 Chapter 4. Kea Database Administration



Kea Administrator Reference Manual Documentation, Release 2.0.2

4.3.2 MySQL

MySQL is able to store leases, host reservations, options defined on a per-host basis, and a subset of the server config-
uration parameters (serving as a configuration backend).

4.3.2.1 First-Time Creation of the MySQL Database

Before preparing any Kea-specific database and tables, the MySQL database must be configured to use the system
timezone. It is recommended to use UTC as the timezone for both the system and the MySQL database.

To check the system timezone:

date +%Z

To check the MySQL timezone:

mysql> SELECT @@system_time_zone;
mysql> SELECT @@global.time_zone;
mysql> SELECT @@session.time_zone;

To configure the MySQL timezone for a specific server, please refer to the installed version documentation.

Usually the setting is configured in the [mysqld] section in /etc/mysql/my.cnf, /etc/mysql/mysql.cnf,
/etc/mysql/mysqld.cnf, or /etc/mysql/mysql.conf.d/mysqld.cnf.

[mysqld]
# using default-time-zone
default-time-zone="+00:00"

# or using timezone
timezone="UTC'

When setting up the MySQL database for the first time, the database area must be created within MySQL, and the
MySQL user ID under which Kea will access the database must be set up. This needs to be done manually, rather than
via kea-admin.

To create the database:

1. Log into MySQL as “root™:

$ mysql -u root -p
Enter password:
mysql>

2. Create the MySQL database:

mysql> CREATE DATABASE database_name;

(database_name is the name chosen for the database.)

3. Create the user under which Kea will access the database (and give it a password), then grant it access to the
database tables:

mysql> CREATE USER 'user-name'@'localhost' IDENTIFIED BY 'password';
mysql> GRANT ALL ON database-name.* TO 'user-name'@'localhost';

4.3. Supported Backends 25



Kea Administrator Reference Manual Documentation, Release 2.0.2

(user-name and password are the user ID and password used to allow Kea access to the MySQL instance. All
apostrophes in the command lines above are required.)

4. Create the database.
Exit the MySQL client

mysql> quit
Bye

Then use the kea-admin tool to create the database.

$ kea-admin db-init mysgl -u database-user -p database-password -n database-
—,name

While it is possible to create the database from within the MySQL client, we recommend using the
kea-admin tool as it performs some necessary validations to ensure Kea can access the database at
runtime. Among those checks is verification that the schema does not contain any pre-existing tables;
any pre-existing tables must be removed manually. An additional check examines the user’s ability to
create functions and triggers. The following error indicates that the user does not have the necessary
permissions to create functions or triggers:

ERROR 1419 (HYOO00) at line 1: You do not have the SUPER privilege and.
—binary logging is

enabled (you *might* want to use the less safe log_bin_trust_function_
—.creators variable)

ERROR/kea-admin: mysql_can_create cannot trigger, check user permissions,.
—mysql status = 1

mysqgl: [Warning] Using a password on the command line interface can be.
—insecure.

ERROR/kea-admin: Create failed, the user, keatest, has insufficient.
—privileges.

The simplest way around this is to set the global MySQL variable,
log_bin_trust_function_creators, to 1 via the MySQL client. Note this must be done
as a user with SUPER privileges:

mysql> set @@global.log_bin_trust_function_creators = 1;
Query OK, 0 rows affected (0.00 sec)

To create the database with MySQL directly, follow these steps:

mysql> CONNECT database-name;
mysql> SOURCE path-to-kea/share/kea/scripts/mysql/dhcpdb_create.mysql

(where “path-to-kea” is the location where Kea is installed.)

The database may also be dropped manually as follows:

mysql> CONNECT database-name;
mysql> SOURCE path-to-kea/share/kea/scripts/mysql/dhcpdb_drop.mysql

(where “path-to-kea” is the location where Kea is installed.)

Warning: Dropping the database results in the unrecoverable loss of any data it contains.

26 Chapter 4. Kea Database Administration



Kea Administrator Reference Manual Documentation, Release 2.0.2

5. Exit MySQL.:

mysql> quit
Bye

If the tables were not created in Step 4, run the kea-admin tool to create them now:

$ kea-admin db-init mysql -u database-user -p database-password -n database-name

Do not do this if the tables were created in Step 4. kea-admin implements rudimentary checks; it will refuse to
initialize a database that contains any existing tables. To start from scratch, all data must be removed manually. (This
process is a manual operation on purpose, to avoid accidentally irretrievable mistakes by kea-admin.)

4.3.2.2 Upgrading a MySQL Database From an Earlier Version of Kea

Sometimes a new Kea version uses a newer database schema, so the existing database needs to be upgraded. This can
be done using the kea-admin db-upgrade command.

To check the current version of the database, use the following command:

$ kea-admin db-version mysql -u database-user -p database-password -n database-name

(See Databases and Database Version Numbers for a discussion about versioning.) If the version does not match the
minimum required for the new version of Kea (as described in the release notes), the database needs to be upgraded.

Before upgrading, please make sure that the database is backed up. The upgrade process does not discard any data, but
depending on the nature of the changes, it may be impossible to subsequently downgrade to an earlier version.

To perform an upgrade, issue the following command:

$ kea-admin db-upgrade mysql -u database-user -p database-password -n database-name

Note: To search host reservations by hostname, it is critical that the collation of the hostname column in the host table
be case-insensitive. Fortunately, that is the default in MySQL, but it can be verified via this command:

mysql> SELECT COLLATION('');

T T +
| COLLATION('') |
oo +
| utf8_general_ci |
R e e +

According to mysql’s naming convention, when the name ends in _ci, the collation is case-insensitive.

4.3. Supported Backends 27




Kea Administrator Reference Manual Documentation, Release 2.0.2

4.3.2.3 Improved Performance With MySQL

Changing the MySQL internal value innodb_flush_log_at_trx_commit from the default value of 1 to 2 can result
in a huge gain in Kea performance. In some deployments, the gain was over 1000% (10 times faster when set to 2,
compared to the default value of 1). It can be set per-session for testing:

mysql> SET GLOBAL innodb_flush_log_at_trx_commit=2;
mysql> SHOW SESSION VARIABLES LIKE 'innodb_flush_log%';

or permanently in /etc/mysql/my.cnf:

[mysqld]
innodb_flush_log_at_trx_commit=2

Be aware that changing this value can cause problems during data recovery after a crash, so we recommend check-
ing the MySQL documentation. With the default value of 1, MySQL writes changes to disk after every IN-
SERT or UPDATE query (in Kea terms, every time a client gets a new lease or renews an existing lease). When
innodb_flush_log_at_trx_commit is set to 2, MySQL writes the changes at intervals no longer than 1 second.
Batching writes gives a substantial performance boost. The trade-off, however, is that in the worst-case scenario, all
changes in the last second before crash could be lost. Given the fact that Kea is stable software and crashes very rarely,
most deployments find it a beneficial trade-off.

4.3.3 PostgreSQL

PostgreSQL can store leases, host reservations, and options defined on a per-host basis.

4.3.3.1 First-Time Creation of the PostgreSQL Database

Before preparing any Kea-specific database and tables, the PostgreSQL database must be configured to use the system
timezone. It is recommended to use UTC as the timezone for both the system and the PostgreSQL database.

To check the system timezone:

date +%Z

To check the PostgreSQL timezone:

postgres=# show timezone;
postgres=# SELECT * FROM pg_timezone_names WHERE name = current_setting(
— "TIMEZONE") ;

To configure the PostgreSQL timezone for a specific server, please refer to the installed version documentation.

Usually the setting is configured in the postgresql.conf with the varying version path /etc/postgresql/
<version>/main/postgresql.conf, but on some systems the files may be located in /var/1lib/pgsql/data.

timezone = 'UTC'

The first task is to create both the database and the user under which the servers will access it. A number of steps are
required:

1. Log into PostgreSQL as “root”:

28 Chapter 4. Kea Database Administration



https://dev.mysql.com/doc/refman/8.0/en/innodb-parameters.html#sysvar_innodb_flush_log_at_trx_commit

Kea Administrator Reference Manual Documentation, Release 2.0.2

$ sudo -u postgres psql postgres
Enter password:
postgres=#

2. Create the database:

postgres=# CREATE DATABASE database-name;
CREATE DATABASE
postgres=#

(database-name is the name chosen for the database.)

3. Create the user under which Kea will access the database (and give it a password), then grant it access to the
database:

postgres=# CREATE USER user-name WITH PASSWORD 'password';

CREATE ROLE

postgres=# GRANT ALL PRIVILEGES ON DATABASE database-name TO user-name;
GRANT

postgres=#

4. Exit PostgreSQL:

postgres=# \q
Bye
$

5. At this point, create the database tables either using the kea-admin tool, as explained in the next section (rec-
ommended), or manually. To create the tables manually, enter the following command. PostgreSQL will prompt
the administrator to enter the new user’s password that was specified in Step 3. When the command completes,
Kea will return to the shell prompt. The output should be similar to the following:

$ psqgl -d database-name -U user-name -f path-to-kea/share/kea/scripts/pgsql/dhcpdb_
—.create.pgsql

Password for user user-name:
CREATE TABLE

CREATE INDEX

CREATE INDEX

CREATE TABLE

CREATE INDEX

CREATE TABLE

START TRANSACTION

INSERT 0 1

INSERT 0 1

INSERT O 1

COMMIT

CREATE TABLE

START TRANSACTION

INSERT 0 1

COMMIT

$

(“path-to-kea” is the location where Kea is installed.)

If instead an error is encountered, such as:

4.3. Supported Backends 29



Kea Administrator Reference Manual Documentation, Release 2.0.2

psql: FATAL: no pg_hba.conf entry for host "[local]", user "user-name", database
- "database-name", SSL off

. the PostgreSQL configuration will need to be altered. Kea uses password authentication when connecting
to the database and must have the appropriate entries added to PostgreSQL’s pg_hba.conf file. This file is nor-
mally located in the primary data directory for the PostgreSQL server. The precise path may vary depending
on the operating system and version, but the default location for PostgreSQL is /etc/postgresql/*/main/
postgresql.conf. However, on some systems (notably CentOS 8), the file may reside in /var/lib/pgsql/
data.

Assuming Kea is running on the same host as PostgreSQL, adding lines similar to the following should be
sufficient to provide password-authenticated access to Kea’s database:

local database-name user-name password
host database-name user-name 127.0.0.1/32 password
host database-name user-name 1:1/128 password

These edits are primarily intended as a starting point, and are not a definitive reference on PostgreSQL admin-
istration or database security. Please consult the PostgreSQL user manual before making these changes, as they
may expose other databases that are running. It may be necessary to restart PostgreSQL for the changes to take
effect.

4.3.3.2 Initialize the PostgreSQL Database Using kea-admin

If the tables were not created manually, do so now by running the kea-admin tool:

$ kea-admin db-init pgsql -u database-user -p database-password -n database-name

Do not do this if the tables were already created manually. kea-admin implements rudimentary checks; it will refuse
to initialize a database that contains any existing tables. To start from scratch, all data must be removed manually. (This
process is a manual operation on purpose, to avoid accidentally irretrievable mistakes by kea-admin.)

4.3.3.3 Upgrading a PostgreSQL Database From an Earlier Version of Kea

The PostgreSQL database schema can be upgraded using the same tool and commands as described in Upgrading a
MySQL Database From an Earlier Version of Kea, with the exception that the “pgsql” database backend type must be
used in the commands.

Use the following command to check the current schema version:

$ kea-admin db-version pgsql -u database-user -p database-password -n database-name

Use the following command to perform an upgrade:

$ kea-admin db-upgrade pgsqgl -u database-user -p database-password -n database-name

30 Chapter 4. Kea Database Administration




Kea Administrator Reference Manual Documentation, Release 2.0.2

4.3.4 Cassandra

Cassandra (sometimes referred to as CQL) is the newest backend added to Kea; initial development was contributed by
Deutsche Telekom. The Cassandra backend is able to store leases, host reservations, and options defined on a per-host
basis.

Note: The Cassandra backend was deprecated in Kea 1.9.9. New users are discouraged from using Cassandra and
existing users should consider a migration strategy. See Deprecated Features for details.

4.3.4.1 First-Time Creation of the Cassandra Database

When setting up the Cassandra database for the first time, the keyspace area within it must be created. This needs to be
done manually; it cannot be performed by kea-admin.

To create the database:

1. Export CQLSH_HOST environment variable:

$ export CQLSH_HOST=localhost

2. Log into CQL:

$ cqlsh
cql>

3. Create the CQL keyspace:

cql> CREATE KEYSPACE keyspace-name WITH replication = {'class' : 'SimpleStrategy',
—'replication_factor' : 1};

(keyspace-name is the name chosen for the keyspace.)

4. At this point, the database tables can be created. To do this:

cglsh -k keyspace-name -f path-to-kea/share/kea/scripts/cql/dhcpdb_create.cql

(path-to-kea is the location where Kea is installed.)

It is also possible to exit Cassandra and create the tables using the kea-admin tool. If the tables were not created in
Step 4, do so now by running the kea-admin tool:

$ kea-admin db-init cql -n database-name

Do not do this if the tables were created in Step 4. kea-admin implements rudimentary checks; it will refuse to
initialize a database that contains any existing tables. To start from scratch, all data must be removed manually. (This
process is a manual operation on purpose, to avoid accidentally irretrievable mistakes by kea-admin.)

4.3. Supported Backends 31




Kea Administrator Reference Manual Documentation, Release 2.0.2

4.3.4.2 Upgrading a Cassandra Database From an Earlier Version of Kea

Sometimes a new Kea version uses a newer database schema, so the existing database needs to be upgraded. This can
be done using the kea-admin db-upgrade command.

To check the current version of the database, use the following command:

$ kea-admin db-version cgl -n database-name

(See Databases and Database Version Numbers for a discussion about versioning.) If the version does not match the
minimum required for the new version of Kea (as described in the release notes), the database needs to be upgraded.

Before upgrading, please make sure that the database is backed up. The upgrade process does not discard any data,
but depending on the nature of the changes, it may be impossible to subsequently downgrade to an earlier version. To
perform an upgrade, issue the following command:

$ kea-admin db-upgrade cgl -n database-name

4.3.5 Using Read-Only Databases With Host Reservations

If a read-only database is used for storing host reservations, Kea must be explicitly configured to operate on the database
in read-only mode. Sections Using Read-Only Databases for Host Reservations With DHCPv4 and Using Read-Only
Databases for Host Reservations with DHCPv6 describe when such a configuration may be required, and how to
configure Kea to operate in this way for both DHCPv4 and DHCPv6.

4.3.6 Limitations Related to the Use of SQL Databases

4.3.6.1 Year 2038 Issue

The lease expiration time in Kea is stored in the SQL database for each lease as a timestamp value. Kea developers have
observed that the MySQL database does not accept timestamps beyond 2147483647 seconds (the maximum signed 32-
bit number) from the beginning of the UNIX epoch (00:00:00 on 1 January 1970). Some versions of PostgreSQL
do accept greater values, but the value is altered when it is read back. For this reason, the lease database backends
put a restriction on the maximum timestamp to be stored in the database, which is equal to the maximum signed 32-
bit number. This effectively means that the current Kea version cannot store leases whose expiration time is later than
2147483647 seconds since the beginning of the epoch (around the year 2038). This will be fixed when database support
for longer timestamps is available.

32 Chapter 4. Kea Database Administration




CHAPTER
FIVE

KEA CONFIGURATION

Kea uses JSON structures to represent server configurations. The following sections describe how the configuration
structures are organized.

5.1 JSON Configuration

JSON is the notation used throughout the Kea project. The most obvious usage is for the configuration file, but JSON
is also used for sending commands over the Management API (see Management API') and for communicating between
DHCP servers and the DDNS update daemon.

Typical usage assumes that the servers are started from the command line, either directly or using a script, e.g. keactrl.
The configuration file is specified upon startup using the -c parameter.

5.1.1 JSON Syntax

Configuration files for the DHCPv4, DHCPv6, DDNS, Control Agent, and NETCONF modules are defined in an
extended JSON format. Basic JSON is defined in RFC 7159 and ECMA 404. In particular, the only boolean values
allowed are true or false (all lowercase). The capitalized versions (True or False) are not accepted.

Even though the JSON standard (ECMA 404) does not require JSON objects (i.e. name/value maps) to have unique
entries, Kea implements them using a C++ STL map with unique entries. Therefore, if there are multiple values for
the same name in an object/map, the last value overwrites previous values. Since Kea 1.9.0, configuration file parsers
raise a syntax error in such cases.

Kea components use extended JSON with additional features allowed:
* Shell comments: any text after the hash (#) character is ignored.
* C comments: any text after the double slashes (//) character is ignored.
* Multiline comments: any text between /* and */ is ignored. This comment can span multiple lines.
* File inclusion: JSON files can include other JSON files by using a statement of the form <?include “file.json”?>.

The configuration file consists of a single object (often colloquially called a map) started with a curly bracket. It
comprises only one of the “Dhcp4”, “Dhcp6”, “DhcpDdns”, “Control-agent”, or “Netconf” objects. It is possible to
define additional elements but they will be ignored.

A very simple configuration for DHCPv4 could look like this:

# The whole configuration starts here.

{

# DHCPv4 specific configuration starts here.

(continues on next page)

33



https://tools.ietf.org/html/rfc7159
https://www.ecma-international.org/publications/standards/Ecma-404.htm

Kea Administrator Reference Manual Documentation, Release 2.0.2

(continued from previous page)

"Dhcp4": {

"interfaces-config": {
"interfaces": [ "eth®" ],
"dhcp-socket-type": "raw"

1

"valid-lifetime": 4000,

"renew-timer": 1000,

"rebind-timer": 2000,

"subnet4": [{

"pools": [ { "pool": "192.0.2.1-192.0.2.200" } 1],
"subnet": "192.0.2.0/24"

3,

# Now loggers are inside the DHCPv4 object.
"loggers": [{
"name": "*",
"severity": "DEBUG"
H

}

# The whole configuration structure ends here.

}

More examples are available in the installed share/doc/kea/examples directory.

Note: As of Kea 1.6.0, the “Logging” element was removed and its contents (the “loggers” object) moved
inside the configuration objects (maps) for the respective Kea modules. For example, the “Dhcp4” map
contains the “loggers” object, specifying logging configuration for the DHCPv4 server. Support for the
top-level “Logging” object was removed in Kea 1.7.10.

The specification for supporting several elements (e.g. “Dhcp4”, “Dhcp6”) in one file was removed in Kea
1.7.10, so each component now requires a separate configuration file.

To avoid repetition of mostly similar structures, examples in the rest of this guide will showcase only the subset of
parameters appropriate for a given context. For example, when discussing the IPv6 subnets configuration in DHCPv6,
only subnet6 parameters will be mentioned. It is implied that the remaining elements (the global map that holds Dhcp6)
are present, but they are omitted for clarity. Usually, locations where extra parameters may appear are denoted by an
ellipsis (...).

5.1.2 Comments and User Context

Shell, C, or C++ style comments are all permitted in the JSON configuration file if the file is used locally. This is
convenient and works in simple cases where the configuration is kept statically using a local file. However, since
comments are not part of JSON syntax, most JSON tools detect them as errors. Another problem with them is that
once Kea loads its configuration, the shell, C, and C++ style comments are ignored. If commands such as config-get
or config-write are used, those comments are lost. An example of such comments was presented in the previous
section.

Historically, to address the problem, Kea code allowed the use of comment strings as valid JSON entities. This had the
benefit of being retained through various operations (such as config-get), or allowing processing by JSON tools. An
example JSON comment looks like this:

34 Chapter 5. Kea Configuration




Kea Administrator Reference Manual Documentation, Release 2.0.2

"Dhcp4": {
"subnet4": [{
"subnet": "192.0.2.0/24",
"pools": [{ "pool": "192.0.2.10 - 192.0.2.20" }],
"comment": "second floor"

3]

However, the facts that the comment could only be a single line, and that it was not possible to add any other information
in a more structured form, were frustrating. One specific example was a request to add floor levels and building numbers
to subnets. This was one of the reasons why the concept of user context was introduced. It allows adding an arbitrary
JSON structure to most Kea configuration structures.

This has a number of benefits compared to earlier approaches. First, it is fully compatible with JSON tools and Kea
commands. Second, it allows storing simple comment strings, but it can also store much more complex data, such as
multiple lines (as a string array), extra typed data (such as floor numbers being actual numbers), and more. Third, the
data is exposed to hooks, so it is possible to develop third-party hooks that take advantage of that extra information.
An example user context looks like this:

"Dhcp4": {
"subnet4": [{
"subnet": "192.0.2.0/24",
"pools": [{ "pool": "192.0.2.10 - 192.0.2.20" }1,
"user-context": {
"comment": "second floor",
"floor": 2

3]

User contexts can store an arbitrary data file as long as it has valid JSON syntax and its top-level element is a map
(i.e. the data must be enclosed in curly brackets). However, some hook libraries may expect specific formatting; please
consult the specific hook library documentation for details.

In a sense the user-context mechanism has superseded the JSON comment capabilities; ISC encourages administrators
to use user-context instead of the older mechanisms. To promote this way of storing comments, Kea compared converts
JSON comments to user-context on the fly.

However, if the configuration uses the old JSON comment, the config-get command returns a slightly modified
configuration. It is not uncommon for a call for config-set followed by a config-get to receive a slightly different
structure. The best way to avoid this problem is simply to abandon JSON comments and use user-context.

For a discussion about user-context used in hooks, see User Contexts in Hooks.

5.1.3 Simplified Notation

It is sometimes convenient to refer to a specific element in the configuration hierarchy. Each hierarchy level is separated
by a slash. If there is an array, a specific instance within that array is referenced by a number in square brackets
(with numbering starting at zero). For example, in the above configuration the valid-lifetime in the Dhcp4 component
can be referred to as Dhcp4/valid-lifetime, and the pool in the first subnet defined in the DHCPv4 configuration as
Dhcp4/subnet4[0]/pool.

5.1. JSON Configuration 35




Kea Administrator Reference Manual Documentation, Release 2.0.2

5.2 Kea Configuration Backend

5.2.1 Applicability

Kea Configuration Backend (CB or config backend) is a feature, first introduced in Kea 1.6.0, that gives Kea servers the
ability to manage and fetch their configuration from one or more databases. In this documentation, the term “Configu-
ration Backend” may also refer to the particular Kea module providing support to manage and fetch the configuration
information from the particular database type. For example, MySQL Configuration Backend is the logic implemented
within the mysql_cb hook library, which provides a complete set of functions to manage and fetch the configuration
information from the MySQL database.

In small deployments, e.g. those comprising a single DHCP server instance with limited and infrequently changing
number of subnets, it may be impractical to use the CB as a configuration repository because it requires additional third-
party software to be installed and configured - in particular the MySQL server and MySQL client. Once the number of
DHCP servers and/or the number of managed subnets in the network grows, the usefulness of the CB becomes obvious.

One use case for the CB is a pair of Kea DHCP servers that are configured to support High Availability as described
in ha: High Availability. The configurations of both servers (including the value of the server-tag parameter) are
almost exactly the same: they may differ by the server identifier and designation of the server as a primary or standby
(or secondary), and/or by their interfaces’ configuration. Typically, the subnets, shared networks, option definitions,
and global parameters are the same for both servers and can be sourced from a single database instance to both Kea
servers.

Using the database as a single source of configuration for subnets and/or other configuration information supported by
the CB has the advantage that any modifications to the configuration in the database are automatically applied to both
Servers.

Another case when the centralized configuration repository is useful is in deployments including a large number of
DHCEP servers, possibly using a common lease database to provide redundancy. New servers can be added to the
pool frequently to fulfill growing scalability requirements. Adding a new server does not require replicating the entire
configuration to the new server when a common database is used.

Using the database as a configuration repository for Kea servers also brings other benefits, such as:
* the ability to use database specific tools to access the configuration information;
* the ability to create customized statistics based on the information stored in the database; and

* the ability to backup the configuration information using the database’s built-in replication mechanisms.

5.2.2 CB Capabilities and Limitations

Currently, the Kea CB has the following limitations:
e It is only supported for the MySQL database.

e It is only supported for the DHCPv4 and DHCPv6 daemons; the Control Agent, D2 daemon, and the NETCONF
daemon cannot be configured from the database,

* Only certain DHCP configuration parameters can be set in the database: global parameters, option definitions,
global options, client classes, shared networks, and subnets. Other configuration parameters must be sourced
from a JSON configuration file.

Kea CB stores data in a MySQL schema that is public. It is possible to insert configuration data into the MySQL tables
manually or automatically using SQL scripts, but this requires SQL and schema knowledge. The supported method for
managing the data is through the cb-cmds hook library, which provides management commands for config backends. It
simplifies many typical operations, such as listing, adding, retrieving, and deleting global parameters, shared networks,
subnets, pools, options, option definitions, and client classes. In addition, it provides essential business logic that

36 Chapter 5. Kea Configuration



Kea Administrator Reference Manual Documentation, Release 2.0.2

ensures the logical integrity of the data. See commands starting with remote- in Appendix A of this manual for a
complete list.

Note: The cb_cmds hook library is available only to ISC support subscribers. For more information on subscription
options, please complete the form at https://www.isc.org/contact.

The schema creation script can be found at dhcpdb_create.mysql; other related design documents are stored in our
GitLab: CB Design and Client Classes in CB Design.

We strongly recommend against duplication of configuration information in both the file and the database. For ex-
ample, when specifying subnets for the DHCP server, please store them in either the configuration backend or in the
configuration file, not both. Storing some subnets in the database and others in the file may put users at risk of potential
configuration conflicts. Note that the configuration instructions from the database take precedence over instructions
from the file, so parts of the configuration specified in the file may be overridden if contradicted by information in the
database.

Although it is not recommended, it is possible to specify certain parameter types both in a configuration file and the
database. For example, a subnet can be specified in the configuration file and another subnet in the database; in this
case, the server will use both subnets. DHCP client classes, however, must not be specified in both the configuration
file and the database, even if they do not overlap. If any client classes are specified in the database for a particular
DHCEP server, this server will use these classes and ignore all classes present in its configuration file. This behavior
was introduced to ensure that the server receives a consistent set of client classes specified in an expected order with
all inter-class dependencies fulfilled. It is impossible to guarantee consistency when client classes are specified in two
independent configuration sources.

Note: It is recommended that the subnet_cmds hook library not be used to manage subnets when the configuration
backend is used as a source of information about the subnets. The subnet_cmds hook library modifies the local
subnets configuration in the server’s memory, not in the database. Use the cb_cmds hook library to manage the subnets
information in the database instead.

Note: Using custom option formats requires creating definitions for these options. Suppose a user wishes to set
option data in the configuration backend. In that case, we recommend specifying the definition for that option in the
configuration backend as well. It is essential when multiple servers are managed via the configuration backend, and
may differ in their configurations. The option data parser can search for an option definition appropriate for the server
for which the option data is specified.

In a single-server deployment, or when all servers share the same configuration file information, it is possible to specify
option definitions in the configuration files and option data in the configuration backend. The server receiving a com-
mand to set option data must have a valid definition in its configuration file, even when it sets option data for another
server.

It is not supported to specify option definitions in the configuration backend and the corresponding option data in the
server configuration files.

5.2. Kea Configuration Backend 37


https://www.isc.org/contact
https://gitlab.isc.org/isc-projects/kea/blob/master/src/share/database/scripts/mysql/dhcpdb_create.mysql
https://gitlab.isc.org/isc-projects/kea/wikis/designs/configuration-in-db-design
https://gitlab.isc.org/isc-projects/kea/wikis/designs/client-classes-in-cb

Kea Administrator Reference Manual Documentation, Release 2.0.2

5.2.3 CB Components

Kea 1.6.0 version or later is required to use the configuration backend. The mysql_cb open source hook library
implementing the configuration backend for MySQL must be compiled and loaded by the DHCP servers. This hook
library is compiled when the --with-mysql configuration switch is used during the Kea build. The MySQL C client
libraries must be installed, as explained in DHCP Database Installation and Configuration.

Note: Any existing MySQL schema must be upgraded to the latest schema required by the particular Kea version
using the kea-admin tool, as described in The kea-admin Tool.

The cb_cmds premium hook library, which is available to ISC’s paid support customers, provides a complete set of
commands to manage the servers’ configuration information within the database. This library can be attached to both
DHCPv4 and DHCPvV6 server instances. It is possible to manage the configuration information without the cb_cmds
hook library with commonly available tools, such as MySQL Workbench or the command-line MySQL client, by
directly working with the database.

Refer to cb_cmds: Configuration Backend Commands for the details regarding the cb_cmds hook library.

The DHCPv4 and DHCPv6 server-specific configurations of the CB, as well as the list of supported configuration
parameters, can be found in Configuration Backend in DHCPv4 and Configuration Backend in DHCPv6, respectively.

5.2.4 Configuration Sharing and Server Tags

The configuration database is designed to store configuration information for multiple Kea servers. Depending on the
use case, the entire configuration may be shared by all servers; parts of the configuration may be shared by multiple
servers and the rest of the configuration may be different for these servers; or each server may have its own non-shared
configuration.

The configuration elements in the database are associated with the servers by “server tags.” The server tag is an arbitrary
string holding the name of the Kea server instance. The tags of the DHCPv4 and DHCPv6 servers are independent
in the database, i.e. the same server tag can be created for both the DHCPv4 and the DHCPv6 server. The value is
configured using the server-tag parameter in the Dhcp4 or Dhep6 scope. The current server tag can be checked with
the server-tag-get command.

The server definition, which consists of the server tag and the server description, must be stored in the configuration
database prior to creating the dedicated configuration for that server. In cases when all servers use the same configu-
ration, e.g. a pair of servers running as High Availability peers, there is no need to configure the server tags for these
servers in the database.

Commands which contain the logical server all are applied to all servers connecting to the database. The all server can-
not be deleted or modified, and it is not returned among other servers as a result of the remote-server[46]-get-all
command.

In most cases, there are no server tags defined in the configuration database; all connecting servers get the same con-
figuration regardless of the server tag they use. The server tag that a particular Kea instance presents to the database
to fetch its configuration is specified in the Kea configuration file, using the config-control map (please refer to the
Enabling the Configuration Backend and Enabling Configuration Backend for details). All Kea instances presenting
the same server tag to the configuration database are given the same configuration.

It is the administrator’s choice whether multiple Kea instances use the same server tag or each Kea instance uses a
different server tag. There is no requirement that the instances running on the same physical or virtual machine use
the same server tag. It is even possible to configure the Kea server without assigning it a server tag. In such a case the
server will be given the configuration specified for all servers.

To differentiate between different Kea server configurations, a list of the server tags used by the servers must be stored
in the database. For the DHCPv4 and DHCPv6 servers, it can be done using the commands described in remote-

38 Chapter 5. Kea Configuration



Kea Administrator Reference Manual Documentation, Release 2.0.2

serverd-set, remote-server6-set commands and remote-serverd-set, remote-server6-set commands. The server tags can
then be used to associate the configuration information with the servers. However, it is important to note that some
DHCP configuration elements may be associated with multiple server tags (known as “shareable” elements), while
other configuration elements may be associated with only one server tag (‘“non-shareable” elements). The Config-
uration Backend in DHCPv4 and Configuration Backend in DHCPv6 sections list the DHCP-specific shareable and
non-shareable configuration elements; however, in this section we briefly explain the differences between them.

A shareable configuration element is one which has some unique property identifying it, and which may appear only
once in the database. An example of a shareable DHCP element is a subnet instance: the subnet is a part of the network
topology and we assume that any particular subnet may have only one definition within this network. Each subnet has
two unique identifiers: the subnet identifier and the subnet prefix. The subnet identifier is used in Kea to uniquely
identify the subnet within the network and to connect it with other configuration elements, e.g. in host reservations.
Some commands provided by the cb_cmds hook library allow the subnet information to be accessed by either subnet
identifier or prefix, and explicitly prohibit using the server tag to access the subnet. This is because, in general, the
subnet definition is associated with multiple servers rather than a single server. In fact, it may even be associated with
no servers (unassigned). Still, the unassigned subnet has an identifier and prefix which can be used to access the subnet.

A shareable configuration element may be associated with multiple servers, one server, or no servers. Deletion of the
server which is associated with the shareable element does not cause the deletion of the shareable element. It merely
deletes the association of the deleted server with the element.

Unlike a shareable element, a non-shareable element must not be explicitly associated with more than one server and
must not exist after the server is deleted (must not remain unassigned). A non-shareable element only exists within the
context of the server. An example of a non-shareable element in DHCP is a global parameter, e.g. renew-timer. The
renew timer is the value to be used by a particular server and only this server. Other servers may have their respective
renew timers set to the same or different values. The renew timer parameter has no unique identifier by which it could
be accessed, modified, or otherwise used. Global parameters like the renew timer can be accessed by the parameter
name and the tag of the server for which they are configured. For example: the commands described in The remote-
global-parameter4-get, remote-global-parameter6-get Commands allow the value of the global parameter to be fetched
by the parameter name and the server name. Getting the global parameter only by its name (without specifying the
server tag) is not possible, because there may be many global parameters with a given name in the database.

When the server associated with a non-shareable configuration element is deleted, the configuration element is auto-
matically deleted from the database along with the server because the non-shareable element must be always assigned
to a server (or the logical server all).

The terms “shareable” and ‘“non-shareable” only apply to associations with user-defined servers; all configuration
elements associated with the logical server all are by definition shareable. For example: the renew-timer associated
with all servers is used by all servers connecting to the database which do not have their specific renew timers defined. In
a special case, when none of the configuration elements are associated with user-defined servers, the entire configuration
in the database is shareable because all its pieces belong to all servers.

Note: Be very careful when associating configuration elements with different server tags. The configuration backend
does not protect against some possible misconfigurations that may arise from the wrong server tags’ assignments. For
example: if a shared network is assigned to one server and the subnets belonging to this shared network to another
server, the servers will fail upon trying to fetch and use this configuration. The server fetching the subnets will be
aware that the subnets are associated with the shared network, but the shared network will not be found by this server
since it doesn’t belong to it. In such a case, both the shared network and the subnets should be assigned to the same set
of servers.

5.2. Kea Configuration Backend 39



Kea Administrator Reference Manual Documentation, Release 2.0.2

5.2.5 Configuration Files Inclusion

The parser provides the ability to include files. The syntax was chosen to look similar to how Apache includes PHP
scripts in HTML code. This particular syntax was chosen to emphasize that the include directive is an additional feature
and not a part of JSON syntax.

The inclusion is implemented as a stack of files. You can use the include directive in nested includes. Up to ten nesting
levels are supported. This arbitrarily chosen limit is protection against recursive inclusions.

The include directive has the form:

<?include "[PATH]"?>

The [PATH] pattern should be replaced with an absolute path or a path relative to the current working directory at the
time the Kea process was launched.

To include one file from another, use the following syntax:

{
"Dhcp6": {
"interfaces-config": {
"interfaces": [ "*" ]},
"preferred-lifetime": 3000,
"rebind-timer": 2000,
"renew-timer": 1000,
<?include "subnets.json"?>
"valid-lifetime": 4000

}

where the content of “subnets.json” may be:

"subnet4": [

{

"id": 123,

"subnet": "192.0.2.0/24"
1,
{

"id": 234,

"subnet": "192.0.3.0/24"
1,
{

"id": 345,

"subnet": "10.0.0.0/8"
}

40 Chapter 5. Kea Configuration




CHAPTER
SIX

MANAGING KEA WITH KEACTRL

6.1 Overview

keactrl is a shell script which controls the startup, shutdown, and reconfiguration of the Kea servers (kea-dhcp4,
kea-dhcp6, kea-dhcp-ddns, kea-ctrl-agent, and kea-netconf). It also provides the means for checking the
current status of the servers and determining the configuration files in use.

keactrl is available only when Kea is built from sources. When installing Kea using native packages, the native
systemd scripts are provided. See Native Packages and systemd Section for details.

6.2 Command Line Options

keactrl is run as follows:

# keactrl <command> [-c keactrl-config-file] [-s server[,server,...]]

<command> is one of the commands described in Commands.

The optional -c keactrl-config-file switch allows specification of an alternate keactrl configuration file.
(--ctrl-config is a synonym for -c.) In the absence of -c, keactrl uses the default configuration file
[kea-install-dir]/etc/kea/keactrl.conf.

The optional -s server[,server,...] switch selects the servers to which the command is issued. (--server is a
synonym for -s.) If absent, the command is sent to all servers enabled in the keactrl configuration file. If multiple
servers are specified, they should be separated by commas with no intervening spaces.

6.3 The keactrl Configuration File

Depending on the administrator’s requirements, it may not be necessary to run all of the available servers. The
keactrl configuration file sets which servers are enabled and which are disabled. The default configuration file is
[kea-install-dir]/etc/kea/keactrl.conf, but this can be overridden on a per-command basis using the -c
switch.

The contents of keactrl.conf are:

# This is a configuration file for keactrl script which controls
# the startup, shutdown, reconfiguration and gathering the status
# of the Kea processes.

(continues on next page)

41




Kea Administrator Reference Manual Documentation, Release 2.0.2

(continued from previous page)

# prefix holds the location where the Kea is installed.
prefix=@prefix@

# Location of Kea configuration file.
kea_dhcp4_config_file=@sysconfdir@/@PACKAGE@/kea-dhcp4.conf
kea_dhcp6_config_file=@sysconfdir@/@PACKAGE@/kea-dhcp6.conf
kea_dhcp_ddns_config_file=@sysconfdir@/@PACKAGE@/kea-dhcp-ddns.conf
kea_ctrl_agent_config_file=@sysconfdir@/@PACKAGE@/kea-ctrl-agent.conf
kea_netconf_config_file=@sysconfdir@/@PACKAGE@/kea-netconf.conf

# Location of Kea binaries.
exec_prefix=Q@exec_prefix@
dhcp4_srv=@sbindir@/kea-dhcp4
dhcp6_srv=@sbindir@/kea-dhcp6
dhcp_ddns_srv=@sbindir@/kea-dhcp-ddns
ctrl_agent_srv=@sbindir@/kea-ctrl-agent
netconf_srv=@sbindir@/kea-netconf

# Start DHCPv4 server?
dhcpd=yes

# Start DHCPv6 server?
dhcpb=yes

# Start DHCP DDNS server?
dhcp_ddns=no

# Start Control Agent?
ctrl_agent=yes

# Start Netconf?
netconf=no

# Be verbose?
kea_verbose=no

Note: In the example above, strings of the form @something@ are replaced by the appropriate values
when Kea is installed.

Setting the dhcp4, dhcp6, dhcp_ddns, ctrl_agent, and netconf parameters set to “yes” configures keactrl
to manage (start, reconfigure) all servers, i.e. kea-dhcp4, kea-dhcp6, kea-dhcp-ddns, kea-ctrl-agent, and
kea-netconf. When any of these parameters is set to “no”, keactrl ignores the corresponding server when starting
or reconfiguring Kea. Some daemons (dhcp_ddns and netconf) are disabled by default.

By default, Kea servers managed by keactrl are located in [kea-install-dir]/sbin. This should work for
most installations. If the default location needs to be altered, the paths specified with the dhcp4_srv, dhcp6_srv,
dhcp_ddns_srv, ctrl_agent_srv, and netconf_srv parameters should be modified.

The kea_verbose parameter specifies the verbosity of the servers being started. When kea_verbose is set to “yes,”
the logging level of the server is set to DEBUG. Modification of the logging severity in a configuration file, as described
in Logging, will have no effect as long as kea_verbose is set to “yes.” Setting it to “no” causes the server to use the
logging levels specified in the Kea configuration file. If no logging configuration is specified, the default settings are

42 Chapter 6. Managing Kea with keactrl




Kea Administrator Reference Manual Documentation, Release 2.0.2

used.

Note: The verbosity for the server is set when it is started. Once started, the verbosity can only be changed
by stopping the server and starting it again with the new value of the kea_verbose parameter.

6.4 Commands

The following commands are supported by keactrl:
* start - starts the selected servers.
e stop - stops all running servers.
* reload - triggers reconfiguration of the selected servers by sending the SIGHUP signal to them.
* status - returns the status of the servers (active or inactive) and the names of the configuration files in use.
e version - prints out the version of the keactrl tool itself, together with the versions of the Kea daemons.

Typical output from keactrl when starting the servers looks similar to the following:

$ keactrl start

INFO/keactrl: Starting kea-dhcp4 -c /usr/local/etc/kea/kea-dhcp4.conf -d
INFO/keactrl: Starting kea-dhcp6 -c /usr/local/etc/kea/kea-dhcp6.conf -d
INFO/keactrl: Starting kea-dhcp-ddns -c /usr/local/etc/kea/kea-dhcp-ddns.conf -d
INFO/keactrl: Starting kea-ctrl-agent -c /usr/local/etc/kea/kea-ctrl-agent.conf -d
INFO/keactrl: Starting kea-netconf -c /usr/local/etc/kea/kea-netconf.conf -d

Kea’s servers create PID files upon startup. These files are used by keactrl to determine whether a given server is
running. If one or more servers are running when the start command is issued, the output looks similar to the following:

$ keactrl start

INFO/keactrl: kea-dhcp4 appears to be running, see: PID 10918, PID file: /usr/local/var/
—run/kea/kea.kea-dhcp4.pid.

INFO/keactrl: kea-dhcp6 appears to be running, see: PID 10924, PID file: /usr/local/var/
—run/kea/kea.kea-dhcp6.pid.

INFO/keactrl: kea-dhcp-ddns appears to be running, see: PID 10930, PID file: /usr/local/
—var/run/kea/kea.kea-dhcp-ddns.pid.

INFO/keactrl: kea-ctrl-agent appears to be running, see: PID 10931, PID file: /usr/local/
—var/run/kea/kea.kea-ctrl-agent.pid.

INFO/keactrl: kea-netconf appears to be running, see: PID 10123, PID file: /usr/local/
—var/run/kea/kea.kea-netconf.pid.

During normal shutdowns, these PID files are deleted; they may, however, be left over as remnants following a system
crash. It is possible, though highly unlikely, that upon system restart the PIDs they contain may actually refer to
processes unrelated to Kea. This condition will cause keactrl to decide that the servers are running, when in fact they
are not. In such a case the PID files listed in the keactrl output must be manually deleted.

The following command stops all servers:

$ keactrl stop

INFO/keactrl: Stopping kea-dhcp4...
INFO/keactrl: Stopping kea-dhcp6...
INFO/keactrl: Stopping kea-dhcp-ddns...

(continues on next page)

6.4. Commands 43




Kea Administrator Reference Manual Documentation, Release 2.0.2

(continued from previous page)

INFO/keactrl: Stopping kea-ctrl-agent...
INFO/keactrl: Stopping kea-netconf...

Note that the stop command attempts to stop all servers regardless of whether they are “enabled” in keactrl. conf.
If any of the servers are not running, an informational message is displayed as in the stop command output below.

$ keactrl stop

INFO/keactrl: kea-dhcp4 isn't running.
INFO/keactrl: kea-dhcp6 isn't running.
INFO/keactrl: kea-dhcp-ddns isn't running.
INFO/keactrl: kea-ctrl-agent isn't running.
INFO/keactrl: kea-netconf isn't running.

As already mentioned, the reconfiguration of each Kea server is triggered by the SIGHUP signal. The reload command
sends the SIGHUP signal to any servers that are enabled in the keactrl configuration file and that are currently running.
When a server receives the SIGHUP signal it rereads its configuration file and, if the new configuration is valid, uses
the new configuration. A reload is executed as follows:

$ keactrl reload

INFO/keactrl: Reloading kea-dhcp4...
INFO/keactrl: Reloading kea-dhcp6...
INFO/keactrl: Reloading kea-dhcp-ddns...
INFO/keactrl: Reloading kea-ctrl-agent...

If any of the servers are not running, an informational message is displayed as in the reload command output below.
As of version 1.5.0, kea-netconf does not support the SIGHUP signal. If its configuration has changed, please stop
and restart it for the change to take effect.

$ keactrl stop

INFO/keactrl: kea-dhcp4 isn't running.
INFO/keactrl: kea-dhcp6 isn't running.
INFO/keactrl: kea-dhcp-ddns isn't running.
INFO/keactrl: kea-ctrl-agent isn't running.
INFO/keactrl: kea-netconf isn't running.

Note: NETCONF is an optional feature that is disabled by default and can be enabled during compilation. If Kea was
compiled without NETCONF support, keactrl does not provide information about it. The NETCONF entries are still
present in the keactrl. conf file, but NETCONF status is not shown and other commands ignore it.

Note: Currently keactrl does not report configuration failures when the server is started or reconfigured. To check
if the server’s configuration succeeded, the Kea log must be examined for errors. By default, the log is written to the
syslog file.

Sometimes it is useful to check which servers are running. The status command reports this, with typical output that
looks like:

$ keactrl status
DHCPv4 server: active
DHCPv6 server: inactive
DHCP DDNS: active

(continues on next page)

44 Chapter 6. Managing Kea with keactrl




Kea Administrator Reference Manual Documentation, Release 2.0.2

(continued from previous page)

Control Agent: active

Netconf agent: inactive

Kea configuration file: /usr/local/etc/kea/kea.conf

Kea DHCPv4 configuration file: /usr/local/etc/kea/kea-dhcp4.conf

Kea DHCPv6 configuration file: /usr/local/etc/kea/kea-dhcp6.conf

Kea DHCP DDNS configuration file: /usr/local/etc/kea/kea-dhcp-ddns.conf

Kea Control Agent configuration file: /usr/local/etc/kea/kea-ctrl-agent.conf
Kea Netconf configuration file: /usr/local/etc/kea/kea-netconf.conf

keactrl configuration file: /usr/local/etc/kea/keactrl.conf

keactrl status offers basic reporting capabilities. For more extensive insight into Kea’s health and status, consider
deploying Stork. For details, see Monitoring Kea With Stork.

6.5 Overriding the Server Selection

The optional -s switch allows the selection of the server(s) to which the keactrl command is issued. For example,
the following instructs keactrl to stop the kea-dhcp4 and kea-dhcp6 servers and leave the kea-dhcp-ddns and
kea-ctrl-agent running:

$ keactrl stop -s dhcp4,dhcp6

Similarly, the following starts only the kea-dhcp4 and kea-dhcp-ddns servers, but not kea-dhcp6 or
kea-ctrl-agent.

$ keactrl start -s dhcp4,dhcp_ddns

Note that the behavior of the -s switch with the start and reload commands is different from its behavior with the
stop command. On start and reload, keactrl checks whether the servers given as parameters to the -s switch are
enabled in the keactrl configuration file; if not, the server is ignored. For stop, however, this check is not made; the
command is applied to all listed servers, regardless of whether they have been enabled in the file.

The following keywords can be used with the -s command-line option:
¢ dhcp4 for kea-dhcp4.
¢ dhcp6 for kea-dhcp6.
¢ dhcp_ddns for kea-dhcp-ddns.
e ctrl_agent for kea-ctrl-agent.
* netconf for kea-netconf.

e all for all servers (default).

6.5. Overriding the Server Selection 45




Kea Administrator Reference Manual Documentation, Release 2.0.2

6.6 Native Packages and systemd

keactrl is a script that was developed to assist in managing Kea processes. However, all modern operating systems
have their own process-management scripts, such as systemd. In general, these native scripts should be used, as they
have several advantages. systemd scripts handle processes in a uniform way, so Kea is handled in a similar fashion to
HTTP or a mail server. Second and more importantly, systemd allows dependencies to be defined between services.
For example, it is easy to specify that the Kea server should not start until the network interfaces are operational. Using
native scripts also has other benefits, such as the ability to enable or disable services using commands, and the ability
to temporarily start a disabled service.

Thus, it is recommended to use systemctl commands if they are available. Native Kea packages do not provide
keactrl; systemctl service definitions are provided instead. Consult the system documentation for details.

Briefly, here are example commands to check status, start, stop, and restart various Kea daemons:

systemctl status isc-kea-ctrl-agent
systemctl start isc-kea-dhcp4-server
systemctl stop isc-kea-dhcp6-server
systemctl restart isc-kea-dhcp-ddns-server

H oW W W

Note that the service names may be slightly different between Linux distributions; in general, we have followed the
naming conventions in third-party packages. In particular, some systems may not have the isc- prefix.

46 Chapter 6. Managing Kea with keactrl




CHAPTER
SEVEN

THE KEA CONTROL AGENT

7.1 Overview of the Kea Control Agent

The Kea Control Agent (CA) is a daemon which exposes a RESTful control interface for managing Kea servers. The
daemon can receive control commands over HTTP and either forward these commands to the respective Kea servers
or handle these commands on its own. The determination whether the command should be handled by the CA or
forwarded is made by checking the value of the service parameter, which may be included in the command from the
controlling client. The details of the supported commands, as well as their structures, are provided in Management
API.

The CA can use hook libraries to provide support for additional commands or to program custom behavior of existing
commands. Such hook libraries must implement callouts for the control_command_receive hook point. Details
about creating new hook libraries and supported hook points can be found in the Kea Developer’s Guide.

The CA processes received commands according to the following algorithm:

* Pass command into any installed hooks (regardless of service value(s)). If the command is handled by a hook,
return the response.

« If the service specifies one or more services, forward the command to the specified services and return the
accumulated responses.

* If the service is not specified or is an empty list, handle the command if the CA supports it.

7.2 Configuration

The following example demonstrates the basic CA configuration.

{
"Control-agent": {
"http-host": "10.20.30.40",
"http-port": 8000,
"trust-anchor": "/path/to/the/ca-cert.pem",
"cert-file": "/path/to/the/agent-cert.pem",
"key-file": "/path/to/the/agent-key.pem",
"cert-required": true,
"authentication": {
"type": "basic",
"realm": "kea-control-agent",
"clients": [

{

(continues on next page)

47



https://reports.kea.isc.org/dev_guide/

Kea Administrator Reference Manual Documentation, Release 2.0.2

(continued from previous page)

"user": "admin",
"password": "1234"
1
1,
"control-sockets": {
"dhcp4": {
"comment": "main server",
"socket-type": "unix",
"socket-name": "/path/to/the/unix/socket-v4"
1,
"dhcp6": {
"socket-type": "unix",
"socket-name": "/path/to/the/unix/socket-v6",
"user-context": { "version": 3 }
1,
"d2": {
"socket-type": "unix",
"socket-name": "/path/to/the/unix/socket-d2"
1,
1
"hooks-libraries": [
{
"library": "/opt/local/control-agent-commands.so",
"parameters": {
"paraml": "foo"
}
11,

"loggers": [ {
"name": "kea-ctrl-agent",
"severity": "INFO"

]

The http-host and http-port parameters specify an IP address and port to which HTTP service will be bound. In
the example configuration provided above, the RESTful service will be available at the URL https://10.20.30.
40:8000/. If these parameters are not specified, the default URL is http://127.0.0.1:8000/.

When using Kea’s HA hook library with multi-threading, make sure that the address:port combination used for CA is
different from the HA peer URLSs, which are strictly for internal HA traffic between the peers. User commands should
still be sent via CA.

The trust-anchor, cert-file, “key-file, and cert-required parameters specify the TLS setup for HTTP,
i.e. HTTPS. If these parameters are not specified, HTTP is used. The TLS/HTTPS support in Kea is described in
TLS/HTTPS support.

As mentioned in Overview of the Kea Control Agent, the CA can forward received commands to the Kea servers for
processing. For example, config-get is sent to retrieve the configuration of one of the Kea services. When the CA
receives this command, including a service parameter indicating that the client wishes to retrieve the configuration
of the DHCPv4 server, the CA forwards the command to that server and passes the received response back to the client.
More about the service parameter and the general structure of commands can be found in Management API.

