R: A Language and Environment for
Statistical Computing

Reference Index

The R Core Team

Version 4.2.1 (2022-06-23)

Copyright (©) 1999-2022 R Foundation for Statistical Computing.

Permission is granted to make and distribute verbatim copies of this manual provided the copyright
notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions for
verbatim copying, provided that the entire resulting derived work is distributed under the terms of a
permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language, under the
above conditions for modified versions, except that this permission notice may be stated in a translation
approved by the R Core Team.

R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute
it under the terms of the GNU General Public License. For more information about these matters, see
https://www.gnu.org/copyleft/gpl.html.

I

1

1 The base package 3
base-package 3
Jbincode e e e 3
Device ..o e e e e e e e 4
Machine e 5
Platform L 8
abbreviate e 9
o () 11
all . . e 13
allequal L L e 15
allnames e e e 18
AY . . ot e e e e e e e e e 19
APEITIL . . ¢ v v vt e e e e e e e e e e e e e e e e e e 20
append e e e 22
apply . . e e e 22
ATES o v e e e e e e e e e e e e e e e 24
Arithmetic e e e e 26
AITAY © o v v v e 29
as.dataframe 30
as.Date e e 32
AS.NVIFONMENT v v v ot e e e e e e e e e e e e e e e e e 35
asfunction L e e e 37
as.POSIX* e 38
Asls . . e e e e 41
asplit. . . . e 42
ASSIZN . . . L . e e e e e 43
assignOPS L e e e e e e e 45
attach e e 46
A . . . L L e e e e 48
attributes L e e 49
autoload L L e 51
backsolve e 52
basename L e e e 53
Bessel e e e 54
bindenv e e 58
DItWISE e e e e 60
body e e e 61
DQUOLE e e e e 62
Browser e e 63
browserText e e 65
builtins L e e e 66
DY . e 67
C e e e e e s 68
call e e 70
callCC e 72
CallExternal e 73

il

CAL . L e e e e e e e 76
chind e e 78
charexpand 81
character e e 82
charmatch 84
chartr e 85
chkDots e e 87
chol . . . e 88
chol2inv e e e e 90
class 91
COl . o e e e e 94
Colon e e e 95
colSums e 96
commandArgs e e e 98
COMMENL . . . v v v e o e e e e e e e e e e e e e e e e e 99
Comparison e 99
COMPIEX e e e e e 102
conditionsS L e e 104
conflicts L e 108
CONNECHIONS o i e i e e et e e e e e e 109
Constants e e e e e e e 120
contributors L. e e e e e 121
Control e e e 121
copyright 123
Crossprod e e e e e e e e e 123
Cstack_info e 125
CUMSUIN v v e i e i e e e e e e e e e e e e e e e e e e 126
curlGetHeaders 127
CUL . o e e e e e e e e 128
cut POSIXt e 131
data.class e e 132
dataframe e 133
data.matrixX e e e e 135
date e e e 137
Dates e e 137
DateTimeClasses i v i e e e e e e 139
def . o e 143
debug e 146
Defunct e 147
delayedAssign 148
deparse e e e 150
deparseOPLs o e e e e e e e e e 152
Deprecated e e 154
det . . e 155
detach e 156
diag . . . e e e e 158
diff . . e 160

iii

dim ..o e e e 163
dimnames e e e e e e e 164
do.call e 166
dontCheck e 168
dOts . . . e e e e e 168
double 169
dput . ..o e 171
drop . . . e e e 173
droplevels L 174
dump e e e 175
duplicated 177
dyndoad e 179
eapply e e 182
3 (<) 183
encodeString L. e e e e e 185
Encoding e 187
ENVIFONMENE o ittt e e e e e e e e e e 188
EnvVar e e e 191
eval .. L e e e 194
EXISES . . L e 196
expand.grid 198
EXPIESSION .« . v v v v v e 200
Extract e e 201
Extract.dataframe e 206
Extract.factor e e 210
Extremes e e e e 211
extSoftVersion e 213
factor e 215
file.access e e 219
file.choose e e 220
fileinfo e 220
filepath e e 222
file.sshow e e 223
files e 225
files2 e 228
find.package 230
findInterval e 231
force e 233
forceAndCall e 234
Foreign e 234
formals e 237
format 239
format.info L. 242
format.pval 243
formatC e 244
formatDL e 249
function e e 250

funprog 251

iv

BC e e e e e e e 254
GC.UME . . . o o e e e e e e e e 255
GCLOTEUIC v v v e e e e e e e e e e e e 256
SO . o e 257
getDLLRegisteredRoutines L 259
getLoadedDLLs 261
getNativeSymbollnfo 262
GEUEXL . o o v v e e e e e e e e e e e e e 264
getwd ... e 267
3 268
SIED o v i e e e e e e e e 269
grepRaw L e 275
groupGeneriC e 277
SIOUPINE .+« o v v v v v e e e e e e e e e e 280
SZCOM . v o v e e i e e e e e e e e e e e e e e e e e e 281
hexmode e e 282
Hyperbolic e 284
ICONV . . . o o o e 285
icuSetCollate 288
identical e e e e e 291
identity L 294
ifelse oL 294
INTEZET o o e e 296
INETaCtiON v o o e e e e e e e e e e e e e e e e e e e 298
INTETaCtIVE o o o o et e e e e 299
Internal 300
InternalMethods e 300
invisible L 302
isfinite e 303
is.function L e 305
isdanguage 305
1S.0DJECE e e e e e 306
ISR e 307
ISTECUISIVE . o o v v v o e 308
is.single . . .o 309
isaunsorted L L 309
ISOdatetime e 310
1SS4 L e 311
ISSymmetric L L e e e e e e 312
JIET . L L 313
kappa 314
kronecker 316
IOn_info e 318
labels e e e 319
lapply . . . e 319
Lastvalue o e 322
La_library e 323

La version e 324

length e 325
lengths L 326
levels e e e e e 327
libcurlVersion 329
libPaths 330
library e 332
library.dynam 336
HCENSE o v e e e e e 338
LISt . . o e 339
list.files e e e e 341
List2DFE . . e 342
List2env e e e e e 343
load e e e 345
locales 347
log . . o e e 349
Logic e 351
logical L 353
LongVectors o e e e e 355
lowertri e e e e e e 356
IS . e 356
make.names e e 358
make.unique L. e e e e e e e e e e e e 359
mapply . ..o 360
MarginSuMS o ot e e e e e e e 362
MALOLVEC © v v v v v o e 363
match e e 363
match.arg 366
match.call 367
matchfun e 368
MathFun e e 370
matmult 371
MAMIX . . v v o e 372
maxCol e 374
10T 1 o P 375
MEeMCOMPIESS . . . v v o v e vt e e e e e e e e e e 376
memlimits e e e e e e e e e e e 378
Memory 379
Memory-limits e e e 380
memory.profile e e e 381
0TS 382
MESSAZE « « « v v v e e e e e e e e e e e e e e e e 385
MISSING . . . o v vt e e e e e 386
mode e 387
MM e e e e e e e e e e e 389
NA . e 389
NAME . . v v v v v v e 392
NAMES . . v v v v v e 393

vi

nchar . . . L L e e 396
nlevels e e 399
NOQUOLE o vt ittt e e e e e e 399
1075 1+ L 401
normalizePath L 402
NotYet e e e e 404
IIOW . o v v e e e e e e e e e e e e e e e e 404
ns-dblcolon L e e 405
nS-hooKS e 406
ns-load e e e e 408
NS-TOPEIV « « . o v v vt e e e e e e e e e e e 411
NULL . . . o e 412
01T o (O 413
NumericConstants it e e e e e e 415
NUMETIC_VETSION v v v v v e e e e e e e e e e e e e e e e e 416
octmode e e e e e e e e 418
OMLEXIL & v v v v e o e 420
Ops.Date e e e e e 421
OPLIONS .+ v v v v o e e e e e e e e e e e e e e e e e e 422
Order e e e e e e 433
OULET . o v v o o e e e e e e e e e e e e e 436
Paren e 437
PATSE o e e e 438
PASte e e e e e 441
patheexpand e e 444
pere_config e e e 445
PIPEOD . .« . e 446
Plot . e 447
pmatch. L e 449
polyroot 450
POSO.BIIV « . . o v v e e e e 451
PIEILY . o o e e e e e e e e e 452
Primitive e 454
PIINt . . . o e e 455
print.dataframe 457
printdefault L 458
PIMAtTiX o L e e e e e e e e e e 460
PrOC.HIME o o e e e 461
Prod . .o e e e 463
PIOPOItIONS o ittt e e e e e 464
pushBack 465
6) O 466
QR.Auxiliaries e 469
QUIt . o e 471
QUOLES o e e e e e 472
R.Version e e 476
Random e 478

Random.user e 483

vii

TANZE + v v v e 485
TANK . . . e e e e e e 486
rapply . .o e e 488
TAW . o e e e e e e e e e e 489
rawConnection e e e e e e e 491
rawConversion e e e e e e e e e e 492
RAUtls e 495
readBin 496
readChar e e e 499
readline 500
readlines L L e e e 501
readRDS e e e 503
readRenviron e 506
Recall e 506
reg.finalizer L 507
TEEEX . v v v e e e e e e e e e e e e e e e 508
regmatches L e 513
TEMOVE . v v v v v v e 515
TED « o v e 517
replace L 519
Reserved e 520
TEV o o v e e e e e e e e e e e e e 520
Rhome e 521
rle . . e e e 522
Round e 523
round.POSIXt e e 525
TOW o v o e e e e e e e e e e e e e e 527
TOWACOINAMES v o e e e e e e e e e 528
TOWAMES . & v v v v v v e 529
TOWSUIML & & v v v v e 531
S3method 532
sample e e e e 533
SAVE . v i i e e e e e e e e 535
scale . .. L. e e e 538
SCAM . v v v v e e e e e e e 539
Search e e 544
SeeK . .. L e e e 545
SEQ « v e e e e e e e e e e e e e e 546
seg.Date e 549
seq.POSIXt e 550
SEQUEIICE .+« v v v v v e 551
serialize 552
SBES o e e e e e e e e e 554
setTimeLimit e 555
showConnections e 556
shQuote e 558
SIGN . . L. e 559

Signals. oL 560

viii

SINK . . L e 561
slicedndex L. e 563
SIOtOp . . . e 564
socketSelect 565
SOIVE . . o L e 566
SOTE o v v v e e e e e e e e e e e 567
SOUICE « . v v v v e v e e e e e e e e e e e e e e e e e e 571
Special e e e 574
SPLt . . e 577
Sprintf 579
SQUOLE o e e 584
srefile ..o L e 586
StackOverflows e e 588
standardGeneric 589
startsWitho 590
Startupo e e 591
170 o 595
StOPIfnot e e e e e 596
SIIPHME . . . o v o o e e e e e e e e e e e e e e 599
] 30 1) 0 605
Stsplit . . . L L e 606
] 5 1) 608
SITEIM . . . o o o e e e e e e e 609
SIIUCTUTE . . . v v v o e 610
SIEWIAD .« v v v v e 611
SUbSet e 612
SUDSHIULE o . e e e e e e e e 614
SUDSLT e 616
SUM & . v v v e et e e e e e e e e e e e e 618
SUIMMATY . . . v v v v v e e et e e e e e e e e e e e e e 619
SVA . L e e 621
SWEED « v v e 622
SWItCh . . . o L e e 624
SYNtax e e 626
SYS.ZEBNV . .« . . L e e e 627
Sys.getpid e e 629
Sys.glob e 629
Sys.anfo 631
Sys.docaleconv e e e 632
SYS.PATENL e e 633
Sys.readlink 636
SYS.SEBNV . . o . o v e e e 637
Sys.setFileTime e 638
Sysssleep . . . e 639
SYS.SOUICE .+ o v o v v v v e e e e e e e e e e e e e e e e 640
SYSHME . . . o v o e e e e e e e e e e 641
Sys.which 642

SYSIEIM . . . v e e e e e e e 643

ix

system.file L e e 646
SYSEMLUME ot e e e e e e e e e e e e 647
SYStemM?2 e e 648
b e e 650
table e e 651
tabulate e 654
tapply . .o e e e e 655
taskCallback e 658
taskCallbackManager 660
taskCallbackNames e 661
tempfile L 662
textCoNNection e e e e e e e e 664
tilde e 666
HMEZOMNES . . . v vt v v o e e e e e e e e e e e e e e e 667
tOSIING e 671
LFACE . . . v o o e e e e e e e e e e e e 672
traceback e 677
traCeMEIM v v v v e 679
transform L e e 681
Trig . . . e 682
tHMWS . . . o o e o e e e e e e e e e e e e e e e e 684
Y o e e e e e e e e 685
typeof . . e e e e 687
UNIQUE .« o o v v v v e e e e e e e e e e e e e e e e e 687
unlink oL 689
unliSt e e e 691
UNNAIME vt e e e e e e e e e e e e e e e e e 692
UseMethod e 693
userhooksS L e e e 696
utf8Conversion L 698
UTF8filepaths e 700
validUTFS e 701
VECIOT . . o o o e o e e e e e e e e e e e e e e e e e e 702
Vectorize e e e e e 705
WarNIng e e e 706
WAININGS .« . .« o v v v v e e e e e e e e e e e e e 708
weekdays . ..o 709
which e 711
which.min L 713
With . . e 714
withVisible 717
WIIEE o o e e e e e e 718
writeLines L. 719
XM . . e e 720
zapsmall oL 720
zpackages L e e 721

ZUtilS . . L e 722

2 The compiler package 723
compile e e e 723
3 The datasets package 727
datasets-package e e e 727
ability.cov e e e 727
airmiles e e e e 728
AirPassengers L 729
airquality e 730
anscombe L. L e 731
AENU e e e e e e e e e e e 732
attitude L e e e e 733
AUSITES & & o v v v e 734
beavers L e e e 735
Blsales 736
BOD . . . e e 737
CATS . v v v e e e e e e e e e e e e e e e e e e e 738
ChickWeight e 739
chickwts e e 740
CO2 . e e e 741
COZ . o e e e e 742
crimtab L L e e 743
diSCOVETIES o o o e e e e e e e e e e e e e e 745
DNase e e e 746
€SOPh . . L e 747
CUIO . & v v v e e e e e e e e e e e e e 748
eurodiSt L e e e e 749
EuStockMarkets e e e 750
faithful e 750
Formaldehyde 751
freeny oL 752
HairEyeColor e 753
Harman23.cor e 754
Harman74.cor e 755
Indometh e 755
Infert e e e 756
InsectSprays e 758
IS . . o o e e e e e e e 759
islands L L e 760
JohnsonJohnson e 760
LakeHuron e 761
Th e 762
LifeCycleSavings e 762
Loblolly 763
longley e e e 764
Lynx . o e e e 765
morley e 766
MECATS . . o v v v v e e e e e e e e e e e e e e e e e e 767

nhtemp 768

X1

Nile . . . o e 769
NOEIM o vttt e e e e e e e e e e 770
NPK . e e 771
occupationalStatus L. 772
Orange e e e e 773
OrchardSprays 774
PlantGrowth e e 775
PIECID . o o o e e e e e 776
presidents e e e 777
PIESSUIE . . .« . vt i it et e e e e e e e e e e e e e 777
Puromycin 778
quakeso e 780
randu e e 781
TIVETS o o o v i e e e e e e e e e e e e e e e e e e 782
TOCK . . . o e e e 782
sleep e 783
Stackloss L 784
SEALE e e e e 785
sunspot.month L e e e e 787
SUNSPOLYEAr v v v v ettt e e e e e e e e e e e e e 788
SUNSPOLS o vt e e 789
SWISS o v v v o e e e e e e e e e e e e e e e e 790
Theoph 791
Titanic e e e e e 793
ToothGrowth e 794
TrEETING o o e e e e e 795
IIEES . . o o ot e e e e e e e e e 795
UCBAAMISSIONS o vt o e e e e e e e e e e e e e 796
UKDriverDeaths 797
UKgas e e 799
UKLungDeaths e 799
USAccDeaths e 800
USAITEStS o o e e e e e e e e 800
USJudgeRatings 802
USPersonalExpenditure e 802
USPOD « v v e 803
VADeaths e 804
volcano e e 805
warpbreaks L e e 805
WOIMETL .+ o o v v v v v e e e et e e e e e e e e e e e 806
WorldPhones e 807
WWWusage e e e 808
4 The grDevices package 811
grDevices-package e e 811
adjustcolor oL L e e e e e e 811
as.graphicsAnnot L. e e 813
T 1] (3 813

axisTICKS e 815

Xii

boxplot.stats e e e e e 817
bringToTop o e 819
CAITO . . . o ot e e 819
cairoSymbolFont 822
check.options L e 823
chull e 824
CIM . v v v e et e e e e e 825
Col2rgb . . e e 825
colorRamp. 827
COlOTS e e 829
contourLines L 830
convertColor L 831
densCols e 834
dev . . . 835
dev.capabilities e 837
devcapture e 838
devflush e 839
devinteractive L. L e 839
dev.size L e 840
dev2 . . e 841
dev2bitmap 843
devAskNewPage e 845
Devices e 846
embedFonts L 847
eXtendrange e e e e e e e e e e 849
getGraphicsEvent L 850
GIAY o v e e e e e e e e e e e e e e e e 853
gray.colors e 854
grSoftVersion L e 855
hel .o e 856
Hershey e 858
NSV . o e 861
Japanese 862
make.rgb 863
msgWindow 865
n2mfrowo 866
NClass e e e 867
palette 868
Palettes e 871
PAf . e 875
pdfioptions 880
PICIEX . o o o e e e e e e e e e e 881
plotmath L e 883
PIE o o e e e e 888
POSESCIIPL « . . v o o o e e e e 892
postscriptFonts L e 899
prettyDate 902

PS.OPLIONS . . . o o o e e e e e 903

QUATEZ . v v o v e 904
quartzFonts e e e e e e 907
recordGraphics L 908
recordPlot e 909
524 o 910
rgb2hsv . . Lo 912
savePlot 914
trans3d e e e e 915
TypelFont e 916
WINdOWS e 917
WIndOWS.OPHONS e e 922
windowsFonts 923
XL e e 924
XT1Fonts e e e e e e e 930
XAZ . e 931
XY.Coords 933
xyTable 934
XYZ.COOTAS . . v v o o o e e e e e e e e e e e e 935
5 The graphics package 939
graphics-package 939
abline e e 940
AITOWS & o v v v e 941
assocplot e 943
AXIS . . e e e 944
AXIS . . L e e e 945
axis.POSIXct e 949
axTicks e 950
barplot L e e 952
bOX . e e e 956
boxplot 957
boxplot.matrix e e 961
DXP . o e 962
cdplot e e e e 965
Clip . . e e 967
£070) 110 1 o 968
convertXYo e e e e 971
coplot . . . e 972
CUIVE . o v v o e e e e e e e e e e e e e e e e 975
dotchart e 977
filled.contour 979
fourfoldplot L 982
frame e 984
grid . .. e 984
hiSt. . . . e e e 986
hist.POSIXt e 989
identify 991
IMAZE . . . o o o e e e 994

Xiv

legend e e 998
lines e 1004
locator L e e 1005
matploto e 1007
mosaicplot L. 1010
MEEXE . . o ot e e e e e e e e e e e 1013
PAITS . . o e e e 1015
panel.smooth L 1018
PAT . . . e e 1019
PEISD -« o o e e e e e e e e e e e e e 1028
PIe . o e 1032
plotdataframe 1034
plotdefault e 1035
plotdesign L. e e 1038
plotfactor L 1040
plotformula 1041
plothistogram 1042
PIOLIAStEr e e e e e e e e e e 1044
plot.table e 1045
plotwindow 1046
PIOLXY .« o o e e e e 1047
POINES o o o e e 1048
polygono 1052
polypath e 1055
rasterlmage L. e 1057
TECL © vt e e e e e e e e e e e 1058
TUZ o v o e 1060
SCICCIL . . v v v e i i e e e e e e e e e e e 1061
SEZMENLS . . o o ot e e e e e e e e e e e e 1063
smoothScatter 1064
sSpineplot. L e e e 1066
] 72 1069
] 1) ' 1072
stripchart L 1073
strwidth . . . 0 o 1075
sunflowerplot e 1077
symbols e e 1079
EEXE . o o e e e e e e e e 1082
title e 1084
UNIES . . . o o e e e e e 1086
XSPHNE e e e e e e e 1087
6 The grid package 1091
grid-package 1091
absolute.Size 1092
AITOW . o o o o i e e e e e e e e e e e e e e e e e 1093
as.mask ... oL L e 1093
caleStringMetric e 1094

dataViewport L 1096

XV

depth e e 1097
deviceLoc 1098
drawDetails L 1100
editDetails 1101
editVIEWpOTt o e e e e e e e 1102
explode L e 1102
gEdit. . . . 1103
getNAMES e e e e e e e e e e 1104
GDAT . . . e e 1105
gPath 1107
Grid 1108
Grid VIEwWports o e e e e e e e 1109
gridaadd e 1112
gridbezier e 1114
grid.cap e e e e 1115
grideircle 1116
gridclip L 1117
grid.CONVeTt e e e e e e e e 1119
grid.COPY .« . . o e e e e 1121
grid.Curve e 1121
griddelay 1124
griddisplay.list 1125
grid DLapply 1126
griddraw 1127
gridedit 1128
gridforce e 1129
gridframe 1131
gridfunction.o 1133
grid.get e e e 1134
grid.grab Lo L L 1136
Grid.grep e 1137
gridgrill 1139
grid.grob L. 1140
grid.group 1141
gridJayout 1144
gridines L. e 1146
griddocator 1147
gridds . ..o 1149
grid.mOVe.tO e e e e e e e e 1151
gridnewpage e 1152
gridnullo 1153
gridipack . . . L L 1154
gridopath L 1156
gridplace 1159
grid.plotand.legend 1160
grid.points e e e e e e e e 1160
gridipolygon 1161

grid.pretty 1163

XVi

GrIdraster e e e e e e e e e 1164
gridarecord L. e e e e e 1166
gridirecto e 1167
gridrrefresh 1168
grid.remove e 1169
gridoreorder 1170
grid.SEEMENLS e e e e e e e e e e e e e e 1171
grid.set . .. L e e e 1173
grid.showlayout L 1174
grid.show.viewport L. 1175
grid.stroke L. 1176
griditeXto e 1178
Srid.XaxisS e e e e e e 1180
grid.xspline L. e e e 1181
grid.yaXiS 1184
gridCoords 1185
grobCoords 1186
grobName e e e e e e e e e 1187
grobWidth e 1188
grobX ..o e 1188
legendGrob 1189
makeContent L L e e 1191
PAIEINS .« . . . ot e e e e e e e e e 1192
PlOtVIEWDpOIt e e e e e e 1194
Querying the Viewport Tree 1195
resolveRasterSize 1196
roundreCt e e e e e e 1197
showGrob 1198
ShowVIiewport e 1200
stringWidth oL e 1201
UNIE . . L L e e e e e 1202
UNIE.C . v v e ot e e e e e e e e e e e e e e e e e e 1204
unitlengtho 1205
UNIEPIMIN . . oo e e e 1205
UNIETED « v v v v o e 1206
unitType e e e 1207
validjust L e e e 1208
validDetails oL 1209
viewportTransform 1210
vpPath L 1212
widthDetails 1213
Working with Viewports e 1214
xDetails L e 1216
xsplinePoints 1217
7 The methods package 1219
methods-package 1219
BasicFunsListo 1220

AS o e e e e 1220

BasicClasses e e 1222
callGeneric e e e e e e 1223
callNextMethod e 1225
CANCOBICE v v v i e i e e e e e e e e e e e 1229
chind2 1230
Classes o e e e 1231
classesTOAM e 1232
Classes_Details e 1233
className e e e 1237
classRepresentation-class 1239
Documentation 1240
dotsMethods e 1242
environment-class 1245
envRefClass-class 1245
evalSource L. e 1247
findClass e e e 1250
findMethods e 1252
fixPrel.8 e 1254
genericFunction-class Lo 1255
GenericFunctions 1256
getClass L 1260
getMethod L L 1262
getPackageName L o 1265
hasArg 1266
ImplicitGeneric e e e e e e e e e e 1267
inheritedSlotNames 1269
initialize-methods 1270
Introduction 1272
IS o o e e e e e e 1274
isSealedMethod 1276
language-class 1277
LinearMethodsList-class 1278
LocalReferenceClasses e e 1279
makeClassRepresentation 1280
method.skeleton 1281
MethodDefinition-class 1282
Methods e 1284
MethodsList-class 1284
Methods_Details e 1285
Methods_for_Nongenerics e 1290
Methods_for_S3 1295
MethodWithNext-class e 1297
NEW . o v o e 1298
nonStructure-class e e 1300
ObjectsWithPackage-class 1301
promptClass e e e e e e 1301
promptMethods 1303

ReferenceClasses o o i i e e 1304

Xviii

removeMethod e 1315
TEPreSentation i e e e e e e e e e e e e e e e e 1316
S3Part e 1318
S4groupGeneric e e e e e e e 1321
SClassExtension-class i e e e 1323
selectSuperClIasses e e e e e e e e 1324
SELAS . . L 1326
SetClass e 1329
setClassUnion e e e e 1334
SEtGENETIC . . .« . v o i e e e e e e e 1335
SEtGroupGeNeriC v v v i e e e e e e e e e e e e 1340
setls . . L e 1341
setLoadActions e e e e 1346
setMethod 1348
setOIdClass e e 1353
ShOW . . L L e 1357
showMethods e 1358
signature-class e e e 1360
SIOt . . 1361
StructureClasseso e e 1363
testinheritedMethods L 1366
TraceClasses o o e 1367
validObject 1369
8 The parallel package 1373
parallel-package 1373
clusterApply 1374
detectCores e e e e e e e e e e 1377
makeCluster e 1379
meaffinity 1381
mcchildren L e 1382
mcfork e 1384
melapply 1386
meparallel 1390
PVEC . o o o o e e e 1393
RNGstreams e e 1395
splitindices e 1397
9 The splines package 1399
splines-package 1399
asVeCIOT e e e e 1399
backSpline 1400
DS e 1401
interpSpline 1403
1 1404
periodicSpline 1405
polySpline e 1407
predict.bs 1408

predict.bSpline 1409

XiX

splineDesign e 1410
splineKnots L e 1412
splineOrder e 1412
XYVECIOT o o e e e 1413
10 The stats package 1415
stats-package L e 1415
.checkMFClasses e 1415
act . . e 1417
acf2AR . . . e 1419
addl . . . e 1420
addmargins L e e e e 1422
AZEIEZALE e 1424
AIC . e 1427
alias e 1429
ANOVA . . v v v e e e e e e e e e e e e e e e e e e 1431
anova.glm e 1432
anova.m L L e e 1433
anova.mlm e e e e 1435
ansari.test L. e 1437
A0V . o o e e e e e e e e e e 1439
approxXfun e e e e e e e 1441
1 1444
arols . . . L e e e 1448
ArMA . . . o v s e e e e e e e e e e e e e 1450
arima.Sim e e e e e e e e 1454
arimal L e e 1455
ARMAacf e 1459
ARMAOMA e e e e 1461
as.helust L L e e 1462
asOneSidedFormula 1463
AVE . o o e e e e e e e 1464
bandwidth e e 1465
bartlett.test e e e e e 1467
Beta e 1468
binom.test e e e e 1471
Binomial 1473
biplot 1475
biplot.princomp e e e e e 1476
birthday e 1478
Box.test e e e e 1479
C o e e e 1481
CANCOT . . v v v v v e e e e e e e e e e e e e e e e 1482
case+variable.names e 1483
Cauchy e e 1484
chisq.test e e e e e 1486
Chisquare e 1488
cmdscale L e e e 1491

coel . . e 1494

XX

COMPIELE.CASES . . . v v v v o e e e e e e e e e e e e e e e e e e e 1495
confint e e e e e 1496
constrOptim 1497
CONMTASE o o e o e i e e e e e e e e e e e e e e 1499
CONMTASES . . o v v o e o e e e e e e e e e e e e e e e e e e 1501
CONVOLVE o e e e 1502
cophenetic L 1504
COT & v o e e e e e e e e e e e e e e e 1505
COLEESE o o o e e e e e e e e e e e 1508
COV.WE . o o o e e e e e e e e 1511
CPEIAM .« o o v vttt e e e e e e e e e e 1513
CUITEE . . v v v e e e e e e e e e e e e e e e e 1514
decompose e e 1515
delete.response e 1516
dendrapply L e e e e 1518
dendrogram 1519
density L 1524
deriv e e e 1528
deviance e e e e e e e 1531
dfresidual 1532
diffinv e 1533
dist. . . . e e 1534
Distributions e 1537
dummy.coef 1538
ecdf . .o e e 1540
effaovlist 1542
effects e 1544
embed e 1545
expand.model.frame 1546
Exponential L 1547
extractAIC 1548
factanal 1550
factor.scope e 1554
family 1555
FDist e e e 1559
i 1561
filter e 1563
fisher.test e 1564
fitted e e 1568
fivenum e e e e 1569
fligner.test 1570
formula 1571
formulanls 1574
friedman.test 1575
ftable e 1577
ftableformula 1579
GammaDist e e e 1580

GEOMELTIC . . . v v o o o e e e e e 1583

Xx1

getlnitial L e e e 1584
glm . Lo 1585
glm.control 1591
glmsummaries e e 1592
helust . . . o e 1593
heatmap 1597
HoltWinters 1600
Hypergeometric e e e 1603
identify.hclusto 1605
influence.measures L. e e 1606
IMEGIate o o e e e e e 1610
interaction.plot L e e e 1613
IQR . . . e 1615
is.emptymodel 1616
ISOTEZ . v v o e o e e e e e e e e e e e e e 1616
KalmanLike 1618
kernapplyo 1620
kernel e e 1622
kmeans e 1624
kruskal.test L L L e e e 1626
KStest o e 1628
ksmooth e 1631
lag . . . e 1632
lag.plot L 1633
line e 1635
Listof . . . o e 1636
Im .. e 1637
Imfit. . . 1641
Im.influence e 1642
Im.summaries e e e e e e e 1644
loadings e 1646
10BSS . . o . e 1647
loess.control e e 1649
Logistic e 1651
loglik o L 1652
loglin e 1654
Lognormal L 1656
[OWESS . . . o o e 1658
Is.diag e e 1659
Is.print Lo e 1660
Isfit . . 1661
mad e 1662
mahalanobis e e 1663
make.link e 1664
makepredictcall L 1665
MANOVA .+ ¢ o v v v v e e e e e e e e e e e e e e e e 1666
mantelhaen.test L. L L 1667

mauchly.test 1670

xxil

MCNEMALIESt o o o e vt e e e e e e e e e e e e 1672
median. L e e e e e e 1673
medpolish 1674
model.extract 1676
modelframe L 1677
model.matrix e e 1679
model.tables 1681
monthplot e e e e e e 1683
mMOOd.tESt e e e e e e e e e e e 1685
Multinom e e e e e e 1686
NAACHON« . v vt s e e e e e 1688
NA.CONLZUOUS v v v v ot e e e e e e e e e e e e e e e e e e e 1689
nafail e e 1689
NAPIINL o o ot e e e e e 1690
naresid e e 1691
NegBinomial L 1692
NEXN . v v e o e 1694
nlm .o e 1695
nlminb L 1698
NIS . . e e e e e 1701
nls.control L. 1707
NLSStASYMPLOtiC v v o o v e e e e e e e e e e e e e e e e e e 1708
NLSstClosestX o e e e e 1709
NLSStLfASYMPLOte o o vt e e e e e e e 1710
NLSStREASYMPtote o o vt e e e e e e e e e e e 1711
NODS . . . e e 1711
Normal e e e 1712
numericDeriv L 1714
offset e 1716
ONEWAY.LESL o i i e e e e e e e e e e 1717
OPLIM o o e e 1718
OPtIMIZE o v v i e e e e e e e e e e e e e e e e e e 1724
orderdendrogram 1726
padjust . ..o e 1727
Pair . . . e 1730
PAITWISE.PrOp.LeSt e e e e e e e 1730
palTwise.ttest e e e e 1731
pairwise.table oL 1732
pairwise.wilcox.test L. e e 1733
plotact 1734
plotdensity L 1735
plotHoltWinters e e 1736
PlOLASOTEE e e e 1737
plot.Im L e 1738
PlOt.PPr .« . e 1742
plotprofilenls 1743
plotSpec 1745

plotstepfun 1746

PIOLES . o e e e e e 1748
Poisson e 1749
POISSOMLEESt o e e e 1751
POly . e 1753
POWET .« o o e e e e e e e e e e 1755
power.anova.estl e 1756
POWELPIOP.tESt o v o o e e e e e e e e e e e e e 1757
POWELLIESt o o e e e e e e e e e e e e 1759
PPtest e 1760
PPOINLS o o e e 1761
25 S 1763
PICOMD . . . o o o it e e e e e e e e e e e e e 1766
predicto L 1769
predict Arima 1771
predict.glm L e e 1772
predict HoltWinters 1774
predict.m 1775
predictdoess e e e e e 1777
predictnls e 1779
predict.smooth.spline 1781
preplot . . . oL 1782
PriNCOMP o o o o e e e e e e e 1783
print.power.htest. Lo 1785
PINLES . . o o o o e e e e 1787
printCoefmat e e 1788
profile e 1789
profilenls 1790
PIOJ o o e 1791
PIOPLESt « . o o o o e e e e e e 1793
prop.trend.test L 1795
0 T3 107 & 10 1796
quade.test e e e e e e e e e e e 1798
quantile 1800
r2dtable L 1803
read.ftable 1804
rect.hclust 1806
relevelo e 1807
reorderdefaulto 1808
reorder.dendrogram L L. L L e e 1810
replications 1811
reshape e 1812
residuals L L 1816
runmed ... oL L e e 1817
rWishart L L 1820
scatter.smooth 1822
screeplot L e e e e 1823
SA 1824

SE.COMITASE . . v v v v o e e e e e e e e e e 1825

XX1V

selfStart L 1827
setNames e 1829
shapiro.test 1830
SIZMA e e e e 1831
SignRank 1833
simulate e e e e e e e 1835
SMIrnov L e e e 1837
SMOoOth o e e 1838
smooth.spline L 1840
smoothEnds 1845
sortedXyData 1847
SPEC.AT © v v v v e 1848
SPEC.PEIAINL . . .« « v v vt e e e e e e e e e e e e e 1849
SPEC.LAPET .« . o o o i e e e e e e e e e e e e 1852
SPECIIUIM .+« v v v v v e 1852
splinefuno 1854
SSasymp e e 1858
SSasympOff e e 1860
SSasympOrig e e e 1861
SSBIEXP . .« o e 1863
SSD . 1865
SSfol . e 1866
SSEpl . 1867
SSEOMPertz e e e 1869
SSIOZIS . . o o e e 1870
SSmicmen e e 1872
SSweibull L 1873
] o O 1874
StAt.ANOVA L e e e e 1875
stats-deprecated 1876
SIEP « e e e e e 1877
Stepfun e e e 1879
St 1881
sttmethods 1884
StructTS . . . e 1884
SUMMATY.A0V .+ o v v v v v v e e e e e e e e e e e e e e e e e e e 1887
summary.glmo e e e e e e 1888
summary.Imo 1891
SUMMATY.MANOVA .+ . v o v v e v v e e e e e e e e e e e e e e e e e 1893
summary.nls 1894
SUMMATY.PIrINCOMP . .« v v e v e e et e e e e e e e e e e e e e e 1896
SUPSTIIU . v v v v v v e 1897
SYMOUML .+ v v v v v v e 1898
LEEST . . o e e e e e 1900
TDist . . . e e 1903
termplot oL e e e e e e e 1905
175) 0 00 1908

terms.formula e 1909

time

ts.plot
ts.union . . .
tsdiag
tsp
tsSmooth . .
Tukey
TukeyHSD .
Uniform . . .
uniroot
update
update.formula
vartest
varimax . . .
VeOoV
Weibull . . .
weighted.mean

weighted.residuals L

weights . . .
wilcox.test . .
Wilcoxon . .

11 The stats4 package

stats4-package
coef-methods

confint-methods
logLik-methods e

mle
mle-class . .
plot-methods

profile-methods L
profilemle-class L

show-methods

summary-methods
summary.mle-class L
update-methods L.

vcov-methods

12 The tcltk package

tcltk-package
Tcllnterface .

tclServiceMode e

TkCommands

XXV

XXVi

tkpager e e e e e 1973
tkProgressBar L 1974
tkStartGUL e 1975
TkWidgetemdso 1976
TkWidgets e 1979
tk_choose.dir e 1981
tk_choose.files e 1981
tk_messageBoX 1982
tk_select.list L e e 1983
13 The tools package 1985
tools-package L e 1985
printviaformat . ..o L L oo 1985
add_datalist e 1986
assertCondition e e e e e e 1987
bibstyle e e e 1989
buildVignette e e e 1991
buildVignettes L e 1992
charsets L e e e 1994
checkFF e 1995
checkMDSSUMS e e e e e e e e e 1996
checkPoFiles e 1997
checkRd e 1998
checkRdaFiles e 2000
checkTnF e 2001
checkVignettes 2002
check_packages_in_dir L 2003
codoC . . . e e e 2006
compactPDF 2008
CRANOOIS e 2010
delimMatch e e e 2012
dependsOnPkgs 2013
encoded_text_to_latex e e 2014
fileutils e e 2015
find_gs_cmd e 2017
getVignetteInfo oo 2018
HTMLheader e e 2019
HTMLIinks e 2020
loadRAMaACIOS o e e e e e e 2021
Makevars e e e e e e e e e e e 2022
make_translations_pkg 2023
mdSSUM e e e e e e e e e e e 2023
package_dependencies 2024
package_native_routine_registration_skeleton 0oL 2026
parselatex L e e e e e e e 2029
parse_Rd . . . oL e 2030
pskill . . e 2032
PSDICE e e e e 2033

QC o o o 2034

Remd . . . o e 2036
RAZHTML e e 2036
Rd2txt_options e e 2039
RAiff e 2041
Rdindex e 2042
RdTextFilter 2042
Rdutils o o 2044
read.00Index 2045
showNonASCII o e 2045
startDynamicHelp 2046
SweaveTeXFilter 2047
testlnstalledPackage L 2048
texi2dvi ... e 2049
toHTML e 2051
tools-deprecated L. 2052
toRd 2053
toTitleCase e 2054
undoc . .. 2054
update_ PACKAGES e 2055
update_pKg PO e 2058
userdir e e e e e 2059
vignetteEngine 2060
vignetteInfoo 2062
write_PACKAGES e 2063
XEEUEXE . . o v e e e e e e e e e 2065
14 The utils package 2069
utils-package L e e e 2069
adist e 2069
alarm ... L e e 2071
APTOPOS .+« o v e 2072
ATEZEXEC .+« v v e v v e e e e e e e e e e e e e e e e e e e 2073
arrangeWindows L L L 2075
askYesNO L e 2076
aspell . . . L e e 2077
aspell-utils 2079
available.packages 2081
BATCH e 2084
bibentry e e e 2085
browseEnv. 2090
browseURL e 2091
browseVignettes L. 2093
bug.report 2094
CaPturC.OULPUL v v ittt e e e e e e e e e 2096
changedFiles e 2098
charClass e 2100
choose.dir L 2102
choosefiles e 2103

chooseBioCmirror. e e e 2104

XX viil

chooseCRANmMirror 2105
CItAtION L o e e e e e e e 2106
CItE . . o v o e e e e e e e e 2108
CitEntry 2110
clipboard e 2111
close.socket e 2113
combn e 2114
CompareVersion v v vt e e e e e e e e e e e e e e e e e e 2115
COMPILE e 2116
contriburl L L e e e 2117
countfields L 2118
CrEALE.POSE « . v v v v v o e e e e e e e e e e e e e e e e e 2119
data e e e 2120
dataentry e e 2123
debugcall e 2125
debugger 2126
demo e e e 2129
DLL.Version oo i e 2130
download.file 2131
download.packages 2135
edit . ..o 2136
edit.dataframe 2138
example 2140
file.edit e e e e e e 2142
file_test e e 2143
findCRANMIITOr o e e e e e 2144
findLineNum 2145
X . e 2147
flush.console L 2148
format e e e 2148
getAnywhere 2149
getFromNamespace e e e e e e e e e 2150
getParseData L 2152
getS3method 2154
getWindowsHandle L oo 2155
getWindowsHandles 2156
glob2rx . .. e 2157
globalVariables 2158
hashtab 2160
hasName e 2163
head e e e 2164
help . . . e e e e 2167
help.request e 2170
help.search L 2171
help.start 2174
hsearch-utils L 2175
INSTALL e 2177

install.packages L 2179

installed.packages e 2185
isS3method L 2186
1SS3stdGeneric e e e e e e e e e 2187
LINK . e 2188
localeToCharset 2189
IS.Str . e e e e e 2190
MaINtaAINer o o e e e e e e 2192
make.packages.html L 2193
make.socket L L e 2194
101 1L 2195
methods 2196
mirrorAdmino e e e e e 2198
modifyList 2199
DEWS & o v v et e e e e e e e e e e e e e e e 2200
sl . e 2202
object.size 2203
package.skeleton 2206
packageDescription e e e e e 2208
packageName e 2210
packageStatus L L e e 2211
PABE . o o e 2213
PEISOM . . . v o i ot e e e e e e e e e e e e 2214
PkgUtils e 2217
PIOCESS.EVENLS v v vt i e e e e e e e e e e e e e e e e e 2218
PIOMPL . . . o o o o e e e e e e e e e e e e e e e 2219
promptData 2221
promptPackage 2222
QUESHION e e e e e e 2223
TCOMPEZEIN . o v o v v v e 2225
readDIF e 2231
read.fortran 2234
read fWf . . L L 2235
read.SOCKEt L e 2237
read.table L L e e 2238
readRegistry L 2243
TECOVET « v v v v v e e e e e e e e e e e e e e e e e 2244
relist e e e e 2246
REMOVE e 2248
remove.packages L. e e 2249
TEMOVESOUICE . . o v v v v v v e 2250
RHOME e 2251
TOMAN © « v v v v e e e e e e e e e e e e e e e 2251
Rprof . . . o e 2253
Rprofmem e 2256
Rscript o o 2257
RShowDoc o e 2259
RSiteSearch 2260

XXX

Rtangle e 2263
RweavelLatex e 2265
Rwin configuration L 2270
savehistory L L 2271
select.list oL 2273
sessionlnfo L. L e 2274
SetRepositories 2276
setWindowTitle 2278
SHLIB 2279
shortPathName 2280
sourceutils L 2281
StACK . . . e e 2282
] 5 2284
SIICAPLUTE . . . v v o v e e e e e e e e e e e e e e e e e e 2288
summaryRprof 2289
SWEAVE . . . i o e e e e e 2291
SweaveSyntConv L e e e e e e e 2293
13 2294
toLateX 2297
txtProgressBar. L 2298
EYPE.CONVEIT v v v v ettt it et e e e e e e e e e e 2300
UNEAT & . . ot o et e e e e e e e e e e e e e e e e e e 2302
UNZIP « o o o o e e e e e e e e e e e e e e 2305
update.packages 2306
url.show L e e e e 2308
URLencode e e 2309
utils-deprecated L. 2310
VIEW . . . e 2311
VIGNELE e e e e e e e e e e 2312
warnErrList o 2313
winDialog e 2314
WINEXITAS . . . o v v vt e e e e e e e e e e e e e 2315
WINMENUS e e 2316
winProgressBar L e 2318
write.table L 2319
ZID o o e e e 2323
I 2325
15 The KernSmooth package 2327
bkde e 2327
bkde2D 2328
bkfe 2330
dpih . . . o 2331
dpik . . . 2332
dpill . . . e 2334

16 The MASS package 2339
abbey . .. e 2339
accdeaths e 2339
addterm L L e e 2340
AidS2 . . e e e 2342
Animals e e e 2343
ANOTEXIA v v vt e e e e e e e e e e e e e 2343
anova.negbin L. e e e e e e e 2344
ATCA . . v o e e e e e e e e e e e e e e e e e 2345
bacteria e e 2346
bandwidth.nrd e 2347
bCV . e e 2348
beavl e e e 2349
beav2 . . . e 2350
Belgian-phones e e 2352
biopsy e 2352
birthwt e e 2353
Boston e e 2354
DOXCOX . . . e e 2355
cabbages L 2357
caith e 2357
Cars93 e e 2358
CALS . . e e e e e e e e e e e e 2360
CEMENL v v v i e e e e e e e e e e e e e e e 2360
chem L e 2361
CON2LT . o o v o e e e e e e e e e e e e e e e e e e e 2362
confint-MASS e 2362
contr.sdif L L 2364
COOP & v v v e e e e e e e e e e e e e e e e e 2365
COTTESP .+« v v v v e e e e e e e e e e e e e e e e e e e 2366
COV.IOD o e e 2367
COV.ITOD . . . o o e e e 2369
CPUS . o v vt et e e e e e e 2371
Crabs e 2372
Cushings 2373
DDT . . . e e e 2373
deaths e 2374
denumerate e e 2374
dOSE.P . v o e e 2375
drivers e e e 2376
dropterm e e 2377
eagleso 2378
epil .. e 2379
eqscplot . . . L e 2381
farms e 2382
fel . e e e 2383
fitdistr 2384

forbes e 2386

Xxxil

fractions e e e e e e 2386
GAGUIINE o o e e e e e e 2387
galaxies 2388
gamma.diSpersion e 2389
gamma.shape e e 2390
gehan oL 2391
GEMOLYPE .« o v o v e e e e e e e e e e e e e e e e e 2392
BEYSET . v vt e e e e e e e e e e e e e e e e e e e 2393
gilgais L 2394
GINV . L e 2395
glm.convert 2395
glmnb . . . L e 2396
glmmPQL 2397
hills . . . o e 2399
hist.scott L . e 2399
housing 2400
huber e e e 2402
hubers 2403
IMMET . . . o v ot e e e e e e e e e e e e e e e 2404
Insurance e 2405
iISOMDS . . e 2406
kde2d e 2407
Ida e 2408
Idahist e e e e e e e 2411
leuk . . . e 2412
Im.gls e 2413
Imridge L 2414
loglm o e 2416
logtrans e e e e e e 2418
Igs . . . e 2419
mammalS 2422
ICA . v v et e e e e e e e e e e e e e 2423
meycle . ..o 2424
Melanoma e e e e 2424
menarche 2425
michelson 2426
minn38 . . . L L e e 2427
MOLOTS .+ o o v v v e e e e e e e e e e e e 2427
muscle e e 2428
MVINOTT . . o v v v v v e 2430
negative.binomial Lo 2431
NEWCOMD e e e e e e e e 2432
nlschools 2432
NPK . e e e 2433
nprl . .o 2435
Null . .o e 2435
0ALS . . o i e e e e e e e e 2436