48 Chapter 7. The Kea Control Agent




Kea Administrator Reference Manual Documentation, Release 2.0.2

The CA uses UNIX domain sockets to forward control commands and receive responses from other Kea services. The
dhcp4, dhcp6, and d2 maps specify the files to which UNIX domain sockets are bound. In the configuration above, the
CA connects to the DHCPv4 server via /path/to/the/unix/socket-v4 to forward the commands to it. Obviously,
the DHCPv4 server must be configured to listen to connections via this same socket. In other words, the command-
socket configuration for the DHCPv4 server and the CA (for that server) must match. Consult Management API for the
DHCPv4 Server, Management API for the DHCPv6 Server, and Management API for the D2 Server to learn how the
socket configuration is specified for the DHCPv4, DHCPv6, and D2 services.

Warning: dhcp4-server, dhcp6-server, and d2-server were renamed to dhcp4, dhcp6, and d2 respectively
in Kea 1.2. If migrating from Kea 1.2, be sure to modify the CA configuration to use this new naming convention.

User contexts can store arbitrary data as long as they are in valid JSON syntax and their top-level element is a map (i.e.
the data must be enclosed in curly brackets). Some hook libraries may expect specific formatting; please consult the
relevant hook library documentation for details.

User contexts can be specified on either global scope, control socket, basic authentication, or loggers. One other useful
feature is the ability to store comments or descriptions; the parser translates a “comment” entry into a user context with
the entry, which allows a comment to be attached within the configuration itself.

Basic HTTP authentication was added in Kea 1.9.0; it protects against unauthorized uses of the control agent by local
users. For protection against remote attackers, HTTPS and reverse proxy of Secure Connections (in Versions Prior to
Kea 1.9.6) provide stronger security.

The authentication is described in the authentication block with the mandatory type parameter, which selects the
authentication. Currently only the basic HTTP authentication (type basic) is supported.

The realm authentication parameter is used for error messages when the basic HTTP authentication is required but the
client is not authorized.

When the clients authentication list is configured and not empty, basic HTTP authentication is required. Each element
of the list specifies a user ID and a password. The user ID is mandatory, must be not empty, and must not contain the
colon (:) character. The password is optional; when it is not specified an empty password is used.

Note: The basic HTTP authentication user ID and password are encoded in UTF-8, but the current Kea JSON syntax
only supports the Latin-1 (i.e. 0x00..0xff) Unicode subset.

Hook libraries can be loaded by the Control Agent in the same way as they are loaded by the DHCPv4 and DHCPv6
servers. The CA currently supports one hook point - control_command_receive - which makes it possible to delegate
processing of some commands to the hook library. The hooks-1libraries list contains the list of hook libraries that
should be loaded by the CA, along with their configuration information specified with parameters.

Please consult Logging for the details on how to configure logging. The CA’s root logger’s name is kea-ctrl-agent,
as given in the example above.

7.2. Configuration 49



Kea Administrator Reference Manual Documentation, Release 2.0.2

7.3 Secure Connections (in Versions Prior to Kea 1.9.6)

The Control Agent does not natively support secure HTTP connections, like SSL or TLS, before Kea 1.9.6.

To set up a secure connection, please use one of the available third-party HTTP servers and configure it to run as
a reverse proxy to the Control Agent. Kea has been tested with two major HTTP server implementations working
as a reverse proxy: Apache2 and nginx. Example configurations, including extensive comments, are provided in the
doc/examples/https/ directory.

The reverse proxy forwards HTTP requests received over a secure connection to the Control Agent using unsecured
HTTP. Typically, the reverse proxy and the Control Agent are running on the same machine, but it is possible to configure
them to run on separate machines as well. In this case, security depends on the protection of the communications
between the reverse proxy and the Control Agent.

Apart from providing the encryption layer for the control channel, a reverse proxy server is also often used for authen-
tication of the controlling clients. In this case, the client must present a valid certificate when it connects via reverse
proxy. The proxy server authenticates the client by checking whether the presented certificate is signed by the certificate
authority used by the server.

To illustrate this, the following is a sample configuration for the nginx server running as a reverse proxy to the Kea
Control Agent. The server enables authentication of the clients using certificates.

The server certificate and key can be generated as follows:

openssl genrsa -des3 -out kea-proxy.key 4096
openssl req -new -x509 -days 365 -key kea-proxy.key -out kea-proxy.crt

The CA certificate and key can be generated as follows:

openssl genrsa -des3 -out ca.key 4096
openssl req -new -x509 -days 365 -key ca.key -out ca.crt

The client certificate needs to be generated and signed:

openssl genrsa -des3 -out kea-client.key 4096

openssl req -new -key kea-client.key -out kea-client.csr

openssl x509 -req -days 365 -in kea-client.csr -CA ca.crt \
-CAkey ca.key -set_serial 01 -out kea-client.crt

Note that the "common name" value used when generating the client
and the server certificates must differ from the value used
for the CA certificate.

The client certificate must be deployed on the client system.
In order to test the proxy configuration with "curl", run a
command similar to the following:

curl -k --key kea-client.key --cert kea-client.crt -X POST \
-H Content-Type:application/json -d '{ "command": "list-commands" }' \

https://kea.example.org/kea

curl syntax for basic authentication is -u user:password

TR R R S S T T LR R T T TR R O L S S T R R T R S R R R R R S

(continues on next page)

50 Chapter 7. The Kea Control Agent




Kea Administrator Reference Manual Documentation, Release 2.0.2

(continued from previous page)

# nginx configuration starts here.

events {

}

http {
# HTTPS server
server {
# Use default HTTPS port.
listen 443 ssl;
# Set server name.
server_name kea.example.org;

#  Server certificate and key.
ssl_certificate /path/to/kea-proxy.crt;
ssl_certificate_key /path/to/kea-proxy.key;

# Certificate Authority. Client certificates must be signed by the CA.
ssl_client_certificate /path/to/ca.crt;

# Enable verification of the client certificate.
ssl_verify_client on;

# For URLs such as https://kea.example.org/kea, forward the
# requests to http://127.0.0.1:8000.
location /kea {
proxy_pass http://127.0.0.1:8000;
}

Note: Note that the configuration snippet provided above is for testing purposes only. It should be modified according
to the security policies and best practices of the administrator’s organization.

When using an HTTP client without TLS support, such as kea-shell, it is possible to use an HTTP/HTTPS translator
such as stunnel in client mode. A sample configuration is provided in the doc/examples/https/shell/ directory.

7.4 Secure Connections (in Kea 1.9.6 and Newer)

Since Kea 1.9.6, the Control Agent natively supports secure HTTP connections using TLS. This allows protection
against users from the node where the agent runs, something that a reverse proxy cannot provide. More about
TLS/HTTPS support in Kea can be found in TLS/HTTPS support.

TLS is configured using three string parameters, giving file names and a boolean parameter:
* The trust-anchor specifies the Certification Authority file name or directory path.
» The cert-file specifies the server certificate file name.

» The key-file specifies the private key file name. The file must not be encrypted.

7.4. Secure Connections (in Kea 1.9.6 and Newer) 51




Kea Administrator Reference Manual Documentation, Release 2.0.2

* The cert-required specifies whether client certificates are required or optional. The default is to require them
and to perform mutual authentication.

The file format is PEM. Either all the string parameters are specified and HTTP over TLS aka HTTPS is used, or none
is specified and plain HTTP is used. Configuring only one or two string parameters results in an error.

Note: When client certificates are not required, only the server side is authenticated, i.e. the communication is
encrypted with an unknown client. This protects only against passive attacks; active attacks, such as “Man in the
Middle,” are still possible.

Note: No standard HTTP authentication scheme cryptographically binds its end entity with TLS. This means that
the TLS client and server can be mutually authenticated, but there is no proof they are the same as for the HTTP
authentication.

Since Kea 1.9.6, the kea-shell tool supports TLS.

7.5 Starting the Control Agent

The CA is started by running its binary and specifying the configuration file it should use. For example:

$ ./kea-ctrl-agent -c /usr/local/etc/kea/kea-ctrl-agent.conf

It can be started by keactrl as well (see Managing Kea with keactrl).

7.6 Connecting to the Control Agent

For an example of a tool that can take advantage of the RESTful API, see The Kea Shell.

52 Chapter 7. The Kea Control Agent




CHAPTER
EIGHT

8.1

THE DHCPV4 SERVER

Starting and Stopping the DHCPv4 Server

It is recommended that the Kea DHCPv4 server be started and stopped using keactrl (described in Managing Kea
with keactrl); however, it is also possible to run the server directly. It accepts the following command-line switches:

-c file - specifies the configuration file. This is the only mandatory switch.

-d - specifies whether the server logging should be switched to debug/verbose mode. In verbose mode, the
logging severity and debuglevel specified in the configuration file are ignored; “debug” severity and the maximum
debuglevel (99) are assumed. The flag is convenient for temporarily switching the server into maximum verbosity,
e.g. when debugging.

-p server-port - specifies the local UDP port on which the server will listen. This is only useful during
testing, as a DHCPv4 server listening on ports other than the standard ones is not able to handle regular DHCPv4
queries.

-P client-port - specifies the remote UDP port to which the server will send all responses. This is only useful
during testing, as a DHCPv4 server sending responses to ports other than the standard ones is not able to handle
regular DHCPv4 queries.

-t file - specifies a configuration file to be tested. kea-dhcp4 loads it, checks it, and exits. During the test, log
messages are printed to standard output and error messages to standard error. The result of the test is reported
through the exit code (0 = configuration looks OK, 1 = error encountered). The check is not comprehensive;
certain checks are possible only when running the server.

-v - displays the Kea version and exits.

-V - displays the Kea extended version with additional parameters and exits. The listing includes the versions of
the libraries dynamically linked to Kea.

-W - displays the Kea configuration report and exits. The report is a copy of the config.report file produced
by ./configure; it is embedded in the executable binary.

On startup, the server detects available network interfaces and attempts to open UDP sockets on all interfaces mentioned
in the configuration file. Since the DHCPv4 server opens privileged ports, this daemon must be run as root.

During startup, the server attempts to create a PID file of the form [runstatedir]/kea/[conf name].kea-dhcp4.
pid, where:

runstatedir is the value as passed into the build configure script; it defaults to /usr/local/var/run. Note
that this value may be overridden at runtime by setting the environment variable KEA_PIDFILE_DIR, although
this is intended primarily for testing purposes.

conf name is the configuration file name used to start the server, minus all preceding paths and the file extension.
For example, given a pathname of /usr/local/etc/kea/myconf. txt, the portion used would be myconf.

53



Kea Administrator Reference Manual Documentation, Release 2.0.2

If the file already exists and contains the PID of a live process, the server issues a DHCP4_ALREADY_RUNNING log
message and exits. It is possible, though unlikely, that the file is a remnant of a system crash and the process to which
the PID belongs is unrelated to Kea. In such a case, it would be necessary to manually delete the PID file.

The server can be stopped using the kill command. When running in a console, the server can also be shut down by
pressing ctrl-c. Kea detects the key combination and shuts down gracefully.

8.2 DHCPv4 Server Configuration

8.2.1 Introduction

This section explains how to configure the Kea DHCPv4 server using a configuration file.

Before DHCPv4 is started, its configuration file must be created. The basic configuration is as follows:

{

# DHCPv4 configuration starts on the next line
"Dhcp4d": {

# First we set up global values
"valid-lifetime": 4000,
"renew-timer": 1000,
"rebind-timer": 2000,

# Next we set up the interfaces to be used by the server.
"interfaces-config": {
"interfaces": [ "eth0" ]

3,

# And we specify the type of lease database
"lease-database": {
"type": "memfile",
"persist": true,
"name": "/var/lib/kea/dhcp4.leases"”
1

# Finally, we list the subnets from which we will be leasing addresses.
"subnet4": [

{
"subnet": "192.0.2.0/24",
"pools": [
{
"pool": "192.0.2.1 - 192.0.2.200"
}
1
}
1
# DHCPv4 configuration ends with the next line
3
}

54 Chapter 8. The DHCPv4 Server




Kea Administrator Reference Manual Documentation, Release 2.0.2

The following paragraphs provide a brief overview of the parameters in the above example, along with their format.
Subsequent sections of this chapter go into much greater detail for these and other parameters.

The lines starting with a hash (#) are comments and are ignored by the server; they do not impact its operation in any
way.

The configuration starts in the first line with the initial opening curly bracket (or brace). Each configuration must
contain an object specifying the configuration of the Kea module using it. In the example above, this object is called
Dhcp4.

Note: In the current Kea release it is possible to specify configurations of multiple modules within a single config-
uration file, but this is not recommended. Support for this type of configuration was removed in the 1.7.10 release,
including the Logging object; its previous content, the list of loggers, must now be inside the Dhcp4 object.

The Dhcp4 configuration starts with the "Dhcp4": { line and ends with the corresponding closing brace (in the
above example, the brace after the last comment). Everything defined between those lines is considered to be the
Dhcp4 configuration.

In general, the order in which those parameters appear does not matter, but there are two caveats. The first one is that
the configuration file must be well-formed JSON, meaning that the parameters for any given scope must be separated
by a comma, and there must not be a comma after the last parameter. When reordering a configuration file, keep in
mind that moving a parameter to or from the last position in a given scope may also require moving the comma. The
second caveat is that it is uncommon — although legal JSON — to repeat the same parameter multiple times. If that
happens, the last occurrence of a given parameter in a given scope is used, while all previous instances are ignored.
This is unlikely to cause any confusion as there are no real-life reasons to keep multiple copies of the same parameter
in the configuration file.

The first few DHCPv4 configuration elements define some global parameters. valid-1ifetime defines how long the
addresses (leases) given out by the server are valid; the default is for a client to be allowed to use a given address for
4000 seconds. (Note that integer numbers are specified as is, without any quotes around them.) renew-timer and
rebind-timer are values (also in seconds) that define the T1 and T2 timers that govern when the client begins the
renewal and rebind processes.

Note: Beginning with Kea 1.6.0, the lease valid-lifetime is extended from a single value to a triplet with minimum,
default, and maximum values using min-valid-lifetime, valid-lifetime, and max-valid-lifetime. As of
Kea 1.9.5, these values may be specified in client classes. The procedure the server uses to select which lifetime value
to use is as follows:

If the client query is a BOOTP query, the server always uses the infinite lease time (e.g. Oxfftffff). Otherwise, the
server must determine which configured triplet to use by first searching all classes assigned to the query, and then the
subnet selected for the query.

Classes are searched in the order they were assigned to the query; the server uses the triplet from the first class that
specifies it. If no classes specify the triplet, the server uses the triplet specified by the subnet selected for the client. If
the subnet does not explicitly specify it, the server next looks at the subnet’s shared-network (if one exists), then for a
global specification, and finally the global default.

If the client requested a lifetime value via DHCP option 51, then the lifetime value used is the requested value bounded
by the configured triplet. In other words, if the requested lifetime is less than the configured minimum, the configured
minimum is used; if it is more than the configured maximum, the configured maximum is used. If the client did not
provide a requested value, the lifetime value used is the triplet default value.

Note: Both renew-timer and rebind-timer are optional. The server only sends rebind-timer to the client, via
DHCPv4 option code 59, if it is less than valid-1lifetime; and it only sends renew-timer, via DHCPv4 option

8.2. DHCPv4 Server Configuration 55



Kea Administrator Reference Manual Documentation, Release 2.0.2

code 58, if it is less than rebind-timer (or valid-lifetime if rebind-timer was not specified). In their absence,
the client should select values for T1 and T2 timers according to RFC 2131. See section Sending T1 (Option 58) and
T2 (Option 59) for more details on generating T1 and T2.

The interfaces-config map specifies the server configuration concerning the network interfaces on which the server
should listen to the DHCP messages. The interfaces parameter specifies a list of network interfaces on which the
server should listen. Lists are opened and closed with square brackets, with elements separated by commas. To listen
on two interfaces, the interfaces-config command should look like this:

"interfaces-config": {
"interfaces": [ "eth®", "ethl" ]
3

The next couple of lines define the lease database, the place where the server stores its lease information. This par-
ticular example tells the server to use memfile, which is the simplest and fastest database backend. It uses an in-
memory database and stores leases on disk in a CSV (comma-separated values) file. This is a very simple configu-
ration example; usually the lease database configuration is more extensive and contains additional parameters. Note
that lease-database is an object and opens up a new scope, using an opening brace. Its parameters (just one in this
example: type) follow. If there were more than one, they would be separated by commas. This scope is closed with a
closing brace. As more parameters for the Dhcp4 definition follow, a trailing comma is present.

Finally, we need to define a list of IPv4 subnets. This is the most important DHCPv4 configuration structure, as the
server uses that information to process clients’ requests. It defines all subnets from which the server is expected to
receive DHCP requests. The subnets are specified with the subnet4 parameter. It is a list, so it starts and ends with
square brackets. Each subnet definition in the list has several attributes associated with it, so it is a structure and is
opened and closed with braces. At a minimum, a subnet definition has to have at least two parameters: subnet, which
defines the whole subnet; and pools, which is a list of dynamically allocated pools that are governed by the DHCP
server.

The example contains a single subnet. If more than one were defined, additional elements in the subnet4 parameter
would be specified and separated by commas. For example, to define three subnets, the following syntax would be
used:

"subnet4": [

{
"pools": [ { "pool": "192.0.2.1 - 192.0.2.200" } 1,
"subnet": "192.0.2.0/24"

1

{
"pools": [ { "pool": "192.0.3.100 - 192.0.3.200" } 1],
"subnet": "192.0.3.0/24"

1

{
"pools": [ { "pool": "192.0.4.1 - 192.0.4.254" } ],
"subnet": "192.0.4.0/24"

}

Note that indentation is optional and is used for aesthetic purposes only. In some cases it may be preferable to use more
compact notation.

After all the parameters have been specified, there are two contexts open: global and Dhcp4; thus, two closing curly
brackets are needed to close them.

56 Chapter 8. The DHCPv4 Server



https://tools.ietf.org/html/rfc2131

Kea Administrator Reference Manual Documentation, Release 2.0.2

8.2.2 Lease Storage

All leases issued by the server are stored in the lease database. Currently there are four database backends available:
memfile (the default), MySQL, PostgreSQL, and Cassandra (deprecated).

8.2.2.1 Memfile - Basic Storage for Leases

The server is able to store lease data in different repositories. Larger deployments may elect to store leases in a database;
Lease Database Configuration describes this option. In typical smaller deployments, though, the server stores lease
information in a CSV file rather than a database. As well as requiring less administration, an advantage of using a file
for storage is that it eliminates a dependency on third-party database software.

The configuration of the memfile backend is controlled through the Dhcp4/lease-database parameters. The type pa-
rameter is mandatory and specifies which storage for leases the server should use, through the memfile value. The
following list gives additional optional parameters that can be used to configure the memfile backend.

e persist: controls whether the new leases and updates to existing leases are written to the file. It is strongly
recommended that the value of this parameter be set to true at all times during the server’s normal operation.
Not writing leases to disk means that if a server is restarted (e.g. after a power failure), it will not know which
addresses have been assigned. As a result, it may assign new clients addresses that are already in use. The value
of false is mostly useful for performance-testing purposes. The default value of the persist parameter is
true, which enables writing lease updates to the lease file.

* name: specifies an absolute location of the lease file in which new leases and lease updates will be recorded. The
default value for this parameter is " [kea-install-dir]/var/lib/kea/kea-leases4.csv".

» 1fc-interval: specifies the interval, in seconds, at which the server will perform a lease file cleanup (LFC).
This removes redundant (historical) information from the lease file and effectively reduces the lease file size.
The cleanup process is described in more detail later in this section. The default value of the 1fc-interval is
3600. A value of 0 disables the LFC.

* max-row-errors: specifies the number of row errors before the server stops attempting to load a lease file.
When the server loads a lease file, it is processed row by row, each row containing a single lease. If a row
is flawed and cannot be processed correctly the server logs it, discards the row, and goes on to the next row.
This parameter can be used to set a limit on the number of such discards that can occur, after which the server
abandons the effort and exits. The default value of O disables the limit and allows the server to process the entire
file, regardless of how many rows are discarded.

"Dhcp4": {
"lease-database": {
"type": "memfile",
"persist": true,
"name": "/tmp/kea-leases4.csv",

"lfc-interval": 1800,
"max-row-errors": 100

This configuration selects /tmp/kea-leases4.csv as the storage for lease information and enables persistence (writ-
ing lease updates to this file). It also configures the backend to perform a periodic cleanup of the lease file every 1800
seconds (30 minutes) and sets the maximum number of row errors to 100.

8.2. DHCPv4 Server Configuration 57




Kea Administrator Reference Manual Documentation, Release 2.0.2

8.2.2.2 Why Is Lease File Cleanup Necessary?

It is important to know how the lease file contents are organized to understand why the periodic lease file cleanup is
needed. Every time the server updates a lease or creates a new lease for a client, the new lease information must be
recorded in the lease file. For performance reasons, the server does not update the existing client’s lease in the file, as
this would potentially require rewriting the entire file. Instead, it simply appends the new lease information to the end
of the file; the previous lease entries for the client are not removed. When the server loads leases from the lease file,
e.g. at server startup, it assumes that the latest lease entry for the client is the valid one. Previous entries are discarded,
meaning that the server can reconstruct accurate information about the leases even though there may be many lease
entries for each client. However, storing many entries for each client results in a bloated lease file and impairs the
performance of the server’s startup and reconfiguration, as it needs to process a larger number of lease entries.

Lease file cleanup (LFC) removes all previous entries for each client and leaves only the latest ones. The interval at
which the cleanup is performed is configurable, and it should be selected according to the frequency of lease renewals
initiated by the clients. The more frequent the renewals, the smaller the value of 1fc-interval should be. Note,
however, that the LFC takes time and thus it is possible (although unlikely) that, if the 1fc-interval is too short, a
new cleanup may be started while the previous one is still running. The server would recover from this by skipping
the new cleanup when it detected that the previous cleanup was still in progress, but it implies that the actual cleanups
will be triggered more rarely than the configured interval. Moreover, triggering a new cleanup adds overhead to the
server, which is not able to respond to new requests for a short period of time when the new cleanup process is spawned.
Therefore, it is recommended that the 1fc-interval value be selected in a way that allows the LFC to complete the
cleanup before a new cleanup is triggered.

Lease file cleanup is performed by a separate process (in the background) to avoid a performance impact on the server
process. To avoid conflicts between two processes using the same lease files, the LFC process starts with Kea opening
a new lease file; the actual LFC process operates on the lease file that is no longer used by the server. There are also
other files created as a side effect of the lease file cleanup. The detailed description of the LFC process is located later
in this Kea Administrator’s Reference Manual: The LFC Process.

8.2.2.3 Lease Database Configuration

Note: Lease database access information must be configured for the DHCPv4 server, even if it has already been
configured for the DHCPvVG6 server. The servers store their information independently, so each server can use a separate
database or both servers can use the same database.

Note: Kea requires the database timezone to match the system timezone. For more details, see First-Time Creation of
the MySQL Database and First-Time Creation of the PostgreSQL Database.

Lease database configuration is controlled through the Dhcp4/lease-database parameters. The database type must
be set to memfile, mysql, postgresql, orcql’, e.g.:

"Dhcp4": { "lease-database": { "type": "mysql", ... }, ... }

Next, the name of the database to hold the leases must be set; this is the name used when the database was created (see
First-Time Creation of the MySQL Database, First-Time Creation of the PostgreSQL Database, or First-Time Creation
of the Cassandra Database).

For MySQL or PostgreSQL:

"Dhcpd": { "lease-database": { "name": "database-name" , ... }, ... }

For Cassandra:

58 Chapter 8. The DHCPv4 Server




Kea Administrator Reference Manual Documentation, Release 2.0.2

"Dhcpd": { "lease-database": { "keyspace": "database-name" , ... }, ... }

If the database is located on a different system from the DHCPv4 server, the database host name must also be specified:

"Dhcpd": { "lease-database": { "host": "remote-host-name", ... }, ... }

(It should be noted that this configuration may have a severe impact on server performance.)

Normally, the database is on the same machine as the DHCPv4 server. In this case, set the value to the empty string:

"Dhcpd": { "lease-database": { "host" : "", ... }, ... }

Should the database use a port other than the default, it may be specified as well:

"Dhcpd": { "lease-database": { "port"™ : 12345, ... }, ... }

Should the database be located on a different system, the administrator may need to specify a longer interval for the
connection timeout:

"Dhcp4": { "lease-database": { "connect-timeout" : timeout-in-seconds, ... }, ... }

The default value of five seconds should be more than adequate for local connections. If a timeout is given, though, it
should be an integer greater than zero.

The maximum number of times the server automatically attempts to reconnect to the lease database after connectivity
has been lost may be specified:

"Dhcp4": { "lease-database": { "max-reconnect-tries" : number-of-tries, ... }, ... }

If the server is unable to reconnect to the database after making the maximum number of attempts, the server will exit.
A value of zero (the default) disables automatic recovery and the server will exit immediately upon detecting a loss
of connectivity (MySQL and PostgreSQL only). For Cassandra, Kea uses an interface that connects to all nodes in a
cluster at the same time. Any connectivity issues should be handled by internal Cassandra mechanisms.

The number of milliseconds the server waits between attempts to reconnect to the lease database after connectivity has
been lost may also be specified:

"Dhcp4": { "lease-database": { "reconnect-wait-time" : number-of-milliseconds, ... },

-3

The default value for MySQL and PostgreSQL is 0, which disables automatic recovery and causes the server to exit
immediately upon detecting the loss of connectivity. The default value for Cassandra is 2000 ms.

"Dhcp4": { "lease-database": { "on-fail" : "stop-retry-exit", ... }, ... }

The possible values are:

e stop-retry-exit - disables the DHCP service while trying to automatically recover lost connections. Shuts
down the server on failure after exhausting max-reconnect-tries. This is the default value for MySQL and
PostgreSQL.

* serve-retry-exit - continues the DHCP service while trying to automatically recover lost connections. Shuts
down the server on failure after exhausting max-reconnect-tries.

* serve-retry-continue - continues the DHCP service and does not shut down the server even if the recovery
fails.

8.2. DHCPv4 Server Configuration 59




Kea Administrator Reference Manual Documentation, Release 2.0.2

Note: Automatic reconnection to database backends is configured individually per backend. This allows users to tailor
the recovery parameters to each backend they use. We do suggest that users enable it either for all backends or none,
so behavior is consistent.

Losing connectivity to a backend for which reconnect is disabled results (if configured) in the server shutting itself
down. This includes cases when the lease database backend and the hosts database backend are connected to the same
database instance.

It is highly recommended not to change the stop-retry-exit default setting for the lease manager, as it is critical
for the connection to be active while processing DHCP traffic. Change this only if the server is used exclusively as a
configuration tool.

The host parameter is used by the MySQL and PostgreSQL backends. Cassandra has a concept of contact points that
can be used to contact the cluster, instead of a single IP or hostname. It takes a list of comma-separated IP addresses,
which may be specified as:

"Dhcp4": { "lease-database": { "contact-points" : "192.0.2.1,192.0.2.2", ... }, ... }

Finally, the credentials of the account under which the server will access the database should be set:

"Dhcp4": { "lease-database": "user": "user-name",
"password": "password",
- 1,
.3

If there is no password to the account, set the password to the empty string "". (This is the default.)

8.2.2.4 Cassandra-Specific Parameters

The Cassandra backend is configured slightly differently. Cassandra has a concept of contact points that can be used to
contact the cluster, instead of a single IP or hostname. It takes a list of comma-separated IP addresses, which may be
specified as:

"Dhcp4": {
"lease-database": {
"type": "cql",
"contact-points": "ip-addressl, ip-address2 [,...]",
}1
}

Cassandra also supports a number of optional parameters:

e reconnect-wait-time - governs how long Kea waits before attempting to reconnect. Expressed in millisec-
onds. The default is 2000 [ms].

e connect-timeout - sets the timeout for connecting to a node. Expressed in milliseconds. The default is 5000
[ms].

* request-timeout - sets the timeout for waiting for a response from a node. Expressed in milliseconds. The
default is 12000 [ms].

* tcp-keepalive - governs the TCP keep-alive mechanism. Expressed in seconds of delay. If the parameter is
not present, the mechanism is disabled.

60 Chapter 8. The DHCPv4 Server




Kea Administrator Reference Manual Documentation, Release 2.0.2

* tcp-nodelay - enables/disables Nagle’s algorithm on connections. The default is true.

e consistency - configures the consistency level. The default is “quorum”. Supported values: any, one, two,
three, quorum, all, local-quorum, each-quorum, serial, local-serial, local-one. See Cassandra consistency for
more details.

* serial-consistency - configures the serial consistency level, which manages lightweight transaction isola-
tion. The default is “serial”. Supported values: any, one, two, three, quorum, all, local-quorum, each-quorum,
serial, local-serial, local-one. See Cassandra serial consistency for more details.

For example, a complex Cassandra configuration with most parameters specified could look as follows:

"Dhcp4": {
"lease-database": {
"type": "cql",
"keyspace": "keatest",
"contact-points": "192.0.2.1, 192.0.2.2, 192.0.2.3",
"port": 9042,

"reconnect-wait-time": 2000,
"connect-timeout": 5000,
"request-timeout": 12000,
"tcp-keepalive": 1,
"tcp-nodelay": true

Similar parameters can be specified for the hosts database.

8.2.3 Hosts Storage

Kea is also able to store information about host reservations in the database. The hosts database configuration uses the
same syntax as the lease database. In fact, the Kea server opens independent connections for each purpose, be it lease
or hosts information, which gives the most flexibility. Kea can keep leases and host reservations separately, but can also
point to the same database. Currently the supported hosts database types are MySQL, PostgreSQL, and Cassandra.

The following configuration can be used to configure a connection to MySQL.:

"Dhcp4": {
"hosts-database": {
"type": "mysql",

"name": "kea",

"user": "kea",
"password": "secretl23",
"host": "localhost",
"port": 3306

Please note that usage of hosts storage is optional. A user can define all host reservations in the configuration file, and
that is the recommended way if the number of reservations is small. However, when the number of reservations grows,
it is more convenient to use host storage. Please note that both storage methods (the configuration file and one of the
supported databases) can be used together. If hosts are defined in both places, the definitions from the configuration
file are checked first and external storage is checked later, if necessary.

8.2. DHCPv4 Server Configuration 61


https://docs.datastax.com/en/cassandra/3.0/cassandra/dml/dmlConfigConsistency.html
https://docs.datastax.com/en/cassandra/3.0/cassandra/dml/dmlConfigSerialConsistency.html

Kea Administrator Reference Manual Documentation, Release 2.0.2

Host information can be placed in multiple stores. Operations are performed on the stores in the order they are defined in
the configuration file, although this leads to a restriction in ordering in the case of a host reservation addition; read-only
stores must be configured after a (required) read-write store, or the addition will fail.

Note: Kea requires the database timezone to match the system timezone. For more details, see First-Time Creation of
the MySQL Database and First-Time Creation of the PostgreSQL Database.

8.2.3.1 DHCPv4 Hosts Database Configuration

Hosts database configuration is controlled through the Dhcp4/hosts-database parameters. If enabled, the type of
database must be set to mysqgl or postgresql.

"Dhcp4": { "hosts-database": { "type": "mysql", ... }, ... }

Next, the name of the database to hold the reservations must be set; this is the name used when the lease database was
created (see Supported Backends for instructions on how to set up the desired database type):

"Dhcp4": { "hosts-database": { "name": "database-name" , ... }, ... }

If the database is located on a different system than the DHCPv4 server, the database host name must also be specified:

"Dhcp4": { "hosts-database": { "host": remote-host-name, ... }, ... }

(Again, it should be noted that this configuration may have a severe impact on server performance.)

Normally, the database is on the same machine as the DHCPv4 server. In this case, set the value to the empty string:

"Dhcp4": { "hosts-database": { "host" : "", ... }, ... }

Should the database use a port different than the default, it may be specified as well:

"Dhcp4": { "hosts-database": { "port" : 12345, ... }, ... }

The maximum number of times the server automatically attempts to reconnect to the host database after connectivity
has been lost may be specified:

"Dhcp4": { "hosts-database": { "max-reconnect-tries" : number-of-tries, ... }, ... }

If the server is unable to reconnect to the database after making the maximum number of attempts, the server will exit.
A value of zero (the default) disables automatic recovery and the server will exit immediately upon detecting a loss of
connectivity (MySQL and PostgreSQL only).

The number of milliseconds the server waits between attempts to reconnect to the host database after connectivity has
been lost may also be specified:

"Dhcp4": { "hosts-database": { "reconnect-wait-time" : number-of-milliseconds, ... },

= }

The default value for MySQL and PostgreSQL is 0, which disables automatic recovery and causes the server to exit
immediately upon detecting the loss of connectivity. The default value for Cassandra is 2000 ms.

"Dhcp4": { "hosts-database": { "on-fail" : "stop-retry-exit", ... }, ... }

The possible values are:

62 Chapter 8. The DHCPv4 Server




Kea Administrator Reference Manual Documentation, Release 2.0.2

* stop-retry-exit - disables the DHCP service while trying to automatically recover lost connections. Shuts
down the server on failure after exhausting max-reconnect-tries. This is the default value for MySQL and
PostgreSQL.

* serve-retry-exit - continues the DHCP service while trying to automatically recover lost connections. Shuts
down the server on failure after exhausting max-reconnect-tries.

* serve-retry-continue - continues the DHCP service and does not shut down the server even if the recovery
fails.

Note: Automatic reconnection to database backends is configured individually per backend. This allows users to tailor
the recovery parameters to each backend they use. We do suggest that users enable it either for all backends or none,
so behavior is consistent.

Losing connectivity to a backend for which reconnect is disabled results (if configured) in the server shutting itself
down. This includes cases when the lease database backend and the hosts database backend are connected to the same
database instance.

Finally, the credentials of the account under which the server will access the database should be set:

"Dhcp4": { "hosts-database": { "user": "user-name",
"password": "password",
},
}
If there is no password to the account, set the password to the empty string "". (This is the default.)

The multiple storage extension uses a similar syntax; a configuration is placed into a hosts-databases list instead
of into a hosts-database entry, as in:

"Dhcp4": { "hosts-databases": [ { "type": "mysql", ... 3}, ... 1, ... }

For Cassandra-specific parameters, see Cassandra-Specific Parameters.

If the same host is configured both in-file and in-database, Kea does not issue a warning, as it would if both were
specified in the same data source. Instead, the host configured in-file has priority over the one configured in-database.

8.2.3.2 Using Read-Only Databases for Host Reservations With DHCPv4

In some deployments, the user whose name is specified in the database backend configuration may not have write
privileges to the database. This is often required by the policy within a given network to secure the data from being
unintentionally modified. In many cases administrators have deployed inventory databases, which contain substantially
more information about the hosts than just the static reservations assigned to them. The inventory database can be used
to create a view of a Kea hosts database and such a view is often read-only.

Kea host-database backends operate with an implicit configuration to both read from and write to the database. If the
database user does not have write access to the host database, the backend will fail to start and the server will refuse to
start (or reconfigure). However, if access to a read-only host database is required for retrieving reservations for clients
and/or assigning specific addresses and options, it is possible to explicitly configure Kea to start in “read-only” mode.
This is controlled by the readonly boolean parameter as follows:

"Dhcp4": { "hosts-database": { "readonly": true, ... }, ... }

Setting this parameter to false configures the database backend to operate in “read-write” mode, which is also the
default configuration if the parameter is not specified.

8.2. DHCPv4 Server Configuration 63




Kea Administrator Reference Manual Documentation, Release 2.0.2

Note: The readonly parameter is only supported for MySQL and PostgreSQL databases.

8.2.4 Interface Configuration

The DHCPv4 server must be configured to listen on specific network interfaces. The simplest network interface con-
figuration tells the server to listen on all available interfaces:

nDth4n: {
"interfaces-config": {
"interfaces": [ "*" ]
}
1

The asterisk plays the role of a wildcard and means “listen on all interfaces.” However, it is usually a good idea to
explicitly specify interface names:

"Dhcpd": {
"interfaces-config": {
"interfaces": [ "ethl", "eth3" ]
}1
}

It is possible to use an interface wildcard (*) concurrently with explicit interface names:

"Dhcp4": {
"interfaces-config": {
"interfaces": [ "ethl", "eth3”, Wy ]
1,
}

This form of usage should only be used when it is desired to temporarily override a list of interface names and listen
on all interfaces.

Some deployments of DHCP servers require that the servers listen on interfaces with multiple IPv4 addresses config-
ured. In these situations, the address to use can be selected by appending an IPv4 address to the interface name in the
following manner:

"Dhcp4": {
"interfaces-config": {
"interfaces": [ "eth1/10.0.0.1", "eth3/192.0.2.3" ]
1,

Should the server be required to listen on multiple IPv4 addresses assigned to the same interface, multiple addresses
can be specified for an interface as in the example below:

"Dhcpd": {
"interfaces-config": {

(continues on next page)

64 Chapter 8. The DHCPv4 Server




Kea Administrator Reference Manual Documentation, Release 2.0.2

(continued from previous page)

"interfaces": [ "eth1/10.0.0.1", "ethl1/10.0.0.2" ]
1

Alternatively, if the server should listen on all addresses for the particular interface, an interface name without any
address should be specified.

Kea supports responding to directly connected clients which do not have an address configured. This requires the
server to inject the hardware address of the destination into the data-link layer of the packet being sent to the client.
The DHCPv4 server uses raw sockets to achieve this, and builds the entire IP/UDP stack for the outgoing packets. The
downside of raw socket use, however, is that incoming and outgoing packets bypass the firewalls (e.g. iptables).

Handling traffic on multiple IPv4 addresses assigned to the same interface can be a challenge, as raw sockets are bound
to the interface. When the DHCP server is configured to use the raw socket on an interface to receive DHCP traffic,
advanced packet filtering techniques (e.g. the BPF) must be used to receive unicast traffic on the desired addresses
assigned to the interface. Whether clients use the raw socket or the UDP socket depends on whether they are directly
connected (raw socket) or relayed (either raw or UDP socket).

Therefore, in deployments where the server does not need to provision the directly connected clients and only receives
the unicast packets from the relay agents, the Kea server should be configured to use UDP sockets instead of raw sockets.
The following configuration demonstrates how this can be achieved:

"Dhcp4": {
"interfaces-config": {
"interfaces": [ "ethl", "eth3" ],

"dhcp-socket-type": "udp"
1

The dhcp-socket-type parameter specifies that the IP/UDP sockets will be opened on all interfaces on which the
server listens, i.e. “ethl” and “eth3” in this example. If dhcp-socket-type is set to raw, it configures the server to
use raw sockets instead. If the dhcp-socket-type value is not specified, the default value raw is used.

Using UDP sockets automatically disables the reception of broadcast packets from directly connected clients. This
effectively means that UDP sockets can be used for relayed traffic only. When using raw sockets, both the traffic from
the directly connected clients and the relayed traffic are handled.

Caution should be taken when configuring the server to open multiple raw sockets on the interface with several IPv4
addresses assigned. If the directly connected client sends the message to the broadcast address, all sockets on this link
will receive this message and multiple responses will be sent to the client. Therefore, the configuration with multiple
IPv4 addresses assigned to the interface should not be used when the directly connected clients are operating on that
link. To use a single address on such an interface, the “interface-name/address” notation should be used.

Note: Specifying the value raw as the socket type does not guarantee that raw sockets will be used! The use of raw
sockets to handle traffic from the directly connected clients is currently supported on Linux and BSD systems only. If
raw sockets are not supported on the particular OS in use, the server will issue a warning and fall back to using IP/UDP
sockets.

In a typical environment, the DHCP server is expected to send back a response on the same network interface on which
the query was received. This is the default behavior. However, in some deployments it is desired that the outbound
(response) packets be sent as regular traffic and the outbound interface be determined by the routing tables. This kind
of asymmetric traffic is uncommon, but valid. Kea supports a parameter called outbound-interface that controls

8.2. DHCPv4 Server Configuration 65




Kea Administrator Reference Manual Documentation, Release 2.0.2

this behavior. It supports two values: the first one, same-as-inbound, tells Kea to send back the response on the same
interface where the query packet was received. This is the default behavior. The second parameter, use-routing,
tells Kea to send regular UDP packets and let the kernel’s routing table determine the most appropriate interface. This
only works when dhcp-socket-type is set to udp. An example configuration looks as follows:

"Dhcp4": {
"interfaces-config": {
"interfaces": [ "ethl", "eth3" ],
"dhcp-socket-type": "udp",
"outbound-interface": "use-routing"
1
}

Interfaces are re-detected at each reconfiguration. This behavior can be disabled by setting the re-detect value to
false, for instance:

"Dhcp4": {
"interfaces-config": {
"interfaces": [ "ethl", "eth3" ],

"re-detect": false

b,

Note that interfaces are not re-detected during config-test.

Usually loopback interfaces (e.g. the lo or lo0 interface) are not configured, but if a loopback interface is explicitly
configured and IP/UDP sockets are specified, the loopback interface is accepted.

For example, this setup can be used to run Kea in a FreeBSD jail having only a loopback interface, to service a relayed
DHCP request:

"Dhcp4": {

"interfaces-config": {
"interfaces": [ "lo®" ],
"dhcp-socket-type": "udp"

1,

8.2.5 Issues With Unicast Responses to DHCPINFORM

The use of UDP sockets has certain benefits in deployments where the server receives only relayed traffic; these benefits
are mentioned in Interface Configuration. From the administrator’s perspective it is often desirable to configure the
system’s firewall to filter out unwanted traffic, and the use of UDP sockets facilitates this. However, the administrator
must also be aware of the implications related to filtering certain types of traffic, as it may impair the DHCP server’s
operation.

In this section we focus on the case when the server receives the DHCPINFORM message from the client via a relay.
According to RFC 2131, the server should unicast the DHCPACK response to the address carried in the ciaddr field.
When the UDP socket is in use, the DHCP server relies on the low-level functions of an operating system to build the
data link, IP, and UDP layers of the outgoing message. Typically, the OS first uses ARP to obtain the client’s link-layer
address to be inserted into the frame’s header, if the address is not cached from a previous transaction that the client

66 Chapter 8. The DHCPv4 Server



https://tools.ietf.org/html/rfc2131

Kea Administrator Reference Manual Documentation, Release 2.0.2

had with the server. When the ARP exchange is successful, the DHCP message can be unicast to the client, using the
obtained address.

Some system administrators block ARP messages in their network, which causes issues for the server when it responds
to the DHCPINFORM messages because the server is unable to send the DHCPACK if the preceding ARP communi-
cation fails. Since the OS is entirely responsible for the ARP communication and then sending the DHCP packet over
the wire, the DHCP server has no means to determine that the ARP exchange failed and the DHCP response message
was dropped. Thus, the server does not log any error messages when the outgoing DHCP response is dropped. At the
same time, all hooks pertaining to the packet-sending operation will be called, even though the message never reaches
its destination.

Note that the issue described in this section is not observed when raw sockets are in use, because, in this case, the
DHCEP server builds all the layers of the outgoing message on its own and does not use ARP. Instead, it inserts the value
carried in the chaddr field of the DHCPINFORM message into the link layer.

Server administrators willing to support DHCPINFORM messages via relays should not block ARP traffic in their
networks, or should use raw sockets instead of UDP sockets.

8.2.6 IPv4 Subnet Identifier

The subnet identifier (subnet ID) is a unique number associated with a particular subnet. In principle, it is used to
associate clients’ leases with their respective subnets. When a subnet identifier is not specified for a subnet being
configured, it is automatically assigned by the configuration mechanism. The identifiers are assigned starting at 1 and
are monotonically increased for each subsequent subnet: 1,2,3 ....

If there are multiple subnets configured with auto-generated identifiers and one of them is removed, the subnet identifiers
may be renumbered. For example: if there are four subnets and the third is removed, the last subnet will be assigned
the identifier that the third subnet had before removal. As a result, the leases stored in the lease database for subnet 3
are now associated with subnet 4, something that may have unexpected consequences. The only remedy for this issue
at present is to manually specify a unique identifier for each subnet.

Note: Subnet IDs must be greater than zero and less than 4294967295.

The following configuration assigns the specified subnet identifier to a newly configured subnet:

"Dhcp4": {
"subnet4": [
{
"subnet": "192.0.2.0/24",
"id": 1024,
}
]
}

This identifier will not change for this subnet unless the id parameter is removed or set to 0. The value of 0 forces
auto-generation of the subnet identifier.

8.2. DHCPv4 Server Configuration 67




Kea Administrator Reference Manual Documentation, Release 2.0.2

8.2.7 IPv4 Subnet Prefix

The subnet prefix is the second way to identify a subnet. It does not need to have the address part to match the prefix
length; for instance, this configuration is accepted:

"Dhcp4": {
"subnet4": [
{
"subnet": "192.0.2.1/24",
}
]
}

This works even if there is another subnet with the “192.0.2.0/24” prefix; only the textual form of subnets are compared
to avoid duplicates.

Note: Abuse of this feature can lead to incorrect subnet selection (see How the DHCPv4 Server Selects a Subnet for
the Client).

8.2.8 Configuration of IPv4 Address Pools

The main role of a DHCPv4 server is address assignment. For this, the server must be configured with at least one
subnet and one pool of dynamic addresses to be managed. For example, assume that the server is connected to a
network segment that uses the 192.0.2.0/24 prefix. The administrator of that network decides that addresses from
range 192.0.2.10 to 192.0.2.20 are going to be managed by the Dhcp4 server. Such a configuration can be achieved in
the following way:

"Dhcp4": {
"subnet4": [
{
"subnet": "192.0.2.0/24",
"pools": [
{ "pool": "192.0.2.10 - 192.0.2.20" }
1,
}
]
}

Note that subnet is defined as a simple string, but the pools parameter is actually a list of pools; for this reason, the
pool definition is enclosed in square brackets, even though only one range of addresses is specified.

Each pool is a structure that contains the parameters that describe a single pool. Currently there is only one parameter,
pool, which gives the range of addresses in the pool.

It is possible to define more than one pool in a subnet; continuing the previous example, further assume that
192.0.2.64/26 should also be managed by the server. It could be written as 192.0.2.64 to 192.0.2.127, or it can be
expressed more simply as 192.0.2.64/26. Both formats are supported by Dhcp4 and can be mixed in the pool list. For
example, one could define the following pools:

68 Chapter 8. The DHCPv4 Server




Kea Administrator Reference Manual Documentation, Release 2.0.2

"Dhcp4": {
"subnet4": [
{
"subnet": "192.0.2.0/24",
"pools": [
{ "pool": "192.0.2.10-192.0.2.20" },
{ "pool": "192.0.2.64/26" }
1,
}
1,
}

White space in pool definitions is ignored, so spaces before and after the hyphen are optional. They can be used to
improve readability.

The number of pools is not limited, but for performance reasons it is recommended to use as few as possible.

The server may be configured to serve more than one subnet:

"Dhcp4": {
"subnet4": [
{
"subnet": "192.0.2.0/24",
"pools": [ { "pool": "192.0.2.1 - 192.0.2.200" } 1],
1
{
"subnet": "192.0.3.0/24",
"pools": [ { "pool": "192.0.3.100 - 192.0.3.200" } ],
1
{
"subnet": "192.0.4.0/24",
"pools": [ { "pool": "192.0.4.1 - 192.0.4.254" } ],
}
]
}

When configuring a DHCPv4 server using prefix/length notation, please pay attention to the boundary values. When
specifying that the server can use a given pool, it is also able to allocate the first (typically a network address) and the
last (typically a broadcast address) address from that pool. In the aforementioned example of pool 192.0.3.0/24, both
the 192.0.3.0 and 192.0.3.255 addresses may be assigned as well. This may be invalid in some network configurations.
To avoid this, use the “min-max’ notation.

8.2. DHCPv4 Server Configuration 69



Kea Administrator Reference Manual Documentation, Release 2.0.2

8.2.9 Sending T1 (Option 58) and T2 (Option 59)

According to RFC 2131, servers should send values for T1 and T2 that are 50% and 87.5% of the lease lifetime,
respectively. By default, kea-dhcp4 does not send either value; it can be configured to send values that are either
specified explicitly or that are calculated as percentages of the lease time. The server’s behavior is governed by a
combination of configuration parameters, two of which have already been mentioned. To send specific, fixed values
use the following two parameters:

* renew-timer - specifies the value of T1 in seconds.
e rebind-timer - specifies the value of T2 in seconds.

The server only sends T2 if it is less than the valid lease time. T1 is only sent if T2 is being sent and T1 is less than T2;
or T2 is not being sent and T1 is less than the valid lease time.

Calculating the values is controlled by the following three parameters.

e calculate-tee-times - when true, T1 and T2 are calculated as percentages of the valid lease time. It defaults
to false.

e tl-percent - the percentage of the valid lease time to use for T1. It is expressed as a real number between 0.0
and 1.0 and must be less than t2-percent. The default value is 0.50, per RFC 2131.

e t2-percent - the percentage of the valid lease time to use for T2. It is expressed as a real number between 0.0
and 1.0 and must be greater than t1-percent. The default value is .875, per RFC 2131.

Note: In the event that both explicit values are specified and calculate-tee-times is true, the server will use the
explicit values. Administrators with a setup where some subnets or shared-networks use explicit values and some use
calculated values must not define the explicit values at any level higher than where they will be used. Inheriting them
from too high a scope, such as global, will cause them to have explicit values at every level underneath (shared-networks
and subnets), effectively disabling calculated values.

8.2.10 Standard DHCPv4 Options

One of the major features of the DHCPv4 server is the ability to provide configuration options to clients. Most of
the options are sent by the server only if the client explicitly requests them using the Parameter Request List option.
Those that do not require inclusion in the Parameter Request List option are commonly used options, e.g. “Domain
Server”, and options which require special behavior, e.g. “Client FQDN”, which is returned to the client if the client
has included this option in its message to the server.

List of Standard DHCPv4 Options Configurable by an Administrator comprises the list of the standard DHCPv4 options
whose values can be configured using the configuration structures described in this section. This table excludes the
options which require special processing and thus cannot be configured with fixed values. The last column of the table
indicates which options can be sent by the server even when they are not requested in the Parameter Request List option,
and those which are sent only when explicitly requested.

The following example shows how to configure the addresses of DNS servers, which is one of the most frequently used
options. Options specified in this way are considered global and apply to all configured subnets.

"Dhcp4": {
"option-data": [
{
"name": "domain-name-servers",
"code": 6,

"space": "dhcp4",

(continues on next page)

70 Chapter 8. The DHCPv4 Server



https://tools.ietf.org/html/rfc2131

Kea Administrator Reference Manual Documentation, Release 2.0.2

(continued from previous page)

"csv-format": true,
"data": "192.0.2.1, 192.0.2.2"

b,

Note that either name or code is required; there is no need to specify both. space has a default value of “dhcp4”, so
this can be skipped as well if a regular (not encapsulated) DHCPv4 option is defined. Finally, csv-format defaults
to “true”, so it too can be skipped, unless the option value is specified as a hexadecimal string. Therefore, the above

example can be simplified to:

"Dhcp4": {
"option-data": [
{
"name": "domain-name-servers",
"data": "192.0.2.1, 192.0.2.2"
1
]
}

Defined options are added to the response when the client requests them, with a few exceptions which are always added.
To enforce the addition of a particular option, set the always-send flag to “true” as in:

"Dhcp4": {
"option-data": [
{
"name": "domain-name-servers",
"data": "192.0.2.1, 192.0.2.2",
"always-send": true
1
]
}

The effect is the same as if the client added the option code in the Parameter Request List option (or its equivalent for
vendor options):

"Dhcp4": {
"option-data": [
{
"name": "domain-name-servers",
"data": "192.0.2.1, 192.0.2.2",
"always-send": true
1
1,
"subnet4": [
{

"subnet": "192.0.3.0/24",
"option-data": [

{

(continues on next page)

8.2. DHCPv4 Server Configuration 71



Kea Administrator Reference Manual Documentation, Release 2.0.2

(continued from previous page)

"name": "domain-name-servers",
"data": "192.0.3.1, 192.0.3.2"
3},

3,

The domain-name-servers option is always added to responses (the always-send is “sticky”), but the value is the
subnet one when the client is localized in the subnet.

The name parameter specifies the option name. For a list of currently supported names, see List of Standard DHCPv4
Options Configurable by an Administrator below. The code parameter specifies the option code, which must match
one of the values from that list. The next line specifies the option space, which must always be set to “dhcp4” as these
are standard DHCPv4 options. For other option spaces, including custom option spaces, see Nested DHCPv4 Options
(Custom Option Spaces). The next line specifies the format in which the data will be entered; use of CSV (comma-
separated values) is recommended. The sixth line gives the actual value to be sent to clients. The data parameter is
specified as normal text, with values separated by commas if more than one value is allowed.

Options can also be configured as hexadecimal values. If csv-format is set to “false”, option data must be specified
as a hexadecimal string. The following commands configure the domain-name-servers option for all subnets with
the following addresses: 192.0.3.1 and 192.0.3.2. Note that csv-format is set to “false”.

"Dhcpd": {
"option-data": [
{
"name": "domain-name-servers",
"code": 6,
"space": "dhcp4",
"csv-format": false,
"data": "CO 00 03 01 CO 00 03 02"
1,
1,
}

Kea supports the following formats when specifying hexadecimal data:

* Delimited octets - one or more octets separated by either colons or spaces (‘:* or * ©). While each octet may
contain one or two digits, we strongly recommend always using two digits. Valid examples are ab:cd:ef and ab
cd ef.

* String of digits - a continuous string of hexadecimal digits with or without a Ox prefix. Valid examples are
Oxabcdef and abcdef.

Care should be taken to use proper encoding when using hexadecimal format; Kea’s ability to validate data correctness
in hexadecimal is limited.

As of Kea 1.6.0, it is also possible to specify data for binary options as a single-quoted text string within double quotes
as shown (note that csv-format must be set to false):

72 Chapter 8. The DHCPv4 Server




Kea Administrator Reference Manual Documentation, Release 2.0.2

"Dhcp4": {
"option-data": [
{
"name": "user-class",
"code": 77,
"space": "dhcp4",
"csv-format": false,
"data": "'convert this text to binary'"
1
1,
}

Most of the parameters in the option-data structure are optional and can be omitted in some circumstances, as
discussed in Unspecified Parameters for DHCPv4 Option Configuration.

It is possible to specify or override options on a per-subnet basis. If clients connected to most subnets are expected to
get the same values of a given option, administrators should use global options. On the other hand, if different values
are used in each subnet, it does not make sense to specify global option values; rather, only subnet-specific ones should
be set.

The following commands override the global DNS servers option for a particular subnet, setting a single DNS server
with address 192.0.2.3:

"Dhcp4": {
"subnet4": [
{
"option-data": [
{
"name": "domain-name-servers'",
"code": 6,
"space": "dhcp4",
"csv-format": true,
"data": "192.0.2.3"
1,
1,
1,
1,
}

In some cases it is useful to associate some options with an address pool from which a client is assigned a lease. Pool-
specific option values override subnet-specific and global option values; it is not possible to prioritize assignment of
pool-specific options via the order of pool declarations in the server configuration.

The following configuration snippet demonstrates how to specify the DNS servers option, which is assigned to a client
only if the client obtains an address from the given pool:

"Dhcp4d": {
"subnet4": [

(continues on next page)

8.2. DHCPv4 Server Configuration 73



Kea Administrator Reference Manual Documentation, Release 2.0.2

(continued from previous page)

{
"pools": [
{
"pool": "192.0.2.1 - 192.0.2.200",
"option-data": [
{
"name": "domain-name-servers",
"data": "192.0.2.3"
1,
1,
1,
]’
1,

}

Options can also be specified in class or host reservation scope. The current Kea options precedence order is (from
most important to least): host reservation, pool, subnet, shared network, class, global.

The currently supported standard DHCPv4 options are listed in List of Standard DHCPv4 Options Configurable by an
Administrator. “Name” and “Code” are the values that should be used as a name/code in the option-data structures.
“Type” designates the format of the data; the meanings of the various types are given in List of Standard DHCP Option
Types.

When a data field is a string and that string contains the comma (,; U+002C) character, the comma must be escaped
with two backslashes (; U+005C). This double escape is required because both the routine splitting of CSV data into
fields and JSON use the same escape character; a single escape (,) would make the JSON invalid. For example, the
string “foo,bar”” must be represented as:

"Dhcp4": {
"subnet4": [
{
"pools": [
{
"option-data": [
{
"name": "boot-file-name",
"data": "foo\\,bar"
}
]
1,
1,
1,
1,

(continues on next page)

74 Chapter 8. The DHCPv4 Server



Kea Administrator Reference Manual Documentation, Release 2.0.2

(continued from previous page)

Some options are designated as arrays, which means that more than one value is allowed. For example, the option
time-servers allows the specification of more than one IPv4 address, enabling clients to obtain the addresses of

multiple NTP servers.

Custom DHCPv4 Options describes the configuration syntax to create custom option definitions (formats). Creation of
custom definitions for standard options is generally not permitted, even if the definition being created matches the actual
option format defined in the RFCs. There is an exception to this rule for standard options for which Kea currently does
not provide a definition. To use such options, a server administrator must create a definition as described in Custom
DHCPv4 Options in the “dhcp4” option space. This definition should match the option format described in the relevant

RFC, but the configuration mechanism will allow any option format as it currently has no means to validate it.

Table 1: List of Standard DHCPv4 Options Configurable by an
Administrator

Name Code | Type Array? | Returned if not reque
time-offset 2 int32 false false
routers 3 ipv4-address true true
time-servers 4 ipv4-address true false
name-servers 5 ipv4-address true false
domain-name-servers 6 ipv4-address true true
log-servers 7 ipv4-address true false
cookie-servers 8 ipv4-address true false
Ipr-servers 9 ipv4-address true false
impress-servers 10 ipv4-address true false
resource-location-servers 11 ipv4-address true false
boot-size 13 uint16 false false
merit-dump 14 string false false
domain-name 15 fqdn false true
swap-server 16 ipv4-address false false
root-path 17 string false false
extensions-path 18 string false false
ip-forwarding 19 boolean false false
non-local-source-routing 20 boolean false false
policy-filter 21 ipv4-address true false
max-dgram-reassembly 22 uintl6 false false
default-ip-ttl 23 uint8 false false
path-mtu-aging-timeout 24 uint32 false false
path-mtu-plateau-table 25 uint16 true false
interface-mtu 26 uint16 false false
all-subnets-local 27 boolean false false
broadcast-address 28 ipv4-address false false
perform-mask-discovery 29 boolean false false
mask-supplier 30 boolean false false
router-discovery 31 boolean false false
router-solicitation-address 32 ipv4-address false false
static-routes 33 ipv4-address true false
trailer-encapsulation 34 boolean false false
arp-cache-timeout 35 uint32 false false

continues on next

8.2. DHCPv4 Server Configuration

75



Kea Administrator Reference Manual Documentation, Release 2.0.2

Table 1 - continued from previous page

Name Code | Type Array? | Returned if not reque
ieee802-3-encapsulation 36 boolean false false
default-tcp-ttl 37 uint8 false false
tcp-keepalive-interval 38 uint32 false false
tcp-keepalive-garbage 39 boolean false false
nis-domain 40 string false false
nis-servers 41 ipv4-address true false
ntp-servers 42 ipv4-address true false
vendor-encapsulated-options 43 empty false false
netbios-name-servers 44 ipv4-address true false
netbios-dd-server 45 ipv4-address true false
netbios-node-type 46 uint8 false false
netbios-scope 47 string false false
font-servers 48 ipv4-address true false
x-display-manager 49 ipv4-address true false
dhcp-option-overload 52 uint8 false false
dhcp-server-identifier 54 ipv4-address false true
dhcp-message 56 string false false
dhcp-max-message-size 57 uint16 false false
vendor-class-identifier 60 string false false
nwip-domain-name 62 string false false
nwip-suboptions 63 binary false false
nisplus-domain-name 64 string false false
nisplus-servers 65 ipv4-address true false
tftp-server-name 66 string false false
boot-file-name 67 string false false
mobile-ip-home-agent 68 ipv4-address true false
smtp-server 69 ipv4-address true false
pop-server 70 ipv4-address true false
nntp-server 71 ipv4-address true false
WWW-server 72 ipv4-address true false
finger-server 73 ipv4-address true false
irc-server 74 ipv4-address true false
streettalk-server 75 ipv4-address true false
streettalk-directory-assistance-server | 76 ipv4-address true false
user-class 77 binary false false
slp-directory-agent 78 record (boolean, ipv4-address) true false
slp-service-scope 79 record (boolean, string) false false
nds-server 85 ipv4-address true false
nds-tree-name 86 string false false
nds-context 87 string false false
bcems-controller-names 88 fqdn true false
bcems-controller-address 89 ipv4-address true false
client-system 93 uint16 true false
client-ndi 94 record (uint8, uint8, uint8) false false
uuid-guid 97 record (uint8, binary) false false
uap-servers 98 string false false
geoconf-civic 99 binary false false
pcode 100 string false false
tcode 101 string false false
continues on next
76 Chapter 8. The DHCPv4 Server



Kea Administrator Reference Manual Documentation, Release 2.0.2

Table 1 - continued from previous page

Name Code | Type Array? | Returned if not reque
v6-only-preferred 108 uint32 false false
netinfo-server-address 112 ipv4-address true false
netinfo-server-tag 113 string false false
default-url 114 string false false
auto-config 116 uint8 false false
name-service-search 117 uint16 true false
domain-search 119 fqdn true false
vivco-suboptions 124 record (uint32, binary) false false
vivso-suboptions 125 uint32 false false
pana-agent 136 ipv4-address true false
v4-lost 137 fqdn false false
capwap-ac-v4 138 ipv4-address true false
sip-ua-cs-domains 141 fqdn true false
rdnss-selection 146 record (uint8, ipv4-address, ipv4-address, fqdn) | true false
v4-portparams 159 record (uint8, psid) false false
v4-captive-portal 160 string false false
option-6rd 212 record (uint8, uint8, ipv6-address, ipv4-address) | true false
v4-access-domain 213 fqdn false false

Kea also supports other options than those listed above; the following options are returned by the Kea engine itself and

in general should not be configured manually.

8.2. DHCPv4 Server Configuration

77



Kea Administrator Reference Manual Documentation, Release 2.0.2

Table 2: List of Standard DHCPv4 Options Managed by Kea on Its Own
and Not Directly Configurable by an Administrator

Name Code Type Description
subnet-mask 1 ipv4-address calculated automatically, based on subnet definition.
host-name 12 string sent by client, generally governed by the DNS configuration.
dhcp- 50 | ipv6-address may be sent by the client and the server should not set it.
requested-
address
dhcp-lease- 51 uint32 set automatically based on the valid-1lifetime parameter.
time
dhcp-message- | 53 string sent by clients and servers. Set by the Kea engine depending on the
type situation and should never be configured explicitly.
dhcp- 55 uint8 array sent by clients and should never be sent by the server.
parameter-
request-list
dhcp-renewal- 58 uint32 governed by renew-timer parameter.
time
dhcp- 59 | uint32 governed by rebind-timer parameter.
rebinding-time
dhcp-client- 61 binary sent by client, echoed back with the value sent by the client.
identifier
fqdn 81 record (uint8, | part of the DDNS and D2 configuration.
uint8, uint8, fqdn)
dhcp-agent- 82 empty sent by the relay agent. This is an empty container option; see RAI
options option detail in later part of this section.
authenticate 90 | binary sent by client, kea does not validate it yet.
client-last- 91 uint32 sent by client, server does not set it.
transaction-
time
associated-ip 92 ipv4-address array | sent by client, server responds with list of addresses.
subnet- 118 | ipv4-address if present in client’s messages, will be used in the subnet selection

selection

process.

The following table lists all option types used in the previous two tables with a description of what values are accepted

for them.

78

Chapter 8. The DHCPv4 Server




Kea Administrator Reference Manual Documentation, Release 2.0.2

Table 3: List of Standard DHCP Option Types

NameMeaning

bi-
nary

An arbitrary string of bytes, specified as a set of hexadecimal digits.

boole

a\ boolean value with allowed values true or false.

empt

No value; data is carried in sub-options.

fqdn

Fully qualified domain name (e.g. www.example.com).

ipv4-
addrg

IPv4 address in the usual dotted-decimal notation (e.g. 192.0.2.1).
ss

ipv6-
addre

IPv6 address in the usual colon notation (e.g. 2001:db8::1).
ss

ipv6-

prefix

IPv6 prefix and prefix length specified using CIDR notation, e.g. 2001:db8:1::/64. This data type is used to
represent an 8-bit field conveying a prefix length and the variable length prefix value.

>

psid

PSID and PSID length separated by a slash, e.g. 3/4 specifies PSID=3 and PSID length=4. In the wire format
it is represented by an 8-bit field carrying PSID length (in this case equal to 4) and the 16-bits-long PSID
value field (in this case equal to “0011000000000000b” using binary notation). Allowed values for a PSID
length are O to 16. See RFC 7597 for details about the PSID wire representation.

recort

d Structured data that may be comprised of any types (except “record” and “empty”). The array flag applies to
the last field only.

string

Any text. Please note that Kea silently discards any terminating/trailing nulls from the end of ‘string’ options
when unpacking received packets. This is in keeping with RFC 2132, Section 2.

tu-
ple

A length encoded as an 8- (16- for DHCPv6) bit unsigned integer followed by a string of this length.

uint8

8-bit unsigned integer with allowed values O to 255.

uint1

6 16-bit unsigned integer with allowed values 0 to 65535.

uint3

P 32-bit unsigned integer with allowed values 0 to 4294967295.

int8

8-bit signed integer with allowed values -128 to 127.

int16

16-bit signed integer with allowed values -32768 to 32767.

int32

32-bit signed integer with allowed values -2147483648 to 2147483647.

Kea also supports the Relay Agent Information (RAI) option, sometimes referred to as the relay option, agent option,
or simply option 82. The option itself is just a container and does not convey any information on its own. The following
table contains a list of RAI sub-options that Kea can understand. The RAI and its sub-options are inserted by the relay
agent and received by Kea; there is no need for Kea to be configured with those options.

Table 4: List of RAI Sub-options That Kea Can Understand.

Name Code | Comment

circuit-id 1 Used when host-reservation-identifiers is set to circuit-id.
remote-id 2 Can be used with flex-id to identify hosts.

link selection 5 If present, is used to select the appropriate subnet.
subscriber-id 6 Can be used with flex-id to identify hosts.

relay-source-port | 19 If sent by the relay, Kea sends back its responses to this port.

All other RAI sub-options can be used in client classification to classify incoming packets to specific classes and/or by

flex-id

to construct a unique device identifier.

8.2. DHCPv4 Server Configuration 79


https://tools.ietf.org/html/rfc7597
https://tools.ietf.org/html/rfc2132#section-2

Kea Administrator Reference Manual Documentation, Release 2.0.2

8.2.11 Custom DHCPv4 Options

Kea supports custom (non-standard) DHCPv4 options. Let’s say that we want to define a new DHCPv4 option called
“f00”, which will have code 222 and will convey a single, unsigned, 32-bit integer value. We can define such an option
by putting the following entry in the configuration file:

"Dhcp4": {
"option-def": [
{
"name": "foo",
"code": 222,
"type": "uint32",
"array": false,
"record-types": "",
"space": "dhcp4",
"encapsulate": ""
1,
1,
}

The false value of the array parameter determines that the option does NOT comprise an array of “uint32” values
but is, instead, a single value. Two other parameters have been left blank: record-types and encapsulate. The
former specifies the comma-separated list of option data fields, if the option comprises a record of data fields. The
record-types value should be non-empty if type is set to “record”’; otherwise it must be left blank. The latter
parameter specifies the name of the option space being encapsulated by the particular option. If the particular option
does not encapsulate any option space, the parameter should be left blank. Note that the option-def configuration
statement only defines the format of an option and does not set its value(s).

The name, code, and type parameters are required; all others are optional. The array default value is false. The
record-types and encapsulate default values are blank (""). The default space is “dhcp4”.

Once the new option format is defined, its value is set in the same way as for a standard option. For example, the
following commands set a global value that applies to all subnets.

"Dhcp4": {
"option-data": [
{
"name": "foo",
"code": 222,
"space": "dhcp4",
"csv-format": true,
"data": "12345"
1,
1,
}

New options can take more complex forms than the simple use of primitives (uint8, string, ipv4-address, etc.); it is
possible to define an option comprising a number of existing primitives.

For example, say we want to define a new option that will consist of an IPv4 address, followed by an unsigned 16-bit
integer, followed by a boolean value, followed by a text string. Such an option could be defined in the following way:

80 Chapter 8. The DHCPv4 Server




Kea Administrator Reference Manual Documentation, Release 2.0.2

"Dhcp4": {
"option-def": [
{
"name": "bar",
"code": 223,
"space": "dhcp4",
"type": "record",
"array": false,
"record-types": "ipv4-address, uintl6, boolean, string",
"encapsulate": ""
1,
1,
}

The type is set to “record” to indicate that the option contains multiple values of different types. These types are given
as a comma-separated list in the record-types field and should be ones from those listed in List of Standard DHCP
Option Types.

The values of the option are set in an option-data statement as follows:

"Dhcp4": {
"option-data": [
{
"name": "bar",
"space": "dhcp4",
"code": 223,
"csv-format": true,
"data": "192.0.2.100, 123, true, Hello World"
}
1,
}

csv-format is set to true to indicate that the data field comprises a comma-separated list of values. The values in
data must correspond to the types set in the record-types field of the option definition.

When array is set to true and type is set to “record”, the last field is an array, i.e. it can contain more than one value,
as in:

"Dhcp4": {
"option-def": [
{
"name": "bar",
"code": 223,
"space": "dhcp4",
"type": "record",
"array": true,
"record-types": "ipv4-address, uintl6",
"encapsulate": ""
1,
1,
}

8.2. DHCPv4 Server Configuration 81




Kea Administrator Reference Manual Documentation, Release 2.0.2

The new option content is one IPv4 address followed by one or more 16- bit unsigned integers.

Note: In general, boolean values are specified as true or false, without quotes. Some specific boolean parameters
may also accept "true", "false", 0, 1, "0",and "1".

Note: Numbers can be specified in decimal or hexadecimal format. The hexadecimal format can be either plain (e.g.
abcd) or prefixed with Ox (e.g. Oxabcd).

8.2.12 DHCPv4 Private Options

Options with a code between 224 and 254 are reserved for private use. They can be defined at the global scope or at
the client-class local scope; this allows option definitions to be used depending on context, and option data to be set
accordingly. For instance, to configure an old PXEClient vendor:

"Dhcpd": {
"client-classes": [
{
"name": "pxeclient",
"test": "option[vendor-class-identifier].text == 'PXEClient'",
"option-def": [
{
"name": "configfile",
"code": 209,
"type": "string"
}
1,
1,
1,
}

As the Vendor-Specific Information (VSI) option (code 43) has vendor-specific format, i.e. can carry either raw binary
value or sub-options, this mechanism is also available for this option.

In the following example taken from a real configuration, two vendor classes use option 43 for different and incompatible
purposes:

"Dhcp4": {
"option-def": [

{
"name": "cookie",
"code": 1,
"type": "string",
"space": "APC"

1

{
"name": "mtftp-ip",
"code": 1,

"type": "ipv4-address",

(continues on next page)

82 Chapter 8. The DHCPv4 Server




Kea Administrator Reference Manual Documentation, Release 2.0.2

(continued from previous page)

"space": "PXE"

1
] ’
"client-classes": [
{
"name": "APC",
"test": "option[vendor-class-identifier].text == 'APC'",
"option-def": [
{
"name": "vendor-encapsulated-options",
"type": "empty",
"encapsulate": "APC"
}
1,
"option-data": [
{
"name": "cookie",
"space": "APC",
"data": "1APC"
1,
{
"name": "vendor-encapsulated-options"
1,
1,
1,
{
"name": "PXE",
"test": "option[vendor-class-identifier].text == 'PXE'",
"option-def": [
{
"name": "vendor-encapsulated-options",
"type": "empty",
"encapsulate": "PXE"
}
1,
"option-data": [
{
"name": "mtftp-ip",
"space": "PXE",
"data": "0.0.0.0"
1,
{
"name": "vendor-encapsulated-options"
} )
1,
1
(continues on next page)
8.2. DHCPv4 Server Configuration 83




Kea Administrator Reference Manual Documentation, Release 2.0.2

(continued from previous page)

}

The definition used to decode a VSI option is:
1. The local definition of a client class the incoming packet belongs to;
2. If none, the global definition;

3. If none, the last-resort definition described in the next section, DHCPv4 Vendor-Specific Options (backward-
compatible with previous Kea versions).

Note: This last-resort definition for the Vendor-Specific Information option (code 43) is not compatible with a raw
binary value. When there are known cases where a raw binary value will be used, a client class must be defined with
both a classification expression matching these cases and an option definition for the VSI option with a binary type and
no encapsulation.

Note: By default, in the Vendor-Specific Information option (code 43), sub-option code 0 and 255 mean PAD and
END respectively, according to RFC 2132. In other words, the sub-option code values of 0 and 255 are reserved. Kea
does, however, allow users to define sub-option codes from 0 to 255. If sub-options with codes 0 and/or 255 are defined,
bytes with that value are no longer treated as a PAD or an END, but as the sub-option code when parsing a VSI option
in an incoming query.

Option 43 input processing (also called unpacking) is deferred so that it happens after classification. This means clients
cannot be classified using option 43 sub-options. The definition used to unpack option 43 is determined as follows:

* If defined at the global scope, this definition is used.
« If defined at client class scope and the packet belongs to this class, the client class definition is used.

* If not defined at global scope nor in a client class to which the packet belongs, the built-in last resort definition
is used. This definition only says the sub-option space is “vendor-encapsulated-options-space”.

The output definition selection is a bit simpler:
* If the packet belongs to a client class which defines the option 43, use this definition.
* If defined at the global scope, use this definition.
¢ Otherwise, use the built-in last-resort definition.

Since they use a specific/per vendor option space, sub-options are defined at the global scope.

Note: Option definitions in client classes are allowed only for this limited option set (codes 43 and from 224 to 254),
and only for DHCPv4.

84 Chapter 8. The DHCPv4 Server



https://tools.ietf.org/html/rfc2132

Kea Administrator Reference Manual Documentation, Release 2.0.2

8.2.13 DHCPv4 Vendor-Specific Options

Currently there are two option spaces defined for the DHCPv4 daemon: “dhcp4” (for the top-level DHCPv4 options)
and “vendor-encapsulated-options-space”, which is empty by default but in which options can be defined. Those options
are carried in the Vendor-Specific Information option (code 43). The following examples show how to define an option
“foo” with code 1 that comprises an IPv4 address, an unsigned 16-bit integer, and a string. The “foo” option is conveyed
in a Vendor-Specific Information option.

The first step is to define the format of the option:

"Dhcp4": {
"option-def": [
{
"name": "foo",
"code": 1,
"space": "vendor-encapsulated-options-space",
"type": "record",
"array": false,
"record-types": "ipv4-address, uintl6, string",
"encapsulate": ""
}
1,
}

(Note that the option space is set to vendor-encapsulated-options-space.) Once the option format is defined,
the next step is to define actual values for that option:

"Dhcp4": {
"option-data": [
{
"name": "foo",
"space": "vendor-encapsulated-options-space",
"code": 1,
"csv-format": true,
"data": "192.0.2.3, 123, Hello World"
}
1,
3

In this example, we also include the Vendor-Specific Information option, which conveys our sub-option “foo”. This is
required; otherwise, the option will not be included in messages sent to the client.

"Dhcp4": {
"option-data": [
{
"name": "vendor-encapsulated-options"
}
1,
}

Alternatively, the option can be specified using its code.

8.2. DHCPv4 Server Configuration 85




Kea Administrator Reference Manual Documentation, Release 2.0.2

"Dhcp4": {
"option-data": [
{
"code": 43
}
1,
}

Another popular option that is often somewhat imprecisely called the “vendor option” is option 125. Its proper name
is the “vendor-independent vendor-specific information option” or “vivso”. The idea behind vivso options is that each
vendor has its own unique set of options with their own custom formats. The vendor is identified by a 32-bit unsigned
integer called enterprise-id or vendor-id. For example, vivso with vendor-id 4491 represents DOCSIS options, and
they are often seen when dealing with cable modems.

In Kea each vendor is represented by its own vendor space. Since there are hundreds of vendors and sometimes they use
different option definitions for different hardware, it is impossible for Kea to support them all natively. Fortunately, it’s
easy to define support for new vendor options. Let’s take an example of the Genexis home gateway. This device requires
sending the vivso 125 option with a sub-option 2 that contains a string with the TFTP server URL. To support such a
device, three steps are needed: first, we need to define option definitions that will explain how the option is supposed
to be formed. Second, we need to define option values. Third, we need to tell Kea when to send those specific options,
which we can do via client classification.

An example snippet of a configuration could look similar to the following:

{
// First, we need to define that the suboption 2 in vivso option for
// vendor-id 25167 has a specific format (it's a plain string in this example).
// After this definition, we can specify values for option tftp.
"option-def": [

{
// We define a short name, so the option can be referenced by name.
// The option has code 2 and resides within vendor space 25167.
// Its data is a plain string.
"name": "tftp",
"code": 2,
"space": "vendor-25167",
"type": "string"
11,

"client-classes": [

{
// We now need to tell Kea how to recognize when to use vendor space 25167.
// Usually we can use a simple expression, such as checking if the device
// sent a vivso option with specific vendor-id, e.g. "vendor[4491].exists".
// Unfortunately, Genexis is a bit unusual in this aspect, because it
// doesn't send vivso. In this case we need to look into the vendor class
// (option code 60) and see if there's a specific string that identifies
// the device.
"name": "cpe_genexis",
"test": "substring(option[60].hex,0,7) == "HMC1000'",

// Once the device is recognized, we want to send two options:
// the vivso option with vendor-id set to 25167, and a suboption 2.

(continues on next page)

86 Chapter 8. The DHCPv4 Server




Kea Administrator Reference Manual Documentation, Release 2.0.2

(continued from previous page)

"option-data": [
{
"name": "vivso-suboptions",
"data": "25167"
1,

// The suboption 2 value is defined as any other option. However,
// we want to send this suboption 2, even when the client didn't
// explicitly request it (often there is no way to do that for

// vendor options). Therefore we use always-send to force Kea

// to always send this option when 25167 vendor space is involved.

{
"name": "tftp",
"space": "vendor-25167",
"data": "tftp://192.0.2.1/genexis/HMC1000.v1.3.0-R.img",
"always-send": true
}

]
3]

By default Kea sends back only those options that are requested by a client, unless there are protocol rules that tell the
DHCEP server to always send an option. This approach works nicely in most cases and avoids problems with clients
refusing responses with options they don’t understand. Unfortunately, this is more complex when we consider vendor
options. Some vendors (such as DOCSIS, identified by vendor option 4491) have a mechanism to request specific
vendor options and Kea is able to honor those. Unfortunately, for many other vendors, such as Genexis (25167) as
discussed above, Kea does not have such a mechanism, so it cannot send any sub-options on its own. To solve this
issue, we came up with the concept of persistent options. Kea can be told to always send options, even if the client did
not request them. This can be achieved by adding "always-send": true to the option definition. Note that in this
particular case an option is defined in vendor space 25167. With always-send enabled, the option is sent every time
there is a need to deal with vendor space 25167.

Another possibility is to redefine the option; see DHCPv4 Private Options.

Kea comes with several example configuration files. Some of them showcase how to configure options 60 and 43. See
doc/examples/kead/vendor-specific. json and doc/examples/kea6/vivso. json in the Kea sources.

Note: Currently only one vendor is supported for vivco-suboptions (code 124) and vivso-suboptions (code 125)
options. Specifying multiple enterprise numbers within a single option instance or multiple options with different
enterprise numbers is not supported.

8.2.14 Nested DHCPv4 Options (Custom Option Spaces)

It is sometimes useful to define a completely new option space, such as when a user creates a new option in the standard
option space (“dhcp4”’) and wants this option to convey sub-options. Since they are in a separate space, sub-option codes
have a separate numbering scheme and may overlap with the codes of standard options.

Note that the creation of a new option space is not required when defining sub-options for a standard option, because one
is created by default if the standard option is meant to convey any sub-options (see DHCPv4 Vendor-Specific Options).

If we want a DHCPv4 option called “container” with code 222, that conveys two sub-options with codes 1 and 2, we
first need to define the new sub-options:

8.2. DHCPv4 Server Configuration 87




Kea Administrator Reference Manual Documentation, Release 2.0.2

"Dhcpd": {
"option-def": [

{
"name": "suboptl",
"code": 1,
"space": "isc",
"type": "ipv4-address",
"record-types": "",
"array": false,
"encapsulate": ""

1

{
"name": "subopt2",
"code": 2,
"space": "isc",
"type": "string",
"record-types": "",
"array": false,
"encapsulate": ""

}

1,
}

Note that we have defined the options to belong to a new option space (in this case, "isc").

The next step is to define a regular DHCPv4 option with the desired code and specify that it should include options
from the new option space:

"Dhcp4": {
"option-def": [

{

"name": "container",
"code": 222,
"space": "dhcp4",
"type": "empty",
"array": false,
"record-types": "",
"encapsulate": "isc"
}

The name of the option space in which the sub-options are defined is set in the encapsulate field. The type field is
set to empty, to indicate that this option does not carry any data other than sub-options.

Finally, we can set values for the new options:

"Dhcp4": {
"option-data": [
{

"name": "suboptl",

(continues on next page)

88 Chapter 8. The DHCPv4 Server




Kea Administrator Reference Manual Documentation, Release 2.0.2

(continued from previous page)

"code": 1,
"space": "isc",
"data": "192.0.2.3"
1,
}
"name": "subopt2",
"code": 2,
"space": "isc",
"data": "Hello world"
1
{
"name": "container",
"code": 222,
"space": "dhcp4"
}

It is possible to create an option which carries some data in addition to the sub-options defined in the encapsulated
option space. For example, if the "container" option from the previous example were required to carry a uintl6
value as well as the sub-options, the type value would have to be set to "uint16" in the option definition. (Such an
option would then have the following data structure: DHCP header, uintl6 value, sub-options.) The value specified
with the data parameter — which should be a valid integer enclosed in quotes, e.g. "123" — would then be assigned
to the uint16 field in the "container" option.

8.2.15 Unspecified Parameters for DHCPv4 Option Configuration

In many cases it is not required to specify all parameters for an option configuration, and the default values can be used.
However, it is important to understand the implications of not specifying some of them, as it may result in configuration
errors. The list below explains the behavior of the server when a particular parameter is not explicitly specified:

* name - the server requires either an option name or an option code to identify an option. If this parameter is
unspecified, the option code must be specified.

* code - the server requires either an option name or an option code to identify an option. This parameter may be
left unspecified if the name parameter is specified. However, this also requires that the particular option has a def-
inition (either as a standard option or an administrator-created definition for the option using an 'option-def’
structure), as the option definition associates an option with a particular name. It is possible to configure an
option for which there is no definition (unspecified option format). Configuration of such options requires the
use of the option code.

* space - if the option space is unspecified it defaults to 'dhcp4', which is an option space holding standard
DHCPv4 options.

data - if the option data is unspecified it defaults to an empty value. The empty value is mostly used for the
options which have no payload (boolean options), but it is legal to specify empty values for some options which
carry variable-length data and for which the specification allows a length of 0. For such options, the data param-
eter may be omitted in the configuration.

» csv-format - if this value is not specified, the server assumes that the option data is specified as a list of comma-
separated values to be assigned to individual fields of the DHCP option.

8.2. DHCPv4 Server Configuration 89




Kea Administrator Reference Manual Documentation, Release 2.0.2

8.2.16 Stateless Configuration of DHCPv4 Clients

The DHCPv4 server supports stateless client configuration, whereby the client has an IP address configured (e.g. using
manual configuration) and only contacts the server to obtain other configuration parameters, such as addresses of DNS
servers. To obtain the stateless configuration parameters, the client sends the DHCPINFORM message to the server
with the ciaddr set to the address that the client is currently using. The server unicasts the DHCPACK message to the
client that includes the stateless configuration ( “yiaddr” not set).

The server responds to the DHCPINFORM when the client is associated with a subnet defined in the server’s configu-
ration. An example subnet configuration looks like this:

"Dhcp4": {
"subnet4": [
{
"subnet": "192.0.2.0/24"
"option-data": [ {
"name": "domain-name-servers",
"code": 6,
"data": "192.0.2.200,192.0.2.201",
"csv-format": true,
"space": "dhcp4"
1
}
]
}

This subnet specifies the single option which will be included in the DHCPACK message to the client in response
to DHCPINFORM. The subnet definition does not require the address pool configuration if it will be used solely for
stateless configuration.

This server will associate the subnet with the client if one of the following conditions is met:

The DHCPINFORM is relayed and the giaddr matches the configured subnet.

The DHCPINFORM is unicast from the client and the ciaddr matches the configured subnet.

The DHCPINFORM is unicast from the client and the ciaddr is not set, but the source address of the IP packet
matches the configured subnet.

The DHCPINFORM is not relayed and the IP address on the interface on which the message is received matches
the configured subnet.

8.2.17 Client Classification in DHCPv4

The DHCPv4 server includes support for client classification. For a deeper discussion of the classification process, see
Client Classification.

In certain cases it is useful to configure the server to differentiate between DHCP client types and treat them accord-
ingly. Client classification can be used to modify the behavior of almost any part of DHCP message processing. Kea
currently offers client classification via private options and option 43 deferred unpacking; subnet selection; pool selec-
tion; assignment of different options; and, for cable modems, specific options for use with the TFTP server address and
the boot file field.

Kea can be instructed to limit access to given subnets based on class information. This is particularly useful for cases
where two types of devices share the same link and are expected to be served from two different subnets. The primary
use case for such a scenario is cable networks, where there are two classes of devices: the cable modem itself, which
should be handed a lease from subnet A; and all other devices behind the modem, which should get a lease from subnet

90 Chapter 8. The DHCPv4 Server




Kea Administrator Reference Manual Documentation, Release 2.0.2

B. That segregation is essential to prevent overly curious end-users from playing with their cable modems. For details
on how to set up class restrictions on subnets, see Configuring Subnets With Class Information.

When subnets belong to a shared network, the classification applies to subnet selection but not to pools; that is, a pool
in a subnet limited to a particular class can still be used by clients which do not belong to the class, if the pool they
are expected to use is exhausted. So the limit on access based on class information is also available at the pool level
within a subnet: see Configuring Pools With Class Information. This is useful when segregating clients belonging to
the same subnet into different address ranges.

In a similar way, a pool can be constrained to serve only known clients, i.e. clients which have a reservation, using the
built-in KNOWN or UNKNOWN classes. Addresses can be assigned to registered clients without giving a different address
per reservation, for instance when there are not enough available addresses. The determination whether there is a
reservation for a given client is made after a subnet is selected, so it is not possible to use KNOWN/UNKNOWN classes to
select a shared network or a subnet.

The process of classification is conducted in five steps. The first step is to assess an incoming packet and assign it
to zero or more classes. The second step is to choose a subnet, possibly based on the class information. When the
incoming packet is in the special class DROP, it is dropped and a debug message logged. The next step is to evaluate
class expressions depending on the built-in KNOWN/UNKNOWN classes after host reservation lookup, using them for pool
selection and assigning classes from host reservations. The list of required classes is then built and each class of the
list has its expression evaluated; when it returns true the packet is added as a member of the class. The last step is to
assign options, again possibly based on the class information. More complete and detailed information is available in
Client Classification.

There are two main methods of classification. The first is automatic and relies on examining the values in the vendor
class options or the existence of a host reservation. Information from these options is extracted, and a class name is
constructed from it and added to the class list for the packet. The second specifies an expression that is evaluated for
each packet. If the result is true, the packet is a member of the class.

Note: Care should be taken with client classification, as it is easy for clients that do not meet class criteria to be denied
all service.

8.2.17.1 Setting Fixed Fields in Classification

It is possible to specify that clients belonging to a particular class should receive packets with specific values in certain
fixed fields. In particular, three fixed fields are supported: next-server (conveys an IPv4 address, which is set in the
siaddr field), server-hostname (conveys a server hostname, can be up to 64 bytes long, and is sent in the sname
field) and boot-file-name (conveys the configuration file, can be up to 128 bytes long, and is sent using the file
field).

Obviously, there are many ways to assign clients to specific classes, but for PXE clients the client architecture type
option (code 93) seems to be particularly suited to make the distinction. The following example checks whether the
client identifies itself as a PXE device with architecture EFI x86-64, and sets several fields if it does. See Section 2.1
of RFC 4578) or the client documentation for specific values.

"Dhcp4": {
"client-classes": [

{
"name": "ipxe_efi_x64",
"test": "option[93].hex == 0x0009",
"next-server": "192.0.2.254",
"server-hostname": "hal9000",
"boot-file-name": "/dev/null"”

1,

(continues on next page)

8.2. DHCPv4 Server Configuration 91



https://tools.ietf.org/html/rfc4578#section-2.1
https://tools.ietf.org/html/rfc4578#section-2.1

Kea Administrator Reference Manual Documentation, Release 2.0.2

(continued from previous page)

}

If an incoming packet is matched to multiple classes, then the value used for each field will come from the first class
that specifies the field, in the order the classes are assigned to the packet.

Note: The classes are ordered as specified in the configuration.

8.2.17.2 Using Vendor Class Information in Classification

The server checks whether an incoming packet includes the vendor class identifier option (60). If it does, the content of
that option is prepended with VENDOR_CLASS\_, and it is interpreted as a class. For example, modern cable modems
send this option with value docsis3.0, so the packet belongs to the class VENDOR_CLASS_docsis3.0.

Note:  Certain special actions for clients in VENDOR_CLASS_docsis3.0 can be achieved by defining VEN-
DOR_CLASS_docsis3.0 and setting its next-server and boot-file-name values appropriately.

This example shows a configuration using an automatically generated VENDOR_CLASS\_ class. The administrator of
the network has decided that addresses from the range 192.0.2.10 to 192.0.2.20 are going to be managed by the Dhcp4
server and only clients belonging to the DOCSIS 3.0 client class are allowed to use that pool.

"Dhcp4": {
"subnet4": [
{
"subnet": "192.0.2.0/24",
"pools": [ { "pool": "192.0.2.10 - 192.0.2.20" } 1,
"client-class": "VENDOR_CLASS_docsis3.0"
}
1,
}

8.2.17.3 Defining and Using Custom Classes

The following example shows how to configure a class using an expression and a subnet using that class. This con-
figuration defines the class named Client_foo. It is comprised of all clients whose client IDs (option 61) start with
the string foo. Members of this class will be given addresses from 192.0.2.10 to 192.0.2.20 and the addresses of their
DNS servers set to 192.0.2.1 and 192.0.2.2.

"Dhcp4d": {
"client-classes": [
{
"name": "Client_foo",
"test": "substring(option[61].hex,0,3) == "'foo'",
"option-data": [
{

(continues on next page)

92 Chapter 8. The DHCPv4 Server




Kea Administrator Reference Manual Documentation, Release 2.0.2

(continued from previous page)

"name": "domain-name-servers",
"code": 6,

"space": "dhcp4",
"csv-format": true,

"data": "192.0.2.1, 192.0.2.2"

}
1
1,
1,
"subnet4": [
{
"subnet": "192.0.2.0/24",
"pools": [ { "pool": "192.0.2.10 - 192.0.2.20" } 1],
"client-class": "Client_foo"
1
1,

8.2.17.4 Required Classification

In some cases it is useful to limit the scope of a class to a shared network, subnet, or pool. There are two parameters
which are used to limit the scope of the class by instructing the server to evaluate test expressions when required.

The first one is the per-class only-if-required flag, which is false by default. When it is set to true, the test
expression of the class is not evaluated at the reception of the incoming packet but later, and only if the class evaluation
is required.

The second is require-client-classes, which takes a list of class names and is valid in shared-network, subnet,
and pool scope. Classes in these lists are marked as required and evaluated after selection of this specific shared
network/subnet/pool and before output-option processing.

In this example, a class is assigned to the incoming packet when the specified subnet is used:

"Dhcp4": {
"client-classes": [
{
"name": "Client_foo",
"test": "member('ALL')",
"only-if-required": true
1,
1,
"subnet4": [
{
"subnet": "192.0.2.0/24",
"pools": [ { "pool": "192.0.2.10 - 192.0.2.20" } 1],
"require-client-classes": [ "Client_foo" ],
1,

(continues on next page)

8.2. DHCPv4 Server Configuration 93




Kea Administrator Reference Manual Documentation, Release 2.0.2

(continued from previous page)

Required evaluation can be used to express complex dependencies like subnet membership. It can also be used to reverse
the precedence; if option-data is set in a subnet, it takes precedence over option-data in a class. If option-data
is moved to a required class and required in the subnet, a class evaluated earlier may take precedence.

Required evaluation is also available at the shared-network and pool levels. The order in which required classes are
considered is: shared-network, subnet, and pool, i.e. in the reverse order from the way in which option-data is
processed.

8.2.18 DDNS for DHCPv4

As mentioned earlier, kea-dhcp4 can be configured to generate requests to the DHCP-DDNS server, kea-dhcp-ddns,
(referred to herein as “D2”) to update DNS entries. These requests are known as Name Change Requests or NCRs.
Each NCR contains the following information:

1. Whether it is a request to add (update) or remove DNS entries.
2. Whether the change requests forward DNS updates (A records), reverse DNS updates (PTR records), or both.

3. The Fully Qualified Domain Name (FQDN), lease address, and DHCID (information identifying the client as-
sociated with the FQDN).

Prior to Kea 1.7.1, all parameters for controlling DDNS were within the global dhcp-ddns section of kea-dhcp4.
Beginning with Kea 1.7.1, DDNS-related parameters were split into two groups:

1. Connectivity Parameters

These are parameters which specify where and how kea-dhcp4 connects to and communicates with
D2. These parameters can only be specified within the top-level dhcp-ddns section in the kea-dhcp4
configuration. The connectivity parameters are listed below:

¢ enable-updates
e server-ip
e server-port
e sender-ip
¢ sender-port
* max-queue-size
e ncr-protocol
e ncr-format"
2. Behavioral Parameters

These parameters influence behavior such as how client host names and FQDN options are han-
dled. They have been moved out of the dhcp-ddns section so that they may be specified at the
global, shared-network, and/or subnet levels. Furthermore, they are inherited downward from global
to shared-network to subnet. In other words, if a parameter is not specified at a given level, the value
for that level comes from the level above it. The behavioral parameters are as follows:

* ddns-send-updates

94 Chapter 8. The DHCPv4 Server




Kea Administrator Reference Manual Documentation, Release 2.0.2

* ddns-override-no-update

¢ ddns-override-client-update
¢ ddns-replace-client-name"

¢ ddns-generated-prefix

e ddns-qualifying-suffix

¢ ddns-update-on-renew

* ddns-use-conflict-resolution
* hostname-char-set

¢ hostname-char-replacement

Note: For backward compatibility, configuration parsing still recognizes the original behavioral parameters specified
in dhcp-ddns. It does so by translating the parameter into its global equivalent. If a parameter is specified both globally
and in dhcp-ddns, the latter value is ignored. In either case, a log is emitted explaining what has occurred. Specifying
these values within dhcp-ddns is deprecated and support for it will be removed.

The default configuration and values would appear as follows:

"Dhcp4": {
"dhcp-ddns": {

// Connectivity parameters
"enable-updates": false,
"server-ip": "127.0.0.1",
"server-port":53001,
"sender-ip":"",
"sender-port":0,
"max-queue-size":1024,
"ncr-protocol":"UDP",
"ncr-format":"JSON"

1,

// Behavioral parameters (global)
"ddns-send-updates": true,
"ddns-override-no-update": false,
"ddns-override-client-update": false,
"ddns-replace-client-name": "never",
"ddns-generated-prefix": "myhost",
"ddns-qualifying-suffix": ""
"ddns-update-on-renew": false,
"ddns-use-conflict-resolution": true,
"hostname-char-set": ""
"hostname-char-replacement":

As of Kea 1.7.1, there are two parameters which determine if kea-dhcp4 can generate DDNS requests to D2: the
existing dhcp-ddns: enable-updates parameter, which now only controls whether kea-dhcp4 connects to D2; and
the new behavioral parameter, ddns-send-updates, which determines whether DDNS updates are enabled at a given
level (i.e. global, shared-network, or subnet). The following table shows how the two parameters function together:

8.2. DHCPv4 Server Configuration 95




Kea Administrator Reference Manual Documentation, Release 2.0.2

Table 5: Enabling and Disabling DDNS Updates

dhcp-ddns: enable- | Global ddns-send- | Outcome

updates updates

false (default) false no updates at any scope

false true (default) no updates at any scope

true false updates only at scopes with a local value of true for ddns-enable-
updates

true true updates at all scopes except those with a local value of false for
ddns-enable-updates

Kea 1.9.1 added two new parameters; the first is ddns-update-on-renew. Normally, when leases are renewed the
server only updates DNS if the DNS information for the lease (e.g. FQDN, DNS update direction flags) has changed.
Setting ddns-update-on-renew to true instructs the server to always update the DNS information when a lease is
renewed, even if its DNS information has not changed. This allows Kea to “self-heal” if it was previously unable to
add DNS entries or they were somehow lost by the DNS server.

Note: Setting ddns-update-on-renew to true may impact performance, especially for servers with numerous clients
that renew often.

The second parameter added in Kea 1.9.1 is ddns-use-conflict-resolution. The value of this parameter is passed
by kea-dhcp4 to D2 with each DNS update request. When true, (the default value), D2 employs conflict resolution,
as described in RFC 4703, when attempting to fulfill the update request. When false, D2 simply attempts to update the
DNS entries per the request, regardless of whether they conflict with existing entries owned by other DHCP4 clients.

Note: Setting ddns-use-conflict-resolution to false disables the overwrite safeguards that the rules of conflict
resolution ( RFC 4703) are intended to prevent. This means that existing entries for a FQDN or an IP address made for
Client-A can be deleted or replaced by entries for Client-B. Furthermore, there are two scenarios by which entries for
multiple clients for the same key (e.g. FQDN or IP) can be created.

1. Client-B uses the same FQDN as Client-A but a different IP address. In this case, the forward DNS entries (A and
DHCID RRs) for Client-A will be deleted as they match the FQDN and new entries for Client-B will be added. The
reverse DNS entries (PTR and DHCID RRs) for Client-A, however, will not be deleted as they belong to a different IP
address, while new entries for Client-B will still be added.

2. Client-B uses the same IP address as Client-A but a different FQDN. In this case the reverse DNS entries (PTR and
DHCID RRs) for Client-A will be deleted as they match the IP address and new entries for Client-B will be added.
The forward DNS entries (A and DHCID RRs) for Client-A, however, will not be deleted, as they belong to a different
FQDN while new entries for Client-B will still be added.

Disabling conflict resolution should be done only after careful review of specific use cases. The best way to avoid
unwanted DNS entries is to always ensure lease changes are processed through Kea, whether they are released, expire,
or are deleted via the lease-del4 command, prior to reassigning either FQDNs or IP addresses. Doing so causes
kea-dhcp4 to generate DNS removal requests to D2.

Note: The DNS entries Kea creates contain a value for TTL (time to live). As of Kea 1.9.3, kea-dhcp4 calculates that
value based on RFC 4702, Section 5, which suggests that the TTL value be 1/3 of the lease’s lifetime, with a minimum
value of 10 minutes. In earlier versions, the server set the TTL value equal to the lease’s valid lifetime.

96 Chapter 8. The DHCPv4 Server


https://tools.ietf.org/html/rfc4703
https://tools.ietf.org/html/rfc4703
https://tools.ietf.org/html/rfc4702#section-5

Kea Administrator Reference Manual Documentation, Release 2.0.2

8.2.18.1 DHCP-DDNS Server Connectivity

For NCRs to reach the D2 server, kea-dhcp4 must be able to communicate with it. kea-dhcp4 uses the following
configuration parameters to control this communication:

e enable-updates - As of Kea 1.7.1, this parameter only enables connectivity to kea-dhcp-ddns such that
DDNS updates can be constructed and sent. It must be true for NCRs to be generated and sent to D2. It defaults
to false.

* server-ip - This is the IP address on which D2 listens for requests. The default is the local loopback interface
at address 127.0.0.1. Either an IPv4 or IPv6 address may be specified.

* server-port - This is the port on which D2 listens for requests. The default value is 53001.

* sender-ip - This is the IP address which kea-dhcp4 uses to send requests to D2. The default value is blank,
which instructs kea-dhcp4 to select a suitable address.

* sender-port - This is the port which kea-dhcp4 uses to send requests to D2. The default value of 0 instructs
kea-dhcp4 to select a suitable port.

* max-queue-size - This is the maximum number of requests allowed to queue waiting to be sent to D2. This
value guards against requests accumulating uncontrollably if they are being generated faster than they can be
delivered. If the number of requests queued for transmission reaches this value, DDNS updating will be turned
off until the queue backlog has been sufficiently reduced. The intent is to allow the kea-dhcp4 server to continue
lease operations without running the risk that its memory usage grows without limit. The default value is 1024.

* ncr-protocol - This specifies the socket protocol to use when sending requests to D2. Currently only UDP is
supported.

* ncr-format - This specifies the packet format to use when sending requests to D2. Currently only JSON format
is supported.

By default, kea-dhcp-ddns is assumed to be running on the same machine as kea-dhcp4, and all of the default values
mentioned above should be sufficient. If, however, D2 has been configured to listen on a different address or port, these
values must be altered accordingly. For example, if D2 has been configured to listen on 192.168.1.10 port 900, the
following configuration is required:

"Dhcp4": {
"dhcp-ddns": {
"server-ip": "192.168.1.10",
"server-port": 900,

8.2.18.2 When Does the kea-dhcp4 Server Generate a DDNS Request?

kea-dhcp4 follows the behavior prescribed for DHCP servers in RFC 4702. It is important to keep in mind that
kea-dhcp4 makes the initial decision of when and what to update and forwards that information to D2 in the form
of NCRs. Carrying out the actual DNS updates and dealing with such things as conflict resolution are within the
purview of D2 itself (see The DHCP-DDNS Server). This section describes when kea-dhcp4 generates NCRs and the
configuration parameters that can be used to influence this decision. It assumes that both the connectivity parameter
enable-updates and the behavioral parameter ddns-send-updates, are true.

In general, kea-dhcp4 generates DDNS update requests when:
1. A new lease is granted in response to a DHCPREQUEST;

8.2. DHCPv4 Server Configuration 97



https://tools.ietf.org/html/rfc4702

Kea Administrator Reference Manual Documentation, Release 2.0.2

2. An existing lease is renewed but the FQDN associated with it has changed; or
3. An existing lease is released in response to a DHCPRELEASE.

In the second case, lease renewal, two DDNS requests are issued: one request to remove entries for the previous FQDN,
and a second request to add entries for the new FQDN. In the third case, a lease release - a single DDNS request - to
remove its entries will be made.