Xxxiil

PAINLETS e e e e e e e e e e e 2440
pairsddao e 2441
parcoord oL e e e e 2442
petrol . .o 2443
Pimadtr. 2444
plotdda 2445
plotmea 2446
plotprofile e e 2447
polr . e 2448
predict.glmmPQL 2451
predict.lda 2452
predictlgs e e 2453
predictmea L. e e e 2454
predict.gda 2455
profile.glm L e 2456
qda. . .. e 2458
QUINE . . o ot e e e e 2460
Rabbit o 2460
rational L L 2461
TENUMETAE o v v v e v v et e e e e e e e e e e e e e e e e e e e 2462
. . 2463
TINS.CUIV © v v v v v e e e e e e e e e e e e e e e 2466
rnegbin L 2467
road . ..o e 2468
rotifer Lo 2468
Rubber. e 2469
SAMMON . .+« v v v v v e et e e e e e e e e e e e e e e e e e e e 2470
ShIpS 2471
Shoes 2472
shrimp e e e 2472
shuttle oL 2473
Sitka . . . L 2473
Sitka89 . . L e 2474
SKye . . o 2475
SNAils ... L 2476
SP500 e 2477
StATEs e e e 2477
SEEAM . . . v e e e e e e e 2478
StepAIC . . . e e 2479
SIOIMET L ottt e e e e e e e e e e e 2481
STUAIES e 2482
summary.loglm 2482
SUMMAry.negbino L e e e e e e e e 2483
summary.rlm e e e 2484
SUIVEY & o v v e e e e e e e e e e e e e e e e e e 2486
SYNthutr . . e e e e 2487
thetamd 2487

1703 070 P 2489

XXXV

Traffic e 2489
truehist e e 2490
UCV . v v o e e e e e e e e e e e e e e e e 2491
UScereal e e e 2492
UScrime e e e 2493
VA e e e e e 2494
Waders e e e e e e 2495
whiteside e 2496
width.ST e e e e 2497
WILEMALIIX o v o o e 2498
WHOSS . . e e 2499
17 The Matrix package 2501
ablndex-class 2501
ablseqo 2502
all-methods e 2503
allequal-methods L 2504
atomicVector-class L e e 2505
band e e e 2505
bandSparse 2507
bdiag 2508
BunchKaufman-methods 2510
CABX . . e e 2512
cBind e 2513
CHMIfactor-class e e e e e e e 2514
chol . . . e e e 2517
chol2inv-methods 2520
Cholesky e e 2520
Cholesky-class e 2523
ColSUMS e e e 2525
compMatrix-class 2526
condest e e e e e e e e e e e 2527
CsparseMatrix-class L 2529
ddenseMatrix-class e e e e 2531
ddiMatrix-class e e e 2532
denseMatrix-class e 2533
dgCMatrix-class 2533
dgeMatrix-class 2534
dgRMatrix-class 2536
dgTMatrix-class e e e e e 2537
Diagonal e 2538
diagonalMatrix-class 2540
diagU2N . . . oo e 2542
dMatrix-class e e e e e 2543
dmperm e e e e e e e e 2544
dpoMatrix-class e e 2546
dropO e 2548
dsCMatrix-class o vt e e e e e e e e 2549

dsparseMatrix-class 2551

XXXV

dsRMatrix-class 2551
dsyMatrix-class e 2553
dtCMatrix-class e 2554
dtpMatrix-class e 2556
dtRMatrix-class e 2558
dirMatrix-class e e 2559
expand e 2560
XPIMN . v v vt e e e e e e e e e e e e e e e e e e e 2561
externalFormats e 2562
facmul 2564
forceSymmetric 2565
formatSparseM L e e 2566
generalMatrix-class 2568
graph-sparseMatrix 2569
Hilbert e 2570
image-methods 2571
index-class e 2573
indMatrix-class 2574
invPerm e 2576
is.na-methods 2577
is.null,DN e 2579
isSymmetric-methods L. 2580
isTriangular L 2580
KhatriRao e 2581
KNex . . . e e 2583
kronecker-methods 2584
IdenseMatrix-class 2585
IdiMatrix-class e e 2586
IgeMatrix-class e e e e 2587
IsparseMatrix-classes L. 2588
IsyMatrix-class 2590
ItrMatrix-class e e 2591
U . e e e e 2592
LU-class e e e 2594
mat2tripleto e 2595
Matrix e e e e e e e e e e 2596
Matrix-class e e e e 2598
Matrix-products e 2600
MatrixClass e e e e e e e e 2603
MatrixFactorization-class 2604
ndenseMatrix-class 2605
nearPD e 2606
ngeMatrix-class L e e e e 2609
nMatrix-class 2610
NNZETO . . . v v e v e e e e e e e e e e e e e e e e e 2611
1 70) o' [2613
nsparseMatrix-classes 2614

nsyMatrix-class L 2616

XXXVi

ntrMatrix-class 2617
number-class e 2618
packedMatrix-class L 2618
pMatrix-class 2621
printSpMatrix L. e e 2623
gr-methods 2626
rankMatriX e 2628
reond ..o L e 2631
rep2ablo L 2633
replValue-class L 2634
rleDiff-class oL 2634
ISPArSeMAtIIX . . o v v v v e e e e e e e e e e e e e e 2635
RsparseMatrix-class e e e e 2636
Schur e 2637
Schur-class L 2639
solve-methods 2640
sparse.model.matrix L. 2643
sparseLU-class e e e 2645
SparseM-CONVErsions v .t e e e e e e 2647
sparseMatrix L. e e 2648
sparseMatrix-class 2651
sparseQR-class 2653
SPArSEVECIOr e e e e e 2655
sparseVector-class e e e e 2657
SPMALTIX . . . o vt o e e e e e e e e e e e e 2660
symmetricMatrix-class o L 2661
SYMIMPAT . . . v v vt bt e e e e e e e e e e e e e e e e e e e 2663
triangularMatrix-class L. 2664
TsparseMatrix-class 2665
uniqTsparse e e e e e 2666
unpack L e e 2668
Unused-classes e e 2669
updown ... L 2669
USCounties o v vt e e 2671
wrld_ldeg 2672
[Fmethods e 2673
[<—methods e 2674
Jo&Po-methods L. e 2675
18 The boot package 2677
abC.Cl . . . e 2677
100 1 0 2679
aids 2679
aircondit L e e 2680
AMIS . . o o e e e e e e e e e e 2681
aml ..o e 2682
beaver L e e 2683
bigeity e 2684

boOt . . e 2685

XXXVil

bootarray e e e e e e e 2691
boot.Cl e e e 2692
brambles e e 2696
breslow e e e e 2697
calcium e e e 2698
CANE . . v v v e 2698
capability 2699
catsM . . L L L e e e 2700
CAV o o o e e e e e e e e e e e e e e e 2701
cdd . . e 2701
cddnested e 2702
€ensboot e e e 2703
channing 2707
claridge 2708
cloth . . . e 2709
cotransfer 2710
coal e 2711
control e e 2711
070 & 2714
CUMS . . L o e e e e 2714
ev.glm . . 2715
darwin L e e 2717
dogs e 2718
downs.bc 2718
ducks e 2719
EEFEprofile e 2720
empinfo 2721
enVelopeo L L 2724
exXp.tilt . . L e 2726
fir . e 2728
freq.array 2728
frets . . . e e 2729
glmdiag 2730
glm.diag.plots 2731
SIAVILY . . . o o e e e e e 2732
hirose e e 2733
Imp.Estimates e 2734
imp.weights 2736
INVIOZIt . . . L e e e e e 2738
islay . .. e 2738
jackafterboot 2739
K3.dinear e e 2741
linear.approXo e e e e e e e 2742
lines.saddle.distn 2744
logit 2746
MANAUS . & o o v v e e e e e e e e e e e e e e e e e e 2746
melanoma e e e 2747

9010 0 o 2748

XXXViil

NEUIO .« v v v e v e e e e e e e e e e e e e e e e e e 2749
nitrofen L e e 2750
nodal 2751
0 T0) ' Vo3 OO 2752
nuclear. L e e e 2754
paulsen e e e e e e 2755
Plot.boot e e 2756
POISONS . . . v o o e e e e e e e e e e e e e e 2758
polar . . . L e e e e 2759
Print.boot e e e e 2760
Print.bootCi L. e e e e 2761
print.saddle.distn L. 2762
print.simplex 2762
TEMISSION v vt v e e e e e e e e e e e e e e e 2763
saddle 2764
saddle.distn L L 2766
saddle.distn.object 2769
salinity e 2770
SIMPIEX o e 2771
SIMpleX.object e e 2773
smooth.f 2774
SUNSPOL . . v v o o e e e e e e e e e e 2776
survival ... L e 2776
LAU . . e e e e e e e e 2777
tltboot e 2778
tSDOOt e e 2781
TUNA o e e e e e e e e e e 2785
UMINE o o e e e e e e e e e e e e e 2786
varlinear L. e e 2787
WOOL . . . e e 2788
19 The class package 2789
batchSOM e e e 2789
condense e e e e 2790
knn ..o e e e 2791
knn.ev . .o e e e 2792
knnl 2794
vl . e 2795
Ivg2 . e 2796
Ivg3 . e 2797
Ivginit oL e 2798
Ivqtest o e 2799
multiedit L 2800
olvgl . . . e 2801
reduce.nn L L L e e e e 2802
SOM . . . e 2803

20 The cluster package 2807
AGNCS . v v v e 2807
agnes.object 2811
agriculture 2813
animals L e 2814
bannerplot 2815
chorSub L 2816
clara L 2817
claraobject 2821
clusGap 2822
clusplot 2826
clusplot.default 2827
coef.hclust e 2832
daisyo 2833
diana. 2836
dissimilarity.object 2839
ellipsoidhull 2840
fanny L e e e e 2842
fanny.object L 2844
flower 2846
lowertoupper.triinds Lo 2847
MONA .+« o ettt e e e e e e e e e e e e e e e 2847
mona.object 2849
PAM . . L e e e e 2850
pam.object e e e e e e 2854
partition.object L. e e e 2855
plantTraits 2856
plotagnes e 2858
plotdiana e e 2860
plotmona 2862
plotpartition 2863
PItree e e e e 2865
plutono 2867
predictellipsoid 2868
PrNLAZNES oo e e e e e e e e e 2869
print.clara e e 2870
print.diana e 2870
print.dissimilarity Lo 2871
print.fanny L e e 2872
Print.mONa e e e 2872
PriNLpAM e e 2873
TUSPINL . . . v v e 2873
silhouette e 2874
SizeDiss 2877
SUMMATY.AZNES .« « . o v v v e e e e i e e e e e e e e e e e e e 2878
summary.clara L. e e e 2879
summary.diana Lo 2880

SUMMATY.MONA .+« . v v o v v e v v et e e et e e e e e e e e e e e e 2880

x1

SUMMATY.PAM v v v v e e e e e e e e e e e e e e e e
twins.object
volume.ellipsoid
VOLES.TEPUD . . . L L e e e e e
Xclara ... L

21 The codetools package

checkUsage e
codetools L. e e
findGlobals
showTree e

22 The foreign package

lookup.Xport oL e
read.arff
read.dbf

readdta
read.epiinfo
readmtp
read.octave
read.spss
read.ssd
read.systat
read.xport
S3 read functions . .
write.arff
write.dbf
write.dta
write.foreign

23 The lattice package

A_01_Lattice
B_00_xyplot
B_01_xyplot.ts . . .
B_02_barchart.table .
_03_histogram . . .
4_qqmath

lUl
Nl
=)

6_levelplot . . .
7 _cloud

1_oneway
1_trellis.device .
2_trellis.par.get .
3_simpleTheme .
4_lattice.options

B
B_
B_
B_
B_
B_
B_
B_
B_
C_
C_
C_
C_
C_05_print.trellis . .

ooooo~soooooo
=1
@

C_06_update.trellis e e 2986
C_O7_shingles e e 2989
D_draw.colorkey 2991
D_drawkey o 2991
D level.colors e 2992
D_make.groups 2993
D_simpleKey e 2994
D_strip.default 2996
D_trellis.object L. 2998
E_ interaction e 2999
F_l_panelbarchart 3006
F_l_panelbwplot e 3008
F_l_panelcloud. e 3010
F_1_panel.densityplot. 3015
F_l_paneldotplot 3016
F_l_panelhistogram 3017
F_l_panellevelplot e 3018
F_l_panelpairs e e e 3020
F_1_panelparallel 3024
F_l_panel.qgmath 3025
F_l_panelstripplot 3026
F_1_panel.xyplot e 3027
F 2 1lines e e 3030
F_2 panelfunctions. 3033
F_2 panelloess e 3036
F_2_panel.qgmathline 3038
F_2_panel.smoothScatter 3039
F_2 panel.spline e 3040
F_2_panel.superpose e 3041
F_2 panel.violin L 3044
F_3_prepanel.default 3045
F_3_prepanel.functions 3047
G_axisdefault e 3048
G_banking e 3052
G_latticeParseFormula 3053
G_packet.panel.default 3054
G_panel.axis e 3056
G_panel.number. e e e e 3058
G_ROWS e e 3059
G_utilities.3d e 3060
H_ barley e 3061
H_environmental 3062
H_ethanol e 3063
H_melanoma e 3065
H singer. e 3066
H_USMortality e 3067

LISet . . 3069

xlii

24 The mgcv package 3071
ANOVAZAM .« . o o . v v e v e 3071
bam e 3073
bam.update 3080
bandchol 3082
betar e 3083
blas.thread.test 3084
DUZ.TEPOTLS.MNECV . o o o v v o v e 3085
choldrop e 3086
choose.k 3087
columb 3090
CONCUIVILY . . . o v vt i o e e e e e e e e e e e e e e e e e e 3091
COX.Ph . . . e 3093
COX.pht . . . e 3097
cSplineDes e e 3099
dDeta e 3101
exclude.toofar L 3102
extract.Ime.cov 3103
family.mgev L e e 3105
FFdes e 3106
fix.familylink L 3107
fixDependence e 3108
formula.gamo 3109
formXtVIiX . . . L 3111
fSest . . . e 3113
fullscore e 3114
GAML . . . Lt e e e e e e e e e e e e 3115
gam.check L L 3125
gam.control L e e 3127
GAM.CONVETZENCE« . v o v v v v v et e et e e e e e e e e 3130
gam.fito 3131
gam.fit3 . . L L e e e e 3133
gam.fitS.post.proc 3135
gammh . ..o 3136
gammodels 3138
GAMLOULET . . o v v v v vt v e 3145
GAMLIEPATAML . .« . o o e v v e 3147
gam.scale 3148
gam.selection L e e e e 3148
gam.side L 3151
GAMLVCOIMP .+« o v v e v v e 3153
gam20bjective oL e 3155
gamlss.etamu e e e e e e e e e e 3156
gamlss.gHo 3158
SAMM . . . ottt e e e e e e e e e e e e 3159
gammals e e e e e e e 3166
gamObject 3167

SAMSIM e e e 3171

aULSS . .. e e 3172
GELVAT . . . v v i e e e e e e e e e e e e e 3173
GEVISS . . e e 3175
ginla . . .o 3177
gumbls . . . Lo e e e e 3180
identifiability 3182
ILOUEL . . L o o e e e e 3183
influence.gam L L e e 3184
ntial.sp 3185
inSide L 3186
INErPret.gam o o i e e e e e e e e e e 3187
JAZAM . . L L e e e e e e e 3188
k.check . . . o oL e 3193
IdetS 3194
IdTweedie o e 3195
linear.functional.terms 3197
loghik.gam 3201
[S.S1Z€ . . . o 3203
MAZIC .+ v v v e 3204
MAZIC.POSEPIOC .« . .« v v v o et e it e e e e e e e e e 3208
mgcv.FAQ . . . e 3210
mgev.package e e e e e e 3212
mgev.parallel 3214
MINLIOOLS v v vt e et e e e e e e 3216
missing.datao e e e e e e 3217
model.matrix.gam e e e e e e e e e e e e 3218
MONO.COM .+ v v v v v e e e e et e e e e e e e e e e e e e e e 3219
001 40 3221
multinom e e 3222
00114 1 3223
negbin 3225
NEW.NAME .« « . . o v v v et e e e e e e e e e e e e e e 3227
NOtEXp e 3228
notEXp2 3229
null.space.dimension o 3231
OCAL . . v e e e e e e e 3232
one.serule e 3234
PClS o 3235
pdldnot e 3238
pdTens 3240
penedf ..o 3241
place.knots L e e 3242
plot.gam L e e e e 3244
polys.plot 3249
predict.bam L 3250
predict.gam L. e e e e 3253
Predict.matrix L e 3259

Predict.matrix.cr.smootho 3260

xliv

Predict.matrix.soap.film 3262
Print.gam e e e e 3264
psum.chisq 3265
QQ-8AM .« L e e e e e e e e e 3267
randomeeffects 3270
residuals.gam L L e 3272
TIZ o o e 3273
TINVIL . 0 e ot e e e e e e e e e e e e e e e e e 3274
Rrank o e 3275
rTweedie L 3276
S e e e e e e e 3277
SCAL . v i i 3280
sdiag e 3281
shash oL 3282
single.dndex L e e e 3285
SLinirep L e e 3286
Shrepara L e e e 3287
SLSEtUD . . . o o e e e e e e 3288
slanczos L e 3289
SMOOth.CONSIIUCE o o e e e e 32901
smooth.construct.ad.smooth.spec oL 3296
smooth.construct.bs.smooth.spec Lo 3299
smooth.construct.cr.smooth.spec 0oL oL 3302
smooth.construct.ds.smooth.spec 3304
smooth.construct.fs.smooth.spec L L . 3307
smooth.construct.gp.smooth.spec L oo 3309
smooth.construct.mrf.smooth.spec 3312
smooth.construct.ps.smooth.spec oL 3315
smooth.construct.re.Smooth.spec 3318
smooth.construct.so.smooth.spec o Lo 3320
smooth.construct.sos.smooth.spec 3326
smooth.construct.t2.smooth.spec e 3329
smooth.construct.tensor.smooth.spec oL 3330
smooth.construct.tp.smooth.spec L o 3332
smoothinfo 3335
SMOOoth.terms e 3336
smooth2randomo e 3339
smoothCon 3341
SPVCOV o v o e e e e e e e e e e e e e e e e e e e 3344
SPASML.CONSITUCE oottt 3345
SEEP.ZAIM e e e e e e e e e e e e e e e e 3346
SUMMATY.ZAM « « . . o v v v e e e et e e e e e e e e e e e e e 3347
1 3352
B o e e e 3356
tensor.prod.model.matrix Lo 3361
totalPenaltySpace e e e 3362
trichol e e 3363

trind.generator L. e e 3364

Tweedie e e e e 3365
tWISS . o o e e e e 3367
uniquecombs oL 3369
VCOV.ZAMNL « & v v v v e 3371
VIS.AM . . . L Lo e e e e e 3372
XWXd . . e 3374
ZIP L e e e 3377
ZIPISS . . e e e e 3380
25 The nlme package 3383
ACF . e 3383
ACEgls e 3384
ACFIme e 3385
Alfalfa e 3387
allCoef e 3387
anova.gls . ..o L e 3388
anovaldme L. e e e 3391
aS.MAriX.COTSIIUCE ot o ot et e e e e e e e e e e 3393
asmatrix.pdMato 3394
aS.MAtriX.IeSIUCE o ot e e e e e e e e e e e e e e e 3395
asOneFormula 3396
ASSAY . . e e e e e e e e e e 3397
asTable e 3398
augPred 3399
balancedGrouped 3400
bdf . . e 3401
BodyWeight 3403
Cefamandole e 3404
Coef . . . e 3404
coef.corStruct e 3405
coef.gnls 3407
coefllme e e e 3408
coefllmList 3409
coef.modelStruct L. e 3411
coefpdMat e 3412
coefreStruct e 3413
coef.ovarFunc e 3414
collapse e 3415
collapse.groupedData L 3416
compareFits L e 3418
comparePred 3419
corARL . . . e 3420
corARMA e 3422
corCARIL e 3423
COrClasSes v v v i e e e e e e e e e 3425
corCompSymm e e e e e e e e e 3426
COtEXp e 3427
corFactor e 3429

corFactor.corStruct e 3430

x1Ivi

corGaus
QOMBALS e 3431
corHin L 3433
QORI o 3434
i o 3435
COMAIRDAMAL o 3437
COMRIDLIESITUCL -+ o 3438
COMMIAL o 3439
ol 3440
e 3442
v ERORERE 3443
COISVIMD o 3445
OIS 3447
D TG e 3448
DIIVEET - 3449
Dimeorspatat | 3450
DIMCOMPAAL - o 3451
D 3452
B 3453
oSl 3454
SRRSO 3455
PAIBUC - 3455
et 3456
e oy L 3457
AUEGENISITICL . - 3458
e r 3459
QUEIMEBIILCL e 3460
BUEAIMLIS o 3461
QUETIMESITUICL. - 3462
EXEQEITEEty v 3463
e Blocked | 3464
At AR 3465
PrMUIDEMIAL 3466
ST e 3467
BIPPLY - 3468
RSSO 3469
oo 3470
ot ot 7T 3471
oo et e e 3472
e Conariacbomats 3473
oy oMM e 3474
e batags 3474
e oame 3475
e mLice | 3476
getGroupSH“”.H“: 3477
o s 3478
e Groue o e 3479
.......................... 3480

getGroups.gls
............................ 3481

getGroups.Ime e e e 3482
getGroups.ImList L. e 3483
getGroups.varFunc Lo 3484
getGroupsFormula oL 3485
GEtRESPONSE e e e e 3486
getResponseFormula00 oL oo 3486
getVarCov e 3487
IS L e e 3488
glsControl 3490
glsObject 3492
glsStruct L 3493
GlUCOSE e e 3494
Glucose2 L e 3494
gnlsS . .o e 3495
gnlsControl e e 3497
gnlsObject 3499
gnlsStructo 3500
groupedData e e e 3501
GSUMMATY .« . v v o v v o v v e 3503
GUn . .o e e 3505
IGF . . e 3506
Initialize 3506
Initialize.corStruct L. e 3507
Initialize.glsStruct 3508
Initialize.ImeStruct L. 3509
Initialize.reStruct L. 3510
Initialize.varFunc L 3511
intervals Lo 3512
intervals.gls L e 3513
intervalsdme 3514
intervals.dmListo 3515
isBalanced 3516
islnitialized 3517
LDEsysMat e 3518
Ime 3519
Ime.groupedData L e 3522
ImedmList oL 3524
ImeControl 3526
ImeObject e e e 3528
ImeStruct e e 3530
ImListo 3531
ImList.groupedData 3532
logDet e e 3533
logDet.corStruct e e 3534
logDet.pdMat L 3535
logDetreStruct L e e e e 3536
loglik.corStruct 3537

loglik.glsStruct L 3538

x1lviii

loglik.gnls e e e 3539
logLik.gnlsStruct L e 3540
loghikdme e 3541
loglik.dmeStruct 3542
logLik.ImList o e e e 3543
logLlikreStruct 3544
loglik.varFunc 0 o oL 3545
Machines e 3546
MathAchieve e 3546
MathAchSchool e 3547
Matrix oo e e 3547
Matrix.pdMat e e e 3548
Matrix.reStruct L e e e e e 3549
Meat e 3550
Milk . . . e 3551
model.matrix.reStruct 3551
Muscle e e e e 3552
NAMeSs v v vt e 3553
Names.formula L 3554
Names.pdBlocked 3555
Names.pdMat 3556
Names.reStruct e 3557
needUpdate 3558
needUpdate.modelStruct 3558
Nitrendipene e e e e e 3559
nlme 3560
nlme.nlsList e e 3563
nlmeControl L 3565
nlmeObject e e e e e e 3567
nImeStruct e e e 3569
nISLiSt e e e e e e 3570
nlsList.selfStart 3572
0ats . . . e e 3573
Orthodont e 3574
OVAIY . . . o o 3575
OXDOYS .« o o e e e e e 3575
Oxide e 3576
pairs.compareFits 3577
pairsdme. L. e e 3578
pairs.ImListo 3579
PBG . . . e 3581
pdBlocked e 3581
pdClasseso e e e e 3583
pdCompSymm e e 3584
pdConstruct e 3585
pdConstruct.pdBlocked 3587
pdDiag.o 3588

pdFactor 3590

pdFactorreStruct e e 3591
pdldent 3592
pdLogChol 3593
pAMat . . . L e 3595
pAMatrixo e e e 3596
pdMatrix.reStruct L. 3597
pdNatural 3598
pASymmo e e e e 3599
Phenobarb L 3601
phenoModel L 3602
Pixel 3603
plot ACF e 3603
plotaugPred 3604
plotcompareFits 3605
Plot.gls . . . e e 3606
plotintervals.Imlist oL 3608
plotlme 3609
plot.ImList. e e 3611
plot.nffGroupedData 3612
plotnfnGroupedData 3614
plotnmGroupedData L 3616
plotranefdme 3618
plotranefImList 3620
plot.Variogram 3621
pooledSD e e 3623
predict.gls e 3623
predict.gnls 3624
predict.lme 3625
predictdmList e 3627
predictnlmeo 3628
print.summary.pdMat 3629
print.varFunc oL e 3630
qqnorm.gIS e 3631
gqnorm.me 3632
Quinidine 3634
quinModel e 3635
Rail . . . 3636
random.effects L 3637
ranefllme L. 3638
ranefdmblist 3639
RatPupWeight 3641
recalc ..o e 3642
recalc.COrStruct L. e 3643
recalc.modelStruct 3644
recalcreStruct L 3645
recalc.varFunco oL 3646
Relaxin e 3647

Remifentanil e 3647

residuals.gls L e 3649

residuals.glsStruct Lo 3650
residuals.gnlsStruct 3651
residuals.dmeo oL 3652
residuals.ImeStruct L. oL 3653
residuals.ImListo 3654
residuals.nlmeStruct 3655
TESTIUCE .« . . o v ot e e e e 3656
simulatelme oL 3658
solve.pdMat L. 3659
SOIVE.reSIruCt e e 3660
Soybean e e e e 3661
splitFormula 3661
SPruce o o e 3662
SUMMATY.COTSITUCE v o v v e o e e e e e e e e e e e e e e 3663
summary.gls e e 3664
summary.lme L. 3665
summary.ImList e 3666
summary.modelStruct 3668
summary.nlsList o 3669
summary.pdMat 3670
summary.varFunc oL e 3671
Tetracyclinel 3672
Tetracycline2 3673
update.modelStruct e e e 3673
update.varFunc oL L 3674
varClasses e 3675
varComb 3676
varConstPower 3677
varConstProp L 3678
VarCorr o e 3681
VarEXp . . . e e e 3682
varFixed L L e 3684
varFunco 3685
varldent 3685
Variogramo e e e e e e e e 3687
Variogram.corEXp 3688
Variogram.corGaus 3689
Variogram.corLin L e e e e 3690
Variogram.corRatio L 3691
Variogram.corSpatial L 3692
Variogram.corSpher L. e 3693
Variogram.default 3694
Variogram.gls e 3695
Variogram.lmeo 3698
varPower e 3700
varWeights L 3701

varWeights.glsStructo 3702

varWeights.ImeStruct L
Wafer o
Wheat e e e e
Wheat2 e e e e
[pdMat e e e e

26 The nnet package

class.ind e
multinom e e
NNEL ot e e e e e e e e e e e
nnetHess
predictnnet e e
which.s.max

27 The rpart package

cartest.frame
car90 . ..
CULSUIMIMALY . . o v v v v v e e e e e e e e e e e e e e e e e e e
kyphosis
labels.rpart L e
MEANVALIPALT o o v vt e e e e e e
NATPALT . . o o ottt e e e e e e
patharpart
plotarpart. L.
PIOtCD .« . o e e
postrpart L e e e e e e e
predictrparto L. e e e e e
Printrpart e e e e e e e e e
PIANICD .« o o o o e e e
prune.rpart oL L e e e e e e e e e
residuals.rpart e
TPAM . .
rpart.control e e e e
TPATLEXD « « v v v v e e e e e e e e e e e e e e e e e e
rpart.ObJeCt e e
ISQIPArt L e e e e e e e e e e
SNIP.IPATt . . . o L e e e e e e e e e e e
solderbalance L
SLAZEC
SUMMATY.IPAT o o e et e e e e e e e e e e e e e e e
teXtrpart e e e e e e
Xpreduapart oLl e e e e e e e e

28 The spatial package

anova.trls oL e e
COTTElOZram vt it e e e e e e e e e e
BXPCOV & v v v v e
Kaver e e

lii

Kfn . . 3754
PPEELregion e e e e e e e e e 3755
PPINIL e 3755
PPliK . . e 3756
PPregION e 3757
predict.trls 3758
PrMat . .. e e e e e e e e e 3759
Psim e 3760
SEMAL e e e e e e e e e e e e e e e e 3761
I 3762
STrauss . . . o v v e e e e e e e e e e e 3763
surf.gls . . L e 3764
surfls .. oL e 3765
trlsinfluence L 3766
At e e e e e e e e e e e e e e e e e 3767
VArIOZIAM . . . o v v v e e e e e e e e e e e e e e e e 3768
29 The survival package 3771
QATEZ . .+ v v e e e e e e e e e e e e e e e e e e 3771
ABASUIV .« . L e e e e e 3774
aggregate.surviit L. 3775
agreg fit . . . L e 3776
aml ..o e 3777
anova.coxph 3778
attrassign oL .. 3779
basehaz e e e e 3780
bladder 3781
blogit e 3782
cCh . L L e 3784
cgd . . e 3786
cgd0 . .. e 3787
CIPOISSON v v vt i ettt e e e 3788
clogit 3789
ClUSter e 3791
colon . . .o e 3792
CONCOTdANCE v v v e i e e e e e e e e e e e e e e e e e e 3793
concordancefit e e 3796
cox.zph . . .o 3797
COXpPh . . e e e 3799
coxph.control e e 3804
coxphdetail 3805
coxphobject L 3807
COXPRLWEESE e 3808
COXSUrV.fit L 3809
diabetic 3810
dsurvrego e e e e 3811
finegray e 3813
flchain e e 3815

frailty 3816

EDSE . e e e 3818
heart L e 3820
isratetable L L L L 3821
kidney 3822
levels.Surv 3823
lines.survfit oL 3823
logan oL 3826
logLik.coxph e 3827
lung . . . e 3828
MZUS . . v v v e 3829
MEUS2 . o ottt e e e e e e e e e e 3830
model.frame.coxph L 3832
model.matrix.coxph 3832
myeloid 3833
myeloma L e e 3834
nafld e 3835
neardate L. 3837
NSK . . e 3839
NWECO . o o ot e et e e e e e e e e e e e e 3841
OVAIAN v v i vt e e e e e e e e e 3842
PO . o e 3842
PDCSEq .« o o e e 3844
plotaareg L 3846
plotcox.zph 3846
plot.surviit L e e e e 3848
predict.coxph 3851
Predict.SUIrVIeg e e e 3853
PriNtaareg oo e e e e e e e 3854
print.summary.coxph e 3855
Print.sSUMMAry.SULVEXP o v v v v v et e e e e e e e e e 3856
print.summary.surviit 3857
print.surviit e 3857
pseudo oL e 3859
psplineo 3861
PYCAIS .« v v i i e e e e e e 3862
quantile.surviito L L e e 3865
ratetable L. e 3867
ratetableDate 3868
ratetables L 3869
TAES . vt e e e e e e e e e e e e e e e e 3870
TAS2 . . L e e e e e e 3871
reliability 3871
residuals.coxph L. 3873
residuals.survfit oL 3874
residuals.survreg 3876
retinopathy e 3877
thDNase o e 3878

liv

rotterdam e e 3881
TOYSION © . v v o v e 3882
rtright © . o L e 3884
solder 3885
stanford2 Lo e 3886
statefig 3887
SLrata e e e e 3888
SUMMATY.AATEZ .+« . v v v v v e e v e e e e e e e e e e e e e e e e e 3889
summary.coXph 3891
SUIMMATY.PYEATS o v v v v v v v e e e e e e e e e e 3892
SUMMATY.SUIVEXD « « v v v v e e e et e e e e e e et e e e e e e e 3894
summary.surviito e 3895
SUIV . . L e e 3897
Surv-methods 3899
SUIVZ L e 3901
Surv2data L e e e 3902
surveheck L L 3903
survdiff . ..o 3905
SUIVEXD .« v v v v e 3906
survexp.ito 3909
SUIVEXP.ODJECt v v e e e 3911
SUrviit e e 3912
survfit.coxph L. 3913
survfit.formulao 3916
surviitmatrix L. e e e 3920
survfitobject L L. e 3922
surviitD . . L L e 3924
survfitcoxphfito 3925
survival-deprecated L L L e 3926
SUIVODTIEN o v it et e e e e e e e e e e e e e 3927
SUIVIEZ . v v v v e v e e e e e e e e e e e e e e e e e e e 3928
SUIVIEZ.CONLIOl o o e e e e e e 3930
survreg.distributionso 0oL 3931
SUIVIEZ.ODJECt e e 3933
survregDtest L. L L 3934
SUrvSPlit L e e e 3935
ECUL . . o e e e e e e 3937
TMEIZE . . . o o o o e et e e e e e 3938
tObIN . . . L e 3940
transplant L. 3941
udca . ..o e 3942
untangle.specials 3943
USPOPZ & v v o e e e e e e e e e e e e e e e e e e e 3944
VCOV.COXPh 3945
VEBIAN . . o o v v vt e e e e e e e e e e e e e e e 3945
xtfrm.Surv . . oL e 3946
YaES . . oL 3947

yates_Setup e e 3949

Index

Iv

3951

Ivi

Part I

Chapter 1

The base package

base-package The R Base Package

Description

Base R functions

Details

This package contains the basic functions which let R function as a language: arithmetic, in-
put/output, basic programming support, etc. Its contents are available through inheritance from
any environment.

For a complete list of functions, use 1ibrary (help = "base").

.bincode Bin a Numeric Vector

Description

Bin a numeric vector and return integer codes for the binning.

Usage

.bincode (x, breaks, right = TRUE, include.lowest = FALSE)

4 .Device
Arguments
X a numeric vector which is to be converted to integer codes by binning.
breaks a numeric vector of two or more cut points, sorted in increasing order.
right logical, indicating if the intervals should be closed on the right (and open on the
left) or vice versa.
include.lowest
logical, indicating if an ‘x[i]’ equal to the lowest (or highest, for right =
FALSE) ‘breaks’ value should be included in the first (or last) bin.
Details
This is a ‘barebones’ version of cut .default (labels = FALSE) intended for use in other
functions which have checked the arguments passed. (Note the different order of the arguments
they have in common.)
Unlike cut, the breaks do not need to be unique. An input can only fall into a zero-length
interval if it is closed at both ends, so only if include.lowest = TRUE and it is the first (or last
for right = FALSE) interval.
Value
An integer vector of the same length as x indicating which bin each element falls into (the leftmost
bin being bin 1). NaN and NA elements of x are mapped to NA codes, as are values outside range
of breaks.
See Also
cut, tabulate
Examples
An example with non-unique breaks:
x <- c¢(0, 0.01, 0.5, 0.99, 1)
b <- C(Or OI 1/ 1)
.bincode (x, b, TRUE)
.bincode (x, b, FALSE)
.bincode (x, b, TRUE, TRUE)
.bincode (x, b, FALSE, TRUE)
.Device Lists of Open/Active Graphics Devices
Description

A pairlist of the names of open graphics devices is stored in .Devices. The name of the ac-
tive device (see dev.cur) is stored in .Device. Both are symbols and so appear in the base

namespace.

.Machine 5

Value

.Device is a length-one character vector.

.Devices is apairlist of length-one character vectors. The first entry is always "null device",
and there are as many entries as the maximal number of graphics devices which have been simul-
taneously active. If a device has been removed, its entry will be "" until the device number is
reused.

Devices may add attributes to the character vector: for example devices which write to a file may
record its path in attribute "filepath".

.Machine Numerical Characteristics of the Machine

Description

.Machine is a variable holding information on the numerical characteristics of the machine R is
running on, such as the largest double or integer and the machine’s precision.

Usage

.Machine

Details

The algorithm is based on Cody’s (1988) subroutine MACHAR. As all current implementations
of R use 32-bit integers and use IEC 60559 floating-point (double precision) arithmetic, the
"integer" and "double" related values are the same for almost all R builds.

Note that on most platforms smaller positive values than .Machine$double.xmin can occur.
On a typical R platform the smallest positive double is about 5e—324.

Value
A list with components

double.eps the smallest positive floating-point number x such that 1 +x !=1.
It equals double.base "ulp.digits if either double.base is
2 or double.rounding is 0; otherwise, it is (double.base "
double.ulp.digits) / 2. Normally 2.220446e-16.

double.neg.eps

a small positive floating-point number x such that 1 -x !=1. It
equals double.base » double.neg.ulp.digits if double.base
is 2 or double.rounding is 0; otherwise, it is (double.base
~ double.neg.ulp.digits) /2. Normally 1.110223e-16. As
double.neg.ulp.digits is bounded below by - (double.digits +
3), double.neg.eps may not be the smallest number that can alter 1 by
subtraction.

double.

double.

double

double.

double.

double.

double.

double.

double

double.

.Machine

xmin the smallest non-zero normalized floating-point number, a power of the radix,
i.e.,,double.base * double.min.exp. Normally 2.225074e-308.

xmax the largest normalized floating-point number. Typically, it is equal to (1 —
double.neg.eps) * double.base ~ double.max.exp, but on some
machines it is only the second or third largest such number, being too small by
1 or 2 units in the last digit of the significand. Normally 1.797693e+308.
Note that larger unnormalized numbers can occur.

.base the radix for the floating-point representation: normally 2.
double.

digits

the number of base digits in the floating-point significand: normally 53.
rounding

the rounding action, one of

0 if floating-point addition chops;

1 if floating-point addition rounds, but not in the IEEE style;

2 if floating-point addition rounds in the IEEE style;

3 if floating-point addition chops, and there is partial underflow;

4 if floating-point addition rounds, but not in the IEEE style, and there is partial

underflow;

5 if floating-point addition rounds in the IEEE style, and there is partial under-

flow.

Normally 5.

guard the number of guard digits for multiplication with truncating arithmetic. It is
1 if floating-point arithmetic truncates and more than double digits base-
double.base digits participate in the post-normalization shift of the floating-
point significand in multiplication, and O otherwise.
Normally 0.
ulp.digits
the largest negative integer i such that 1 + double.base ~ i !=1, except
that it is bounded below by — (double.digits + 3). Normally -52.
neg.ulp.digits
the largest negative integer i such that 1 — double.base ~ 1 != 1, except
that it is bounded below by — (double.digits + 3). Normally -53.
exponent
the number of bits (decimal places if double.base is 10) reserved for the
representation of the exponent (including the bias or sign) of a floating-point
number. Normally 11.

.min.exp
the largest in magnitude negative integer i such that double.base ~ i is
positive and normalized. Normally -1022.

max.exp

the smallest positive power of double .base that overflows. Normally 1024.

integer.max the largest integer which can be represented. Always 231 — 1 = 2147483647.

sizeof.

sizeof.

long the number of bytes in a C long type: 4 or 8 (most 64-bit systems, but not
Windows).

longlong
the number of bytes in a C long long type. Will be zero if there is no such
type, otherwise usually 8.

.Machine 7

sizeof.longdouble
the number of bytes in a C 1ong double type. Will be zero if there is no such
type (or its use was disabled when R was built), otherwise possibly 12 (most
32-bit builds), 1 6 (most 64-bit builds) or 8

(CPUs such as ARM where for most compilers 1ong double is identical to
double).

sizeof.pointer
the number of bytes in a C SEXP type. Will be 4 on 32-bit builds and 8 on
64-bit builds of R.

longdouble.eps, longdouble.neg.eps, longdouble.digits, ...
introduced in R 4.0.0. When capabilities ("long.double") is true,
there are 10 such "longdouble.<kind>" values, specifying the long
double property corresponding to its "double.*" counterpart. See also
‘Note’.

Note

In the (typical) case where capabilities ("long.double") is true, R uses the long
double C type in quite a few places internally for accumulators in e.g. sum, reading non-integer
numeric constants into (binary) double precision numbers, or arithmetic such as x $% y; also, long
double can be read by readBin.

For this reason, in that case, .Machine contains ten further components, longdouble.eps,
*.neg.eps, x.digits, x.rounding x.guard, * .ulp.digits, x.neg.ulp.digits,
x.exponent, x.min.exp, and *.max.exp, computed entirely analogously to their
double. * counterparts, see there.

sizeof.longdouble only tells you the amount of storage allocated for a long double. Often
what is stored is the 80-bit extended double type of IEC 60559, padded to the double alignment used
on the platform — this seems to be the case for the common R platforms using ix86 and x86_64
chips. There are other implementation of long double, usually in software for example on Sparc
Solaris and AIX.

Note that it is legal for a platform to have a 1ong double C type which is identical to the double
type — this happens on ARM cpus. In that case capabilities ("long.double") will be
false but on versions of R prior to 4.0.4, .Machine may contain "longdouble.<kind>"
elements.

Source
Uses a C translation of Fortran code in the reference, modified by the R Core Team to defeat over-
optimization in modern compilers.

References
Cody, W.J. (1988). MACHAR: A subroutine to dynamically determine machine parameters. Trans-
actions on Mathematical Software, 14(4), 303-311. doi:10.1145/50063.51907.

See Also

.Plat form for details of the platform.

https://doi.org/10.1145/50063.51907

8 .Platform
Examples
.Machine
or for a neat printout
noquote (unlist (format (.Machine)))
.Platform Platform Specific Variables
Description
.Platform is a list with some details of the platform under which R was built. This provides
means to write OS-portable R code.
Usage
.Platform
Value

A list with at least the following components:

OS.type

file.sep

dynlib.ext

GUI

endian

pkgType

path.sep

r_arch

character string, giving the Operating System (family) of the computer. One of
"unix" or "windows".

character string, giving the file separator used on your platform: " /" on both
Unix-alikes and on Windows (but not on the former port to Classic Mac OS).

character string, giving the file name extension of dymamically loadable
libraries, e.g., ".d11" on Windows and ".so" or ".s1" on Unix-alikes.
(Note for macOS users: these are shared objects as loaded by dyn . load and
not dylibs: see dyn.load.)

character string, giving the type of GUI in use, or "unknown" if no GUI can
be assumed. Possible values are for Unix-alikes the values given via the ‘—g’
command-line flag ("X11", "Tk"), "AQUA" (running under R.app on ma-
c0OS), "Rgui" and "RTerm" (Windows) and perhaps others under alternative
front-ends or embedded R.

character string, "big" or "1ittle", giving the ‘endianness’ of the processor
in use. This is relevant when it is necessary to know the order to read/write bytes
of e.g. an integer or double from/to a connection: see readBin.

character string, the preferred setting for options ("pkgType"). Values
"source", "mac.binary" and "win.binary" are currently in use.

This should not be used to identify the OS.
character string, giving the path separator, used on your platform, e.g., ": "

on Unix-alikes and "; " on Windows. Used to separate paths in environment
variables such as PATH and TEXINPUTS.

character string, possibly "". The name of an architecture-specific directory
used in this build of R.

abbreviate 9

AQUA
.Platform$GUT is set to "AQUA" under the macOS GUI, R. app. This has a number of conse-
quences:
* ‘/usr/local/bin’ is appended to the PATH environment variable.
¢ the default graphics device is set to quartz.

* selects native (rather than Tk) widgets for the graphics = TRUE options of menu and
select.list.

HTML help is displayed in the internal browser.

* the spreadsheet-like data editor/viewer uses a Quartz version rather than the X11 one.

See Also

R.version and Sys.info give more details about the OS. In particular,
R.version$platform is the canonical name of the platform under which R was com-
piled.

.Machine for details of the arithmetic used, and system for invoking platform-specific system
commands.

capabilities and extSoftVersion (and links there) for availability of capabilities partly
external to R but used from R functions.

Examples

Note: this can be done in a system-independent way by dir.exists()
if (.Platform$0S.type == "unix") {
system.test <- function(...) system(paste("test", ...)) == 0L
dir.exists2 <- function (dir)
sapply (dir, function(d) system.test ("-d", d))

dir.exists2 (c(R.home (), "/tmp", "~", "/NO")) # > T T T F
}
abbreviate Abbreviate Strings
Description

Abbreviate strings to at least minlength characters, such that they remain unique (if they were),
unless strict = TRUE.

Usage

abbreviate (names.arg, minlength = 4, use.classes = TRUE,
dot = FALSE, strict = FALSE,
method = c("left.kept", "both.sides"), named = TRUE)

10 abbreviate

Arguments
names.arg a character vector of names to be abbreviated, or an object to be coerced to a
character vector by as.character.
minlength the minimum length of the abbreviations.

use.classes logical: should lowercase characters be removed first?

dot logical: should a dot (" . ") be appended?
strict logical: should minlength be observed strictly? Note that setting strict =
TRUE may return non-unique strings.
method a character string specifying the method used with default "1eft .kept", see
‘Details’ below. Partial matches allowed.
named logical: should names (with original vector) be returned.
Details

The default algorithm (method = "left .kept") used is similar to that of S. For a single string
it works as follows. First spaces at the ends of the string are stripped. Then (if necessary) any
other spaces are stripped. Next, lower case vowels are removed followed by lower case consonants.
Finally if the abbreviation is still longer than minlength upper case letters and symbols are
stripped.

Characters are always stripped from the end of the strings first. If an element of names.arg
contains more than one word (words are separated by spaces) then at least one letter from each
word will be retained.

Missing (NA) values are unaltered.

If use.classes is FALSE then the only distinction is to be between letters and space.

Value

A character vector containing abbreviations for the character strings in its first argument. Duplicates
in the original names . arg will be given identical abbreviations. If any non-duplicated elements
have the same minlength abbreviations then, if method = "both.sides" the basic internal
abbreviate () algorithm is applied to the characterwise reversed strings; if there are still du-
plicated abbreviations and if strict = FALSE as by default, ninlength is incremented by one
and new abbreviations are found for those elements only. This process is repeated until all unique
elements of names . arg have unique abbreviations.

If names is true, the character version of names . arg is attached to the returned value as a names
attribute: no other attributes are retained.

If a input element contains non-ASCII characters, the corresponding value will be in UTF-8 and
marked as such (see Encoding).

Warning

If use.classes is true (the default), this is really only suitable for English, and prior to R 3.3.0
did not work correctly with non-ASCII characters in multibyte locales. It will warn if used with
non-ASCII characters (and required to reduce the length). It is unlikely to work well with inputs

agrep 11

not in the Unicode Basic Multilingual Plane nor on (rare) platforms where wide characters are not
encoded in Unicode.

As from R 3.3.0 the concept of ‘vowel’ is extended from English vowels by including characters
which are accented versions of lower-case English vowels (including ‘o with stroke’). Of course,
there are languages (even Western European languages such as Welsh) with other vowels.

See Also

substr.

Examples

x <— c("abcd", "efgh", "abce")
abbreviate (x, 2)
abbreviate (x, 2, strict = TRUE) # >> 1st and 3rd are == "ab"

(st.abb <- abbreviate(state.name, 2))
stopifnot (identical (unname (st.abb),

abbreviate (state.name, 2, named=FALSE)))
table (nchar (st.abb)) # out of 50, 3 need 4 letters
as <- abbreviate(state.name, 3, strict = TRUE)
as[which(as == "Mss")]

and without distinguishing vowels:
st.abb2 <- abbreviate (state.name, 2, FALSE)

cbind (st.abb, st.abb2) [st.abb2 != st.abb,]
method = "both.sides" helps: no 4-letters, and only 4 3-letters:
st.ab2 <- abbreviate (state.name, 2, method = "both")

table (nchar (st.ab2))
Compare the two methods:
cbind(st.abb, st.ab2)

agrep Approximate String Matching (Fuzzy Matching)

Description

Searches for approximate matches to pattern (the first argument) within each element of the
string x (the second argument) using the generalized Levenshtein edit distance (the minimal possi-
bly weighted number of insertions, deletions and substitutions needed to transform one string into
another).