As for the first case, the decisions involved when granting a new lease are more complex. When a new lease is granted,
kea-dhcp4 generates a DDNS update request if the DHCPREQUEST contains either the FQDN option (code 81) or
the Host Name option (code 12). If both are present, the server uses the FQDN option. By default, kea-dhcp4 respects
the FQDN N and S flags specified by the client as shown in the following table:

Table 6: Default FQDN Flag Behavior

Client Client Intent Server Response Server
Flags:N-S Flags:N-S-O
0-0 Client wants to do forward updates, server | Server generates reverse-only re- | 1-0-0

should do reverse updates quest
0-1 Server should do both forward and reverse up- | Server generates request to up- | 0-1-0

dates date both directions
1-0 Client wants no updates done Server does not generate a re- | 1-0-0

quest

The first row in the table above represents “client delegation.” Here the DHCP client states that it intends to
do the forward DNS updates and the server should do the reverse updates. By default, kea-dhcp4 honors the
client’s wishes and generates a DDNS request to the D2 server to update only reverse DNS data. The parameter
ddns-override-client-update can be used to instruct the server to override client delegation requests. When this
parameter is “true”, kea-dhcp4 disregards requests for client delegation and generates a DDNS request to update
both forward and reverse DNS data. In this case, the N-S-O flags in the server’s response to the client will be 0-1-1
respectively.

(Note that the flag combination N=1, S=1 is prohibited according to RFC 4702. If such a combination is received from
the client, the packet will be dropped by kea-dhcp4.)

To override client delegation, set the following values in the configuration file:

"Dhcpd": {

"ddns-override-client-update": true,

The third row in the table above describes the case in which the client requests that no DNS updates be done. The
parameter ddns-override-no-update can be used to instruct the server to disregard the client’s wishes. When this
parameter is true, kea-dhcp4 generates DDNS update requests to kea-dhcp-ddns even if the client requests that no
updates be done. The N-S-O flags in the server’s response to the client will be 0-1-1.

To override client delegation, issue the following commands:

"Dhcp4": {
"ddns-override-no-update": true,

}

kea-dhcp4 always generates DDNS update requests if the client request only contains the Host Name option. In
addition, it includes an FQDN option in the response to the client with the FQDN N-S-O flags set to 0-1-0, respectively.

98 Chapter 8. The DHCPv4 Server



https://tools.ietf.org/html/rfc4702

Kea Administrator Reference Manual Documentation, Release 2.0.2

The domain name portion of the FQDN option is the name submitted to D2 in the DDNS update request.

8.2.18.3 kea-dhcp4 Name Generation for DDNS Update Requests

Each Name Change Request must of course include the fully qualified domain name whose DNS entries are to be
affected. kea-dhcp4 can be configured to supply a portion or all of that name, based on what it receives from the
client in the DHCPREQUEST.

The default rules for constructing the FQDN that will be used for DNS entries are:

1. If the DHCPREQUEST contains the client FQDN option, take the candidate name from there; otherwise, take it
from the Host Name option.

2. If the candidate name is a partial (i.e. unqualified) name, then add a configurable suffix to the name and use the
result as the FQDN.

3. If the candidate name provided is empty, generate an FQDN using a configurable prefix and suffix.
4. If the client provides neither option, then take no DNS action.

These rules can be amended by setting the ddns-replace-client-name parameter, which provides the following
modes of behavior:

* never - use the name the client sent. If the client sent no name, do not generate one. This is the default mode.
* always - replace the name the client sent. If the client sent no name, generate one for the client.
* when-present - replace the name the client sent. If the client sent no name, do not generate one.

* when-not-present - use the name the client sent. If the client sent no name, generate one for the client.

Note: In early versions of Kea, this parameter was a boolean and permitted only values of true and false. Boolean
values have been deprecated and are no longer accepted. Administrators currently using booleans must replace them
with the desired mode name. A value of true maps to "when-present", while false maps to "never".

For example, to instruct kea-dhcp4 to always generate the FQDN for a client, set the parameter
ddns-replace-client-name to always as follows:

"Dhcp4": {

"ddns-replace-client-name": "always",

The prefix used in the generation of an FQDN is specified by the generated-prefix parameter. The default value is
“myhost”. To alter its value, simply set it to the desired string:

"Dhcp4": {
"ddns-generated-prefix": "another.host",

}

The suffix used when generating an FQDN, or when qualifying a partial name, is specified by the
ddns-qualifying-suffix parameter. It is strongly recommended that the user supply a value for the qualifying
prefix when DDNS updates are enabled. For obvious reasons, we cannot supply a meaningful default.

8.2. DHCPv4 Server Configuration 99




Kea Administrator Reference Manual Documentation, Release 2.0.2

"Dhcpd": {
"ddns-qualifying-suffix": "foo.example.org",

}

When generating a name, kea-dhcp4 constructs the name in the format:
[ddns-generated-prefix]-[address-text] . [ddns-qualifying-suffix]

where address-text is simply the lease IP address converted to a hyphenated string. For example, if the lease address
is 172.16.1.10, the qualifying suffix “example.com”, and the default value is used for ddns-generated-prefix, the
generated FQDN is:

myhost-172-16-1-10.example.com.

8.2.18.4 Sanitizing Client Host Name and FQDN Names

Some DHCP clients may provide values in the Host Name option (option code 12) or FQDN option (option code 81)
that contain undesirable characters. It is possible to configure kea-dhcp4 to sanitize these values. The most typical
use case is ensuring that only characters that are permitted by RFC 1035 be included: A-Z, a-z, 0-9, and “-*“. This may
be accomplished with the following two parameters:

* hostname-char-set - a regular expression describing the invalid character set. This can be any valid, regular
expression using POSIX extended expression syntax. Embedded nulls (0x00) are always considered an invalid
character to be replaced (or omitted).

* hostname-char-replacement - a string of zero or more characters with which to replace each invalid character
in the host name. An empty string causes invalid characters to be OMITTED rather than replaced.

Note: Starting with Kea 1.7.5, the default values are as follows:
¢ “hostname-char-set”: “[*A-Za-z0-9.-]”,

* “hostname-char-replacement”:

This enables sanitizing and omits any character that is not a letter, digit, hyphen, dot, or null.

The following configuration replaces anything other than a letter, digit, hyphen, or dot with the letter ‘x’:

"Dhcp4": {
"hostname-char-set": "[AA-Za-z0-9.-]",
"hostname-char-replacement": "x",

3

Thus, a client-supplied value of “myhost-$[123.0rg” would become “myhost-xx123.org”. Sanitizing is performed only
on the portion of the name supplied by the client, and it is performed before applying a qualifying suffix (if one is
defined and needed).

Note: The following are some considerations to keep in mind: Name sanitizing is meant to catch the more common
cases of invalid characters through a relatively simple character-replacement scheme. It is difficult to devise a scheme
that works well in all cases, for both Host Name and FQDN options. Administrators who find they have clients with odd

100 Chapter 8. The DHCPv4 Server




Kea Administrator Reference Manual Documentation, Release 2.0.2

corner cases of character combinations that cannot be readily handled with this mechanism should consider writing a
hook that can carry out sufficiently complex logic to address their needs.

If clients include domain names in the Host Name option and the administrator wants these preserved, they need to
make sure that the dot, “.”, is considered a valid character by the hostname-char-set expression, such as this: “/*A-
Za-z0-9.-]”. This does not affect dots in FQDN Option values. When scrubbing FQDNSs, dots are treated as delimiters

and used to separate the option value into individual domain labels that are scrubbed and then re-assembled.

If clients are sending values that differ only by characters considered as invalid by the hostname-char-set, be aware that
scrubbing them will yield identical values. In such cases, DDNS conflict rules will permit only one of them to register
the name.

Finally, given the latitude clients have in the values they send, it is virtually impossible to guarantee that a combination
of these two parameters will always yield a name that is valid for use in DNS. For example, using an empty value for
hostname-char-replacement could yield an empty domain label within a name, if that label consists only of invalid
characters.

Note: Since the 1.6.0 Kea release, it is possible to specify hostname-char-set and/or
hostname-char-replacement at the global scope. This allows host names to be sanitized without requiring
a dhcp-ddns entry. When a hostname-char parameter is defined at both the global scope and in a dhcp-ddns entry,
the second (local) value is used.

8.2.19 Next Server (siaddr)

In some cases, clients want to obtain configuration from a TFTP server. Although there is a dedicated option for it, some
devices may use the siaddr field in the DHCPv4 packet for that purpose. That specific field can be configured using
the next-server directive. It is possible to define it in the global scope or for a given subnet only. If both are defined,
the subnet value takes precedence. The value in the subnet can be set to 0.0.0.0, which means that next-server
should not be sent. It can also be set to an empty string, which is equivalent to it not being defined at all; that is, it uses
the global value.

The server-hostname (which conveys a server hostname, can be up to 64 bytes long, and is in the sname field) and
boot-file-name (which conveys the configuration file, can be up to 128 bytes long, and is sent using the file field)
directives are handled the same way as next-server.

"Dhcp4": {
"next-server": "192.0.2.123",
"boot-file-name": "/dev/null",

"subnet4": [

{
"next-server": "192.0.2.234",
"server-hostname": "some-name.example.org",
"boot-file-name": "bootfile.efi",

}

8.2. DHCPv4 Server Configuration 101




Kea Administrator Reference Manual Documentation, Release 2.0.2

8.2.20 Echoing Client-ID (RFC 6842)

The original DHCPv4 specification (RFC 2131) states that the DHCPv4 server must not send back client-id options
when responding to clients. However, in some cases that results in confused clients that do not have a MAC address or
client-id; see RFC 6842 for details. That behavior changed with the publication of RFC 6842, which updated RFC 2131.
That update states that the server must send the client-id if the client sent it, and that is Kea’s default behavior. However,
in some cases older devices that do not support RFC 6842 may refuse to accept responses that include the client-id
option. To enable backward compatibility, an optional configuration parameter has been introduced. To configure it,
use the following configuration statement:

"Dhcp4": {
"echo-client-id": false,

8.2.21 Using Client Identifier and Hardware Address

The DHCP server must be able to identify the client from which it receives the message and distinguish it from other
clients. There are many reasons why this identification is required; the most important ones are:

* When the client contacts the server to allocate a new lease, the server must store the client identification infor-
mation in the lease database as a search key.

* When the client tries to renew or release the existing lease, the server must be able to find the existing lease entry
in the database for this client, using the client identification information as a search key.

» Some configurations use static reservations for the IP addresses and other configuration information. The server’s
administrator uses client identification information to create these static assignments.

¢ In dual-stack networks there is often a need to correlate the lease information stored in DHCPv4 and DHCPv6
servers for a particular host. Using common identification information by the DHCPv4 and DHCPv6 clients
allows the network administrator to achieve this correlation and better administer the network.

DHCPv4 uses two distinct identifiers which are placed by the client in the queries sent to the server and copied by the
server to its responses to the client: chaddr and client-identifier. The former was introduced as a part of the
BOOTP specification and it is also used by DHCP to carry the hardware address of the interface used to send the query
to the server (MAC address for the Ethernet). The latter is carried in the client-identifier option, introduced in RFC
2132.

RFC 2131 indicates that the server may use both of these identifiers to identify the client but the client identifier, if
present, takes precedence over chaddr. One of the reasons for this is that the client identifier is independent from the
hardware used by the client to communicate with the server. For example, if the client obtained the lease using one
network card and then the network card is moved to another host, the server will wrongly identify this host as the one
which obtained the lease. Moreover, RFC 4361 gives the recommendation to use a DUID (see RFC 8415, the DHCPv6
specification) carried as a client identifier when dual-stack networks are in use to provide consistent identification
information for the client, regardless of the type of protocol it is using. Kea adheres to these specifications, and the
client identifier by default takes precedence over the value carried in the chaddr field when the server searches, creates,
updates, or removes the client’s lease.

When the server receives a DHCPDISCOVER or DHCPREQUEST message from the client, it tries to find out if the
client already has a lease in the database; if it does, the server hands out that lease rather than allocates a new one.
Each lease in the lease database is associated with the client identifier and/or chaddr. The server first uses the client
identifier (if present) to search for the lease; if one is found, the server treats this lease as belonging to the client, even
if the current chaddr and the chaddr associated with the lease do not match. This facilitates the scenario when the
network card on the client system has been replaced and thus the new MAC address appears in the messages sent by

102 Chapter 8. The DHCPv4 Server



https://tools.ietf.org/html/rfc2131
https://tools.ietf.org/html/rfc6842
https://tools.ietf.org/html/rfc6842
https://tools.ietf.org/html/rfc2131
https://tools.ietf.org/html/rfc6842
https://tools.ietf.org/html/rfc2132
https://tools.ietf.org/html/rfc2132
https://tools.ietf.org/html/rfc2131
https://tools.ietf.org/html/rfc4361
https://tools.ietf.org/html/rfc8415

Kea Administrator Reference Manual Documentation, Release 2.0.2

the DHCP client. If the server fails to find the lease using the client identifier, it performs another lookup using the
chaddr. If this lookup returns no result, the client is considered to not have a lease and a new lease is created.

A common problem reported by network operators is that poor client implementations do not use stable client identifiers,
instead generating a new client identifier each time the client connects to the network. Another well-known case is when
the client changes its client identifier during the multi-stage boot process (PXE). In such cases, the MAC address of the
client’s interface remains stable, and using the chaddr field to identify the client guarantees that the particular system
is considered to be the same client, even though its client identifier changes.

To address this problem, Kea includes a configuration option which enables client identification using chaddr only.
This instructs the server to ignore the client identifier during lease lookups and allocations for a particular subnet.
Consider the following simplified server configuration:

"Dhcp4": {
"match-client-id": true,

"subnet4": [

{
"subnet": "192.0.10.0/24",
"pools": [ { "pool": "192.0.2.23-192.0.2.87" } 1,
"match-client-id": false
1
{
"subnet": "10.0.0.0/8",
"pools": [ { "pool": "10.0.0.23-10.0.2.99" } 1],
}
]

The match-client-id is a boolean value which controls this behavior. The default value of true indicates that the
server will use the client identifier for lease lookups and chaddr if the first lookup returns no results. false means that
the server will only use the chaddr to search for the client’s lease. Whether the DHCID for DNS updates is generated
from the client identifier or chaddr is controlled through the same parameter.

The match-client-id parameter may appear both in the global configuration scope and/or under any subnet dec-
laration. In the example shown above, the effective value of the match-client-id will be false for the subnet
192.0.10.0/24, because the subnet-specific setting of the parameter overrides the global value of the parameter. The
effective value of the match-client-id for the subnet 10.0.0.0/8 will be set to true, because the subnet declaration
lacks this parameter and the global setting is by default used for this subnet. In fact, the global entry for this parameter
could be omitted in this case, because true is the default value.

It is important to understand what happens when the client obtains its lease for one setting of the match-client-id
and then renews it when the setting has been changed. First, consider the case when the client obtains the lease and the
match-client-id is set to true. The server stores the lease information, including the client identifier (if supplied)
and chaddr, in the lease database. When the setting is changed and the client renews the lease, the server will determine
that it should use the chaddr to search for the existing lease. If the client has not changed its MAC address, the server
should successfully find the existing lease. The client identifier associated with the returned lease will be ignored and
the client will be allowed to use this lease. When the lease is renewed only the chaddr will be recorded for this lease,
according to the new server setting.

In the second case, the client has the lease with only a chaddr value recorded. When the match-client-id setting is
changed to true, the server will first try to use the client identifier to find the existing client’s lease. This will return no
results because the client identifier was not recorded for this lease. The server will then use the chaddr and the lease
will be found. If the lease appears to have no client identifier recorded, the server will assume that this lease belongs
to the client and that it was created with the previous setting of the match-client-id. However, if the lease contains

8.2. DHCPv4 Server Configuration 103




Kea Administrator Reference Manual Documentation, Release 2.0.2

a client identifier which is different from the client identifier used by the client, the lease will be assumed to belong to
another client and a new lease will be allocated.

8.2.22 Authoritative DHCPv4 Server Behavior

The original DHCPv4 specification (RFC 2131) states that if a client requests an address in the INIT-REBOOT state of
which the server has no knowledge, the server must remain silent, except if the server knows that the client has requested
an IP address from the wrong network. By default, Kea follows the behavior of the ISC dhcpd daemon instead of the
specification and also remains silent if the client requests an IP address from the wrong network, because configuration
information about a given network segment is not known to be correct. Kea only rejects a client’s DHCPREQUEST
with a DHCPNAK message if it already has a lease for the client with a different IP address. Administrators can override
this behavior through the boolean authoritative (false by default) setting.

In authoritative mode, authoritative set to true, Kea always rejects INIT-REBOOT requests from unknown clients
with DHCPNAK messages. The authoritative setting can be specified in global, shared-network, and subnet con-
figuration scope and is automatically inherited from the parent scope, if not specified. All subnets in a shared-network
must have the same authoritative setting.

8.2.23 DHCPv4-over-DHCPv6: DHCPv4 Side

The support of DHCPv4-over-DHCPv6 transport is described in RFC 7341 and is implemented using cooperating
DHCPv4 and DHCPvV6 servers. This section is about the configuration of the DHCPv4 side (the DHCPv6 side is
described in DHCPv4-over-DHCPv6: DHCPv6 Side).

Note: DHCPv4-over-DHCPv6 support is experimental and the details of the inter-process communication may change;
both the DHCPv4 and DHCPv6 sides should be running the same version of Kea. For instance, the support of port
relay (RFC 8357) introduced an incompatible change.

The dhcp4o6-port global parameter specifies the first of the two consecutive ports of the UDP sockets used for the
communication between the DHCPv6 and DHCPv4 servers. The DHCPv4 server is bound to ::1 on port + 1 and
connected to ::1 on port.

With DHCPv4-over-DHCPv6, the DHCPv4 server does not have access to several of the identifiers it would normally
use to select a subnet. To address this issue, three new configuration entries are available; the presence of any of these
allows the subnet to be used with DHCPv4-over-DHCPv6. These entries are:

* 406-subnet: takes a prefix (i.e., an IPv6 address followed by a slash and a prefix length) which is matched
against the source address.

* 406-interface-id: takes a relay interface ID option value.
* 4o6-interface: takes an interface name which is matched against the incoming interface name.

The following configuration was used during some tests:

{

# DHCPv4 conf
"Dhcp4d": {

"interfaces-config": {
"interfaces": [ "eno33554984" ]
1,

(continues on next page)

104 Chapter 8. The DHCPv4 Server



https://tools.ietf.org/html/rfc2131
https://tools.ietf.org/html/rfc7341

Kea Administrator Reference Manual Documentation, Release 2.0.2

(continued from previous page)

"lease-database": {
"type": "memfile",
"name": "leases4"

}1
"valid-lifetime": 4000,

"subnet4": [ {

"subnet": "10.10.10.0/24",

"4o06-interface": "eno33554984",

"406-subnet": "2001:db8:1:1::/64",

"pools": [ { "pool": "10.10.10.100 - 10.10.10.199" } ]
11,

"dhcp4o06-port": 6767,

"loggers": [ {
"name": "kea-dhcp4",
"output_options": [ {
"output": "/tmp/kea-dhcp4.log"
11,
"severity": "DEBUG",
"debuglevel™: 0
1

8.2.24 Sanity Checks in DHCPv4

An important aspect of a well-running DHCP system is an assurance that the data remain consistent. However, in some
cases it may be convenient to tolerate certain inconsistent data. For example, a network administrator that temporarily
removes a subnet from a configuration would not want all the leases associated with it to disappear from the lease
database. Kea has a mechanism to control sanity checks such as this.

Kea supports a configuration scope called sanity-checks. It currently allows only a single parameter, called
lease-checks, which governs the verification carried out when a new lease is loaded from a lease file. This mecha-
nism permits Kea to attempt to correct inconsistent data.

Every subnet has a subnet-id value; this is how Kea internally identifies subnets. Each lease has a subnet-id
parameter as well, which identifies which subnet it belongs to. However, if the configuration has changed, it is possible
that a lease could exist with a subnet-id, but without any subnet that matches it. Also, it is possible that the subnet’s
configuration has changed and the subnet-id now belongs to a subnet that does not match the lease.

Kea’s corrective algorithm first checks to see if there is a subnet with the subnet-id specified by the lease. If there
is, it verifies whether the lease belongs to that subnet. If not, depending on the lease-checks setting, the lease is
discarded, a warning is displayed, or a new subnet is selected for the lease that matches it topologically.

There are five levels which are supported:
* none - do no special checks; accept the lease as is.

* warn - if problems are detected display a warning, but accept the lease data anyway. This is the default value.

8.2. DHCPv4 Server Configuration 105




Kea Administrator Reference Manual Documentation, Release 2.0.2

e fix -if a datainconsistency is discovered, try to correct it. If the correction is not successful, insert the incorrect
data anyway.

» fix-del - if a data inconsistency is discovered, try to correct it. If the correction is not successful, reject the
lease. This setting ensures the data’s correctness, but some incorrect data may be lost. Use with care.

* del - if any inconsistency is detected, reject the lease. This is the strictest mode; use with care.

This feature is currently implemented for the memfile backend. The sanity check applies to the lease database in
memory, not to the lease file, i.e. inconsistent leases will stay in the lease file.

An example configuration that sets this parameter looks as follows:

"Dhcp4": {
"sanity-checks": {
"lease-checks": "fix-del"
1,
}

8.2.25 Storing Extended Lease Information

To support such features as DHCP Leasequery (RFC 4388) additional information must be stored with each lease. Kea
does not currently offer a Leasequery hook library, but other hook libraries may already be using user-context.

Because the amount of information for each lease has ramifications in terms of performance and system resource
consumption, storing this additional information is configurable through the store-extended-info parameter. It
defaults to false and may be set at the global, shared-network, and subnet levels.

"Dhcpd": {
"store-extended-info": true,

When set to true, information relevant to the DHCPREQUEST asking for the lease is added into the lease’s user-
context as a map element labeled “ISC”. Currently, the map contains a single value, the relay-agent-info option
(DHCP Option 82), when the DHCPREQUEST received contains it. Since DHCPREQUESTS sent as renewals will
likely not contain this information, the values taken from the last DHCPREQUEST that did contain it will be retained
on the lease. The lease’s user-context will look something like this:

{ "ISC": { "relay-agent-info": "0x52050104AABBCCDD" } }

Note: As mentioned above, it is possible that other hook libraries are already using user-context. Enabling
store-extended-info should not interfere with any other user-context content, as long as it does not also use an
element labeled “ISC”. In other words, user-context is intended to be a flexible container serving multiple purposes.
As long as no other purpose also writes an “ISC” element to user-context there should not be a conflict.

106 Chapter 8. The DHCPv4 Server



https://tools.ietf.org/html/rfc4388

Kea Administrator Reference Manual Documentation, Release 2.0.2

8.2.26 Multi-Threading Settings

The Kea server can be configured to process packets in parallel using multiple threads. These settings can be found
under the multi-threading structure and are represented by:

e enable-multi-threading - use multiple threads to process packets in parallel (default false).

* thread-pool-size - specify the number of threads to process packets in parallel. It may be set to 0 (auto-
detect), or any positive number explicitly sets the thread count. The default is 0.

* packet-queue-size - specify the size of the queue used by the thread pool to process packets. It may be set to
0 (unlimited), or any positive number explicitly sets the queue size. The default is 64.

An example configuration that sets these parameters looks as follows:

"Dhcpd": {

"multi-threading": {
"enable-multi-threading": true,
"thread-pool-size": 4,
"packet-queue-size": 16

8.2.27 Multi-Threading Settings in Different Backends

Both kea-dhcp4 and kea-dhcp6 are tested internally to determine which settings give the best performance. Although
this section describes our results, they are just recommendations and are very dependent on the particular hardware
that was used for testing. We strongly advise that administrators run their own performance tests.

A full report of performance results for the latest stable Kea can be found here. This includes hardware and test scenario
descriptions, as well as current results.

After enabling multi-threading, the number of threads is set by the thread-pool-size parameter. Results from our
tests show that the best settings for kea-dhcp4 are:

e thread-pool-size: 4 when using memfile for storing leases.
* thread-pool-size: 12 or more when using mysql for storing leases.
* thread-pool-size: 8§ when using postgresql.

Another very important parameter is packet-queue-size; in our tests we used it as a multiplier of
thread-pool-size. So the actual setting strongly depends on thread-pool-size.

We saw the best results in our tests with the following settings:

* packet-queue-size: 7 * thread-pool-size when using memfile for storing leases; in our case it was 7 *
4 = 28. This means that at any given time, up to 28 packets could be queued.

* packet-queue-size: 66 * thread-pool-size when using mysql for storing leases; in our case it was 66 *
12 =792. This means that up to 792 packets could be queued.

* packet-queue-size: 11 * thread-pool-size when using postgresql for storing leases; in our case it was
11 *8=288.

8.2. DHCPv4 Server Configuration 107



https://reports.kea.isc.org/

Kea Administrator Reference Manual Documentation, Release 2.0.2

8.2.28 IPv6-Only Preferred Networks

RFC8925, recently published by the IETF, specifies a DHCPv4 option to indicate that a host supports an IPv6-only
mode and is willing to forgo obtaining an IPv4 address if the network provides IPv6 connectivity. The general idea is
that a network administrator can enable this option to signal to compatible dual-stack devices that IPv6 connectivity is
available and they can shut down their IPv4 stack. The new option v6-only-preferred content is a 32-bit unsigned
integer and specifies for how long the device should disable its stack. The value is expressed in seconds.

The RFC mentions the V60ONLY_WAIT timer. This is implemented in Kea by setting the value of the
v6-only-preferred option. This follows the usual practice of setting options; the option value can be specified
on the pool, subnet, shared network, or global levels, or even via host reservations.

There is no special processing involved; it follows the standard Kea option processing regime. The option is not sent
back unless the client explicitly requests it. For example, to enable the option for the whole subnet, the following
configuration can be used:

"subnet4": [

{
"pools": [ { "pool": "192.0.2.1 - 192.0.2.200" } 1,
"subnet": "192.0.2.0/24",
"option-data": [
{
// This will make the v6-only capable devices to disable their
// v4 stack for half an hour and then try again
"name": "v6-only-preferred",
"data": "1800"
}
]
}

] ’

8.2.29 Lease Caching

Clients that attempt multiple renewals in a short period can cause the server to update and write to the database fre-
quently, resulting in a performance impact on the server. The cache parameters instruct the DHCP server to avoid
updating leases too frequently, thus avoiding this behavior. Instead, the server assigns the same lease (i.e. reuses it)
with no modifications except for CLTT (Client Last Transmission Time), which does not require disk operations.

The two parameters are the cache-threshold double and the cache-max-age integer; they have no default setting,
i.e. the lease caching feature must be explicitly enabled. These parameters can be configured at the global, shared
network, and subnet levels. The subnet level has precedence over the shared network level, while the global level is
used as a last resort. For example:

"subnet4": [

{
"pools": [ { "pool": "192.0.2.1 - 192.0.2.200" } 1,
"subnet": "192.0.2.0/24",
"cache-threshold": .25,
"cache-max-age": 600,
"valid-lifetime": 2000,
}

1,

When an already assigned lease can fulfill a client query:

108 Chapter 8. The DHCPv4 Server



https://tools.ietf.org/html/rfc8925

Kea Administrator Reference Manual Documentation, Release 2.0.2

* any important change, e.g. for DDNS parameter, hostname, or valid lifetime reduction, makes the lease not
reusable.

* lease age, i.e. the difference between the creation or last modification time and the current time, is computed
(elapsed duration).

* if cache-max-age is explicitly configured, it is compared with the lease age; leases that are too old are not
reusable. This means that the value O for cache-max-age disables the lease cache feature.

* if cache-threshold is explicitly configured and is between 0.0 and 1.0, it expresses the percentage of the lease
valid lifetime which is allowed for the lease age. Values below and including 0.0 and values greater than 1.0
disable the lease cache feature.

In our example, a lease with a valid lifetime of 2000 seconds can be reused if it was committed less than 500 seconds
ago. With a lifetime of 3000 seconds, the maximum age of 600 seconds applies.

In outbound client responses (e.g. DHCPACK messages), the dhcp-lease-time option is set to the reusable valid
lifetime, i.e. the expiration date does not change. Other options based on the valid lifetime e.g. dhcp-renewal-time
and dhcp-rebinding-time, also depend on the reusable lifetime.

8.3 Host Reservation in DHCPV4

There are many cases where it is useful to provide a configuration on a per-host basis. The most obvious one is to reserve
a specific, static address for exclusive use by a given client (host); the returning client receives the same address from
the server every time, and other clients generally do not receive that address. Another situation when host reservations
are applicable is when a host has specific requirements, e.g. a printer that needs additional DHCP options. Yet another
possible use case is to define unique names for hosts.

There may be cases when a new reservation has been made for a client for an address currently in use by another client.
We call this situation a “conflict.” These conflicts get resolved automatically over time as described in subsequent
sections. Once the conflict is resolved, the correct client will receive the reserved configuration when it renews.

Host reservations are defined as parameters for each subnet. Each host must have its own unique identifier, such as
the hardware/MAC address. There is an optional reservations array in the subnet4 structure; each element in that
array is a structure that holds information about reservations for a single host. In particular, the structure must have a
unique host identifier. In the DHCPv4 context, the identifier is usually a hardware or MAC address. In most cases an
IP address will be specified. It is also possible to specify a hostname, host-specific options, or fields carried within the
DHCPv4 message such as siaddr, sname, or file.

Note: Kea versions 1.7.10 and newer require that the reserved address must be within the subnet.

The following example shows how to reserve addresses for specific hosts in a subnet:

"subnet4": [
{
"pools": [ { "pool": "192.0.2.1 - 192.0.2.200" } 1],
"subnet": "192.0.2.0/24",
"interface": "eth0",
"reservations": [
{
"hw-address": "la:1b:1c:1d:1le:1£f",
"ip-address": "192.0.2.202"
1,
{

(continues on next page)

8.3. Host Reservation in DHCPv4 109




Kea Administrator Reference Manual Documentation, Release 2.0.2

(continued from previous page)

"duid": "0a:0b:0c:0d:0e:0f",
"ip-address": "192.0.2.100",

"hostname": "alice-laptop"

1,

{
"circuit-id": "'charter950'",
"ip-address": "192.0.2.203"

1,

{
"client-id": "01:11:22:33:44:55:66",
"ip-address": "192.0.2.204"

}

The first entry reserves the 192.0.2.202 address for the client that uses a MAC address of 1a:1b:1c:1d:1e:1f. The second
entry reserves the address 192.0.2.100 and the hostname of alice-laptop for the client using a DUID 0a:0b:0c:0d:0e:0f.
(If DNS updates are planned, it is strongly recommended that the hostnames be unique.) The third example reserves
address 192.0.3.203 for a client whose request would be relayed by a relay agent that inserts a circuit-id option
with the value “charter950”. The fourth entry reserves address 192.0.2.204 for a client that uses a client identifier with
value 01:11:22:33:44:55:66.

The above example is used for illustrational purposes only; in actual deployments it is recommended to use as few types
as possible (preferably just one). See Fine-Tuning DHCPv4 Host Reservation for a detailed discussion of this point.

Making a reservation for a mobile host that may visit multiple subnets requires a separate host definition in each subnet
that host is expected to visit. It is not possible to define multiple host definitions with the same hardware address in a
single subnet. Multiple host definitions with the same hardware address are valid if each is in a different subnet.

Adding host reservations incurs a performance penalty. In principle, when a server that does not support host reservation
responds to a query, it needs to check whether there is a lease for a given address being considered for allocation or
renewal. The server that does support host reservation has to perform additional checks: not only whether the address
is currently used (i.e., if there is a lease for it), but also whether the address could be used by someone else (i.e., if there
is a reservation for it). That additional check incurs extra overhead.

8.3.1 Address Reservation Types

In a typical scenario there is an IPv4 subnet defined, e.g. 192.0.2.0/24, with a certain part of it dedicated for dynamic
allocation by the DHCPv4 server. That dynamic part is referred to as a dynamic pool or simply a pool. In principle,
a host reservation can reserve any address that belongs to the subnet. The reservations that specify addresses that
belong to configured pools are called “in-pool reservations.” In contrast, those that do not belong to dynamic pools are
called “out-of-pool reservations.” There is no formal difference in the reservation syntax and both reservation types are
handled uniformly.

Kea supports global host reservations. These are reservations that are specified at the global level within the configu-
ration and that do not belong to any specific subnet. Kea will still match inbound client packets to a subnet as before,
but when the subnet’s reservation mode is set to "global", Kea looks for host reservations only among the global
reservations defined. Typically, such reservations would be used to reserve hostnames for clients which may move
from one subnet to another.

Note: Global reservations, while useful in certain circumstances, have aspects that must be given due consideration

110 Chapter 8. The DHCPv4 Server




Kea Administrator Reference Manual Documentation, Release 2.0.2

when using them. Please see Conflicts in DHCPv4 Reservations for more details.

Note: Since Kea 1.9.1, reservation mode has been replaced by three boolean flags, "reservations-global”,
"reservations-in-subnet", and "reservations-out-of-pool", which allow the configuration of host reser-
vations both globally and in a subnet. In such cases a subnet host reservation has preference over a global reservation
when both exist for the same client.

8.3.2 Conflicts in DHCPv4 Reservations

As reservations and lease information are stored separately, conflicts may arise. Consider the following series of events:
the server has configured the dynamic pool of addresses from the range of 192.0.2.10 to 192.0.2.20. Host A requests
an address and gets 192.0.2.10. Now the system administrator decides to reserve address 192.0.2.10 for Host B. In
general, reserving an address that is currently assigned to someone else is not recommended, but there are valid use
cases where such an operation is warranted.

The server now has a conflict to resolve. If Host B boots up and requests an address, the server is not able to assign
the reserved address 192.0.2.10. A naive approach would to be immediately remove the existing lease for Host A and
create a new one for Host B. That would not solve the problem, though, because as soon as Host B gets the address, it
will detect that the address is already in use (by Host A) and will send a DHCPDECLINE message. Therefore, in this
situation, the server has to temporarily assign a different address from the dynamic pool (not matching what has been
reserved) to Host B.

When Host A renews its address, the server will discover that the address being renewed is now reserved for another
host - Host B. The server will inform Host A that it is no longer allowed to use it by sending a DHCPNAK message.
The server will not remove the lease, though, as there’s a small chance that the DHCPNAK will not be delivered if the
network is lossy. If that happens, the client will not receive any responses, so it will retransmit its DHCPREQUEST
packet. Once the DHCPNAK is received by Host A, it will revert to server discovery and will eventually get a different
address. Besides allocating a new lease, the server will also remove the old one. As a result, address 192.0.2.10 will
become free.

When Host B tries to renew its temporarily assigned address, the server will detect that it has a valid lease, but will note
that there is a reservation for a different address. The server will send DHCPNAK to inform Host B that its address is
no longer usable, but will keep its lease (again, the DHCPNAK may be lost, so the server will keep it until the client
returns for a new address). Host B will revert to the server discovery phase and will eventually send a DHCPREQUEST
message. This time the server will find that there is a reservation for that host and that the reserved address 192.0.2.10 is
not used, so it will be granted. It will also remove the lease for the temporarily assigned address that Host B previously
obtained.

This recovery will succeed, even if other hosts attempt to get the reserved address. If Host C requests the address
192.0.2.10 after the reservation is made, the server will either offer a different address (when responding to DHCPDIS-
COVER) or send DHCPNAK (when responding to DHCPREQUEST).

This mechanism allows the server to fully recover from a case where reservations conflict with existing leases; however,
this procedure takes roughly as long as the value set for renew-timer. The best way to avoid such a recovery is not to
define new reservations that conflict with existing leases. Another recommendation is to use out-of-pool reservations.
If the reserved address does not belong to a pool, there is no way that other clients can get it.

Note: The conflict-resolution mechanism does not work for global reservations. Although the global address reserva-
tions feature may be useful in certain settings, it is generally recommended not to use global reservations for addresses.
Administrators who do choose to use global reservations must manually ensure that the reserved addresses are not in
dynamic pools.

8.3. Host Reservation in DHCPv4 111



Kea Administrator Reference Manual Documentation, Release 2.0.2

8.3.3 Reserving a Hosthame

When the reservation for a client includes the hostname, the server returns this hostname to the client in the Client
FQDN or Hostname option. The server responds with the Client FQDN option only if the client has included the
Client FQDN option in its message to the server. The server responds with the Hostname option if the client included
the Hostname option in its message to the server, or if the client requested the Hostname option using the Parameter
Request List option. The server returns the Hostname option even if it is not configured to perform DNS updates. The
reserved hostname always takes precedence over the hostname supplied by the client or the autogenerated (from the
IPv4 address) hostname.

The server qualifies the reserved hostname with the value of the ddns-qualifying-suffix parameter. For example,
the following subnet configuration:

{
"subnet4": [ {
"subnet": "10.0.0.0/24",
"pools": [ { "pool": "10.0.0.10-10.0.0.100" } ],
"ddns-qualifying-suffix": "example.isc.org.",
"reservations": [
{
"hw-address": "aa:bb:cc:dd:ee:ff",
"hostname": "alice-laptop"
}
]
1,
"dhcp-ddns": {
"enable-updates": true,
}
}

will result in assigning the “alice-laptop.example.isc.org.” hostname to the client using the MAC address
“aa:bb:cc:dd:ee:ff”. If the ddns-qualifying-suffix is not specified, the default (empty) value will be used, and
in this case the value specified as a hostname will be treated as a fully qualified name. Thus, by leaving the
ddns-qualifying-suffixempty itis possible to qualify hostnames for different clients with different domain names:

{
"subnet4": [ {
"subnet": "10.0.0.0/24",
"pools": [ { "pool": "10.0.0.10-10.0.0.100" } 1],
"reservations": [

{
"hw-address": "aa:bb:cc:dd:ee:ff",
"hostname": "alice-laptop.isc.org."
1,
{
"hw-address": "12:34:56:78:99:AA",
"hostname": "mark-desktop.example.org."
}
]
3,
"dhcp-ddns": {
"enable-updates": true,
}

(continues on next page)

112 Chapter 8. The DHCPv4 Server



Kea Administrator Reference Manual Documentation, Release 2.0.2

(continued from previous page)

8.3.4 Including Specific DHCPv4 Options in Reservations

Kea offers the ability to specify options on a per-host basis. These options follow the same rules as any other options.
These can be standard options (see Standard DHCPv4 Options), custom options (see Custom DHCPv4 Options), or
vendor-specific options (see DHCPv4 Vendor-Specific Options). The following example demonstrates how standard
options can be defined:

{
"subnet4": [ {
"reservations": [
{
"hw-address": "aa:bb:cc:dd:ee:ff",
"ip-address": "192.0.2.1",
"option-data": [
{
"name": "cookie-servers",
"data": "10.1.1.202,10.1.1.203"
1,
{
"name": "log-servers",
"data": "10.1.1.200,10.1.1.201"
1
11
11
}

Vendor-specific options can be reserved in a similar manner:

{
"subnet4": [ {
"reservations": [
{
"hw-address": "aa:bb:cc:dd:ee:ff",
"ip-address": "10.0.0.7",
"option-data": [
{
"name": "vivso-suboptions",
"data": "4491"
1,
{
"name": "tftp-servers",
"space": "vendor-4491",
"data": "10.1.1.202,10.1.1.203"
1
1
1
}

Options defined at the host level have the highest priority. In other words, if there are options defined with the same
type on the global, subnet, class, and host levels, the host-specific values are used.

8.3. Host Reservation in DHCPv4 113



Kea Administrator Reference Manual Documentation, Release 2.0.2

8.3.5 Reserving Next Server, Server Hosthame, and Boot File Name

BOOTP/DHCPv4 messages include “siaddr”, “sname”, and “file” fields. Even though DHCPv4 includes corre-
sponding options, such as option 66 and option 67, some clients may not support these options. For this reason, server

» o«

administrators often use the “siaddr”, “sname”, and “file” fields instead.

With Kea, it is possible to make static reservations for these DHCPv4 message fields:

{
"subnet4": [ {
"reservations": [
{
"hw-address": "aa:bb:cc:dd:ee:ff",
"next-server": "10.1.1.2",
"server-hostname": "server-hostname.example.org",
"boot-file-name": "/tmp/bootfile.efi"
1
11
}

Note that those parameters can be specified in combination with other parameters for a reservation, such as a reserved
IPv4 address. These parameters are optional; a subset of them can be specified, or all of them can be omitted.

8.3.6 Reserving Client Classes in DHCPv4

Using Expressions in Classification explains how to configure the server to assign classes to a client, based on the
content of the options that this client sends to the server. Host reservation mechanisms also allow for the static as-
signment of classes to clients. The definitions of these classes are placed in the Kea configuration or a database.
The following configuration snippet shows how to specify that a client belongs to the classes reserved-classl and
reserved-class2. Those classes are associated with specific options sent to the clients which belong to them.

{
"client-classes": [
{
"name": "reserved-classl",
"option-data": [
{
"name": "routers",
"data": "10.0.0.200"
}
]
I
{
"name": "reserved-class2",
"option-data": [
{
"name": "domain-name-servers",
"data": "10.0.0.201"
}
]
}
1,

"subnet4": [ {

(continues on next page)

114 Chapter 8. The DHCPv4 Server




Kea Administrator Reference Manual Documentation, Release 2.0.2

(continued from previous page)

"subnet": "10.0.0.0/24",
"pools": [ { "pool": "10.0.0.10-10.0.0.100" } ],
"reservations": [

{

"hw-address": "aa:bb:cc:dd:ee:ff",

"client-classes": [ "reserved-classl", "reserved-class2" ]
}
]

1

In some cases the host reservations can be used in conjunction with client classes specified within the Kea configuration.
In particular, when a host reservation exists for a client within a given subnet, the “KNOWN” built-in class is assigned
to the client. Conversely, when there is no static assignment for the client, the “UNKNOWN” class is assigned to the
client. Class expressions within the Kea configuration file can refer to “KNOWN” or “UNKNOWN” classes using the
“member” operator. For example:

{
"client-classes": [
{
"name": "dependent-class",
"test": "member('KNOWN')",
"only-if-required": true
}
]
}

Note that the only-if-required parameter is needed here to force evaluation of the class after the lease has been
allocated and thus the reserved class has been also assigned.

Note: The classes specified in non-global host reservations are assigned to the processed packet after all classes
with the only-if-required parameter set to false have been evaluated. This means that these classes must not
depend on the statically assigned classes from the host reservations. If there is a need to create such a dependency,
the only-if-required parameter must be set to true for the dependent classes. Such classes are evaluated after the
static classes have been assigned to the packet. This, however, imposes additional configuration overhead, because all
classes marked as only-if-required must be listed in the require-client-classes list for every subnet where
they are used.

Note: Client classes specified within the Kea configuration file may depend on the classes specified within the global
host reservations. In such a case the only-if-required parameter is not needed. Refer to Pool Selection with Client
Class Reservations and Subnet Selection with Client Class Reservations for the specific use cases.

8.3. Host Reservation in DHCPv4 115




Kea Administrator Reference Manual Documentation, Release 2.0.2

8.3.7 Storing Host Reservations in MySQL, PostgreSQL, or Cassandra

Kea can store host reservations in MySQL, PostgreSQL, or Cassandra. See Hosts Storage for information on how to
configure Kea to use reservations stored in MySQL, PostgreSQL, or Cassandra. Kea provides a dedicated hook for
managing reservations in a database; section host_cmds: Host Commands provides detailed information. The Kea
wiki provides some examples of how to conduct common host reservation operations.

Note: In Kea, the maximum length of an option specified per-host is arbitrarily set to 4096 bytes.

8.3.8 Fine-Tuning DHCPv4 Host Reservation

The host reservation capability introduces additional restrictions for the allocation engine (the component of Kea that
selects an address for a client) during lease selection and renewal. In particular, three major checks are necessary. First,
when selecting a new lease, it is not sufficient for a candidate lease to simply not be in use by another DHCP client; it
also must not be reserved for another client. Second, when renewing a lease, an additional check must be performed
to see whether the address being renewed is reserved for another client. Finally, when a host renews an address, the
server must check whether there is a reservation for this host, which would mean the existing (dynamically allocated)
address should be revoked and the reserved one be used instead.

Some of those checks may be unnecessary in certain deployments, and not performing them may improve performance.
The Kea server provides the reservation-mode configuration parameter to select the types of reservations allowed
for a particular subnet. Each reservation type has different constraints for the checks to be performed by the server
when allocating or renewing a lease for the client. Allowed values are:

e all - enables both in-pool and out-of-pool host reservation types. This setting is the default value, and is the
safest and most flexible. However, as all checks are conducted, it is also the slowest. It does not check against
global reservations.

e out-of-pool - allows only out-of-pool host reservations. With this setting in place, the server may assume
that all host reservations are for addresses that do not belong to the dynamic pool. Therefore, it can skip the
reservation checks when dealing with in-pool addresses, thus improving performance. Do not use this mode if
any reservations use in-pool addresses. Caution is advised when using this setting; Kea does not sanity-check
the reservations against reservation-mode and misconfiguration may cause problems.

* global - allows only global host reservations. With this setting in place, the server searches for reservations for
a client only among the defined global reservations. If an address is specified, the server skips the reservation
checks carried out when dealing in other modes, thus improving performance. Caution is advised when using this
setting; Kea does not sanity-check reservations when global is set, and misconfiguration may cause problems.

* disabled - host reservation support is disabled. As there are no reservations, the server skips all checks. Any
reservations defined are completely ignored. As checks are skipped, the server may operate faster in this mode.

Since Kea 1.9.1, the reservation-mode parameter is replaced by the reservations-global,
reservations-in-subnet, and reservations-out-of-pool flags. The flags can be activated independently and
can produce various combinations, some of which were not supported by the deprecated reservation-mode.

The reservation-mode parameter can be specified at:
* global level: .Dhcp4["reservation-mode"] (lowest priority: gets overridden by all others)
* subnet level: .Dhcp4.subnet4[]["reservation-mode"] (low priority)
* shared-network level: .Dhcp4["shared-networks"][]["reservation-mode"] (high priority)

* shared-network subnet-level: .Dhcp4["shared-networks"][].subnet4[]["reservation-mode"] (high-
est priority: overrides all others)

116 Chapter 8. The DHCPv4 Server


https://gitlab.isc.org/isc-projects/kea/wikis/designs/commands#23-host-reservations-hr-management
https://gitlab.isc.org/isc-projects/kea/wikis/designs/commands#23-host-reservations-hr-management

Kea Administrator Reference Manual Documentation, Release 2.0.2

To decide which "reservation-mode" to choose, the following decision diagram may be useful:

e B Tt +
| Is per-host configuration needed, such as

| reserving specific addresses,

| assigning specific options or

| assigning packets to specific classes on per-device basis?
+

| [ For all given hosts,
+--> "disabled" +-->+ can the reserved resources
| be used in all configured subnets?

oo + |no |yes
Is I I
at least one reservation +<--+ "global" <--+
used to reserve addresses? |

| | | Is high leases-per-second |
+--> "out-of-pool” +-->+ performance or efficient |
A | resource usage |

| (CPU ticks, RAM usage, |

database roundtrips) |

important to your setup? |

I

I

I

|

I

I

I

I

|

| | o +
[ | | Can it be guaranteed |
| +-->+ that the reserved [
| | addresses |
| aren't part of the |
| pools configured |
| in the respective |
| subnet? |
| +
I

|

I

+ —_— —_—— —

An example configuration that disables reservations looks as follows:

8.3. Host Reservation in DHCPv4 117




Kea Administrator Reference Manual Documentation, Release 2.0.2

{
"Dhcp4": {
"subnet4": [
{
"pools": [
{
"pool": "192.0.2.10-192.0.2.100"
}
1,
"reservation-mode": "disabled",
"subnet": "192.0.2.0/24"
}
]
}
}

An example configuration using global reservations is shown below:

{
"Dhcp4d": {
"reservation-mode": "global",
"reservations": [
{
"hostname": "host-one",
"hw-address": "01l:bb:cc:dd:ee:ff"
1,
{
"hostname": "host-two",
"hw-address": "02:bb:cc:dd:ee:ff"
}
1,
"subnet4": [
{
"pools": [
{
"pool": "192.0.2.10-192.0.2.100"
}
1,
"subnet": "192.0.2.0/24"
}
]
}
}

The meaning of the reservation flags are:
* reservations-global: fetch global reservations.

e reservations-in-subnet: fetch subnet reservations. For a shared network this includes all subnet members
of the shared network.

e reservations-out-of-pool: this makes sense only when the reservations-in-subnet flag is true.
When reservations-out-of-pool is true, the server may assume that all host reservations are for addresses
that do not belong to the dynamic pool. Therefore, it can skip the reservation checks when dealing with in-pool
addresses, thus improving performance. The server will not assign reserved addresses that are inside the dy-

118 Chapter 8. The DHCPv4 Server




Kea Administrator Reference Manual Documentation, Release 2.0.2

namic pools to the respective clients. This also means that the addresses matching the respective reservations
from inside the dynamic pools (if any) can be dynamically assigned to any client.

The disabled value from the deprecated reservation-mode corresponds to:

{
"Dhcp4d": {
"reservations-global": false,
"reservations-in-subnet": false
}
}

The global value from the deprecated reservation-mode corresponds to:

{
"Dhcp4": {
"reservations-global": true,
"reservations-in-subnet": false
}
}

The out-of-pool value from the deprecated reservation-mode corresponds to:

{
"Dhcpd": {
"reservations-global": false,
"reservations-in-subnet": true,
"reservations-out-of-pool": true
}
}

And the all value from the deprecated reservation-mode corresponds to:

{
"Dhcp4": {
"reservations-global": false,
"reservations-in-subnet": true,
"reservations-out-of-pool": false
}
}

To activate both global and all, the following combination can be used:

{
"Dhcp4": {
"reservations-global": true,
"reservations-in-subnet": true,
"reservations-out-of-pool": false
}
}

To activate both global and out-of-pool, the following combination can be used:

{
"Dhcpd": {

(continues on next page)

8.3. Host Reservation in DHCPv4 119




Kea Administrator Reference Manual Documentation, Release 2.0.2

(continued from previous page)

"reservations-global": true,
"reservations-in-subnet": true,
"reservations-out-of-pool": true
}
}

Note that enabling out-of-pool and disabling in-subnet at the same time is not recommended because
out-of-pool applies to host reservations in a subnet, which are fetched only when the in-subnet flag is true.

The parameter can be specified at the global, subnet, and shared-network levels.

An example configuration that disables reservations looks as follows:

{
"Dhcp4d": {
"subnet4": [
{
"reservations-global": false,
"reservations-in-subnet": false,
"subnet": "192.0.2.0/24"
}
]
}
}

An example configuration using global reservations is shown below:

{
"Dhcp4d": {
"reservations": [
{
"hostname": "host-one",
"hw-address": "01:bb:cc:dd:ee:ff"
1,
{
"hostname": "host-two",
"hw-address": "02:bb:cc:dd:ee: ff"
}
1,
"reservations-global": true,
"reservations-in-subnet": false,
"subnet4": [
{
"pools": [
{
"pool": "192.0.2.10-192.0.2.100"
}
1,
"subnet": "192.0.2.0/24"
}
]
}
}

120 Chapter 8

. The DHCPv4 Server




Kea Administrator Reference Manual Documentation, Release 2.0.2

For more details regarding global reservations, see Global Reservations in DHCPv4.

Another aspect of host reservations is the different types of identifiers. Kea currently supports four types of identifiers:
hw-address, duid, client-id, and circuit-id. This is beneficial from a usability perspective; however, there is
one drawback. For each incoming packet, Kea has to extract each identifier type and then query the database to see if
there is a reservation by this particular identifier. If nothing is found, the next identifier is extracted and the next query
is issued. This process continues until either a reservation is found or all identifier types have been checked. Over time,
with an increasing number of supported identifier types, Kea would become slower and slower.

To address this problem, a parameter called host-reservation-identifiers is available. It takes a list of identifier
types as a parameter. Kea checks only those identifier types enumerated in host-reservation-identifiers. From
a performance perspective, the number of identifier types should be kept to a minimum, ideally one. If the deploy-
ment uses several reservation types, please enumerate them from most- to least-frequently used, as this increases the
chances of Kea finding the reservation using the fewest queries. An example of a host-reservation-identifiers
configuration looks as follows:

"host-reservation-identifiers": [ "circuit-id", "hw-address", "duid", "client-id" ],
"subnet4": [
{

"subnet": "192.0.2.0/24",

If not specified, the default value is:

"host-reservation-identifiers": [ "hw-address", "duid", "circuit-id", "client-id" ]

8.3.9 Global Reservations in DHCPv4

In some deployments, such as mobile, clients can roam within the network and certain parameters must be specified
regardless of the client’s current location. To meet such a need, Kea offers a global reservation mechanism. The idea
behind it is that regular host reservations are tied to specific subnets, by using a specific subnet ID. Kea can specify a
global reservation that can be used in every subnet that has global reservations enabled.

This feature can be used to assign certain parameters, such as hostname or other dedicated, host-specific options. It
can also be used to assign addresses. However, global reservations that assign addresses bypass the whole topology
determination provided by the DHCP logic implemented in Kea. It is very easy to misuse this feature and get a config-
uration that is inconsistent. To give a specific example, imagine a global reservation for address 192.0.2.100 and two
subnets 192.0.2.0/24 and 192.0.5.0/24. If global reservations are used in both subnets and a device matching global
host reservations visits part of the network that is serviced by 192.0.5.0/24, it will get an IP address 192.0.2.100, a
subnet 192.0.5.0, and a default router 192.0.5.1. Obviously, such a configuration is unusable, as the client will not be
able to reach its default gateway.

To use global host reservations, a configuration similar to the following can be used:

"Dhcp4:" {
# This specifies global reservations.
# They will apply to all subnets that
# have global reservations enabled.

"reservations": [

{
"hw-address": "aa:bb:cc:dd:ee:ff",

(continues on next page)

8.3. Host Reservation in DHCPv4 121




Kea Administrator Reference Manual Documentation, Release 2.0.2

(continued from previous page)

}
1,

"hostname": "hw-host-dynamic"

"hw-address": "01:02:03:04:05:06",
"hostname": "hw-host-fixed",

# Use of IP addresses in global reservations is risky.

# If used outside of a matching subnet, such as 192.0.1.0/24,
# it will result in a broken configuration being handed

# to the client.

"ip-address": "192.0.1.77"

"duid": "01:02:03:04:05",

"hostname": "duid-host"
"circuit-id": "'charter950'",
"hostname": "circuit-id-host"

"client-id": "01:11:22:33:44:55:66",
"hostname": "client-id-host"

"valid-lifetime": 600,
"subnet4": [ {

¥

"subnet": "10.0.0.0/24",

# It is replaced by the "reservations-global"

# "reservations-in-subnet" and 'reservations-out-of-pool"

# parameters.

# "reservation-mode": '"global",

# Specify if the server should lookup global reservations.
"reservations-global": true,

# Specify if the server should lookup in-subnet reservations.
"reservations-in-subnet": false,

# Specify if the server can assume that all reserved addresses
# are out-of-pool. It can be ignored because '"reservations-in-subnet"
# is false.

# "reservations-out-of-pool": false,

"pools": [ { "pool": "10.0.0.10-10.0.0.100" } ]

When using database backends, the global host reservations are distinguished from regular reservations by using a

subnet-

id value of zero.

122

Chapter 8. The DHCPv4 Server




Kea Administrator Reference Manual Documentation, Release 2.0.2

8.3.10 Pool Selection with Client Class Reservations

Client classes can be specified in the Kea configuration file and/or via host reservations. The classes specified in the Kea
configuration file are evaluated immediately after receiving the DHCP packet and therefore can be used to influence
subnet selection using the client-class parameter specified in the subnet scope. The classes specified within the
host reservations are fetched and assigned to the packet after the server has already selected a subnet for the client.
This means that the client class specified within a host reservation cannot be used to influence subnet assignment for
this client, unless the subnet belongs to a shared network. If the subnet belongs to a shared network, the server may
dynamically change the subnet assignment while trying to allocate a lease. If the subnet does not belong to a shared
network, the subnet is not changed once selected.

If the subnet does not belong to a shared network, it is possible to use host reservation-based client classification to
select an address pool within the subnet as follows:

"Dhcp4": {
"client-classes": [
{
"name": "reserved_class"
1,
{
"name": "unreserved_class",
"test": "not member('reserved_class')"
}
1,
"subnet4": [
{
"subnet": "192.0.2.0/24",
"reservations": [{"
"hw-address": "aa:bb:cc:dd:ee:fe",
"client-classes": [ "reserved_class" ]
1,
"pools": [
{
"pool": "192.0.2.10-192.0.2.20",
"client-class": "reserved_class"
1,
{
"pool": "192.0.2.30-192.0.2.40",
"client-class": "unreserved_class"
}
1
}
]
}

The reserved_class is declared without the test parameter because it may only be assigned to the client via the
host reservation mechanism. The second class, unreserved_class, is assigned to the clients which do not be-
long to the reserved_class. The first pool within the subnet is only used for clients having a reservation for the
reserved_class. The second pool is used for clients not having such a reservation. The configuration snippet in-
cludes one host reservation which causes the client with the MAC address aa:bb:cc:dd:ee:fe to be assigned to the
reserved_class. Thus, this client will be given an IP address from the first address pool.

8.3. Host Reservation in DHCPv4 123




Kea Administrator Reference Manual Documentation, Release 2.0.2

8.3.11 Subnet Selection with Client Class Reservations

There is one specific use case when subnet selection may be influenced by client classes specified within host reserva-
tions: when the client belongs to a shared network. In such a case it is possible to use classification to select a subnet
within this shared network. Consider the following example:

"Dhcp4": {
"client-classes": [
{
"name": "reserved_class"
1,
{
"name: "unreserved_class",
"test": "not member('reserved_class')"
}
1,
"reservations": [{"
"hw-address": "aa:bb:cc:dd:ee:fe",

"client-classes": [ "reserved_class" ]
3,
# It is replaced by the "reservations-global"
# "reservations-in-subnet" and "reservations-out-of-pool" parameters.
# Specify if the server should lookup global reservations.
"reservations-global": true,
# Specify if the server should lookup in-subnet reservations.
"reservations-in-subnet": false,
Specify if the server can assume that all reserved addresses
are out-of-pool. It can be ignored because '"reservations-in-subnet"
is false, but if specified, it is inherited by '"shared-networks"
and "subnet4" levels.
"reservations-out-of-pool": false,
"shared-networks": [{

"subnet4": [

OB R R W

{
"subnet": "192.0.2.0/24",
"pools": [
{
"pool": "192.0.2.10-192.0.2.20",
"client-class": "reserved_class"
}
1
1,
{
"subnet": "192.0.3.0/24",
"pools": [
{
"pool": "192.0.3.10-192.0.3.20",
"client-class": "unreserved_class"
}
]
}

3]

124 Chapter 8. The DHCPv4 Server




Kea Administrator Reference Manual Documentation, Release 2.0.2

This is similar to the example described in Pool Selection with Client Class Reservations. This time, however, there
are two subnets, each of which has a pool associated with a different class. The clients that do not have a reservation
for the reserved_class are assigned an address from the subnet 192.0.3.0/24. Clients with a reservation for the
reserved_class are assigned an address from the subnet 192.0.2.0/24. The subnets must belong to the same shared
network. In addition, the reservation for the client class must be specified at the global scope (global reservation) and
reservations-global must be set to true.

In the example above, the client-class could also be specified at the subnet level rather than the pool level, and
would yield the same effect.

8.3.12 Multiple Reservations for the Same IP

Host reservations were designed to preclude the creation of multiple reservations for the same IP address within a
particular subnet, to avoid having two different clients compete for the same address. When using the default settings,
the server returns a configuration error when it finds two or more reservations for the same IP address within a sub-
net in the Kea configuration file. The host_cmds: Host Commands hook library returns an error in response to the
reservation-add command when it detects that the reservation exists in the database for the IP address for which
the new reservation is being added.

In some deployments a single host can select one of several network interfaces to communicate with the DHCP server,
and the server must assign the same IP address to the host regardless of the interface used. Since each interface
is assigned a different MAC address, it implies that several host reservations must be created to associate all of the
MAC addresses present on this host with IP addresses. Using different IP addresses for each interface is impractical
and is considered a waste of the IPv4 address space, especially since the host typically uses only one interface for
communication with the server, hence only one IP address is in use.

This causes a need to create multiple host reservations for a single IP address within a subnet; this is supported beginning
with the Kea 1.9.1 release as an optional mode of operation, enabled with the ip-reservations-unique global
parameter.

ip-reservations-unique is a boolean parameter that defaults to true, which forbids the specification of more than
one reservation for the same IP address within a given subnet. Setting this parameter to false allows such reservations
to be created both in the Kea configuration file and in the host database backend, via the host-cmds hook library.

This setting is currently supported by the most popular host database backends, i.e. MySQL and PostgreSQL. It is
not supported for Cassandra, Host Cache (see host_cache: Caching Host Reservations), or the RADIUS backend (see
radius: RADIUS Server Support). An attempt to set ip-reservations-unique to false when any of these three
backends is in use yields a configuration error.

Note: When ip-reservations-unique is set to true (the default value), the server ensures that IP reservations are
unique for a subnet within a single host backend and/or Kea configuration file. It does not guarantee that the reservations
are unique across multiple backends.

The following is an example configuration with two reservations for the same IP address but different MAC addresses:

"Dhcp4": {
"ip-reservations-unique": false,
"subnet4": [
{
"subnet": "192.0.2.0/24",
"reservations": [
{
"hw-address": "la:1b:1c:1d:1le:1f",
"ip-address": "192.0.2.11"

(continues on next page)

8.3. Host Reservation in DHCPv4 125




Kea Administrator Reference Manual Documentation, Release 2.0.2

(continued from previous page)

1,

{
"hw-address": "2a:2b:2c:2d:2e:2f",
"ip-address": "192.0.2.11"

}

It is possible to control the ip-reservations-unique parameter via the Configuration Backend in DHCPv4. If the
new setting of this parameter conflicts with the currently used backends (backends do not support the new setting),
the new setting is ignored and a warning log message is generated. The backends continue to use the default setting,
expecting that IP reservations are unique within each subnet. To allow the creation of non-unique IP reservations, the
administrator must remove the backends which lack support for them from the configuration file.

Administrators must be careful when they have been using multiple reservations for the same IP address and later decide
to return to the default mode in which this is no longer allowed. Admins must make sure that at most one reservation
for a given IP address exists within a subnet, prior to switching back to the default mode. If such duplicates are left in
the configuration file, the server reports a configuration error. Leaving such reservations in the host databases does not
cause configuration errors but may lead to lease allocation errors during the server’s operation, when it unexpectedly
finds multiple reservations for the same IP address.

Note: Currently the server does not verify whether multiple reservations for the same IP address exist in MySQL
and/or PostgreSQL host databases when ip-reservations-unique is updated from true to false. This may cause
issues with lease allocations. The administrator must ensure that there is at most one reservation for each IP address
within each subnet, prior to the configuration update.

8.4 Shared Networks in DHCPv4

DHCP servers use subnet information in two ways. It is used to both determine the point of attachment, i.e. where the
client is connected to the network, and to group information pertaining to a specific location in the network. However,
it is sometimes useful to have more than one logical IP subnet deployed on the same physical link. Understanding that
two or more subnets are used on the same link requires additional logic in the DHCP server. This capability is called
“shared networks” in Kea, and sometimes also “shared subnets”; in Microsoft’s nomenclature it is called “multinet.”

There are many use cases where the feature is useful; here we explain just a handful of the most common ones. The first
and by far most common use case is an existing network that has grown and is running out of available address space.
Rather than migrating all devices to a new, larger subnet, it is easier to simply configure additional subnets on top of
the existing one. Sometimes, due to address space fragmentation (e.g. only many disjointed /24s are available), this
is the only choice. Also, configuring additional subnets has the advantage of not disrupting the operation of existing
devices.

Another very frequent use case comes from cable networks. There are two types of devices in cable networks: cable
modems and the end-user devices behind them. It is a common practice to use different subnets for cable modems
to prevent users from tinkering with them. In this case, the distinction is based on the type of device, rather than on
address-space exhaustion.

A client connected to a shared network may be assigned an address from any of the pools defined within the subnets
belonging to the shared network. Internally, the server selects one of the subnets belonging to a shared network and tries
to allocate an address from this subnet. If the server is unable to allocate an address from the selected subnet (e.g., due

126 Chapter 8. The DHCPv4 Server




Kea Administrator Reference Manual Documentation, Release 2.0.2

to address-pool exhaustion), it uses another subnet from the same shared network and tries to allocate an address from
this subnet. The server typically allocates all addresses available in a given subnet before it starts allocating addresses
from other subnets belonging to the same shared network. However, in certain situations the client can be allocated an
address from another subnet before the address pools in the first subnet get exhausted; this sometimes occurs when the
client provides a hint that belongs to another subnet, or the client has reservations in a subnet other than the default.

Note: Deployments should not assume that Kea waits until it has allocated all the addresses from the first subnet in a
shared network before allocating addresses from other subnets.

In order to define a shared network an additional configuration scope is introduced:

{
"Dhcp4": {
"shared-networks": [
{
# Name of the shared network. It may be an arbitrary string
# and it must be unique among all shared networks.
"name": "my-secret-lair-level-1",

# The subnet selector can be specified at the shared network level.

# Subnets from this shared network will be selected for directly

# connected clients sending requests to the server's "eth0®" interface.
"interface": "eth0",

# This starts a list of subnets in this shared network.
# There are two subnets in this example.

"subnet4": [
{
"subnet": "10.0.0.0/8",
"pools": [ { "pool": "10.0.0.1 - 10.0.0.99" } 1],
1,
{
"subnet": "192.0.2.0/24",
"pools": [ { "pool": "192.0.2.100 - 192.0.2.199" } ]
}

1,

} 1, # end of shared-networks

# It is likely that in the network there will be a mix of regular,
# "plain" subnets and shared networks. It is perfectly valid to mix
# them in the same configuration file.

#

# This is a regular subnet. It is not part of any shared network.
"subnet4": [

{
"subnet": "192.0.3.0/24",
"pools": [ { "pool": "192.0.3.1 - 192.0.3.200" } 1,
"interface": "ethl"

}

]

} # end of Dhcp4
}

8.4. Shared Networks in DHCPv4 127




Kea Administrator Reference Manual Documentation, Release 2.0.2

As demonstrated in the example, it is possible to mix shared and regular (“plain”) subnets. Each shared network must
have a unique name. This is similar to the ID for subnets, but gives administrators more flexibility. It is used for logging,
but also internally for identifying shared networks.

In principle it makes sense to define only shared networks that consist of two or more subnets. However, for testing
purposes, an empty subnet or a network with just a single subnet is allowed. This is not a recommended practice in
production networks, as the shared network logic requires additional processing and thus lowers the server’s perfor-
mance. To avoid unnecessary performance degradation, the shared subnets should only be defined when required by
the deployment.

Shared networks provide the ability to specify many parameters in the shared network scope that apply to all subnets
within it. If necessary, it is possible to specify a parameter in the shared network scope and then override its value in
the subnet scope. For example:

"shared-networks": [

{

"name": "lab-network3",
"interface": "eth0",

# This applies to all subnets in this shared network, unless
# values are overridden on subnet scope.
"valid-lifetime": 600,

# This option is made available to all subnets in this shared
# network.
"option-data": [ {
"name": "log-servers",
"data": "1.2.3.4"
1,

"subnet4": [
{
"subnet": "10.0.0.0/8",
"pools": [ { "pool": "10.0.0.1 - 10.0.0.99" } 1],

# This particular subnet uses different values.
"valid-lifetime": 1200,
"option-data": [
{
"name": "log-servers",
"data": "10.0.0.254"
1,
{

"name": "routers",
"data": "10.0.0.254"
11
1,
{
"subnet": "192.0.2.0/24",
"pools": [ { "pool": "192.0.2.100 - 192.0.2.199" } 1],

# This subnet does not specify its own valid-lifetime value,
# so it is inherited from shared network scope.

(continues on next page)

128 Chapter 8. The DHCPv4 Server




Kea Administrator Reference Manual Documentation, Release 2.0.2

(continued from previous page)

"option-data": [
{
"name": "routers",
"data": "192.0.2.1"
11

]
}]

In this example, there is a “log-servers” option defined that is available to clients in both subnets in this shared network.
Also, the valid lifetime is set to 10 minutes (600s). However, the first subnet overrides some of the values (the valid
lifetime is 20 minutes, there is a different IP address for “log-servers”), but also adds its own option (the router address).
Assuming a client asking for router and “log-servers” options is assigned a lease from this subnet, it will get a lease
for 20 minutes and a “log-servers” and routers value of 10.0.0.254. If the same client is assigned to the second subnet,
it will get a 10-minute lease, a “log-servers” value of 1.2.3.4, and routers set to 192.0.2.1.

8.4.1 Local and Relayed Traffic in Shared Networks

It is possible to specify an interface name at the shared network level, to tell the server that this specific shared network
is reachable directly (not via relays) using the local network interface. As all subnets in a shared network are expected
to be used on the same physical link, it is a configuration error to attempt to define a shared network using subnets that
are reachable over different interfaces. In other words, all subnets within the shared network must have the same value
of the “interface” parameter. The following configuration is an example of what NOT to do:

"shared-networks": [

{
"name": "office-floor-2",
"subnet4": [
{
"subnet": "10.0.0.0/8",
"pools": [ { "pool": "10.0.0.1 - 10.0.0.99" } 1],
"interface": "eth®"
1,
{
"subnet": "192.0.2.0/24",
"pools": [ { "pool": "192.0.2.100 - 192.0.2.199" } 1],
# Specifying the different interface name is a configuration
# error. This value should rather be "eth®" or the interface
# name in the other subnet should be "ethl".
"interface": "ethl"
}
]
1

To minimize the chance of configuration errors, it is often more convenient to simply specify the interface name once,
at the shared network level, as shown in the example below.

"shared-networks": [

{

"name": "office-floor-2",

(continues on next page)

8.4. Shared Networks in DHCPv4 129




Kea Administrator Reference Manual Documentation, Release 2.0.2

(continued from previous page)

# This tells Kea that the whole shared network is reachable over a
# local interface. This applies to all subnets in this network.
"interface": "eth®",

"subnet4": [

{
"subnet": "10.0.0.0/8",
"pools": [ { "pool": "10.0.0.1 - 10.0.0.99" } 1],
1,
{
"subnet": "192.0.2.0/24",
"pools": [ { "pool": "192.0.2.100 - 192.0.2.199" } ]
}

]
1

With relayed traffic, subnets are typically selected using the relay agents’ addresses. If the subnets are used indepen-
dently (not grouped within a shared network), a different relay address can be specified for each of these subnets. When
multiple subnets belong to a shared network they must be selected via the same relay address and, similarly to the case
of the local traffic described above, it is a configuration error to specify different relay addresses for the respective
subnets in the shared network. The following configuration is another example of what NOT to do:

"shared-networks": [

{
"name": "kakapo",
"subnet4": [
{
"subnet": "192.0.2.0/26",
"relay": {
"ip-addresses": [ "192.1.1.1" ]
1,
"pools": [ { "pool": "192.0.2.63 - 192.0.2.63" } ]
1,
{
"subnet": "10.0.0.0/24",
"relay": {
# Specifying a different relay address for this
# subnet is a configuration error. In this case
# it should be 192.1.1.1 or the relay address
# in the previous subnet should be 192.2.2.2.
"ip-addresses": [ "192.2.2.2" ]
1,
"pools": [ { "pool": "10.0.0.16 - 10.0.0.16" } ]
}
]
}

Again, it is better to specify the relay address at the shared network level; this value will be inherited by all subnets
belonging to the shared network.

130 Chapter 8. The DHCPv4 Server




Kea Administrator Reference Manual Documentation, Release 2.0.2

"shared-networks": [

{
"name": "kakapo",
"relay": {
# This relay address is inherited by both subnets.
"ip-addresses": [ "192.1.1.1" ]
1
"subnet4": [
{
"subnet": "192.0.2.0/26",
"pools": [ { "pool": "192.0.2.63 - 192.0.2.63" } ]
1,
{
"subnet": "10.0.0.0/24",
"pools": [ { "pool": "10.0.0.16 - 10.0.0.16" } ]
}
]
}

Even though it is technically possible to configure two (or more) subnets within the shared network to use different
relay addresses, this will almost always lead to a different behavior than what the user expects. In this case, the Kea
server will initially select one of the subnets by matching the relay address in the client’s packet with the subnet’s
configuration. However, it MAY end up using the other subnet (even though it does not match the relay address) if the
client already has a lease in this subnet or has a host reservation in this subnet, or simply if the initially selected subnet
has no more addresses available. Therefore, it is strongly recommended to always specify subnet selectors (interface
or relay address) at the shared-network level if the subnets belong to a shared network, as it is rarely useful to specify
them at the subnet level and it may lead to the configuration errors described above.

8.4.2 Client Classification in Shared Networks

Sometimes it is desirable to segregate clients into specific subnets based on certain properties. This mechanism is called
client classification and is described in Client Classification. Client classification can be applied to subnets belonging
to shared networks in the same way as it is used for subnets specified outside of shared networks. It is important to
understand how the server selects subnets for clients when client classification is in use, to ensure that the appropriate
subnet is selected for a given client type.

If a subnet is associated with a class, only the clients belonging to this class can use this subnet. If there are no classes
specified for a subnet, any client connected to a given shared network can use this subnet. A common mistake is to
assume that a subnet including a client class is preferred over subnets without client classes. Consider the following
example:

{
"client-classes": [
{
"name": "b-devices",
"test": "option[93].hex == 0x0002"
}
1,
"shared-networks": [
{

"name": "galah",

(continues on next page)

8.4. Shared Networks in DHCPv4 131




Kea Administrator Reference Manual Documentation, Release 2.0.2

(continued from previous page)

"interface": "eth®",
"subnet4": [
{
"subnet": "192.0.2.0/26",
"pools": [ { "pool": "192.0.2.1 - 192.0.2.63" } 1,

1,

{
"subnet": "10.0.0.0/24",
"pools": [ { "pool": "10.0.0.2 - 10.0.0.250" } 1],
"client-class": "b-devices"

}

If the client belongs to the “b-devices” class (because it includes option 93 with a value of 0x0002), that does not
guarantee that the subnet 10.0.0.0/24 will be used (or preferred) for this client. The server can use either of the two
subnets, because the subnet 192.0.2.0/26 is also allowed for this client. The client classification used in this case should
be perceived as a way to restrict access to certain subnets, rather than a way to express subnet preference. For example,
if the client does not belong to the “b-devices” class, it may only use the subnet 192.0.2.0/26 and will never use the
subnet 10.0.0.0/24.

A typical use case for client classification is in a cable network, where cable modems should use one subnet and other
devices should use another subnet within the same shared network. In this case it is necessary to apply classification
on all subnets. The following example defines two classes of devices, and the subnet selection is made based on option
93 values.

{
"client-classes": [
{
"name": "a-devices",
"test": "option[93].hex == 0x0001"
1
{
"name": "b-devices",
"test": "option[93].hex == 0x0002"
}
1,
"shared-networks": [
{
"name": "galah",
"interface": "eth0",
"subnet4": [
{

"subnet": "192.0.2.0/26",
"pools": [ { "pool": "192.0.2.1 - 192.0.2.63" } 1],
"client-class": "a-devices"

"subnet": "10.0.0.0/24",
"pools": [ { "pool": "10.0.0.2 - 10.0.0.250" } 7,

(continues on next page)

132 Chapter 8. The DHCPv4 Server




Kea Administrator Reference Manual Documentation, Release 2.0.2

(continued from previous page)

"client-class": "b-devices"

In this example each class has its own restriction. Only clients that belong to class “a-devices” are able to use subnet
192.0.2.0/26 and only clients belonging to “b-devices” are able to use subnet 10.0.0.0/24. Care should be taken not to
define too-restrictive classification rules, as clients that are unable to use any subnets will be refused service. However,
this may be a desired outcome if one wishes to provide service only to clients with known properties (e.g. only VoIP
phones allowed on a given link).

Note that it is possible to achieve an effect similar to the one presented in this section without the use of shared net-
works. If the subnets are placed in the global subnets scope, rather than in the shared network, the server will still use
classification rules to pick the right subnet for a given class of devices. The major benefit of placing subnets within
the shared network is that common parameters for the logically grouped subnets can be specified once in the shared-
network scope, e.g. the “interface” or “relay” parameter. All subnets belonging to this shared network will inherit
those parameters.

8.4.3 Host Reservations in Shared Networks

Subnets that are part of a shared network allow host reservations, similar to regular subnets:

{
"shared-networks": [
{
"name": "frog",
"interface": "eth0®",
"subnet4": [
{
"subnet": "192.0.2.0/26",
"id": 100,
"pools": [ { "pool": "192.0.2.1 - 192.0.2.63" } 1],
"reservations": [

{
"hw-address": "aa:bb:cc:dd:ee:ff",
"ip-address": "192.0.2.28"
}
1
1,
{
"subnet": "10.0.0.0/24",
"id": 101,
"pools": [ { "pool": "10.0.0.1 - 10.0.0.254" } ],
"reservations": [
{
"hw-address": "11:22:33:44:55:66",
"ip-address": "10.0.0.29"
}
]
}

(continues on next page)

8.4. Shared Networks in DHCPv4 133




Kea Administrator Reference Manual Documentation, Release 2.0.2

(continued from previous page)

It is worth noting that Kea conducts additional checks when processing a packet if shared networks are defined. First,
instead of simply checking whether there is a reservation for a given client in its initially selected subnet, Kea looks
through all subnets in a shared network for a reservation. This is one of the reasons why defining a shared network may
impact performance. If there is a reservation for a client in any subnet, that particular subnet is selected for the client.
Although it is technically not an error, it is considered bad practice to define reservations for the same host in multiple
subnets belonging to the same shared network.

While not strictly mandatory, it is strongly recommended to use explicit “id” values for subnets if database storage will
be used for host reservations. If an ID is not specified, the values for it are auto-generated, i.e. Kea assigns increasing
integer values starting from 1. Thus, the auto-generated IDs are not stable across configuration changes.

8.5 Server Identifier in DHCPv4

The DHCPv4 protocol uses a “server identifier” to allow clients to discriminate between several servers present on the
same link; this value is an IPv4 address of the server. The server chooses the IPv4 address of the interface on which
the message from the client (or relay) has been received. A single server instance uses multiple server identifiers if it
is receiving queries on multiple interfaces.

It is possible to override the default server identifier values by specifying the “dhcp-server-identifier” option. This
option configuration is only supported at the subnet, shared network, client class, and global levels. It must not be
specified at the host-reservation level. When configuring the “dhcp-server-identifier” option at client-class level, the
class must not set the only-if-required flag, because this class would not be evaluated before the server determines
if the received DHCP message should be accepted for processing. Such classes are evaluated after subnet selection.
See Required Classification for details.

The following example demonstrates how to override the server identifier for a subnet:

"subnet4": [

{
"subnet": "192.0.2.0/24",
"option-data": [
{
"name": "dhcp-server-identifier",
"data": "10.2.5.76"
}
1,
}

134 Chapter 8. The DHCPv4 Server




Kea Administrator Reference Manual Documentation, Release 2.0.2

8.6 How the DHCPvV4 Server Selects a Subnet for the Client

The DHCPv4 server differentiates between directly connected clients, clients trying to renew leases, and clients sending
their messages through relays. For directly connected clients, the server checks the configuration for the interface on
which the message has been received and, if the server configuration does not match any configured subnet, the message
is discarded.

Assuming that the server’s interface is configured with the IPv4 address 192.0.2.3, the server only processes messages
received through this interface from a directly connected client if there is a subnet configured to which this IPv4 address
belongs, such as 192.0.2.0/24. The server uses this subnet to assign an IPv4 address for the client.

The rule above does not apply when the client unicasts its message, i.e. is trying to renew its lease; such a message
is accepted through any interface. The renewing client sets ciaddr to the currently used IPv4 address, and the server
uses this address to select the subnet for the client (in particular, to extend the lease using this address).

If the message is relayed it is accepted through any interface. The giaddr set by the relay agent is used to select the
subnet for the client.

It is also possible to specify a relay IPv4 address for a given subnet. It can be used to match incoming packets into a
subnet in uncommon configurations, e.g. shared networks. See Using a Specific Relay Agent for a Subnet for details.

Note: The subnet selection mechanism described in this section is based on the assumption that client classification
is not used. The classification mechanism alters the way in which a subnet is selected for the client, depending on the
classes to which the client belongs.

Note: Starting with Kea 1.7.9, the order used to find a subnet which matches required conditions to be selected is
the ascending subnet identifier order. When the selected subnet is a member of a shared network, the whole shared
network is selected.

8.6.1 Using a Specific Relay Agent for a Subnet

A relay must have an interface connected to the link on which the clients are being configured. Typically the relay has
an IPv4 address configured on that interface, which belongs to the subnet from which the server assigns addresses.
Normally, the server is able to use the IPv4 address inserted by the relay (in the giaddr field of the DHCPv4 packet)
to select the appropriate subnet.

However, that is not always the case. In certain uncommon — but valid — deployments, the relay address may not
match the subnet. This usually means that there is more than one subnet allocated for a given link. The two most
common examples where this is the case are long-lasting network renumbering (where both old and new address space
is still being used) and a cable network. In a cable network, both cable modems and the devices behind them are
physically connected to the same link, yet they use distinct addressing. In such a case, the DHCPv4 server needs
additional information (the IPv4 address of the relay) to properly select an appropriate subnet.

The following example assumes that there is a subnet 192.0.2.0/24 that is accessible via a relay that uses 10.0.0.1 as
its IPv4 address. The server is able to select this subnet for any incoming packets that come from a relay that has an
address in the 192.0.2.0/24 subnet. It also selects that subnet for a relay with address 10.0.0.1.

"Dhcp4": {
"subnet4": [
{
"subnet": "192.0.2.0/24",
"pools": [ { "pool": "192.0.2.10 - 192.0.2.20" } 1],

(continues on next page)

8.6. How the DHCPv4 Server Selects a Subnet for the Client 135




Kea Administrator Reference Manual Documentation, Release 2.0.2

(continued from previous page)

"relay": {
"ip-addresses": [ "10.0.0.1" ]
1,

1,
}

If “relay” is specified, the “ip-addresses” parameter within it is mandatory. The “ip-addresses” parameter supports
specifying a list of addresses.

8.6.2 Segregating IPv4 Clients in a Cable Network

In certain cases, it is useful to mix relay address information (introduced in Using a Specific Relay Agent for a Subnet),
with client classification (explained in Client Classification). One specific example is in a cable network, where modems
typically get addresses from a different subnet than all the devices connected behind them.

Let us assume that there is one Cable Modem Termination System (CMTS)) with one CM MAC (a physical link
that modems are connected to). We want the modems to get addresses from the 10.1.1.0/24 subnet, while everything
connected behind the modems should get addresses from the 192.0.2.0/24 subnet. The CMTS that acts as a relay uses
address 10.1.1.1. The following configuration can serve that configuration:

"Dhcp4": {
"subnet4": [
{
"subnet": "10.1.1.0/24",
"pools": [ { "pool": "10.1.1.2 - 10.1.1.20" } 1],
"client-class" "docsis3.0",
"relay": {
"ip-addresses": [ "10.1.1.1 1"
}
1,
{
"subnet": "192.0.2.0/24",
"pools": [ { "pool": "192.0.2.10 - 192.0.2.20" } 1],
"relay": {
"ip-addresses": [ "10.1.1.1" ]
}
}
1,
}

136 Chapter 8. The DHCPv4 Server




Kea Administrator Reference Manual Documentation, Release 2.0.2

8.7 Duplicate Addresses (DHCPDECLINE Support)

The DHCPv4 server is configured with a certain pool of addresses that it is expected to hand out to DHCPv4 clients.
It is assumed that the server is authoritative and has complete jurisdiction over those addresses. However, for various
reasons such as misconfiguration or a faulty client implementation that retains its address beyond the valid lifetime,
there may be devices connected that use those addresses without the server’s approval or knowledge.

Such an unwelcome event can be detected by legitimate clients (using ARP or ICMP Echo Request mechanisms) and
reported to the DHCPv4 server using a DHCPDECLINE message. The server does a sanity check (to see whether the
client declining an address really was supposed to use it) and then conducts a clean-up operation. Any DNS entries
related to that address are removed, the event is logged, and hooks are triggered. After that is complete, the address
is marked as declined (which indicates that it is used by an unknown entity and thus not available for assignment) and
a probation time is set on it. Unless otherwise configured, the probation period lasts 24 hours; after that period, the
server will recover the lease (i.e. put it back into the available state) and the address will be available for assignment
again. It should be noted that if the underlying issue of a misconfigured device is not resolved, the duplicate-address
scenario will repeat. If reconfigured correctly, this mechanism provides an opportunity to recover from such an event
automatically, without any system administrator intervention.

To configure the decline probation period to a value other than the default, the following syntax can be used:

"Dhcp4d": {
"decline-probation-period": 3600,
"subnet4": [ ... 1,

The parameter is expressed in seconds, so the example above instructs the server to recycle declined leases after one
hour.

There are several statistics and hook points associated with the decline handling procedure. The lease4_decline
hook is triggered after the incoming DHCPDECLINE message has been sanitized and the server is about to decline
the lease. The declined-addresses statistic is increased after the hook returns (both the global and subnet-specific
variants). (See Statistics in the DHCPv4 Server and Hooks Libraries for more details on DHCPv4 statistics and Kea
hook points.)

Once the probation time elapses, the declined lease is recovered using the standard expired-lease reclamation procedure,
with several additional steps. In particular, both declined-addresses statistics (global and subnet-specific) are
decreased. At the same time, reclaimed-declined-addresses statistics (again in two variants, global and subnet-
specific) are increased.

A note about statistics: The server does not decrease the assigned-addresses statistics when a DHCPDECLINE
is received and processed successfully. While technically a declined address is no longer assigned, the primary
usage of the assigned-addresses statistic is to monitor pool utilization. Most people would forget to include
declined-addresses in the calculation, and simply use assigned-addresses/total-addresses. This would
cause a bias towards under-representing pool utilization. As this has a potential to cause major issues, ISC decided not
to decrease assigned-addresses immediately after receiving DHCPDECLINE, but to do it later when Kea recovers
the address back to the available pool.

8.7. Duplicate Addresses (DHCPDECLINE Support) 137




Kea Administrator Reference Manual Documentation, Release 2.0.2

8.8 Statistics in the DHCPv4 Server

The DHCPv4 server supports the following statistics:

Table 7: DHCPv4 Statistics

Statistic Data Type | Description

pktd-received integer Number of DHCPv4 packets received. This includes all packets: valid, bogus, cor-
rupted, rejected, etc. This statistic is expected to grow rapidly.

pktd-discover-received | integer Number of DHCPDISCOVER packets received. This statistic is expected to grow;

its increase means that clients that just booted started their configuration process
and their initial packets reached the Kea server.

pktd-offer-received integer Number of DHCPOFFER packets received. This statistic is expected to remain
zero at all times, as DHCPOFFER packets are sent by the server and the server is
never expected to receive them. A non-zero value indicates an error. One likely
cause would be a misbehaving relay agent that incorrectly forwards DHCPOFFER
messages towards the server, rather than back to the clients.

pkt4-request-received integer Number of DHCPREQUEST packets received. This statistic is expected to grow.
Its increase means that clients that just booted received the server’s response
(DHCPOFFER) and accepted it, and are now requesting an address (DHCPRE-
QUEST).

pkt4-ack-received integer Number of DHCPACK packets received. This statistic is expected to remain zero
at all times, as DHCPACK packets are sent by the server and the server is never
expected to receive them. A non-zero value indicates an error. One likely cause
would be a misbehaving relay agent that incorrectly forwards DHCPACK messages
towards the server, rather than back to the clients.

pkt4-nak-received integer Number of DHCPNAK packets received. This statistic is expected to remain zero
at all times, as DHCPNAK packets are sent by the server and the server is never
expected to receive them. A non-zero value indicates an error. One likely cause
would be a misbehaving relay agent that incorrectly forwards DHCPNAK messages
towards the server, rather than back to the clients.

pkt4-release-received integer Number of DHCPRELEASE packets received. This statistic is expected to grow.
Its increase means that clients that had an address are shutting down or ceasing to
use their addresses.

pkt4-decline-received integer Number of DHCPDECLINE packets received. This statistic is expected to remain
close to zero. Its increase means that a client leased an address, but discovered that
the address is currently used by an unknown device elsewhere in the network.

pkt4-inform-received integer Number of DHCPINFORM packets received. This statistic is expected to grow. Its
increase means that there are clients that either do not need an address or already
have an address and are interested only in getting additional configuration parame-

ters.
pkt4-unknown- integer Number of packets received of an unknown type. A non-zero value of this statistic
received indicates that the server received a packet that it was not able to recognize, either
with an unsupported type or possibly malformed (without a message-type option).
pktd-sent integer Number of DHCPv4 packets sent. This statistic is expected to grow every time

the server transmits a packet. In general, it should roughly match pkt4-received,
as most incoming packets cause the server to respond. There are exceptions (e.g.
DHCPRELEASE), so do not worry if it is less than pkt4-received.

pkt4-offer-sent integer Number of DHCPOFFER packets sent. This statistic is expected to grow in most
cases after a DHCPDISCOVER is processed. There are certain uncommon, but
valid, cases where incoming DHCPDISCOVER packets are dropped, but in general
this statistic is expected to be close to pkt4-discover-received.

continues on next page

138 Chapter 8. The DHCPv4 Server



Kea Administrator Reference Manual Documentation, Release 2.0.2

Table 7 — continued from previous page

Statistic

Data Type

Description

pkt4-ack-sent

integer

Number of DHCPACK packets sent. This statistic is expected to grow in most cases
after a DHCPREQUEST is processed. There are certain cases where DHCPNAK
is sent instead. In general, the sum of pkt4-ack-sent and pkt4-nak-sent should be
close to pkt4-request-received.

pkt4-nak-sent

integer

Number of DHCPNAK packets sent. This statistic is expected to grow when the
server chooses not to honor the address requested by a client. In general, the sum
of pkt4-ack-sent and pkt4-nak-sent should be close to pkt4-request-received.

pkt4-parse-failed

integer

Number of incoming packets that could not be parsed. A non-zero value of this
statistic indicates that the server received a malformed or truncated packet. This
may indicate problems in the network, faulty clients, or a bug in the server.

pktd-receive-drop

integer

Number of incoming packets that were dropped. The exact reason for dropping
packets is logged, but the most common reasons may be: an unacceptable packet
type was received, direct responses are forbidden, or the server-id sent by the client
does not match the server’s server-id.

subnet[id].total-
addresses

integer

Total number of addresses available for DHCPv4 management; in other words, this
is the sum of all addresses in all configured pools. This statistic changes only during
configuration updates. It does not take into account any addresses that may be
reserved due to host reservation. The id is the subnet-id of a given subnet. This
statistic is exposed for each subnet separately, and is reset during a reconfiguration
event.

cumulative-assigned-
addresses

integer

Cumulative number of addresses that have been assigned since server startup. It is
incremented each time an address is assigned and is not reset when the server is
reconfigured.

subnet[id].cumulative-
assigned-addresses

integer

Cumulative number of assigned addresses in a given subnet. It increases every time
a new lease is allocated (as a result of receiving a DHCPREQUEST message) and
never decreases. The id is the subnet-id of the subnet. This statistic is exposed for
each subnet separately, and is reset during a reconfiguration event.

subnet[id].assigned-
addresses

integer

Number of assigned addresses in a given subnet. It increases every time a new lease
is allocated (as a result of receiving a DHCPREQUEST message) and decreases ev-
ery time a lease is released (a DHCPRELEASE message is received) or expires. The
id is the subnet-id of the subnet. This statistic is exposed for each subnet separately,
and is reset during a reconfiguration event.

reclaimed-leases

integer

Number of expired leases that have been reclaimed since server startup. It is incre-
mented each time an expired lease is reclaimed and never decreases. It can be used
as a long-term indicator of how many actual leases have been reclaimed. This is a
global statistic that covers all subnets.

subnet[id].reclaimed-
leases

integer

Number of expired leases associated with a given subnet (id is the subnet-id) that
have been reclaimed since server startup. It is incremented each time an expired
lease is reclaimed. The id is the subnet-id of a given subnet. This statistic is exposed
for each subnet separately.

declined-addresses

integer

Number of IPv4 addresses that are currently declined; a count of the number of
leases currently unavailable. Once a lease is recovered, this statistic is decreased;
ideally, this statistic should be zero. If this statistic is non-zero or increasing, a
network administrator should investigate whether there is a misbehaving device in
the network. This is a global statistic that covers all subnets.

subnet[id].declined-
addresses

integer

Number of IPv4 addresses that are currently declined in a given subnet; a count of
the number of leases currently unavailable. Once a lease is recovered, this statistic
is decreased; ideally, this statistic should be zero. If this statistic is non-zero or in-
creasing, a network administrator should investigate whether there is a misbehaving
device in the network. The id is the subnet-id of a given subnet. This statistic is
exposed for each subnet separately.

continues on next page

8.8. Statistics in the DHCPv4 Server 139




Kea Administrator Reference Manual Documentation, Release 2.0.2

Table 7 — continued from previous page

Statistic Data Type | Description

reclaimed-declined- integer Number of IPv4 addresses that were declined, but have now been recovered. Unlike

addresses declined-addresses, this statistic never decreases. It can be used as a long-term
indicator of how many actual valid declines were processed and recovered from.
This is a global statistic that covers all subnets.

subnet[id].reclaimed- integer Number of IPv4 addresses that were declined, but have now been recovered. Unlike

declined-addresses declined-addresses, this statistic never decreases. It can be used as a long-term
indicator of how many actual valid declines were processed and recovered from.
The id is the subnet-id of a given subnet. This statistic is exposed for each subnet
separately.

pkt4-lease-query- integer Number of IPv4 DHCPLEASEQUERY packets received. (Only exists if Lease-

received query hook library is loaded.)

pkt4-lease-query- integer Number of IPv4 DHCPLEASEUNKNOWN responses sent. (Only exists if Lease-

response-unknown- query hook library is loaded.)

sent

pkt4-lease-query- integer Number of IPv4 DHCPLEASEUNASSIGNED responses sent. (Only exists if

response-unassigned- Leasequery hook library is loaded.)

sent

pkt4-lease-query- integer Number of IPv4 DHCPLEASEACTIVE responses sent. (Only exists if Leasequery

response-active-sent

hook library is loaded.)

Note: This section describes DHCPv4-specific statistics. For a general overview and usage of statistics, see Statistics.

Since Kea 1.7.7, the DHCPv4 server provides two global parameters to control statistics default sample limits:

* statistic-default-sample-count - determines the default maximum number of samples which are kept.
The special value of zero indicates that a default maximum age should be used.

e statistic-default-sample-age - determines the default maximum age in seconds of samples which are

kept.
For instance, to reduce the statistic-keeping overhead, set the default maximum sample count to 1 so only one sample
is kept:
"Dhcp4": {

"statistic-default-sample-count": 1,
"subnet4": [ ...

}

] ’

Statistics can be retrieved periodically to gain more insight into Kea operations. One tool that leverages that capability
is ISC Stork. See Monitoring Kea With Stork for details.

140

Chapter 8. The DHCPv4 Server




Kea Administrator Reference Manual Documentation, Release 2.0.2

8.9 Management API for the DHCPv4 Server

The management API allows the issuing of specific management commands, such as statistics retrieval, reconfiguration,
or shutdown. For more details, see Management API. Currently, the only supported communication channel type is
the UNIX stream socket. By default there are no sockets open; to instruct Kea to open a socket, the following entry in
the configuration file can be used:

"Dhcp4d": {
"control-socket": {
"socket-type": "unix",
"socket-name": "/path/to/the/unix/socket"
1,

"subnet4": [

1,

The length of the path specified by the socket-name parameter is restricted by the maximum length for the UNIX
socket name on the administrator’s operating system, i.e. the size of the sun_path field in the sockaddr_un structure,
decreased by 1. This value varies on different operating systems, between 91 and 107 characters. Typical values are
107 on Linux and 103 on FreeBSD.

Communication over the control channel is conducted using JSON structures. See the Control Channel section in the
Kea Developer’s Guide for more details.

The DHCPv4 server supports the following operational commands:
* build-report
* config-get
* config-reload
* config-set
* config-test
* config-write
 dhcp-disable
* dhcp-enable
¢ leases-reclaim
* list-commands
* shutdown
¢ status-get
* version-get

as described in Commands Supported by Both the DHCPv4 and DHCPv6 Servers. In addition, it supports the following
statistics-related commands:

* statistic-get
* statistic-reset

e statistic-remove

8.9. Management API for the DHCPv4 Server 141



https://reports.kea.isc.org/dev_guide/d2/d96/ctrlSocket.html
https://reports.kea.isc.org/dev_guide/d2/d96/ctrlSocket.html

Kea Administrator Reference Manual Documentation, Release 2.0.2

* statistic-get-all

* statistic-reset-all

* statistic-remove-all

* statistic-sample-age-set

* statistic-sample-age-set-all
* statistic-sample-count-set

* statistic-sample-count-set-all

as described in Commands for Manipulating Statistics.

8.10 User Contexts in IPv4

Kea allows the loading of hook libraries that can sometimes benefit from additional parameters. If such a parameter is
specific to the whole library, it is typically defined as a parameter for the hook library. However, sometimes there is a
need to specify parameters that are different for each pool.

See Comments and User Context for additional background regarding the user context idea. See User Contexts in
Hooks for a discussion from the hooks perspective.

User contexts can be specified at global scope; at the shared network, subnet, pool, client class, option data, or definition
level; and via host reservation. One other useful feature is the ability to store comments or descriptions.

Let’s consider an imaginary case of devices that have colored LED lights. Depending on their location, they should
glow red, blue, or green. It would be easy to write a hook library that would send specific values, maybe as a vendor
option. However, the server has to have some way to specify that value for each pool. This need is addressed by user
contexts. In essence, any user data can be specified in the user context as long as it is a valid JSON map. For example,
the aforementioned case of LED devices could be configured in the following way:

"Dhcp4d": {
"subnet4": [{

"subnet": "192.0.2.0/24",

"pools": [{
"pool": "192.0.2.10 - 192.0.2.20",
# This is pool specific user context
"user-context": { "color": "red" }

11,

# This is a subnet-specific user context. Any type
# of information can be entered here as long as it is valid JSON.
"user-context": {

"comment": "network on the second floor",
"last-modified": "2017-09-04 13:32",
"description": "you can put anything you like here",

"phones": [ "x1234", "x2345" ],
"devices-registered": 42,
"billing": false

31

142 Chapter 8. The DHCPv4 Server




Kea Administrator Reference Manual Documentation, Release 2.0.2

Kea does not interpret or use the user-context information; it simply stores it and makes it available to the hook libraries.
It is up to each hook library to extract that information and use it. The parser translates a “comment’ entry into a user
context with the entry, which allows a comment to be attached inside the configuration itself.

8.11 Supported DHCP Standards

The following standards are currently supported:

BOOTP Vendor Information Extensions, RFC 1497: This requires the open source BOOTP hook to be loaded.
See BOOTP Support for details.

Dynamic Host Configuration Protocol, RFC 2131: Supported messages are DHCPDISCOVER (1), DHCPOF-
FER (2), DHCPREQUEST (3), DHCPRELEASE (7), DHCPINFORM (8), DHCPACK (5), and DHCPNAK(6).

DHCP Options and BOOTP Vendor Extensions, REC 2132: Supported options are PAD (0), END(255), Message
Type(53), DHCP Server Identifier (54), Domain Name (15), DNS Servers (6), IP Address Lease Time (51),
Subnet Mask (1), and Routers (3).

The IPv4 Subnet Selection Option for DHCP, RFC 3011: The subnet selection option is supported. If received
in a packet, it is used in the subnet selection process.

DHCP Relay Agent Information Option, RFC 3046: Relay Agent Information, Circuit ID, and Remote ID options
are supported.

Link Selection sub-option for the Relay Agent Option, REC 3527: The link selection sub-option is supported.

Vendor-Identifying Vendor Options for Dynamic Host Configuration Protocol version 4, RFC 3925: Vendor-
Identifying Vendor Class and Vendor-Identifying Vendor-Specific Information options are supported.

Subscriber-ID Suboption for the DHCP Relay Agent Option, RFC 3993: The Subscriber-ID option is supported.

The Dynamic Host Configuration Protocol (DHCP) Client Fully Qualified Domain Name (FQDN) Option, RFC
4702: The Kea server is able to handle the Client FQDN option. Also, it is able to use the kea-dhcp-ddns
component to initiate appropriate DNS Update operations.

Resolution of Fully Qualified Domain Name (FQDN) Conflicts among Dynamic Host Configuration Protocol
(DHCP) Clients, RFC 4703: The DHCPv6 server uses a DHCP-DDNS server to resolve conflicts.

Client Identifier Option in DHCP Server Replies, REC 6842: The server by default sends back the client-id
option. That capability may be disabled. See Echoing Client-ID (RFC 6842) for details.

Generalized UDP Source Port for DHCP Relay, REC 8357: The Kea server handles the Relay Agent Information
Source Port sub-option in a received message, remembers the UDP port, and sends back reply to the same relay
agent using this UDP port.

IPv6-Only Preferred Option for DHCPv4, RFC 8925: The Kea server is able to designate its pools and subnets
as [Pv6-Only Preferred and send back the v6-only-preferred option to clients that requested it.

8.11.1 Known RFC Violations

In principle, Kea aspires to be a reference implementation and aims to implement 100% of the RFC standards. However,
in some cases there are practical aspects that prevent Kea from completely adhering to the text of the RFC documents.

RFC 2131, page 30, says that if the incoming DHCPREQUEST packet has no requested IP address option and
ciaddr is not set, the server is supposed to respond with NAK. However, broken clients exist that will always
send a DHCPREQUEST without those indicated. In that event, Kea accepts the DHCPREQUEST, assigns an
address, and responds with an ACK.

8.11.

Supported DHCP Standards 143


https://tools.ietf.org/html/rfc1497
https://tools.ietf.org/html/rfc2131
https://tools.ietf.org/html/rfc2132
https://tools.ietf.org/html/rfc3011
https://tools.ietf.org/html/rfc3046
https://tools.ietf.org/html/rfc3527
https://tools.ietf.org/html/rfc3925
https://tools.ietf.org/html/rfc3993
https://tools.ietf.org/html/rfc4702
https://tools.ietf.org/html/rfc4702
https://tools.ietf.org/html/rfc4703
https://tools.ietf.org/html/rfc6842
https://tools.ietf.org/html/rfc8357
https://tools.ietf.org/html/rfc8925
https://tools.ietf.org/html/rfc2131

Kea Administrator Reference Manual Documentation, Release 2.0.2

e RFC 2131, table 5, says that messages of type DHCPDECLINE or DHCPRELEASE must have the server iden-
tifier set and should be dropped if that option is missing. However, ISC DHCP does not enforce this, presumably
as a compatibility effort for broken clients, and the Kea team decided to follow suit.

8.12 DHCPvVv4 Server Limitations

These are the current known limitations of the Kea DHCPv4 server software. Most of them are reflections of the current
stage of development and should be treated as “not implemented yet,” rather than as actual limitations. However, some
of them are implications of the design choices made. Those are clearly marked as such.

* On the Linux and BSD system families, DHCP messages are sent and received over raw sockets (using LPF and
BPF) and all packet headers (including data link layer, IP, and UDP headers) are created and parsed by Kea, rather
than by the system kernel. Currently, Kea can only parse the data-link layer headers with a format adhering to
the IEEE 802.3 standard, and assumes this data link layer header format for all interfaces. Thus, Kea does not
work on interfaces which use different data-link layer header formats (e.g. Infiniband).