Usage

agrep (pattern, x, max.distance = 0.1, costs = NULL,
ignore.case = FALSE, value = FALSE, fixed = TRUE,
useBytes = FALSE)

12

agrep

agrepl (pattern, x, max.distance = 0.1, costs = NULL,
ignore.case = FALSE, fixed = TRUE, useBytes = FALSE)

Arguments

pattern

max.distance

costs

ignore.case

value

fixed

useBytes

Details

a non-empty character string to be matched. For fixed = FALSE this should
contain an extended regular expression. Coerced by as.character to a
string if possible.

character vector where matches are sought. Coerced by as.character toa
character vector if possible.

Maximum distance allowed for a match. Expressed either as integer, or as a
fraction of the pattern length times the maximal transformation cost (will be
replaced by the smallest integer not less than the corresponding fraction), or a
list with possible components

cost: maximum number/fraction of match cost (generalized Levenshtein dis-
tance)

all: maximal number/fraction of all transformations (insertions, deletions and
substitutions)

insertions: maximum number/fraction of insertions

deletions: maximum number/fraction of deletions

substitutions: maximum number/fraction of substitutions

If cost is not given, all defaults to 10%, and the other transformation number

bounds default to a11. The component names can be abbreviated.

a numeric vector or list with names partially matching ‘insertions’,

‘deletions’and ‘substitutions’ giving the respective costs for comput-

ing the generalized Levenshtein distance, or NULL (default) indicating using unit

cost for all three possible transformations. Coerced to integer via as . integer
if possible.

if FALSE, the pattern matching is case sensitive and if TRUE, case is ignored
during matching.

if FALSE, a vector containing the (integer) indices of the matches determined is
returned and if TRUE, a vector containing the matching elements themselves is
returned.

logical. If TRUE (default), the pattern is matched literally (as is). Otherwise, it
is matched as a regular expression.

logical. in a multibyte locale, should the comparison be character-by-character
(the default) or byte-by-byte.

The Levenshtein edit distance is used as measure of approximateness: it is the (possibly cost-
weighted) total number of insertions, deletions and substitutions required to transform one string

into another.

This uses the t re code by Ville Laurikari (https://github.com/laurikari/tre), which
supports MBCS character matching.

https://github.com/laurikari/tre

all 13

The main effect of useBytes is to avoid errors/warnings about invalid inputs and spurious matches
in multibyte locales. It inhibits the conversion of inputs with marked encodings, and is forced if any
input is found which is marked as "bytes" (see Encoding).

Value

agrep returns a vector giving the indices of the elements that yielded a match, or, if value is
TRUE, the matched elements (after coercion, preserving names but no other attributes).

agrepl returns a logical vector.

Note

Since someone who read the description carelessly even filed a bug report on it, do note that this
matches substrings of each element of x (just as grep does) and not whole elements. See also
adist in package utils, which optionally returns the offsets of the matched substrings.

Author(s)

Original version in R < 2.10.0 by David Meyer. Current version by Brian Ripley and Kurt Hornik.

See Also

grep, adist. A different interface to approximate string matching is provided by aregexec ().

Examples

agrep ("lasy", "1 lazy 2")

agrep("lasy", c(" 1 lazy 2", "1 lasy 2"), max.distance = list(sub = 0))
agrep ("laysy", c("1 lazy", "1", "1 LAZY"), max.distance = 2)

agrep ("laysy", c("1 lazy", "1", "1 LAZY"), max.distance = 2, value = TRUE)
agrep ("laysy", c("1 lazy", "1", "1 LAZY"), max.distance

2, lignore.case = TRUE)

all Are All Values True?

Description

Given a set of logical vectors, are all of the values true?

Usage

all(..., na.rm = FALSE)

Arguments

zero or more logical vectors. Other objects of zero length are ignored, and the
rest are coerced to logical ignoring any class.

na.rm logical. If true NA values are removed before the result is computed.

14 all

Details
This is a generic function: methods can be defined for it directly or via the Summary group generic.
For this to work properly, the arguments . .. should be unnamed, and dispatch is on the first
argument.

Coercion of types other than integer (raw, double, complex, character, list) gives a warning as this
is often unintentional.

This is a primitive function.

Value

The value is a logical vector of length one.

Let x denote the concatenation of all the logical vectors in . . . (after coercion), after removing NAs
if requested by na . rm = TRUE.

The value returned is TRUE if all of the values in x are TRUE (including if there are no values), and
FALSE if at least one of the values in x is FALSE. Otherwise the value is NA (which can only occur

if na.rm=FALSE and . . . contains no FALSE values and at least one NA value).

S4 methods
This is part of the S4 Summary group generic. Methods for it must use the signature x, ...,
na.rm.

Note

That a1l (1logical (0)) is true is a useful convention: it ensures that
all(all(x), all(y)) == all(x, Vv)

even if x has length zero.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

any, the ‘complement’ of all, and stopifnot (*) whichisanall (%) ‘insurance’.

Examples
range (x <- sort (round(stats::rnorm(10) - 1.2, 1)))
if(all(x < 0)) cat("all x values are negative\n")

all(logical(0)) # true, as all zero of the elements are true.

all.equal 15

all.equal Test if Two Objects are (Nearly) Equal

Description

all.equal (x, y) is a utility to compare R objects x and y testing ‘near equality’. If they are
different, comparison is still made to some extent, and a report of the differences is returned. Do
not use all.equal directly in if expressions—either use 1sTRUE (all.equal(....)) or
identical if appropriate.

Usage

all.equal (target, current, ...)

S3 method for class 'numeric'
all.equal (target, current,
tolerance = sqgrt(.Machine$double.eps), scale = NULL,
countEQ = FALSE,
formatFUN = function(err, what) format (err),
., check.attributes = TRUE)

S3 method for class 'list'
all.equal (target, current, ...,
check.attributes = TRUE, use.names = TRUE)

S3 method for class 'environment'
all.equal (target, current, all.names = TRUE,
evaluate = TRUE, ...)

S3 method for class 'function'
all.equal (target, current, check.environment=TRUE, ...)

S3 method for class 'POSIXt'
all.equal (target, current, ..., tolerance = le-3, scale,
check.tzone = TRUE)

attr.all.equal (target, current, ...,
check.attributes = TRUE, check.names = TRUE)

Arguments
target R object.
current other R object, to be compared with target.

further arguments for different methods, notably the following two, for numeri-
cal comparison:

16 all.equal

tolerance numeric > 0. Differences smaller than tolerance are not reported. The
default value is close to 1 . 5e-8.

scale NULL or numeric > 0, typically of length 1 or length (target). See ‘De-
tails’.

countEQ logical indicating if the target == current cases should be counted when

computing the mean (absolute or relative) differences. The default, FALSE may
seem misleading in cases where target and current only differ in a few
places; see the extensive example.

formatFUN a function of two arguments, err, the relative, absolute or scaled error, and
what, a character string indicating the kind of error; may be used, e.g., to format
relative and absolute errors differently.

check.attributes
logical indicating if the attributes of target and current (other than
the names) should be compared.

use.names logical indicating if 1ist comparison should report differing components by
name (if matching) instead of integer index. Note that this comes after . . . and
so must be specified by its full name.

all.names logical passed to 1s indicating if “hidden” objects should also be considered in
the environments.

evaluate for the environment method: logical indicating if “promises should be
forced”, i.e., typically formal function arguments be evaluated for comparison.
If false, only the names of the objects in the two environments are checked for
equality.

check.environment
logical requiring that the environment () s of functions should be compared,
too. You may need to set check.environment=FALSE in unexpected
cases, such as when comparing two nls () fits.

check.tzone logical indicating if the "t zone" attributes of target and current should
be compared.

check.names logical indicating if the names (.) of target and current should be com-
pared.

Details

all.equal is a generic function, dispatching methods on the target argument. To see the
available methods, use methods ("all.equal"), but note that the default method also does
some dispatching, e.g. using the raw method for logical targets.

Remember that arguments which follow ... must be specified by (unabbreviated) name. It is
inadvisable to pass unnamed arguments in . . . as these will match different arguments in different
methods.

Numerical comparisons for scale = NULL (the default) are typically on a relative difference scale
unless the target values are close to zero or infinite. Specifically, the scale is computed as the
mean absolute value of target. If this scale is finite and exceeds tolerance, differences are
expressed relative to it; otherwise, absolute differences are used. Note that this scale and all fur-
ther steps are computed only for those vector elements where target is not NA and differs from

all.equal 17

current. If countEQ is true, the equal and NA cases are counted in determining the “sample”
size.

If scale is numeric (and positive), absolute comparisons are made after scaling (dividing) by
scale. Note that if all of scale is close to 1 (specifically, within le-7), the difference is still
reported as being on an absolute scale.

For complex target, the modulus (Mod) of the difference is used: all.equal.numeric is
called so arguments tolerance and scale are available.

The 11ist method compares components of target and current recursively, passing all other
arguments, as long as both are “list-like”, i.e., fulfill either is.vectororis.list.

The environment method works via the 1ist method, and is also used for reference classes
(unless a specific all.equal method is defined).

The method for date-time objects uses all.equal.numeric to compare times (in "POSIXct"
representation) with a default tolerance of 0.001 seconds, ignoring scale. A time zone mis-
match between target and current is reported unless check.tzone = FALSE.

attr.all.equal isused for comparing attributes, returning NULL or a character vec-
tor.
Value

Either TRUE (NULL for attr.all.equal) or a vector of mode "character" describing the
differences between target and current.

References

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer (for =).

See Also

identical, isTRUE, ==, and all for exact equality testing.

Examples

all.equal (pi, 355/113)
not precise enough (default tol) > relative error

d45 <- pi*(1/4 + 1:10) ; one <- rep(l, 10)
tan(d45) == one # mostly FALSE, as not exactly
stopifnot (all.equal (
tan(d45), one)) # TRUE, but not if we are picky:

all.equal (tan(d45), one, tolerance = 0) # to see difference

all.equal (tan(d45), one, tolerance = 0, scale = 1)# "absolute diff.."
all.equal (tan(d45), one, tolerance = 0, scale = 1+(-2:2)/1e9) # "absolute"
all.equal (tan(d45), one, tolerance = 0, scale = 1+(-2:2)/1le6) # "scaled"

advanced: equality of environments
ae <- all.equal (as.environment ("package:stats"),
asNamespace ("stats"))
stopifnot (is.character (ae), length(ae) > 10,
were incorrectly "considered equal" in R <= 3.1.1

18 all.names

all.equal (asNamespace ("stats"), asNamespace ("stats")))

A situation where 'countEQ = TRUE' makes sense:

x1 <= x2 <= (1:100)/10; x2[2] <= 1.1*xx1[2]

99 out of 100 pairs (x1[i], x2[i]) are equal:

plot (x1,x2, main = "all.equal.numeric() —-- not counting equal parts")
all.equal (x1,x2) ## "Mean relative difference: 0.1"

mtext (paste ("all.equal (x1,x2) :", all.equal(xl,x2)), line= -2)

##' extract the 'Mean relative difference' as number:

all.egNum <- function(...) as.numeric(sub(".x:", '', all.equal(...)))
set.seed (17)

When x2 is jittered, typically all pairs (x1[i],x2[1]) do differ:
summary (r <- replicate (100, all.egNum(xl, x2x(l+rnorm(xl)=xle-=7))))

mtext (paste ("mean(all.equal (x1, x2x(1 + eps_k))) {100 x} Mean rel.diff.=",
signif (mean(r), 3)), line = -4, adj=0)

With argument countEQ=TRUE, get "the same" (w/o need for jittering):

mtext (paste ("all.equal (x1,x2, countEQ=TRUE) :",

signif(all.egNum(xl,x2, countEQ=TRUE), 3)), line= -6, col=2)

comparison of date-time objects

now <- Sys.time ()

stopifnot (

all.equal (now, now + le-4) # TRUE (default tolerance = 0.001 seconds)
)

all.equal (now, now + 0.2)

all.equal (now, as.POSIX1lt (now, "UTC"))

stopifnot (

all.equal (now, as.POSIX1lt (now, "UTC"), check.tzone = FALSE) # TRUE
)

all.names Find All Names in an Expression

Description

Return a character vector containing all the names which occur in an expression or call.

Usage
all.names (expr, functions = TRUE, max.names = -1L, unique = FALSE)
all.vars (expr, functions = FALSE, max.names = —-1L, unique = TRUE)
Arguments
expr an expression or call from which the names are to be extracted.
functions a logical value indicating whether function names should be included in the

result.

any 19

max.names the maximum number of names to be returned. —1 indicates no limit (other than
vector size limits).

unique a logical value which indicates whether duplicate names should be removed
from the value.

Details

These functions differ only in the default values for their arguments.

Value

A character vector with the extracted names.

See Also

substitute to replace symbols with values in an expression.

Examples

all.names (expression (sin (x+y)))
all.names (quote (sin(x+y))) # or a call
all.vars (expression(sin(x+y)))

any Are Some Values True?

Description

Given a set of logical vectors, is at least one of the values true?

Usage

any (..., na.rm = FALSE)

Arguments
zero or more logical vectors. Other objects of zero length are ignored, and the
rest are coerced to logical ignoring any class.
na.rm logical. If true NA values are removed before the result is computed.
Details
This is a generic function: methods can be defined for it directly or via the Summary group generic.
For this to work properly, the arguments ... should be unnamed, and dispatch is on the first
argument.

Coercion of types other than integer (raw, double, complex, character, list) gives a warning as this
is often unintentional.

This is a primitive function.

20 aperm

Value

The value is a logical vector of length one.

Let x denote the concatenation of all the logical vectors in . . . (after coercion), after removing NAs
if requested by na . rm = TRUE.

The value returned is TRUE if at least one of the values in x is TRUE, and FALSE if all of the values
in x are FALSE (including if there are no values). Otherwise the value is NA (which can only occur

if na.rm=FALSE and . . . contains no TRUE values and at least one NA value).

S4 methods
This is part of the S4 Summary group generic. Methods for it must use the signature x, ...,
na.rm

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

all, the ‘complement’ of any.

Examples
range (x <- sort (round(stats::rnorm(10) - 1.2, 1)))
if(any(x < 0)) cat("x contains negative values\n")
aperm Array Transposition
Description

Transpose an array by permuting its dimensions and optionally resizing it.

Usage

aperm(a, perm, ...)

Default S3 method:

aperm(a, perm = NULL, resize = TRUE, ...)

S3 method for class 'table'

aperm(a, perm = NULL, resize = TRUE, keep.class = TRUE, ...)

aperm 21

Arguments

a the array to be transposed.

perm the subscript permutation vector, usually a permutation of the integers 1:n,
where n is the number of dimensions of a. When a has named dimnames, it
can be a character vector of length n giving a permutation of those names. The
default (used whenever perm has zero length) is to reverse the order of the
dimensions.

resize a flag indicating whether the vector should be resized as well as having its ele-

ments reordered (default TRUE).
keep.class logical indicating if the result should be of the same class as a.

potential further arguments of methods.

Value

A transposed version of array a, with subscripts permuted as indicated by the array perm. If
resize is TRUE, the array is reshaped as well as having its elements permuted, the dimnames
are also permuted; if resize = FALSE then the returned object has the same dimensions as a, and
the dimnames are dropped. In each case other attributes are copied from a.

The function t provides a faster and more convenient way of transposing matrices.

Author(s)

Jonathan Rougier, <J.C.Rougier@durham. ac.uk> did the faster C implementation.

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

t, to transpose matrices.

Examples

interchange the first two subscripts on a 3-way array x
x <- array(l:24, 2:4)

xt <- aperm(x, c(2,1,3))

stopifnot (t(xt[,,2]) == x[,,2],
t(xtl,,31) == x[,,31,
t(xtl,,4]) == x[,,4])

UCB <- aperm(UCBAdmissions, c(2,1,3))
UCB[1,,]
summary (UCB) # UCB is still a contingency table

22 apply

append Vector Merging

Description

Add elements to a vector.

Usage

append (x, values, after = length(x))
Arguments

X the vector the values are to be appended to.

values to be included in the modified vector.

after a subscript, after which the values are to be appended.
Value

A vector containing the values in x with the elements of values appended after the specified
element of x.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Examples

append(1:5, 0:1, after = 3)

apply Apply Functions Over Array Margins

Description

Returns a vector or array or list of values obtained by applying a function to margins of an array or
matrix.

Usage

apply (X, MARGIN, FUN, ..., simplify = TRUE)

apply 23

Arguments
X an array, including a matrix.
MARGIN a vector giving the subscripts which the function will be applied over. E.g., for
a matrix 1 indicates rows, 2 indicates columns, c (1, 2) indicates rows and
columns. Where X has named dimnames, it can be a character vector selecting
dimension names.
FUN the function to be applied: see ‘Details’. In the case of functions like +, $+%,
etc., the function name must be backquoted or quoted.
optional arguments to FUN.
simplify a logical indicating whether results should be simplified if possible.
Details

If X is not an array but an object of a class with a non-null dim value (such as a data frame), apply
attempts to coerce it to an array via as.matrix if it is two-dimensional (e.g., a data frame) or via
as.array.

FUN is found by a call to match. fun and typically is either a function or a symbol (e.g., a back-
quoted name) or a character string specifying a function to be searched for from the environment of
the call to apply.

Arguments in . .. cannot have the same name as any of the other arguments, and care may be
needed to avoid partial matching to MARGIN or FUN. In general-purpose code it is good practice
to name the first three arguments if . .. is passed through: this both avoids partial matching to
MARGIN or FUN and ensures that a sensible error message is given if arguments named X, MARGIN
or FUN are passed through

Value

If each call to FUN returns a vector of length n, and simplify is TRUE, then apply returns an
array of dimension c (n, dim(X) [MARGIN]) if n > 1. If n equals 1, apply returns a vector
if MARGIN has length 1 and an array of dimension dim (X) [MARGIN] otherwise. If n is 0, the
result has length O but not necessarily the ‘correct” dimension.

If the calls to FUN return vectors of different lengths, or if simplify is FALSE, apply returns a
list of length prod (dim (X) [MARGIN]) with dim set to MARGIN if this has length greater than
one.

In all cases the result is coerced by as . vector to one of the basic vector types before the dimen-
sions are set, so that (for example) factor results will be coerced to a character array.

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

lapply and there, simplify2array; tapply, and convenience functions sweep and
aggregate.

24 args

Examples

Compute row and column sums for a matrix:

x <— cbind(x1l = 3, x2 = c(4:1, 2:5))

dimnames (x) [[1]] <- letters[1:8]

apply(x, 2, mean, trim = .2)

col.sums <- apply(x, 2, sum)

row.sums <- apply(x, 1, sum)

rbind (cbind(x, Rtot = row.sums), Ctot = c(col.sums, sum(col.sums)))

stopifnot (apply(x, 2, is.vector))

Sort the columns of a matrix
apply(x, 2, sort)

keeping named dimnames
names (dimnames (x)) <- c("row", "col")
x3 <- array(x, dim = c(dim(x),3),
dimnames = c(dimnames (x), list(C = pasteO("cop.",1:3))))
identical (x, apply (x, 2, identity))
identical (x3, apply(x3, 2:3, identity))

##- function with extra args:
cave <- function(x, cl, c2) c(mean(x[cl]), mean(x[c2]))

apply(x, 1, cave, cl = "x1", c2 = c("x1","x2"))
ma <- matrix(c(l:4, 1, 6:8), nrow = 2)
ma

apply (ma, 1, table) #--> a list of length 2
apply(ma, 1, stats::quantile) # 5 x n matrix with rownames

stopifnot (dim(ma) == dim(apply(ma, 1:2, sum)))

Example with different lengths for each call

z <—- array(l:24, dim = 2:4)

zseq <- apply(z, 1:2, function(x) seqg_len (max(x)))
zseq ## a 2 x 3 matrix

typeof (zseq) ## list

dim(zseq) ## 2 3

zseq[l,]

apply(z, 3, function(x) seqg_len(max(x)))

a list without a dim attribute

args Argument List of a Function

Description

Displays the argument names and corresponding default values of a function or primitive.

args 25

Usage

args (name)

Arguments
name a function (a closure or a primitive). If name is a character string then the
function with that name is found and used.
Details

This function is mainly used interactively to print the argument list of a function. For programming,
consider using formals instead.

Value

For a closure, a closure with identical formal argument list but an empty (NULL) body.

For a primitive, a closure with the documented usage and NULL body. Note that some primitives
do not make use of named arguments and match by position rather than name.

NULL in case of a non-function.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

formals, help; str also prints the argument list of a function.

Examples

"regular" (non-primitive) functions "print their arguments"

(by returning another function with NULL body which you also see):
args (ls)

args (graphics::plot.default)

utils::str(ls) # (just "prints": does not show a NULL)

You can also pass a string naming a function.

args ("scan")

...but :: package specification doesn't work in this case.
tryCatch (args ("graphics::plot.default"), error = print)

As explained above, args() gives a function with empty body:
list(is.f = is.function(args(scan)), body = body(args(scan)))

Primitive functions mostly behave like non-primitive functions.
args(c)

args ("+7)

primitive functions without well-defined argument list return NULL:
args (Tif")

26 Arithmetic

Arithmetic Arithmetic Operators

Description

These unary and binary operators perform arithmetic on numeric or complex vectors (or objects
which can be coerced to them).

Usage

|
+ X X

> x|
MK KKK

KoM X X X X X
o\
=

o° o
~

o
=

Arguments
X,y numeric or complex vectors or objects which can be coerced to such, or other
objects for which methods have been written.
Details

The unary and binary arithmetic operators are generic functions: methods can be written for them
individually or via the Ops group generic function. (See Ops for how dispatch is computed.)

If applied to arrays the result will be an array if this is sensible (for example it will not if the
recycling rule has been invoked).

Logical vectors will be coerced to integer or numeric vectors, FALSE having value zero and TRUE
having value one.

1 ~yandy ”~ 0are 1, always. x ~ y should also give the proper limit result when either (numeric)
argument is infinite (one of Inf or —Inf).

Objects such as arrays or time-series can be operated on this way provided they are conformable.

For double arguments, $% can be subject to catastrophic loss of accuracy if x is much larger than
v, and a warning is given if this is detected.

%% and x %$/% y can be used for non-integer v, e.g. 1 $/% 0.2, but the results are subject to
representation error and so may be platform-dependent. Because the IEC 60559 representation of
0.2 is a binary fraction slightly larger than 0.2, the answer to 1 $/% 0.2 should be 4 but most
platforms give 5.

Users are sometimes surprised by the value returned, for example why (-8) ~ (1/3) is NaN. For
double inputs, R makes use of IEC 60559 arithmetic on all platforms, together with the C system
function ‘pow’ for the ~ operator. The relevant standards define the result in many corner cases. In

Arithmetic 27

particular, the result in the example above is mandated by the C99 standard. On many Unix-alike
systems the command man pow gives details of the values in a large number of corner cases.

Arithmetic on type double in R is supposed to be done in ‘round to nearest, ties to even’ mode, but
this does depend on the compiler and FPU being set up correctly.

Value

Unary + and unary - return a numeric or complex vector. All attributes (including class) are pre-
served if there is no coercion: logical x is coerced to integer and names, dims and dimnames are
preserved.

The binary operators return vectors containing the result of the element by element operations.
If involving a zero-length vector the result has length zero. Otherwise, the elements of shorter
vectors are recycled as necessary (with a warning when they are recycled only fractionally).
The operators are + for addition, — for subtraction, = for multiplication, / for division and ~ for
exponentiation.

%% indicates x mod y (“x modulo y”’) and % /% indicates integer division. It is guaranteed that
x==(x%%y) +y* (x%/%y) (uptorounding error)

unless y == 0 where the result of $% is NA_integer_ or NaN (depending on the t ypeof of the
arguments) or for some non-finite arguments, e.g., when the RHS of the identity above amounts to
Inf - Inf.

If either argument is complex the result will be complex, otherwise if one or both arguments are
numeric, the result will be numeric. If both arguments are of type integer, the type of the result of /
and * is numeric and for the other operators it is integer (with overflow, which occurs at :I:(231 —1),
returned as NA_integer_ with a warning).

The rules for determining the attributes of the result are rather complicated. Most attributes are taken
from the longer argument. Names will be copied from the first if it is the same length as the answer,
otherwise from the second if that is. If the arguments are the same length, attributes will be copied
from both, with those of the first argument taking precedence when the same attribute is present
in both arguments. For time series, these operations are allowed only if the series are compatible,
when the class and t sp attribute of whichever is a time series (the same, if both are) are used. For
arrays (and an array result) the dimensions and dimnames are taken from first argument if it is an
array, otherwise the second.

S4 methods

These operators are members of the S4 Arith group generic, and so methods can be written for
them individually as well as for the group generic (or the Ops group generic), with arguments
c(el, e2) (with e2 missing for a unary operator).

Implementation limits

R is dependent on OS services (and they on FPUs) for floating-point arithmetic. On all current R
platforms IEC 60559 (also known as IEEE 754) arithmetic is used, but some things in those stan-
dards are optional. In particular, the support for denormal aka subnormal numbers (those outside
the range given by .Machine) may differ between platforms and even between calculations on a
single platform.

28

Arithmetic

Another potential issue is signed zeroes: on IEC 60559 platforms there are two zeroes with internal
representations differing by sign. Where possible R treats them as the same, but for example direct
output from C code often does not do so and may output ‘~0.0’ (and on Windows whether it does
so or not depends on the version of Windows). One place in R where the difference might be seen
is in division by zero: 1/x is Inf or —Inf depending on the sign of zero x. Another place is
identical (0, -0, num.eq=FALSE).

Note

All logical operations involving a zero-length vector have a zero-length result.

The binary operators are sometimes called as functions as e.g. ~ &~ (x, vy): see the description of
how argument-matching is done in Ops.

** is translated in the parser to *, but this was undocumented for many years. It appears as an index
entry in Becker et al (1988), pointing to the help for Deprecated but is not actually mentioned
on that page. Even though it had been deprecated in S for 20 years, it was still accepted in R in
2008.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

D. Goldberg (1991). What Every Computer Scientist Should Know about Floating-Point Arith-
metic. ACM Computing Surveys, 23(1), 5-48. doi:10.1145/103162.103163.

Also available at https://docs.oracle.com/cd/E19957-01/806-3568/ncg_
goldberg.html.

For the IEC 60559 (aka IEEE 754) standard: https://www.iso.org/standard/57469.
html and https://en.wikipedia.org/wiki/IEEE_754.

See Also

sqgrt for miscellaneous and Special for special mathematical functions.
Syntax for operator precedence.

%% for matrix multiplication.

Examples
x <= =-1:12
x + 1
2 x + 3
X %% 2 #-—- is periodic
X %/% 5
x %% Inf # now is defined by limit (gave NaN in earlier versions of R)

https://doi.org/10.1145/103162.103163
https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
https://www.iso.org/standard/57469.html
https://www.iso.org/standard/57469.html
https://en.wikipedia.org/wiki/IEEE_754

array 29

array Multi-way Arrays

Description

Creates or tests for arrays.

Usage

array(data = NA, dim = length(data), dimnames = NULL)
as.array(x, ...)
is.array (x)

Arguments
data a vector (including a list or expression vector) giving data to fill the array.
Non-atomic classed objects are coerced by as.vector.
dim the dim attribute for the array to be created, that is an integer vector of length
one or more giving the maximal indices in each dimension.
dimnames either NULL or the names for the dimensions. This must be a list (or it will be
ignored) with one component for each dimension, either NULL or a character
vector of the length given by dim for that dimension. The list can be named,
and the list names will be used as names for the dimensions. If the list is shorter
than the number of dimensions, it is extended by NULLs to the length required.
x an R object.
additional arguments to be passed to or from methods.
Details

An array in R can have one, two or more dimensions. It is simply a vector which is stored with
additional attributes giving the dimensions (attribute "dim") and optionally names for those di-
mensions (attribute "dimnames™").

A two-dimensional array is the same thing as amatrix.

One-dimensional arrays often look like vectors, but may be handled differently by some functions:
str does distinguish them in recent versions of R.

The "dim" attribute is an integer vector of length one or more containing non-negative values: the
product of the values must match the length of the array.

The "dimnames™" attribute is optional: if present it is a list with one component for each dimen-
sion, either NULL or a character vector of the length given by the element of the "dim" attribute
for that dimension.

is.array is a primitive function.

For a list array, the print methods prints entries of length not one in the form ‘integer, 7°
indicating the type and length.

30 as.data.frame

Value

array returns an array with the extents specified in dim and naming information in dimnames.
The values in data are taken to be those in the array with the leftmost subscript moving fastest.
If there are too few elements in data to fill the array, then the elements in data are recycled. If
data has length zero, NA of an appropriate type is used for atomic vectors (0 for raw vectors) and
NULL for lists.

Unlike matrix, array does not currently remove any attributes left by as.vector from a
classed list data, so can return a list array with a class attribute.

as.array is a generic function for coercing to arrays. The default method does so by attaching a
dim attribute to it. It also attaches dimnames if x has names. The sole purpose of this is to make
it possible to access the dim [names] attribute at a later time.

is.array returns TRUE or FALSE depending on whether its argument is an array (i.e., hasa dim
attribute of positive length) or not. It is generic: you can write methods to handle specific classes of
objects, see InternalMethods.

Note

is.array is a primitive function.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

aperm,matrix, dim, dimnames.

Examples

dim(as.array(letters))
array(1:3, c(2,4)) # recycle 1:3 "2 2/3 times"

(11 [,2] [,3] [,4]
#01,1 1 3 2 1
#[2,] 2 1 3 2
as.data.frame Coerce to a Data Frame
Description

Functions to check if an object is a data frame, or coerce it if possible.

as.data.frame 31
Usage

as.data.frame (x, row.names = NULL, optional = FALSE, ...)

S3 method for class 'character'

as.data.frame(x, ...,

stringsAsFactors = FALSE)

S3 method for class 'list'

as.data.frame (x, row.names = NULL, optional = FALSE, ...,
cut .names = FALSE, col.names = names (x), fix.empty.names = TRUE,
check.names = !optional,
stringsAsFactors = FALSE)
S3 method for class 'matrix'
as.data.frame(x, row.names = NULL, optional = FALSE,
make.names = TRUE, ...,
stringsAsFactors = FALSE)
is.data.frame (x)
Arguments
x any R object.
row.names NULL or a character vector giving the row names for the data frame. Missing
values are not allowed.
optional logical. If TRUE, setting row names and converting column names (to syn-
tactic names: see make.names) is optional. Note that all of R’s base pack-
age as.data.frame () methods use optional only for column names
treatment, basically with the meaning of data.frame (*, check.names =
loptional). See also the make .names argument of the mat rix method.
additional arguments to be passed to or from methods.
stringsAsFactors
logical: should the character vector be converted to a factor?
cut .names logical or integer; indicating if column names with more than 256 (or
cut .names if that is numeric) characters should be shortened (and the last
6 characters replaced by " ... ").
col.names (optional) character vector of column names.

fix.empty.names
logical indicating if empty column names, i.e., "" should be fixed up (in
data.frame) or not.

check.names logical; passed to the data. frame () call.

make.names a logical, i.e., one of FALSE, NA, TRUE, indicating what should happen
if the row names (of the matrix x) are invalid. If they are invalid, the default,
TRUE, calls make .names (*x, unique=TRUE) ; make .names=NA will use
“automatic” row names and a FALSE value will signal an error for invalid row
names.

32 as.Date

Details

as.data.frame is a generic function with many methods, and users and packages can supply
further methods. For classes that act as vectors, often a copy of as.data.frame.vector will
work as the method.

If a list is supplied, each element is converted to a column in the data frame. Similarly, each column
of a matrix is converted separately. This can be overridden if the object has a class which has a
method for as.data.frame: two examples are matrices of class "model .matrix" (which
are included as a single column) and list objects of class "POSIX1t" which are coerced to class
"POSIXct".

Arrays can be converted to data frames. One-dimensional arrays are treated like vectors and two-
dimensional arrays like matrices. Arrays with more than two dimensions are converted to matrices
by ‘flattening’ all dimensions after the first and creating suitable column labels.

Character variables are converted to factor columns unless protected by I.

If a data frame is supplied, all classes preceding "data.frame" are stripped, and the row names
are changed if that argument is supplied.

If row.names = NULL, row names are constructed from the names or dimnames of x, otherwise
are the integer sequence starting at one. Few of the methods check for duplicated row names.
Names are removed from vector columns unless I.

Value

as.data. frame returns a data frame, normally with all row names " " if optional = TRUE.

is.data.frame returns TRUE if its argument is a data frame (that is, has "data.frame"
amongst its classes) and FALSE otherwise.

References
Chambers, J. M. (1992) Data for models. Chapter 3 of Statistical Models in S eds J. M. Chambers
and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

data.frame, as.data.frame.table for the table method (which has additional argu-
ments if called directly).

as.Date Date Conversion Functions to and from Character

Description

Functions to convert between character representations and objects of class "Date" representing
calendar dates.

as.Date

Usage

as.Date (x,

33

.)

S3 method for class 'character'

as.Date (x,

format, tryFormats = c("$Y-%m-%d", "%Y/%m/%d"),

optional = FALSE, ...)
S3 method for class 'numeric'

as.Date (x,

origin, ...)

S3 method for class 'POSIXct'

as.Date (x,

tz = "UTIC", ...)

S3 method for class 'Date'

format (x,

.)

S3 method for class 'Date'

as.character(x, ...)
Arguments
X an object to be converted.
format character string. If not specified, it will try tryFormats one by one on
the first non-NA element, and give an error if none works. Otherwise, the pro-
cessing is via strptime () whose help page describes available conversion
specifications.
tryFormats character vector of format strings to try if format is not specified.
optional logical indicating to return NA (instead of signalling an error) if the format
guessing does not succeed.
origin a Date object, or something which can be coerced by as.Date (origin,
.. .) tosuch an object.
tz a time zone name.
further arguments to be passed from or to other methods, including format for
as.character and as.Date methods.
Details

The usual vector re-cycling rules are applied to x and format so the answer will be of length that
of the longer of the vectors.

Locale-specific conversions to and from character strings are used where appropriate and available.
This affects the names of the days and months.

The as.Date methods accept character strings, factors, logical NA and objects of classes
"POSIX1t" and "POSIXct". (The lastis converted to days by ignoring the time after midnight
in the representation of the time in specified time zone, default UTC.) Also objects of class "date"
(from package date) and "dates" (from package chron). Character strings are processed as far
as necessary for the format specified: any trailing characters are ignored.

as.Date will accept numeric data (the number of days since an epoch), but only if origin is

supplied.

The format and as.character methods ignore any fractional part of the date.

34 as.Date

Value

The format and as.character methods return a character vector representing the date. NA
dates are returned as NA_character_.

The as .Date methods return an object of class "Date".

Conversion from other Systems

Most systems record dates internally as the number of days since some origin, but this is fraught
with problems, including

* Is the origin day O or day 1?7 As the ‘Examples’ show, Excel manages to use both choices for
its two date systems.

* If the origin is far enough back, the designers may show their ignorance of calendar systems.
For example, Excel’s designer thought 1900 was a leap year (claiming to copy the error from
earlier DOS spreadsheets), and Matlab’s designer chose the non-existent date of ‘January
0, 0000’ (there is no such day), not specifying the calendar. (There is such a year in the
‘Gregorian’ calendar as used in ISO 8601:2004, but that does say that it is only to be used for
years before 1582 with the agreement of the parties in information exchange.)

The only safe procedure is to check the other systems values for known dates: reports on the Internet
(including R-help) are more often wrong than right.

Note

The default formats follow the rules of the ISO 8601 international standard which expresses a day
as "2001-02-03".

If the date string does not specify the date completely, the returned answer may be system-specific.
The most common behaviour is to assume that a missing year, month or day is the current one. If
it specifies a date incorrectly, reliable implementations will give an error and the date is reported as
NA. Unfortunately some common implementations (such as ‘glibc’) are unreliable and guess at
the intended meaning.

Years before 1CE (aka 1AD) will probably not be handled correctly.

References

International Organization for Standardization (2004, 1988, 1997, ...) ISO 8601. Data elements
and interchange formats — Information interchange — Representation of dates and times. For links
to versions available on-line see (at the time of writing) https://www.gsl.net/glsmd/
isopdf.htm.

See Also

Date for details of the date class; 1ocales to query or set a locale.

Your system’s help pages on strftime and strptime to see how to specify their formats.
Windows users will find no help page for st rpt ime: code based on ‘glibc’ is used (with cor-
rections), so all the format specifiers described here are supported, but with no alternative number
representation nor era available in any locale.

https://www.qsl.net/g1smd/isopdf.htm
https://www.qsl.net/g1smd/isopdf.htm

as.environment 35

Examples

locale-specific version of the date
format (Sys.Date (), "%a %b %d")

read in date info in format 'ddmmmyyyy'

This will give NA(s) in some locales; setting the C locale

as in the commented lines will overcome this on most systems.
lct <- Sys.getlocale("LC_TIME"); Sys.setlocale("LC_TIME", "C")
x <- c¢("1ljanl960", "23janl960", "31marl960", "30julloe0")

z <- as.Date(x, "%d%b%Y")

Sys.setlocale("LC_TIME", lct)

z

read in date/time info in format 'm/d/y'
dates <- c("02/27/92", "02/27/92", "01/14/92", "02/28/92", "02/01/92")
as.Date (dates, "%m/%d/%y")

date given as number of days since 1900-01-01 (a date in 1989)
as.Date (32768, origin = "1900-01-01")

Excel i1s said to use 1900-01-01 as day 1 (Windows default) or

1904-01-01 as day 0 (Mac default), but this is complicated by Excel
incorrectly treating 1900 as a leap year.

So for dates (post-1901) from Windows Excel

as.Date (35981, origin = "1899-12-30") # 1998-07-05

and Mac Excel

as.Date (34519, origin = "1904-01-01") # 1998-07-05

(these values come from http://support.microsoft.com/kb/214330)

Experiment shows that Matlab's origin is 719529 days before ours,

(it takes the non-existent 0000-01-01 as day 1)

so Matlab day 734373 can be imported as

as.Date (734373, origin = "1970-01-01") - 719529 # 2010-08-23

(value from

http://www.mathworks.de/de/help/matlab/matlab_prog/represent-date-and-times—-in-MATLAB.htn

Time zone effect

z <- ISOdate (2010, 04, 13, c¢(0,12)) # midnight and midday UTC
as.Date(z) # in UTC

these time zone names are common

as.Date(z, tz = "Nz2")

as.Date(z, tz "HST") # Hawaii

as.environment Coerce to an Environment Object

Description

A generic function coercing an R object to an environment. A number or a character string is
converted to the corresponding environment on the search path.

36

Usage

as.environment

as.environment (x)

Arguments

X

Details

an R object to convert. If it is already an environment, just return it. If it is
a positive number, return the environment corresponding to that position on the
search list. If it is —1, the environment it is called from. If it is a character string,
match the string to the names on the search list.

If it is a list, the equivalent of 1ist2env (x, parent = emptyenv ()) is
returned.

If is.object(x) 1is true and it has a class for which an
as.environment method is found, that is used.

This is a primitive generic function: you can write methods to handle specific classes of objects, see

InternalMethods.

Value

The corresponding environment object.

Author(s)

John Chambers

See Also

environment for creation and manipulation, search; 1ist2env.

Examples

as.environment (1) ## the global environment
identical (globalenv (), as.environment (1)) ## is TRUE
try(## <<- stats need not be attached
as.environment ("package:stats"))
ee <- as.environment (list(a = "A", b = pi, ch = letters([1:8]))
ls (ee) # names of objects in ee
utils::1ls.str (ee)

as.function 37

as.function Convert Object to Function

Description

as.function is a generic function which is used to convert objects to functions.

as.function.default works on a list x, which should contain the concatenation of a formal
argument list and an expression or an object of mode "call" which will become the function
body. The function will be defined in a specified environment, by default that of the caller.

Usage

as.function(x, ...)

Default S3 method:

as.function(x, envir = parent.frame(), ...)
Arguments
x object to convert, a list for the default method.

additional arguments, depending on object

envir environment in which the function should be defined

Value

The desired function.

Note

For ancient historical reasons, envir = NULL uses the global environment rather than the base
environment. Please use envir = globalenv () instead if this is what you want, as the special
handling of NULL may change in a future release.

Author(s)

Peter Dalgaard

See Also

function; alist which is handy for the construction of argument lists, etc.

Examples

as.function(alist(a = , b = 2, a+b))
as.function(alist(a = , b = atb)) (3)

|
N
~

38

as.POSIX*

as.POSIXx*

Date-time Conversion Functions

Description

Functions to manipulate

dates and times.

objects of classes "POSIX1t" and "POSIXct" representing calendar

Usage
as.POSIXct(x, tz ="", ...)
as.POSIX1lt (x, tz |
S3 method for class 'character'
as.POSIXlt(x, tz = "", format,
tryFormats = c("%$Y-%m-%d %H:%M:%0S",
"$Y/%m/%d $H:%M:%0S",
"SY-3m-3d $H:%$M",
"$Y/%m/%d SH:SM",
"sY-sm-3d",
"SY/%m/%d"),
optional = FALSE, ...)
Default S3 method:
as.POSIX1lt (x, tz = "",
optional = FALSE, ...)
S3 method for class 'numeric'
as.POSIX1lt(x, tz = "", origin, ...)
S3 method for class 'POSIX1t'
as.double (x,)
Arguments
x R object to be converted.
tz time zone specification to be used for the conversion, if one is required. System-
specific (see time zones), but "" is the current time zone, and "GMT" is UTC
(Universal Time, Coordinated). Invalid values are most commonly treated as
UTC, on some platforms with a warning.
further arguments to be passed to or from other methods.
format character string giving a date-time format as used by st rpt ime.
tryFormats character vector of format strings to try if format is not specified.
optional logical indicating to return NA (instead of signalling an error) if the format
guessing does not succeed.
origin a date-time object, or something which can be coerced by as .POSIXct (tz =

"GMT") to such an object.

as.POSIX* 39

Details

The as .POSIX« functions convert an object to one of the two classes used to represent date/times
(calendar dates plus time to the nearest second). They can convert objects of the other class and of
class "Date™" to these classes. Dates without times are treated as being at midnight UTC.

They can also convert character strings of the formats "2001-02-03" and "2001/02/03"
optionally followed by white space and a time in the format "14:52" or "14:52:03". (For-
mats such as "01/02/03" are ambiguous but can be converted via a format specification by
strptime.) Fractional seconds are allowed. Alternatively, format can be specified for charac-
ter vectors or factors: if it is not specified and no standard format works for all non-NA inputs an
error is thrown.

If format is specified, remember that some of the format specifications are locale-specific, and
you may need to set the LC__TIME category appropriately via Sys.setlocale. This most often
affects the use of $b, $B (month names) and $p (AM/PM).

Logical NAs can be converted to either of the classes, but no other logical vectors can be.
If you are given a numeric time as the number of seconds since an epoch, see the examples.

Character input is first converted to class "POSIX1t" by strptime: numeric input is first con-
verted to "POSIXct". Any conversion that needs to go between the two date-time classes requires
a time zone: conversion from "POSIX1t" to "POSIXct" will validate times in the selected time
zone. One issue is what happens at transitions to and from DST, for example in the UK

as.POSIXct (strptime("2011-03-27 01:30:00", "
as.POSIXct (strptime ("2010-10-31 01:30:00", "

are respectively invalid (the clocks went forward at 1:00 GMT to 2:00 BST) and ambiguous (the
clocks went back at 2:00 BST to 1:00 GMT). What happens in such cases is OS-specific: one
should expect the first to be NA, but the second could be interpreted as either BST or GMT (and
common OSes give both possible values). Note too (see st rftime) that OS facilities may not
format invalid times correctly.

Value

as.POSIXct and as.POSIX1t return an object of the appropriate class. If tz was specified,
as.POSIX1t will give an appropriate "t zone™" attribute. Date-times known to be invalid will be
returned as NA.

Note

Some of the concepts used have to be extended backwards in time (the usage is said to be ‘pro-
leptic’). For example, the origin of time for the "POSIXct™" class, ‘1970-01-01 00:00.00 UTC’,
is before UTC was defined. More importantly, conversion is done assuming the Gregorian cal-
endar which was introduced in 1582 and not used universally until the 20th century. One of the
re-interpretations assumed by ISO 8601:2004 is that there was a year zero, even though current
year numbering (and zero) is a much later concept (525 AD for year numbers from 1 AD).

Conversions between "POSIX1t" and "POSIXct" of future times are speculative exceptin UTC.
The main uncertainty is in the use of and transitions to/from DST (most systems will assume the
continuation of current rules but these can be changed at short notice).

40 as.POSIX*

If you want to extract specific aspects of a time (such as the day of the week) just convert it to
class "POSIX1t" and extract the relevant component(s) of the list, or if you want a character
representation (such as a named day of the week) use the format method.

If a time zone is needed and that specified is invalid on your system, what happens is system-specific
but attempts to set it will probably be ignored.

Conversion from character needs to find a suitable format unless one is supplied (by trying common
formats in turn): this can be slow for long inputs.

See Also

DateTimeClasses for details of the classes; st rpt ime for conversion to and from character repre-
sentations.

Sys.timezone for details of the (system-specific) naming of time zones.

locales for locale-specific aspects.

Examples

(z <= Sys.time())

unclass (z)

floor (unclass (z)/86400)

(now <- as.POSIX1lt (Sys.time())
unlist (unclass (now))

nowSyear + 1900

months (now); weekdays (now)

the current datetime, as class "POSIXct"

a large integer

the number of days since 1970-01-01 (UTC)
the current datetime, as class "POSIX1t"
a list shown as a named vector

see ?DateTimeClasses

see 7?months

S e e — = o =

suppose we have a time in seconds since 1960-01-01 00:00:00 GMT
(the origin used by SAS)

z <— 1472562988

ways to convert this

as.POSIXct (z, origin = "1960-01-01") # local
as.POSIXct (z, origin = "1960-01-01", tz = "GMT") # in UTC

SPSS dates (R-help 2006-02-16)
z <- c(10485849600, 10477641600, 10561104000, 10562745600)
as.Date(as.POSIXct (z, origin = "1582-10-14", tz = "GMTI"))

Stata date-times: milliseconds since 1960-01-01 00:00:00 GMT
format %tc excludes leap-seconds, assumed here

For format %tC including leap seconds, see foreign::read.dta()
z <- 1579598122120

op <- options(digits.secs = 3)
avoid rounding down: milliseconds are not exactly representable
as.POSIXct ((z+0.1) /1000, origin = "1960-01-01")

options (op)

Matlab 'serial day number' (days and fractional days)

z <= 7.343736909722223e5 # 2010-08-23 16:35:00

as.POSIXct ((z — 719529)%86400, origin = "1970-01-01", tz = "UTC")

as.POSIX1lt (Sys.time (), "GMT") # the current time in UTC

Asls

##

as.
as.

as
as

as.

41

These may not be correct names on your system

POSIX1t (Sys.time (), "America/New_York") # in New York
POSIX1t (Sys.time (), "ESTS5EDT") # alternative.
.POSIX1t (Sys.time (), "EST") # somewhere in Eastern Canada
.POSIX1lt (Sys.time (), "HST") # in Hawaii

POSIX1t (Sys.time (), "Australia/Darwin")

tab <- file.path(R.home ("share"), "zoneinfo", "zonel970.tab")
if(file.exists (tab)) {

cols <- c("code", "coordinates", "Tz", "comments")
tmp <- read.delim(file.path(R.home ("share"), "zoneinfo", "zonel970.tab"),

header = FALSE, comment.char = "#", col.names = cols)
if (interactive()) View (tmp)
head (tmp, 10)
}
AsIs Inhibit Interpretation/Conversion of Objects
Description

Change the class of an object to indicate that it should be treated ‘as is’.

Usage

)

I(x)

Arguments

X

an object

Details

Function I has two main uses.

* In function data.frame. Protecting an object by enclosing it in I () in a call to
data.frame inhibits the conversion of character vectors to factors and the dropping of
names, and ensures that matrices are inserted as single columns. I can also be used to
protect objects which are to be added to a data frame, or converted to a data frame via
as.data.frame.

It achieves this by prepending the class "AsIs" to the object’s classes. Class "AsIs" has a
few of its own methods, including for [, as.data.frame, print and format.

* In function formula. There it is used to inhibit the interpretation of operators such as "+",
"—m_mimand "~" as formula operators, so they are used as arithmetical operators. This is
interpreted as a symbol by terms . formula.

42 asplit

Value

A copy of the object with class "AsIs" prepended to the class(es).

References

Chambers, J. M. (1992) Linear models. Chapter 4 of Statistical Models in S eds J. M. Chambers
and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

data.frame, formula

asplit Split Array/Matrix By Its Margins

Description

Split an array or matrix by its margins.

Usage

asplit (x, MARGIN)

Arguments

X an array, including a matrix.

MARGIN a vector giving the margins to split by. E.g., for a matrix 1 indicates rows, 2
indicates columns, c (1, 2) indicates rows and columns. Where x has named
dimnames, it can be a character vector selecting dimension names.

Details

Since R 4.1.0, one can also obtain the splits (less efficiently) using apply (x, MARGIN,
identity, simplify = FALSE). The values of the splits can also be obtained (less efficiently)
by split (x, slice.index (x, MARGIN)).

Value

A “list array” with dimension dv and each element an array of dimension de and dimnames pre-
served as available, where dv and de are, respectively, the dimensions of x included and not included
in MARGIN.

assign 43

Examples

A 3-dimensional array of dimension 2 x 3 x 4:

d<-2 : 4
x <- array(seqg_len(prod(d)), d)
X

Splitting by margin 2 gives a 1-d list array of length 3
consisting of 2 x 4 arrays:

asplit (x, 2)

Spltting by margins 1 and 2 gives a 2 x 3 list array

consisting of 1-d arrays of length 4:a

asplit (x, c(1, 2))

Compare to

split(x, slice.index(x, c (1, 2)))

A 2 x 3 matrix:

(x <= matrix(1 : 6, 2, 3))

To split x by its rows, one can use
asplit(x, 1)

or less efficiently

split(x, slice.index(x, 1))

split(x, row(x))

assign Assign a Value to a Name

Description

Assign a value to a name in an environment.

Usage
assign(x, value, pos = -1, envir = as.environment (pos),
inherits = FALSE, immediate = TRUE)
Arguments
x a variable name, given as a character string. No coercion is done, and the first
element of a character vector of length greater than one will be used, with a
warning.
value a value to be assigned to x.
pos where to do the assignment. By default, assigns into the current environment.
See ‘Details’ for other possibilities.
envir the environment to use. See ‘Details’.
inherits should the enclosing frames of the environment be inspected?

immediate an ignored compatibility feature.

44 assign

Details

There are no restrictions on the name given as x: it can be a non-syntactic name (see
make.names).

The pos argument can specify the environment in which to assign the object in any of several ways:
as —1 (the default), as a positive integer (the position in the search list); as the character string
name of an element in the search list; or as an environment (including using sys.frame to
access the currently active function calls). The envir argument is an alternative way to specify an
environment, but is primarily for back compatibility.

assign does not dispatch assignment methods, so it cannot be used to set elements of vectors,
names, attributes, etc.

Note that assignment to an attached list or data frame changes the attached copy and not the original
object: see attach and with.

Value

This function is invoked for its side effect, which is assigning value to the variable x. If noenvir
is specified, then the assignment takes place in the currently active environment.

If inherits is TRUE, enclosing environments of the supplied environment are searched until the
variable x is encountered. The value is then assigned in the environment in which the variable
is encountered (provided that the binding is not locked: see lockBinding: if it is, an error is
signaled). If the symbol is not encountered then assignment takes place in the user’s workspace (the
global environment).

If inherits is FALSE, assignment takes place in the initial frame of envir, unless an existing
binding is locked or there is no existing binding and the environment is locked (when an error is
signaled).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

<—, get, the inverse of assign (), exists, environment.

Examples

for(i in 1:6) { #-- Create objects 'r.1', 'r.2', ... 'r.6' —-
nam <- paste("r", i, sep = ".")
assign (nam, 1:i)

}

ls (pattern = ""r..s$")
##-— Global assignment within a function:
myf <- function(x) {
innerf <- function(x) assign("Global.res", x"2, envir = .GlobalEnv)

innerf (x+1)

assignOps 45

myf (3)
Global.res # 16

a <- 1:4
assign("al[l]l", 2)
al[l] == 2 # FALSE
get ("a[l]") == 2 # TRUE
assignOps Assignment Operators
Description

Assign a value to a name.

Usage

x <- value
x <<- wvalue
value —-> x
value —->> x

x = value
Arguments
X a variable name (possibly quoted).
value a value to be assigned to x.
Details

There are three different assignment operators: two of them have leftwards and rightwards forms.

The operators <— and = assign into the environment in which they are evaluated. The operator
<— can be used anywhere, whereas the operator = is only allowed at the top level (e.g., in the
complete expression typed at the command prompt) or as one of the subexpressions in a braced list
of expressions.

The operators <<— and —>> are normally only used in functions, and cause a search to be made
through parent environments for an existing definition of the variable being assigned. If such a
variable is found (and its binding is not locked) then its value is redefined, otherwise assignment
takes place in the global environment. Note that their semantics differ from that in the S language,
but are useful in conjunction with the scoping rules of R. See ‘The R Language Definition’ manual
for further details and examples.

In all the assignment operator expressions, x can be a name or an expression defining a part of an
object to be replaced (e.g., z[[1]]). A syntactic name does not need to be quoted, though it can
be (preferably by backticks).

The leftwards forms of assignment <— = <<- group right to left, the other from left to right.

46 attach

Value

value. Thus one can use a <— b <- ¢ <- 6.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer (for =).

See Also
assign (and its inverse get), for “subassignment” such as x[1] <- v, see [<—; further,
environment.
attach Attach Set of R Objects to Search Path
Description

The database is attached to the R search path. This means that the database is searched by R when
evaluating a variable, so objects in the database can be accessed by simply giving their names.

Usage
attach (what, pos = 2L, name = deparsel (substitute (what), backtick=FALSE),
warn.conflicts = TRUE)
Arguments
what ‘database’. This can be a data.frame ora 1ist or a R data file created with
save or NULL or an environment. See also ‘Details’.
pos integer specifying position in search () where to attach.
name name to use for the attached database. Names starting with package: are

reserved for 1library.

warn.conflicts
logical. If TRUE, message () s are printed about conf1licts from attaching
the database, unless that database contains an object . conflicts.OK. A con-
flict is a function masking a function, or a non-function masking a non-function.

NB: Even though the name is warn.conflicts for historical reasons, the
messages about conflicts are nof warning () s but message () s.

attach 47

Details

When evaluating a variable or function name R searches for that name in the databases listed by
search. The first name of the appropriate type is used.

By attaching a data frame (or list) to the search path it is possible to refer to the variables in the
data frame by their names alone, rather than as components of the data frame (e.g., in the example
below, height rather than women$height).

By default the database is attached in position 2 in the search path, immediately after the user’s
workspace and before all previously attached packages and previously attached databases. This can
be altered to attach later in the search path with the pos option, but you cannot attach at pos = 1.

The database is not actually attached. Rather, a new environment is created on the search path and
the elements of a list (including columns of a data frame) or objects in a save file or an environment
are copied into the new environment. If you use <<— or assign to assign to an attached database,
you only alter the attached copy, not the original object. (Normal assignment will place a modified
version in the user’s workspace: see the examples.) For this reason at tach can lead to confusion.

One useful ‘trick’ is to use what = NULL (or equivalently a length-zero list) to create a new
environment on the search path into which objects can be assigned by assign or load or
Sys.source.

Names starting "package : " are reserved for 1 ibrary and should not be used by end users. At-
tached files are by default given the name f£1i1le: what. The name argument given for the attached
environment will be used by search and can be used as the argument to as . environment.

Value

The environment is returned invisibly with a "name" attribute.

Good practice

attach has the side effect of altering the search path and this can easily lead to the wrong object
of a particular name being found. People do often forget to det ach databases.

In interactive use, with is usually preferable to the use of attach/detach, unless what is a
save () -produced file in which case attach () is a (safety) wrapper for 1oad ().

In programming, functions should not change the search path unless that is their purpose. Often
with can be used within a function. If not, good practice is to

* Always use a distinctive name argument, and

» To immediately follow the at tach call by an on.exit call to detach using the distinctive

name.

This ensures that the search path is left unchanged even if the function is interrupted or if code after
the at tach call changes the search path.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

48

See Also

attr

library, detach, search, objects, environment, with.

Examples

require (utils)

summary (women$height)
attach (women)

summary (height)
height <- heightx2.54

find ("height")

summary (height)

rm (height)

summary (height)

height <<- height=*25.4
find ("height")

summary (height)

detach ("women")
summary (womenS$Sheight)

#

#

refers to variable 'height' in the data frame
The same variable now available by name

Don't do this. It creates a new variable

in the user's workspace

The new variable in the workspace

The original variable.
Change the copy in the attached environment

The changed copy

unchanged

Not run: ## create an environment on the search path and populate it

sys.source ("myfuns.R", envir = attach (NULL, name = "myfuns"))
End (Not run)
attr Object Attributes

Description

Get or set specific attributes of an object.

Usage

attr (x, which, exact
attr(x, which) <- wvalue

FALSE)

Arguments
x an object whose attributes are to be accessed.
which a non-empty character string specifying which attribute is to be accessed.
exact logical: should which be matched exactly?

value an object, the new value of the attribute, or NULL to remove the attribute.

attributes 49

Details

These functions provide access to a single attribute of an object. The replacement form causes the
named attribute to take the value specified (or create a new attribute with the value given).

The extraction function first looks for an exact match to which amongst the attributes of x, then
(unless exact = TRUE) a unique partial match. (Setting opt ions (warnPartialMatchAttr
= TRUE) causes partial matches to give warnings.)

The replacement function only uses exact matches.

Note that some attributes (namely class, comment, dim, dimnames, names, row.names
and t sp) are treated specially and have restrictions on the values which can be set. (Note that this
is not true of 1evels which should be set for factors via the 1evels replacement function.)

The extractor function allows (and does not match) empty and missing values of which: the re-
placement function does not.

NULL objects cannot have attributes and attempting to assign one by attr gives an error.

Both are primitive functions.

Value
For the extractor, the value of the attribute matched, or NULL if no exact match is found and no or
more than one partial match is found.

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

attributes

Examples

create a 2 by 5 matrix
x <-= 1:10
attr (x,"dim") <- c(2, 5)

attributes Object Attribute Lists

Description

These functions access an object’s attributes. The first form below returns the object’s attribute
list. The replacement forms uses the list on the right-hand side of the assignment as the object’s
attributes (if appropriate).

50

attributes

Usage

attributes (x)
attributes (x) <- value
mostattributes (x) <- wvalue

Arguments

x any R object

value an appropriate named 1ist of attributes, or NULL.
Details

Unlike at t r itis not an error to set attributes on a NULL object: it will first be coerced to an empty
list.

Note that some attributes (namely class, comment, dim, dimnames, names, row.names
and t sp) are treated specially and have restrictions on the values which can be set. (Note that this
is not true of 1levels which should be set for factors via the 1evels replacement function.)

Attributes are not stored internally as a list and should be thought of as a set and not a vec-
tor, i.e, the order of the elements of attributes () does not matter. This is also reflected
by identical ()’s behaviour with the default argument attrib.as.set = TRUE. Attributes
must have unique names (and NA is taken as "NA", not a missing value).

Assigning attributes first removes all attributes, then sets any dim attribute and then the remain-
ing attributes in the order given: this ensures that setting a dim attribute always precedes the
dimnames attribute.

The mostattributes assignment takes special care for the dim, names and dimnames at-
tributes, and assigns them only when known to be valid whereas an attributes assignment
would give an error if any are not. It is principally intended for arrays, and should be used with care
on classed objects. For example, it does not check that row . names are assigned correctly for data
frames.

The names of a pairlist are not stored as attributes, but are reported as if they were (and can be set
by the replacement form of attributes).

NULL objects cannot have attributes and attempts to assign them will promote the object to an empty
list.

Both assignment and replacement forms of att ributes are primitive functions.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

attr, structure.

autoload 51

Examples

x <- cbind(a = 1:3, pi = pi) # simple matrix with dimnames
attributes (x)

strip an object's attributes:
attributes (x) <- NULL
x # now just a vector of length 6

mostattributes (x) <- list (mycomment = "really special", dim = 3:2,
dimnames = 1list (LETTERS[1:3], letters[l:5]), names = paste(l:6))
x # dim(), but not {dim}names
autoload On-demand Loading of Packages
Description

autoload creates a promise-to-evaluate autoloader and stores it with name name in
.AutoloadEnv environment. When R attempts to evaluate name, autoloader is run, the
package is loaded and name is re-evaluated in the new package’s environment. The result is that R
behaves as if package was loaded but it does not occupy memory.

.Autoloaded contains the names of the packages for which autoloading has been promised.

Usage

autoload (name, package, reset = FALSE, ...)
autoloader (name, package, ...)

.AutoloadEnv
.Autoloaded
Arguments
name string giving the name of an object.
package string giving the name of a package containing the object.
reset logical: for internal use by autoloader.

other arguments to 1ibrary.

Value

This function is invoked for its side-effect. It has no return value.

See Also

delayedAssign, library

52 backsolve

Examples

require (stats)
autoload("interpSpline", "splines")
search ()

1s ("Autoloads")

.Autoloaded

x <—- sort(stats::rnorm(1l2))
y <= x"2

is <- interpSpline(x, V)
search () ## now has splines
detach ("package:splines")
search ()

is2 <- interpSpline(x, y+x)
search () ## and again
detach ("package:splines")

backsolve Solve an Upper or Lower Triangular System

Description

Solves a triangular system of linear equations.

Usage

backsolve(r, x, k = ncol(r), upper.tri = TRUE,
transpose = FALSE)

forwardsolve(l, x, k = ncol(l), upper.tri = FALSE,
transpose = FALSE)

Arguments
r, 1 an upper (or lower) triangular matrix giving the coefficients for the system to be
solved. Values below (above) the diagonal are ignored.
X a matrix whose columns give the right-hand sides for the equations.
k The number of columns of r and rows of x to use.
upper.tri logical; if TRUE (default), the upper triangular part of r is used. Otherwise, the
lower one.
transpose logical; if TRUE, solve 7’ x y = x for y, i.e., t (r) $*% y == x.
Details

Solves a system of linear equations where the coefficient matrix is upper (or ‘right’, ‘R’) or lower
(‘left’, ‘L) triangular.

x <—backsolve (R, b) solves Rz = b, and
x <- forwardsolve (L, b) solves Lz = b, respectively.

basename 53

The r/1 must have at least k rows and columns, and x must have at least k rows.

This is a wrapper for the level-3 BLAS routine dt rsm.

Value

The solution of the triangular system. The result will be a vector if x is a vector and a matrix if x is
a matrix.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Dongarra, J. J., Bunch, J. R., Moler, C. B. and Stewart, G. W. (1978) LINPACK Users Guide.
Philadelphia: STAM Publications.

See Also

chol, gr, solve.

Examples

upper triangular matrix 'r':
r <- rbind(c(1,2,3),

c(0,1,1),

c(0,0,2))
(y <- backsolve(r, x <- c(8,4,2))) # -1 3 1
r $+x% y # == x = (8,4,2)

backsolve (r, x, transpose = TRUE) # 8 -12 -5

basename Manipulate File Paths

Description

basename removes all of the path up to and including the last path separator (if any).

dirname returns the part of the path up to but excluding the last path separator, or " . " if there
is no path separator.

Usage
basename (path)
dirname (path)
Arguments

path character vector, containing path names.

54 Bessel

Details

tilde expansion of the path will be performed.

Trailing path separators are removed before dissecting the path, and for dirname any trailing file
separators are removed from the result.

Value

A character vector of the same length as path. A zero-length input will give a zero-length output
with no error.

Paths not containing any separators are taken to be in the current directory, so dirname returns

mw . ".
If an element of path is NA, so is the result.

" " is not a valid pathname, but is returned unchanged.

Behaviour on Windows

On Windows this will accept either \ or / as the path separator, but di rname will return a path
using / (except if on a network share, when the leading \ \ will be preserved). Expect these only to
be able to handle complete paths, and not for example just a network share or a drive.

UTF-8-encoded path names not valid in the current locale can be used.

Note
These are not wrappers for the POSIX system functions of the same names: in particular they do
not have the special handling of the path " /" and of returning " . " for empty strings.

See Also

file.path, path.expand.

Examples

basename (file.path ("", "pl", "p2", "p3", c("filel", "file2")))
dirname (file.path("","pl","p2","p3", "filename"))

Bessel Bessel Functions

Description

Bessel Functions of integer and fractional order, of first and second kind, J,, and Y,,, and Modified
Bessel functions (of first and third kind), I,, and K.

Bessel 55

Usage
besselI(x, nu, expon.scaled = FALSE)
besselK(x, nu, expon.scaled = FALSE)
besselJ (x, nu)
besselY (x, nu)
Arguments
x numeric, > 0.
nu numeric; The order (maybe fractional and negative) of the corresponding Bessel
function.

expon.scaled logical; if TRUE, the results are exponentially scaled in order to avoid overflow
(1) or underflow (K,), respectively.

Details

If expon.scaled = TRUE, e %], (), or e K, (z) are returned.

For v < 0, formulae 9.1.2 and 9.6.2 from Abramowitz & Stegun are applied (which is probably
suboptimal), except for besselK which is symmetric in nu.

The current algorithms will give warnings about accuracy loss for large arguments. In some cases,
these warnings are exaggerated, and the precision is perfect. For large nu, say in the order of
millions, the current algorithms are rarely useful.

Value

Numeric vector with the (scaled, if expon.scaled = TRUE) values of the corresponding Bessel
function.

The length of the result is the maximum of the lengths of the parameters. All parameters are recycled
to that length.

Author(s)

Original Fortran code: W. J. Cody, Argonne National Laboratory
Translation to C and adaptation to R: Martin Maechler <maechler@stat.math.ethz.ch>.

Source

The C code is a translation of Fortran routines from https://www.netlib.org/specfun/
ribesl, ‘. ./rjbesl’, etc. The four source code files for bessel[IJKY] each contain a paragraph
“Acknowledgement” and “References”, a short summary of which is

bessell based on (code) by David J. Sookne, see Sookne (1973). .. Modifications. . . An earlier ver-
sion was published in Cody (1983).

bessel] as bessell

besselK based on (code) by J. B. Campbell (1980). .. Modifications. ..

besselY draws heavily on Temme’s Algol program for Y'...and on Campbell’s programs for Y,, ()
....... heavily modified.

https://www.netlib.org/specfun/ribesl
https://www.netlib.org/specfun/ribesl

56 Bessel

References

Abramowitz, M. and Stegun, 1. A. (1972). Handbook of Mathematical Functions. Dover, New
York; Chapter 9: Bessel Functions of Integer Order.

In order of “Source” citation above:

Sookne, David J. (1973). Bessel Functions of Real Argument and Integer Order. Journal of Re-
search of the National Bureau of Standards, TTB, 125-132. doi:10.6028/jres.077B.012.

Cody, William J. (1983). Algorithm 597: Sequence of modified Bessel functions of the first kind.
ACM Transactions on Mathematical Software, 9(2), 242-245. doi:10.1145/357456.357462.

Campbell, J.B. (1980). On Temme’s algorithm for the modified Bessel function of the third kind.
ACM Transactions on Mathematical Software, 6(4), 581-586. doi:10.1145/355921.355928.

Campbell, J.B. (1979). Bessel functions J_nu(x) and Y_nu(x) of float order and float argument.
Computer Physics Communications, 18, 133—142. doi:10.1016/00104655(79)900304.

Temme, Nico M. (1976). On the numerical evaluation of the ordinary Bessel function of the second
kind. Journal of Computational Physics, 21, 343-350. doi:10.1016/00219991(76)900322.

See Also

Other special mathematical functions, such as gamma, I'(z), and beta, B(z).
Examples

require (graphics)

nus <- c(0:5, 10, 20)

x <- seq(0, 4, length.out = 501)

plot(x, x, ylim = c(0, 6), ylab = "", type = "n",
main = "Bessel Functions I_nu(x)")
for(nu in nus) lines(x, besselI(x, nu = nu), col = nu + 2)

legend (0, 6, legend = paste("nu=", nus), col = nus + 2, lwd = 1)

x <- seq(0, 40, length.out = 801); yl <= c(-.5, 1)
plot(x, x, ylim = yl, ylab = "", type = "n",
main = "Bessel Functions J_nu(x)")
abline (h=0, v=0, lty=3)
for(nu in nus) lines(x, besselJ(x, nu = nu), col = nu + 2)
legend ("topright", legend = paste("nu=", nus), col = nus + 2, lwd = 1, bty="n")

Negative nu's ————————————————————— -
Xx <= 2:7

nu <- seq(-10, 9, length.out = 2001)

— I() —— ——— ——— ———

matplot (nu, t (outer (xx, nu, bessell)), type = "1", ylim = c(-50, 200),
[nu] (x), " for fixed ", x,

main = expression(paste("Bessel ", I
", as ", f(nu))),
xlab = expression(nu))
abline(v = 0, col = "light gray", 1lty = 3)

legend (5, 200, legend = paste("x=", xx), col=seq(xx), lty=1:5)

https://doi.org/10.6028/jres.077B.012
https://doi.org/10.1145/357456.357462
https://doi.org/10.1145/355921.355928
https://doi.org/10.1016/0010-4655%2879%2990030-4
https://doi.org/10.1016/0021-9991%2876%2990032-2

Bessel 57

R R
bJ <- t(outer(xx, nu, besselld))
matplot (nu, bJ, type = "1", ylim = c(-500,

200),
xlab = quote(nu), ylab = quote(J[nu] (x))
main = expression(paste("Bessel ", J[nu]
abline(v = 0, col = "light gray", lty = 3)
legend ("topright", legend = paste("x=", xx), col=seqg(xx), lty=1:5)

(x), " for fixed ", x)))

ZOOM into right part:

matplot (nu[nu > -2], bJ[nu > -2,], type = "1",

xlab = quote(nu), ylab = quote(J[nu] (x)),

main = expression (paste("Bessel ", J[nu] (x), " for fixed ", x)))
abline (h=0, v = 0, col = "gray60", lty = 3)

legend ("topright", legend = paste("x=", xx), col=seqg(xx), lty=1:5)

- X —=> 0 =
x0 <- 2”seqg(-16, 5, length.out=256)
plot (range (x0), c(le-40, 1), log = "xy", xlab = "x", ylab = "", type = "n",
main = "Bessel Functions J_nu(x) near 0\n log - log scale") ; axis (2, at=1)
for(nu in sort (c(nus, nus+0.5)))
lines (x0, besselJ(x0, nu = nu), col = nu + 2, lty= 1+ (nu%%l > 0))
legend ("right", legend = paste("nu=", paste(nus, nus+0.5, sep=", ")),

col = nus + 2, lwd = 1, bty="n")

x0 <= 2”seg(-10, 8, length.out=256)

plot (range (x0), 10”%c(-100, 80), log = "xy", xlab = "x", ylab = "", type = "n",

main = "Bessel Functions K _nu(x) near 0\n log - log scale") ; axis(2, at=1)
for(nu in sort (c(nus, nus+0.5)))

lines (x0, besselK(x0, nu = nu), col = nu + 2, lty= 1+ (nu%%l > 0))
legend ("topright", legend = paste("nu=", paste(nus, nus + 0.5, sep =", ")),

col = nus + 2, 1lwd = 1, bty="n")

x <- x[x > 0]

plot (x, x, ylim = c(le-18, 1lell), log = "y", ylab = "", type = "n",
main = "Bessel Functions K_nu(x)"); axis (2, at=1)

for(nu in nus) lines(x, besselK(x, nu = nu), col = nu + 2)

legend (0, le-5, legend=paste("nu=", nus), col = nus + 2, lwd = 1)

vyl <- c(-1.6, .6)
plot(x, x, ylim = yl, ylab = "", type = "n",
main = "Bessel Functions Y _nu(x)")
for (nu in nus) {
Xxx <— X[x > .6*xnu]
lines (xx, besselY (xx, nu=nu), col = nu+2)
}
legend (25, -.5, legend = paste("nu=", nus), col = nus+2, lwd = 1)

negative nu in bessel_Y —-- was bogus for a long time
curve (besselY (x, -0.1), 0, 10, ylim = c(-3,1), ylab = "")
for(nu in c(seq(-0.2, -2, by = -0.1)))

curve (besselY (x, nu), add = TRUE)
title (expression (besselY (x, nu) * " "ok

58

bindenv

{nu == 1list(-0.1, -0.2, ..., -2)1}))

bindenv Binding and Environment Locking, Active Bindings

Description

These functions represent an interface for adjustments to environments and bindings within envi-
ronments. They allow for locking environments as well as individual bindings, and for linking a
variable to a function.

Usage

lockEnvironment (env, bindings = FALSE)
environmentIsLocked (env)

lockBinding (sym, env)
unlockBinding (sym, env)
bindingIsLocked (sym, env)

makeActiveBinding (sym, fun, env)
bindingIsActive (sym, env)
activeBindingFunction (sym, env)

Arguments
env an environment.
bindings logical specifying whether bindings should be locked.
sym a name object or character string.
fun a function taking zero or one arguments.
Details

The function lockEnvironment locks its environment argument. Locking the environment pre-
vents adding or removing variable bindings from the environment. Changing the value of a variable
is still possible unless the binding has been locked. The namespace environments of packages with
namespaces are locked when loaded.

lockBinding locks individual bindings in the specified environment. The value of a locked
binding cannot be changed. Locked bindings may be removed from an environment unless the
environment is locked.

makeActiveBinding installs fun in environment env so that getting the value of sym calls
fun with no arguments, and assigning to sym calls fun with one argument, the value to be as-
signed. This allows the implementation of things like C variables linked to R variables and variables
linked to databases, and is used to implement setRefClass. It may also be useful for making
thread-safe versions of some system globals. Currently active bindings are not preserved during
package installation, but they can be created in . onLoad.

bindenv 59

Value

The bindingIsLocked and environmentIsLocked return alength-one logical vector. The
remaining functions return NULL, invisibly.

Author(s)

Luke Tierney

Examples

locking environments
e <- new.env()

assign("x", 1, envir = e)

get ("x", envir = e)

lockEnvironment (e)

get ("x", envir = e)

assign("x", 2, envir = e)
try(assign("y", 2, envir = e)) # error

locking bindings

e <— new.env ()

assign("x", 1, envir = e)

get ("x", envir = e)

lockBinding ("x", e)

try(assign("x", 2, envir = e)) # error
unlockBinding ("x", e)

assign("x", 2, envir = e)

get ("x", envir = e)

active bindings
f <- local({
x <=1
function (v) {
if (missing(v))
cat ("get\n")
else {
cat ("set\n")
X <<— v

})

makeActiveBinding ("fred", f, .GlobalEnv)
bindingIsActive ("fred", .GlobalEnv)

fred

fred <- 2

fred

60 bitwise

bitwise Bitwise Logical Operations

Description

Logical operations on integer vectors with elements viewed as sets of bits.

Usage

bitwNot (a)
bitwAnd(a, b)
bitwOr (a, b)
bitwXor (a, b)

bitwShiftL (a, n)
bitwShiftR(a, n)

Arguments
a, b integer vectors; numeric vectors are coerced to integer vectors.
n non-negative integer vector of values up to 31.

Details

Each element of an integer vector has 32 bits.
Pairwise operations can result in integer NA.

Shifting is done assuming the values represent unsigned integers.

Value

An integer vector of length the longer of the arguments, or zero length if one is zero-length.

The output element is NA if an input is NA (after coercion) or an invalid shift.

See Also

The logical operators, !, &, |, xor. Notably these do work bitwise for raw arguments.

The classes "octmode" and "hexmode" whose implementation of the standard logical operators
is based on these functions.

Package bitops has similar functions for numeric vectors which differ in the way they treat integers
231 or larger.

https://CRAN.R-project.org/package=bitops

body 61

Examples
bitwNot (0:12) # -1 -2 ... -13
bitwAnd (15L, 7L) # 7
bitwOr (15L, 7L) # 15
bitwXor (15L, 7L) # 8
bitwXor (-1L, 1L) # -2

The "same" for 'raw' instead of integer
rrl2 <- as.raw(0:12) ; rbind(rrl2, !'rrl2)
c(rl5 <- as.raw(l5), r7 <- as.raw(7)) # Of 07
rl5 & r7 # 07

rl5 | r7 # 0f

xor (rl5, r7)# 08

bitwShiftR(-1, 1:31) # shifts of 2732-1 = 4294967295

body Access to and Manipulation of the Body of a Function

Description

Get or set the body of a function which is basically all of the function definition but its formal
arguments (formals), see the ‘Details’.

Usage

body (fun = sys.function(sys.parent()))

body (fun, envir = environment (fun)) <- value
Arguments

fun a function object, or see ‘Details’.

envir environment in which the function should be defined.

value an object, usually a language object: see section ‘Value’.
Details

For the first form, fun can be a character string naming the function to be manipulated, which is
searched for from the parent frame. If it is not specified, the function calling body is used.

The bodies of all but the simplest are braced expressions, that is calls to {: see the ‘Examples’
section for how to create such a call.

62 bquote

Value

body returns the body of the function specified. This is normally a language object, most often a
call to {, but it can also be a symbo1l such as pi or a constant (e.g., 3 or "R") to be the return
value of the function.

The replacement form sets the body of a function to the object on the right hand side, and (poten-
tially) resets the environment of the function, and drops attributes. If value is of class
"expression" the first element is used as the body: any additional elements are ignored, with a
warning.

See Also

The three parts of a (non-primitive) function are its formals, body, and environment.

Further, see alist, args, function.

Examples

body (body)

f <- function(x) x"5

body (f) <- quote (5"x)

or equivalently body(f) <- expression (57x)
£f(3) # = 125

body ()

creating a multi-expression body

e <- expression(y <- x"2, return(y)) # or a list
body (f) <- as.call(c(as.name("{"), e))

f

£(8)

Using substitute() may be simpler than 'as.call(c(as.name("{",..)))"':
stopifnot (identical (body (f), substitute({ y <- x"2; return(y) })))

bquote Partial substitution in expressions

Description

An analogue of the LISP backquote macro. bquote quotes its argument except that terms wrapped
in . () are evaluated in the specified where environment. If splice = TRUE then terms wrapped
in .. () are evaluated and spliced into a call.

Usage

bquote (expr, where = parent.frame(), splice = FALSE)

browser 63

Arguments

expr A language object.
where An environment.

splice Logical; if TRUE splicing is enabled.

Value

A language object.

See Also

quote, substitute

Examples

require (graphics)

bquote (a == . (a))
substitute(a == A, list(A = a))

plot(1:10, a%x(1:10), main = bquote(a == .(a)))
to set a function default arg
default <=1

bquote (function(x, y = . (default)) x+y)

exprs <- expression(x <- 1, y <= 2, x + V)
bgquote (function() {.. (exprs)}, splice = TRUE)

browser Environment Browser

Description

Interrupt the execution of an expression and allow the inspection of the environment where
browser was called from.

Usage

browser (text = "", condition = NULL, expr = TRUE, skipCalls = 0L)

64 browser
Arguments
text a text string that can be retrieved once the browser is invoked.
condition a condition that can be retrieved once the browser is invoked.
expr a “condition”. By default, and whenever not false after being coerced to
logical, the debugger will be invoked, otherwise control is returned directly.
skipCalls how many previous calls to skip when reporting the calling context.
Details

A call to browser can be included in the body of a function. When reached, this causes a pause
in the execution of the current expression and allows access to the R interpreter.

The purpose of the text and condition arguments are to allow helper programs (e.g., external
debuggers) to insert specific values here, so that the specific call to browser (perhaps its location in
a source file) can be identified and special processing can be achieved. The values can be retrieved
by calling browserText and browserCondition.

The purpose of the expr argument is to allow for the illusion of conditional debugging. It is an
illusion, because execution is always paused at the call to browser, but control is only passed to the
evaluator described below if expr is not FALSE after coercion to logical. In most cases it is going
to be more efficient to use an if statement in the calling program, but in some cases using this
argument will be simpler.

The skipCalls argument should be used when the browser () call is nested within another
debugging function: it will look further up the call stack to report its location.

At the browser prompt the user can enter commands or R expressions, followed by a newline. The
commands are

c exit the browser and continue execution at the next statement.
cont synonym for c.

£ finish execution of the current loop or function

help print this list of commands

n evaluate the next statement, stepping over function calls. For byte compiled functions interrupted
by browser calls, n is equivalent to c.

s evaluate the next statement, stepping into function calls. Again, byte compiled functions make s
equivalent to c.

where print a stack trace of all active function calls.

r invoke a "resume" restart if one is available; interpreted as an R expression otherwise. Typi-
cally "resume" restarts are established for continuing from user interrupts.

Q exit the browser and the current evaluation and return to the top-level prompt.

Leading and trailing whitespace is ignored, except for an empty line. Handling of empty lines
depends on the "browserNLdisabled" option; if it is TRUE, empty lines are ignored. If not,
an empty line is the same as n (or s, if it was used most recently).

Anything else entered at the browser prompt is interpreted as an R expression to be evaluated in
the calling environment: in particular typing an object name will cause the object to be printed, and

browserText 65

1s () lists the objects in the calling frame. (If you want to look at an object with a name such as n,
print it explicitly, or use autoprint via (n).

The number of lines printed for the deparsed call can be limited by setting
options (deparse.max.lines).

The browser prompt is of the form Browse [n]>: here var {n} indicates the ‘browser level’. The
browser can be called when browsing (and often is when debug is in use), and each recursive call
increases the number. (The actual number is the number of ‘contexts’ on the context stack: this is
usually 2 for the outer level of browsing and 1 when examining dumps in debugger.)

This is a primitive function but does argument matching in the standard way.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer.

See Also
debug, and traceback for the stack on error. browserText for how to retrieve the text and
condition.
browserText Functions to Retrieve Values Supplied by Calls to the Browser
Description

A call to browser can provide context by supplying either a text argument or a condition argument.
These functions can be used to retrieve either of these arguments.

Usage

browserText (n = 1)
browserCondition(n = 1)
browserSetDebug(n = 1)

Arguments

n The number of contexts to skip over, it must be non-negative.

Details

Each call to browser can supply either a text string or a condition. The functions browserText
and browserCondition provide ways to retrieve those values. Since there can be multiple
browser contexts active at any time we also support retrieving values from the different contexts.
The innermost (most recently initiated) browser context is numbered 1: other contexts are numbered
sequentially.

66 builtins

browserSetDebug provides a mechanism for initiating the browser in one of the calling
functions. See sys.frame for a more complete discussion of the calling stack. To use
browserSetDebug you select some calling function, determine how far back it is in the call
stack and call browserSetDebug with n set to that value. Then, by typing c at the browser
prompt you will cause evaluation to continue, and provided there are no intervening calls to browser
or other interrupts, control will halt again once evaluation has returned to the closure specified. This
is similar to the up functionality in gdb or the "step out" functionality in other debuggers.

Value

browserText returns the text, while browserCondit ion returns the condition from the spec-
ified browser context.

browserSetDebug returns NULL, invisibly.

Note

It may be of interest to allow for querying further up the set of browser contexts and this function-
ality may be added at a later date.

Author(s)

R. Gentleman

See Also

browser

builtins Returns the Names of All Built-in Objects

Description

Return the names of all the built-in objects. These are fetched directly from the symbol table of the
R interpreter.

Usage

builtins (internal = FALSE)

Arguments

internal a logical indicating whether only ‘internal’ functions (which can be called via
.Internal) should be returned.

by 67

Details

builtins () returns an unsorted list of the objects in the symbol table, that is all the objects in
the base environment. These are the built-in objects plus any that have been added subsequently
when the base package was loaded. It is less confusing to use 1s (baseenv (), all.names =

TRUE).
builtins (TRUE) returns an unsorted list of the names of internal functions, that is those which
can be accessed as . Internal (foo (args ...)) for foo in the list.

Value

A character vector.

by Apply a Function to a Data Frame Split by Factors

Description

Function by is an object-oriented wrapper for tapply applied to data frames.

Usage
by (data, INDICES, FUN, ..., simplify = TRUE)
Arguments
data an R object, normally a data frame, possibly a matrix.
INDICES a factor or a list of factors, each of length nrow (data).
FUN a function to be applied to (usually data-frame) subsets of data.
further arguments to FUN.
simplify logical: see tapply.
Details

A data frame is split by row into data frames subsetted by the values of one or more factors, and
function FUN is applied to each subset in turn.

For the default method, an object with dimensions (e.g., a matrix) is coerced to a data frame and
the data frame method applied. Other objects are also coerced to a data frame, but FUN is applied
separately to (subsets of) each column of the data frame.

Value

An object of class "by", giving the results for each subset. This is always a list if simplify is
false, otherwise a list or array (see tapply).

68 c

See Also

tapply, simplify2array. ave also applies a function block-wise.

Examples

require (stats)
by (warpbreaks[, 1:2], warpbreaks[,"tension"], summary)

by (warpbreaks[, 117, warpbreaks([, -1], summary)
by (warpbreaks, warpbreaks[, "tension"],
function(x) 1lm(breaks ~ wool, data = x))

now suppose we want to extract the coefficients by group
tmp <- with (warpbreaks,
by (warpbreaks, tension,
function(x) 1lm(breaks ~ wool, data = x)))
sapply (tmp, coef)

c Combine Values into a Vector or List

Description

This is a generic function which combines its arguments.

The default method combines its arguments to form a vector. All arguments are coerced to a com-
mon type which is the type of the returned value, and all attributes except names are removed.

Usage
S3 Generic function

c(...)

Default S3 method:
c(..., recursive = FALSE, use.names = TRUE)

Arguments

objects to be concatenated. All NULL entries are dropped before method dis-
patch unless at the very beginning of the argument list.

recursive logical. If recursive = TRUE, the function recursively descends through lists
(and pairlists) combining all their elements into a vector.

use.names logical indicating if names should be preserved.

69

Details

The output type is determined from the highest type of the components in the hierarchy NULL <
raw < logical < integer < double < complex < character < list < expression. Pairlists are treated
as lists, whereas non-vector components (such as names / symbols and calls) are treated as
one-element 11 sts which cannot be unlisted even if recursive = TRUE.

Note that in R < 4.1.0, factors were treated only via their internal integer codes: now there is
c.factor method which combines factors into a factor.

c is sometimes used for its side effect of removing attributes except names, for example to turn
an array into a vector. as.vector is a more intuitive way to do this, but also drops names.
Note that methods other than the default are not required to do this (and they will almost certainly
preserve a class attribute).

This is a primitive function.

Value

NULL or an expression or a vector of an appropriate mode. (With no arguments the value is NULL.)

S4 methods

This function is S4 generic, but with argument list (x, ...).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

unlist and as.vector to produce attribute-free vectors.

Examples

c(1l,7:9)
c(l:5, 10.5, "next")

uses with a single argument to drop attributes

x <- 1:4

names (x) <— letters[1l:4]
X

c(x) # has names
as.vector(x) # no names
dim(x) <= c(2,2)

X

c(x)

as.vector (x)

append to a list:

11 <= list(A =1, c = "C")

do *not* use

c(ll, d = 1:3) # which is == c (11, as.list(c(d = 1:3)))

70 call
but rather
c(ll, d = 1list(1:3)) # c() combining two lists
c(list (A = ¢c(B = 1)), recursive = TRUE)
c(options (), recursive = TRUE)
c(list(A = c(B =1, C =2), B =c(E = 7)), recursive = TRUE)
call Function Calls
Description
Create or test for objects of mode "call™" (or " (", see Details).
Usage
call (name, ...)
is.call (x)
as.call (x)
Arguments
name a non-empty character string naming the function to be called.
arguments to be part of the call.
x an arbitrary R object.
Details

call returns an unevaluated function call, that is, an unevaluated expression which consists of the
named function applied to the given arguments (name must be a string which gives the name

of a function to be called). Note that although the call is unevaluated, the arguments . . .

evaluated.

are

call is a primitive, so the first argument is taken as name and the remaining arguments as
arguments for the constructed call: if the first argument is named the name must partially

match name.

is.call isused to determine whether x is a call (i.e., of mode "call" or " ("). Note that

* is.call (x) is strictly equivalent to typeof (x) == "language".

* is.language () is also true for calls (but also for symbols and expressions

where is.call () is false).

as.call (x): Objects of mode "1ist" can be coerced to mode "call". The first element of

the list becomes the function part of the call, so should be a function or the name of one (as a
symbol; a character string will not do).

If you think of using as.call (<string>), consider using str2lang (*) which is an
efficient version of parse (text=«). Note that call () and as.call (), when applica-
ble, are much preferable to these parse () based approaches.

call 71

All three are primitive functions.

as.call is generic: you can write methods to handle specific classes of objects, see InternalMeth-
ods.

Warning

call should not be used to attempt to evade restrictions on the use of . Internal and other
non-API calls.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

do.call for calling a function by name and argument list; Recall for recursive calling of func-
tions; further is.language, expression, function.

Producing calls etc from character: str2lang and parse.

Examples

is.call(call) #-> FALSE: Functions are NOT calls

set up a function call to round with argument 10.5

cl <= call("round", 10.5)

is.call(cl) # TRUE

cl

identical (quote (round (10.5)), # <- less functional, but the same
cl) # TRUE

such a call can also be evaluated.

eval (cl) # [1] 10

class(cl) # "call"
typeof (cl) # "language"
is.call(cl) && is.language(cl) # always TRUE for "call"s

A <- 10.5

call ("round", A) # round(10.5)
call ("round", quote(A)) # round(A)

f <- "round"

call (f, quote (A)) # round (A)

1f we want to supply a function we need to use as.call or similar
f <- round

Not run: call(f, quote(Ad)) # error: first arg must be character
(g <—= as.call(list(f, quote(A))))
eval (g)

alternatively but less transparently
g <- list(f, quote(A))

mode (g) <-— "call"

g

72 callCC

eval (g)
see also the examples in the help for do.call

callccC Call With Current Continuation

Description

A downward-only version of Scheme’s call with current continuation.

Usage

callCC (fun)

Arguments

fun function of one argument, the exit procedure.

Details

callCcC provides a non-local exit mechanism that can be useful for early termination of a com-
putation. callCC calls fun with one argument, an exit function. The exit function takes a single
argument, the intended return value. If the body of fun calls the exit function then the call to
callcc immediately returns, with the value supplied to the exit function as the value returned by
callcCC.

Author(s)

Luke Tierney

Examples

The following all return the value 1
callCC (function (k) 1)

(
callCC (function (k) k(1))
callCC (function(k) {k(1); 21})
callCC (function (k) repeat k(1))

CallExternal 73

CallExternal Modern Interfaces to C/C++ code

Description

Functions to pass R objects to compiled C/C++ code that has been loaded into R.

Usage
.Call (.NAME, ..., PACKAGE)
.External (.NAME, ..., PACKAGE)
Arguments
.NAME a character string giving the name of a C function, or an object
of class "NativeSymbolInfo", "RegisteredNativeSymbol" or
"NativeSymbol" referring to such a name.
arguments to be passed to the compiled code. Up to 65 for .Call.
PACKAGE if supplied, confine the search for a character string . NAME to the DLL given by
this argument (plus the conventional extension, ‘. so’, *.d11’,...).
This argument follows . . . and so its name cannot be abbreviated.
This is intended to add safety for packages, which can ensure by using this
argument that no other package can override their external symbols, and also
speeds up the search (see ‘Note’).
Details

The functions are used to call compiled code which makes use of internal R objects, passing the
arguments to the code as a sequence of R objects. They assume C calling conventions, so can
usually also be used for C++ code.

For details about how to write code to use with these functions see the chapter on ‘System and
foreign language interfaces’ in the ‘Writing R Extensions’ manual. They differ in the way the
arguments are passed to the C code: .External allows for a variable or unlimited number of
arguments.

These functions are primitive, and . NAME is always matched to the first argument supplied (which
should not be named). For clarity, avoid using names in the arguments passed to . . . that match or
partially match . NAME.

Value

An R object constructed in the compiled code.

Header files for external code

Writing code for use with these functions will need to use internal R structures defined in
‘Rinternals.h’ and/or the macros in ‘Rdefines.h’.

74 capabilities

Note

If one of these functions is to be used frequently, do specify PACKAGE (to confine the search to a
single DLL) or pass .NAME as one of the native symbol objects. Searching for symbols can take a
long time, especially when many namespaces are loaded.

You may see PACKAGE = "base™" for symbols linked into R. Do not use this in your own code:
such symbols are not part of the API and may be changed without warning.

PACKAGE = "" used to be accepted (but was undocumented): it is now an error.

References

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer. (.Call.)

See Also

dyn.load, .C, .Fortran.

The ‘Writing R Extensions’ manual.

capabilities Report Capabilities of this Build of R

Description

Report on the optional features which have been compiled into this build of R.

Usage

capabilities (what = NULL,

Xchk = any(nas %in% c("X11", "jpeg", "png", "tiff")))
Arguments

what character vector or NULL, specifying required components. NULL implies that
all are required.

Xchk logical with a smart default, indicating if X11-related capabilities should
be fully checked, notably on macOS. If set to false, may avoid a warning “No
protocol specified” and e.g., the "X 11" capability may be returned as NA.

Value

A named logical vector. Current components are

jpeg is the jpeg function operational?

png is the png function operational?

tiff is the t 1 £ £ function operational?

tcltk is the teltk package operational? Note that to make use of Tk you will almost

always need to check that "X11" is also available.

capabilities

X11

aqua

http/ftp

sockets

libxml

fifo
cledit

iconv

NLS
Rprof

profmem

cairo

ICU

long.double

libcurl

75

are the X1 1 graphics device and the X11-based data editor available? This loads
the X11 module if not already loaded, and checks that the default display can be
contacted unless a X11 device has already been used.

is the quartz function operational? Only on some macOS builds, including
CRAN binary distributions of R.

Note that this is distinct from .Platform$SGUI == "AQUA", which is true
only when using the Mac R. app GUI console.

does the default method for url and download. file support ‘http://’
and ‘ftp://’ URLs? Always TRUE as from R 3.3.0. However, in recent ver-
sions the default method is "1ibcurl" which depends on an external library
and it is conceivable that library might not support ‘ftp://’ in future.

are make . socket and related functions available? Always TRUE as from R
3.3.0.

is there support for integrating 1 ibxm1 with the R event loop? TRUE as from
R 3.3.0, FALSE as from R 4.2.0.

are FIFO connections supported?

is command-line editing available in the current R session? This is false in non-
interactive sessions. It will be true for the command-line interface if readline
support has been compiled in and ‘—-no-readline’ was not used when R
was invoked. (If ‘~-interactive’ was used, command-line editing will not
actually be available.)

is internationalization conversion via i conv supported? Always true in current

R.
is there Natural Language Support (for message translations)?

is there support for Rprof () profiling? This is true if R was configured (before
compilation) with default settings which include ——enable-R-profiling.

is there support for memory profiling? See t racememn.

is there support for the svg, cairo_pdf and cairo_ps devices, and for
type = "cairo" inthe bmp, jpeg, png and t i f £ devices? Prior to R 4.1.0
this also indicated Cairo support in the X11 device, but it is now possible to
build R with Cairo support for the bitmap devices without support for the X11
device (usually when that is not supported at all).

is ICU available for collation? See the help on Comparison and
icuSetCollate: itis never used for a C locale.

does this build use a C long double type which is longer than double?
Some platforms do not have such a type, and on others its use can be suppressed
by the configure option ‘-—disable-long-double’.