* The DHCPv4 server does not verify that an assigned address is unused. According to RFC 2131, the allocating
server should verify that an address is not used by sending an ICMP echo request.

8.13 Kea DHCPv4 Server Examples

A collection of simple-to-use examples for the DHCPv4 component of Kea is available with the source files, located
in the doc/examples/kea4 directory.

8.14 Configuration Backend in DHCPv4

In the Kea Configuration Backend section we have described the Configuration Backend (CB) feature, its applicability,
and its limitations. This section focuses on the usage of the CB with the Kea DHCPv4 server. It lists the supported
parameters, describes limitations, and gives examples of DHCPv4 server configurations to take advantage of the CB.
Please also refer to the corresponding section Configuration Backend in DHCPv6 for DHCPv6-specific usage of the
CB.

8.14.1 Supported Parameters

The ultimate goal for the CB is to serve as a central configuration repository for one or multiple Kea servers connected
to a database. In currently supported Kea versions, only a subset of the DHCPv4 server parameters can be configured
in the database. All other parameters must be specified in the JSON configuration file, if required.

The following table lists DHCPv4-specific parameters supported by the Configuration Backend, with an indication of
the level of the hierarchy at which it is currently supported. “n/a” marks cases when a given parameter is not applicable
at the particular level of the hierarchy or in cases when the server does not support the parameter at this level of the
hierarchy. “no” is used when a parameter is supported at the given level of the hierarchy but is not configurable via the
Configuration Backend.

All supported parameters can be configured via the cb_cmds hook library described in the cb_cmds: Con-
figuration Backend Commands section.  The general rule is that scalar global parameters are set using
remote-global-parameter4-set; shared network-specific parameters are set using remote-network4-set; and
subnet- and pool-level parameters are set using remote-subnet4-set. Whenever there is an exception to this general
rule, it is highlighted in the table. Non-scalar global parameters have dedicated commands; for example, the global

144 Chapter 8. The DHCPv4 Server


https://tools.ietf.org/html/rfc2131
https://tools.ietf.org/html/rfc2131

Kea Administrator Reference Manual Documentation, Release 2.0.2

DHCPv4 options (option-data) are modified using remote-option4-global-set. Client classes, together with
class-specific option definitions and DHCPv4 options, are configured using the remote-class4-set command.

The Configuration Sharing and Server Tags section explains the concept of shareable and non-shareable configuration
elements and the limitations for sharing them between multiple servers. In the DHCP configuration (both DHCPv4
and DHCPvo0), the shareable configuration elements are subnets and shared networks. Thus, they can be explicitly
associated with multiple server tags. The global parameters, option definitions, and global options are non-shareable
and can be associated with only one server tag. This rule does not apply to the configuration elements associated with
“all” servers. Any configuration element associated with “all” servers (using the “all” keyword as a server tag) is
used by all servers connecting to the configuration database.

Table 8: List of DHCPv4 Parameters Supported by the Configuration

Backend
Parameter Global Client Class | Shared Network | Subnet | Pool
4o6-interface n/a n/a n/a yes n/a
4o6-interface-id n/a n/a n/a yes n/a
406-subnet n/a n/a n/a yes n/a
boot-file-name yes yes yes yes n/a
cache-max-age yes n/a todo todo n/a
cache-threshold yes n/a todo todo n/a
calculate-tee-times yes n/a yes yes n/a
client-class n/a n/a yes yes yes
ddns-send-update yes n/a yes yes n/a
ddns-override-no-update yes n/a yes yes n/a
ddns-override-client-update | yes n/a yes yes n/a
ddns-replace-client-name yes n/a yes yes n/a
ddns-generated-prefix yes n/a yes yes n/a
ddns-qualifying-suffix yes n/a yes yes n/a
decline-probation-period yes n/a n/a n/a n/a
dhcp4o6-port yes n/a n/a n/a n/a
echo-client-id yes n/a n/a n/a n/a
hostname-char-set no n/a no no n/a
hostname-char-replacement | no n/a no no n/a
interface n/a n/a yes yes n/a
match-client-id yes n/a yes yes n/a
min-valid-lifetime yes yes yes yes n/a
max-valid-lifetime yes yes yes yes n/a
next-server yes yes yes yes n/a
option-data yes (via remote-option4-global-set) | yes yes yes yes
option-def yes (via remote-option-def4-set) yes n/a n/a n/a
rebind-timer yes n/a yes yes n/a
renew-timer yes n/a yes yes n/a
server-hostname yes yes yes yes n/a
valid-lifetime yes yes yes yes n/a
relay n/a n/a yes yes n/a
require-client-classes no n/a yes yes yes
reservation-mode yes n/a yes yes n/a
reservations-global yes n/a yes yes n/a
reservations-in-subnet yes n/a yes yes n/a
reservations-out-of-pool yes n/a yes yes n/a
t1-percent yes n/a yes yes n/a
t2-percent yes n/a yes yes n/a

8.14. Configuration Backend in DHCPv4 145




Kea Administrator Reference Manual Documentation, Release 2.0.2

8.14.2 Enabling the Configuration Backend

Consider the following configuration snippet:

"Dhcp4": {
"server-tag": "my DHCPv4 server",
"config-control": {
"config-databases": [{
"type": "mysql",

"name": "kea",
"user": "kea",
"password": "kea",
"host": "192.0.2.1",
"port": 3302

1,

"config-fetch-wait-time": 20
1,
"hooks-1libraries": [{

"library": "/usr/local/lib/kea/hooks/libdhcp_mysql_cb.so"
b {

"library": "/usr/local/lib/kea/hooks/libdhcp_cb_cmds.so"

3,

The config-control command contains two parameters. config-databases is a list which contains one element
comprising database type, location, and the credentials to be used to connect to this database. (Note that the parameters
specified here correspond to the database specification for the lease database backend and hosts database backend.)
Currently only one database connection can be specified on the config-databases list. The server connects to this
database during startup or reconfiguration, and fetches the configuration available for this server from the database.
This configuration is merged into the configuration read from the configuration file.

Note: Whenever there is a conflict between the parameters specified in the configuration file and the database, the
parameters from the database take precedence. We strongly recommend avoiding the duplication of parameters in
the file and the database, but this recommendation is not enforced by the Kea servers. In particular, if the subnets’
configuration is sourced from the database, we recommend that all subnets be specified in the database and that no
subnets be specified in the configuration file. It is possible to specify the subnets in both places, but the subnets in the
configuration file with overlapping IDs and/or prefixes with the subnets from the database will be superseded by those
from the database.

Once the Kea server is configured, it starts periodically polling the database for configuration changes. The polling
frequency is controlled by the config-fetch-wait-time parameter, expressed in seconds; it is the period between the
time when the server completed its last poll (and possibly the local configuration update) and the time when it will begin
polling again. In the example above, this period is set to 20 seconds. This means that after adding a new configuration
into the database (e.g. adding a new subnet), it will take up to 20 seconds (plus the time needed to fetch and apply
the new configuration) before the server starts using this subnet. The lower the config-fetch-wait-time value, the
shorter the time for the server to react to incremental configuration updates in the database. On the other hand, polling
the database too frequently may impact the DHCP server’s performance, because the server needs to make at least one
query to the database to discover any pending configuration updates. The default value of config-fetch-wait-time
is 30 seconds.

The config-backend-pull command can be used to force the server to immediately poll any configuration changes

146 Chapter 8. The DHCPv4 Server




Kea Administrator Reference Manual Documentation, Release 2.0.2

from the database and avoid waiting for the next fetch cycle. (This command was added in Kea release 1.7.1 for both
DHCPv4 and DHCPv6 servers.)

Finally, in the configuration example above, two hook libraries are loaded. The first, 1ibdhcp_mysql_cb. so, is the
implementation of the Configuration Backend for MySQL. It must be always present when the server uses MySQL as
the configuration repository. Failing to load this library will result in an error during the server configuration if the
“mysql” database is selected with the config-control parameter.

The second hook library, 1ibdhcp_cb_cmds. so, is optional. It should be loaded when the Kea server instance is to
be used to manage the configuration in the database. See the cb_cmds: Configuration Backend Commands section for
details. This hook library is only available to ISC customers with a paid support contract.

8.15 Kea DHCPv4 Compatibility Configuration Parameters

ISC’s intention is for Kea to follow the RFC documents to promote better standards compliance. However, many buggy
DHCP implementations already exist that cannot be easily fixed or upgraded. Therefore, Kea provides an easy-to-use
compatibility mode for broken or non-compliant clients. For that purpose, flags must be enabled to enable uncommon
practices:

{
"Dhcp4d": {
"compatibility": {
}
}
}

8.15.1 Lenient Option Parsing

By default, tuple fields defined in custom options are parsed as a set of length-value pairs.

With lenient-option-parsing: "true",if alength ever exceeds the rest of the option’s buffer, previous versions
of Kea returned a log message unable to parse the opaque data tuple, the buffer length is x, but
the tuple length is y with x < y; this no longer occurs. Instead, the value is considered to be the rest of the
buffer, or in terms of the log message above, the tuple length y becomes x.

{
"Dhcp4": {
"compatibility": {
"lenient-option-parsing": true
}
}
}

8.15. Kea DHCPv4 Compatibility Configuration Parameters 147




Kea Administrator Reference Manual Documentation, Release 2.0.2

148 Chapter 8. The DHCPv4 Server



CHAPTER
NINE

9.1

THE DHCPV6 SERVER

Starting and Stopping the DHCPv6 Server

It is recommended that the Kea DHCPvG6 server be started and stopped using keactrl (described in Managing Kea
with keactrl); however, it is also possible to run the server directly. It accepts the following command-line switches:

-c file - specifies the configuration file. This is the only mandatory switch.

-d - specifies whether the server logging should be switched to debug/verbose mode. In verbose mode, the
logging severity and debuglevel specified in the configuration file are ignored; “debug” severity and the maximum
debuglevel (99) are assumed. The flag is convenient for temporarily switching the server into maximum verbosity,
e.g. when debugging.

-p server-port - specifies the local UDP port on which the server will listen. This is only useful during
testing, as a DHCPvO6 server listening on ports other than the standard ones will not be able to handle regular
DHCPv6 queries.

-P client-port - specifies the remote UDP port to which the server will send all responses. This is only useful
during testing, as a DHCPv6 server sending responses to ports other than the standard ones will not be able to
handle regular DHCPv6 queries.

-t file - specifies a configuration file to be tested. Kea-dhcp6 will load it, check it, and exit. During the test, log
messages are printed to standard output and error messages to standard error. The result of the test is reported
through the exit code (0 = configuration looks ok, 1 = error encountered). The check is not comprehensive;
certain checks are possible only when running the server.

-v - displays the Kea version and exits.

-V - displays the Kea extended version with additional parameters and exits. The listing includes the versions of
the libraries dynamically linked to Kea.

-W - displays the Kea configuration report and exits. The report is a copy of the config.report file produced
by ./configure; it is embedded in the executable binary.

On startup, the server will detect available network interfaces and will attempt to open UDP sockets on all interfaces
mentioned in the configuration file. Since the DHCPv6 server opens privileged ports, it requires root access. This
daemon must be run as root.

During startup, the server will attempt to create a PID file of the form: [runstatedir]/kea/[conf name].kea-dhcp6.pid
where:

runstatedir: The value as passed into the build configure script; it defaults to “/usr/local/var/run”. Note that
this value may be overridden at runtime by setting the environment variable KEA_PIDFILE_DIR, although this
is intended primarily for testing purposes.

conf name: The configuration file name used to start the server, minus all preceding paths and the file extension.
For example, given a pathname of “/usr/local/etc/kea/myconf.txt”, the portion used would be “myconf™.

149



Kea Administrator Reference Manual Documentation, Release 2.0.2

If the file already exists and contains the PID of a live process, the server will issue a DHCP6_ALREADY_RUNNING
log message and exit. It is possible, though unlikely, that the file is a remnant of a system crash and the process to
which the PID belongs is unrelated to Kea. In such a case it would be necessary to manually delete the PID file.

The server can be stopped using the kill command. When running in a console, the server can also be shut down by
pressing ctrl-c. It detects the key combination and shuts down gracefully.

9.2 DHCPv6 Server Configuration

9.2.1 Introduction

This section explains how to configure the DHCPv6 server using a configuration file. Before DHCPV6 is started, its
configuration file must be created. The basic configuration is as follows:

{

# DHCPv6 configuration starts on the next line
"Dhcp6": {

# First we set up global values
"valid-lifetime": 4000,
"renew-timer": 1000,
"rebind-timer": 2000,
"preferred-lifetime": 3000,

# Next we set up the interfaces to be used by the server.
"interfaces-config": {
"interfaces": [ "eth0®" ]

3,

# And we specify the type of lease database
"lease-database": {
"type": "memfile",
"persist": true,
"name": "/var/lib/kea/dhcp6.leases"”
3

# Finally, we list the subnets from which we will be leasing addresses.
"subnet6": [

{
"subnet": "2001:db8:1::/64",
"pools": [
{
"pool": "2001:db8:1::1-2001:db8:1::ffff"
}
]
}
]
# DHCPv6 configuration ends with the next line
}
}

150 Chapter 9. The DHCPv6 Server




Kea Administrator Reference Manual Documentation, Release 2.0.2

The following paragraphs provide a brief overview of the parameters in the above example, along with their format.
Subsequent sections of this chapter go into much greater detail for these and other parameters.

The lines starting with a hash (#) are comments and are ignored by the server; they do not impact its operation in any
way.

The configuration starts in the first line with the initial opening curly bracket (or brace). Each configuration must
contain an object specifying the configuration of the Kea module using it. In the example above this object is called
Dhcp6.

Note: In the current Kea release it is possible to specify configurations of multiple modules within a single configura-
tion file, but this is not recommended and support for it was removed in 1.7.10 release, including the Logging object:
its previous content, the list of loggers, must now be inside the Dhcp6 object.

The Dhcp6 configuration starts with the "Dhcp6"”: { line and ends with the corresponding closing brace (in the
above example, the brace after the last comment). Everything defined between those lines is considered to be the
Dhcp6 configuration.

In general, the order in which those parameters appear does not matter, but there are two caveats. The first one is to
remember that the configuration file must be well-formed JSON. That means that the parameters for any given scope
must be separated by a comma, and there must not be a comma after the last parameter. When reordering a configuration
file, keep in mind that moving a parameter to or from the last position in a given scope may also require moving the
comma. The second caveat is that it is uncommon — although legal JSON — to repeat the same parameter multiple
times. If that happens, the last occurrence of a given parameter in a given scope is used, while all previous instances
are ignored. This is unlikely to cause any confusion as there are no real-life reasons to keep multiple copies of the same
parameter in the configuration file.

The first few DHCPv6 configuration elements define some global parameters. valid-1ifetime defines how long the
addresses (leases) given out by the server are valid. If nothing changes, a client that got an address is allowed to use it
for 4000 seconds. (Note that integer numbers are specified as is, without any quotes around them.) The address will
become deprecated in 3000 seconds, i.e. clients are allowed to keep old connections, but can’t use this address for
creating new connections. renew-timer and rebind-timer are values (also in seconds) that define T1 and T2 timers
that govern when the client will begin the renewal and rebind procedures.

The interfaces-config map specifies the server configuration concerning the network interfaces on which the server
should listen to the DHCP messages. The interfaces parameter specifies a list of network interfaces on which the
server should listen. Lists are opened and closed with square brackets, with elements separated by commas. To listen
on two interfaces, the interfaces-config should look like this:

"interfaces-config": {
"interfaces": [ "eth®", "ethl" ]
}’

The next couple of lines define the lease database, the place where the server stores its lease information. This particular
example tells the server to use memfile, which is the simplest (and fastest) database backend. It uses an in-memory
database and stores leases on disk in a CSV (comma-separated values) file. This is a very simple configuration; usually
the lease database configuration is more extensive and contains additional parameters. Note that 1ease-database is
an object and opens up a new scope, using an opening brace. Its parameters (just one in this example: type) follow.
If there were more than one, they would be separated by commas. This scope is closed with a closing brace. As more
parameters for the Dhcp6 definition follow, a trailing comma is present.

Finally, we need to define a list of IPv6 subnets. This is the most important DHCPv6 configuration structure, as the
server uses that information to process clients’ requests. It defines all subnets from which the server is expected to
receive DHCP requests. The subnets are specified with the subnet6 parameter. It is a list, so it starts and ends with
square brackets. Each subnet definition in the list has several attributes associated with it, so it is a structure and is
opened and closed with braces. At a minimum, a subnet definition has to have at least two parameters: subnet (which

9.2. DHCPv6 Server Configuration 151




Kea Administrator Reference Manual Documentation, Release 2.0.2

defines the whole subnet) and pools (which is a list of dynamically allocated pools that are governed by the DHCP
server).

The example contains a single subnet. If more than one were defined, additional elements in the subnet6 parameter
would be specified and separated by commas. For example, to define two subnets, the following syntax would be used:

"subnet6": [

{
"pools": [ { "pool": "2001:db8:1::/112" } 1,
"subnet": "2001:db8:1::/64"
3
{
"pools": [ { "pool": "2001:db8:2::1-2001:db8:2::ffff" } ],
"subnet": "2001:db8:2::/64"
}

]

Note that indentation is optional and is used for aesthetic purposes only. In some cases it may be preferable to use more
compact notation.

After all the parameters are specified, we have two contexts open: global and Dhcp6; thus, we need two closing curly
brackets to close them.

9.2.2 Lease Storage

All leases issued by the server are stored in the lease database. Currently there are four database backends available:
memlfile (which is the default backend), MySQL, PostgreSQL, and Cassandra.

9.2.2.1 Memfile - Basic Storage for Leases

The server is able to store lease data in different repositories. Larger deployments may elect to store leases in a database.
Lease Database Configuration describes this option. In typical smaller deployments, though, the server will store lease
information in a CSV file rather than a database. As well as requiring less administration, an advantage of using a file
for storage is that it eliminates a dependency on third-party database software.

The configuration of the file backend (memlfile) is controlled through the Dhcp6/lease-database parameters. The type
parameter is mandatory and it specifies which storage for leases the server should use. The value of "memfile"
indicates that the file should be used as the storage. The following list gives additional optional parameters that can be
used to configure the memfile backend.

* persist: controls whether the new leases and updates to existing leases are written to the file. It is strongly
recommended that the value of this parameter be set to true at all times during the server’s normal operation.
Not writing leases to disk means that if a server is restarted (e.g. after a power failure), it will not know which
addresses have been assigned. As a result, it may assign new clients addresses that are already in use. The value
of false is mostly useful for performance-testing purposes. The default value of the persist parameter is
true, which enables writing lease updates to the lease file.

* name: specifies an absolute location of the lease file in which new leases and lease updates will be recorded. The
default value for this parameter is " [kea-install-dir]/var/lib/kea/kea-leases6.csv".

* 1fc-interval: specifies the interval, in seconds, at which the server will perform a lease file cleanup (LFC).
This removes redundant (historical) information from the lease file and effectively reduces the lease file size.
The cleanup process is described in more detail later in this section. The default value of the 1fc-interval is
3600. A value of 0 disables the LFC.

152 Chapter 9. The DHCPv6 Server




Kea Administrator Reference Manual Documentation, Release 2.0.2

* max-row-errors: when the server loads a lease file, it is processed row by row, each row containing a single
lease. If a row is flawed and cannot be processed correctly the server will log it, discard the row, and go on to the
next row. This parameter can be used to set a limit on the number of such discards that may occur after which the
server will abandon the effort and exit. The default value of O disables the limit and allows the server to process
the entire file, regardless of how many rows are discarded.

An example configuration of the memfile backend is presented below:

"Dhcp6": {
"lease-database": {
"type": "memfile",
"persist": true,
"name": "/tmp/kea-leases6.csv",
"lfc-interval": 1800,
"max-row-errors': 100

This configuration selects the /tmp/kea-leases6.csv as the storage for lease information and enables persistence
(writing lease updates to this file). It also configures the backend to perform a periodic cleanup of the lease file every
30 minutes and sets the maximum number of row errors to 100.

It is important to know how the lease file contents are organized to understand why the periodic lease file cleanup is
needed. Every time the server updates a lease or creates a new lease for the client, the new lease information must be
recorded in the lease file. For performance reasons, the server does not update the existing client’s lease in the file,
as this would potentially require rewriting the entire file. Instead, it simply appends the new lease information to the
end of the file; the previous lease entries for the client are not removed. When the server loads leases from the lease
file, e.g. at the server startup, it assumes that the latest lease entry for the client is the valid one. The previous entries
are discarded, meaning that the server can re-construct the accurate information about the leases even though there
may be many lease entries for each client. However, storing many entries for each client results in a bloated lease file
and impairs the performance of the server’s startup and reconfiguration, as it needs to process a larger number of lease
entries.

Lease file cleanup (LFC) removes all previous entries for each client and leaves only the latest ones. The interval at
which the cleanup is performed is configurable, and it should be selected according to the frequency of lease renewals
initiated by the clients. The more frequent the renewals, the smaller the value of 1fc-interval should be. Note,
however, that the LFC takes time and thus it is possible (although unlikely) that, if the 1fc-interval is too short, a
new cleanup may be started while the previous one is still running. The server would recover from this by skipping the
new cleanup when it detected that the previous cleanup was still in progress. But it implies that the actual cleanups will
be triggered more rarely than configured. Moreover, triggering a new cleanup adds overhead to the server, which will
not be able to respond to new requests for a short period of time when the new cleanup process is spawned. Therefore,
it is recommended that the 1fc-interval value be selected in a way that allows the LFC to complete the cleanup
before a new cleanup is triggered.

Lease file cleanup is performed by a separate process (in the background) to avoid a performance impact on the server
process. To avoid conflicts between two processes both using the same lease files, the LFC process starts with Kea
opening a new lease file; the actual LFC process operates on the lease file that is no longer used by the server. There are
also other files created as a side effect of the lease file cleanup. The detailed description of the LFC process is located
later in this Kea Administrator’s Reference Manual: The LFC Process.

9.2. DHCPv6 Server Configuration 153




Kea Administrator Reference Manual Documentation, Release 2.0.2

9.2.2.2 Lease Database Configuration

Note: Lease database access information must be configured for the DHCPv6 server, even if it has already been
configured for the DHCPv4 server. The servers store their information independently, so each server can use a separate
database or both servers can use the same database.

Note: Kea requires the database timezone to match the system timezone. For more details, see First-Time Creation of
the MySQL Database and First-Time Creation of the PostgreSQL Database.

Lease database configuration is controlled through the Dhcp6/lease-database parameters. The database type must be

LEINT3

set to “memfile”, “mysql”, “postgresql”, or “cql”, e.g.:

"Dhcp6": { "lease-database": { "type": "mysql", ... }, ... }

Next, the name of the database to hold the leases must be set; this is the name used when the database was created (see
First-Time Creation of the MySQL Database, First-Time Creation of the PostgreSQL Database, or First-Time Creation
of the Cassandra Database).

"Dhcp6": { "lease-database": { "name": "database-name" , ... }, ... }

For Cassandra:

"Dhcp6": { "lease-database": { "keyspace": "database-name" , ... }, ... }

If the database is located on a different system from the DHCPv6 server, the database host name must also be specified:

"Dhcp6": { "lease-database": { "host": "remote-host-name", ... }, ... }

(It should be noted that this configuration may have a severe impact on server performance.)

For Cassandra, multiple contact points can be provided:

"Dhcp6": { "lease-database": { "contact-points": "remote-host-name[, ...]1" , ... }, ... }

Normally, the database will be on the same machine as the DHCPv6 server. In this case, set the value to the empty
string:

"Dhcp6": { "lease-database": { "host" : "', ...}, ... }

For Cassandra:

"Dhcp6": { "lease-database": { "contact-points": "", ... }, ... }

Should the database use a port other than the default, it may be specified as well:

"Dhcp6": { "lease-database": { "port" : 12345, ... }, ... }

Should the database be located on a different system, the administrator may need to specify a longer interval for the
connection timeout:

"Dhcp6": { "lease-database": { "connect-timeout" : timeout-in-seconds, ... }, ... }

154 Chapter 9. The DHCPv6 Server




Kea Administrator Reference Manual Documentation, Release 2.0.2

The default value of five seconds should be more than adequate for local connections. If a timeout is given, though, it
should be an integer greater than zero.

The maximum number of times the server will automatically attempt to reconnect to the lease database after connec-
tivity has been lost may be specified:

"Dhcp6": { "lease-database": { "max-reconnect-tries" : number-of-tries, ... }, ... }

If the server is unable to reconnect to the database after making the maximum number of attempts, the server will exit.
A value of zero (the default) disables automatic recovery and the server will exit immediately upon detecting a loss of
connectivity (MySQL and PostgreSQL only).

The number of milliseconds the server will wait between attempts to reconnect to the lease database after connectivity
has been lost may also be specified:

"Dhcp6": { "lease-database": { "reconnect-wait-time" : number-of-milliseconds, ... },

-}

The default value for MySQL and PostgreSQL is 0, which disables automatic recovery and causes the server to exit
immediately upon detecting the loss of connectivity. The default value for Cassandra is 2000 ms.

"Dhcp6": { "lease-database": { "on-fail" : "stop-retry-exit", ... }, ... }

The possible values are:

* stop-retry-exit disables the DHCP service while trying to automatically recover lost connections. Shuts
down the server on failure after exhausting max-reconnect-tries. This is the default value for MySQL and
PostgreSQL.

* serve-retry-exit DHCP service continues while trying to automatically recover lost connections. Shuts
down the server on failure after exhausting max-reconnect-tries.

* serve-retry-continue DHCP service continues and does not shut down the server even if the recovery fails.

Note: Automatic reconnection to database backends is configured individually per backend. This allows users to tailor
the recovery parameters to each backend they use. We do suggest that users enable it either for all backends or none,
so behavior is consistent. Losing connectivity to a backend for which reconnect is disabled will result (if configured)
in the server shutting itself down. This includes cases when the lease database backend and the hosts database backend
are connected to the same database instance. It is highly recommended to not change the stop-retry-exit default
setting for the lease manager as it is critical for the connection to be active while processing DHCP traffic. Change this
only if the server is used exclusively as a configuration tool.

Note: Note that the host parameter is used by the MySQL and PostgreSQL backends. Cassandra has a concept of
contact points that can be used to contact the cluster, instead of a single IP or hostname. It takes a list of comma-
separated IP addresses, which may be specified as:

"Dhcp6": { "lease-database": { "contact-points" : "192.0.2.1,192.0.2.2", ... }, ... }

Finally, the credentials of the account under which the server will access the database should be set:

"Dhcp6": { "lease-database": "user": "user-name",
"password": "password",
3,
}

9.2. DHCPv6 Server Configuration 155




Kea Administrator Reference Manual Documentation, Release 2.0.2

If there is no password to the account, set the password to the empty string “”’. (This is also the default.)

9.2.2.3 Cassandra-Specific Parameters

The parameters are the same for both DHCPv4 and DHCPv6. See Cassandra-Specific Parameters for details.

9.2.3 Hosts Storage

Kea is also able to store information about host reservations in the database. The hosts database configuration uses the
same syntax as the lease database. In fact, a Kea server opens independent connections for each purpose, be it lease or
hosts information. This arrangement gives the most flexibility. Kea can keep leases and host reservations separately,
but can also point to the same database. Currently the supported hosts database types are MySQL, PostgreSQL, and
Cassandra.

For example, the following configuration can be used to configure a connection to MySQL:

"Dhcp6": {
"hosts-database": {
"type": "mysql”,

"name": "kea",

"user": "kea",
"password": "secretl23",
"host": "localhost",
"port": 3306

Note that depending on the database configuration, many of the parameters may be optional.

Please note that usage of hosts storage is optional. A user can define all host reservations in the configuration file,
and that is the recommended way if the number of reservations is small. However, when the number of reservations
grows, it is more convenient to use host storage. Please note that both storage methods (configuration file and one of
the supported databases) can be used together. If hosts are defined in both places, the definitions from the configuration
file are checked first and external storage is checked later, if necessary.

In fact, host information can be placed in multiple stores. Operations are performed on the stores in the order they are
defined in the configuration file, although this leads to a restriction in ordering in the case of a host reservation addition;
read-only stores must be configured after a (required) read-write store, or the addition will fail.

Note: Kea requires the database timezone to match the system timezone. For more details, see First-Time Creation of
the MySQL Database and First-Time Creation of the PostgreSQL Database.

9.2.3.1 DHCPv6 Hosts Database Configuration

Hosts database configuration is controlled through the Dhcp6/hosts-database parameters. If enabled, the type of
database must be set to “mysql” or “postgresql”.

"Dhcp6": { "hosts-database": { "type": "mysql", ... }, ... }

Next, the name of the database to hold the reservations must be set; this is the name used when the lease database was
created (see Supported Backends for instructions on how to set up the desired database type):

156 Chapter 9. The DHCPv6 Server




Kea Administrator Reference Manual Documentation, Release 2.0.2

"Dhcp6": { "hosts-database": { "name": "database-name" , ... }, ... }

If the database is located on a different system than the DHCPv6 server, the database host name must also be specified:

"Dhcp6": { "hosts-database": { "host": remote-host-name, ... }, ... }

(Again, it should be noted that this configuration may have a severe impact on server performance.)

Normally, the database will be on the same machine as the DHCPv6 server. In this case, set the value to the empty
string:

"Dhcp6": { "hosts-database": { "host"™ : "", ... }, ... }

"Dhcp6": { "hosts-database": { "port" : 12345, ... }, ... }

The maximum number of times the server will automatically attempt to reconnect to the host database after connectivity
has been lost may be specified:

"Dhcp6": { "hosts-database": { "max-reconnect-tries" : number-of-tries, ... }, ... }

If the server is unable to reconnect to the database after making the maximum number of attempts, the server will exit.
A value of zero (the default) disables automatic recovery and the server will exit immediately upon detecting a loss of
connectivity (MySQL and PostgreSQL only). For Cassandra, Kea uses a Cassandra interface that connects to all nodes
in a cluster at the same time. Any connectivity issues should be handled by internal Cassandra mechanisms.

The number of milliseconds the server will wait between attempts to reconnect to the host database after connectivity
has been lost may also be specified:

"Dhcp6": { "hosts-database": { "reconnect-wait-time" : number-of-milliseconds, ... },

= }

The default value for MySQL and PostgreSQL is 0, which disables automatic recovery and causes the server to exit
immediately upon detecting the loss of connectivity. The default value for Cassandra is 2000 ms.

"Dhcp6": { "hosts-database": { "on-fail" : "stop-retry-exit", ... }, ... }

The possible values are:

* stop-retry-exit disables the DHCP service while trying to automatically recover lost connections. Shuts
down the server on failure after exhausting max-reconnect-tries. This is the default value for MySQL and
PostgreSQL.

* serve-retry-exit DHCP service continues while trying to automatically recover lost connections. Shuts
down the server on failure after exhausting max-reconnect-tries.

* serve-retry-continue DHCP service continues and does not shut down the server even if the recovery fails.

Note: Automatic reconnection to database backends is configured individually per backend. This allows users to tailor
the recovery parameters to each backend they use. We do suggest that users enable it either for all backends or none,
so behavior is consistent. Losing connectivity to a backend for which reconnect is disabled will result (if configured)
in the server shutting itself down. This includes cases when the lease database backend and the hosts database backend
are connected to the same database instance.

Finally, the credentials of the account under which the server will access the database should be set:

9.2. DHCPv6 Server Configuration 157




Kea Administrator Reference Manual Documentation, Release 2.0.2

"Dhcp6": { "hosts-database": { "user": "user-name",
"password": "password",
1,
}

If there is no password to the account, set the password to the empty string “”’. (This is also the default.)

The multiple storage extension uses a similar syntax; a configuration is placed into a “hosts-databases” list instead of
into a “hosts-database” entry, as in:

"Dhcp6": { "hosts-databases": [ { "type": "mysql", ... 3}, ... 1, ... }

For additional Cassandra-specific parameters, see Cassandra-Specific Parameters.

If the same host is configured both in-file and in-database, Kea does not issue a warning, as it would if both were
specified in the same data source. Instead, the host configured in-file has priority over the one configured in-database.

9.2.3.2 Using Read-Only Databases for Host Reservations with DHCPv6

In some deployments the database user whose name is specified in the database backend configuration may not have
write privileges to the database. This is often required by the policy within a given network to secure the data from being
unintentionally modified. In many cases administrators have deployed inventory databases, which contain substantially
more information about the hosts than just the static reservations assigned to them. The inventory database can be used
to create a view of a Kea hosts database and such a view is often read-only.

Kea host database backends operate with an implicit configuration to both read from and write to the database. If the
database user does not have write access to the host database, the backend will fail to start and the server will refuse to
start (or reconfigure). However, if access to a read-only host database is required for retrieving reservations for clients
and/or assigning specific addresses and options, it is possible to explicitly configure Kea to start in “read-only” mode.
This is controlled by the readonly boolean parameter as follows:

"Dhcp6": { "hosts-database": { "readonly": true, ... }, ... }

Setting this parameter to false configures the database backend to operate in “read-write” mode, which is also the
default configuration if the parameter is not specified.

Note: The readonly parameter is currently only supported for MySQL and PostgreSQL databases.

9.2.4 Interface Configuration

The DHCPvV6 server must be configured to listen on specific network interfaces. The simplest network interface con-
figuration tells the server to listen on all available interfaces:

"Dhcp6™: {
"interfaces-config": {
"interfaces": [ "*" ]
}
}

The asterisk plays the role of a wildcard and means “listen on all interfaces.” However, it is usually a good idea to
explicitly specify interface names:

158 Chapter 9. The DHCPv6 Server




Kea Administrator Reference Manual Documentation, Release 2.0.2

"Dhcp6": {
"interfaces-config": {
"interfaces": [ "ethl", "eth3" ]
1,
}

It is possible to use a wildcard interface name (asterisk) concurrently with explicit interface names:

"Dhcp6": {
"interfaces-config": {
"interfaces": [ "ethl", "eth3", "*" ]
}1
}

It is anticipated that this form of usage will only be used when it is desired to temporarily override a list of interface
names and listen on all interfaces.

As with the DHCPv4 server, binding to specific addresses and disabling re-detection of interfaces are supported. But
dhcp-socket-type is not supported, because DHCPv6 uses UDP/IPv6 sockets only. The following example shows
how to disable the interface detection:

"Dhcp6": {
"interfaces-config": {
"interfaces": [ "ethl", "eth3" ],

"re-detect": false
}1

The loopback interfaces (i.e. the “lo” or “lo0” interface) are not configured by default, unless explicitly mentioned in
the configuration. Note that Kea requires a link-local address (which does not exist on all systems) or a specified unicast
address, as in:

"Dhcp6": {
"interfaces-config": {
"interfaces": [ "enp0s2/2001:db8::1234:abcd" ]
1,

9.2.5 IPv6 Subnet Identifier

The subnet identifier is a unique number associated with a particular subnet. In principle, it is used to associate clients’
leases with their respective subnets. When a subnet identifier is not specified for a subnet being configured, it will be
automatically assigned by the configuration mechanism. The identifiers are assigned from 1 and are monotonically
increased for each subsequent subnet: 1,2,3....

If there are multiple subnets configured with auto-generated identifiers and one of them is removed, the subnet identifiers
may be renumbered. For example: if there are four subnets and the third is removed, the last subnet will be assigned
the identifier that the third subnet had before removal. As a result, the leases stored in the lease database for subnet 3
are now associated with subnet 4, something that may have unexpected consequences. The only remedy for this issue
at present is to manually specify a unique identifier for each subnet.

9.2. DHCPv6 Server Configuration 159




Kea Administrator Reference Manual Documentation, Release 2.0.2

Note: Subnet IDs must be greater than zero and less than 4294967295.

The following configuration will assign the specified subnet identifier to a newly configured subnet:

"Dhcp6": {
"subnet6": [
{
"subnet": "2001:db8:1::/64",
"id": 1024,
}
]
}

This identifier will not change for this subnet unless the “id” parameter is removed or set to 0. The value of 0 forces
auto-generation of the subnet identifier.

9.2.6 IPv6 Subnet Prefix

The subnet prefix is the second way to identify a subnet. It does not need to have the address part to match the prefix
length, for instance this configuration is accepted:

"Dhcp6": {
"subnet6": [
{
"subnet": "2001:db8:1::1/64",
}
]
}

Even there is another subnet with the “2001:db8:1::/64” prefix: only the textual form of subnets are compared to avoid
duplicates.

Note: Abuse of this feature can lead to incorrect subnet selection (see /Pv6 Subnet Selection).

9.2.7 Unicast Traffic Support

When the DHCPV6 server starts, by default it listens to the DHCP traffic sent to multicast address ff02::1:2 on each
interface that it is configured to listen on (see Interface Configuration). In some cases it is useful to configure a server
to handle incoming traffic sent to global unicast addresses as well; the most common reason for this is to have relays
send their traffic to the server directly. To configure the server to listen on a specific unicast address, add a slash after
the interface name, followed by the global unicast address on which the server should listen. The server will listen to
this address in addition to normal link-local binding and listening on the ff02::1:2 address. The sample configuration
below shows how to listen on 2001:db8::1 (a global address) configured on the eth1 interface.

"Dhcp6": {
"interfaces-config": {
"interfaces": [ "eth1/2001:db8::1" ]

(continues on next page)

160 Chapter 9. The DHCPv6 Server




Kea Administrator Reference Manual Documentation, Release 2.0.2

(continued from previous page)

1,
"option-data": [
{
"name": "unicast",
"data": "2001:db8::1"
1,

}

This configuration will cause the server to listen on eth1 on the link-local address, the multicast group (ff02::1:2), and
2001:db8::1.

Usually unicast support is associated with a server unicast option which allows clients to send unicast messages to the
server. The example above includes a server unicast option specification which will cause the client to send messages
to the specified unicast address.

It is possible to mix interface names, wildcards, and interface names/addresses in the list of interfaces. It is not possible,
however, to specify more than one unicast address on a given interface.

Care should be taken to specify proper unicast addresses. The server will attempt to bind to the addresses specified
without any additional checks. This approach was selected on purpose, to allow the software to communicate over
uncommon addresses if so desired.

9.2.8 Configuration of IPv6 Address Pools

The main role of a DHCPv6 server is address assignment. For this, the server must be configured with at least one
subnet and one pool of dynamic addresses to be managed. For example, assume that the server is connected to a
network segment that uses the 2001:db8:1::/64 prefix. The administrator of that network decides that addresses from
range 2001:db8:1::1 to 2001:db8:1::Afff are going to be managed by the Dhcp6 server. Such a configuration can be
achieved in the following way:

"Dhcp6": {
"subnet6": [
{
"subnet": "2001:db8:1::/64",
"pools": [
{
"pool": "2001:db8:1::1-2001:db8:1::ffff"
}
1,
}
]
}

Note that subnet is defined as a simple string, but the pools parameter is actually a list of pools; for this reason, the
pool definition is enclosed in square brackets, even though only one range of addresses is specified.

Each pool is a structure that contains the parameters that describe a single pool. Currently there is only one parameter,
pool, which gives the range of addresses in the pool.

It is possible to define more than one pool in a subnet; continuing the previous example, further assume
that 2001:db8:1:0:5::/80 should also be managed by the server. It could be written as 2001:db8:1:0:5:: to
2001:db8: 1::5:fHF-fH:fff, but typing so many ‘f’s is cumbersome. It can be expressed more simply as

9.2. DHCPv6 Server Configuration 161




Kea Administrator Reference Manual Documentation, Release 2.0.2

2001:db8:1:0:5::/80. Both formats are supported by Dhcp6 and can be mixed in the pool list. For example, one could
define the following pools:

"Dhcp6": {
"subnet6": [
{
"subnet": "2001:db8:1::/64",
"pools": [
{ "pool": "2001:db8:1::1-2001:db8:1::ffff" },
{ "pool": "2001:db8:1:05::/80" }
1,

}

White space in pool definitions is ignored, so spaces before and after the hyphen are optional. They can be used to
improve readability.

The number of pools is not limited, but for performance reasons it is recommended to use as few as possible.

The server may be configured to serve more than one subnet. To add a second subnet, use a command similar to the
following:

"Dhcp6": {
"subnet6": [
{
"subnet": "2001:db8:1::/64",
"pools": [
{ "pool": "2001:db8:1::1-2001:db8:1::£ffff" }

]
1
{
"subnet": "2001:db8:2::/64",
"pools": [
{ "pool": "2001:db8:2::/64" }
]
1
]

¥

In this example, we allow the server to dynamically assign all addresses available in the whole subnet. Although rather
wasteful, it is certainly a valid configuration to dedicate the whole /64 subnet for that purpose. Note that the Kea server
does not preallocate the leases, so there is no danger in using gigantic address pools.

When configuring a DHCPvV6 server using prefix/length notation, please pay attention to the boundary values. When
specifying that the server can use a given pool, it will also be able to allocate the first (typically a network address)
address from that pool. For example, for pool 2001:db8:2::/64, the 2001:db8:2:: address may be assigned as well. To
avoid this, use the “min-max” notation.

162 Chapter 9. The DHCPv6 Server




Kea Administrator Reference Manual Documentation, Release 2.0.2

9.2.9 Subnet and Prefix Delegation Pools

Subnets may also be configured to delegate prefixes, as defined in RFC 8415, section 6.3. A subnet may have one or
more prefix delegation pools. Each pool has a prefixed address, which is specified as a prefix (prefix) and a prefix
length (prefix-1len), as well as a delegated prefix length (delegated-1len). The delegated length must not be shorter
than (that is, it must be numerically greater than or equal to) the prefix length. If both the delegated and prefix lengths
are equal, the server will be able to delegate only one prefix. The delegated prefix does not have to match the subnet
prefix.

Below is a sample subnet configuration which enables prefix delegation for the subnet:

"Dhcp6": {
"subnet6": [
{
"subnet": "2001:d8b:1::/64",
"pd-pools": [
{
"prefix": "3000:1::",
"prefix-len": 64,
"delegated-len": 96
}
1
}
1,
}

9.2.10 Prefix Exclude Option

For each delegated prefix, the delegating router may choose to exclude a single prefix out of the delegated prefix as
specified in RFC 6603. The requesting router must not assign the excluded prefix to any of its downstream interfaces,
and it is intended to be used on a link through which the delegating router exchanges DHCPv6 messages with the
requesting router. The configuration example below demonstrates how to specify an excluded prefix within a prefix
pool definition. The excluded prefix “2001:db8:1:8000:cafe:80::/72” will be sent to a requesting router which includes
the Prefix Exclude option in the Option Request option (ORO), and which is delegated a prefix from this pool.

"Dhcp6": {
"subnet6": [
{
"subnet": "2001:db8:1::/48",
"pd-pools": [
{
"prefix": "2001:db8:1:8000::",
"prefix-len": 48,
"delegated-len": 64,
"excluded-prefix": "2001:db8:1:8000:cafe:80::",
"excluded-prefix-len": 72
}
1
}
]
}

9.2. DHCPv6 Server Configuration 163



https://tools.ietf.org/html/rfc8415
https://tools.ietf.org/html/rfc6603

Kea Administrator Reference Manual Documentation, Release 2.0.2

9.2.11 Standard DHCPv6 Options

One of the major features of the DHCPvV6 server is the ability to provide configuration options to clients. Although
there are several options that require special behavior, most options are sent by the server only if the client explicitly
requests them. The following example shows how to configure the addresses of DNS servers, one of the most frequently
used options. Options specified in this way are considered global and apply to all configured subnets.

"Dhcp6": {
"option-data": [
{
"name": "dns-servers",
"code": 23,
"space": "dhcp6",
"csv-format": true,
"data": "2001:db8::cafe, 2001:db8::babe"
1,
]
}

The option-data line creates a new entry in the option-data table. This table contains information on all global options
that the server is supposed to configure in all subnets. The name line specifies the option name. (For a complete list
of currently supported names, see List of Standard DHCPv6 Options configurable by an administrator.) The next line
specifies the option code, which must match one of the values from that list. The line beginning with space specifies
the option space, which must always be set to “dhcp6” as these are standard DHCPv6 options. For other name spaces,
including custom option spaces, see Nested DHCPv6 Options (Custom Option Spaces). The following line specifies
the format in which the data will be entered; use of CSV (comma-separated values) is recommended. Finally, the data
line gives the actual value to be sent to clients. The data parameter is specified as normal text, with values separated
by commas if more than one value is allowed.

Options can also be configured as hexadecimal values. If “csv-format” is set to false, the option data must be specified as
a hexadecimal string. The following commands configure the DNS-SERVERS option for all subnets with the following
addresses: 2001:db8:1::cafe and 2001:db8:1::babe.

"Dhcp6": {
"option-data": [
{
"name": "dns-servers",
"code": 23,
"space": "dhcp6",
"csv-format": false,
"data": "20 01 OD B8 00 01 00 00 00 00 00 00 00 00 CA FE
20 01 OD B8 00 01 00 00 00 00 00 00 00 00 BA BE"
1,
]
}

Note: The value for the setting of the “data” element is split across two lines in this example for clarity; when entering
the command, the whole string should be entered on the same line.

Kea supports the following formats when specifying hexadecimal data:

* Delimited octets - one or more octets separated by either colons or spaces (‘:” or * ©). While each octet may

164 Chapter 9. The DHCPv6 Server




Kea Administrator Reference Manual Documentation, Release 2.0.2

contain one or two digits, we strongly recommend always using two digits. Valid examples are “ab:cd:ef” and
“ab cd ef”.

* String of digits - a continuous string of hexadecimal digits with or without a “0x” prefix. Valid examples
are “Oxabcdef” and “abcdef™.

Care should be taken to use proper encoding when using hexadecimal format; Kea’s ability to validate data correctness
in hexadecimal is limited.

As of Kea 1.6.0, it is also possible to specify data for binary options as a single-quoted text string within double quotes
as shown (note that csv-format must be set to false):

"Dhcp6": {
"option-data": [
{
"name": "subscriber-id",
"code": 38,
"space": "dhcp6",
"csv-format": false,
"data": "'convert this text to binary'"
1,
1,
}

Most of the parameters in the “option-data” structure are optional and can be omitted in some circumstances, as dis-
cussed in Unspecified Parameters for DHCPv6 Option Configuration. Only one of name or code is required; it is not
necessary to specify both. Space has a default value of “dhcp6”, so this can be skipped as well if a regular (not encap-
sulated) DHCPv6 option is defined. Finally, csv-format defaults to “true”, so it too can be skipped, unless the option
value is specified as hexstring. Therefore, the above example can be simplified to:

"Dhcp6": {
"option-data": [
{
"name": "dns-servers",
"data": "2001:db8::cafe, 2001:db8::babe"
1
]
}

Defined options are added to the response when the client requests them, as well as any options required by a protocol.
An administrator can also specify that an option is always sent, even if a client did not specifically request it. To enforce
the addition of a particular option, set the “always-send” flag to true as in:

"Dhcp6": {
"option-data": [
{
"name": "dns-servers",
"data": "2001:db8::cafe, 2001:db8::babe",
"always-send": true
1
]
}

9.2. DHCPv6 Server Configuration 165




Kea Administrator Reference Manual Documentation, Release 2.0.2

The effect is the same as if the client added the option code in the Option Request option (or its equivalent for vendor
options), as in:

"Dhcp6": {
"option-data": [
{
"name": "dns-servers",
"data": "2001:db8::cafe, 2001:db8::babe",
"always-send": true
1,
]1
"subnet6": [
{
"subnet": "2001:db8:1::/64",
"option-data": [
{
"name": "dns-servers",
"data": "2001:db8:1::cafe, 2001:db8:1::babe"
1,
1,
1,
1,
}

The DNS servers option is always added to responses (the always-send is “sticky”), but the value is the subnet one
when the client is localized in the subnet.

It is possible to override options on a per-subnet basis. If clients connected to most subnets are expected to get the same
values of a given option, administrators should use global options; it is possible to override specific values for a small
number of subnets. On the other hand, if different values are used in each subnet, it does not make sense to specify
global option values; rather, only subnet-specific ones should be set.

The following commands override the global DNS servers option for a particular subnet, setting a single DNS server
with address 2001:db8:1::3.

"Dhcp6": {
"subnet6": [
{
"option-data": [
{
"name": "dns-servers",
"code": 23,
"space": "dhcp6",
"csv-format": true,
"data": "2001:db8:1::3"
1,
1,
1,

(continues on next page)

166 Chapter 9. The DHCPv6 Server



Kea Administrator Reference Manual Documentation, Release 2.0.2

(continued from previous page)

In some cases it is useful to associate some options with an address or prefix pool from which a client is assigned a lease.
Pool-specific option values override subnet-specific and global option values. If the client is assigned multiple leases
from different pools, the server will assign options from all pools from which the leases have been obtained. However,
if the particular option is specified in multiple pools from which the client obtains the leases, only one instance of this
option will be handed out to the client. The server’s administrator must not try to prioritize assignment of pool-specific
options by trying to order pools declarations in the server configuration.

The following configuration snippet demonstrates how to specify the DNS servers option, which will be assigned to a
client only if the client obtains an address from the given pool:

"Dhcp6": {
"subnet6": [
{
"pools": [
{
"pool": "2001:db8:1::100-2001:db8:1::300",
"option-data": [
{
"name": "dns-servers",
"data": "2001:db8:1::10"
}
]
}
1
1,
1,
}

Options can also be specified in class or host reservation scope. The current Kea options precedence order is (from
most important): host reservation, pool, subnet, shared network, class, global.

The currently supported standard DHCPv6 options are listed in List of Standard DHCPv6 Options configurable by an
administrator. “Name” and “Code” are the values that should be used as a name/code in the option-data structures.
“Type” designates the format of the data; the meanings of the various types are given in List of Standard DHCP Option
Types.

When a data field is a string and that string contains the comma (,; U+002C) character, the comma must be escaped
with two backslashes (; U+005C). This double escape is required because both the routine splitting CSV data into fields
and JSON use the same escape character; a single escape (,) would make the JSON invalid. For example, the string
“ESTSEDT4,M3.2.0/02:00,M11.1.0/02:00” must be represented as:

"Dhcp6": {
"subnet6": [
{
"pools": [
{

"option-data": [

(continues on next page)

9.2. DHCPv6 Server Configuration 167




Kea Administrator Reference Manual Documentation, Release 2.0.2

(continued from previous page)

"name": "new-posix-timezone",
"data": "EST5EDT4\\,M3.2.0/02:00\\,M11.1.0/02:00"

3,

}

Some options are designated as arrays, which means that more than one value is allowed in such an option. For example,
the option dns-servers allows the specification of more than one IPv6 address, enabling clients to obtain the addresses
of multiple DNS servers.

Custom DHCPv6 Options describes the configuration syntax to create custom option definitions (formats). Creation
of custom definitions for standard options is generally not permitted, even if the definition being created matches the
actual option format defined in the RFCs. There is an exception to this rule for standard options for which Kea currently
does not provide a definition. In order to use such options, a server administrator must create a definition as described
in Custom DHCPv6 Options in the ‘dhcp6’ option space. This definition should match the option format described in
the relevant RFC, but the configuration mechanism will allow any option format as it currently has no means to validate
it.