Although not guaranteed, it is a reasonable assumption that if present long dou-
bles will have at least as much range and accuracy as the ISO/IEC 60559 80-bit
‘extended precision’ format. Since R 4.0.0 .Machine gives information on the
long-double type (if present).

is 1ibcurl available in this build? Used by function curlGetHeaders and
optionally by download.file and url. As from R 3.3.0 always true for
Unix-alikes, and as from R 4.2.0 true on Windows.

76 cat

Note to macOS users

Capabilities " jpeg", "png" and "tiff" refer to the X11-based versions of these devices. If
capabilities ("aqua") is true, then these devices with type = "quartz" will be avail-
able, and out-of-the-box will be the default type. Thus for example the tiff device will be
available if capabilities ("aqua") || capabilities ("tiff") if the defaults are un-
changed.

See Also

.Platform, extSoftVersion, and grSoftVersion (and links there) for availability of
capabilities external to R but used from R functions.

Examples

capabilities()

if(!capabilities ("ICU"))
warning ("ICU is not available")

Does not call the internal Xll-checking function:
capabilities (Xchk = FALSE)

See also the examples for 'connections'.

cat Concatenate and Print

Description

Outputs the objects, concatenating the representations. cat performs much less conversion than
print.

Usage

cat (... , file = "", sep =" ", fill = FALSE, labels = NULL,
append = FALSE)

Arguments

R objects (see ‘Details’ for the types of objects allowed).

file A connection, or a character string naming the file to print to. If " " (the default),
cat prints to the standard output connection, the console unless redirected by
sink. Ifitis " | cmd", the output is piped to the command given by ‘cmd’, by
opening a pipe connection.

sep a character vector of strings to append after each element.

cat 77

fill a logical or (positive) numeric controlling how the output is broken into suc-
cessive lines. If FALSE (default), only newlines created explicitly by “"\n"’
are printed. Otherwise, the output is broken into lines with print width equal to
the option width if £i11 is TRUE, or the value of £111 if this is numeric.
Linefeeds are only inserted between elements, strings wider than £i11 are not
wrapped. Non-positive £111 values are ignored, with a warning.

labels character vector of labels for the lines printed. Ignored if £i11 is FALSE.

append logical. Only used if the argument £ile is the name of file (and not a connec-
tion or " | cmd"). If TRUE output will be appended to £i1le; otherwise, it will
overwrite the contents of file.

Details

cat is useful for producing output in user-defined functions. It converts its arguments to character
vectors, concatenates them to a single character vector, appends the given sep = string(s) to each
element and then outputs them.

No line feeds (aka “newline”s) are output unless explicitly requested by ‘" \n"’ or if generated by
filling (if argument £111 is TRUE or numeric).

If £ile is a connection and open for writing it is written from its current position. If it is not open,
it is opened for the duration of the call in "wt " mode and then closed again.

Currently only atomic vectors and names are handled, together with NULL and other zero-length
objects (which produce no output). Character strings are output ‘as is’ (unlike print.default
which escapes non-printable characters and backslash — use encodeString if you want to
output encoded strings using cat). Other types of R object should be converted (e.g., by
as.character or format) before being passed to cat. That includes factors, which are output
as integer vectors.

cat converts numeric/complex elements in the same way as print (and not in the same way as
as.character which is used by the S equivalent), so options "digits" and "scipen"
are relevant. However, it uses the minimum field width necessary for each element, rather than the
same field width for all elements.

Value

None (invisible NULL).

Note

If any element of sep contains a newline character, it is treated as a vector of terminators rather
than separators, an element being output after every vector element and a newline after the last.
Entries are recycled as needed.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

78 cbind

See Also

print, format, and paste which concatenates into a string.

Examples

iter <- stats::rpois(l, lambda = 10)
print an informative message
cat ("iteration = ", iter <- iter 4+ 1, "\n")

'fill' and label lines:

cat (paste(letters, 100+ 1:26), fill = TRUE, labels = pasteO("{", 1:10, "}:"))

cbind Combine R Objects by Rows or Columns

Description

Take a sequence of vector, matrix or data-frame arguments and combine by columns or rows, re-
spectively. These are generic functions with methods for other R classes.

Usage
cbind (..., deparse.level = 1)
rbind (..., deparse.level = 1)
S3 method for class 'data.frame'
rbind (..., deparse.level = 1, make.row.names = TRUE,
stringsAsFactors = FALSE, factor.exclude = TRUE)
Arguments

(generalized) vectors or matrices. These can be given as named argu-
ments. Other R objects may be coerced as appropriate, or S4 methods
may be used: see sections ‘Details’ and ‘Value’. (For the "data.frame"
method of cbind these can be further arguments to data.frame such as
stringsAsFactors.)
deparse.level
integer controlling the construction of labels in the case of non-matrix-like ar-
guments (for the default method):
deparse.level = 0 constructs no labels; the default,
deparse.level =1 or 2 constructs labels from the argument names, see
the ‘Value’ section below.
make.row.names
(only for data frame method:) logical indicating if unique and valid
row.names should be constructed from the arguments.
stringsAsFactors
logical, passed to as.data.frame; only has an effect when the . .. argu-
ments contain a (non-data.frame) character.

cbind 79

factor.exclude
if the data frames contain factors, the default TRUE ensures that NA levels of
factors are kept, see PR#17562 and the ‘Data frame methods’. In R versions up
to 3.6.x, factor.exclude = NA has been implicitly hardcoded (R <= 3.6.0)
or the default (R =3.6.x, x >=1).

Details

The functions cbind and rbind are S3 generic, with methods for data frames. The data frame
method will be used if at least one argument is a data frame and the rest are vectors or matrices.
There can be other methods; in particular, there is one for time series objects. See the section on
‘Dispatch’ for how the method to be used is selected. If some of the arguments are of an S4 class,
i.e., 1sS4 (.) istrue, S4 methods are sought also, and the hidden cbind / rbind functions from
package methods maybe called, which in turn build on cbind2 or rbind2, respectively. In that
case, deparse. level is obeyed, similarly to the default method.

In the default method, all the vectors/matrices must be atomic (see vector) or lists. Expressions
are not allowed. Language objects (such as formulae and calls) and pairlists will be coerced to lists:
other objects (such as names and external pointers) will be included as elements in a list result.
Any classes the inputs might have are discarded (in particular, factors are replaced by their internal
codes).

If there are several matrix arguments, they must all have the same number of columns (or rows)
and this will be the number of columns (or rows) of the result. If all the arguments are vectors,
the number of columns (rows) in the result is equal to the length of the longest vector. Values in
shorter arguments are recycled to achieve this length (with a warning if they are recycled only
fractionally).

When the arguments consist of a mix of matrices and vectors the number of columns (rows) of the
result is determined by the number of columns (rows) of the matrix arguments. Any vectors have
their values recycled or subsetted to achieve this length.

For cbind (rbind), vectors of zero length (including NULL) are ignored unless the result would
have zero rows (columns), for S compatibility. (Zero-extent matrices do not occur in S3 and are not
ignored in R.)

Matrices are restricted to less than 23! rows and columns even on 64-bit systems. So input vectors
have the same length restriction: as from R 3.2.0 input matrices with more elements (but meeting
the row and column restrictions) are allowed.

Value

For the default method, a matrix combining the . . . arguments column-wise or row-wise. (Excep-
tion: if there are no inputs or all the inputs are NULL, the value is NULL.)

The type of a matrix result determined from the highest type of any of the inputs in the hierarchy
raw < logical < integer < double < complex < character < list .

For cbind (rbind) the column (row) names are taken from the colnames (rownames) of
the arguments if these are matrix-like. Otherwise from the names of the arguments or where
those are not supplied and deparse.level > 0, by deparsing the expressions given, for
deparse.level = 1 only if that gives a sensible name (a ‘symbol’, see is.symbol).

For cbind row names are taken from the first argument with appropriate names: rownames for a
matrix, or names for a vector of length the number of rows of the result.

https://bugs.R-project.org/show_bug.cgi?id=17562

80 cbind

For rbind column names are taken from the first argument with appropriate names: colnames for
a matrix, or names for a vector of length the number of columns of the result.

Data frame methods

The cbind data frame method is just a wrapper for data.frame (..., check.names =
FALSE) . This means that it will split matrix columns in data frame arguments, and convert charac-
ter columns to factors unless st ringsAsFactors = FALSE is specified.

The rbind data frame method first drops all zero-column and zero-row arguments. (If that leaves
none, it returns the first argument with columns otherwise a zero-column zero-row data frame.)
It then takes the classes of the columns from the first data frame, and matches columns by name
(rather than by position). Factors have their levels expanded as necessary (in the order of the levels
of the level sets of the factors encountered) and the result is an ordered factor if and only if all
the components were ordered factors. (The last point differs from S-PLUS.) Old-style categories
(integer vectors with levels) are promoted to factors.

Note that for result column j, factor (., exclude = X (j)) is applied, where

X(j) := 1if(isTRUE (factor.exclude)) {
if (INA.lev[]j]) NA # else NULL
} else factor.exclude

where NA . lev [j] is true iff any contributing data frame has had a factor in column j with an
explicit NA level.

Dispatch

The method dispatching is not done via UseMethod (), but by C-internal dispatching. Therefore
there is no need for, e.g., rbind.default.

The dispatch algorithm is described in the source file (‘. . . /src/main/bind.c’) as

1. For each argument we get the list of possible class memberships from the class attribute.
2. We inspect each class in turn to see if there is an applicable method.

3. If we find a method, we use it. Otherwise, if there was an S4 object among the arguments, we
try S4 dispatch; otherwise, we use the default code.

(Before R 4.0.0, an applicable method found was used only if identical to any method determined
for prior arguments.)

If you want to combine other objects with data frames, it may be necessary to coerce them to data
frames first. (Note that this algorithm can result in calling the data frame method if all the arguments
are either data frames or vectors, and this will result in the coercion of character vectors to factors.)

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

char.expand

81

See Also
c to combine vectors (and lists) as vectors, data.frame to combine vectors and matrices as a
data frame.
Examples
m <- cbind (1, 1:7) # the 'l' (= shorter vector) is recycled
m
m <— cbind(m, 8:14)[, c(1, 3, 2)] # insert a column
m
cbind(1:7, diag(3)) # vector 1is subset -> warning

cbind (0, rbind(1l, 1:3))

cbind(I = 0, X = rbind(a = 1, b = 1:3)) # use some names

xx <— data.frame(I = rep(0,2))

cbind(xx, X = rbind(a = 1, b = 1:3)) # named differently

cbind (0, matrix(l, nrow = 0, ncol = 4)) #> Warning (making sense)

dim(cbind (0, matrix(l, nrow = 2, ncol = 0))) #-—> 2 x 1

deparse.level

dd <- 10

rbind(1:4, c = 2, "a++"
rbind(l:4, c = 2, "a++"
rbind(1:4, c = 2, "a++"

10, dd, deparse.level
10, dd, deparse.level

I
=

Il
N

cheap row names:
b0 <= gl (3,4, labels=letters[1:3])

bf <- setNames (b0, pastelO("o", seq_along(b0)))
df <- data.frame(a =1, B = b0, £ = gl(4,3))
df. <- data.frame(a = 1, B = bf, £ = gl(4,3))
new <- data.frame (a 8, B ="B", £ ="1")
(dfl <- rbind(df , new))
(df .1 <= rbind(df., new))

stopifnot (identical (dfl, rbind(df, new, make.row.names=FALSE)),
identical (dfl, rbind(df., new, make.row.names=FALSE)))

3 rownames
4 rownames

10, dd, deparse.level = 0) # middle 2 rownames

(default)

char.expand Expand a String with Respect to a Target Table

Description

Seeks a unique match of its first argument among the elements of its second. If successful, it returns

this element; otherwise, it performs an action specified by the third argument.

Usage

char.expand (input, target, nomatch = stop("no match"))

82 character

Arguments

input a character string to be expanded.

target a character vector with the values to be matched against.

nomatch an R expression to be evaluated in case expansion was not possible.
Details

This function is particularly useful when abbreviations are allowed in function arguments, and need
to be uniquely expanded with respect to a target table of possible values.

Value
A length-one character vector, one of the elements of target (unless nomatch is changed to be
a non-error, when it can be a zero-length character string).

See Also

charmatch and pmatch for performing partial string matching.

Examples

locPars <- c("mean", "median", "mode")
char.expand("me", locPars, warning("Could not expand!"))
char.expand("mo", locPars)

character Character Vectors

Description

Create or test for objects of type "character".

Usage

character (length = 0)
as.character (x,)
is.character (x)

Arguments
length A non-negative integer specifying the desired length. Double values will be
coerced to integer: supplying an argument of length other than one is an error.
X object to be coerced or tested.

further arguments passed to or from other methods.

character 83

Details

as.character and is.character are generic: you can write methods to handle specific
classes of objects, see InternalMethods. Further, for as.character the default method calls
as.vector, so dispatch is first on methods for as.character and then for methods for
as.vector.

as.character represents real and complex numbers to 15 significant digits (technically the
compiler’s setting of the ISO C constant DBL_DIG, which will be 15 on machines supporting
IEC60559 arithmetic according to the C99 standard). This ensures that all the digits in the result will
be reliable (and not the result of representation error), but does mean that conversion to character
and back to numeric may change the number. If you want to convert numbers to character with the
maximum possible precision, use format.

Value

character creates a character vector of the specified length. The elements of the vector are all
equalto "".

as.character attempts to coerce its argument to character type; like as.vector it strips at-
tributes including names. For lists and pairlists (including language objects such as calls) it deparses
the elements individually, except that it extracts the first element of length-one character vectors.

is.character returns TRUE or FALSE depending on whether its argument is of character type
or not.

Note

as.character breaks lines in language objects at 500 characters, and inserts newlines. Prior to
2.15.0 lines were truncated.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

options: option scipen affects the conversion of numbers.

paste, substr and strsplit for character concatenation and splitting, chartr for character
translation and casefolding (e.g., upper to lower case) and sub, grep etc for string matching and
substitutions. Note that help.search (keyword = "character") gives even more links.

deparse, which is normally preferable to as . character for language objects.

Quotes on how to specify character / string constants, including raw ones.

Examples

form <-y ~a + b + c
as.character (form) ## length 3
deparse (form) ## like the input

84 charmatch

a0 <— 11/999 # has a repeating decimal representation
(al <- as.character (a0))
format (a0, digits = 16) # shows one more digit

a2 <- as.numeric(al)

a2 - a0 # normally around -le-17
as.character (a2) # normally different from al
print (c(a0, a2), digits = 16)

charmatch Partial String Matching

Description

charmat ch seeks matches for the elements of its first argument among those of its second.

Usage

charmatch (x, table, nomatch = NA_integer_)

Arguments
X the values to be matched: converted to a character vector by as.character.
Long vectors are supported.
table the values to be matched against: converted to a character vector. Long vectors
are not supported.
nomatch the (integer) value to be returned at non-matching positions.
Details

Exact matches are preferred to partial matches (those where the value to be matched has an exact
match to the initial part of the target, but the target is longer).

If there is a single exact match or no exact match and a unique partial match then the index of the
matching value is returned; if multiple exact or multiple partial matches are found then 0 is returned
and if no match is found then nomatch is returned.

NA values are treated as the string constant "NA".

Value

An integer vector of the same length as x, giving the indices of the elements in table which
matched, or nomatch.

Author(s)

This function is based on a C function written by Terry Therneau.

chartr 85

See Also

pmatch, match.

startsWith for another matching of initial parts of strings; grep or regexpr for more general
(regexp) matching of strings.

Examples
charmatch ("", "") # returns 1
charmatch ("m", c("mean", "median", "mode")) # returns O
charmatch ("med", c("mean", "median", "mode")) # returns 2
chartr Character Translation and Casefolding
Description

Translate characters in character vectors, in particular from upper to lower case or vice versa.

Usage

chartr (old, new, Xx)
tolower (x)

toupper (x)

casefold(x, upper = FALSE)

Arguments
X a character vector, or an object that can be coerced to character by
as.character.
old a character string specifying the characters to be translated. If a character vector
of length 2 or more is supplied, the first element is used with a warning.
new a character string specifying the translations. If a character vector of length 2 or
more is supplied, the first element is used with a warning.
upper logical: translate to upper or lower case?.
Details

chartr translates each character in x that is specified in old to the corresponding character
specified in new. Ranges are supported in the specifications, but character classes and repeated
characters are not. If o1d contains more characters than new, an error is signaled; if it contains
fewer characters, the extra characters at the end of new are ignored.

tolower and toupper convert upper-case characters in a character vector to lower-case, or vice
versa. Non-alphabetic characters are left unchanged. More than one character can be mapped to a
single upper-case character.

casefoldis a wrapper for tolower and toupper provided for compatibility with S-PLUS.

86 chartr

Value

A character vector of the same length and with the same attributes as x (after possible coercion).

Elements of the result will be have the encoding declared as that of the current locale (see
Encoding) if the corresponding input had a declared encoding and the current locale is either
Latin-1 or UTF-8. The result will be in the current locale’s encoding unless the corresponding input
was in UTF-8 or Latin-1, when it will be in UTF-8.

Note

These functions are platform-dependent, usually using OS services. The latter can be quite defi-
cient, for example only covering ASCII characters in 8-bit locales. The definition of ‘alphabetic’ is
platform-dependent and liable to change over time as most platforms are based on the frequently-
updated Unicode tables.

See Also

sub and gsub for other substitutions in strings.

Examples

X <— "MiXeD cAsE 123"
chartr ("iXs", "why", x)
chartr ("a-cX", "D-Fw", x)
tolower (x)

toupper (x)

"Mixed Case" Capitalizing - toupper(every first letter of a word)

.simpleCap <- function(x) {

s <— strsplit(x, " ")[[1]]
paste (toupper (substring(s, 1, 1)), substring(s, 2),
sep = "", collapse =" ")

}
.simpleCap ("the quick red fox jumps over the lazy brown dog")
-> [1] "The Quick Red Fox Jumps Over The Lazy Brown Dog"

and the better, more sophisticated version:
capwords <- function (s, strict = FALSE) {

cap <- function(s) paste (toupper (substring(s, 1, 1)),

{s <- substring(s, 2); if(strict) tolower(s) else s},
sep = "", collapse =" ")

sapply (strsplit (s, split = " "), cap, USE.NAMES = !is.null (names(s)))
}
capwords (c ("using AIC for model selection"))
—-> [1] "Using AIC For Model Selection"
capwords (c ("using AIC", "for MODEL selection"), strict = TRUE)
-> [1] "Using Aic" "For Model Selection"

AAN AAAAA

#4 'bad'’ 'good'

—— Very simple insecure crypto —-—

chkDots 87

rot <- function(ch, k = 13) {
pO0 <- function(...) paste(c(...), collapse = "")
A <- c(letters, LETTERS, " 'M)
I <- seqg_len(k); chartr(p0O(A), pO(c(A[-I], A[I])), ch)

pw <- "my secret pass phrase"
(crypw <- rot(pw, 13)) #-> you can send this off

now ~“decrypt''
rot (crypw, 54 - 13) # -> the original:
stopifnot (identical (pw, rot (crypw, 54 - 13)))

chkDots Warn About Extraneous Arguments in the "..." of Its Caller
Description
Warn about extraneous arguments in the . . . of its caller. A utility to be used e.g., in S3 methods
which need a formal . . . argument but do not make any use of it. This helps catching user errors

in calling the function in question (which is the caller of chkDots ()).

Usage

chkDots (..., which.call = -1, allowed = character(0))

Arguments

“the dots”, as passed from the caller.

which.call passedto sys.call (). A caller may use -2 if the message should mention its
caller.

allowed not yet implemented: character vector of named elements in ... which are
“allowed” and hence not warned about.

Author(s)

Martin Maechler, first version outside base, June 2012.

See Also

warning,

88 chol

Examples
seqg.default ## <- you will see ' chkDots(...) '
seq(l,5, foo = "bar") # gives warning via chkDots ()

warning with more than one ...-entry:
density.f <- function(x, ...) NextMethod("density")
x <- density (structure(rnorm(10), class="f"), bar=TRUE, baz=TRUE)

chol The Cholesky Decomposition

Description

Compute the Cholesky factorization of a real symmetric positive-definite square matrix.

Usage

chol (x, ...)

Default S3 method:

chol (x, pivot = FALSE, LINPACK = FALSE, tol = -1, ...)
Arguments
X an object for which a method exists. The default method applies to numeric (or

logical) symmetric, positive-definite matrices.

arguments to be based to or from methods.

pivot Should pivoting be used?

LINPACK logical. Should LINPACK be used (now an error)?

tol A numeric tolerance for use with pivot = TRUE.
Details

chol is generic: the description here applies to the default method.
Note that only the upper triangular part of x is used, so that R’ R = x when x is symmetric.

If pivot = FALSE and x is not non-negative definite an error occurs. If x is positive semi-definite
(i.e., some zero eigenvalues) an error will also occur as a numerical tolerance is used.

If pivot = TRUE, then the Cholesky decomposition of a positive semi-definite x can be computed.
The rank of x is returned as attr (Q, "rank"), subject to numerical errors. The pivot is returned
as attr (Q, "pivot"). Itis no longer the case that t (Q) %$+% Q equals x. However, setting
pivot <-attr(Q, "pivot") and oo <- order (pivot),itistruethatt (Q[, co]) %$*%
Q[, oo] equals x, or, alternatively, t (Q) $*% Q equals x [pivot, pivot]. See the examples.

chol 89

The value of tol is passed to LAPACK, with negative values selecting the default tolerance of
(usually) nrow (x) * .Machine$double.neg.eps x max (diag(x)). The algorithm ter-
minates once the pivot is less than tol.

Unsuccessful results from the underlying LAPACK code will result in an error giving a positive
error code: these can only be interpreted by detailed study of the FORTRAN code.

Value

The upper triangular factor of the Cholesky decomposition, i.e., the matrix R such that 'R = x
(see example).

If pivoting is used, then two additional attributes "pivot" and "rank" are also returned.

Warning

The code does not check for symmetry.

If pivot = TRUE and x is not non-negative definite then there will be a warning message but a
meaningless result will occur. So only use pivot = TRUE when x is non-negative definite by
construction.

Source

This is an interface to the LAPACK routines DPOTRF and DPSTREF,

LAPACK is from https://www.netlib.org/lapack/ and its guide is listed in the refer-
ences.

References

Anderson. E. and ten others (1999) LAPACK Users’ Guide. Third Edition. SIAM.
Available on-line at https://www.netlib.org/lapack/lug/lapack_lug.html.

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

chol2inv for its inverse (without pivoting), backsolve for solving linear systems with upper
triangular left sides.

qr, svd for related matrix factorizations.

Examples

(m <- matrix(c(5,1,1,3),2,2))
(cm <= chol (m))

t(cm) %$*% cm #-—— = 'm'
crossprod(cm) #-— = 'm'

now for something positive semi-definite
x <—- matrix(c(l:5, (1:5)72), 5, 2)

x <= cbind(x, x[, 1] + 3*x[, 2])
colnames (x) <- letters[20:22]

https://www.netlib.org/lapack/
https://www.netlib.org/lapack/lug/lapack_lug.html

90 chol2inv

m <- crossprod(x)
gr (m) Srank # is 2, as it should be

chol () may fail, depending on numerical rounding:
chol () unlike gr() does not use a tolerance.
try (chol (m))

(Q <= chol(m, pivot = TRUE))

we can use this by

pivot <- attr(Q, "pivot")

crossprod(Q[, order(pivot)]) # recover m

now for a non-positive-definite matrix
(m <- matrix(c(5,-5,-5,3), 2, 2))

try(chol(m)) # fails
(Q <= chol(m, pivot = TRUE)) # warning
crossprod(Q) # not equal to m
chol2inv Inverse from Cholesky (or QR) Decomposition
Description

Invert a symmetric, positive definite square matrix from its Cholesky decomposition. Equivalently,
compute (X’X)~! from the (R part) of the QR decomposition of X

Usage

chol2inv (x, size = NCOL(x), LINPACK = FALSE)

Arguments
x a matrix. The first size columns of the upper triangle contain the Cholesky
decomposition of the matrix to be inverted.
size the number of columns of x containing the Cholesky decomposition.
LINPACK logical. Defunct and gives an error.
Value

The inverse of the matrix whose Cholesky decomposition was given.

Unsuccessful results from the underlying LAPACK code will result in an error giving a positive
error code: these can only be interpreted by detailed study of the FORTRAN code.
Source

This is an interface to the LAPACK routine DPOTRI. LAPACK is from https://www.
netlib.org/lapack/ and its guide is listed in the references.

https://www.netlib.org/lapack/
https://www.netlib.org/lapack/

class 91

References

Anderson. E. and ten others (1999) LAPACK Users’ Guide. Third Edition. SIAM. Available on-line
athttps://www.netlib.org/lapack/lug/lapack_lug.html.

Dongarra, J. J., Bunch, J. R., Moler, C. B. and Stewart, G. W. (1978) LINPACK Users Guide.
Philadelphia: STAM Publications.

See Also

chol, solve

Examples

cma <- chol(ma <- cbind(1, 1:3, c(1,3,7)))
ma %$*% chol2inv (cma)

class Object Classes

Description

R possesses a simple generic function mechanism which can be used for an object-oriented style of
programming. Method dispatch takes place based on the class of the first argument to the generic
function.

Usage

class (x)

class (x) <— value

unclass (x)

inherits(x, what, which = FALSE)
isa(x, what)

oldClass
oldClass
.class2(

)

(x
(x) <- value
x)
Arguments

x a R object

what, value acharacter vector naming classes. value can also be NULL.

which logical affecting return value: see ‘Details’.

https://www.netlib.org/lapack/lug/lapack_lug.html

92 class

Details

Here, we describe the so called “S3” classes (and methods). For “S4” classes (and methods), see
‘Formal classes’ below.

Many R objects have a class attribute, a character vector giving the names of the classes from
which the object inherits. (Functions o1dClass and oldClass<- get and set the attribute,
which can also be done directly.)

If the object does not have a class attribute, it has an implicit class, notably "matrix", "array",
"function" or "numeric" or the result of typeof (x) (which is similar to mode (x)), but
for type "language" and mode "call", where the following extra classes exist for the corre-
sponding function calls: if, while, for, =, <—, (, {,call.

Note that for objects x of an implicit (or an S4) class, when a (S3) generic function foo (x) is
called, method dispatch may use more classes than are returned by class (x), e.g., for a numeric
matrix, the foo.numeric () method may apply. The exact full character vector of the classes
which UseMethod () uses, is available as . class2 (x) since R version 4.0.0. (This also applies
to S4 objects when S3 dispatch is considered, see below.)

Beware that using .class2 () for other reasons than didactical, diagnostical or for debugging
may rather be a misuse than smart.

NULL objects (of implicit class "NULL") cannot have attributes (hence no class attribute) and
attempting to assign a class is an error.

When a generic function fun is applied to an object with class attribute c ("first",
"second"), the system searches for a function called fun.first and, if it finds it, applies
it to the object. If no such function is found, a function called fun. second is tried. If no class
name produces a suitable function, the function fun.default is used (if it exists). If there is no
class attribute, the implicit class is tried, then the default method.

The function class prints the vector of names of classes an object inherits from. Correspond-
ingly, class<- sets the classes an object inherits from. Assigning an empty character vector or
NULL removes the class attribute, as for o1dClass<- or direct attribute setting. Whereas it is
clearer to explicitly assign NULL to remove the class, using an empty vector is more natural in e.g.,
class (x) <-setdiff (class(x), "ts").

unclass returns (a copy of) its argument with its class attribute removed. (It is not allowed for
objects which cannot be copied, namely environments and external pointers.)

inherits indicates whether its first argument inherits from any of the classes specified in the
what argument. If which is TRUE then an integer vector of the same length as what is returned.
Each element indicates the position in the class (x) matched by the element of what; zero
indicates no match. If which is FALSE then TRUE is returned by inherits if any of the names
in what match with any class.

isa tests whether x is an object of class(es) as given in what by using is if x is an S4 object, and
otherwise giving TRUE iff all elements of class (x) are contained in what.

All but inherits and isa are primitive functions.

Formal classes

An additional mechanism of formal classes, nicknamed “S4”, is available in package methods
which is attached by default. For objects which have a formal class, its name is returned by class
as a character vector of length one and method dispatch can happen on several arguments, instead

class 93

of only the first. However, S3 method selection attempts to treat objects from an S4 class as if they
had the appropriate S3 class attribute, as does inherits. Therefore, S3 methods can be defined
for S4 classes. See the ‘Introduction’ and ‘Methods_for_S3’ help pages for basic information on
S4 methods and for the relation between these and S3 methods.

The replacement version of the function sets the class to the value provided. For classes that have
a formal definition, directly replacing the class this way is strongly deprecated. The expression
as (object, value) is the way to coerce an object to a particular class.

The analogue of inherits for formal classes is is. The two functions behave consistently with
one exception: S4 classes can have conditional inheritance, with an explicit test. In this case, is
will test the condition, but inherits ignores all conditional superclasses.

Note

Functions 01dClass and oldClass<- behave in the same way as functions of those names
in S-PLUS 5/6, but in R UseMethod dispatches on the class as returned by class (with some
interpolated classes: see the link) rather than o1dClass. However, group generics dispatch on the
oldClass for efficiency, and internal generics only dispatch on objects for which is.object is
true.

See Also

UseMethod, NextMethod, ‘group generic’, ‘internal generic’

Examples

x <= 10

class (x) # "numeric"

oldClass (x) # NULL

inherits(x, "a") #FALSE

class(x) <= c("a", "b")

inherits (x,"a") #TRUE

inherits(x, "a", TRUE) # 1

inherits(x, c("a", "b", "c"), TRUE) # 1 2 0

class (quote (pi)) # "name"
regular calls
class(quote (sin(pix*x))) # "call"

special calls

class(quote(x <- 1)) # <=
class(quote((1 < 2))) # " ("
class(quote(if(8<3) pi)) # "if"

.class2 (pi) # "double" "numeric"
.class2 (matrix(l:6, 2,3)) # "matrix" "array" "integer" "numeric"

94 col

col Column Indexes

Description

Returns a matrix of integers indicating their column number in a matrix-like object, or a factor of
column labels.

Usage
col (x, as.factor = FALSE)
.col (dim)
Arguments
X a matrix-like object, that is one with a two-dimensional dim.
dim a matrix dimension, i.e., an integer valued numeric vector of length two (with
non-negative entries).
as.factor a logical value indicating whether the value should be returned as a factor of
column labels (created if necessary) rather than as numbers.
Value

An integer (or factor) matrix with the same dimensions as x and whose i j-th element is equal to j
(or the j-th column label).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

row to get rows; slice.index for a general way to get slice indices in an array.

Examples

extract an off-diagonal of a matrix
ma <- matrix(1:12, 3, 4)

ma[row(ma) == col(ma) + 1]

create an identity 5-by-5 matrix more slowly than diag(n = 5):
x <- matrix (0, nrow = 5, ncol = 5)

x[row(x) == col(x)] <=1

(134 <= .col(3:4))
stopifnot (identical (i34, .col(c(3,4)))) # 'dim' maybe "double"

Colon 95

Colon Colon Operator

Description

Generate regular sequences.

Usage

from:to
a:b

Arguments

from starting value of sequence.
to (maximal) end value of the sequence.
a, b factors of the same length.

Details
The binary operator : has two meanings: for factors a : b is equivalent to interaction (a, b)
(but the levels are ordered and labelled differently).

For other arguments from: to is equivalent to seq (from, to), and generates a sequence from
fromto to in steps of 1 or —1. Value t o will be included if it differs from from by an integer up
to a numeric fuzz of about 1e—7. Non-numeric arguments are coerced internally (hence without
dispatching methods) to numeric—complex values will have their imaginary parts discarded with a
warning.

Value

For numeric arguments, a numeric vector. This will be of type integer if from is integer-valued
and the result is representable in the R integer type, otherwise of type "double™ (aka mode
"numeric").

For factors, an unordered factor with levels labelled as 1a: 1b and ordered lexicographically (that
is, 1b varies fastest).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.
(for numeric arguments: S does not have : for factors.)

See Also

seq (a generalization of from:to).
As an alternative to using : for factors, interaction.

For : used in the formal representation of an interaction, see formula.

96 colSums
Examples
1:4
pi:6 # real
6:pi # integer
fl <= gl(2, 3); f1
£2 <- gl(3, 2); £2
fl:f2 # a factor, the "cross" fl x f2
colSums Form Row and Column Sums and Means
Description
Form row and column sums and means for numeric arrays (or data frames).
Usage
colSums (x, na.rm = FALSE, dims = 1)
rowSums (X, na.rm = FALSE, dims = 1)
colMeans (x, na.rm = FALSE, dims = 1)
rowMeans (x, na.rm = FALSE, dims = 1)
.colSums (x, m, n, na.rm = FALSE)
.rowSums (X, m, n, na.rm = FALSE)
.colMeans(x, m, n, na.rm = FALSE)
. rowMeans (x, m, n, na.rm = FALSE)
Arguments
X an array of two or more dimensions, containing numeric, complex, integer or
logical values, or a numeric data frame. For .colSums () etc, a numeric,
integer or logical matrix (or vector of length m % n).
na.rm logical. Should missing values (including NaN) be omitted from the calcula-
tions?
dims integer: Which dimensions are regarded as ‘rows’ or ‘columns’ to sum over. For
rowx*, the sum or mean is over dimensions dims+1, .. .;for colx itis over
dimensions 1 :dims.
m, n the dimensions of the matrix x for . colSums () etc.
Details

These functions are equivalent to use of apply with FUN = mean or FUN = sum with appropriate
margins, but are a lot faster. As they are written for speed, they blur over some of the subtleties of
NaN and NA. If na. rm = FALSE and either NaN or NA appears in a sum, the result will be one of
NaN or N2, but which might be platform-dependent.

colSums 97

Notice that omission of missing values is done on a per-column or per-row basis, so column means
may not be over the same set of rows, and vice versa. To use only complete rows or columns, first
select them with na.omit or complete.cases (possibly on the transpose of x).

The versions with an initial dot in the name (. colSums () etc) are ‘bare-bones’ versions for use
in programming: they apply only to numeric (like) matrices and do not name the result.

Value

A numeric or complex array of suitable size, or a vector if the result is one-dimensional. For the
first four functions the dimnames (or names for a vector result) are taken from the original array.

If there are no values in a range to be summed over (after removing missing values with na . rm =
TRUE), that component of the output is set to 0 (* Sums) or NaN (xMeans), consistent with sum
and mean.

See Also

apply, rowsum

Examples

Compute row and column sums for a matrix:

x <— cbind(x1l = 3, x2 = c(4:1, 2:5))

rowSums (x); colSums (x)

dimnames (x) [[1]] <—- letters[1:8]

rowSums (x); colSums (x); rowMeans (x); colMeans (x)
x[] <- as.integer (x)

rowSums (x); colSums (x)

x[] <= x < 3

rowSums (x); colSums (x)

x <— cbind(x1l = 3, x2 = c(4:1, 2:5))

x[3,] <= NA; x[4, 2] <- NA

rowSums (x); colSums (x); rowMeans (x); colMeans (x)
rowSums (x, na.rm = TRUE); colSums(x, na.rm = TRUE)
rowMeans (x, na.rm = TRUE); colMeans(x, na.rm = TRUE)

an array
dim (UCBAdmissions)
rowSums (UCBAdmissions); rowSums (UCBAdmissions, dims

2)
colSums (UCBAdmissions); colSums (UCBAdmissions, dims = 2)

complex case

x <— cbind(x1 = 3 + 2i, x2 = c(4:1, 2:5) - 5i)

x[3,] <= NA; x[4, 2] <- NA

rowSums (x); colSums (x); rowMeans (x); colMeans (x)
rowSums (x, na.rm = TRUE); colSums(x, na.rm = TRUE)
rowMeans (x, na.rm = TRUE); colMeans (x, na.rm = TRUE)

98 commandArgs

commandArgs Extract Command Line Arguments

Description

Provides access to a copy of the command line arguments supplied when this R session was invoked.

Usage

commandArgs (trailingOnly = FALSE)

Arguments

trailingOnly logical. Should only arguments after ‘——args’ be returned?

Details

These arguments are captured before the standard R command line processing takes place. This
means that they are the unmodified values. This is especially useful with the ‘——args’ command-
line flag to R, as all of the command line after that flag is skipped.

Value

A character vector containing the name of the executable and the user-supplied command line argu-
ments. The first element is the name of the executable by which R was invoked. The exact form of
this element is platform dependent: it may be the fully qualified name, or simply the last component
(or basename) of the application, or for an embedded R it can be anything the programmer supplied.

If trailingOnly = TRUE, a character vector of those arguments (if any) supplied after
‘——args’.

See Also

R.home (), Startup and BATCH

Examples

commandArgs ()

Spawn a copy of this application as it was invoked,
subject to shell quoting issues

system(paste (commandArgs (), collapse = " "))

comment 99

comment Query or Set a "comment " Attribute

Description

These functions set and query a comment attribute for any R objects. This is typically useful for
data. frames or model fits.
Contrary to other attributes, the comment is not printed (by print or print.default).

Assigning NULL or a zero-length character vector removes the comment.

Usage

comment (x)
comment (x) <- value

Arguments

x any R object

value a character vector, or NULL.
See Also

attributes and attr for other attributes.

Examples

x <- matrix(1:12, 3, 4)

comment (x) <- c("This is my very important data from experiment #0234",
"Jun 5, 1998")

X

comment (x)

Comparison Relational Operators

Description

Binary operators which allow the comparison of values in atomic vectors.

XXX X X X
VvV A
I

Il
Il
KK KK

100 Comparison

Arguments
X, Y atomic vectors, symbols, calls, or other objects for which methods have been
written.
Details

The binary comparison operators are generic functions: methods can be written for them individu-
ally or via the Ops group generic function. (See Ops for how dispatch is computed.)

Comparison of strings in character vectors is lexicographic within the strings using the collating
sequence of the locale in use: see 1ocales. The collating sequence of locales such as ‘en_US’
is normally different from ‘C’ (which should use ASCII) and can be surprising. Beware of making
any assumptions about the collation order: e.g. in Estonian Z comes between S and T, and collation
is not necessarily character-by-character — in Danish aa sorts as a single letter, after z. In Welsh
ng may or may not be a single sorting unit: if it is it follows g. Some platforms may not respect the
locale and always sort in numerical order of the bytes in an 8-bit locale, or in Unicode code-point
order for a UTF-8 locale (and may not sort in the same order for the same language in different
character sets). Collation of non-letters (spaces, punctuation signs, hyphens, fractions and so on) is
even more problematic.

Character strings can be compared with different marked encodings (see Encoding): they are
translated to UTF-8 before comparison.

Raw vectors should not really be considered to have an order, but the numeric order of the byte
representation is used.

At least one of x and y must be an atomic vector, but if the other is a list R attempts to coerce it to
the type of the atomic vector: this will succeed if the list is made up of elements of length one that
can be coerced to the correct type.

If the two arguments are atomic vectors of different types, one is coerced to the type of the other,
the (decreasing) order of precedence being character, complex, numeric, integer, logical and raw.

Missing values (N2) and NaN values are regarded as non-comparable even to themselves, so com-
parisons involving them will always result in NA. Missing values can also result when character
strings are compared and one is not valid in the current collation locale.

Language objects such as symbols and calls are deparsed to character strings before comparison.

Value

A logical vector indicating the result of the element by element comparison. The elements of shorter
vectors are recycled as necessary.

Objects such as arrays or time-series can be compared this way provided they are conformable.

S4 methods

These operators are members of the S4 Compare group generic, and so methods can be written
for them individually as well as for the group generic (or the Ops group generic), with arguments
c(el, e2).

Comparison 101

Note

Do not use == and != for tests, such as in if expressions, where you must get a single TRUE
or FALSE. Unless you are absolutely sure that nothing unusual can happen, you should use the
identical function instead.

For numerical and complex values, remember == and ! = do not allow for the finite representation
of fractions, nor for rounding error. Using all.equal with identical or 1sTRUE is almost
always preferable; see the examples. (This also applies to the other comparison operators.)

These operators are sometimes called as functions as e.g. ~<™ (x, y): see the description of how
argument-matching is done in Ops.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Collation of character strings is a complex topic. For an introduction see https://
en.wikipedia.org/wiki/Collating_sequence. The Unicode Collation Algorithm
(https://unicode.org/reports/trl0/) is likely to be increasingly influential. Where
available R by default makes use of ICU (https://icu.unicode.org/) for collation (ex-
cept in a C locale).

See Also

Logic on how to combine results of comparisons, i.e., logical vectors.
factor for the behaviour with factor arguments.
Syntax for operator precedence.

capabilities for whether ICU is available, and icuSetCollate to tune the string collation
algorithm when it is.

Examples

x <— stats::rnorm(20)
x < 1
x[x > 0]

x]l <= 0.5 -
X2 <= 0.3 -
x1 == x2 # FALSE on most machines
isTRUE (all.equal (x1, x2)) # TRUE everywhere

range of most 8-bit charsets, as well as of Latin-1 in Unicode
<- c(32:126, 160:255)

N

x <— if (110n_info () SMBCS) {
intToUtf8 (z, multiple = TRUE)
} else rawToChar(as.raw(z), multiple = TRUE)
by number
writelLines (strwrap (paste (x, collapse=" "), width = 60))

by locale collation
writeLines (strwrap (paste(sort (x), collapse=" "), width = 60))

https://en.wikipedia.org/wiki/Collating_sequence
https://en.wikipedia.org/wiki/Collating_sequence
https://unicode.org/reports/tr10/
https://icu.unicode.org/

102 complex

complex Complex Numbers and Basic Functionality

Description

Basic functions which support complex arithmetic in R, in addition to the arithmetic operators +,

-, %, /,and ".
Usage
complex (length.out = 0, real = numeric(), imaginary = numeric(),
modulus = 1, argument = 0)

as.complex(x, ...)
is.complex (x)

Re (
Im (

z)

z)
Mod (z
Z

(

Arg (

)
)
Conij(z

)
Arguments

length.out numeric. Desired length of the output vector, inputs being recycled as needed.

real numeric vector.

imaginary numeric vector.

modulus numeric vector.

argument numeric vector.

X an object, probably of mode complex.

z an object of mode complex, or one of a class for which a methods has been
defined.

further arguments passed to or from other methods.

Details

Complex vectors can be created with complex. The vector can be specified either by giving its
length, its real and imaginary parts, or modulus and argument. (Giving just the length generates a
vector of complex zeroes.)

as.complex attempts to coerce its argument to be of complex type: like as.vector it strips
attributes including names. Up to R versions 3.2.x, all forms of NA and NaN were coerced to a
complex NA, i.e., the NA__complex__ constant, for which both the real and imaginary parts are NA.
Since R 3.3.0, typically only objects which are NA in parts are coerced to complex NA, but others
with NaN parts, are not. As a consequence, complex arithmetic where only NaN’s (but no NA’s) are
involved typically will not give complex NA but complex numbers with real or imaginary parts of
NaN.

complex 103

Note that is.complex and is.numeric are never both TRUE.

The functions Re, Im, Mod, Arg and Conj have their usual interpretation as returning the real
part, imaginary part, modulus, argument and complex conjugate for complex values. The modulus
and argument are also called the polar coordinates. 1f z = x + iy with real x and y, for r =
Mod(z) = v/z% 4+ y2, and ¢ = Arg(z), z = r * cos(¢) and y = r * sin(¢). They are all internal
generic primitive functions: methods can be defined for them individually or via the Complex
group generic.

In addition to the arithmetic operators (see Arithmetic) +, —, x, /, and *, the elementary trigono-
metric, logarithmic, exponential, square root and hyperbolic functions are implemented for complex
values.

Matrix multiplications ($+%, crossprod, tcrossprod) are also defined for complex matrices
(matrix), and so are solve, eigen or svd.

Internally, complex numbers are stored as a pair of double precision numbers, either or both of
which can be NaN (including NA, see NA_complex_ and above) or plus or minus infinity.
S4 methods

as.complex is primitive and can have S4 methods set.

Re, Im, Mod, Arg and Conj constitute the S4 group generic Complex and so S4 methods can be
set for them individually or via the group generic.
Note

Operations and functions involving complex NaN mostly rely on the C library’s handling of
‘double complex’ arithmetic, which typically returns complex (re=NaN, im=NaN) (but we
have not seen a guarantee for that). For + and —, R’s own handling works strictly “coordinate wise”.

Operations involving complex NA, i.e., NA_complex_, return NA_complex_.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

Arithmetic;polyroot finds all n complex roots of a polynomial of degree n.

Examples
require (graphics)
0i ~ (=3:3)

matrix (11~ (-6:5), nrow = 4) #- all columns are the same
0 ~ 1i # a complex NaN

create a complex normal vector
z <- complex(real = stats::rnorm(100), imaginary = stats::rnorm(100))

104 conditions

or also (less efficiently):
z2 <— 1:2 + 1i%(8:9)

The Arg(.) is an angle:
zz <— (rep(l:4, length.out = 9) + 1ix(9:1))/10
zz.shift <- complex (modulus = Mod(zz), argument = Arg(zz) + pi)
plot(zz, xlim = c(-1,1), ylim = c(-1,1), col = "red", asp = 1,
main = expression(paste ("Rotation by "," ", pi == 180"0)))
abline(h = 0, v = 0, col = "blue", lty = 3)
points(zz.shift, col = "orange")
showC <- function(z) noquote (sprintf("(R = %g, I = %g9)", Re(z), Im(z)))

The exact result of this *depends* on the platform, compiler, math-library:

(NpNA <- NaN + NA_complex_) ; str (NpNA) # xbehaves* as 'cplx NA'
stopifnot (is.na (NpNA), is.na (NA_complex_), is.na(Re(NA_complex_)), is.na(Im(NA_complex_)))
showC (NpNA) # but not always is {shows '(R =NaN, I = NA)' on some platforms}

and this is not TRUE everywhere:
identical (NpNA, NA_complex_)

showC (NA_complex_) # always == (R = NA, I = NA)
conditions Condition Handling and Recovery
Description

These functions provide a mechanism for handling unusual conditions, including errors and warn-
ings.
Usage

tryCatch (expr, ..., finally)
withCallingHandlers (expr, ...)
globalCallingHandlers(...)

signalCondition (cond)

simpleCondition (message, call = NULL)

simpleError (message, call = NULL)

simpleWarning (message, call = NULL)

simpleMessage (message, call = NULL)

errorCondition (message, ..., class = NULL, call = NULL)
warningCondition (message, ..., class = NULL, call = NULL)

S3 method for class 'condition'
as.character(x, ...)

S3 method for class 'error'
as.character(x, ...)

conditions 105

S3 method for class 'condition'
print(x, ...)

S3 method for class 'restart'
print(x, ...)

conditionCall (c)

S3 method for class 'condition'
conditionCall (c)
conditionMessage (c)

S3 method for class 'condition'
conditionMessage (c)

withRestarts (expr, ...)

computeRestarts (cond = NULL)
findRestart (name, cond = NULL)
invokeRestart (r, ...)
tryInvokeRestart (r, ...)
invokeRestartInteractively (r)

isRestart (x)
restartDescription (r)
restartFormals (r)

suspendInterrupts (expr)
allowInterrupts (expr)

.signalSimpleWarning (msg, call)
.handleSimpleError (h, msg, call)
.tryResumeInterrupt ()

Arguments
c a condition object.
call call expression.
cond a condition object.
expr expression to be evaluated.
finally expression to be evaluated before returning or exiting.
h function.
message character string.
msg character string.
name character string naming a restart.
r restart object.
x object.
class character string naming a condition class.

additional arguments; see details below.

106 conditions

Details

The condition system provides a mechanism for signaling and handling unusual conditions, includ-
ing errors and warnings. Conditions are represented as objects that contain information about the
condition that occurred, such as a message and the call in which the condition occurred. Currently
conditions are S3-style objects, though this may eventually change.

Conditions are objects inheriting from the abstract class condition. Errors and warnings are
objects inheriting from the abstract subclasses error and warning. The class simpleError
is the class used by stop and all internal error signals. Similarly, simpleWarning is used
by warning, and simpleMessage is used by message. The constructors by the same
names take a string describing the condition as argument and an optional call. The functions
conditionMessage and conditionCall are generic functions that return the message and
call of a condition.

The function errorCondition can be used to construct error conditions of a particular class
with additional fields specified as the ... argument. warningCondition is analogous for
warnings.

Conditions are signaled by signalCondition. In addition, the stop and warning functions
have been modified to also accept condition arguments.

The function tryCatch evaluates its expression argument in a context where the handlers pro-
vided in the . . . argument are available. The finally expression is then evaluated in the context
in which tryCatch was called; that is, the handlers supplied to the current t ryCatch call are
not active when the finally expression is evaluated.

Handlers provided in the . . . argument to t ryCatch are established for the duration of the eval-
uation of expr. If no condition is signaled when evaluating expr then tryCatch returns the
value of the expression.

If a condition is signaled while evaluating expr then established handlers are checked, starting
with the most recently established ones, for one matching the class of the condition. When several
handlers are supplied in a single t ryCatch then the first one is considered more recent than the
second. If a handler is found then control is transferred to the t ryCatch call that established the
handler, the handler found and all more recent handlers are disestablished, the handler is called with
the condition as its argument, and the result returned by the handler is returned as the value of the
tryCatch call.

Calling handlers are established by withCallingHandlers. If a condition is signaled and the
applicable handler is a calling handler, then the handler is called by signalCondition in the
context where the condition was signaled but with the available handlers restricted to those below
the handler called in the handler stack. If the handler returns, then the next handler is tried; once
the last handler has been tried, signalCondition returns NULL.

globalCallingHandlers establishes calling handlers globally. These handlers are only called
as a last resort, after the other handlers dynamically registered with withCallingHandlers
have been invoked. They are called before the error global option (which is the legacy interface
for global handling of errors). Registering the same handler multiple times moves that handler on
top of the stack, which ensures that it is called first. Global handlers are a good place to define a
general purpose logger (for instance saving the last error object in the global workspace) or a general
recovery strategy (e.g. installing missing packages via the retry_loadNamespace restart).

Like withCallingHandlers and tryCatch, globalCallingHandlers takes named
handlers. Unlike these functions, it also has an options-like interface: you can estab-
lish handlers by passing a single list of named handlers. To unregister all global handlers,

conditions 107

supply a single ‘NULL‘. The list of deleted handlers is returned invisibly. Finally, calling
globalCallingHandlers without arguments returns the list of currently established handlers,
visibly.

User interrupts signal a condition of class interrupt that inherits directly from class
condition before executing the default interrupt action.

Restarts are used for establishing recovery protocols. They can be established using
withRestarts. One pre-established restart is an abort restart that represents a jump to top
level.

findRestart and computeRestarts find the available restarts. findRestart returns the
most recently established restart of the specified name. computeRestarts returns a list of all
restarts. Both can be given a condition argument and will then ignore restarts that do not apply to
the condition.

invokeRestart transfers control to the point where the specified restart was established
and calls the restart’s handler with the arguments, if any, given as additional arguments to
invokeRestart. The restart argument to invokeRestart can be a character string, in which
case findRestart is used to find the restart. If no restart is found, an error is thrown.

tryInvokeRestart is a variant of invokeRestart that returns silently when the restart
cannot be found with findRestart. Because a condition of a given class might be signalled
with arbitrary protocols (error, warning, etc), it is recommended to use this permissive variant
whenever you are handling conditions signalled from a foreign context. For instance, invocation
of a "muffleWarning" restart should be optional because the warning might have been sig-
nalled by the user or from a different package with the stop or message protocols. Only use
invokeRestart when you have control of the signalling context, or when it is a logical error if
the restart is not available.

New restarts for withRestarts can be specified in several ways. The simplest is in name =
function form where the function is the handler to call when the restart is invoked. Another
simple variant is as name = st ring where the string is stored in the description field of the
restart object returned by findRestart;in this case the handler ignores its arguments and returns
NULL. The most flexible form of a restart specification is as a list that can include several fields,
including handler, description, and test. The test field should contain a function of one
argument, a condition, that returns TRUE if the restart applies to the condition and FALSE if it does
not; the default function returns TRUE for all conditions.

One additional field that can be specified for a restart is interactive. This should
be a function of no arguments that returns a list of arguments to pass to the restart han-
dler. The list could be obtained by interacting with the user if necessary. The function
invokeRestartInteractively calls this function to obtain the arguments to use when in-
voking the restart. The default interactive method queries the user for values for the formal
arguments of the handler function.

Interrupts can be suspended while evaluating an expression using suspendInterrupts. Subex-
pression can be evaluated with interrupts enabled using allowInterrupts. These functions can
be used to make sure cleanup handlers cannot be interrupted.

.signalSimpleWarning, .handleSimpleError, and .tryResumelInterrupt are
used internally and should not be called directly.

108 conflicts

References

The t ryCatch mechanism is similar to Java error handling. Calling handlers are based on Com-
mon Lisp and Dylan. Restarts are based on the Common Lisp restart mechanism.

See Also

stop and warning signal conditions, and t ry is essentially a simplified version of t ryCatch.
assertCondition in package tools fests that conditions are signalled and works with several
of the above handlers.

Examples

tryCatch(l, finally = print ("Hello"))
e <- simpleError ("test error")

Not run:

stop (e)

tryCatch(stop(e), finally = print("Hello"))
tryCatch (stop ("fred"), finally = print ("Hello"))

End(Not run)

tryCatch (stop(e), error = function(e) e, finally = print ("Hello"))
tryCatch(stop("fred"), error = function(e) e, finally = print ("Hello"))
withCallingHandlers ({ warning("A"); 1+2 }, warning = function(w) {})

Not run:

{ withRestarts(stop("A"), abort = function() {}); 1 }

End (Not run)
withRestarts (invokeRestart ("foo", 1, 2), foo = function(x, y) {x + vyv})

##-—> More examples are part of

#h——> demo (error.catching)
conflicts Search for Masked Objects on the Search Path
Description

conflicts reports on objects that exist with the same name in two or more places on the search
path, usually because an object in the user’s workspace or a package is masking a system object of
the same name. This helps discover unintentional masking.

Usage

conflicts (where = search(), detail = FALSE)

Arguments
where A subset of the search path, by default the whole search path.
detail If TRUE, give the masked or masking functions for all members of the search

path.

connections 109

Value

If detail = FALSE, a character vector of masked objects. If detail = TRUE, a list of character
vectors giving the masked or masking objects in that member of the search path. Empty vectors are
omitted.

Examples

Im <- 1:3

conflicts(, TRUE)

gives something like
$.GlobalEnv

[l] "lm"

#
#
Spackage:base

[1] "1lm"

Remove things from your "workspace" that mask others:
remove (list = conflicts(detail = TRUE)S$.GlobalEnv)

connections Functions to Manipulate Connections (Files, URLs, ...)

Description

Functions to create, open and close connections, i.e., “generalized files”, such as possibly com-
pressed files, URLs, pipes, etc.

Usage
file(description = "", open = "", blocking = TRUE,
encoding = getOption ("encoding"), raw = FALSE,
method = getOption("url.method", "default"))
url (description, open = "", blocking = TRUE,

encoding = getOption ("encoding"),
method = getOption ("url.method", "default"),
headers = NULL)

gzfile (description, open "" encoding getOption ("encoding"),

compression = 6)

bzfile(description, open = "", encoding = getOption ("encoding"),
compression = 9)

xzfile (description, open = "", encoding = getOption ("encoding"),
compression = 6)

unz (description, filename, open = "", encoding = getOption ("encoding"))

110 connections

pipe (description, open = "", encoding = getOption ("encoding"))
fifo(description, open = "", blocking = FALSE,
encoding = getOption ("encoding"))
socketConnection (host = "localhost", port, server = FALSE,
blocking = FALSE, open = "a+",
encoding = getOption ("encoding"),
timeout = getOption ("timeout"),
options = getOption ("socketOptions"))

serverSocket (port)

socketAccept (socket, blocking = FALSE, open = "at",
encoding = getOption("encoding"),
timeout = getOption("timeout"),
options = getOption("socketOptions"))

open(con, ...)
S3 method for class 'connection'
open (con, open = "r", blocking = TRUE, ...)

close(con, ...)
S3 method for class 'connection'
close(con, type = "rw", ...)

flush (con)

isOpen(con, rw = "")
isIncomplete (con)

socketTimeout (socket, timeout = -1)

Arguments

description character string. A description of the connection: see ‘Details’.

open character string. A description of how to open the connection (if it should be
opened initially). See section ‘Modes’ for possible values.

blocking logical. See the ‘Blocking’ section.

encoding The name of the encoding to be assumed. See the ‘Encoding’ section.

raw logical. If true, a ‘raw’ interface is used which will be more suitable for argu-

ments which are not regular files, e.g. character devices. This suppresses the
check for a compressed file when opening for text-mode reading, and asserts
that the ‘file’ may not be seekable.

method character string, partially matched to c("default", "internal",
"wininet", "libcurl"): see ‘Details’.

connections 111

headers named character vector of HTTP headers to use in HTTP requests. It is ig-
nored for non-HTTP URLs. The User-Agent header, coming from the
HTTPUserAgent option (see opt ions) is used as the first header, automati-
cally.

compression integer in 0-9. The amount of compression to be applied when writing, from
none to maximal available. For xzfile can also be negative: see the ‘Com-
pression’ section.

timeout numeric: the timeout (in seconds) to be used for this connection. Beware that
some OSes may treat very large values as zero: however the POSIX standard
requires values up to 31 days to be supported.

options optional character vector with options. Currently only "no-delay" is sup-
ported on TCP sockets.

filename a filename within a zip file.

host character string. Host name for the port.

port integer. The TCP port number.

server logical. Should the socket be a client or a server?

socket a server socket listening for connections.

con a connection.

type character string. Currently ignored.

rw character string. Empty or "read" or "write", partial matches allowed.

arguments passed to or from other methods.

Details

The first eleven functions create connections. By default the connection is not opened (except for
a socket connection created by socketConnection or socketAccept and for server socket
connection created by serverSocket), but may be opened by setting a non-empty value of
argument open.

For file the description is a path to the file to be opened (when tilde expansion is done) or a
complete URL (when it is the same as calling url), or "" (the default) or "clipboard" (see
the ‘Clipboard’ section). Use "stdin" to refer to the C-level ‘standard input’ of the process
(which need not be connected to anything in a console or embedded version of R, and is not in
RGui on Windows). See also stdin () for the subtly different R-level concept of stdin. See
nullfile () for a platform-independent way to get filename of the null device.

For url the description is a complete URL including scheme (such as ‘http://’, ‘https://’,
‘ftp:// or ‘file://’). Method "internal™" is that available since connections were in-
troduced but now mainly defunct. Method "wininet™" is only available on Windows (it uses
the WinINet functions of that OS) and method "libcurl" (using the library of that name:
https://curl.se/libcurl/) is required on a Unix-alike but was optional on Windows be-
fore R 4.2.0. Method "default" currently uses method "internal" for ‘file://” URLs
and "libcurl" for all others. Which methods support which schemes has varied by R ver-
sion — currently "internal™" supports only ‘file://’; "wininet" supports ‘file://’,
‘http://’ and ‘https://’. Proxies can be specified: see download.file.

For gz file the description is the path to a file compressed by gzip: it can also open for reading
uncompressed files and those compressed by bzip2, xz or 1zma.

https://curl.se/libcurl/

112 connections

For bz file the description is the path to a file compressed by bzip2.

For xz f1i1e the description is the path to a file compressed by xz (https://en.wikipedia.
org/wiki/Xz) or (for reading only) 1zma (https://en.wikipedia.org/wiki/LZMA).

unz reads (only) single files within zip files, in binary mode. The description is the full path to the
zip file, with *. zip’ extension if required.

For pipe the description is the command line to be piped to or from. This is run in a shell, on
Windows that specified by the COMSPEC environment variable.

For fi fo the description is the path of the fifo. (Support for £ifo connections is optional but they
are available on most Unix platforms and on Windows.)

The intention is that £i1e and gz £i1le can be used generally for text input (from files, ‘http://’
and ‘https://’ URLs) and binary input respectively.

open, close and seek are generic functions: the following applies to the methods relevant to
connections.

open opens a connection. In general functions using connections will open them if they are not
open, but then close them again, so to leave a connection open call open explicitly.

close closes and destroys a connection. This will happen automatically in due course (with a
warning) if there is no longer an R object referring to the connection.

A maximum of 128 connections can be allocated (not necessarily open) at any one time. Three of
these are pre-allocated (see st dout). The OS will impose limits on the numbers of connections of
various types, but these are usually larger than 125.

flush flushes the output stream of a connection open for write/append (where implemented, cur-
rently for file and clipboard connections, stdout and stderr).

If for a file or (on most platforms) a £ifo connection the description is "", the file/fifo is
immediately opened (in "w+" mode unless open = "w+b" is specified) and unlinked from the file
system. This provides a temporary file/fifo to write to and then read from.

socketConnection (server=TRUE) creates a new temporary server socket listening on the
given port. As soon as a new socket connection is accepted on that port, the server socket is automat-
ically closed. serverSocket creates a listening server socket which can be used for accepting
multiple socket connections by socketAccept. To stop listening for new connections, a server
socket needs to be closed explicitly by close.

socketConnection and socketAccept support setting of socket-specific options. Currently
only "no-delay" is implemented which enables the TCP_NODELAY socket option, causing the
socket to flush send buffers immediately (instead of waiting to collect all output before sending).
This option is useful for protocols that need fast request/response turn-around times.

socketTimeout sets connection timeout of a socket connection. A negative t imeout can be
given to query the old value.

Value

file, pipe, fifo, url, gzfile, bzfile, xzfile, unz, socketConnection,
socketAccept and serverSocket return a connection object which inherits from class
"connection" and has a first more specific class.

open and flush return NULL, invisibly.

https://en.wikipedia.org/wiki/Xz
https://en.wikipedia.org/wiki/Xz
https://en.wikipedia.org/wiki/LZMA

connections 113

close returns either NULL or an integer status, invisibly. The status is from when the connection
was last closed and is available only for some types of connections (e.g., pipes, files and fifos):
typically zero values indicate success. Negative values will result in a warning; if writing, these
may indicate write failures and should not be ignored.

isOpen returns a logical value, whether the connection is currently open.

isIncomplete returns alogical value, whether the last read attempt was blocked, or for an output
text connection whether there is unflushed output.

socketTimeout returns the old timeout value of a socket connection.

URLs

url and f£ile support URL schemes ‘file://’, ‘http://’, ‘https:// and ‘ftp://’.

method = "1libcurl" allows more schemes: exactly which schemes is platform-dependent (see
libcurlVersion), but all Unix-alike platforms will support ‘https://’ and most platforms
will support ‘ftps://’ .

Support for the ‘ftp://’ scheme by the "internal" method was deprecated in R 4.1.1 and
removed in R 4.2.0.

Most methods do not percent-encode special characters such as spaces in ‘http://’ URLs (see
URLencode), but it seems the "wininet " method does.

Anoteon ‘file://’ URLs (which are handled by the same internal code irrespective of argument
method). The most general form (from RFC1738)is ‘file://host/path/to/file’, but R
only accepts the form with an empty host field referring to the local machine.

On a Unix-alike, this is then ‘file:///path/to/file’, where ‘path/to/file’ is relative
to ‘/’. So although the third slash is strictly part of the specification not part of the path, this can
be regarded as a way to specify the file ‘*/path/to/file’. Itis not possible to specify a relative
path using a file URL.

In this form the path is relative to the root of the filesystem, not a Windows concept. The stan-
dard form on Windows is ‘file:///d:/R/repos’: for compatibility with earlier versions of
R and Unix versions, any other form is parsed as R as ‘file://’ plus path_to_file. Also,
backslashes are accepted within the path even though RFC1738 does not allow them.

No attempt is made to decode a percent-encoded ‘file:’ URL: call URLdecode if necessary.

All the methods attempt to follow redirected HTTP URLs, but the "internal" method is unable
to follow redirections to HTTPS URLs.

Server-side cached data is always accepted.

Function download. file and several contributed packages provide more comprehensive facili-
ties to download from URLs.
Modes
Possible values for the argument open are
"r"or "rt" Open for reading in text mode.

"w" or "wt" Open for writing in text mode.

"a" or "at" Open for appending in text mode.

114

connections

"rb" Open for reading in binary mode.

"wb" Open for writing in binary mode.

"ab" Open for appending in binary mode.

"r+", "r+b" Open for reading and writing.

"w+", "w+b" Open for reading and writing, truncating file initially.

"a+", "a+b" Open for reading and appending.

Not all modes are applicable to all connections: for example URLs can only be opened for reading.
Only file and socket connections can be opened for both reading and writing. An unsupported mode
is usually silently substituted.

If a file or fifo is created on a Unix-alike, its permissions will be the maximal allowed by the current
setting of umask (see Sys.umask).

For many connections there is little or no difference between text and binary modes. For file-like
connections on Windows, translation of line endings (between LF and CRLF) is done in text mode
only (but text read operations on connections such as readLines, scan and source work
for any form of line ending). Various R operations are possible in only one of the modes: for
example pushBack is text-oriented and is only allowed on connections open for reading in text
mode, and binary operations such as readBin, load and save can only be done on binary-mode
connections.

The mode of a connection is determined when actually opened, which is deferred if open = "" is
given (the default for all but socket connections). An explicit call to open can specify the mode,
but otherwise the mode willbe "r". (gzfile,bzfile and xzfile connections are exceptions,
as the compressed file always has to be opened in binary mode and no conversion of line-endings
is done even on Windows, so the default mode is interpreted as "rb".) Most operations that need
write access or text-only or binary-only mode will override the default mode of a non-yet-open
connection.

Append modes need to be considered carefully for compressed-file connections. They do not pro-
duce a single compressed stream on the file, but rather append a new compressed stream to the file.
Readers may or may not read beyond end of the first stream: currently R does so for gzfile,
bzfile and xzfile connections.

Compression

R supports gzip, bzip2 and xz compression (also read-only support for its precursor, 1zma
compression).

For reading, the type of compression (if any) can be determined from the first few bytes of the
file. Thus for file (raw = FALSE) connections, if openis "", "r" or "rt" the connection
can read any of the compressed file types as well as uncompressed files. (Using "rb" will allow
compressed files to be read byte-by-byte.) Similarly, gzfile connections can read any of the
forms of compression and uncompressed files in any read mode.

(The type of compression is determined when the connection is created if open is unspecified and a
file of that name exists. If the intention is to open the connection to write a file with a different form
of compression under that name, specify open = "w" when the connection is created or unlink
the file before creating the connection.)

For write-mode connections, compress specifies how hard the compressor works to minimize the
file size, and higher values need more CPU time and more working memory (up to ca 800Mb for

connections 115

xzfile (compress = 9)). For xzfile negative values of compress correspond to adding
the xz argument ‘—e’: this takes more time (double?) to compress but may achieve (slightly) better
compression. The default (6) has good compression and modest (100Mb memory) usage: but if
you are using xz compression you are probably looking for high compression.

Choosing the type of compression involves tradeoffs: gzip, bzip2 and xz are successively less
widely supported, need more resources for both compression and decompression, and achieve more
compression (although individual files may buck the general trend). Typical experience is that
bzip2 compression is 15% better on text files than gzip compression, and xz with maximal
compression 30% better. The experience with R save files is similar, but on some large ‘. rda’
files xz compression is much better than the other two. With current computers decompression
times even with compress = 9 are typically modest and reading compressed files is usually faster
than uncompressed ones because of the reduction in disc activity.

Encoding

The encoding of the input/output stream of a connection can be specified by name in the same
way as it would be given to iconv: see that help page for how to find out what encoding names
are recognized on your platform. Additionally, "" and "native.enc" both mean the ‘native’
encoding, that is the internal encoding of the current locale and hence no translation is done.

When writing to a text connection, the connections code always assumes its input is in native encod-
ing, so e.g. writeLines has to convert text to native encoding. The native encoding is UTF-8 on
most systems (since R 4.2 also on recent Windows) and can represent all characters. writeLines
does not do the conversion when useBytes=TRUE (for expert use only, only useful on systems
with native encoding other than UTF-8), but the connections code still behaves as if the text was
in native encoding, so any attempt to convert encoding (encoding argument other than "" and
"native.enc") in connections will produce incorrect results.

When reading from a text connection, the connections code re-encodes the input to native encod-
ing (from the encoding given by the encoding argument). On systems where UTF-8 is not the
native encoding, one can read text not representable in the native encoding using readLines and
scan by providing them with an unopened connection that has been created with the encoding
argument specifying the input encoding. readLines and scan would then instruct the connec-
tions code to convert the text to UTF-8 (instead of native encoding) and they will return it marked
(aka declared, see Encoding) as "UTF-8". Finally and for expert use only, one may disable
re-encoding of input by specifying "" or "native.enc" as encoding for the connection, but
then mark the text as being "UTF-8" or "latinl" viathe encoding argument of readLines
and scan.

Re-encoding only works for connections in text mode: reading from a connection with re-encoding
specified in binary mode will read the stream of bytes, but mixing text and binary mode reads (e.g.,
mixing calls to readLines and readChar) is likely to lead to incorrect results.

The encodings "UCS-2LE" and "UTF-16LE" are treated specially, as they are appropriate values
for Windows ‘Unicode’ text files. If the first two bytes are the Byte Order Mark 0xFEFF then these
are removed as some implementations of iconv do not accept BOMs. Note that whereas most
implementations will handle BOMs using encoding "UCS-2" and choose the appropriate byte
order, some (including earlier versions of glibc) will not. There is a subtle distinction between
"UTF-16" and "UCS-2" (see https://en.wikipedia.org/wiki/UTF-16): the use of
characters in the ‘Supplementary Planes’ which need surrogate pairs is very rare so "UCS-2LE"
is an appropriate first choice (as it is more widely implemented).

https://en.wikipedia.org/wiki/UTF-16

116 connections

As from R 3.0.0 the encoding "UTF-8-BOM" is accepted for reading and will remove a Byte
Order Mark if present (which it often is for files and webpages generated by Microsoft applica-
tions). If a BOM is required (it is not recommended) when writing it should be written explicitly,
e.g. by writeChar ("\ufeff", con, eos =NULL) or writeBin(as.raw(c (0Oxef,
Oxbb, 0xbf)), binary_con)

Encoding names "ut£8", "mac" and "macroman" are not portable, and not supported on all
current R platforms. "UTF-8" is portable and "macintosh" is the official (and most widely
supported) name for ‘Mac Roman’. (As from R 3.4.0, R maps "ut £8" to "UTF-8" internally.)

Requesting a conversion that is not supported is an error, reported when the connection is opened.
Exactly what happens when the requested translation cannot be done for invalid input is in general
undocumented. On output the result is likely to be that up to the error, with a warning. On input, it
will most likely be all or some of the input up to the error.

It may be possible to deduce the current native encoding from
Sys.getlocale ("LC_CTYPE"), but not all OSes record it.

Blocking

Whether or not the connection blocks can be specified for file, url (default yes), fifo and socket
connections (default not).

In blocking mode, functions using the connection do not return to the R evaluator until the
read/write is complete. In non-blocking mode, operations return as soon as possible, so on in-
put they will return with whatever input is available (possibly none) and for output they will return
whether or not the write succeeded.

The function readLines behaves differently in respect of incomplete last lines in the two modes:
see its help page.

Even when a connection is in blocking mode, attempts are made to ensure that it does not block the
event loop and hence the operation of GUI parts of R. These do not always succeed, and the whole
R process will be blocked during a DNS lookup on Unix, for example.

Most blocking operations on HTTP/FTP URLs and on sockets are subject to the timeout set by
options ("timeout"). Note that this is a timeout for no response, not for the whole operation.
The timeout is set at the time the connection is opened (more precisely, when the last connection of
that type — ‘http:’, ‘ftp:’ or socket — was opened).

Fifos

Fifos default to non-blocking. That follows S version 4 and is probably most natural, but it does
have some implications. In particular, opening a non-blocking fifo connection for writing (only)
will fail unless some other process is reading on the fifo.

Opening a fifo for both reading and writing (in any mode: one can only append to fifos) connects
both sides of the fifo to the R process, and provides an similar facility to file ().

Clipboard

file can be used with description="clipboard" in mode "r" only. This
reads the X11 primary selection (see https://specifications.freedesktop.
org/clipboards-spec/clipboards—latest.txt), which can also be specified as

https://specifications.freedesktop.org/clipboards-spec/clipboards-latest.txt
https://specifications.freedesktop.org/clipboards-spec/clipboards-latest.txt

connections 117

"X11_primary" and the secondary selection as "X11_secondary". On most sys-
tems the clipboard selection (that used by ‘Copy’ from an ‘Edit’ menu) can be specified as
"X11l_clipboard".

When a clipboard is opened for reading, the contents are immediately copied to internal storage in
the connection.

Unix users wishing to write to one of the X11 selections may be able to do so via xclip (https:
//github.com/astrand/xclip)or xsel (http://www.vergenet .net/~conrad/
software/xsel/), for example by pipe ("xclip -i", "w") for the primary selection.

macOS users can use pipe ("pbpaste") and pipe ("pbcopy", "w") toread from and write
to that system’s clipboard.

File paths

In most cases these are translated to the native encoding.

The exceptions are £ile and pipe on Windows, where a description which is marked as
being in UTF-8 is passed to Windows as a ‘wide’ character string. This allows files with names not
in the native encoding to be opened on file systems which use Unicode file names (such as NTFS
but not FAT32).

Note

R’s connections are modelled on those in S version 4 (see Chambers, 1998). However R goes
well beyond the S model, for example in output text connections and URL, compressed and socket
connections. The default open mode in R is "r" except for socket connections. This differs from
S, where it is the equivalent of "r+", known as " ".

On (rare) platforms where vsnprintf does not return the needed length of output there is a
100,000 byte output limit on the length of a line for text output on fifo, gzfile, bzfile and
xzfile connections: longer lines will be truncated with a warning.

References

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer.

Ripley, B. D. (2001). “Connections.” R News, 1(1), 16-7. https://www.r-project.org/
doc/Rnews/Rnews_2001-1.pdf.

See Also

textConnection, seek, showConnections, pushBack.

Functions making direct use of connections are (text-mode) readLines, writeLines, cat,
sink, scan, parse, read.dcf, dput, dump and (binary-mode) readBin, readChar,
writeBin, writeChar, load and save.

capabilities to seeif £ifo connections are supported by this build of R.
gzcon to wrap gz ip (de)compression around a connection.

options HTTPUserAgent, internet.info and t imeout are used by some of the methods
for URL connections.

memCompress for more ways to (de)compress and references on data compression.

https://github.com/astrand/xclip
https://github.com/astrand/xclip
http://www.vergenet.net/~conrad/software/xsel/
http://www.vergenet.net/~conrad/software/xsel/
https://www.r-project.org/doc/Rnews/Rnews_2001-1.pdf
https://www.r-project.org/doc/Rnews/Rnews_2001-1.pdf

118 connections

extSoftVersion for the versions of the z1ib (for gzfile), bzip2 and xz libraries in use.

To flush output to the Windows and macOS consoles, see f1lush.console.

Examples

zzfil <- tempfile(fileext=".data")

zz <- file(zzfil, "w") # open an output file connection

cat ("TITLE extra line", "2 3 5 7", "", "11 13 17", file = zz, sep = "\n")
cat ("One more line\n", file = zz)

close(zz)

readLines (zzfil)

unlink (zzfil)

zzfil <- tempfile(fileext=".gz")

zz <- gzfile(zzfil, "w") # compressed file

cat ("TITLE extra line", "2 3 5 7", "", "11 13 17", file = zz, sep = "\n")
close(zz)

readLines (zz <- gzfile(zzfil))

close(zz)

unlink (zzfil)

zz # an invalid connection

zzfil <- tempfile(fileext=".bz2")

zz <—- bzfile(zzfil, "w") # bzip2-ed file

cat ("TITLE extra line", "2 3 5 7", "", "11 13 17", file = zz, sep = "\n")
close(zz)

zz # print () method: invalid connection

print (readlLines (zz <- bzfile(zzfil)))

close(zz)

unlink (zzfil)

An example of a file open for reading and writing
Tpath <- tempfile("test")

Tfile <- file(Tpath, "w+")

c(isOpen(Tfile, "r"), isOpen(Tfile, "w")) # both TRUE
cat ("abc\ndef\n", file = Tfile)

readLines (Tfile)

seek (Tfile, 0, rw = "r") # reset to beginning
readLines (Tfile)

cat ("ghi\n", file = Tfile)

readLines (Tfile)

Tfile # —-> print () : "valid" connection

close (Tfile)

Tfile # —-> print () : "invalid" connection

unlink (Tpath)

We can do the same thing with an anonymous file.
Tfile <- file()

cat ("abc\ndef\n", file = Tfile)

readLines (Tfile)

close (Tfile)

connections 119

Not run: ## fifo example -- may hang even with OS support for fifos
if (capabilities("fifo")) {
zzfil <- tempfile(fileext="-fifo")
zz <— fifo(zzfil, "w+")
writeLines ("abc", zz)
print (readLines (zz))
close(zz)
unlink (zzfil)
}
End (Not run)

Unix examples of use of pipes

read listing of current directory
readLines (pipe ("1ls -1"))

remove trailing commas. Suppose

Not run: % cat data2_

450, 390, 467, 654, 30, 542, 334, 432, 421,
357, 497, 493, 550, 549, 467, 575, 578, 342,
446, 547, 534, 495, 979, 479

End(Not run)

Then read this by

scan (pipe("sed -e s/,$// data2_"), sep = ",")

convert decimal point to comma in output: see also write.table
both R strings and (probably) the shell need \ doubled

zzfil <- tempfile ("outfile")

zz <— pipe (paste("sed s/\\\\./,/ >", zzfil), "w")

cat (format (round (stats::rnorm(48), 4)), fill = 70, file = zz)
close(zz)

file.show(zzfil, delete.file = TRUE)

Not run:
example for a machine running a finger daemon

con <- socketConnection (port = 79, blocking = TRUE)
writeLines (pasteO (system("whoami", intern = TRUE), "\r"), con)
gsub (" x$", "", readLines (con))

close (con)

End (Not run)

Not run:

Two R processes communicating via non-blocking sockets
R process 1

conl <- socketConnection (port = 6011, server = TRUE)
writeLines (LETTERS, conl)

close (conl)

R process 2

120 Constants

con2 <- socketConnection(Sys.info () ["nodename"], port = 6011)
as non-blocking, may need to loop for input
readLines (con2)
while (isIncomplete (con2)) {
Sys.sleep (1)
z <— readLines (con2)
if (length(z)) print(z)
}

close (con?2)

examples of use of encodings
write a file in UTF-8

cat (x, file = (con <- file("foo", "w", encoding = "UTF-8"))); close(con)
read a 'Windows Unicode' file
A <- read.table(con <- file("students", encoding = "UCS-2LE")); close(con)

End(Not run)

Constants Built-in Constants

Description

Constants built into R.

Usage

LETTERS
letters
month.abb
month.name
pi

Details

R has a small number of built-in constants.

The following constants are available:

LETTERS: the 26 upper-case letters of the Roman alphabet;

* letters: the 26 lower-case letters of the Roman alphabet;

* month.abb: the three-letter abbreviations for the English month names;
* month.name: the English names for the months of the year;

e pi: the ratio of the circumference of a circle to its diameter.

These are implemented as variables in the base namespace taking appropriate values.

contributors 121

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

data,DateTimeClasses.

Quotes for the parsing of character constants, NumericConstants for numeric constants.

Examples

John Machin (ca 1706) computed pi to over 100 decimal places
using the Taylor series expansion of the second term of
pi - 4% (4xatan(l/5) - atan(1/239))

months in English

month.name

months in your current locale
format (ISOdate (2000, 1:12, 1), "%B")
format (ISOdate (2000, 1:12, 1), "%b")

contributors R Project Contributors

Description

The R Who-is-who, describing who made significant contributions to the development of R.

Usage

contributors ()

Control Control Flow

Description

These are the basic control-flow constructs of the R language. They function in much the same way
as control statements in any Algol-like language. They are all reserved words.

122 Control

Usage

if (cond) expr
if (cond) cons.expr else alt.expr

for (var in seq) expr
while (cond) expr
repeat expr

break
next
Arguments

cond A length-one logical vector that is not NA. Other types are coerced to logical if
possible, ignoring any class. (As from R 4.2.0, conditions of length greater than
one are an error.)

var A syntactical name for a variable.

seq An expression evaluating to a vector (including a list and an expression) or to a

pairlist or NULL. A factor value will be coerced to a character vector. As from
R 4.0.0 this can be a long vector.

expr, cons.expr, alt.expr
An expression in a formal sense. This is either a simple expression or a so-called
compound expression, usually of the form { exprl ; expr2 }.

Details

break breaks out of a for, while or repeat loop; control is transferred to the first statement
outside the inner-most loop. next halts the processing of the current iteration and advances the
looping index. Both break and next apply only to the innermost of nested loops.

Note that it is a common mistake to forget to put braces ({ . . }) around your statements, e.g., after
if(..) or for(....). In particular, you should not have a newline between } and else to
avoid a syntax error in enteringa i f . .. else construct at the keyboard or via source. For that
reason, one (somewhat extreme) attitude of defensive programming is to always use braces, e.g.,
for if clauses.

The seqin a for loop is evaluated at the start of the loop; changing it subsequently does not affect
the loop. If seq has length zero the body of the loop is skipped. Otherwise the variable var is
assigned in turn the value of each element of seqg. You can assign to var within the body of the
loop, but this will not affect the next iteration. When the loop terminates, var remains as a variable
containing its latest value.

Value

1if returns the value of the expression evaluated, or NULL invisibly if none was (which may happen
if there isno else).

for, while and repeat return NULL invisibly. for sets var to the last used element of seq,
or to NULL if it was of length zero.

break and next do not return a value as they transfer control within the loop.

copyright 123
References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also
Syntax for the basic R syntax and operators, Paren for parentheses and braces.

ifelse, switch for other ways to control flow.

Examples

for(i in 1:5) print(l:1i)
for(n in c¢(2,5,10,20,50)) {
x <— stats::rnorm(n)
cat(n, ": ", sum(x"2), "\n", sep = "")

}
f <- factor (sample(letters[1l:5], 10, replace = TRUE))

for(i in unique(f)) print (i)
copyright Copyrights of Files Used to Build R
Description

R is released under the ‘GNU Public License’: see 1icense for details. The license describes
your right to use R. Copyright is concerned with ownership of intellectual rights, and some of the
software used has conditions that the copyright must be explicitly stated: see the ‘Details’ section.
We are grateful to these people and other contributors (see contributors) for the ability to use

their work.

Details
The file ‘R_HOME/COPYRIGHTS’ lists the copyrights in full detail.

crossprod Matrix Crossproduct

Description

Given matrices x and y as arguments, return a matrix cross-product. This is formally equiv-
alent to (but usually slightly faster than) the call t (x) $*% y (crossprod) or x $*% t (y)
(tcrossprod).

124 crossprod

Usage

crossprod(x, y = NULL)

tcrossprod(x, y = NULL)

Arguments
X, Y numeric or complex matrices (or vectors): y = NULL is taken to be the same
matrix as x. Vectors are promoted to single-column or single-row matrices,
depending on the context.
Value

A double or complex matrix, with appropriate dimnames taken from x and y.

Note

When x or y are not matrices, they are treated as column or row matrices, but their names are
usually not promoted to dimnames. Hence, currently, the last example has empty dimnames.

In the same situation, these matrix products (also % * %) are more flexible in promotion of vectors to
row or column matrices, such that more cases are allowed, since R 3.2.0.

The propagation of NaN/Inf values, precision, and performance of matrix products can be controlled
by options ("matprod").

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

%+ % and outer product $0%.

Examples
(z <— crossprod(l:4)) # = sum(l + 272 + 372 + 4"2)
drop (z) # scalar
x <= 1:4; names (x) <- letters[l:4]; x
tcrossprod(as.matrix(x)) # is

identical (tcrossprod(as.matrix (x)),
crossprod (t (x)))
tcrossprod (x) # no dimnames

m <- matrix(l:6, 2,3) ; v <= 1:3; v2 <= 2:1

stopifnot (identical (tcrossprod(v, m), v %*% t(m)),
identical (tcrossprod(v, m), crossprod(v, t(m))),
identical (crossprod(m, v2), t(m) %$x% v2))

Cstack_info 125

Cstack_info Report Information on C Stack Size and Usage

Description

Report information on the C stack size and usage (if available).

Usage

Cstack_info ()

Details

On most platforms, C stack information is recorded when R is initialized and used for stack-
checking. If this information is unavailable, the size will be returned as NA, and stack-checking
is not performed.

The information on the stack base address is thought to be accurate on Windows, Linux (using
glibc), macOS and FreeBSD but a heuristic is used on other platforms. Because this might be
slightly inaccurate, the current usage could be estimated as negative. (The heuristic is not used on
embedded uses of R on platforms where the stack base information is not thought to be accurate.)

The ‘evaluation depth’ is the number of nested R expressions currently under evaluation: this has a
limit controlled by options ("expressions").

Value

An integer vector. This has named elements

size The size of the stack (in bytes), or NA if unknown.
current The estimated current usage (in bytes), possibly NA.
direction 1 (stack grows down, the usual case) or —1 (stack grows up).

eval_depth The current evaluation depth (including two calls for the call to
Cstack_info).

Examples

Cstack_info ()

126 cumsum

cumsum Cumulative Sums, Products, and Extremes

Description

Returns a vector whose elements are the cumulative sums, products, minima or maxima of the
elements of the argument.

Usage

cumsum (x)
cumprod (x)
cummax (x)
cummin (x)

Arguments
x a numeric or complex (not cummin or cummax) object, or an object that can
be coerced to one of these.
Details

These are generic functions: methods can be defined for them individually or via the Math group
generic.

Value

A vector of the same length and type as x (after coercion), except that cumprod returns a numeric
vector for integer input (for consistency with). Names are preserved.

An NA value in x causes the corresponding and following elements of the return value to be NA, as
does integer overflow in cumsum (with a warning).

S4 methods

cumsum and cumprod are S4 generic functions: methods can be defined for them individually or
via the Math group generic. cummax and cummin are individually S4 generic functions.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole. (cumsum only.)

Examples

cumsum (1:10)
cumprod (1:10)
cummin (c(3:1, 2:0

cummax (c(3:1, 2:0, 4:2))

curlGetHeaders 127

curlGetHeaders Retrieve Headers from URLs

Description

Retrieve the headers for a URL for a supported protocol such as http://, ftp://, https://
and ftps://. Prior to R 4.2.0, an optional function not supported on all platforms.

Usage
curlGetHeaders (url, redirect = TRUE, verify = TRUE,
timeout = 0L, TLS = "")
Arguments
url character string specifying the URL.
redirect logical: should redirections be followed?
verify logical: should certificates be verified as valid and applying to that host?
timeout integer: the maximum time in seconds the request is allowed to take. Non-
positive and invalid values are ignored (including the default). (Added in R
4.1.0.)
TLS character: the minimum version of the TLS protocol to be used for https: //
URLs: the default (" ") is no restriction beyond that of the underlying 1ibcurl
(usually 1.0). Other valid valuesare "1.1","1.2" (both for 1ibcurl 7.34.0
and later) and "1 .3" (7.52.0 and later), if supported by the underlying version
of 1ibcurl and the SSL library it uses.
Details

This reports what curl —I —L or curl —I would report. Fora ftp:// URL the ‘headers’ are a
record of the conversation between client and server before data transfer.

Only 500 header lines will be reported: there is a limit of 20 redirections so this should suffice (and
even 20 would indicate problems).

If argument t imeout is not set to a positive integer this uses getOption ("timeout") which
defaults to 60 seconds. As the request cannot be interrupted you may want to consider a shorter
value.

To see all the details of the interaction with the server(s) set options (internet.info=1).

HTTP[S] servers are allowed to refuse requests to read the headers and some do: this will result in
astatusof 405.

For possible issues with secure URLs (especially on Windows) see download.file.

There is a security risk in not verifying certificates, but as only the headers are captured it is slight.
Usually looking at the URL in a browser will reveal what the problem is (and it may well be
machine-specific).

128 cut

Value

A character vector with integer attribute "status" (the last-received ‘status’ code). If redirection
occurs this will include the headers for all the URLSs visited.

For the interpretation of ‘status’ codes see https://en.wikipedia.org/wiki/List_
of HTTP_status_codes and https://en.wikipedia.org/wiki/List_of_ FTP_
server_return_codes. A successful FTP connection will usually have status 250, 257 or
350.

See Also

capabilities ("libcurl") to see if this is supported. 1ibcurlVersion for the version
of 1libcurl in use.

options HTTPUserAgent and t imeout are used.

Examples

needs Internet access, results vary

curlGetHeaders ("http://bugs.r-project.org") ## this redirects to https://
curlGetHeaders ("https://httpbin.org/status/404") ## returns status
curlGetHeaders ("ftp://cran.r-project.org")

cut Convert Numeric to Factor

Description
cut divides the range of x into intervals and codes the values in x according to which interval they
fall. The leftmost interval corresponds to level one, the next leftmost to level two and so on.
Usage
cut (x, ...)
Default S3 method:

cut (x, breaks, labels = NULL,
include.lowest = FALSE, right = TRUE, dig.lab = 3,

ordered_result = FALSE, ...)
Arguments
x a numeric vector which is to be converted to a factor by cutting.
breaks either a numeric vector of two or more unique cut points or a single number
(greater than or equal to 2) giving the number of intervals into which x is to be
cut.
labels labels for the levels of the resulting category. By default, labels are constructed

using " (a,b] " interval notation. If labels = FALSE, simple integer codes
are returned instead of a factor.

https://en.wikipedia.org/wiki/List_of_HTTP_status_codes
https://en.wikipedia.org/wiki/List_of_HTTP_status_codes
https://en.wikipedia.org/wiki/List_of_FTP_server_return_codes
https://en.wikipedia.org/wiki/List_of_FTP_server_return_codes

cut 129
include.lowest
logical, indicating if an ‘x[i]’ equal to the lowest (or highest, for right =
FALSE) ‘breaks’ value should be included.
right logical, indicating if the intervals should be closed on the right (and open on the
left) or vice versa.
dig.lab integer which is used when labels are not given. It determines the number of
digits used in formatting the break numbers.
ordered_result
logical: should the result be an ordered factor?
further arguments passed to or from other methods.
Details

When breaks is specified as a single number, the range of the data is divided into break s pieces
of equal length, and then the outer limits are moved away by 0.1% of the range to ensure that the
extreme values both fall within the break intervals. (If x is a constant vector, equal-length intervals
are created, one of which includes the single value.)

If a 1abels parameter is specified, its values are used to name the factor levels. If none is specified,
the factor level labels are constructed as " (b1, b2]", " (b2, b3] " etc. for right = TRUE and
as "[bl, b2)",...if right = FALSE. In this case, dig. lab indicates the minimum number
of digits should be used in formatting the numbers b1, b2, A larger value (up to 12) will be
used if needed to distinguish between any pair of endpoints: if this fails labels such as "Range3"
will be used. Formatting is done by formatcC.

The default method will sort a numeric vector of breaks, but other methods are not required to
and labels will correspond to the intervals after sorting.

As from R 3.2.0, getOption ("OutDec") is consulted when labels are constructed for 1abels
= NULL.

Value

A factor isreturned, unless labels = FALSE which results in an integer vector of level codes.

Values which fall outside the range of breaks are coded as NA, as are NaN and NA values.

Note

Instead of table (cut (x, br)), hist (x, br, plot = FALSE) is more efficient and less
memory hungry. Instead of cut (x, labels = FALSE), findInterval () is more efficient.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

130

See Also

cut

split for splitting a variable according to a group factor; factor, tabulate, table,

findInterval.

quantile for ways of choosing breaks of roughly equal content (rather than length).

.bincode for a bare-bones version.

Examples

7 <— stats::rnorm(10000)

table (cut (Z, breaks = -6:6))
sum (table (cut (2, breaks = -6:6, labels = FALSE)))
sum (graphics::hist (Z, breaks = -6:6, plot = FALSE) $counts)

cut (rep(1,5), 4) #-- dummy

tx0 <- ¢(9, 4, 6, 5, 3, 10, 5, 3, 5)
x <— rep(0:8, tx0)

stopifnot (table(x) == tx0)

table (cut (x, breaks 8))
table(cut (x, breaks = 3x(-2:5)))
table(cut(x, breaks = 3x(-2:5), right = FALSE))

##-—— some values OUTSIDE the breaks

table (cx <- cut(x, breaks = 2%x(0:4)))

table (cxl <- cut(x, breaks = 2%(0:4), right = FALSE))
which(is.na(cx)); x[is.na(cx)] #—— the first 9 wvalues O
which(is.na(cxl)); x[is.na(cxl)] #-- the last 5 wvalues 38

Label construction:

y <- stats::rnorm(100)

table (cut (y, breaks = pi/3x(-3:3)))

table (cut (y, breaks = pi/3x(-3:3), dig.lab = 4))

table (cut (y, breaks = 1%(-3:3), dig.lab = 4))
extra digits don't "harm" here
table (cut (y, breaks = 1x(-3:3), right = FALSE))

#—- the same, since no exact INT!

sometimes the default dig.lab is not enough to be avoid confusion:

aaa <- ¢(1,2,3,4,5,2,3,4,5,6,7)
cut (aaa, 3)
cut (aaa, 3, dig.lab = 4, ordered_result = TRUE)

one way to extract the breakpoints

labs <- levels (cut (aaa, 3))

cbind (lower = as.numeric(sub ("\\((.+),.x", "\\1", labs)),
upper = as.numeric(sub("[*, 1%, ([*11*)\\1", "\\1", labs)

cut. POSIXt 131

cut .POSIXt Convert a Date or Date-Time Object to a Factor

Description

Method for cut applied to date-time objects.

Usage

S3 method for class 'POSIXt'
cut (x, breaks, labels = NULL, start.on.monday = TRUE,
right = FALSE, ...)

S3 method for class 'Date'

cut (x, breaks, labels = NULL, start.on.monday = TRUE,
right = FALSE, ...)
Arguments
X an object inheriting from class "POSIXt" or "Date".
breaks a vector of cut points or number giving the number of intervals which x is to be

cut into or an interval specification, one of "sec", "min", "hour", "day",
"DSTday", "week", "month", "quarter" or "year", optionally pre-
ceded by an integer and a space, or followed by "s". (For "Date" objects
only interval specifications using "day", "week", "month", "quarter"
and "year" are allowed.)

labels labels for the levels of the resulting category. By default, labels are constructed
from the left-hand end of the intervals (which are included for the default value
of right). If 1abels = FALSE, simple integer codes are returned instead of

a factor.
start.on.monday

logical. If breaks = "weeks™", should the week start on Mondays or Sun-
days?
right, ... arguments to be passed to or from other methods.