Table 1: List of Standard DHCPv6 Options configurable by an

administrator

Name Code | Type Array?
preference 7 uint8 false
unicast 12 ipv6-address false
sip-server-dns 21 fqdn true
sip-server-addr 22 ipv6-address true
dns-servers 23 ipv6-address true
domain-search 24 fqdn true
nis-servers 27 ipv6-address true
nisp-servers 28 ipv6-address true
nis-domain-name 29 fqdn true
nisp-domain-name 30 fqdn true
sntp-servers 31 ipv6-address true
information-refresh-time | 32 uint32 false
bcemces-server-dns 33 fqdn true
bcemcs-server-addr 34 ipv6-address true
geoconf-civic 36 record (uint8, uint16, binary) false
remote-id 37 record (uint32, binary) false
subscriber-id 38 binary false
client-fqdn 39 record (uint8, fqdn) false
pana-agent 40 ipv6-address true
new-posix-timezone 41 string false
new-tzdb-timezone 42 string false

continues on next page

168 Chapter 9. The DHCPv6 Server




Kea Administrator Reference Manual Documentation, Release 2.0.2

Table 1 - continued from previous page

Name Code | Type Array?
ero 43 uint16 true
Ig-query (1) 44 record (uint8, ipv6-address) false
client-data (1) 45 empty false
clt-time (1) 46 uint32 false
Ig-relay-data (1) 47 record (ipv6-address, binary) false
1g-client-link (1) 48 ipv6-address true
v6-lost 51 fqdn false
capwap-ac-v6 52 ipv6-address true
relay-id 53 binary false
v6-access-domain 57 fqdn false
sip-ua-cs-list 58 fqdn true
bootfile-url 59 string false
bootfile-param 60 tuple true
client-arch-type 61 uint16 true
nii 62 record (uint8, uint8, uint8) false
aftr-name 64 fqdn false
erp-local-domain-name | 65 fqdn false
rso0 66 empty false
pd-exclude 67 binary false
rdnss-selection 74 record (ipv6-address, uint8, fqdn) true
client-linklayer-addr 79 binary false
link-address 80 ipv6-address false
solmax-rt 82 uint32 false
inf-max-rt 83 uint32 false
dhcp4o6-server-addr 88 ipv6-address true
s46-rule 89 record (uint8, uint8, uint8, ipv4-address, ipvo-prefix) | false
s46-br 90 ipv6-address false
s46-dmr 91 ipv6-prefix false
s46-v4v6bind 92 record (ipv4-address, ipv6-prefix) false
s46-portparams 93 record(uint8, psid) false
s46-cont-mape 94 empty false
s46-cont-mapt 95 empty false
s46-cont-lw 96 empty false
vb6-captive-portal 103 string false
ipv6-address-andsf 143 ipv6-address true

Options marked with (1) have option definitions, but the logic behind them is not implemented. That means that,
technically, Kea knows how to parse them in incoming messages or how to send them if configured to do so, but not
what to do with them. Since the related RFCs require certain processing, the support for those options is non-functional.
However, it may be useful in some limited lab testing; hence the definition formats are listed here.

Kea supports more options than the listed above. The following list is mostly useful for readers who want to understand
whether Kea is able to support certain options. The following options are returned by the Kea engine itself and in
general should not be configured manually.

9.2. DHCPv6 Server Configuration 169



Kea Administrator Reference Manual Documentation, Release 2.0.2

Table 2: List of standard DHCPv6 options managed by Kea on its own
and not directly configurable by an administrator

Name Code Description

client{ 1 sent by the client and Kea uses it to distinguish between clients.

id

servery 2 sent by clients to request action from a specific server and by the server to identify itself. See Server

id Identifier in DHCPv6 for details.

ia- 3 a container option that conveys IPv6 addresses (iaddr options). Kea receives and sends those options

na using its allocation engine.

ia-ta | 4 conveys temporary addresses. Deprecated feature, not supported.

iaaddr 5 conveys addresses with lifetimes in ia-na and ia-ta options.

oro 6 ORO (or Option Request Option) is used by the clients to request a list of options they are interested
in. Kea supports it and will send the requested options back if configured with required options.

elapsed8 sent by the clients to identify how long they’re trying to obtain a configuration. Kea uses high values

time sent by clients as an indicator that something is wrong and this is one of the aspects used in HA to
determine if the partner is healthy or not.

relay-| 9 used by relays to encapsulate the original client message. Kea uses it when sending back relayed

msg responses to the relay agent.

auth | 10 | used to pass authentication information between clients and server. The support for this option is
very limited.

status{ 13 an option that the server can attach in case of various failures, such as running out of addresses or

code not being configured to assign prefixes.

rapid-| 14 | used to signal client’s willingness to support rapid-commit and server’s acceptance for this config-

commit uration. See Rapid Commit for details.

user- | 15 sent by the client to self-identify what kind of device type it is. Kea can use this for client classifica-

class tion.

vendor-16 similar to user-class, but it is vendor specific.

class

vendor-17 | a vendor specific container that is used by both the client and the server to exchange vendor specific

opts options. The logic behind those options vary between vendors. The vendor options are explained in
DHCPv6 Vendor-Specific Options.

interfqcd8 | may be inserted by the relay agent to identify the interface that the original client message was re-

id ceived on. Kea may be told to use this information to select specific subnets. Also, if specified, Kea
will echo this option back, so the relay will know which interface to use to reach the client.

ia- 25 | acontainer for conveying PDs (Prefix Delegation) that are being delegated to clients. See Subnet and

pd Prefix Delegation Pools for details.

iapre-| 26 | conveys IPv6 prefix in ia-pd option. See Subnet and Prefix Delegation Pools for details.

fix

9.2.12 Common Softwire46 Options

Softwire46 options are involved in IPv4 over IPv6 provisioning by means of tunneling or translation as specified in
RFC 7598. The following sections provide configuration examples of these options.

170

Chapter 9. The DHCPv6 Server


https://tools.ietf.org/html/rfc7598

Kea Administrator Reference Manual Documentation, Release 2.0.2

9.2.12.1 Softwire46 Container Options

Softwire46 (S46) container options group rules and optional port parameters for a specified domain. There are three
container options specified in the “dhcp6” (top-level) option space: the MAP-E Container option, the MAP-T Container
option, and the S46 Lightweight 4over6 Container option. These options only contain the encapsulated options specified
below; they do not include any data fields.

To configure the server to send a specific container option along with all encapsulated options, the container option
must be included in the server configuration as shown below:

"Dhcp6": {

"option-data": [
{

"name": "s46-cont-mape"

¥,
}

This configuration will cause the server to include the MAP-E Container option to the client. Use “s46-cont-mapt” or
“s46-cont-lw” for the MAP-T Container and S46 Lightweight 4over6 Container options, respectively.

All remaining Softwire options described below are included in one of the container options. Thus, they must be
included in appropriate option spaces by selecting a “space” name, which specifies in which option they are supposed
to be included.

9.2.12.2 S46 Rule Option

The S46 Rule option is used for conveying the Basic Mapping Rule (BMR) and Forwarding Mapping Rule (FMR).

{
"space": "s46-cont-mape-options",
"name": "s46-rule",
"data": "128, 0, 24, 192.0.2.0, 2001:db8:1::/64"

}

Another possible “space” value is “s46-cont-mapt-options”.
The S46 Rule option conveys a number of parameters:

e flags - an unsigned 8-bit integer, with currently only the most-significant bit specified. It denotes whether the
rule can be used for forwarding (128) or not (0).

* ea-len - an 8-bit-long Embedded Address length. Allowed values range from O to 48.

e TPv4 prefix length - 8 bits long; expresses the prefix length of the Rule IPv4 prefix specified in the ipv4-
prefix field. Allowed values range from 0 to 32.

e TPv4 prefix - a fixed-length 32-bit field that specifies the IPv4 prefix for the S46 rule. The bits in the prefix
after a specific number of bits (defined in prefix4-len) are reserved, and MUST be initialized to zero by the sender
and ignored by the receiver.

IPv6 prefix - in prefix/length notation that specifies the IPv6 domain prefix for the S46 rule. The field is
padded on the right with zero bits up to the nearest octet boundary, when prefix6-len is not evenly divisible by 8.

9.2. DHCPv6 Server Configuration 171




Kea Administrator Reference Manual Documentation, Release 2.0.2

9.2.12.3 S46 BR Option

The S46 BR option is used to convey the IPv6 address of the Border Relay. This option is mandatory in the MAP-E
Container option and is not permitted in the MAP-T and S46 Lightweight 4over6 Container options.

{
"space": "s46-cont-mape-options",
"name": "s46-br",
"data": "2001:db8:cafe::1",

3

Another possible “space” value is “s46-cont-lw-options”.

9.2.12.4 S46 DMR Option

The S46 DMR option is used to convey values for the Default Mapping Rule (DMR). This option is mandatory in the
MAP-T container option and is not permitted in the MAP-E and S46 Lightweight 4over6 Container options.

{
"space": "s46-cont-mapt-options",
"name": "s46-dmr",
"data": "2001:db8:cafe::/64",

}

This option must not be included in other containers.

9.2.12.5 S46 IPv4/IPv6 Address Binding Option

The S46 1Pv4/IPv6 Address Binding option may be used to specify the full or shared IPv4 address of the Customer
Edge (CE). The IPv6 prefix field is used by the CE to identify the correct prefix to use for the tunnel source.

{

"space": "s46-cont-lw",

"name": "s46-v4vé6bind",

"data": "192.0.2.3, 2001:db8:1:cafe::/64"
3

This option must not be included in other containers.

9.2.12.6 S46 Port Parameters

The S46 Port Parameters option specifies optional port-set information that MAY be provided to CEs.

{
"space": "s46-rule-options",
"name": "s46-portparams",
"data": "2, 3/4",

}

Another possible “space” value is “s46-v4v6bind”, to include this option in the S46 IPv4/IPv6 Address Binding option.

Note that the second value in the example above specifies the PSID and PSID-length fields in the format of PSID/PSID
length. This is equivalent to the values of PSID-len=4 and PSID=12288 conveyed in the S46 Port Parameters option.

172 Chapter 9. The DHCPv6 Server




Kea Administrator Reference Manual Documentation, Release 2.0.2

9.2.13 Custom DHCPv6 Options

Kea supports custom (non-standard) DHCPv6 options. Assume that we want to define a new DHCPv6 option called
“foo” which will have code 100 and which will convey a single, unsigned, 32-bit integer value. We can define such an
option by putting the following entry in the configuration file:

"Dhcp6": {
"option-def": [
{
"name": "foo",
"code": 100,
"type": "uint32",
"array": false,
"record-types": "",
"space": "dhcp6",
"encapsulate": ""
1,
1,
}

The false value of the array parameter determines that the option does NOT comprise an array of “uint32” values
but is, instead, a single value. Two other parameters have been left blank: record-types and encapsulate. The
former specifies the comma-separated list of option data fields, if the option comprises a record of data fields. The
record-types value should be non-empty if type is set to “record”’; otherwise it must be left blank. The latter
parameter specifies the name of the option space being encapsulated by the particular option. If the particular option
does not encapsulate any option space, the parameter should be left blank. Note that the option-def configuration
statement only defines the format of the new option and does not set its value(s).

The name, code, and type parameters are required; all others are optional. The array default value is false. The
record-types and encapsulate default values are blank (i.e. “”’). The default space is “dhcp6”.

Once the new option format is defined, its value is set in the same way as for a standard option. For example, the
following commands set a global value that applies to all subnets.

"Dhcp6": {
"option-data": [
{
"name": "foo",
"code": 100,
"space": "dhcp6",
"csv-format": true,
"data": "12345"
1,
1,
}

New options can take more complex forms than simple use of primitives (uint8, string, ipv6-address, etc.); it is possible
to define an option comprising a number of existing primitives.

For example, assume we want to define a new option that will consist of an IPv6 address, followed by an unsigned
16-bit integer, followed by a boolean value, followed by a text string. Such an option could be defined in the following
way:

9.2. DHCPv6 Server Configuration 173




Kea Administrator Reference Manual Documentation, Release 2.0.2

"Dhcp6": {
"option-def": [
{
"name": "bar",
"code": 101,
"space": "dhcp6",
"type": "record",
"array": false,
"record-types": "ipv6-address, uintl6, boolean, string",
"encapsulate": ""
1,
1,
}

The type is set to “record” to indicate that the option contains multiple values of different types. These types are given
as a comma-separated list in the record-types field and should be ones from those listed in List of Standard DHCP
Option Types.

The values of the options are set in an option-data statement as follows:

"Dhcp6": {
"option-data": [
{
"name": "bar",
"space": "dhcp6",
"code": 101,
"csv-format": true,
"data": "2001:db8:1::10, 123, false, Hello World"
}
1,
}

csv-format is set to true to indicate that the data field comprises a comma-separated list of values. The values in
data must correspond to the types set in the record-types field of the option definition.

When array is set to true and type is set to “record”, the last field is an array, i.e. it can contain more than one value,
as in:

"Dhcp6": {
"option-def": [
{
"name": "bar",
"code": 101,
"space": "dhcp6",
"type": "record",
"array": true,
"record-types": "ipv6-address, uintl6",
"encapsulate": ""
1,
1,
}

174 Chapter 9. The DHCPv6 Server




Kea Administrator Reference Manual Documentation, Release 2.0.2

The new option content is one IPv6 address followed by one or more 16-bit unsigned integers.

Note: In general, boolean values are specified as true or false, without quotes. Some specific boolean parameters
may accept also "true", "false", 0, 1, "0", and "1".

9.2.14 DHCPv6 Vendor-Specific Options

Vendor options in DHCPv®6 are carried in the Vendor-Specific Information option (code 17). The following examples
show how to define an option “foo” with code 1 that consists of an IPv6 address, an unsigned 16-bit integer, and a
string. The “foo” option is conveyed in a Vendor-Specific Information option, which comprises a single uint32 value
that is set to “12345”. The sub-option “foo” follows the data field holding this value.

The first step is to define the format of the option:

"Dhcp6": {
"option-def": [
{
"name": "foo",
"code": 1,
"space": "vendor-12345",
"type": "record",
"array": false,
"record-types": "ipv6-address, uintl6, string",
"encapsulate": ""
}
1,
}

(Note that the option space is set to vendor-12345.) Once the option format is defined, the next step is to define actual
values for that option:

"Dhcp6": {
"option-data": [
{
llnamell: Ilfooll ,
"space": "vendor-12345",
"data": "2001:db8:1::10, 123, Hello World"
1,
1,
}

We should also define a value (enterprise-number) for the Vendor-Specific Information option, that conveys our option
“fo0”.

"Dhcp6": {
"option-data": [
{

"name": "vendor-opts",

(continues on next page)

9.2. DHCPv6 Server Configuration 175




Kea Administrator Reference Manual Documentation, Release 2.0.2

(continued from previous page)

"data": "12345"

Alternatively, the option can be specified using its code.

"Dhcp6": {
"option-data": [
{
"code": 17,
"data": "12345"

A common configuration is to set the always-send flag to true so the vendor option is sent even when the client did not
specify it in the query.

Note: Currently only a single instance of the vendor-class (code 16) and a single instance of the vendor-opts (code
17) options can be specified. Specifying multiple options with different enterprise numbers is currently not supported
by Kea.

9.2.15 Nested DHCPv6 Options (Custom Option Spaces)

It is sometimes useful to define completely new option spaces, such as when a user creates a new option to convey
sub-options that use a separate numbering scheme, for example sub-options with codes 1 and 2. Those option codes
conflict with standard DHCPv6 options, so a separate option space must be defined.

Note that the creation of a new option space is not required when defining sub-options for a standard option, because one
is created by default if the standard option is meant to convey any sub-options (see DHCPv6 Vendor-Specific Options).

Assume that we want to have a DHCPv6 option called “container” with code 102 that conveys two sub-options with
codes 1 and 2. First we need to define the new sub-options:

"Dhcp6": {
"option-def": [

{
"name": "suboptl",
"code": 1,
"space": "isc",
"type": "ipv6-address",
"record-types": "",
"array": false,
"encapsulate": ""

1

{
"name": "subopt2",

(continues on next page)

176 Chapter 9. The DHCPv6 Server




Kea Administrator Reference Manual Documentation, Release 2.0.2

(continued from previous page)

"code": 2,
"space": "isc",
"type": "string",

"record-types": ,
"array": false
"encapsulate":

Note that we have defined the options to belong to a new option space (in this case, “isc”).

The next step is to define a regular DHCPv6 option with the desired code and specify that it should include options
from the new option space:

"Dhcp6": {
"option-def": [

{

"name": "container",
"code": 102,
"space": "dhcp6",
"type": "empty",
"array": false,
"record-types": "",
"encapsulate": "isc"
}

The name of the option space in which the sub-options are defined is set in the encapsulate field. The type field is
set to empty, which limits this option to only carrying data in sub-options.

Finally, we can set values for the new options:

"Dhcp6": {
"option-data": [

{
"name": "suboptl",
"code": 1,
"space": "isc",
"data": "2001:db8::abcd"

1,

}
"name": "subopt2",
"code": 2,
"space": "isc",
"data": "Hello world"

1,

{

"name": "container",

(continues on next page)

9.2. DHCPv6 Server Configuration 177




Kea Administrator Reference Manual Documentation, Release 2.0.2

(continued from previous page)

"code": 102,
"space": "dhcp6"

}

Note that it is possible to create an option which carries some data in addition to the sub-options defined in the en-
capsulated option space. For example, if the “container” option from the previous example were required to carry a
uint16 value as well as the sub-options, the type value would have to be set to “uint16” in the option definition. (Such
an option would then have the following data structure: DHCP header, uint16 value, sub-options.) The value specified
with the data parameter — which should be a valid integer enclosed in quotes, e.g. “123” — would then be assigned
to the uint16 field in the “container” option.

9.2.16 Unspecified Parameters for DHCPv6 Option Configuration

In many cases it is not required to specify all parameters for an option configuration, and the default values can be used.
However, it is important to understand the implications of not specifying some of them, as it may result in configuration
errors. The list below explains the behavior of the server when a particular parameter is not explicitly specified:

* name - the server requires either an option name or an option code to identify an option. If this parameter is
unspecified, the option code must be specified.

¢ code - the server requires either an option name or an option code to identify an option. This parameter may be
left unspecified if the name parameter is specified. However, this also requires that the particular option has a
definition (either as a standard option or an administrator-created definition for the option using an ‘option-def’
structure), as the option definition associates an option with a particular name. It is possible to configure an
option for which there is no definition (unspecified option format). Configuration of such options requires the
use of the option code.

* space - if the option space is unspecified it will default to ‘dhcp6’, which is an option space holding standard
DHCPvV6 options.

» data - if the option data is unspecified it defaults to an empty value. The empty value is mostly used for the
options which have no payload (boolean options), but it is legal to specify empty values for some options which
carry variable-length data and for which the specification allows a length of 0. For such options, the data param-
eter may be omitted in the configuration.

» csv-format - if this value is not specified, the server will assume that the option data is specified as a list of
comma-separated values to be assigned to individual fields of the DHCP option.

9.2.17 Controlling the Values Sent for T1 and T2 Times

According to RFC 8415, section 21.4, the recommended T1 and T2 values are 50% and 80% of the preferred lease time,
respectively. Kea can be configured to send values that are specified explicitly or that are calculated as percentages of
the preferred lease time. The server’s behavior is governed by a combination of configuration parameters, two of which
have already been mentioned.

Beginning with Kea 1.6.0 lease preferred and valid lifetime are extended from single values to triplets with minimum,
default and maximum values using:

* min-preferred-lifetime - specifies the minimum preferred lifetime (optional).

» preferred-lifetime - specifies the default preferred lifetime.

178 Chapter 9. The DHCPv6 Server




Kea Administrator Reference Manual Documentation, Release 2.0.2

* max-preferred-lifetime - specifies the maximum preferred lifetime (optional).
* min-valid-lifetime - specifies the minimum valid lifetime (optional).
e valid-lifetime - specifies the default valid lifetime.
* max-valid-lifetime - specifies the maximum valid lifetime (optional).
As of Kea 1.9.11, these values may be specified within client classes.

When the client does not specify lifetimes the default is used. When it specifies a lifetime using IAADDR or IAPREFIX
sub option with non-zero values, these values are used when they are between configured minimum (lower values are
round up) and maximum (larger values are rounded down) bounds.

To send specific, fixed values use the following two parameters:
* renew-timer - specifies the value of T1 in seconds.
* rebind-timer - specifies the value of T2 in seconds.

Any value greater than or equal to zero may be specified for T2. When specifying T1 it must be less than T2. This
flexibility is allowed to support a use case where administrators want to suppress client renewals and rebinds by deferring
them beyond the lifespan of the lease. This should cause the lease to expire, rather than get renewed by clients. If T1
is specified as larger than T2, T1 will be set to zero in the outbound IA.

In the great majority of cases the values should follow this rule: T1 < T2 < preferred lifetime < valid lifetime. Alterna-
tively, both T1 and T2 values can be configured to 0, which is a signal to DHCPv6 clients that they may renew at their
own discretion. However, there are known broken client implementations in use that will start renewing immediately.
Administrators who plan to use T1=T2=0 values should test first and make sure their clients behave rationally.

In some rare cases there may be a need to disable a client’s ability to renew addresses. This is undesired from a protocol
perspective and should be avoided if possible. However, if necessary, administrators can configure the T1 and T2 values
to be equal or greater to the valid lifetime. Be advised that this will cause clients to occasionally lose their addresses,
which is generally perceived as poor service. However, there may be some rare business cases when this is desired (e.g.
when it is desirable to intentionally break long-lasting connections).

Calculation of the values is controlled by the following three parameters:

e calculate-tee-times - when true, T1 and T2 will be calculated as percentages of the valid lease time. It
defaults to true.

* tl-percent - the percentage of the valid lease time to use for T1. It is expressed as a real number between 0.0
and 1.0 and must be less than t2-percent. The default value is 0.5 per RFC 8415.

e t2-percent - the percentage of the valid lease time to use for T2. It is expressed as a real number between 0.0
and 1.0 and must be greater than t1-percent. The default value is 0.8 per RFC 8415.

Note: In the event that both explicit values are specified and calculate-tee-times is true, the server will use the explicit
values. Administrators with a setup where some subnets or share-networks will use explicit values and some will use
calculated values must not define the explicit values at any level higher than where they will be used. Inheriting them
from too high a scope, such as global, will cause them to have values at every level underneath (shared-networks and
subnets), effectively disabling calculated values.

9.2. DHCPv6 Server Configuration 179



Kea Administrator Reference Manual Documentation, Release 2.0.2

9.2.18 IPv6 Subnet Selection

The DHCPV6 server may receive requests from local (connected to the same subnet as the server) and remote (connected
via relays) clients. As the server may have many subnet configurations defined, it must select an appropriate subnet for
a given request.

In IPv4, the server can determine which of the configured subnets are local, as there is a reasonable expectation that the
server will have a (global) IPv4 address configured on the interface. That assumption is not true in IPv6; the DHCPv6
server must be able to operate while only using link-local addresses. Therefore, an optional interface parameter is
available within a subnet definition to designate that a given subnet is local, i.e. reachable directly over the specified
interface. For example, a server that is intended to serve a local subnet over ethOQ may be configured as follows:

"Dhcp6": {
"subnet6": [
{
"subnet": "2001:db8:beef::/48",
"pools": [
{
"pool": "2001:db8:beef::/48"
}
1,
"interface": "eth®"
}
1,
}

9.2.19 Rapid Commit

The Rapid Commit option, described in RFC 8415, is supported by the Kea DHCPv6 server. However, support is
disabled by default. It can be enabled on a per-subnet basis using the rapid-commit parameter as shown below:

"Dhcp6": {
"subnet6": [
{
"subnet": "2001:db8:beef::/48",
"rapid-commit": true,
"pools": [
{
"pool": "2001:db8:beef::1-2001:db8:beef::10"
}
1,
}
1,
}

This setting only affects the subnet for which rapid-commit is set to true. For clients connected to other subnets,
the server will ignore the Rapid Commit option sent by the client and will follow the 4-way exchange procedure, i.e.
respond with an Advertise for a Solicit containing a Rapid Commit option.

180 Chapter 9. The DHCPv6 Server


https://tools.ietf.org/html/rfc8415

Kea Administrator Reference Manual Documentation, Release 2.0.2

9.2.20 DHCPv6 Relays

A DHCPv6 server with multiple subnets defined must select the appropriate subnet when it receives a request from a
client. For clients connected via relays, two mechanisms are used:

The first uses the linkaddr field in the RELAY_FORW message. The name of this field is somewhat misleading in that
it does not contain a link-layer address; instead, it holds an address (typically a global address) that is used to identify
a link. The DHCPv6 server checks to see whether the address belongs to a defined subnet and, if it does, that subnet is
selected for the client’s request.

The second mechanism is based on interface-id options. While forwarding a client’s message, relays may insert an
interface-id option into the message that identifies the interface on the relay that received the message. (Some re-
lays allow configuration of that parameter, but it is sometimes hard-coded and may range from the very simple (e.g.
“vlan100”) to the very cryptic; one example seen on real hardware was “ISAM144|299|ipv6int:vp:1:110”). The server
can use this information to select the appropriate subnet. The information is also returned to the relay, which then
knows the interface to use to transmit the response to the client. For this to work successfully, the relay interface IDs
must be unique within the network and the server configuration must match those values.

When configuring the DHCPv6 server, it should be noted that two similarly named parameters can be configured for a
subnet:

¢ interface defines which local network interface can be used to access a given subnet.

* interface-id specifies the content of the interface-id option used by relays to identify the interface on the relay
to which the response packet is sent.

The two are mutually exclusive; a subnet cannot be reachable both locally (direct traffic) and via relays (remote traffic).
Specifying both is a configuration error and the DHCPv6 server will refuse such a configuration.

The following example configuration shows how to specify an interface-id with a value of “vlan123”:

"Dhcp6": {
"subnet6": [
{
"subnet": "2001:db8:beef::/48",
"pools": [
{
"pool": "2001:db8:beef::/48"
}
1,
"interface-id": "vlanl23"
}
1,
}

9.2.21 Relay-Supplied Options

RFC 6422 defines a mechanism called Relay-Supplied DHCP Options. In certain cases relay agents are the only entities
that may have specific information, and they can insert options when relaying messages from the client to the server.
The server will then do certain checks and copy those options to the response sent to the client.

There are certain conditions that must be met for the option to be included. First, the server must not provide the
option itself; in other words, if both relay and server provide an option, the server always takes precedence. Second,
the option must be RSOO-enabled. (RSOO is the “Relay Supplied Options option.”) ITANA maintains a list of RSOO-
enabled options here. However, there may be cases when system administrators want to echo other options. Kea can be

9.2. DHCPv6 Server Configuration 181



https://tools.ietf.org/html/rfc6422
https://www.iana.org/assignments/dhcpv6-parameters/dhcpv6-parameters.xhtml#options-relay-supplied

Kea Administrator Reference Manual Documentation, Release 2.0.2

instructed to treat other options as RSOO-enabled. For example, to mark options 110, 120, and 130 as RSOO-enabled,
the following syntax should be used:

"Dhcp6": {
"relay-supplied-options": [ "110", "120", "130" ],

As of February 2019, only option 65 is RSOO-enabled by IANA. This option will always be treated as such, so there
is no need to explicitly mark it. Also, when enabling standard options, it is possible to use their names rather than
their option code, e.g. use dns-servers instead of 23. See ref:dhcp6-std-options-list for the names. In certain cases
this may also work for custom options, but due to the nature of the parser code this may be unreliable and should be
avoided.

9.2.22 Client Classification in DHCPv6

The DHCPv6 server includes support for client classification. For a deeper discussion of the classification process see
Client Classification.

In certain cases it is useful to configure the server to differentiate between DHCP client types and treat them accordingly.
Client classification can be used to modify the behavior of almost any part of the DHCP message processing. Kea
currently offers three mechanisms that take advantage of client classification in DHCPv6: subnet selection, address
pool selection, and DHCP options assignment.

Kea can be instructed to limit access to given subnets based on class information. This is particularly useful for cases
where two types of devices share the same link and are expected to be served from two different subnets. The primary
use case for such a scenario is cable networks, where there are two classes of devices: the cable modem itself, which
should be handed a lease from subnet A; and all other devices behind the modem, which should get a lease from subnet
B. That segregation is essential to prevent overly curious users from playing with their cable modems. For details on
how to set up class restrictions on subnets, see Configuring Subnets With Class Information.

When subnets belong to a shared network, the classification applies to subnet selection but not to pools; that is, a pool
in a subnet limited to a particular class can still be used by clients which do not belong to the class, if the pool they are
expected to use is exhausted. So the limit on access based on class information is also available at the address/prefix
pool level; see Configuring Pools With Class Information, within a subnet. This is useful when segregating clients
belonging to the same subnet into different address ranges.

In a similar way, a pool can be constrained to serve only known clients, i.e. clients which have a reservation, using the
built-in “KNOWN” or “UNKNOWN?” classes. Addresses can be assigned to registered clients without giving a different
address per reservation, for instance when there are not enough available addresses. The determination whether there is
areservation for a given client is made after a subnet is selected, so it is not possible to use “KNOWN”’/"UNKNOWN”
classes to select a shared network or a subnet.

The process of classification is conducted in five steps. The first step is to assess an incoming packet and assign it to zero
or more classes. The second step is to choose a subnet, possibly based on the class information. When the incoming
packet is in the special class, “DROP, it is dropped and a debug message logged. The next step is to evaluate class
expressions depending on the built-in “KNOWN”/"UNKNOWN” classes after host reservation lookup, using them for
pool/pd-pool selection and assigning classes from host reservations. The list of required classes is then built and each
class of the list has its expression evaluated; when it returns “true” the packet is added as a member of the class. The
last step is to assign options, again possibly based on the class information. More complete and detailed information
is available in Client Classification.

There are two main methods of classification. The first is automatic and relies on examining the values in the vendor
class options or the existence of a host reservation. Information from these options is extracted, and a class name is
constructed from it and added to the class list for the packet. The second specifies an expression that is evaluated for
each packet. If the result is “true”, the packet is a member of the class.

182 Chapter 9. The DHCPv6 Server




Kea Administrator Reference Manual Documentation, Release 2.0.2

Note: Care should be taken with client classification, as it is easy for clients that do not meet class criteria to be denied
all service.

9.2.22.1 Defining and Using Custom Classes

The following example shows how to configure a class using an expression and a subnet using that class. This con-
figuration defines the class named “Client_enterprise”. It is comprised of all clients whose client identifiers start with
the given hex string (which would indicate a DUID based on an enterprise id of 0OxAABBCCDD). Members of this
class will be given an address from 2001:db8:1::0 to 2001:db8:1::FFFF and the addresses of their DNS servers set to
2001:db8:0::1 and 2001:db8:2::1.

"Dhcp6": {
"client-classes": [
{
"name": "Client_enterprise",
"test": "substring(option[1].hex,0,6) == 0x0002AABBCCDD",
"option-data": [
{
"name": "dns-servers",
"code": 23,
"space": "dhcp6",
"csv-format": true,
"data": "2001:db8:0::1, 2001:db8:2::1"
}
1
1,
1,
"subnet6": [
{
"subnet": "2001:db8:1::/64",
"pools": [ { "pool": "2001:db8:1::-2001:db8:1::ffff" } ],
"client-class": "Client_enterprise"
}
1,
}

This example shows a configuration using an automatically generated “VENDOR_CLASS_" class. The administrator
of the network has decided that addresses in the range 2001:db8:1::1 to 2001:db8:1::fff are to be managed by the
DHCP6 server and that only clients belonging to the eRouter1.0 client class are allowed to use that pool.

"Dhcp6": {
"subnet6": [
{
"subnet": "2001:db8:1::/64",
"pools": [
{

"pool": "2001:db8:1::-2001:db8:1::ffff"
}
1,

(continues on next page)

9.2. DHCPv6 Server Configuration 183




Kea Administrator Reference Manual Documentation, Release 2.0.2

(continued from previous page)

"client-class": "VENDOR_CLASS_eRouterl.0"

9.2.22.2 Required Classification

In some cases it is useful to limit the scope of a class to a shared network, subnet, or pool. There are two parameters
which are used to limit the scope of the class by instructing the server to evaluate test expressions when required.

The first one is the per-class only-if-required flag, which is false by default. When it is set to true, the test
expression of the class is not evaluated at the reception of the incoming packet but later, and only if the class evaluation
is required.

The second is require-client-classes, which takes a list of class names and is valid in shared-network, subnet,
and pool scope. Classes in these lists are marked as required and evaluated after selection of this specific shared-
network/subnet/pool and before output option processing.

In this example, a class is assigned to the incoming packet when the specified subnet is used:

"Dhcp6": {
"client-classes": [
{
"name": "Client_foo",
"test": "member('ALL')",
"only-if-required": true
1,
1,
"subnet6": [
{
"subnet": "2001:db8:1::/64"
"pools": [
{
"pool": "2001:db8:1::-2001:db8:1::ffff"
}
1,
"require-client-classes": [ "Client_foo" ],
1,
1,
}

Required evaluation can be used to express complex dependencies like subnet membership. It can also be used to
reverse the precedence; if an option-data is set in a subnet, it takes precedence over an option-data in a class. If the
option-data is moved to a required class and required in the subnet, a class evaluated earlier may take precedence.

Required evaluation is also available at shared-network and pool/pd-pool levels. The order in which required classes
are considered is: shared-network, subnet, and (pd-)pool, i.e. in the opposite order in which option-data is processed.

184 Chapter 9. The DHCPv6 Server




Kea Administrator Reference Manual Documentation, Release 2.0.2

9.2.23 DDNS for DHCPv6

As mentioned earlier, kea-dhcp6 can be configured to generate requests to the DHCP-DDNS server (referred to here as
“D2”) to update DNS entries. These requests are known as Name Change Requests or NCRs. Each NCR contains the
following information:

1. Whether it is a request to add (update) or remove DNS entries

2. Whether the change requests forward DNS updates (AAAA records), reverse DNS updates (PTR records), or
both

3. The Fully Qualified Domain Name (FQDN), lease address, and DHCID (information identifying the client as-
sociated with the FQDN)

Prior to Kea 1.7.1, all parameters for controlling DDNS were within the global dhcp-ddns section of the kea-dhcp6.
Beginning with Kea 1.7.1 DDNS related parameters were split into two groups:

1. Connectivity Parameters

These are parameters which specify where and how kea-dhcp6 connects to and communicates with
D2. These parameters can only be specified within the top-level dhcp-ddns section in the kea-dhcp6
configuration. The connectivity parameters are listed below:

* enable-updates
e server-ip
e server-port
e sender-ip
* sender-port
* max-queue-size
e ncr-protocol
e ncr-format"
2. Behavioral Parameters

These parameters influence behavior such as how client host names and FQDN options are han-
dled. They have been moved out of the dhcp-ddns section so that they may be specified at the
global, shared-network, and/or subnet levels. Furthermore, they are inherited downward from global
to shared-network to subnet. In other words, if a parameter is not specified at a given level, the value
for that level comes from the level above it. The behavioral parameter as follows:

¢ ddns-send-updates

¢ ddns-override-no-update

e ddns-override-client-update
¢ ddns-replace-client-name"

¢ ddns-generated-prefix

¢ ddns-qualifying-suffix

¢ ddns-update-on-renew

e ddns-use-conflict-resolution
* hostname-char-set

* hostname-char-replacement

9.2. DHCPv6 Server Configuration 185



Kea Administrator Reference Manual Documentation, Release 2.0.2

Note: For backward compatibility, configuration parsing will still recognize the original behavioral parameters speci-
fied in dhcp-ddns. It will do so by translating the parameter into its global equivalent. If a parameter is specified both
globally and in dhcp-ddns, the latter value will be ignored. In either case, a log will be emitted explaining what has
occurred. Specifying these values within dhcp-ddns is deprecated and support for it will be removed at some future
date.

The default configuration and values would appear as follows:

"Dhcp6": {
"dhcp-ddns": {

// Connectivity parameters
"enable-updates": false,
"server-ip": "127.0.0.1",
"server-port":53001,
"sender-ip":"",
"sender-port":0,
"max-queue-size":1024,
"ncr-protocol":"UDP",
"ncr-format":"JSON"

3,

// Behavioral parameters (global)
"ddns-send-updates": true,
"ddns-override-no-update": false,
"ddns-override-client-update": false,
"ddns-replace-client-name": "never",
"ddns-generated-prefix": "myhost",
"ddns-qualifying-suffix": "",
"ddns-update-on-renew": false,
"ddns-use-conflict-resolution": true,
"hostname-char-set": "",
"hostname-char-replacement":

}

As of Kea 1.7.1, there are two parameters which determine if kea-dhcp6 can generate DDNS requests to D2: the existing
dhcp-ddns:enable-updates parameter, which now only controls whether kea-dhcp6 connects to D2; and the new
behavioral parameter, ddns-send-updates, which determines whether DDNS updates are enabled at a given level
(i.e. global, shared-network, or subnet). The following table shows how the two parameters function together:

Table 3: Enabling and Disabling DDNS Updates

dhcp-ddns: enable- | Global ddns-send- | Outcome

updates updates

false (default) false no updates at any scope

false true (default) no updates at any scope

true false updates only at scopes with a local value of true for ddns-enable-
updates

true true updates at all scopes except those with a local value of false for
ddns-enable-updates

Kea 1.9.1 adds two new parameters. The first new parameter is ddns-update-on-renew. Normally, when leases are
renewed the server only updates DNS if the DNS information for the lease (e.g. FQDN, DNS update direction flags)

186 Chapter 9. The DHCPv6 Server




Kea Administrator Reference Manual Documentation, Release 2.0.2

has changed. Setting ddns-update-on-renew to true instructs the server to always update the DNS information when
a lease is renewed even if its DNS information has not changed. This allows Kea to “self-heal” if it was previously
unable to add DNS entries or they were somehow lost by the DNS server.

Note: Setting ddns-update-on-renew to true may impact performance, especially for servers with numerous clients
who renew often.

The second parameter added in Kea 1.9.1 is ddns-use-conflict-resolution. The value of this parameter is passed
by kea-dhcp6 to D2 with each DNS update request. When true, (the default value), D2 will employ conflict resolution,
as described in RFC 4703, when attempting to fulfill the update request. When false, D2 will simply attempt to update
the DNS entries per the request, regardless of whether or not they conflict with existing entries owned by other DHCP6
clients.

Note: Setting ddns-use-conflict-resolution to false disables the overwrite safeguards that the rules of conflict
resolution ( RFC 4703) are intended to prevent. This means that existing entries for a FQDN or an IP address made for
Client-A can be deleted or replaced by entries for Client-B. Furthermore, there are two scenarios by which entries for
multiple clients for the same key (e.g. FQDN or IP) can be created.

1. Client-B uses the same FQDN as Client-A but a different IP address. In this case the forward DNS entries (AAAA,
and DHCID RRs) for Client-A will be deleted as they match the FQDN and new entries for Client-B will be added.
The reverse DNS entries (PTR and DHCID RRs) for Client-A, however, will not be deleted as they belong to a different
IP address while new entries for Client-B will still be added.

2. Client-B uses the same IP address as Client-A but a different FQDN. In this case the reverse DNS entries (PTR and
DHCID RRs) for Client-A will be deleted as they match the IP address and new entries for Client-B will be added. The
forward DNS entries (AAAA and DHCID RRs) for Client-A, however, will not be deleted as they belong to a different
FQDN while new entries for Client-B will still be added.

Disabling conflict resolution should be done only after careful review of specific use cases. The best way to avoid
unwanted DNS entries is to always ensure lease changes are processed through Kea, whether they are released, expire,
or are deleted via the lease-del6 command, prior to reassigning either FQDNs or IP addresses. Doing so causes kea-
dhcp6 to generate DNS removal requests to D2.

Note: The DNS entries Kea creates contain a value for TTL (time to live). As of Kea 1.9.3, kea-dhcp6 calculates that
value based on RFC 4702, Section 5 which suggests that the TTL value be 1/3 of the lease’s lifetime with a minimum
value of 10 minutes. Prior to this the server set the TTL value equal to the lease’s valid lifetime. Future releases may
add one or more parameters to customize this value.

9.2.23.1 DHCP-DDNS Server Connectivity
For NCRs to reach the D2 server, kea-dhcp6 must be able to communicate with it. kea-dhcp6 uses the following
configuration parameters to control this communication:

* enable-updates - As of Kea 1.7.1, this parameter only enables connectivity to kea-dhcp-ddns such that DDNS
updates can be constructed and sent. It must be true for NCRs to be generated and sent to D2. It defaults to false.

e server-ip - IP address on which D2 listens for requests. The default is the local loopback interface at address
127.0.0.1. Either an IPv4 or IPv6 address may be specified.

e server-port - port on which D2 listens for requests. The default value is 53001.

* sender-ip - the IP address which kea-dhcp6 uses to send requests to D2. The default value is blank, which
instructs kea-dhcp6 to select a suitable address.

9.2. DHCPv6 Server Configuration 187


https://tools.ietf.org/html/rfc4703
https://tools.ietf.org/html/rfc4703
https://tools.ietf.org/html/rfc4702#section-5

Kea Administrator Reference Manual Documentation, Release 2.0.2

* sender-port - the port which kea-dhcp6 uses to send requests to D2. The default value of 0 instructs kea-dhcp6
to select a suitable port.

* max-queue-size - the maximum number of requests allowed to queue waiting to be sent to D2. This value
guards against requests accumulating uncontrollably if they are being generated faster than they can be delivered.
If the number of requests queued for transmission reaches this value, DDNS updating will be turned off until
the queue backlog has been sufficiently reduced. The intent is to allow the kea-dhcp6 server to continue lease
operations without running the risk that its memory usage grows without limit. The default value is 1024.

* ncr-protocol - the socket protocol to use when sending requests to D2. Currently only UDP is supported.
e ncr-format - the packet format to use when sending requests to D2. Currently only JSON format is supported.

By default, kea-dhcp-ddns is assumed to be running on the same machine as kea-dhcp6, and all of the default values
mentioned above should be sufficient. If, however, D2 has been configured to listen on a different address or port,
these values must be altered accordingly. For example, if D2 has been configured to listen on 2001:db8::5 port 900,
the following configuration is required:

"Dhcp6": {
"dhcp-ddns": {
"server-ip": "2001:db8::5",
"server-port": 900,

3,

9.2.23.2 When Does the kea-dhcp6 Server Generate a DDNS Request?

kea-dhcp6 follows the behavior prescribed for DHCP servers in RFC 4704. It is important to keep in mind that kea-
dhcp6 makes the initial decision of when and what to update and forwards that information to D2 in the form of NCRs.
Carrying out the actual DNS updates and dealing with such things as conflict resolution are within the purview of D2
itself (see The DHCP-DDNS Server). This section describes when kea-dhcp6 will generate NCRs and the configuration
parameters that can be used to influence this decision. It assumes that the enable-updates parameter is true.

Note: Currently the interface between kea-dhcp6 and D2 only supports requests which update DNS entries for a single
IP address. If a lease grants more than one address, kea-dhcp6 will create the DDNS update request for only the first
of these addresses.

In general, kea-dhcp6 will generate DDNS update requests when:
1. A new lease is granted in response to a DHCPREQUEST;
2. An existing lease is renewed but the FQDN associated with it has changed; or
3. An existing lease is released in response to a DHCPRELEASE.

In the second case, lease renewal, two DDNS requests will be issued: one request to remove entries for the previous
FQDN, and a second request to add entries for the new FQDN. In the last case, a lease release, a single DDNS request
to remove its entries will be made.

As for the first case, the decisions involved when granting a new lease are more complex. When a new lease is granted,
kea-dhcp6 will generate a DDNS update request only if the DHCPREQUEST contains the FQDN option (code 39).
By default, kea-dhcp6 will respect the FQDN N and S flags specified by the client as shown in the following table:

188 Chapter 9. The DHCPv6 Server



https://tools.ietf.org/html/rfc4704

Kea Administrator Reference Manual Documentation, Release 2.0.2

Table 4: Default FQDN Flag Behavior

Client Client Intent Server Response Server
Flags:N-S Flags:N-S-O
0-0 Client wants to do forward updates, server | Server generates reverse-only re- | 1-0-0

should do reverse updates quest
0-1 Server should do both forward and reverse up- | Server generates request to up- | 0-1-0

dates date both directions
1-0 Client wants no updates done Server does not generate a re- | 1-0-0

quest

The first row in the table above represents “client delegation.” Here the DHCP client states that it intends to do the for-
ward DNS updates and the server should do the reverse updates. By default, kea-dhcp6 will honor the client’s wishes and
generate a DDNS request to D2 to update only reverse DNS data. The parameter ddns-override-client-update
can be used to instruct the server to override client delegation requests. When this parameter is “true”, kea-dhcp6 will
disregard requests for client delegation and generate a DDNS request to update both forward and reverse DNS data. In
this case, the N-S-O flags in the server’s response to the client will be 0-1-1 respectively.

(Note that the flag combination N=1, S=1 is prohibited according to RFC 4702. If such a combination is received from
the client, the packet will be dropped by kea-dhcp6.)

To override client delegation, set the following values in the configuration file:

"Dhcp6": {
"ddns-override-client-update": true,

}

The third row in the table above describes the case in which the client requests that no DNS updates be done. The
parameter, ddns-override-no-update, can be used to instruct the server to disregard the client’s wishes. When this
parameter is true, kea-dhcp6 will generate DDNS update requests to kea-dhcp-ddns even if the client requests that no
updates be done. The N-S-O flags in the server’s response to the client will be 0-1-1.

To override client delegation, issue the following commands:

"Dhcp6": {

"ddns-override-no-update": true,

9.2.23.3 kea-dhcp6 Name Generation for DDNS Update Requests

Each Name Change Request must of course include the fully qualified domain name whose DNS entries are to be
affected. kea-dhcp6 can be configured to supply a portion or all of that name, based upon what it receives from the
client in the DHCPREQUEST.

The default rules for constructing the FQDN that will be used for DNS entries are:
1. If the DHCPREQUEST contains the client FQDN option, take the candidate name from there.

2. If the candidate name is a partial (i.e. unqualified) name, then add a configurable suffix to the name and use the
result as the FQDN.

3. If the candidate name provided is empty, generate an FQDN using a configurable prefix and suffix.

9.2. DHCPv6 Server Configuration 189



https://tools.ietf.org/html/rfc4702

Kea Administrator Reference Manual Documentation, Release 2.0.2

4. If the client provides neither option, then take no DNS action.

These rules can be amended by setting the ddns-replace-client-name parameter, which provides the following
modes of behavior:

* never - use the name the client sent. If the client sent no name, do not generate one. This is the default mode.
* always - replace the name the client sent. If the client sent no name, generate one for the client.
* when-present - replace the name the client sent. If the client sent no name, do not generate one.

* when-not-present - use the name the client sent. If the client sent no name, generate one for the client.

Note: Note that in early versions of Kea, this parameter was a boolean and permitted only values of true and false.
Boolean values have been deprecated and are no longer accepted. Administrators currently using booleans must replace
them with the desired mode name. A value of true maps to "when-present", while false maps to "never".

For example, to instruct kea-dhcp6 to always generate the FQDN for a client, set the parameter
ddns-replace-client-name to always as follows:

"Dhcp6": {

"ddns-replace-client-name": "always",

The prefix used in the generation of an FQDN is specified by the ddns-generated-prefix parameter. The default
value is “myhost”. To alter its value, simply set it to the desired string:

"Dhcp6": {

"ddns-generated-prefix": "another.host",

The suffix used when generating an FQDN, or when qualifying a partial name, is specified by the
ddns-qualifying-suffix parameter. This parameter has no default value; thus, it is mandatory when DDNS up-
dates are enabled. To set its value simply set it to the desired string:

"Dhcp6": {

"ddns-qualifying-suffix": "foo.example.org",

When qualifying a partial name, kea-dhcp6 constructs the name in the format:
[candidate-name].[ddns-qualifying-suffix].

where candidate-name is the partial name supplied in the DHCPREQUEST. For example, if the FQDN domain name
value is “some-computer” and the ddns-qualifying-suffix “example.com”, the generated FQDN is:

some-computer.example.com.
When generating the entire name, kea-dhcp6 will construct the name in the format:

[ddns-generated-prefix]-[address-text].[ddns-qualifying-suffix].

190 Chapter 9. The DHCPv6 Server




Kea Administrator Reference Manual Documentation, Release 2.0.2

where address-text is simply the lease IP address converted to a hyphenated string. For example, if the lease address
is 3001:1::70E, the qualifying suffix “example.com”, and the default value is used for ddns-generated-prefix, the
generated FQDN is:

myhost-3001-1-70E.example.com.

9.2.23.4 Sanitizing Client FQDN Names

Some DHCP clients may provide values in the name component of the FQDN option (option code 39) that contain un-
desirable characters. It is possible to configure kea-dhcp6 to sanitize these values. The most typical use case is ensuring
that only characters that are permitted by RFC 1035 be included: A-Z, a-z, 0-9, and ‘-‘. This may be accomplished
with the following two parameters:

* hostname-char-set - a regular expression describing the invalid character set. This can be any valid, regular
expression using POSIX extended expression syntax. Embedded nulls (0x00) are always considered an invalid
character to be replaced (or omitted).

* hostname-char-replacement - a string of zero or more characters with which to replace each invalid character
in the host name. An empty string causes invalid characters to be OMITTED rather than replaced.

Note: Starting with Kea 1.7.5, the default values are as follows:
¢ “hostname-char-set”: “[*A-Za-z0-9.-]”,

* “hostname-char-replacement’:

This enables sanitizing and omits any character that is not a letter, digit, hyphen, dot, or null.

The following configuration replaces anything other than a letter, digit, hyphen, or dot with the letter ‘x’:

"Dhcp6": {
"hostname-char-set": "[*A-Za-z0-9.-1",
"hostname-char-replacement": "x",

}

Thus, a client-supplied value of “myhost-$[123.0rg” would become “myhost-xx123.org”. Sanitizing is performed only
on the portion of the name supplied by the client, and it is performed before applying a qualifying suffix (if one is
defined and needed).

Note: The following are some considerations to keep in mind: Name sanitizing is meant to catch the more common
cases of invalid characters through a relatively simple character-replacement scheme. It is difficult to devise a scheme
that works well in all cases. Administrators who find they have clients with odd corner cases of character combinations
that cannot be readily handled with this mechanism should consider writing a hook that can carry out sufficiently
complex logic to address their needs.

Do not include dots in the hostname-char-set expression. When scrubbing FQDNSs, dots are treated as delimiters and
used to separate the option value into individual domain labels that are scrubbed and then re-assembled.

If clients are sending values that differ only by characters considered as invalid by the hostname-char-set, be aware that
scrubbing them will yield identical values. In such cases, DDNS conflict rules will permit only one of them to register
the name.

Finally, given the latitude clients have in the values they send, it is virtually impossible to guarantee that a combination
of these two parameters will always yield a name that is valid for use in DNS. For example, using an empty value

9.2. DHCPv6 Server Configuration 191




Kea Administrator Reference Manual Documentation, Release 2.0.2

for hostname-char-replacement could yield an empty domain label within a name, if that label consists only of invalid
characters.

Note: Since the 1.6.0 Kea release, it is possible to specify hostname-char-set and/or hostname-char-replacement at
the global scope. This allows sanitizing of host names without requiring a dhcp-ddns entry. When a hostname-char
parameter is defined at the global scope and in a dhcp-ddns entry, the second (local) value is used.

9.2.24 DHCPv4-over-DHCPv6: DHCPv6 Side

The support of DHCPv4-over-DHCPvV6 transport is described in RFC 7341 and is implemented using cooperating
DHCPv4 and DHCPv6 servers. This section is about the configuration of the DHCPv6 side (the DHCPv4 side is
described in DHCPv4-over-DHCPv6: DHCPv4 Side).

Note: DHCPv4-over-DHCPv6 support is experimental and the details of the inter-process communication may change;
both the DHCPv4 and DHCPv6 sides should be running the same version of Kea. For instance, the support of port
relay (RFC 8357) introduced an incompatible change.

There is only one specific parameter for the DHCPv6 side: dhcp4o6-port, which specifies the first of the two consec-
utive ports of the UDP sockets used for the communication between the DHCPv6 and DHCPv4 servers. The DHCPv6
server is bound to ::1 on port and connected to ::1 on port + 1.