Details
Note that the default for right differs from the default method. Using include.lowest =
TRUE will include both ends of the range of dates.

Using breaks = "quarter" will create intervals of 3 calendar months, with the intervals begin-
ning on January 1, April 1, July 1 or October 1 (based upon min (x)) as appropriate.

A vector of breaks will be sorted before use: 1abels should correspond to the sorted vector.

Value

A factor is returned, unless 1abels = FALSE which returns the integer level codes.

Values which fall outside the range of breaks are coded as NA, as are and NA values.

132 data.class

See Also

seq.POSIXt, seg.Date, cut

Examples

random dates in a 10-week period
cut (ISOdate (2001, 1, 1) + 70%x86400*stats::runif (100), "weeks")
cut (as.Date ("2001/1/1") + 70xstats::runif (100), "weeks")

The standards all have midnight as the start of the day, but some

people incorrectly interpret it at the end of the previous day

tm <- seg(as.POSIXct ("2012-06-01 06:00"), by = "6 hours", length.out = 24)
aggregate (1:24, list(day = cut(tm, "days")), mean)

and a version with midnight included in the previous day:

aggregate (1:24, list (day = cut (tm, "days", right = TRUE)), mean)

data.class Object Classes

Description

Determine the class of an arbitrary R object.

Usage

data.class (x)

Arguments

x an R object.

Value

character string giving the class of x.

The class is the (first element) of the class attribute if this is non-NULL, or inferred from the
object’s dim attribute if this is non-NULL, or mode (x) .

Simply speaking, data.class (x) returns what is typically useful for method dispatching. (Or,
what the basic creator functions already and maybe eventually all will attach as a class attribute.)

Note

For compatibility reasons, there is one exception to the rule above: When x is integer, the result
of data.class (x) is "numeric" even when x is classed.

See Also

class

data.frame

Examples

x <— LETTERS

data.class (factor (x))

data.class (matrix(x, ncol = 13))
data.class (list (x))
(

data.class (x)

133

has a class attribute
has a dim attribute
the same as mode (x)
the same as mode (x)

4 o o

stopifnot (data.class(1:2) == "numeric") # compatibility "rule"

data.frame

Data Frames

Description

The function data. frame () creates data frames, tightly coupled collections of variables which
share many of the properties of matrices and of lists, used as the fundamental data structure by most
of R’s modeling software.

Usage

data.frame (.

., row.names = NULL, check.rows = FALSE,

check.names = TRUE, fix.empty.names = TRUE,
stringsAsFactors = FALSE)

Arguments

row.names

check.rows

check.names

these arguments are of either the form value or tag = value. Component
names are created based on the tag (if present) or the deparsed argument itself.

NULL or a single integer or character string specifying a column to be used as
row names, or a character or integer vector giving the row names for the data
frame.

if TRUE then the rows are checked for consistency of length and names.

logical. If TRUE then the names of the variables in the data frame are checked
to ensure that they are syntactically valid variable names and are not duplicated.
If necessary they are adjusted (by make . names) so that they are.

fix.empty.names

logical indicating if arguments which are “unnamed” (in the sense of not being
formally called as someName = arg) get an automatically constructed name
or rather name "". Needs to be set to FALSE even when check.names is
false if " " names should be kept.

stringsAsFactors

logical: should character vectors be converted to factors? The ‘factory-fresh’
default has been TRUE previously but has been changed to FALSE for R 4.0.0.

134 data.frame

Details

A data frame is a list of variables of the same number of rows with unique row names, given class
"data.frame". If no variables are included, the row names determine the number of rows.

The column names should be non-empty, and attempts to use empty names will have unsupported
results. Duplicate column names are allowed, but you need to use check .names = FALSE for
data.frame to generate such a data frame. However, not all operations on data frames will
preserve duplicated column names: for example matrix-like subsetting will force column names in
the result to be unique.

data.frame converts each of its arguments to a data frame by calling
as.data.frame (optional = TRUE). As that is a generic function, methods can be
written to change the behaviour of arguments according to their classes: R comes with many
such methods. Character variables passed to data.frame are converted to factor columns if
not protected by I and argument stringsAsFactors is true. If a list or data frame or matrix
is passed to data.frame it is as if each component or column had been passed as a separate
argument (except for matrices protected by I).

Objects passed to data.frame should have the same number of rows, but atomic vectors (see
is.vector), factors and character vectors protected by I will be recycled a whole number of
times if necessary (including as elements of list arguments).

If row names are not supplied in the call to data . frame, the row names are taken from the first
component that has suitable names, for example a named vector or a matrix with rownames or a
data frame. (If that component is subsequently recycled, the names are discarded with a warning.)
If row.names was supplied as NULL or no suitable component was found the row names are the
integer sequence starting at one (and such row names are considered to be ‘automatic’, and not
preserved by as.matrix).

If row names are supplied of length one and the data frame has a single row, the row.names is
taken to specify the row names and not a column (by name or number).

Names are removed from vector inputs not protected by I.

Value

A data frame, a matrix-like structure whose columns may be of differing types (numeric, logical,
factor and character and so on).

How the names of the data frame are created is complex, and the rest of this paragraph is only the ba-
sic story. If the arguments are all named and simple objects (not lists, matrices of data frames) then
the argument names give the column names. For an unnamed simple argument, a deparsed version
of the argument is used as the name (with an enclosing I (...) removed). For a named ma-
trix/list/data frame argument with more than one named column, the names of the columns are the
name of the argument followed by a dot and the column name inside the argument: if the argument
is unnamed, the argument’s column names are used. For a named or unnamed matrix/list/data frame
argument that contains a single column, the column name in the result is the column name in the ar-
gument. Finally, the names are adjusted to be unique and syntactically valid unless check .names
=FALSE.

Note

In versions of R prior to 2.4.0 row.names had to be character: to ensure compatibility with such
versions of R, supply a character vector as the row . names argument.

data.matrix 135

References

Chambers, J. M. (1992) Data for models. Chapter 3 of Statistical Models in S eds J. M. Chambers
and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

I,plot.data.frame, print.data.frame, row.names, names (for the column names),
[.data.frame for subsetting methods and I (matrix (..)) examples;Math.data.frame
etc, about Group methods for data. frames; read.table, make.names, 11st2DF for cre-
ating data frames from lists of variables.

Examples

1.3 <- LETTERS[1:3]

char <- sample (L3, 10, replace = TRUE)

(d <- data.frame(x = 1, y = 1:10, char = char))

The "same" with automatic column names:
data.frame(l, 1:10, sample (L3, 10, replace = TRUE))

is.data.frame (d)
enable automatic conversion of character arguments to factor columns:

(dd <- data.frame(d, fac = letters[1:10], stringsAsFactors = TRUE))
rbind(class = sapply(dd, class), mode = sapply(dd, mode))

stopifnot (1:10 == row.names (d)) # {coercion}
(d0 <- d[, FALSE]) # data frame with 0 columns and 10 rows
(d.0 <- d[FALSE, 1) # <0 rows> data frame (3 named cols)
(d00 <- dO[FALSE,]) # data frame with 0 columns and 0 rows
data.matrix Convert a Data Frame to a Numeric Matrix
Description

Return the matrix obtained by converting all the variables in a data frame to numeric mode and then
binding them together as the columns of a matrix. Factors and ordered factors are replaced by their
internal codes.

Usage

data.matrix (frame, rownames.force = NA)

136 data.matrix

Arguments

frame a data frame whose components are logical vectors, factors or numeric or char-
acter vectors.

rownames.force
logical indicating if the resulting matrix should have character (rather than
NULL) rownames. The default, NA, uses NULL rownames if the data frame
has ‘automatic’ row.names or for a zero-row data frame.

Details

Logical and factor columns are converted to integers. Character columns are first converted to
factors and then to integers. Any other column which is not numeric (according to is.numeric)
is converted by as.numeric or, for S4 objects, as (, "numeric"). If all columns are integer
(after conversion) the result is an integer matrix, otherwise a numeric (double) matrix.

Value

If frame inherits from class "data.frame", an integer or numeric matrix of the same di-
mensions as frame, with dimnames taken from the row.names (or NULL, depending on
rownames . force) and names.

Otherwise, the result of as .matrix.

Note

The default behaviour for data frames differs from R < 2.5.0 which always gave the result character
rownames.

References

Chambers, J. M. (1992) Data for models. Chapter 3 of Statistical Models in S eds J. M. Chambers
and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

as.matrix, data.frame, matrix.

Examples

DF <- data.frame(a = 1:3, b = letters[10:12],
c = seqg(as.Date("2004-01-01"), by = "week", length.out =
stringsAsFactors = TRUE)

data.matrix (DF[1:21])

data.matrix (DF)

3).

date 137

date System Date and Time

Description

Returns a character string of the current system date and time.

Usage

date ()

Value

The string has the form "Fri Aug2011:11:001999", i.e., length 24, since it relies on
POSIX’s ct ime ensuring the above fixed format. Timezone and Daylight Saving Time are taken
account of, but not indicated in the result.

The day and month abbreviations are always in English, irrespective of locale.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also
Sys.Date and Sys.time; Date and DateTimeClasses for objects representing date and
time.
Examples
(d <- date())
nchar (d) == 24

something similar in the current locale
depending on ctime; e.g. %e could be %d:
format (Sys.time (), "%a %b %e $H:%M:%S %Y")

Dates Date Class

Description

Description of the class "Date" representing calendar dates.

138 Dates

Usage

S3 method for class 'Date’
summary (object, digits = 12, ...)

S3 method for class 'Date'

print (x, max = NULL, ...)
Arguments
object, x a Date object to be summarized or printed.
digits number of significant digits for the computations.
max numeric or NULL, specifying the maximal number of entries to be printed. By

default, when NULL, getOption ("max.print™) used.

further arguments to be passed from or to other methods.

Details

Dates are represented as the number of days since 1970-01-01, with negative values for earlier
dates. They are always printed following the rules of the current Gregorian calendar, even though
that calendar was not in use long ago (it was adopted in 1752 in Great Britain and its colonies).

It is intended that the date should be an integer, but this is not enforced in the internal representation.
Fractional days will be ignored when printing. It is possible to produce fractional days via the mean
method or by adding or subtracting (see Ops .Date).

From the many methods, see methods (class = "Date"), a few are documented separately,
see below.

See Also

Sys.Date for the current date.
weekdays for convenience extraction functions.

Methods with extra arguments and documentation:

Ops.Date for operators on "Date" objects.
format .Date for conversion to and from character strings.
axis.Date and hist.Date for plotting.

seq.Date , cut.Date, and round.Date for utility operations.

DateTimeClasses for date-time classes.

Examples

(today <- Sys.Date())

format (today, "%d %$b %Y") # with month as a word

(tenweeks <- seqg(today, length.out=10, by="1 week")) # next ten weeks
weekdays (today)

DateTimeClasses 139

months (tenweeks)
(Dls <- as.Date(.leap.seconds))

length(<Date>) <- n now works
ls <= Dls; length(ls) <- 12
12 <= Dls; length(l2) <- 5 + length(Dls)
stopifnot (exprs = {
length(.) <- % is compatible to subsetting/indexing:
identical(ls, Dls[seqg_along(ls)])
identical (12, Dls[seqg_along(l2)1])
has filled with NA's
is.na(l2[(length(Dls)+1) :1length(12)])

DateTimeClasses Date-Time Classes

Description

Description of the classes "POSIX1t" and "POSIXct" representing calendar dates and times.

Usage

S3 method for class 'POSIXct'
print(x, tz = "", usetz = TRUE, max = NULL, ...)

S3 method for class 'POSIXct'
summary (object, digits = 15, ...)

time + z
z + time
time - z
timel lop time2

Arguments

x, object an object to be printed or summarized from one of the date-time classes.

tz, usetz for timezone formatting, passed to format .POSIXct.

max numeric or NULL, specifying the maximal number of entries to be printed. By
default, when NULL, getOption ("max.print™) used.

digits number of significant digits for the computations: should be high enough to
represent the least important time unit exactly.
further arguments to be passed from or to other methods.

time date-time objects

timel, time2 date-time objects or character vectors. (Character vectors are converted by
as.POSIXct.)

140 DateTimeClasses

z a numeric vector (in seconds)
lop one of ==, I=, <, <=, > or >=,
Details

There are two basic classes of date/times. Class "POSIXct " represents the (signed) number of sec-
onds since the beginning of 1970 (in the UTC time zone) as a numeric vector. Class "POSIX1t"
is a named list of vectors representing

sec 0-61: seconds.

min 0-59: minutes.

hour 0-23: hours.

mday 1-31: day of the month

mon 0-11: months after the first of the year.

year years since 1900.

wday 0-6 day of the week, starting on Sunday.

yday 0-365: day of the year (365 only in leap years).

isdst Daylight Saving Time flag. Positive if in force, zero if not, negative if unknown.

zone (Optional.) The abbreviation for the time zone in force at that time: " " if unknown (but " "
might also be used for UTC).

gmtoff (Optional.) The offset in seconds from GMT: positive values are East of the meridian.
Usually NA if unknown, but 0 could mean unknown.

(The last two components are not present for times in UTC and are platform-dependent: they are
supported on platforms based on BSD or glibc (including Linux and macOS) and those using the
tzcode implementation shipped with R (including Windows). But they are not necessarily set.).
Note that the internal list structure is somewhat hidden, as many methods (including 1ength (x),
print () and str) apply to the abstract date-time vector, as for "POSTIXct". As from R 3.5.0,
one can extract and replace single components via [indexing with two indices (see the examples).
The classes correspond to the POSIX/C99 constructs of ‘calendar time’ (the time_t data type)
and ‘local time’ (or broken-down time, the st ruct tm data type), from which they also inherit
their names. The components of "POSIX1t" are integer vectors, except sec and zone.

"POSIXct" is more convenient for including in data frames, and "POSIX1t " is closer to human-
readable forms. A virtual class "POSIXt " exists from which both of the classes inherit: it is used
to allow operations such as subtraction to mix the two classes.

Components wday and yday of "POSIX1t" are for information, and are not used in the conver-
sion to calendar time. However, i sdst is needed to distinguish times at the end of DST: typically
lam to 2am occurs twice, first in DST and then in standard time. At all other times i sdst can be
deduced from the first six values, but the behaviour if it is set incorrectly is platform-dependent.

Logical comparisons and some arithmetic operations are available for both classes. One can add or
subtract a number of seconds from a date-time object, but not add two date-time objects. Subtraction
of two date-time objects is equivalent to using difft ime. Be aware that "POSIX1t " objects will
be interpreted as being in the current time zone for these operations unless a time zone has been
specified.

DateTimeClasses 141

"POSIX1t" objects will often have an attribute "tzone", a character vector of length 3 giv-
ing the time zone name (from the TZ environment variable or argument t z of functions creating

"POSIX1t" objects; "" marks the current time zone) and the names of the base time zone and
the alternate (daylight-saving) time zone. Sometimes this may just be of length one, giving the time
zone name.

"POSIXct" objects may also have an attribute "tzone", a character vector of length one. If
set to a non-empty value, it will determine how the object is converted to class "POSIX1t" and
in particular how it is printed. This is usually desirable, but if you want to specify an object in
a particular time zone but to be printed in the current time zone you may want to remove the
"tzone" attribute (e.g., by c (x)).

Unfortunately, the conversion is complicated by the operation of time zones and leap seconds (ac-
cording to this version of R’s data, 27 days have been 86401 seconds long so far, the last being
on (actually, immediately before) 2017-01-01: the times of the extra seconds are in the object
.leap.seconds). The details of this are entrusted to the OS services where possible. It seems
that some rare systems used to use leap seconds, but all known current platforms ignore them (as
required by POSIX). This is detected and corrected for at build time, so "POSIXct" times used
by R do not include leap seconds on any platform.

Using c on "POSIX1t" objects converts them to the current time zone, and on "POSIXct"
objects drops any "t zone" attributes, unless they are all marked with the same time zone.

A few times have specific issues. First, the leap seconds are ignored, and real times such as
"2005-12-3123:59:60" are (probably) treated as the next second. However, they will never
be generated by R, and are unlikely to arise as input. Second, on some OSes there is a problem in
the POSIX/C99 standard with "1969-12-31 23:59:59 UTC", which is —1 in calendar time
and that value is on those OSes also used as an error code. Thus as.POSIXct ("1969-12-31
23:59:59", format = "$Y-%m-%d $H:%M:%S", tz="UTC") may give NA, and
hence as.POSIXct ("1969-12-3123:59:59", tz="UTC") will give "1969-12-31
23:59:00". Other OSes (including the code used by R on Windows) report errors separately and
so are able to handle that time as valid.

The print methods respect options ("max.print").

Sub-second Accuracy

Classes "POSIXct" and "POSIX1t" are able to express fractions of a second. (Conversion of
fractions between the two forms may not be exact, but will have better than microsecond accuracy.)

Fractional seconds are printed only if options ("digits.secs") isset: see strftime.

Valid ranges for times

The "POSIX1t" class can represent a very wide range of times (up to billions of years), but such
times can only be interpreted with reference to a time zone.

The concept of time zones was first adopted in the nineteenth century, and the Gregorian calen-
dar was introduced in 1582 but not universally adopted until 1927. OS services almost invariably
assume the Gregorian calendar and may assume that the time zone that was first enacted for the
location was in force before that date. (The earliest legislated time zone seems to have been London
on 1847-12-01.) Some OSes assume the previous use of ‘local time’ based on the longitude of a
location within the time zone.

142 DateTimeClasses

Most operating systems represent POSIXct times as C type long. This means that on 32-bit
OSes this covers the period 1902 to 2037. On all known 64-bit platforms and for the code we
use on 32-bit Windows, the range of representable times is billions of years: however, not all can
convert correctly times before 1902 or after 2037. A few benighted OSes used a unsigned type and
so cannot represent times before 1970.

Where possible the platform limits are detected, and outside the limits we use our own C code.
This uses the offset from GMT in use either for 1902 (when there was no DST) or that predicted
for one of 2030 to 2037 (chosen so that the likely DST transition days are Sundays), and uses the
alternate (daylight-saving) time zone only if isdst is positive or (if —1) if DST was predicted to
be in operation in the 2030s on that day.

Note that there are places (e.g., Rome) whose offset from UTC varied in the years prior to 1902,
and these will be handled correctly only where there is OS support.

There is no reason to suppose that the DST rules will remain the same in the future, and indeed
the US legislated in 2005 to change its rules as from 2007, with a possible future reversion. So
conversions for times more than a year or two ahead are speculative.

Warnings

Some Unix-like systems (especially Linux ones) do not have environment variable TZ set, yet have
internal code that expects it (as does POSIX). We have tried to work around this, but if you get
unexpected results try setting TZ. See Sys .t imezone for valid settings.

Great care is needed when comparing objects of class "POSIX1t". Not only are components and
attributes optional; several components may have values meaning ‘not yet determined’ and the same
time represented in different time zones will look quite different.

Currently the order of the list components of "POSIX1t" objects must not be changed, as several
C-based conversion methods rely on the order for efficiency.

References

Ripley, B. D. and Hornik, K. (2001). “Date-time classes.” R News, 1(2), 8—11. https://www.
r-project.org/doc/Rnews/Rnews_2001-2.pdf.

See Also

Dates for dates without times.

as.POSIXct and as.POSIX1t for conversion between the classes.
strptime for conversion to and from character representations.
Sys.time for clock time as a "POSIXct" object.

difftime for time intervals.

cut.POSIXt, seq.POSIXt, round.POSIXt and trunc.POSIXt for methods for these
classes.

weekdays for convenience extraction functions.

https://www.r-project.org/doc/Rnews/Rnews_2001-2.pdf
https://www.r-project.org/doc/Rnews/Rnews_2001-2.pdf

dcf 143

Examples

IGNORE_RDIFF_BEGIN
(z <= Sys.time()) # the current date, as class "POSIXct"

Sys.time () - 3600 # an hour ago

as.POSIX1lt (Sys.time (), "GMT") # the current time in GMT

format (.leap.seconds) # the leap seconds in your time zone
print (.leap.seconds, tz = "PST8PDT") # and in Seattle's

IGNORE_RDIFF_END

look at xinternalx representation of "POSIX1t"
leapS <- as.POSIX1lt(.leap.seconds)

names (leapS) ; is.list (leapS)

str() "too smart" —--> need unclass(.):
utils::str(unclass(leapS), vec.len = 7)

Extracting =xsinglex components of POSIX1lt objects:
leapS[1 : 5, "year"]

length(.) <- n now works for "POSIXct" and "POSIXI1t"
for (lpS in list(.leap.seconds, leapS)) {
ls <= 1pS; length(ls) <- 12
12 <= 1pS; length(l2) <= 5 + length(lpS)
stopifnot (exprs = {
length(.) <- % is compatible to subsetting/indexing:
identical(ls, 1lpS[seqg_along(ls)])
identical (12, 1pS[seg_along(l2)])
has filled with NA's
is.na(l2[(length(lpS)+1) :length(12) 1)

dcf Read and Write Data in DCF Format

Description

Reads or writes an R object from/to a file in Debian Control File format.

Usage

read.dcf (file, fields = NULL, all = FALSE, keep.white = NULL)

write.dcf(x, file = "", append = FALSE, useBytes = FALSE,
indent = 0.1 % getOption("width"),
width = 0.9 x getOption("width"),
keep.white = NULL)

144 dcf
Arguments
file either a character string naming a file or a connection. " " indicates output to the
console. For read.dcf this can name a compressed file (see gzfile).
fields Fields to read from the DCF file. Default is to read all fields.
all alogical indicating whether in case of multiple occurrences of a field in a record,

all these should be gathered. If a1l is false (default), only the last such occur-
rence is used.

keep.white a character string with the names of the fields for which whitespace should be

kept as is, or NULL (default) indicating that there are no such fields. Coerced
to character if possible. For fields where whitespace is not to be kept as is,
read.dcf removes leading and trailing whitespace, and write.dcf folds
using strwrap.

X the object to be written, typically a data frame. If not, it is attempted to coerce
x to a data frame.

append logical. If TRUE, the output is appended to the file. If FALSE, any existing file
of the name is destroyed.

useBytes logical to be passed to writeLines (), see there: “for expert use”.

indent a positive integer specifying the indentation for continuation lines in output en-
tries.

width a positive integer giving the target column for wrapping lines in the output.

Details

DCEF is a simple format for storing databases in plain text files that can easily be directly read and
written by humans. DCEF is used in various places to store R system information, like descriptions
and contents of packages.

The DCEF rules as implemented in R are:

1.

A database consists of one or more records, each with one or more named fields. Not every
record must contain each field. Fields may appear more than once in a record.

. Regular lines start with a non-whitespace character.

3. Regular lines are of form tag:value, i.e., have a name tag and a value for the field, sepa-

rated by : (only the first : counts). The value can be empty (i.e., whitespace only).

. Lines starting with whitespace are continuation lines (to the preceding field) if at least one

character in the line is non-whitespace. Continuation lines where the only non-whitespace
characteris a ‘.’ are taken as blank lines (allowing for multi-paragraph field values).

5. Records are separated by one or more empty (i.e., whitespace only) lines.

. Individual lines may not be arbitrarily long; prior to R 3.0.2 the length limit was approximately

8191 bytes per line.

Note that read.dcf (all = FALSE) reads the file byte-by-byte. This allows a ‘DESCRIPTION’
file to be read and only its ASCII fields used, or its ‘Encoding’ field used to re-encode the re-
maining fields.

write.dcf does not write NA fields.

145

Value

The default read.dcf (all = FALSE) returns a character matrix with one row per record and
one column per field. Leading and trailing whitespace of field values is ignored unless a field is
listed in keep .white. If a tag name is specified in the file, but the corresponding value is empty,
then an empty string is returned. If the tag name of a field is specified in fields but never used
in a record, then the corresponding value is NA. If fields are repeated within a record, the last one
encountered is returned. Malformed lines lead to an error.

For read.dcf (all = TRUE) a data frame is returned, again with one row per record and one
column per field. The columns are lists of character vectors for fields with multiple occurrences,
and character vectors otherwise.

Note that an empty £1ile is a valid DCF file, and read . dcf will return a zero-row matrix or data
frame.

For write.dcf, invisible NULL.

Note

As from R 3.4.0, ‘whitespace’ in all cases includes newlines.

References

https://www.debian.org/doc/debian-policy/ch-controlfields.html.

Note that R does not require encoding in UTF-8, which is a recent Debian requirement. Nor does it
use the Debian-specific sub-format which allows comment lines starting with ‘#’.

See Also

write.table.

available.packages, which uses read.dcf to read the indices of package repositories.

Examples

Create a reduced version of the DESCRIPTION file in package 'splines'

x <- read.dcf(file = system.file ("DESCRIPTION", package = "splines"),
fields = c("Package", "Version", "Title"))

write.dcf (x)

An online DCF file with multiple records

con <- url ("https://cran.r-project.org/src/contrib/PACKAGES")
y <- read.dcf(con, all = TRUE)

close (con)

utils::str(y)

https://www.debian.org/doc/debian-policy/ch-controlfields.html

146 debug

debug Debug a Function

Description

Set, unset or query the debugging flag on a function. The text and condition arguments are the
same as those that can be supplied via a call to browser. They can be retrieved by the user once
the browser has been entered, and provide a mechanism to allow users to identify which breakpoint
has been activated.

Usage
debug (fun, text = "", condition = NULL, signature = NULL)
debugonce (fun, text = "", condition = NULL, signature = NULL)

undebug (fun, signature = NULL)
isdebugged (fun, signature = NULL)
debuggingState (on = NULL)

Arguments
fun any interpreted R function.
text a text string that can be retrieved when the browser is entered.
condition a condition that can be retrieved when the browser is entered.
signature an optional method signature. If specified, the method is debugged, rather than
its generic.
on logical; a call to the support function debuggingState returns TRUE if de-
bugging is globally turned on, FALSE otherwise. An argument of one or the
other of those values sets the state. If the debugging state is FALSE, none of
the debugging actions will occur (but explicit browser calls in functions will
continue to work).
Details

When a function flagged for debugging is entered, normal execution is suspended and the body of
function is executed one statement at a time. A new browser context is initiated for each step
(and the previous one destroyed).

At the debug prompt the user can enter commands or R expressions, followed by a newline. The
commands are described in the browser help topic.

To debug a function which is defined inside another function, single-step through to the end of its
definition, and then call debug on its name.

If you want to debug a function not starting at the very beginning, use trace (..., at = x) or
setBreakpoint.

Using debug is persistent, and unless debugging is turned off the debugger will be entered on every
invocation (note that if the function is removed and replaced the debug state is not preserved). Use
debugonce () to enter the debugger only the next time the function is invoked.

Defunct 147

To debug an S4 method by explicit signature, use signature. When specified, signature indicates
the method of fun to be debugged. Note that debugging is implemented slightly differently for this
case, as it uses the trace machinery, rather than the debugging bit. As such, text and condition
cannot be specified in combination with a non-null signature. For methods which implement
the . local rematching mechanism, the . local closure itself is the one that will be ultimately
debugged (see i sRematched).

isdebugged returns TRUE if a) signature is NULL and the closure fun has been debugged,
or b) signature is not NULL, fun is an S4 generic, and the method of fun for that signature
has been debugged. In all other cases, it returns FALSE.

The number of lines printed for the deparsed call when a function is entered for debugging can be
limited by setting options (deparse.max.lines).

When debugging is enabled on a byte compiled function then the interpreted version of the function
will be used until debugging is disabled.

Value

debug and undebug invisibly return NULL.
isdebugged returns TRUE if the function or method is

marked for debugging, and FALSE otherwise.

See Also
debugcall for conveniently debugging methods, browser notably for its ‘commands’, trace;
traceback to see the stack after an Error: ... message; recover for another debugging
approach.

Examples

Not run:
debug (library)
library (methods)

End (Not run)

Not run:

debugonce (sample)

only the first call will be debugged
sampe (10, 1)

sample (10, 1)

End (Not run)

Defunct Marking Objects as Defunct

Description

When a function is removed from R it should be replaced by a function which calls .Defunct.

148 delayedAssign

Usage

.Defunct (new, package = NULL, msqg)

Arguments
new character string: A suggestion for a replacement function.
package character string: The package to be used when suggesting where the defunct
function might be listed.
msg character string: A message to be printed, if missing a default message is used.
Details
.Defunct is called from defunct functions. Functions should be listed in

help ("pkg-defunct") for an appropriate pkg, including base (with the alias added
to the respective Rd file).

.Defunct signals an error of class defunctError with fields o1d, new, and package.

See Also

Deprecated.

base-defunct and so on which list the defunct functions in the packages.

delayedAssign Delay Evaluation

Description

delayedAssign creates a promise to evaluate the given expression if its value is requested. This
provides direct access to the lazy evaluation mechanism used by R for the evaluation of (interpreted)

functions.
Usage
delayedAssign (x, value, eval.env = parent.frame(l),
assign.env = parent.frame (1))
Arguments
x a variable name (given as a quoted string in the function call)
value an expression to be assigned to x
eval.env an environment in which to evaluate value

assign.env anenvironment in which to assign x

delayedAssign 149

Details

Both eval.env and assign.env default to the currently active environment.

The expression assigned to a promise by delayedAssign will not be evaluated until it is even-
tually ‘forced’. This happens when the variable is first accessed.

When the promise is eventually forced, it is evaluated within the environment specified by
eval.env (whose contents may have changed in the meantime). After that, the value is fixed
and the expression will not be evaluated again.

Value

This function is invoked for its side effect, which is assigning a promise to evaluate value to the
variable x.

See Also

substitute, to see the expression associated with a promise, if assign.env is not the
.GlobalEnv.

Examples

msg <- "old"

delayedAssign ("x", msqg)

substitute (x) # shows only 'x', as it is in the global env.
msg <- "new!"

X # new!

delayedAssign ("x", {
for(i in 1:3)
cat ("yippee!\n")
10
})

x"2 #- yippee
x"2 #- simple number

ne <- new.env ()

delayedAssign ("x", pi + 2, assign.env = ne)

See the promise {without "forcing" (i.e. evaluating) it}:
substitute (x, ne) # 'pi + 2'

Promises in an environment [for advanced users]: —-————————————————————

e <- (function(x, y = 1, z) environment()) (cos, "y", {cat(" HO!'\n"); pi+2})
How can we look at all promises in an env (w/o forcing them)?
gete <- function(e_)
lapply (lapply(ls(e_), as.name),
function(n) eval (substitute(substitute(X, e_), list (X=n))))

(exps <- gete(e))

150

sapply (exps, typeof)

(le <- as.list(e)) # evaluates ("force"s) the promises

deparse

stopifnot (identical (unname (le), lapply(exps, eval))) # and another "Ho!"

deparse Expression Deparsing

Description

Turn unevaluated expressions into character strings.

Usage

deparse (expr, width.cutoff = 60L,

backtick = mode (expr) %in% c("call", "expression",

"(", "function"),

control = c("keepNA", "keepInteger", "niceNames", "showAttributes"),
nlines = -1L)
deparsel (expr, collapse = " ", width.cutoff = 500L, ...)
Arguments
expr any R expression.
width.cutoff integer in [20,500] determining the cutoff (in bytes) at which line-breaking is
tried.
backtick logical indicating whether symbolic names should be enclosed in backticks if
they do not follow the standard syntax.
control character vector (or NULL) of deparsing options. control = "all" is thor-
ough, see .deparseOpts.
nlines integer: the maximum number of lines to produce. Negative values indicate no
limit.
collapse a string, passed to paste ().

further arguments passed to deparse ().

Details

These functions turn unevaluated expressions (where ‘expression’ is taken in a wider sense than the
strict concept of a vector of mode and type (typeof) "expression" used in expression)

into character strings (a kind of inverse to parse).

A typical use of this is to create informative labels for data sets and plots. The example shows a
simple use of this facility. It uses the functions deparse and substitute to create labels for a
plot which are character string versions of the actual arguments to the function myplot.

The default for the backtick option is not to quote single symbols but only composite expres-

sions. This is a compromise to avoid breaking existing code.

deparse 151

width.cutoff is a lower bound for the line lengths: deparsing a line proceeds until at least
width.cutoff bytes have been output and e.g. arg = value expressions will not be split across
lines.

deparsel () is a simple utility added in R 4.0.0 to ensure a string result (character vector of
length one), typically used in name construction, as deparsel (substitute(.)).

Note

To avoid the risk of a source attribute out of sync with the actual function definition, the source
attribute of a function will never be deparsed as an attribute.

Deparsing internal structures may not be accurate: for example the graphics display list recorded
by recordPlot is not intended to be deparsed and . Internal calls will be shown as primitive
calls.

Prior to R 4.2.0, attributes named dim, dimnames, levels, names and t sp were deparsed to
.Dim, .Dimnames, .Label, .Names and . Tsp as part of calls to st ructure, apparently for
historical compatibility with S.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

.deparseOpts for available control settings; dput () and dump () for related functions
using identical internal deparsing functionality.

substitute, parse, expression.

Quotes for quoting conventions, including backticks.

Examples

require (stats); require (graphics)

deparse (args (1m))
deparse (args (1lm), width.cutoff = 500)

myplot <- function(x, y) {
plot (x, y, xlab = deparsel (substitute(x)),
yvlab = deparsel (substitute(y)))

e <- quote (" foo bar")

deparse (e)

deparse (e, backtick = TRUE)

e <- quote(foo bar +1)

deparse (e)

deparse (e, control = "all") # wraps it w/ quote(.)

152 deparseOpts

deparseOpts Options for Expression Deparsing

Description

Process the deparsing options for deparse, dput and dump.

Usage

.deparseOpts (control)

. .deparseOpts

Arguments

control character vector of deparsing options.

Details

. .deparseOpts 1is the character vector of possible deparsing options used by
.deparseOpts ().

.deparseOpts () iscalled by deparse, dput and dump to process their cont rol argument.

The control argument is a vector containing zero or more of the following strings (exactly those
in . .deparseOpts). Partial string matching is used.

"keepInteger": Either surround integer vectors by as.integer () or use suffix L, so they
are not converted to type double when parsed. This includes making sure that integer
NAs are preserved (via NA_integer_ if there are no non-NA values in the vector, unless
"S_compatible" is set).

"quoteExpressions": Surround unevaluated expressions, but not formulas, with
quote (), so they are not evaluated when re-parsed.

"showAttributes": If the object has attributes (other than a source attribute, see
srcref), use structure () to display them as well as the object value unless the only
such attribute is names and the "niceNames" option is set. This ("showAttributes")
is the default for deparse and dput.

"useSource": If the object has a source attribute (srcref), display that instead of deparsing
the object. Currently only applies to function definitions.

"warnIncomplete™: Some exotic objects such as environments, external pointers, etc. can not
be deparsed properly. This option causes a warning to be issued if the deparser recognizes one
of these situations.

Also, the parser in R < 2.7.0 would only accept strings of up to 8192 bytes, and this option
gives a warning for longer strings.
"keepNA": Integer, real and character NAs are surrounded by coercion functions where necessary

to ensure that they are parsed to the same type. Since e.g. NA_real_ can be output in R, this
is mainly used in connection with S_compatible.

deparseOpts 153

"niceNames": If true, 1ists and atomic vectors with non-NA names (see names) are de-
parsed as e.g., c (A = 1) instead of structure (1, names = "A"), independently of the
"showAttributes" setting.

"all": An abbreviated way to specify all of the options listed above plus "digits17" (since R
version 4.0.0). This is the default for dump, and, without "digits17", the options used by
edit (which are fixed).

"delayPromises": Deparse promises in the form <promise: expression> rather than evaluat-
ing them. The value and the environment of the promise will not be shown and the deparsed
code cannot be sourced.

"S_compatible": Make deparsing as far as possible compatible with S and R < 2.5.0. For
compatibility with S, integer values of double vectors are deparsed with a trailing decimal
point. Backticks are not used.

"hexNumeric": Real and finite complex numbers are output in ‘"%a"’ format as binary frac-
tions (coded as hexadecimal: see sprint f) with maximal opportunity to be recorded exactly
to full precision. Complex numbers with one or both non-finite components are output as if
this option were not set.

(This relies on that format being correctly supported: known problems on Windows are
worked around as from R 3.1.2.)

"digitsl1l7": Real and finite complex numbers are output using format ‘"% .17g"’ which may
give more precision than the default (but the output will depend on the platform and there
may be loss of precision when read back). Complex numbers with one or both non-finite
components are output as if this option were not set.

"exact": An abbreviated way to specify control =c("all", "hexNumeric") which is
guaranteed to be exact for numbers, see also below.

For the most readable (but perhaps incomplete) display, use control = NULL. This displays the
object’s value, but not its attributes. The default in deparse is to display the attributes as well, but
not to use any of the other options to make the result parseable. (dump uses more default options
via control ="all", and printing of functions without sources uses c ("keepInteger",
"keepNA") to which one may add "warnIncomplete".)

Using control = "exact" (short for control = c ("all", "hexNumeric"))comes clos-
est to making deparse () an inverse of parse () (but we have not yet seen an example where
"all", now including "digits17", would not have been as good). However, not all objects are
deparse-able even with these options, and a warning will be issued if the function recognizes that it
is being asked to do the impossible.

Only one of "hexNumeric" and "digitsl17" can be specified.

Value

An integer value corresponding to the control options selected.

Examples
stopifnot (.deparseOpts ("exact") == .deparseOpts(c("all", "hexNumeric")))
(i0Opt.all <- .deparseOpts("all")) # a four digit integer

one integer —--> vector binary bits

154

int2bits <- function(x, base

21,

Deprecated

base))) |

ndigits 1 + floor(le-9 + log(max(x,1),
r <- numeric(ndigits)
for (i in ndigits:1) {

r[i] <- x%%base

if (i > 1L)

x <— x%/%base

}
rev (r)

smallest bit at left

}

int2bits (iOpt.all)

What options does "all" contain ?
(depO.indiv <- setdiff(..deparseOpts, c("all", "exact")))
(oa <- depO.indiv[int2bits (iOpt.all)])# 8 strings
stopifnot (identical (iOpt.all, .deparseOpts(oa)))

ditto for "exact" instead of "all":
(i0pt .X <- .deparseOpts ("exact"))
data.frame (opts = depO.indiv,
all int2bits (i0Opt.all),
exact= int2bits (iOpt.X))
(0X <- depO.indiv[int2bits (i0Opt.X) ==
diffXall <- oa oX
stopifnot (identical (iOpt.X, .deparseOpts (oX)),
identical (oX[diffXall], "hexNumeric"),
identical (ca[diffXall], "digitsl7"))

1]) # 8 strings, too

Deprecated Marking Objects as Deprecated

Description

When an object is about to be removed from R it is first deprecated and should include a call to
.Deprecated.

Usage

package=NULL, msg,
as.character(sys.call(sys.parent ())) [1L])

.Deprecated (new,
old =

Arguments
new character string: A suggestion for a replacement function.
package character string: The package to be used when suggesting where the deprecated
function might be listed.
msg character string: A message to be printed, if missing a default message is used.
old character string specifying the function (default) or usage which is being depre-

cated.

det 155

Details

.Deprecated ("<new name>") is called from deprecated functions. The original help page
for these functions is often available at help ("oldName—-deprecated") (note the quotes).
Functions should be listed in help ("pkg-deprecated") for an appropriate pkg, including
base.

.Deprecated signals a warning of class deprecatedWarning with fields o1d, new, and
package.

See Also

Defunct

base-deprecated and so on which list the deprecated functions in the packages.

det Calculate the Determinant of a Matrix

Description

det calculates the determinant of a matrix. determinant is a generic function that returns
separately the modulus of the determinant, optionally on the logarithm scale, and the sign of the
determinant.

Usage

det (x, ...)
determinant (x, logarithm = TRUE, ...)

Arguments
x numeric matrix: logical matrices are coerced to numeric.
logarithm logical; if TRUE (default) return the logarithm of the modulus of the determi-
nant.
Optional arguments. At present none are used. Previous versions of det al-
lowed an optional method argument. This argument will be ignored but will
not produce an error.
Details

The determinant function uses an LU decomposition and the det function is simply a wrapper
around a call to determinant.

Often, computing the determinant is not what you should be doing to solve a given problem.

156 detach

Value

For det, the determinant of x. For determinant, a list with components

modulus a numeric value. The modulus (absolute value) of the determinant if
logarithmis FALSE; otherwise the logarithm of the modulus.

sign integer; either +1 or —1 according to whether the determinant is positive or
negative.
Examples
(x <-— matrix(1l:4, ncol = 2))
unlist (determinant (x))
det (x)

det (print (cbind (1, 1:3, c(2,0,1))))

detach Detach Objects from the Search Path

Description

Detach a database, i.e., remove it from the search () path of available R objects. Usually this is
either a data . frame which has been attached or a package which was attached by 1ibrary.

Usage

detach (name, pos = 2L, unload = FALSE, character.only = FALSE,
force = FALSE)

Arguments
name The object to detach. Defaults to search () [pos]. This can be an unquoted
name or a character string but not a character vector. If a number is supplied this
is taken as pos.
pos Index position in search () of the database to detach. When name is a num-
ber, pos = name is used.
unload A logical value indicating whether or not to attempt to unload the names-

pace when a package is being detached. If the package has a namespace and
unload is TRUE, then detach will attempt to unload the namespace via
unloadNamespace: if the namespace is imported by another namespace or
unload is FALSE, no unloading will occur.

character.only
a logical indicating whether name can be assumed to be a character string.

force logical: should a package be detached even though other attached packages de-
pend on it?

detach 157

Details

This is most commonly used with a single number argument referring to a position on the search
list, and can also be used with a unquoted or quoted name of an item on the search list such as
package:tools.

If a package has a namespace, detaching it does not by default unload the namespace (and may
not even with unload = TRUE), and detaching will not in general unload any dynamically loaded
compiled code (DLLs); see getLoadedDLLs and library.dynam.unload. Further, regis-
tered S3 methods from the namespace will not be removed, and because S3 methods are not tagged
to their source on registration, it is in general not possible to safely un-register the methods asso-
ciated with a given package. If you use 1ibrary on a package whose namespace is loaded, it
attaches the exports of the already loaded namespace. So detaching and re-attaching a package may
not refresh some or all components of the package, and is inadvisable. The most reliable way to
completely detach a package is to restart R.

Value

The return value is invisible. It is NULL when a package is detached, otherwise the environment
which was returned by attach when the object was attached (incorporating any changes since it
was attached).

Good practice

detach () without an argument removes the first item on the search path after the workspace. It
is all too easy to call it too many or too few times, or to not notice that the search path has changed
since an attach call.

Use of attach/detach is best avoided in functions (see the help for at tach) and in interactive
use and scripts it is prudent to detach by name.

Note

You cannot detach either the workspace (position 1) nor the base package (the last item in the search
list), and attempting to do so will throw an error.

Unloading some namespaces has undesirable side effects: e.g. unloading grid closes all graphics
devices, and on some systems teltk cannot be reloaded once it has been unloaded and may crash R
if this is attempted.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

attach, library, search, objects, unloadNamespace, library.dynam.unload.

158

Examples

require (splines) # package
detach (package:splines)

or also
library(splines)

pkg <- "package:splines"

detach (pkg, character.only = TRUE)

careful: do not do this unless 'splines'

library(splines)
detach (2) # 'pos' used for 'name'

an example of the name argument to attach
and of detaching a database named by a character vector

attach_and_detach <- function(db, pos

{

}

name <- deparsel (substitute (db))
attach(db, pos = pos, name = name)
print (search () [pos])

detach (name, character.only = TRUE)

attach_and_detach (women, pos = 3)

is not already attached.

diag

diag

Matrix Diagonals

Description

Extract or replace the diagonal of a matrix, or construct a diagonal matrix.

Usage

diag(x = 1, nrow, ncol, names = TRUE)

diag(x) <- wvalue

Arguments

X

nrow, ncol

names

value

a matrix, vector or 1D array, or missing.

optional dimensions for the result when x is not a matrix.

(when x is a matrix) logical indicating if the resulting vector, the diagonal of x,
should inherit names from dimnames (x) if available.

either a single value or a vector of length equal to that of the current diagonal.
Should be of a mode which can be coerced to that of x.

diag 159

Details
diag has four distinct usages:

1. x is a matrix, when it extracts the diagonal.
2. x is missing and nrow is specified, it returns an identity matrix.

3. x is a scalar (length-one vector) and the only argument, it returns a square identity matrix of
size given by the scalar.

4. x is a ‘numeric’ (complex, numeric, integer, logical, or raw) vector, either of
length at least 2 or there were further arguments. This returns a matrix with the given diagonal
and zero off-diagonal entries.

It is an error to specify nrow or ncol in the first case.

Value

If x is a matrix then diag (x) returns the diagonal of x. The resulting vector will have names if
the matrix x has matching column and rownames.

The replacement form sets the diagonal of the matrix x to the given value(s).

In all other cases the value is a diagonal matrix with nrow rows and ncol columns (if ncol is not
given the matrix is square). Here nrow is taken from the argument if specified, otherwise inferred
from x: if that is a vector (or 1D array) of length two or more, then its length is the number of rows,
but if it is of length one and neither nrow nor ncol is specified, nrow = as.integer (x).

When a diagonal matrix is returned, the diagonal elements are one except in the fourth case, when
x gives the diagonal elements: it will be recycled or truncated as needed, but fractional recycling
and truncation will give a warning.

Note
Using diag (x) can have unexpected effects if x is a vector that could be of length one. Use
diag(x, nrow = length (x)) for consistent behaviour.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

upper.tri, lower.tri,matrix.

Examples
dim(diag(3))
diag (10, 3, 4) # guess what?
all(diag(l:3) == {m <- matrix(0,3,3); diag(m) <- 1:3; m})

other "numeric"-like diagonal matrices
diag(c(1li,21i)) # complex

160 diff

) # logical
1:3)) # raw
2:1, 4)); typeof(D2) # "integer"

diag (TRUE, 3
diag(as.raw(
(D2 <- diag(
require (stats)

diag(<var—-cov-matrix>) = variances
diag(var(M <- cbind(X = 1:5, Y = rnorm(5))))
#-> vector with names "X" and "Y"
rownames (M) <- c(colnames (M), rep("", 3))

M; diag(M) # named as well

diag (M, names = FALSE) # w/o names

diff Lagged Differences

Description

Returns suitably lagged and iterated differences.
Usage
diff(x, ...)

Default S3 method:
diff(x, lag = 1, differences = 1, ...)

S3 method for class 'POSIXt'
diff(x, lag = 1, differences =1, ...)

S3 method for class 'Date'

diff(x, lag = 1, differences =1, ...)

Arguments
X a numeric vector or matrix containing the values to be differenced.
lag an integer indicating which lag to use.

differences aninteger indicating the order of the difference.

further arguments to be passed to or from methods.

Details

diff is a generic function with a default method and ones for classes "ts", "POSIXt" and
"Date".

NA’s propagate.

difftime 161

Value

If x is a vector of length n and differences = 1, then the computed result is equal to the
successive differences x [(1+1ag) :n] —x[1: (n-lag)].

If difference is larger than one this algorithm is applied recursively to x. Note that the returned
value is a vector which is shorter than x.

If x is a matrix then the difference operations are carried out on each column separately.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

diff.ts,diffinv.