Two other configuration entries are generally required: unicast traffic support (see Unicast Traffic Support) and DHCP
406 server address option (name “dhcp4o6-server-addr”, code 88).

The following configuration was used during some tests:

{

# DHCPv6 conf
"Dhcp6": {

"interfaces-config": {
"interfaces": [ "eno33554984/2001:db8:1:1::1" ]
1,

"lease-database": {
"type": "memfile",
"name": "leases6"

b,

"preferred-lifetime": 3000,
"valid-lifetime": 4000,
"renew-timer": 1000,
"rebind-timer": 2000,

"subnet6": [ {

"subnet": "2001:db8:1:1::/64",

"interface": "eno33554984",

"pools": [ { "pool": "2001:db8:1:1::1:0/112" } 1]
11,

(continues on next page)

192 Chapter 9. The DHCPv6 Server



https://tools.ietf.org/html/rfc7341

Kea Administrator Reference Manual Documentation, Release 2.0.2

(continued from previous page)

"dhcp406-port": 6767,

"option-data": [ {
"name": "dhcp4o6-server-addr",
"code": 88,
"space": "dhcp6",
"csv-format": true,
"data": "2001:db8:1:1::1"

1,

"loggers": [ {
"name": "kea-dhcp6",
"output_options": [ {
"output": "/tmp/kea-dhcp6.log"
11,
"severity": "DEBUG",
"debuglevel™: 0
11

Note: Relayed DHCPv4-QUERY DHCPv6 messages are not supported.

9.2.25 Sanity Checks in DHCPv6

An important aspect of a well-running DHCP system is an assurance that the data remain consistent. However, in some
cases it may be convenient to tolerate certain inconsistent data. For example, a network administrator that temporarily
removed a subnet from a configuration would not want all the leases associated with it to disappear from the lease
database. Kea has a mechanism to control sanity checks for situations such as this.

Kea supports a configuration scope called sanity-checks. It currently allows only a single parameter, called
lease-checks, which governs the verification carried out when a new lease is loaded from a lease file. This mecha-
nism permits Kea to attempt to correct inconsistent data.

Every subnet has a subnet-id value; this is how Kea internally identifies subnets. Each lease has a subnet-id parameter
as well, which identifies which subnet it belongs to. However, if the configuration has changed, it is possible that a
lease could exist with a subnet-id, but without any subnet that matches it. Also, it may be possible that the subnet’s
configuration has changed and the subnet-id now belongs to a subnet that does not match the lease. Kea’s corrective
algorithm first checks to see if there is a subnet with the subnet-id specified by the lease. If there is, it verifies whether
the lease belongs to that subnet. If not, depending on the lease-checks setting, the lease is discarded, a warning is
displayed, or a new subnet is selected for the lease that matches it topologically.

Since delegated prefixes do not have to belong to a subnet in which they are offered, there is no way to implement such
a mechanism for IPv6 prefixes. As such, the mechanism works for IPv6 addresses only.

There are five levels which are supported:
* none - do no special checks; accept the lease as is.

* warn - if problems are detected display a warning, but accept the lease data anyway. This is the default value.

9.2. DHCPv6 Server Configuration 193




Kea Administrator Reference Manual Documentation, Release 2.0.2

e fix - if a data inconsistency is discovered, try to correct it. If the correction is not successful, the incorrect data
will be inserted anyway.

» fix-del - if a data inconsistency is discovered, try to correct it. If the correction is not successful, reject the
lease. This setting ensures the data’s correctness, but some incorrect data may be lost. Use with care.

¢ del - this is the strictest mode. If any inconsistency is detected, reject the lease. Use with care.

This feature is currently implemented for the memfile backend. Note the sanity check applies to the lease database in
memory, not to the lease file, i.e. inconsistent leases will stay in the lease file.

An example configuration that sets this parameter looks as follows:

"Dhcp6": {
"sanity-checks": {
"lease-checks": "fix-del"
1,
}

9.2.26 Storing Extended Lease Information

In order to support such features as DHCPv6 Reconfigure (RFC 3315) and LeaseQuery (RFC 5007) it is necessary to
store additional information with each lease. Because the amount of information stored for each lease has ramifications
in terms of performance and system resource consumption, storing this additional information is configurable through
the “store-extended-info” parameter. It defaults to false and may be set at the global, shared-network, and subnet levels.

"Dhcp6": {
"store-extended-info": true,

When enabled, information relevant to the DHCPv6 query (e.g. REQUEST, RENEW, or REBIND) asking for the lease
is added into the lease’s user-context as a map element labeled “ISC”. Currently the information contained in the map
will be a list of relays, one for each relay message layer that encloses the client query. Other values may be added at
a future date. The lease’s user-context for a two-hop query might look something like this (shown pretty-printed for
clarity):

{
"ISC": {
"relays": [
{
"hop": 2,
"link": "2001:db8::1",
"peer": "2001:db8::2"
1,
{
"hop": 1,
"link": "2001:db8::3",
"options": "0x00C800080102030405060708",
"peer": "2001:db8::4"
1]
}
}

194 Chapter 9. The DHCPv6 Server



https://tools.ietf.org/html/rfc3315
https://tools.ietf.org/html/rfc5007

Kea Administrator Reference Manual Documentation, Release 2.0.2

Note: This feature is intended to be used in conjunction with an upcoming LeaseQuery hook library and at this time
there is other use for this information within Kea.

Note: It is possible that other hook libraries are already using user-context. Enabling store-extended-info should not
interfere with any other user-context content, as long as it does not also use an element labeled “ISC”. In other words,
user-context is intended to be a flexible container serving multiple purposes. As long as no other purpose also writes
an “ISC” element to user-context there should not be a conflict.

9.2.27 Multi-Threading Settings

The Kea server can be configured to process packets in parallel using multiple threads. These settings can be found
under multi-threading structure and are represented by:

e enable-multi-threading - use multiple threads to process packets in parallel (default false).

* thread-pool-size - specify the number of threads to process packets in parallel. Supported values are: 0 (auto
detect), any positive number sets thread count explicitly (default 0).

» packet-queue-size - specify the size of the queue used by the thread pool to process packets. Supported
values are: 0 (unlimited), any positive number sets queue size explicitly (default 64).

An example configuration that sets these parameter looks as follows:

"Dhcp6": {

"multi-threading": {
"enable-multi-threading": true,
"thread-pool-size": 4,
"packet-queue-size": 16

9.2.28 Multi-Threading Settings in Different Backends

Both kea-dhcp4 and kea-dhcp6 are tested internally to determine which settings give the best performance. Although
this section describes our results, they are merely recommendations and are very dependent on the particular hardware
that was used for testing. We strongly advise that administrators run their own performance tests.

A full report of performance results for the latest stable Kea can be found here. This includes hardware and test scenario
descriptions, as well as current results.

After enabling multi-threading, the number of threads is set by thread-pool-size parameter, and results from our
tests show that best configurations for kea-dhcp6 are:

e thread-pool-size: 4 when using memfile for storing leases.
e thread-pool-size: 12 or more when using mysql for storing leases.
e thread-pool-size: 6 when using postgresql.

Another very important parameter is packet-queue-size and in our tests we used it as multiplier of
thread-pool-size. So actual setting strongly depends on thread-pool-size.

Our tests reported best results when:

9.2. DHCPv6 Server Configuration 195



https://reports.kea.isc.org/

Kea Administrator Reference Manual Documentation, Release 2.0.2

* packet-queue-size: 150 * thread-pool-size when using memfile for storing leases. In our case it’s 150
* 4 = 600. This means that at any given time, up to 600 packets could be queued.

* packet-queue-size: 200 * thread-pool-size when using mysql for storing leases. In our case it’s 200 *
12 = 2400. This means that up to 2400 packets could be queued.

* packet-queue-size: 11 * thread-pool-size when using postgresql for storing leases. In our case it’s
11 * 6 =66.

9.2.29 Lease Caching

Clients that attempt renewal frequently can cause the server to update and write to the database frequently resulting
in a performance impact on the server. The cache parameters instruct the DHCP server to avoid updating leases too
frequently thus avoiding this behavior. Instead the server assigns the same lease (i.e. reuses it) with no modifications
except for CLTT (Client Last Transmission Time) which does not require disk operations.

The two parameters are the cache-threshold double and the cache-max-age integer and have no default, i.e. the
lease caching feature must be explicitly enabled. These parameters can be configured at the global, shared network and
subnet levels. The subnet level has the precedence on the shared network level, the global level is used as last resort.
For example:

"subnet6": [

{
"subnet": "2001:db8:1:1::/64",
"pools": [ { "pool": "2001:db8:1:1::1:0/112" } 1],
"cache-threshold": .25,
"cache-max-age": 600,
"valid-lifetime": 2000,
}

1,

When an already assigned lease can fulfill a client query:

 any important change e.g. for DDNS parameter, hostname, or preferred or valid lifetime reduction makes the
lease not reusable

* lease age i.e. the difference between the creation or last modification time and the current time is computed
(elapsed duration)

* if cache-max-age is explicitly configured, it is compared with the age and leases that are too old are not reusable
(this means that the value O for cache-max-age disables the lease cache feature)

* if cache-threshold is explicitly configured and is between 0.0 and 1.0, it expresses the percentage of the lease
valid lifetime which is allowed for the lease age. Values below and including 0.0 and values greater than 1.0
disable the lease cache feature.

In the example a lease with a valid lifetime of 2000 seconds can be reused if it was committed less than 500 seconds
ago. With a lifetime of 3000 seconds the maximum age of 600 seconds applies.

In outbound client responses (e.g. DHCPV6_REPLY messages) used preferred and valid lifetimes are the reusable
values i.e. the expiration dates do not change.

196 Chapter 9. The DHCPv6 Server




Kea Administrator Reference Manual Documentation, Release 2.0.2

9.3 Host Reservation in DHCPv6

There are many cases where it is useful to provide a configuration on a per-host basis. The most obvious one is to
reserve a specific, static IPv6 address or/and prefix for exclusive use by a given client (host); the returning client will
receive the same address or/and prefix every time, and other clients will never get that address. Another situation when
host reservations are applicable is when a host has specific requirements, e.g. a printer that needs additional DHCP
options or a cable modem that needs specific parameters. Yet another possible use case is to define unique names for
hosts.

Note that there may be cases when a new reservation has been made for a client for an address or prefix currently in use
by another client. We call this situation a “conflict.” These conflicts get resolved automatically over time as described
in subsequent sections. Once the conflict is resolved, the correct client will receive the reserved configuration when it
renews.

Host reservations are defined as parameters for each subnet. Each host must be identified by either DUID or its hard-
ware/MAC address; see MAC/Hardware Addresses in DHCPv6 for details. There is an optional reservations array
in the subnet6 structure; each element in that array is a structure that holds information about a single host. In par-
ticular, the structure has an identifier that uniquely identifies a host. In the DHCPv6 context, the identifier is usually a
DUID, but it can also be a hardware or MAC address. One or more addresses or prefixes may also be specified, and it
is possible to specify a hostname and DHCPv6 options for a given host.

Note: Kea requires that reserved addresses must be within the subnet. Kea 1.7.10 is the last release that does not
enforce this. This does not apply to reserved prefixes.

The following example shows how to reserve addresses and prefixes for specific hosts:

"subnet6": [
{
"subnet": "2001:db8:1::/48",
"pools": [ { "pool": "2001:db8:1::/80" } 1,
"pd-pools": [
{
"prefix": "2001:db8:1:8000::",
"prefix-len": 48,
"delegated-len": 64

}
1,
"reservations": [
{
"duid": "01:02:03:04:05:0A:0B:0C:0D:0E",
"ip-addresses": [ "2001:db8:1::100" ]
1,
{
"hw-address": "00:01:02:03:04:05",
"ip-addresses": [ "2001:db8:1::101", "2001:db8:1::102" ]
1,
{
"duid": "01:02:03:04:05:06:07:08:09:0A",
"ip-addresses": [ "2001:db8:1::103" ],
"prefixes": [ "2001:db8:2:abcd::/64" 1],
"hostname": "foo.example.com"
}
]

(continues on next page)

9.3. Host Reservation in DHCPv6 197




Kea Administrator Reference Manual Documentation, Release 2.0.2

(continued from previous page)

This example includes reservations for three different clients. The first reservation is for the address 2001:db8:1::100 for
a client using DUID 01:02:03:04:05:0A:0B:0C:0D:0E. The second reservation is for two addresses, 2001:db8:1::101
and 2001:db8:1::102, for a client using MAC address 00:01:02:03:04:05. Lastly, address 2001:db8:1::103 and prefix
2001:db8:2:abcd::/64 are reserved for a client using DUID 01:02:03:04:05:06:07:08:09:0A. The last reservation also
assigns a hostname to this client.

Note that DHCPv6 allows a single client to lease multiple addresses and multiple prefixes at the same time. Therefore
ip-addresses and prefixes are plural and are actually arrays. When the client sends multiple IA options (IA_NA
or IA_PD), each reserved address or prefix is assigned to an individual IA of the appropriate type. If the number of [As
of a specific type is lower than the number of reservations of that type, the number of reserved addresses or prefixes
assigned to the client is equal to the number of IA_NAs or IA_PDs sent by the client; that is, some reserved addresses
or prefixes are not assigned. However, they still remain reserved for this client and the server will not assign them to any
other client. If the number of [As of a specific type sent by the client is greater than the number of reserved addresses
or prefixes, the server will try to assign all reserved addresses or prefixes to the individual IAs and dynamically allocate
addresses or prefixes to the remaining IAs. If the server cannot assign a reserved address or prefix because it is in use,
the server will select the next reserved address or prefix and try to assign it to the client. If the server subsequently
finds that there are no more reservations that can be assigned to the client at that moment, the server will try to assign
leases dynamically.

Making a reservation for a mobile host that may visit multiple subnets requires a separate host definition in each subnet
that host is expected to visit. It is not possible to define multiple host definitions with the same hardware address in a
single subnet. Multiple host definitions with the same hardware address are valid if each is in a different subnet. The
reservation for a given host should include only one identifier, either DUID or hardware address; defining both for the
same host is considered a configuration error.

Adding host reservations incurs a performance penalty. In principle, when a server that does not support host reservation
responds to a query, it needs to check whether there is a lease for a given address being considered for allocation or
renewal. The server that does support host reservation has to perform additional checks: not only whether the address
is currently used (i.e., if there is a lease for it), but also whether the address could be used by someone else (i.e., if there
is a reservation for it). That additional check incurs extra overhead.

9.3.1 Address/Prefix Reservation Types

In a typical scenario there is an IPv6 subnet defined, with a certain part of it dedicated for dynamic address allocation
by the DHCPvV6 server. There may be an additional address space defined for prefix delegation. Those dynamic parts
are referred to as dynamic pools, address and prefix pools, or simply pools. In principle, a host reservation can reserve
any address or prefix that belongs to the subnet. The reservations that specify addresses that belong to configured
pools are called “in-pool reservations.” In contrast, those that do not belong to dynamic pools are called “out-of-pool
reservations.” There is no formal difference in the reservation syntax and both reservation types are handled uniformly.

Kea supports global host reservations. These are reservations that are specified at the global level within the configu-
ration and that do not belong to any specific subnet. Kea will still match inbound client packets to a subnet as before,
but when the subnet’s reservation mode is set to "'global", Kea will look for host reservations only among the global
reservations defined. Typically, such reservations would be used to reserve hostnames for clients which may move from
one subnet to another.

Note: Global reservations, while useful in certain circumstances, have aspects that must be given due consideration
when using them. Please see Conflicts in DHCPv6 Reservations for more details.

198 Chapter 9. The DHCPv6 Server




Kea Administrator Reference Manual Documentation, Release 2.0.2

Note: Beginning with Kea 1.9.1 reservation mode was replaced by three boolean flags "reservations-global",
"reservations-in-subnet" and "reservations-out-of-pool" which allows the configuration of host reserva-
tions both globally and in a subnet. In such cases a subnet host reservation has preference over a global reservation
when both exist for the same client.

9.3.2 Conflicts in DHCPv6 Reservations

Asreservations and lease information are stored separately, conflicts may arise. Consider the following series of events:
the server has configured the dynamic pool of addresses from the range of 2001:db8::10 to 2001:db8::20. Host A
requests an address and gets 2001:db8::10. Now the system administrator decides to reserve address 2001:db8::10 for
Host B. In general, reserving an address that is currently assigned to someone else is not recommended, but there are
valid use cases where such an operation is warranted.

The server now has a conflict to resolve. If Host B boots up and requests an address, the server is not able to assign the
reserved address 2001:db8::10. A naive approach would to be immediately remove the lease for Host A and create a
new one for Host B. That would not solve the problem, though, because as soon as Host B gets the address, it will detect
that the address is already in use (by Host A) and will send a DHCPDECLINE message. Therefore, in this situation,
the server has to temporarily assign a different address from the dynamic pool (not matching what has been reserved)
to Host B.

When Host A renews its address, the server will discover that the address being renewed is now reserved for someone
else - Host B. The server will remove the lease for 2001:db8::10, select a new address, and create a new lease for it. It
will send two addresses in its response: the old address, with lifetime set to O to explicitly indicate that it is no longer
valid; and the new address, with a non-zero lifetime. When Host B tries to renew its temporarily assigned address, the
server will detect that the existing lease does not match the reservation, so it will release the current address Host B has
and will create a new lease matching the reservation. As before, the server will send two addresses: the temporarily
assigned one with zeroed lifetimes, and the new one that matches the reservation with proper lifetimes set.

This recovery will succeed, even if other hosts attempt to get the reserved address. If Host C requests the address
2001:db8::10 after the reservation is made, the server will propose a different address.

This recovery mechanism allows the server to fully recover from a case where reservations conflict with existing leases;
however, this procedure will take roughly as long as the value set for renew-timer. The best way to avoid such recovery
is not to define new reservations that conflict with existing leases. Another recommendation is to use out-of-pool
reservations. If the reserved address does not belong to a pool, there is no way that other clients can get it.

Note: The conflict-resolution mechanism does not work for global reservations. Although the global address reserva-
tions feature may be useful in certain settings, it is generally recommended not to use global reservations for addresses.
Administrators who do choose to use global reservations must manually ensure that the reserved addresses are not in
dynamic pools.

9.3.3 Reserving a Hosthame

When the reservation for a client includes the hostname, the server will assign this hostname to the client and send
it back in the Client FQDN, if the client sent the FQDN option to the server. The reserved hostname always takes
precedence over the hostname supplied by the client (via the FQDN option) or the autogenerated (from the IPv6 address)
hostname.

The server qualifies the reserved hostname with the value of the ddns-qualifying-suffix parameter. For example,
the following subnet configuration:

9.3. Host Reservation in DHCPv6 199



Kea Administrator Reference Manual Documentation, Release 2.0.2

"subnet6": [

{
"subnet": "2001:db8:1::/48",
"pools": [ { "pool": "2001:db8:1::/80" } 1],
"ddns-qualifying-suffix": "example.isc.org.",
"reservations": [
{
"duid": "01:02:03:04:05:0A:0B:0C:0D:0E",
"ip-addresses": [ "2001:db8:1::100" ]
"hostname": "alice-laptop"
}
]
}
1,
"dhcp-ddns": {
"enable-updates": true
}

will result in assigning the ‘“alice-laptop.example.isc.org.” hostname to the client using the DUID

“01:02:03:04:05:0A:0B:0C:0D:0E”.  If the ddns-qualifying-suffix is

not specified, the default (empty)

value will be used, and in this case the value specified as a hostname will be treated as a fully qualified name. Thus,
by leaving the ddns-qualifying-suffix empty it is possible to qualify hostnames for different clients with different

domain names:

"subnet6": [

{
"subnet": "2001:db8:1::/48",
"pools": [ { "pool": "2001:db8:1::/80" } 1,
"reservations": [
{
"duid": "01:02:03:04:05:0A:0B:0C:0D:0E",
"ip-addresses": [ "2001:db8:1::100" ]
"hostname": "mark-desktop.example.org."
}
]
}
1,
"dhcp-ddns": {
"enable-updates": true,
}

The above example results in the assignment of the “mark-desktop.example.org.” hostname to the client using the DUID

“01:02:03:04:05:0A:0B:0C:0D:0E”.

200

Chapter 9. The DHCPv6 Server




Kea Administrator Reference Manual Documentation, Release 2.0.2

9.3.4 Including Specific DHCPv6 Options in Reservations

Kea offers the ability to specify options on a per-host basis. These options follow the same rules as any other options.
These can be standard options (see Standard DHCPv6 Options), custom options (see Custom DHCPv6 Options), or
vendor-specific options (see DHCPv6 Vendor-Specific Options). The following example demonstrates how standard
options can be defined

"reservations": [

{
"duid": "01:02:03:05:06:07:08",
"ip-addresses": [ "2001:db8:1::2" 1],
"option-data": [
{
"option-data": [ {
"name": "dns-servers",
"data": "3000:1::234"
1,
{
"name": "nis-servers",
"data": "3000:1::234"
}
1
1]

Vendor-specific options can be reserved in a similar manner:

"reservations": [

{
"duid": "aa:bb:cc:dd:ee:ff",
"ip-addresses": [ "2001:db8::1" ],
"option-data": [
{
"name": "vendor-opts",
"data": 4491
1
{
"name": "tftp-servers",
"space": "vendor-4491",
"data": "3000:1::234"
1
31

Options defined at host level have the highest priority. In other words, if there are options defined with the same type
on global, subnet, class, and host levels, the host-specific values will be used.

9.3. Host Reservation in DHCPv6 201




Kea Administrator Reference Manual Documentation, Release 2.0.2

9.3.5 Reserving Client Classes in DHCPv6

Using Expressions in Classification explains how to configure the server to assign classes to a client, based on the con-
tent of the options that this client sends to the server. Host reservations mechanisms also allow for the static assignment
of classes to clients. The definitions of these classes are placed in the Kea configuration or a database. The following
configuration snippet shows how to specify that a client belongs to classes reserved-classl and reserved-class2.
Those classes are associated with specific options sent to the clients which belong to them.

{

"client-classes": [

{
"name": "reserved-classl",
"option-data": [
{
"name": "dns-servers",
"data": "2001:db8:1::50"
}
1
3
{
"name": "reserved-class2",
"option-data": [
{
"name": "nis-servers",
"data": "2001:db8:1::100"
}
]
}
1,

"subnet6": [

{ "pools": [ { "pool": "2001:db8:1::/64" } 1],
"subnet": "2001:db8:1::/48",
"reservations": [

{

"duid": "01:02:03:04:05:06:07:08",

"client-classes": [ "reserved-classl", "reserved-class2" ]
}
]

3]

In some cases the host reservations can be used in conjunction with client classes specified within the Kea configuration.
In particular, when a host reservation exists for a client within a given subnet, the “KNOWN” built-in class is assigned
to the client. Conversely, when there is no static assignment for the client, the “UNKNOWN?” class is assigned to the
client. Class expressions within the Kea configuration file can refer to “KNOWN” or “UNKNOWN” classes using the
“member” operator. For example:

{
"client-classes": [
{
"name": "dependent-class",
"test": "member ('KNOWN')",

(continues on next page)

202 Chapter 9. The DHCPv6 Server




Kea Administrator Reference Manual Documentation, Release 2.0.2

(continued from previous page)

"only-if-required": true

Note that the only-if-required parameter is needed here to force evaluation of the class after the lease has been
allocated and thus the reserved class has been also assigned.

Note: Be aware that the classes specified in non-global host reservations are assigned to the processed packet after all
classes with the only-if-required parameter set to false have been evaluated. This has an implication that these
classes must not depend on the statically assigned classes from the host reservations. If there is a need to create such
dependency, the only-if-required must be set to true for the dependent classes. Such classes are evaluated after
the static classes have been assigned to the packet. This, however, imposes additional configuration overhead, because
all classes marked as only-if-required must be listed in the require-client-classes list for every subnet where
they are used.

Note: Client classes specified within the Kea configuration file may depend on the classes specified within the global
host reservations. In such a case the only-if-required parameter is not needed. Refer to the Pool Selection with
Client Class Reservations and Subnet Selection with Client Class Reservations for the specific use cases.

9.3.6 Storing Host Reservations in MySQL, PostgreSQL, or Cassandra

It is possible to store host reservations in MySQL, PostgreSQL, or Cassandra. See Hosts Storage for information on
how to configure Kea to use reservations stored in MySQL, PostgreSQL, or Cassandra. Kea provides a dedicated hook
for managing reservations in a database; section host_cmds: Host Commands provides detailed information. The Kea
wiki provides some examples of how to conduct common host reservations operations.

Note: In Kea, the maximum length of an option specified per-host is arbitrarily set to 4096 bytes.

9.3.7 Fine-Tuning DHCPv6 Host Reservation

The host reservation capability introduces additional restrictions for the allocation engine (the component of Kea that
selects an address for a client) during lease selection and renewal. In particular, three major checks are necessary. First,
when selecting a new lease, it is not sufficient for a candidate lease to simply not be in use by another DHCP client; it
also must not be reserved for another client. Second, when renewing a lease, an additional check must be performed
to see whether the address being renewed is reserved for another client. Finally, when a host renews an address or a
prefix, the server must check whether there is a reservation for this host, so the existing (dynamically allocated) address
should be revoked and the reserved one be used instead.

Some of those checks may be unnecessary in certain deployments and not performing them may improve performance.
The Kea server provides the reservation-mode configuration parameter to select the types of reservations allowed
for a particular subnet. Each reservation type has different constraints for the checks to be performed by the server
when allocating or renewing a lease for the client. Allowed values are:

* all - enables both in-pool and out-of-pool host reservation types. This setting is the default value, and is the
safest and most flexible. However, as all checks are conducted, it is also the slowest. It does not check against
global reservations.

9.3. Host Reservation in DHCPv6 203



https://gitlab.isc.org/isc-projects/kea/wikis/designs/commands#23-host-reservations-hr-management
https://gitlab.isc.org/isc-projects/kea/wikis/designs/commands#23-host-reservations-hr-management

Kea Administrator Reference Manual Documentation, Release 2.0.2

* out-of-pool - allows only out-of-pool host reservations. With this setting in place, the server may assume
that all host reservations are for addresses that do not belong to the dynamic pool. Therefore, it can skip the
reservation checks when dealing with in-pool addresses, thus improving performance. Do not use this mode if
any reservations use in-pool addresses. Caution is advised when using this setting; Kea does not sanity-check
the reservations against reservation-mode and misconfiguration may cause problems.

* global - allows only global host reservations. With this setting in place, the server searches for reservations for
a client only among the defined global reservations. If an address is specified, the server skips the reservation
checks carried out when dealing in other modes, thus improving performance. Caution is advised when using
this setting; Kea does not sanity-check the reservations when global and misconfiguration may cause problems.

disabled - host reservation support is disabled. As there are no reservations, the server will skip all checks.
Any reservations defined will be completely ignored. As the checks are skipped, the server may operate faster in
this mode.

Since Kea 1.9.1, the reservation-mode is replaced by the reservations-global, reservations-in-subnet
and reservations-out-of-pool flags. The flags can be activated independently and can produce various combina-
tions, some of them being unsupported by the deprecated reservation-mode.

The reservation-mode parameter can be specified at:
* global level: .Dhcp6["reservation-mode"] (lowest priority: gets overridden by all others)
* subnet level: .Dhcp6.subnet6[]["reservation-mode"] (low priority)
* shared-network level: .Dhcp6["shared-networks"][]["reservation-mode"] (high priority)

* shared-network subnet-level: .Dhcp6["shared-networks"][].subnet6[]["reservation-mode"] (high-
est priority: overrides all others)

To decide which "reservation-mode" to choose, the following decision diagram may be useful:

e - +
| Is per-host configuration needed, such as |
| reserving specific addresses, |
| assigning specific options or [
| assigning packets to specific classes on per-device basis? |
+

B LT TP, B T T T +
I I
no| yes|
| | e e e +
| | | For all given hosts, |
+--> "disabled" +-=>+ can the reserved resources |
| be used in all configured subnets? |
D e +-+
I I
e + no lyes
I Is I I I
| at least one reservation +<--+ "global" <--+
| used to reserve addresses |
| or prefixes? |
e +-+
I I
no | yes|  Ammmmmmmm e +
I

| | Is high leases-per-second |

(continues on next page)

204 Chapter 9. The DHCPv6 Server




Kea Administrator Reference Manual Documentation, Release 2.0.2

(continued from previous page)

+--> "out-of-pool” +-->+ performance or efficient |
A | resource usage |

| (CPU ticks, RAM usage, |

database roundtrips) |

important to your setup? |

———————— +
|
yes| no
I
o +
I
| it ettt +
+-->+ that the reserved
| addresses/prefixes

|
|
aren't part of the |
pools configured |
in the respective |
|

-+

I

I

I

| +
I |
I I
I I
I I
I I
I |
| | | Can it be guaranteed | |
I I
I I
I I I
| | I
I I |
[ | subnet? |
I + I
I I
I I
I

An example configuration that disables reservations looks as follows:

{
"Dhcp6": {
"subnet6": [
{
"pools": [
{
"pool": "2001:db8:1::-2001:db8:1::100"
}
1,
"reservation-mode": "disabled",
"subnet": "2001:db8:1::/64"
}
]
}
}

An example configuration using global reservations is shown below:

{
"Dhcp6": {
"reservation-mode": "global",
"reservations": [
{

"duid": "00:03:00:01:11:22:33:44:55:66",
"hostname": "host-one"

(continues on next page)

9.3. Host Reservation in DHCPv6 205




Kea Administrator Reference Manual Documentation, Release 2.0.2

(continued from previous page)

1,
{
"duid": "00:03:00:01:99:88:77:66:55:44",
"hostname": "host-two"
}
1,
"subnet6": [
{
"pools": [
{
"pool": "2001:db8:1::-2001:db8:1::100"
}
1,
"subnet": "2001:db8:1::/64"
}
]

The meaning of the reservation flags are:

e reservations-global: fetch global reservations.

e reservations-in-subnet: fetch subnet reservations. For a shared network this includes all subnet members

of the shared network.

reservations-out-of-pool: this makes sense only when the reservations-in-subnet flag is true. When

reservations-out-of-pool is true the server may assume that all host reservations are for addresses that do
not belong to the dynamic pool. Therefore, it can skip the reservation checks when dealing with in-pool addresses,
thus improving performance. Also the server will not assign reserved addresses that are inside the dynamic pools
to the respective clients. This also means that the addresses matching the respective reservations from inside the

dynamic pools (if any) can be dynamically assigned to any client.
The reservation-mode will be deprecated in a future Kea version.
The correspondence of old values are:

disabled:

{
"Dhcp6": {
"reservations-global": false,

"reservations-in-subnet": false
}
}
global:
{
"Dhcp6": {
"reservations-global": true,
"reservations-in-subnet": false
}
}

out-of-pool:

206

Chapter 9. The DHCPv6 Server




Kea Administrator Reference Manual Documentation, Release 2.0.2

{
"Dhcp6": {
"reservations-global": false,
"reservations-in-subnet": true,
"reservations-out-of-pool": true
}
}
all:
{
"Dhcp6": {
"reservations-global": false,
"reservations-in-subnet": true,
"reservations-out-of-pool": false
}
}

To activate both global and all, the following combination can be used:

{
"Dhcp6": {
"reservations-global": true,
"reservations-in-subnet": true,
"reservations-out-of-pool": false
}
}

To activate both global and out-of-pool, the following combination can be used

{
"Dhcp6": {
"reservations-global": true,
"reservations-in-subnet": true,
"reservations-out-of-pool": true
}
}

Note that enabling out-of-pool and disabling in-subnet at the same time is not recommended because
out-of-pool is about host reservations in a subnet which are fetched only when the in-subnet flag is true.

The parameter can be specified at global, subnet, and shared-network levels.

An example configuration that disables reservations looks as follows:

{
"Dhcp6": {
"subnet6": [
{

"reservations-global": false,
"reservations-in-subnet": false,
"subnet": "2001:db8:1::/64"

(continues on next page)

9.3. Host Reservation in DHCPv6 207




Kea Administrator Reference Manual Documentation, Release 2.0.2

(continued from previous page)

An example configuration using global reservations is shown below:

{
"Dhcp6": {
"reservations": [
{
"duid": "00:03:00:01:11:22:33:44:55:66",
"hostname": "host-one"
1,
{
"duid": "00:03:00:01:99:88:77:66:55:44",
"hostname": "host-two"
}
1,
"reservations-global": true,
"reservations-in-subnet": false,
"subnet6": [
{
"pools": [
{
"pool": "2001:db8:1::-2001:db8:1::100"
}
1,
"subnet": "2001:db8:1::/64"
}
]
}
}

For more details regarding global reservations, see Global Reservations in DHCPv6.

Another aspect of host reservations is the different types of identifiers. Kea currently supports two types of identifiers
in DHCPv6: hardware address and DUID. This is beneficial from a usability perspective; however, there is one draw-
back. For each incoming packet Kea has to extract each identifier type and then query the database to see if there is a
reservation by this particular identifier. If nothing is found, the next identifier is extracted and the next query is issued.
This process continues until either a reservation is found or all identifier types have been checked. Over time, with an
increasing number of supported identifier types, Kea would become slower and slower.

To address this problem, a parameter called host-reservation-identifiers is available. It takes a list of identifier
types as a parameter. Kea will check only those identifier types enumerated in host-reservation-identifiers. From a
performance perspective, the number of identifier types should be kept to a minimum, ideally one. If the deployment
uses several reservation types, please enumerate them from most- to least-frequently used, as this increases the chances
of Kea finding the reservation using the fewest queries. An example of host reservation identifiers looks as follows:

"host-reservation-identifiers": [ "duid", "hw-address" ],
"subnet6": [
{

"subnet": "2001:db8:1::/64",

208 Chapter 9. The DHCPv6 Server




Kea Administrator Reference Manual Documentation, Release 2.0.2

If not specified, the default value is:

"host-reservation-identifiers": [ "hw-address", "duid" ]

9.3.8 Global Reservations in DHCPv6

In some deployments, such as mobile, clients can roam within the network and certain parameters must be specified
regardless of the client’s current location. To facilitate such a need, a global reservation mechanism has been imple-
mented. The idea behind it is that regular host reservations are tied to specific subnets, by using a specific subnet-id.
Kea can specify a global reservation that can be used in every subnet that has global reservations enabled.

This feature can be used to assign certain parameters, such as hostname or other dedicated, host-specific options. It
can also be used to assign addresses or prefixes. However, global reservations that assign either of these bypass the
whole topology determination provided by DHCP logic implemented in Kea. It is very easy to misuse this feature
and get a configuration that is inconsistent. To give a specific example, imagine a global reservation for an address
2001:db8:1111::1 and two subnets 2001:db8:1111::/48 and 2001:db8:{tff::/48. If global reservations are used in both
subnets and a device matching global host reservations visits part of the network that is covered by 2001:db8:{fff::/48,
it will get an IP address 2001:db8:fff::1, which will be outside of the prefix announced by its local router using Router
Advertisements. Such a configuration is unusable or, at the very least, riddled with issues, such as downlink traffic not
reaching the device.

To use global host reservations, a configuration similar to the following can be used:

"Dhcp6:" {
# This specifies global reservations.
# They will apply to all subnets that
# have global reservations enabled.

"reservations": [

{
"hw-address": "aa:bb:cc:dd:ee:ff",
"hostname": "hw-host-dynamic"
1
{
"hw-address": "01:02:03:04:05:06",
"hostname": "hw-host-fixed",
# Use of IP addresses in global reservations is risky.
# If used outside of matching subnet, such as 3001::/64,
# it will result in a broken configuration being handed
# to the client.
"ip-address": "2001:db8:ff::77"
I
{
"duid": "01:02:03:04:05",
"hostname": "duid-host"
}
1,

"valid-lifetime": 600,
"subnet4": [ {
"subnet": "2001:db8:1::/64",
# It is replaced by the "reservations-global"
# "reservations-in-subnet" and '"reservations-out-of-pool"

(continues on next page)

9.3. Host Reservation in DHCPv6 209




Kea Administrator Reference Manual Documentation, Release 2.0.2

(continued from previous page)

# parameters.
# "reservation-mode": "global",
# Specify if the server should lookup global reservations.
"reservations-global": true,
# Specify if the server should lookup in-subnet reservations.
"reservations-in-subnet": false,
# Specify if the server can assume that all reserved addresses
# are out-of-pool. It can be ignored because '"reservations-in-subnet"
# is false.
# '"reservations-out-of-pool": false,
"pools": [ { "pool": "2001:db8:1::-2001:db8:1::100" } ]

}

When using database backends, the global host reservations are distinguished from regular reservations by using subnet-
id value of zero.

9.3.9 Pool Selection with Client Class Reservations

Client classes can be specified both in the Kea configuration file and/or host reservations. The classes specified in the
Kea configuration file are evaluated immediately after receiving the DHCP packet and therefore can be used to influence
subnet selection using the client-class parameter specified in the subnet scope. The classes specified within the
host reservations are fetched and assigned to the packet after the server has already selected a subnet for the client.
This means that the client class specified within a host reservation cannot be used to influence subnet assignment for
this client, unless the subnet belongs to a shared network. If the subnet belongs to a shared network, the server may
dynamically change the subnet assignment while trying to allocate a lease. If the subnet does not belong to a shared
network, once selected, the subnet is not changed.

If the subnet does not belong to a shared network, it is possible to use host reservation based client classification to
select an address pool within the subnet as follows:

"Dhcp6": {
"client-classes": [
{
"name": "reserved_class"
1,
{
"name": "unreserved_class",
"test": "not member('reserved_class')"
}
1,
"subnet6": [
{

"subnet": "2001:db8:1::/64",
"reservations": [{"
"hw-address": "aa:bb:cc:dd:ee:fe",
"client-classes": [ "reserved_class" ]
1,
"pools": [
{
"pool": "2001:db8:1::10-2001:db8:1::20",
"client-class": "reserved_class"

(continues on next page)

210 Chapter 9. The DHCPv6 Server




Kea Administrator Reference Manual Documentation, Release 2.0.2

(continued from previous page)

1,

{
"pool"”: "2001:db8:1::30-2001:db8:1::40",
"client-class": "unreserved_class"

}

The reserved_class is declared without the test parameter because it may be only assigned to the client via
host reservation mechanism. The second class, unreserved_class, is assigned to the clients which do not belong
to the reserved_class. The first pool within the subnet is only used for the clients having a reservation for the
reserved_class. The second pool is used for the clients not having such reservation. The configuration snippet
includes one host reservation which causes the client having the MAC address of aa:bb:cc:dd:ee:fe to be assigned to
the reserved_class. Thus, this client will be given an IP address from the first address pool.

9.3.10 Subnet Selection with Client Class Reservations

There is one specific use case when subnet selection may be influenced by client classes specified within host reserva-
tions. This is the case when the client belongs to a shared network. In such a case it is possible to use classification to
select a subnet within this shared network. Consider the following example:

"Dhcp6": {
"client-classes": [
{
"name": "reserved_class"
1,
{
"name: "unreserved_class",
"test": "not member('reserved_class')"
}
1,
"reservations": [{"
"hw-address": "aa:bb:cc:dd:ee:fe",

"client-classes": [ "reserved_class" ]
1,
# It is replaced by the "reservations-global"
# "reservations-in-subnet" and "reservations-out-of-pool'" parameters.
# Specify if the server should lookup global reservations.
"reservations-global": true,
# Specify if the server should lookup in-subnet reservations.
"reservations-in-subnet": false,
Specify if the server can assume that all reserved addresses
are out-of-pool. It can be ignored because '"reservations-in-subnet"
is false, but if specified, it is inherited by "shared-networks"
and "subnet6" levels.
"reservations-out-of-pool": false,
"shared-networks": [{

"subnet6": [

{

R R R N S

(continues on next page)

9.3. Host Reservation in DHCPv6 211




Kea Administrator Reference Manual Documentation, Release 2.0.2

(continued from previous page)

"subnet": "2001:db8:1::/64",

"pools": [
{
"pool": "2001:db8:1::10-2001:db8:1::20",
"client-class": "reserved_class"
}
1
1,
{
"subnet": "2001:db8:2::/64",
"pools": [
{
"pool": "2001:db8:2::10-2001:db8:2::20",
"client-class": "unreserved_class"
}
1
}

}]

This is similar to the example described in the Pool Selection with Client Class Reservations. This time, however, there
are two subnets, each of them having a pool associated with a different class. The clients which don’t have a reservation
for the reserved_class will be assigned an address from the subnet 2001:db8:2::/64. Clients having a reservation
for the reserved_class will be assigned an address from the subnet 2001:db8:1::/64. The subnets must belong to
the same shared network. In addition, the reservation for the client class must be specified at the global scope (global
reservation) and the reservations-global must be set to true.

In the example above the client-class could also be specified at the subnet level rather than pool level yielding the
same effect.

9.3.11 Multiple Reservations for the Same IP

Host Reservations were designed to preclude creation of multiple reservations for the same IP address or delegated
prefix within a particular subnet to avoid the situation when two different clients compete for the same lease. When
using the default settings, the server returns a configuration error when it finds two or more reservations for the same
lease within a subnet in the Kea configuration file. The host_cmds: Host Commands hooks library returns an error in
response to the reservation-add command when it detects that the reservation exists in the database for the lease
for which the new reservation is being added.

Similar to DHCPv4 (see Multiple Reservations for the Same IP), the DHCPvG6 server can also be configured to allow
creating multiple reservations for the same IPv6 address and/or delegated prefix in a given subnet. This is supported
beginning with Kea release 1.9.1 as an optional mode of operation enabled with the ip-reservations-unique global
parameter.

The ip-reservations-unique is a boolean parameter, which defaults to true, which forbids the specification of
more than one reservation for the same lease in a given subnet. Setting this parameter to false allows for creating
such reservations both in the Kea configuration file and in the host database backends via host-cmds hooks library.

This setting is currently supported by the most popular host database backends, i.e. MySQL and PostgreSQL. It is not
supported for Cassandra, Host Cache (see host_cache: Caching Host Reservations) or Radius backend (see radius:
RADIUS Server Support). An attempt to set ip-reservations-unique to false when any of these three backends
is in use yields a configuration error.

212 Chapter 9. The DHCPv6 Server




Kea Administrator Reference Manual Documentation, Release 2.0.2

Note: When ip-reservations-unique is set to true (the default value) the server ensures that IP reservations are
unique for a subnet within a single host backend and/or Kea configuration file. It does not guarantee that the reservations
are unique across multiple backends.

The following is the example configuration with two reservations for the same IPv6 address and for different MAC
addresses:

"Dhcp6": {
"ip-reservations-unique": false,
"subnet6": [

{
"subnet": "2001:db8:1::/64",
"reservations": [
{
"hw-address": "la:1b:1c:1d:1le:1£f",
"ip-address": "2001:db8:1::11"
1,
{
"hw-address": "2a:2b:2c:2d:2e:2f",
"ip-address": "2001:db8:1::11"
}
]
}

It is possible to control the ip-reservations-unique via the Configuration Backend in DHCPv6. If the new setting
of this parameter conflicts with the currently used backends (backends do not support the new setting), the new setting
is ignored and the warning log message is output. The backends continue to use the default setting, i.e. expecting that
IP reservations are unique within each subnet. To allow the creation of non-unique IP reservations, the administrator
must remove the backends which lack support for them from the configuration file.

Administrators must be careful when they have been using multiple reservations for the same IP address and/or del-
egated prefix and later decide to return to the default mode in which this is no longer allowed. The administrators
must make sure that at most one reservation for the given IP address or delegated prefix exists within a subnet prior to
switching back to the default mode. If such duplicates are left in the configuration file, the server reports a configura-
tion error. Leaving such reservations in the host databases does not cause configuration errors but may lead to lease
allocation errors during the server operation, when it unexpectedly finds multiple reservations for the same IP address
or delegated prefix.

Note: Currently the server does not verify whether multiple reservations for the same IP address and/or delegated
prefix exist in the host databases (MySQL and/or PostgreSQL) when ip-reservations-unique is updated from
true to false. This may cause issues with lease allocations. The administrator must ensure that there is at most one
reservation for each IP address and/or delegated prefix within each subnet prior to this configuration update.

9.3. Host Reservation in DHCPv6 213




Kea Administrator Reference Manual Documentation, Release 2.0.2

9.4 Shared Networks in DHCPv6

DHCEP servers use subnet information in two ways. First, it is used to determine the point of attachment, or where
the client is connected to the network. Second, the subnet information is used to group information pertaining to a
specific location in the network. This approach works well in general, but there are scenarios where the boundaries
are blurred. Sometimes it is useful to have more than one logical IP subnet being deployed on the same physical link.
Understanding that two or more subnets are used on the same link requires additional logic in the DHCP server. This
capability is called “shared networks” in the Kea and ISC DHCP projects. (Itis sometimes also called “shared subnets”;
in Microsoft’s nomenclature it is called “multinet.”)

There are many use cases where the feature is useful; the most common example in IPv4 is when the server is running
out of available addresses in a subnet. This is less common in IPv6, but shared networks are still useful in IPv6. One of
the use cases is an exhaustion of IPv6- delegated prefixes within a subnet; another is an experiment with an addressing
scheme. With the advent of IPv6 deployment and a vast address space, many organizations split the address space into
subnets, deploy it, and then after a while discover that they want to split it differently. In the transition period, they
want both old and new addressing to be available; thus the need for more than one subnet on the same physical link.

Finally, the case of cable networks is directly applicable in IPv6. There are two types of devices in cable networks:
cable modems and the end-user devices behind them. It is a common practice to use different subnets for cable modems
to prevent users from tinkering with them. In this case, the distinction is based on the type of device, rather than on
address-space exhaustion.

A client connected to a shared network may be assigned a lease (address or prefix) from any of the pools defined within
the subnets belonging to the shared network. Internally, the server selects one of the subnets belonging to a shared
network and tries to allocate a lease from this subnet. If the server is unable to allocate a lease from the selected subnet
(e.g., due to pool exhaustion), it will use another subnet from the same shared network and will try to allocate a lease
from this subnet, etc. Therefore, the server will typically allocate all leases available in a given subnet before it starts
allocating leases from other subnets belonging to the same shared network. However, in certain situations the client
can be allocated a lease from the other subnets before the pools in the first subnet get exhausted; this sometimes occurs
when the client provides a hint that belongs to another subnet, or the client has reservations in a subnet other than the
default.

Note: Deployments should not assume that Kea waits until it has allocated all the addresses from the first subnet in a
shared network before allocating addresses from other subnets.

In order to define a shared network an additional configuration scope is introduced:

"Dhcp6": {
"shared-networks": [{
# Name of the shared network. It may be an arbitrary string
# and it must be unique among all shared networks.
"name": "ipv6-lab-1",

# The subnet selector can be specified on the shared network
# level. Subnets from this shared network will be selected
# for clients communicating via relay agent having
# the specified IP address.
"relay": {

"ip-addresses": [ "2001:db8:2:34::1" ]
1,

# This starts a list of subnets in this shared network.
# There are two subnets in this example.

(continues on next page)

214 Chapter 9. The DHCPv6 Server




Kea Administrator Reference Manual Documentation, Release 2.0.2

(continued from previous page)

"subnet6": [{

"subnet": "2001:db8::/48",

"pools": [{ "pool": "2001:db8::1 - 2001:db8::ffff" }]
b q

"subnet": "3ffe:ffe::/64",

"pools": [{ "pool": "3ffe:ffe::/64" }]
1]

}1, # end of shared-networks

# It is likely that in the network there will be a mix of regular,
# "plain" subnets and shared networks. It is perfectly valid
# to mix them in the same configuration file.
#
# This is a regular subnet. It is not part of any shared-network.
"subnet6": [{
"subnet": "2001:db9::/48",
"pools": [{ "pool": "2001:db9::/64" }1,
"relay": {
"ip-addresses": [ "2001:db8:1:2::1" ]
}
1]
} # end of Dhcp6

As demonstrated in the example, it is possible to mix shared and regular (“plain”) subnets. Each shared network must
have a unique name. This is similar to the ID for subnets, but gives administrators more flexibility. It is used for logging,
but also internally for identifying shared networks.

In principle it makes sense to define only shared networks that consist of two or more subnets. However, for testing
purposes, an empty subnet or a network with just a single subnet is allowed. This is not a recommended practice in
production networks, as the shared network logic requires additional processing and thus lowers the server’s perfor-
mance. To avoid unnecessary performance degradation, the shared subnets should only be defined when required by
the deployment.

Shared networks provide an ability to specify many parameters in the shared network scope that apply to all subnets
within it. If necessary, it is possible to specify a parameter in the shared network scope and then override its value in
the subnet scope. For example:

"shared-networks": [
{
"name": "lab-network3",
"relay": {
"ip-addresses": [ "2001:db8:2:34::1" ]
1,
# This applies to all subnets in this shared network, unless
# values are overridden on subnet scope.

"valid-lifetime": 600,

# This option is made available to all subnets in this shared

# network.
"option-data": [ {
"name": "dns-servers",

"data": "2001:db8::8888"

(continues on next page)

9.4. Shared Networks in DHCPv6 215




Kea Administrator Reference Manual Documentation, Release 2.0.2

(continued from previous page)

Y,

"subnet6": [
{
"subnet": "2001:db8:1::/48",
"pools": [ { "pool": "2001:db8:1::1 - 2001:db8:1::ffff" } 1],

# This particular subnet uses different values.
"valid-lifetime": 1200,
"option-data": [
{
"name": "dns-servers",
"data": "2001:db8::1:2"
1,
{
"name": "unicast",
"data": "2001:abcd::1"
3]

"subnet": "2001:db8:2::/48",
"pools": [ { "pool": "2001:db8:2::1 - 2001:db8:2::ffff" } 1],

# This subnet does not specify its own valid-lifetime value,
# so it is inherited from shared network scope.
"option-data": [
{

"name": "dns-servers",

"data": "2001:db8:cafe::1"
1

1,
I

In this example, there is a dns-servers option defined that is available to clients in both subnets in this shared network.
Also, the valid lifetime is set to 10 minutes (600s). However, the first subnet overrides some of the values (valid lifetime
is 20 minutes, different IP address for dns-servers), but also adds its own option (unicast address). Assuming a client
asking for a server unicast and dns-servers options is assigned a lease from this subnet, it will get a lease for 20 minutes
and dns-servers, and be allowed to use server unicast at address 2001:abcd::1. If the same client is assigned to the
second subnet, it will get a 10-minute lease, a dns-servers value of 2001:db8:cafe::1, and no server unicast.

Some parameters must be the same in all subnets in the same shared network. This restriction applies to the interface
and rapid-commit settings. The most convenient way is to define them on the shared network scope, but they can be
specified for each subnet. However, care should be taken for each subnet to have the same value.

Note: There is an inherent ambiguity when using clients that send multiple IA options in a single request and shared-
networks whose subnets have different values for options and configuration parameters. The server sequentially pro-
cesses IA options in the order that they occur in the client’s query. If the leases requested in the IA options end up
being fulfilled from different subnets then which parameters and options should apply? Currently, the code will use the
values from the last subnet of the last IA option fulfilled.

‘We view this largely as a site configuration issue. A shared-network generally means the same physical link, so services
configured by options from subnet A should be as easily reachable from subnet B and vice versa. There are a number

216 Chapter 9. The DHCPv6 Server




Kea Administrator Reference Manual Documentation, Release 2.0.2

of ways to avoid this situation:
» Use the same values for options and parameters for subnets within the shared-network.

» Use subnet selectors or client class guards that ensure that for a single client’s query, the same subnet will be
used for all A options in that query.

* Avoid using shared-networks with clients that send multiple IA options per query

9.4.1 Local and Relayed Traffic in Shared Networks

It is possible to specify an interface n