Examples

diff(1:10, 2)

diff(1:10, 2, 2)

x <— cumsum (cumsum(1:10))
diff(x, lag = 2)

diff (x, differences = 2)

diff (.leap.seconds)

difftime Time Intervals / Differences

Description
Time intervals creation, printing, and some arithmetic. The print () method calls these “time
differences”.
Usage
timel - time2
difftime (timel, time2, tz,

units = c("auto", "secs", "mins", "hours",
"days", "weeks"))

as.difftime (tim, format = "%$X", units = "auto", tz = "UTC")
S3 method for class 'difftime'

format (x, ...)
S3 method for class 'difftime'

162 difftime

units (x)

S3 replacement method for class 'difftime'
units(x) <- wvalue

S3 method for class 'difftime'
as.double (x, units = "auto", ...)

Group methods, notably for round(), signif (), floor(),

ceiling(), trunc(), abs(); called directly, xnotx as Math():
S3 method for class 'difftime'

Math (x, ...)

Arguments

timel, time2 date-time or date objects.

tz an optional time zone specification to be used for the conversion, mainly for
"POSIX1t" objects.

units character string. Units in which the results are desired. Can be abbreviated.

value character string. Like units, except that abbreviations are not allowed.

tim character string or numeric value specifying a time interval.

format character specifying the format of t im: see st rpt ime. The default is a locale-

specific time format.
X an object inheriting from class "difftime".

arguments to be passed to or from other methods.

Details

Function di fft ime calculates a difference of two date/time objects and returns an object of class
"difftime" with an attribute indicating the units. The Math group method provides round,
signif, floor, ceiling, trunc, abs, and sign methods for objects of this class, and there
are methods for the group-generic (see Ops) logical and arithmetic operations.

If units ="auto", a suitable set of units is chosen, the largest possible (excluding "weeks")
in which all the absolute differences are greater than one.

Subtraction of date-time objects gives an object of this class, by calling difftime with units
= "auto". Alternatively, as.difftime () works on character-coded or numeric time intervals;
in the latter case, units must be specified, and format has no effect.

Limited arithmetic is available on "difftime" objects: they can be added or subtracted, and
multiplied or divided by a numeric vector. In addition, adding or subtracting a numeric vector by
a"difftime" object implicitly converts the numeric vector to a "difftime" object with the
same units as the "difftime" object. There are methods for mean and sum (via the Summary
group generic), and diff via diff.default building on the "difftime" method for arith-
metic, notably —.

The units of a "difftime" object can be extracted by the units function, which also has a
replacement form. If the units are changed, the numerical value is scaled accordingly. The replace-
ment version keeps attributes such as names and dimensions.

Note that units = "days" means a period of 24 hours, hence takes no account of Daylight Sav-
ings Time. Differences in objects of class "Date" are computed as if in the UTC time zone.

dim 163

The as.double method returns the numeric value expressed in the specified units. Using units
= "auto" means the units of the object.

The format method simply formats the numeric value and appends the units as a text string.

Note

Units such as "months" are not possible as they are not of constant length. To create intervals of
months, quarters or years use seq.Date or seq.POSIXt.

See Also

DateTimeClasses.

Examples

(z <- Sys.time () - 3600)
Sys.time() - z # just over 3600 seconds.

time interval between release days of R 1.2.2 and 1.2.3.
ISOdate (2001, 4, 26) - ISOdate (2001, 2, 26)

as.difftime(c("0:3:20", "11:23:15"))

as.difftime(c("3:20", "23:15", "2:"), format = "$H:%M") # 3rd gives NA
(z <= as.difftime(c(0,30,60), units = "mins"))

as.numeric(z, units = "secs")

as.numeric(z, units = "hours")

format (z)

dim Dimensions of an Object

Description

Retrieve or set the dimension of an object.

Usage

dim (x)
dim(x) <- value

Arguments
X an R object, for example a matrix, array or data frame.
value For the default method, either NULL or a numeric vector, which is coerced to

integer (by truncation).

164 dimnames

Details

The functions dim and dim<- are internal generic primitive functions.

dim has a method for data . f rames, which returns the lengths of the row . names attribute of x
and of x (as the numbers of rows and columns respectively).

Value

For an array (and hence in particular, for a matrix) dim retrieves the dim attribute of the object. It
is NULL or a vector of mode integer.

The replacement method changes the "dim" attribute (provided the new value is compatible) and
removes any "dimnames" and "names" attributes.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

ncol, nrow and dimnames.

Examples

x <= 1:12 ; dim(x) <- c(3,4)
X

simple versions of nrow and ncol could be defined as follows
nrow0 <- function(x) dim(x) [1]
ncol0 <- function(x) dim(x) [2]

dimnames Dimnames of an Object

Description

Retrieve or set the dimnames of an object.

Usage

dimnames (x)
dimnames (x) <- value

provideDimnames (x, sep = "", base = list (LETTERS), unique = TRUE)

dimnames 165

Arguments
X an R object, for example a matrix, array or data frame.
value a possible value for dimnames (x) : see the ‘Value’ section.
sep a character string, used to separate base symbols and digits in the constructed
dimnames.
base a non-empty 11ist of character vectors. The list components are used in turn
(and recycled when needed) to construct replacements for empty dimnames
components. See also the examples.
unique logical indicating that the dimnames constructed are unique within each dimen-
sion in the sense of make .unique.
Details

The functions dimnames and dimnames<- are generic.

For an array (and hence in particular, for a mat rix), they retrieve or set the dimnames attribute
(see attributes) of the object. A list value can have names, and these will be used to label the
dimensions of the array where appropriate.

The replacement method for arrays/matrices coerces vector and factor elements of value to char-
acter, but does not dispatch methods for as.character. It coerces zero-length elements to
NULL, and a zero-length list to NULL. If value is a list shorter than the number of dimensions, it
is extended with NULLs to the needed length.

Both have methods for data frames. The dimnames of a data frame are its row.names
and its names. For the replacement method each component of value will be coerced by
as.character.

For a 1D matrix the names are the same thing as the (only) component of the dimnames.
Both are primitive functions.

provideDimnames (x) provides dimnames where “missing”, such that its result has
character dimnames for each component. If unique is true as by default, they are unique
within each component via make .unique (%, sep=sep).

Value

The dimnames of a matrix or array can be NULL (which is not stored) or a list of the same length as
dim (x). If alist, its components are either NULL or a character vector with positive length of the
appropriate dimension of x. The list can have names. It is possible that all components are NULL:
such dimnames may get converted to NULL.

For the "data.frame" method both dimnames are character vectors, and the rownames must
contain no duplicates nor missing values.

provideDimnames (x) returns x, with “NULL - free” dimnames, i.e. each component a char-
acter vector of correct length.

Note

Setting components of the dimnames, e.g., dimnames (A) [[1]] <-value is a common
paradigm, but note that it will not work if the value assigned is NULL. Use rownames instead,
or (as it does) manipulate the whole dimnames list.

166

References

do.call

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &

Brooks/Cole.

See Also

rownames, colnames; array,matrix, data.frame.

Examples

simple versions of rownames and colnames
could be defined as follows

rownames(0 <- function(x) dimnames (x) [[1]]
colnames0 <- function(x) dimnames (x) [

(dn <- dimnames (A <- provideDimnames (N <- array(l:24, dim = 2:4))))

A0 <- A; dimnames (A) [2:3] <- list (NULL)

stopifnot (identical (A0, provideDimnames (A)))

strd <- function(x) utils::str (dimnames (x))

strd(provideDimnames (A, base= list (letters[-(1:9)], tail (LETTERS))))
strd(provideDimnames (N, base= list (letters[-(1:9)], tail (LETTERS)))) # recycling

strd(provideDimnames (A, base= list (c("AA","BB")))) # recycling on both levels
set "empty dimnames":
provideDimnames (rbind (1, 2:3), base = 1list(""), unique=FALSE)

do.call Execute a Function Call

Description

do.call constructs and executes a function call from a name or a function and a list of arguments

to be passed to it.

Usage

do.call (what,

Arguments

what

args

quote

envir

args, quote = FALSE, envir = parent.frame())

either a function or a non-empty character string naming the function to be
called.

a list of arguments to the function call. The names attribute of args gives the
argument names.

a logical value indicating whether to quote the arguments.

an environment within which to evaluate the call. This will be most useful if
what is a character string and the arguments are symbols or quoted expressions.

do.call 167

Details

If quote is FALSE, the default, then the arguments are evaluated (in the calling environment, not
in envir). If quote is TRUE then each argument is quoted (see quote) so that the effect of
argument evaluation is to remove the quotes — leaving the original arguments unevaluated when the
call is constructed.

The behavior of some functions, such as subst itute, will not be the same for functions evaluated
using do . call as if they were evaluated from the interpreter. The precise semantics are currently
undefined and subject to change.

Value

The result of the (evaluated) function call.

Warning

This should not be used to attempt to evade restrictions on the use of . Internal and other non-
API calls.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

call which creates an unevaluated call.

Examples

do.call ("complex", list (imaginary = 1:3))

if we already have a list (e.g., a data frame)
we need c() to add further arguments

tmp <- expand.grid(letters([1:2], 1:3, c("+", "-"))
do.call ("paste", c(tmp, sep = ""))

do.call (paste, list (as.name("A"), as.name("B")), gquote = TRUE)

examples of where objects will be found.
A <- 2

f <- function(x) print (x"2)

env <- new.env ()

assign("A", 10, envir = env)

assign("f", £, envir = env)

f <- function(x) print (x)

f(n) # 2
do.call("f", list(A)) # 2
do.call("f", list(A), envir = env) + 4
do.call(£, 1list(A), envir = env) # 2
do.call("f", list(quote(A)), envir = env) # 100

168 dots

do.call(£, list (quote(A)), envir = env) # 10

do.call("f", list(as.name("A")), envir = env) # 100
eval (call("f", A)) # 2
eval (call("f", quote(A))) # 2
eval (call("f", A), envir = env) # 4
eval (call("f", quote(A)), envir = env) # 100
dontCheck Identity Function to Suppress Checking
Description

The dontCheck function is the same as identity, but is interpreted by R CMD check
code analysis as a directive to suppress checking of x. Currently this is only used by
checkFF (registration = TRUE) when checking the .NAME argument of foreign function
calls.

Usage

dontCheck (x)

Arguments

x an R object.

See Also

suppressForeignCheck which explains why that and dontCheck are undesirable and
should be avoided if at all possible.

dots ..., . .1, etc used in Functions

Description

...and ..1, ..2 etc are used to refer to arguments passed down from a calling function. These
(and the following) can only be used inside a function which has . . . among its formal arguments.

...elt (n) isafunctional way to get . . <n> and basically the same as eval (pasteO ("..",
n)), just more elegant and efficient. Note that switch (n, ...) is very close, differing by
returning NULL invisibly instead of an error when n is zero or too large.

...length () returns the number of expressionsin . . ., and . ..names () the names. These
are the same as length (list (...)) or names (list (...)) but without evaluating the
expressions in . . . (which happens with 1ist (...)).

Evaluating elements of ... with ..1, ..2, ...elt (n), etc. propagates visibility. This is

consistent with the evaluation of named arguments which also propagates visibility.

double 169

Usage
...length ()
...names ()
...elt(n)
Arguments
n a positive integer, not larger than the number of expressions in ..., which is the
same as . . .length () whichisthe same as length (1ist (...)), butthe
latter evaluates all expressionsin
See Also

.and . .1, ..2 are reserved words in R, see Reserved.

For more, see the ‘Introduction to R’ manual for usage of these syntactic elements, and dotsMethods
for their use in formal (S4) methods.

Examples

tst <- function(n, ...) ...elt(n)
tst(l, pi=pix0:1, 2:4) ## [1] 0.000000 3.141593
tst (2, pi=pi*0:1, 2:4) ## [1] 2 3 4

try(tst(l)) # —-> Error about '...' not containing an element.
tst.dl <- function(x, ...) ...length{()
tst.dns <- function(x, ...) ...names|{()
tst.dl(1:10) # 0 (because the first argument is 'x')
tst.dl (4, 5) # 1
tst.dl(4, 5, 6) # 2 namely '5, 6'
tst.dl(4, 5, 6, 7, sin(1:10), "foo"/"bar") # 5. Note: no evaluation!
tst.dns (4, foo=5, 6, bar=7, sini = sin(1:10), "foo"/"bar")
llfOO" nn "barll "Sil’li" nn
From R 4.1.0 to 4.1.2, ...names() sometimes did not match names (list(...));
check and show (these examples all would've failed):
chk.n2 <- function(...) stopifnot (identical (print(...names()), names (list(...))))
chk.n2 (4, foo=5, 6, bar=7, sini = sin(1:10), "bar")
chk.n2 ()
chk.n2(1,2)

double Double-Precision Vectors

Description

Create, coerce to or test for a double-precision vector.

170 double

Usage

double (length
as.double(x, ...)
is.double (x)

Il
o

single (length = 0)

as.single(x, ...)
Arguments
length A non-negative integer specifying the desired length. Double values will be

coerced to integer: supplying an argument of length other than one is an error.
X object to be coerced or tested.

further arguments passed to or from other methods.

Details

double creates a double-precision vector of the specified length. The elements of the vector are
all equal to 0. It is identical to numeric.

as.double is a generic function. It is identical to as.numeric. Methods should return an
object of base type "double".

is.double is a test of double type.

R has no single precision data type. All real numbers are stored in double precision format. The
functions as.single and single are identical to as . double and double except they set the
attribute Csingle that is used in the .C and .Fortran interface, and they are intended only to
be used in that context.

Value

double creates a double-precision vector of the specified length. The elements of the vector are
all equal to 0.

as.double attempts to coerce its argument to be of double type: like as.vector it strips at-
tributes including names. (To ensure that an object is of double type without stripping attributes, use
storage.mode.) Character strings containing optional whitespace followed by either a decimal
representation or a hexadecimal representation (starting with 0x or 0X) can be converted, as can
special values such as "NA", "NaN", "Inf" and "infinity", irrespective of case.

as.double for factors yields the codes underlying the factor levels, not the numeric representation
of the labels, see also factor.

is.double returns TRUE or FALSE depending on whether its argument is of double type or not.

Double-precision values

All R platforms are required to work with values conforming to the IEC 60559 (also known as IEEE
754) standard. This basically works with a precision of 53 bits, and represents to that precision a
range of absolute values from about 2 x 1073% to 2 x 103%8. It also has special values NaN (many
of them), plus and minus infinity and plus and minus zero (although R acts as if these are the same).

dput 171

There are also denormal(ized) (or subnormal) numbers with values below the range given above but
represented to less precision.

See .Machine for precise information on these limits. Note that ultimately how double precision
numbers are handled is down to the CPU/FPU and compiler.

In IEEE 754-2008/TEC60559:2011 this is called ‘binary64’ format.

Note on names
It is a historical anomaly that R has two names for its floating-point vectors, double and numeric
(and formerly had real).

double is the name of the type. numeric is the name of the mode and also of the implicit class.
As an S4 formal class, use "numeric".

The potential confusion is that R has used mode "numeric" to mean ‘double or integer’, which
conflicts with the S4 usage. Thus is.numeric tests the mode, not the class, but as.numeric
(which is identical to as . double) coerces to the class.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &

Brooks/Cole.
https://en.wikipedia.org/wiki/IEEE_754-1985, https://en.wikipedia.
org/wiki/IEEE_754-2008, https://en.wikipedia.org/wiki/IEEE_

754-2019, https://en.wikipedia.org/wiki/Double_precision, https:
//en.wikipedia.org/wiki/Denormal_number.

See Also

integer, numeric, storage.mode.

Examples

is.double (1)
all (double (3) == 0)

dput Write an Object to a File or Recreate it

Description

Writes an ASCII text representation of an R object to a file, the R console, or a connection, or uses
one to recreate the object.

Usage

dput (x, file = "",
control = c("keepNA", "keepInteger", "niceNames", "showAttributes"))

dget (file, keep.source = FALSE)

https://en.wikipedia.org/wiki/IEEE_754-1985
https://en.wikipedia.org/wiki/IEEE_754-2008
https://en.wikipedia.org/wiki/IEEE_754-2008
https://en.wikipedia.org/wiki/IEEE_754-2019
https://en.wikipedia.org/wiki/IEEE_754-2019
https://en.wikipedia.org/wiki/Double_precision
https://en.wikipedia.org/wiki/Denormal_number
https://en.wikipedia.org/wiki/Denormal_number

172 dput

Arguments
x an object.
file either a character string naming a file or a connection. " " indicates output to the
console.
control character vector (or NULL) of deparsing options. control = "all" is thor-

ough, see .deparseOpts.

keep.source logical: should the source formatting be retained when parsing functions, if
possible?

Details

dput opens £ile and deparses the object x into that file. The object name is not written (unlike
dump). If x is a function the associated environment is stripped. Hence scoping information can be
lost.

Deparsing an object is difficult, and not always possible. With the default control, dput ()
attempts to deparse in a way that is readable, but for more complex or unusual objects (see dump),
not likely to be parsed as identical to the original. Use control = "all" for the most complete
deparsing; use control = NULL for the simplest deparsing, not even including attributes.

dput will warn if fewer characters were written to a file than expected, which may indicate a full
or corrupt file system.

To display saved source rather than deparsing the internal representation include "useSource" in
control. R currently saves source only for function definitions. If you do not care about source
representation (e.g., for a data object), for speed set options (keep.source = FALSE) when
calling source.

Value

For dput, the first argument invisibly.
For dget, the object created.

Note

This is not a good way to transfer objects between R sessions. dump is better, but the functions
save and saveRDS are designed to be used for transporting R data, and will work with R objects
that dput does not handle correctly as well as being much faster.

To avoid the risk of a source attribute out of sync with the actual function definition, the source
attribute of a function will never be written as an attribute.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

deparse, .deparseOpts, dump, write.

drop 173

Examples

fil <- tempfile()

Write an ASCII version of the 'base' function mean() to our temp file,
dput (base::mean, fil)
... read it back into 'bar' and confirm it is the same

bar <- dget (fil)
stopifnot (all.equal (bar, base::mean, check.environment = FALSE))

Create a function with comments
baz <- function(x) {
Subtract from one
1-x
}
and display it

dput (baz)
and now display the saved source
dput (baz, control = "useSource")

Numeric values:
xx <— pi”(1:3)

dput (xx)

dput (xx, control = "digitsl7")

dput (xx, control = "hexNumeric")

dput (xx, fil); dget (fil) - xx # slight rounding on all platforms
dput (xx, fil, control = "digitsl7")

dget (fil) - xx # slight rounding on some platforms

dput (xx, fil, control = "hexNumeric"); dget (fil) - xx

unlink (£i1)

xn <- setNames (xx, pasteO("pi~",1:3))

dput (xn) # nicer, now "niceNames" being part of default 'control'
dput (xn, control = "S_compat") # no names

explicitly asking for output as in R < 3.5.0:

dput (xn, control = c("keepNA", "keepInteger", "showAttributes"))

drop Drop Redundant Extent Information

Description

Delete the dimensions of an array which have only one level.

Usage

drop (x)

Arguments

X an array (including a matrix).

174 droplevels

Value

If x is an object with a dim attribute (e.g., a matrix or array), then drop returns an object like x,
but with any extents of length one removed. Any accompanying dimnames attribute is adjusted
and returned with x: if the result is a vector the names are taken from the dimnames (if any). If
the result is a length-one vector, the names are taken from the first dimension with a dimname.

Array subsetting ([) performs this reduction unless used with drop = FALSE, but sometimes it is
useful to invoke drop directly.

See Also

dropl which is used for dropping terms in models.

Examples

dim(drop (array(1:12, dim = c¢(1,3,1,1,2,1,2)))) # =3 2 2
drop(l:3 %$x% 2:4) # scalar product

droplevels Drop Unused Levels from Factors

Description

The function droplevels is used to drop unused levels from a factor or, more commonly,
from factors in a data frame.

Usage
S3 method for class 'factor'
droplevels (x, exclude = if (anyNA(levels(x))) NULL else NA, ...)
S3 method for class 'data.frame'
droplevels (x, except, exclude, ...)
Arguments
X an object from which to drop unused factor levels.
exclude passed to factor (); factor levels which should be excluded from the result

even if present. Note that this was implicitly NA in R <= 3.3.1 which did drop
NA levels even when present in x, contrary to the documentation. The current
default is compatible with x [, drop=TRUE].

further arguments passed to methods
except indices of columns from which not to drop levels

Details

The method for class "factor" is currently equivalent to factor (x, exclude=exclude).
For the data frame method, you should rarely specify exclude “globally” for all factor columns;
rather the default uses the same factor-specific exclude as the factor method itself.

The except argument follow the usual indexing rules.

dump 175

Value

droplevels returns an object of the same class as x

Note

This function was introduced in R 2.12.0. It is primarily intended for cases where one or more
factors in a data frame contains only elements from a reduced level set after subsetting. (Notice that
subsetting does not in general drop unused levels). By default, levels are dropped from all factors in
a data frame, but the except argument allows you to specify columns for which this is not wanted.

See Also

subset for subsetting data frames. factor for definition of factors. drop for dropping array
dimensions. drop1l for dropping terms from a model. [. factor for subsetting of factors.

Examples

aqg <- transform(airquality, Month = factor (Month, labels = month.abb[5:9]))
ag <- subset (ag, Month != "Jul")

table (ag $Month)

table (droplevels (ag) SMonth)

dump Text Representations of R Objects

Description

This function takes a vector of names of R objects and produces text representations of the objects
on a file or connection. A dump file can usually be sourced into another R session.

Usage
dump (1list, file = "dumpdata.R", append = FALSE,
control = "all", envir = parent.frame(), evaluate = TRUE)
Arguments
list character vector. The names of one or more R objects to be dumped.
file either a character string naming a file or a connection. " " indicates output to the
console.
append if TRUE and file is a character string, output will be appended to £i1le; oth-
erwise, it will overwrite the contents of £ile.
control character vector (or NULL) indicating deparsing options. See . deparseOpts
for their description.
envir the environment to search for objects.

evaluate logical. Should promises be evaluated?

176 dump

Details

If some of the objects named do not exist (in scope), they are omitted, with a warning. If fileisa
file and no objects exist then no file is created.

sourceing may not produce an identical copy of dumped objects. A warning is issued if it is likely
that problems will arise, for example when dumping exotic or complex objects (see the Note).

dump will also warn if fewer characters were written to a file than expected, which may indicate a
full or corrupt file system.

A dump file can be sourced into another R (or perhaps S) session, but the functions save and
saveRDS are designed to be used for transporting R data, and will work with R objects that dump
does not handle. For maximal reproducibility use control = "exact".

To produce a more readable representation of an object, use control = NULL. This will skip
attributes, and will make other simplifications that make source less likely to produce an identical
copy. See .deparseOpts for details.

To deparse the internal representation of a function rather than displaying the saved source, use
control =c ("keepInteger", "warnIncomplete", "keepNA"). This will lose all
formatting and comments, but may be useful in those cases where the saved source is no longer
correct.

Promises will normally only be encountered by users as a result of lazy-loading (when the de-
fault evaluate = TRUE is essential) and after the use of delayedAssign, when evaluate
= FALSE might be intended.

Value

An invisible character vector containing the names of the objects which were dumped.

Note

As dump is defined in the base namespace, the base package will be searched before the global
environment unless dump is called from the top level prompt or the envir argument is given
explicitly.

To avoid the risk of a source attribute becoming out of sync with the actual function definition, the
source attribute of a function will never be dumped as an attribute.

Currently environments, external pointers, weak references and objects of type S4 are not deparsed
in a way that can be sourced. In addition, language objects are deparsed in a simple way what-
ever the value of control, and this includes not dumping their attributes (which will result in a
warning).

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

.deparseOpts for available control settings; dput (), dget () and deparse () for re-
lated functions using identical internal deparsing functionality.

duplicated 177

write,write.table, etc for “dumping” data to (text) files.

save and saveRDS for a more reliable way to save R objects.

Examples

x <= 1; y <= 1:10
fil <- tempfile(fileext=".Rdmped")

dump (1ls (pattern = '""[xyz]'"'), fil)
print (.Last.value)
unlink (£il)
duplicated Determine Duplicate Elements
Description

duplicated () determines which elements of a vector or data frame are duplicates of elements
with smaller subscripts, and returns a logical vector indicating which elements (rows) are duplicates.

anyDuplicated(.) is a “generalized” more efficient version any (duplicated(.)), re-
turning positive integer indices instead of just TRUE.

Usage

duplicated(x, incomparables = FALSE, ...)

Default S3 method:
duplicated(x, incomparables = FALSE,
fromLast = FALSE, nmax = NA, ...)

S3 method for class 'array'
duplicated(x, incomparables = FALSE, MARGIN = 1,
fromLast = FALSE, ...)

anyDuplicated(x, incomparables = FALSE, ...)

Default S3 method:

anyDuplicated(x, incomparables = FALSE,
fromLast = FALSE, ...)

S3 method for class 'array'

anyDuplicated(x, incomparables = FALSE,
MARGIN = 1, fromLast = FALSE, ...)

Arguments

x a vector or a data frame or an array or NULL.

incomparables
a vector of values that cannot be compared. FALSE is a special value, meaning
that all values can be compared, and may be the only value accepted for methods
other than the default. It will be coerced internally to the same type as x.

178 duplicated

fromLast logical indicating if duplication should be considered from the reverse side, i.e.,
the last (or rightmost) of identical elements would correspond to duplicated
=FALSE.

nmax the maximum number of unique items expected (greater than one).

arguments for particular methods.

MARGIN the array margin to be held fixed: see apply, and note that MARGIN = 0 may
be useful.

Details

These are generic functions with methods for vectors (including lists), data frames and arrays (in-
cluding matrices).

For the default methods, and whenever there are equivalent method definitions for
duplicated and anyDuplicated, anyDuplicated(x, ...) isa “generalized” shortcut
for any (duplicated(x, ...)), in the sense that it returns the index i of the first duplicated
entry x [1] if there is one, and 0 otherwise. Their behaviours may be different when at least one of
duplicated and anyDuplicated has a relevant method.

duplicated (x, fromLast = TRUE) is equivalent to but faster than
rev (duplicated (rev(x))).

The array method calculates for each element of the sub-array specified by MARGIN if the remaining
dimensions are identical to those for an earlier (or later, when fromLast = TRUE) element (in
row-major order). This would most commonly be used to find duplicated rows (the default) or
columns (with MARGIN = 2). Note that MARGIN = O returns an array of the same dimensionality
attributes as x.

Missing values ("NA") are regarded as equal, numeric and complex ones differing from NaN; char-
acter strings will be compared in a “common encoding”; for details, see match (and unique)
which use the same concept.

Values in incomparables will never be marked as duplicated. This is intended to be used for a
fairly small set of values and will not be efficient for a very large set.

Except for factors, logical and raw vectors the default nmax = NA is equivalent to nmax =
length (x). Since a hash table of size 8 nmax bytes is allocated, setting nmax suitably can
save large amounts of memory. For factors it is automatically set to the smaller of length (x)
and the number of levels plus one (for NA). If nmax is set too small there is liable to be an error:
nmax = 1 is silently ignored.

Long vectors are supported for the default method of duplicated, but may only be usable if
nmax is supplied.

Value

duplicated(): For a vector input, a logical vector of the same length as x. For a data frame,
a logical vector with one element for each row. For a matrix or array, and when MARGIN = 0, a
logical array with the same dimensions and dimnames.

anyDuplicated (): an integer or real vector of length one with value the 1-based index of the
first duplicate if any, otherwise 0.

dyn.load 179

Warning

Using this for lists is potentially slow, especially if the elements are not atomic vectors (see
vector) or differ only in their attributes. In the worst case it is O(n?).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

unique.

Examples

x <= c¢(9:20, 1:5, 3:7, 0:8)

extract unique elements

(xu <—- x[!duplicated(x)])

similar, same elements but different order:
(xu2 <- x[!duplicated(x, fromLast = TRUE)])

xu == unique (x) but unique (x) is more efficient
stopifnot (identical (xu, unique(x)),
identical (xu2, unique (x, fromLast = TRUE)))

duplicated(iris) [140:143]

duplicated(iris3, MARGIN = c (1, 3))
anyDuplicated (iris) ## 143

anyDuplicated (x)
anyDuplicated(x, fromLast = TRUE)

dyn.load Foreign Function Interface

Description
Load or unload DLLs (also known as shared objects), and test whether a C function or Fortran
subroutine is available.

Usage

dyn.load(x, local = TRUE, now = TRUE, ...)
dyn.unload (x)

is.loaded (symbol, PACKAGE = "", type = "")

180 dyn.load

Arguments

X a character string giving the pathname to a DLL, also known as a dynamic shared
object. (See ‘Details’ for what these terms mean.)

local a logical value controlling whether the symbols in the DLL are stored in their
own local table and not shared across DLLs, or added to the global symbol table.
Whether this has any effect is system-dependent.

now a logical controlling whether all symbols are resolved (and relocated) immedi-
ately the library is loaded or deferred until they are used. This control is useful
for developers testing whether a library is complete and has all the necessary
symbols, and for users to ignore missing symbols. Whether this has any effect
is system-dependent.

other arguments for future expansion.
symbol a character string giving a symbol name.

PACKAGE if supplied, confine the search for the name to the DLL given by this argument
(plus the conventional extension, ‘.so’, ‘.s1’, *.d11’,...). This is intended
to add safety for packages, which can ensure by using this argument that no
other package can override their external symbols. This is used in the same way
asin .C, .Call, .Fortran and .External functions.

type The type of symbol to look for: can be any ("", the default), "Fortran",
"Call" or "External".

Details

The objects dyn.load loads are called ‘dynamically loadable libraries’ (abbreviated to ‘DLL’)
on all platforms except macOS, which uses the term for a different sort of object. On Unix-alikes
they are also called ‘dynamic shared objects’ (‘DSO’), or ‘shared objects’ for short. (The POSIX
standards use ‘executable object file’, but no one else does.)

See ‘See Also’ and the ‘Writing R Extensions’ and ‘R Installation and Administration’ manuals for
how to create and install a suitable DLL.

Unfortunately a very few platforms (e.g., Compaq Tru64) do not handle the PACKAGE argument
correctly, and may incorrectly find symbols linked into R.

The additional arguments to dyn . load mirror the different aspects of the mode argument to the
dlopen () routine on POSIX systems. They are available so that users can exercise greater control
over the loading process for an individual library. In general, the default values are appropriate and
you should override them only if there is good reason and you understand the implications.

The local argument allows one to control whether the symbols in the DLL being attached are
visible to other DLLs. While maintaining the symbols in their own namespace is good practice, the
ability to share symbols across related ‘chapters’ is useful in many cases. Additionally, on certain
platforms and versions of an operating system, certain libraries must have their symbols loaded
globally to successfully resolve all symbols.

One should be careful of the potential side-effect of using lazy loading via the now argument as
FALSE. If a routine is called that has a missing symbol, the process will terminate immediately.
The intended use is for library developers to call with value TRUE to check that all symbols are
actually resolved and for regular users to call with FALSE so that missing symbols can be ignored
and the available ones can be called.

dyn.load 181

The initial motivation for adding these was to avoid such termination in the _init () routines
of the Java virtual machine library. However, symbols loaded locally may not be (read probably)
available to other DLLs. Those added to the global table are available to all other elements of the
application and so can be shared across two different DLLs.

Some (very old) systems do not provide (explicit) support for local/global and lazy/eager symbol
resolution. This can be the source of subtle bugs. One can arrange to have warning messages
emitted when unsupported options are used. This is done by setting either of the options verbose
or warn to be non-zero via the opt ions function.

There is a short discussion of these additional arguments with some example code available at
http://www.stat.ucdavis.edu/~duncan/R/dynload/.

Value

The function dyn. load is used for its side effect which links the specified DLL to the executing
R image. Callsto .C, .Call, .Fortranand .External can then be used to execute compiled
C functions or Fortran subroutines contained in the library. The return value of dyn.load is an
object of class DLLInfo. See get LoadedDLLs for information about this class.

The function dyn.unload unlinks the DLL. Note that unloading a DLL and then re-loading a
DLL of the same name may or may not work: on Solaris it uses the first version loaded. Note also
that some DLLs cannot be safely unloaded at all: unloading a DLL which implements C finalizers
but does not unregister them on unload causes R to crash.

is.loaded checks if the symbol name is loaded and searchable and hence available for use as
a character string value for argument .NAME in .C or .Fortranor .Call or .External. It
will succeed if any one of the four calling functions would succeed in using the entry point unless
type is specified. (See .Fortran for how Fortran symbols are mapped.) Note that symbols in
base packages are not searchable, and other packages can be so marked.

Warning

Do not wuse dyn.unload on a DLL loaded by library.dynam: use
library.dynam.unload. This is needed for system housekeeping.

Note

is.loaded requires the name you would give to .C etc and not (as in S) that remapped by the
defunct functions symbol.C or symbol.For.

By default, the maximum number of DLLs that can be loaded is now 614 when the OS limit on the
number of open files allows or can be increased, but less otherwise (but it will be at least 100). A
specific maximum can be requested via the environment variable R_MAX_NUM_DLLS, which has to
be set (to a value between 100 and 1000 inclusive) before starting an R session. If the OS limit on the
number of open files does not allow using this maximum and cannot be increased, R will fail to start
with an error. The maximum is not allowed to be greater than 60% of the OS limit on the number
of open files (essentially unlimited on Windows, on Unix typically 1024, but 256 on macOS). The
limit can sometimes (including on macOS) be modified using command ulimit —n (sh, bash)
or limit descriptors (csh) in the shell used to launch R. Increasing R_MAX_NUM_DLLS
comes with some memory overhead.

If the OS limit on the number of open files cannot be determined, the DLL limit is 100 and cannot
be changed via R_MAX_NUM_DLLS.

http://www.stat.ucdavis.edu/~duncan/R/dynload/

182 eapply

The creation of DLLs and the runtime linking of them into executing programs is very platform de-
pendent. In recent years there has been some simplification in the process because the C subroutine
call dlopen has become the POSIX standard for doing this. Under Unix-alikes dyn.load uses
the dlopen mechanism and should work on all platforms which support it. On Windows it uses
the standard mechanism (LoadLibrary) for loading DLLs.

The original code for loading DLLs in Unix-alikes was provided by Heiner Schwarte.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

library.dynam to be used inside a package’s . onLoad initialization.
SHLIB for how to create suitable DLLs.

.C, .Fortran, .External, .Call.

Examples

expect all of these to be false in R >= 3.0.0.

is.loaded("supsmu") # Fortran entry point in stats
is.loaded ("supsmu", "stats", "Fortran")
is.loaded ("PDF", type = "External") # pdf() device in grDevices
eapply Apply a Function Over Values in an Environment
Description

eapply applies FUN to the named values from an environment and returns the results as a list.
The user can request that all named objects are used (normally names that begin with a dot are not).
The output is not sorted and no enclosing environments are searched.

Usage
eapply(env, FUN, ..., all.names = FALSE, USE.NAMES = TRUE)
Arguments
env environment to be used.
FUN the function to be applied, found via match. fun. In the case of functions like
+, $*%, etc., the function name must be backquoted or quoted.
optional arguments to FUN.
all.names a logical indicating whether to apply the function to all values.

USE.NAMES logical indicating whether the resulting list should have names.

eigen 183

Value

A named (unless USE .NAMES = FALSE) list. Note that the order of the components is arbitrary
for hashed environments.

See Also

environment, lapply.

Examples

require (stats)

env <—- new.env (hash = FALSE) # so the order is fixed
envSa <—- 1:10

envSbeta <- exp(-3:3)

envS$logic <- ¢ (TRUE, FALSE, FALSE, TRUE)

what have we there?

utils::1ls.str (env)

compute the mean for each list element
eapply (env, mean)
unlist (eapply (env, mean, USE.NAMES = FALSE))

median and quartiles for each element (making use of "..." passing):
eapply (env, quantile, probs = 1:3/4)
eapply (env, quantile)

eigen Spectral Decomposition of a Matrix

Description

Computes eigenvalues and eigenvectors of numeric (double, integer, logical) or complex matrices.

Usage

eigen(x, symmetric, only.values = FALSE, EISPACK = FALSE)

Arguments
X a numeric or complex matrix whose spectral decomposition is to be computed.
Logical matrices are coerced to numeric.
symmetric if TRUE, the matrix is assumed to be symmetric (or Hermitian if complex) and

only its lower triangle (diagonal included) is used. If symmetric is not speci-
fied, isSymmetric (x) is used.

only.values if TRUE, only the eigenvalues are computed and returned, otherwise both eigen-
values and eigenvectors are returned.

EISPACK logical. Defunct and ignored.

184 eigen

Details
If symmetric is unspecified, isSymmetric (x) determines if the matrix is symmetric up to
plausible numerical inaccuracies. It is surer and typically much faster to set the value yourself.
Computing the eigenvectors is the slow part for large matrices.

Computing the eigendecomposition of a matrix is subject to errors on a real-world computer: the
definitive analysis is Wilkinson (1965). All you can hope for is a solution to a problem suitably
close to x. So even though a real asymmetric x may have an algebraic solution with repeated real
eigenvalues, the computed solution may be of a similar matrix with complex conjugate pairs of
eigenvalues.

Unsuccessful results from the underlying LAPACK code will result in an error giving a positive
error code (most often 1): these can only be interpreted by detailed study of the FORTRAN code.

Value

The spectral decomposition of x is returned as a list with components

values a vector containing the p eigenvalues of x, sorted in decreasing order, according
to Mod (values) in the asymmetric case when they might be complex (even
for real matrices). For real asymmetric matrices the vector will be complex only
if complex conjugate pairs of eigenvalues are detected.

vectors either a p X p matrix whose columns contain the eigenvectors of x, or NULL if
only.values is TRUE. The vectors are normalized to unit length.

Recall that the eigenvectors are only defined up to a constant: even when the
length is specified they are still only defined up to a scalar of modulus one (the
sign for real matrices).

When only.values is not true, as by default, the result is of S3 class "eigen".

If r <-eigen(A),andV <- r$vectors; lam <- r$values, then
A=VAV~!

(up to numerical fuzz), where A =diag (lam).

Source

eigen uses the LAPACK routines DSYEVR, DGEEV, ZHEEV and ZGEEV.

LAPACK is from https://www.netlib.org/lapack/ and its guide is listed in the refer-
ences.

References

Anderson. E. and ten others (1999) LAPACK Users’ Guide. Third Edition. SIAM.
Available on-line at https://www.netlib.org/lapack/lug/lapack_lug.html.

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Wilkinson, J. H. (1965) The Algebraic Eigenvalue Problem. Clarendon Press, Oxford.

https://www.netlib.org/lapack/
https://www.netlib.org/lapack/lug/lapack_lug.html

encodeString 185

See Also

svd, a generalization of eigen; gr, and chol for related decompositions.

To compute the determinant of a matrix, the gr decomposition is much more efficient: det.

Examples

eigen (cbind(c(1,-1), c(-1,1)))
eigen (cbind(c(1,-1), c(-1,1)), symmetric = FALSE)
same (different algorithm).

eigen(cbind (1, c(1,-1)), only.values = TRUE)

eigen (cbind (- l, 2:1)) # complex values

eigen (print (cbind(c (0, 11i), c(-11i, 0)))) # Hermite ==> real Eigenvalues
3 x 3:

eigen(cbind(1, 3:1, 1:3))
eigen(cbind (-1, c(1:2,0), 0:2)) # complex values

encodeString Encode Character Vector as for Printing

Description

encodeString escapes the strings in a character vector in the same way print.default
does, and optionally fits the encoded strings within a field width.

Usage
encodeString(x, width = 0, quote = "", na.encode = TRUE,
Justify = c("left", "right", "centre", "none"))
Arguments
X A character vector, or an object that can be coerced to one by as . character.
width integer: the minimum field width. If NULL or NA, this is taken to be the largest
field width needed for any element of x.
quote character: quoting character, if any.
na.encode logical: should NA strings be encoded?
justify character: partial matches are allowed. If padding to the minimum field width

is needed, how should spaces be inserted? justify == "none" is equivalent
to width = 0, for consistency with format .default.

186 encodeString

Details

This escapes backslash and the control characters ‘\a’ (bell), ‘\b’ (backspace), ‘\ £’ (formfeed),
‘\n’ (line feed, aka “newline”), ‘\r’ (carriage return), ‘\t’ (tab) and ‘\v’ (vertical tab) as well
as any non-printable characters in a single-byte locale, which are printed in octal notation (‘\xyz’
with leading zeroes).

Which characters are non-printable depends on the current locale. Windows’ reporting of printable
characters is unreliable, so there all other control characters are regarded as non-printable, and all
characters with codes 32-255 as printable in a single-byte locale. See print .default for how
non-printable characters are handled in multi-byte locales.

If quote is a single or double quote any embedded quote of the same type is escaped. Note that
justification is of the quoted string, hence spaces are added outside the quotes.

Value

A character vector of the same length as x, with the same attributes (including names and dimen-
sions) but with no class set.

Marked UTF-8 encodings are preserved.

Note

The default for width is different from format .default, which does similar things for char-
acter vectors but without encoding using escapes.

See Also

print.default

Examples

x <- "ab\bc\ndef"

print (x)
cat (x) # interprets escapes
cat (encodeString(x), "\n", sep = "") # similar to print ()

factor (x) # makes use of this to print the levels

X <_ c("a", "ab", llabcde")
encodeString(x) # width = 0: use as little as possible

(
encodeString(x, 2) # use two or more (left justified)
encodeString(x, width = NA) # left justification
encodeString(x, width = NA, justify = "c")
encodeString(x, width = NA, justify = "r")
encodeString(x, width = NA, quote = "'", Justify = "r")

Encoding 187

Encoding Read or Set the Declared Encodings for a Character Vector

Description

Read or set the declared encodings for a character vector.
Usage

Encoding (x)

Encoding(x) <- value

enc2native (x)
enc2utf8 (x)

Arguments

X A character vector.

value A character vector of positive length.
Details

Character strings in R can be declared to be encoded in "1atinl" or "UTF-8" or as "bytes".
These declarations can be read by Encoding, which will return a character vector of values
"latinl", "UTF-8" "bytes" or "unknown", or set, when value is recycled as needed
and other values are silently treated as "unknown". ASCII strings will never be marked with
a declared encoding, since their representation is the same in all supported encodings. Strings
marked as "bytes" are intended to be non-ASCII strings which should be manipulated as bytes,
and never converted to a character encoding (so writing them to a text file is supported only by
writeLines (useBytes = TRUE)).

enc2native and enc2utf8 convert elements of character vectors to the native encoding or
UTF-8 respectively, taking any marked encoding into account. They are primitive functions, de-
signed to do minimal copying.

There are other ways for character strings to acquire a declared encoding apart from explicitly
setting it (and these have changed as R has evolved). The parser marks strings containing ‘\u’ or
‘\U’ escapes. Functions scan, read.table, readLines, and parse have an encoding
argument that is used to declare encodings, i conv declares encodings from its t o argument, and
console input in suitable locales is also declared. intToUt £8 declares its output as "UTF-8",
and output text connections (see textConnection) are marked if running in a suitable locale.
Under some circumstances (see its help page) source (encoding=) will mark encodings of
character strings it outputs.

Most character manipulation functions will set the encoding on output strings if it was declared on
the corresponding input. These include chartr, strsplit (useBytes = FALSE), tolower
and toupper as well as sub (useBytes = FALSE) and gsub (useBytes = FALSE) . Note

188 environment

that such functions do not preserve the encoding, but if they know the input encoding and that the
string has been successfully re-encoded (to the current encoding or UTF-8), they mark the output.

substr does preserve the encoding, and chartr, tolower and toupper preserve UTF-
8 encoding on systems with Unicode wide characters. With their fixed and perl options,
strsplit, sub and gsub will give a marked UTF-8 result if any of the inputs are UTF-8.

paste and sprint f return elements marked as bytes if any of the corresponding inputs is marked
as bytes, and otherwise marked as UTF-8 if any of the inputs is marked as UTF-8.

match, pmatch, charmatch, duplicated and unique all match in UTF-8 if any of the
elements are marked as UTF-8.

Changing the current encoding from a running R session may lead to confusion (see
Sys.setlocale).

There is some ambiguity as to what is meant by a ‘Latin-1" locale, since some OSes (notably
Windows) make use of character positions undefined (or used for control characters) in the ISO
8859-1 character set. How such characters are interpreted is system-dependent but as from R 3.5.0
they are if possible interpreted as per Windows codepage 1252 (which Microsoft calls ‘“Windows
Latin 1 (ANSI)’) when converting to e.g. UTF-8.

Value

A character vector.

For enc2ut £8 encodings are always marked: they are for enc2native in UTF-8 and Latin-1
locales.

Examples

x is intended to be in latinl

X. <— x <— "fa\xE7ile"

Encoding(x.) # "unknown" (UTF-8 loc.) | "latinl" (8859-1/CP-1252 loc.) |
Encoding(x) <- "latinl"

X

xx <— idconv(x, "latinl", "UTF-8")

Encoding(c(x., x, xx))

c(x, xx)

xb <- xx; Encoding(xb) <- "bytes"

xb # will be encoded in hex

cat("x =", x, ", xx =", xx, ", xb =", xb, "\n", sep = "")

(Ex <- Encoding(c(x.,x,xx,xb)))

stopifnot (identical (Ex, c(Encoding(x.), Encoding(x),
Encoding (xx), Encoding(xb))))

environment Environment Access

Description

Get, set, test for and create environments.

environment

Usage

189

environment (fun = NULL)

environment (fun) <- wvalue

is.environment (x)

.GlobalEnv
globalenv ()

.BaseNamespaceEnv

emptyenv ()
baseenv ()

new.env (hash

= TRUE, parent = parent.frame(), size = 29L)

parent.env (env)
parent.env(env) <- value

environmentName (env)

env.profile (env)

Arguments

fun
value
b 4
hash
parent
env

size

Details

a function, a formula, or NULL, which is the default.

an environment to associate with the function

an arbitrary R object.

a logical, if TRUE the environment will use a hash table.

an environment to be used as the enclosure of the environment created.
an environment

an integer specifying the initial size for a hashed environment. An internal de-
fault value will be used if size is NA or zero. This argument is ignored if hash
is FALSE.

Environments consist of a frame, or collection of named objects, and a pointer to an enclosing envi-
ronment. The most common example is the frame of variables local to a function call; its enclosure
is the environment where the function was defined (unless changed subsequently). The enclos-
ing environment is distinguished from the parent frame: the latter (returned by parent . frame)
refers to the environment of the caller of a function. Since confusion is so easy, it is best never to use
‘parent’ in connection with an environment (despite the presence of the function parent .env).

When get or exists search an environment with the default inherits = TRUE, they look for
the variable in the frame, then in the enclosing frame, and so on.

The global environment . G1obalEnv, more often known as the user’s workspace, is the first item
on the search path. It can also be accessed by globalenv (). On the search path, each item’s
enclosure is the next item.

190 environment

The object .BaseNamespaceEnv is the namespace environment for the base package. The en-
vironment of the base package itself is available as baseenv ().

If one follows the chain of enclosures found by repeatedly calling parent .env from any envi-
ronment, eventually one reaches the empty environment emptyenv (), into which nothing may be
assigned.

The replacement function parent .env<- is extremely dangerous as it can be used to destruc-
tively change environments in ways that violate assumptions made by the internal C code. It may
be removed in the near future.

The replacement form of environment, is.environment, baseenv, emptyenv and
globalenv are primitive functions.

System environments, such as the base, global and empty environments, have names as do the
package and namespace environments and those generated by attach (). Other environments
can be named by giving a "name™" attribute, but this needs to be done with care as environments
have unusual copying semantics.

Value

If fun is a function or a formula then environment (fun) returns the environment associated
with that function or formula. If fun is NULL then the current evaluation environment is returned.

The replacement form sets the environment of the function or formula fun to the value given.
is.environment (obj) returns TRUE if and only if obj is an environment.

new.env returns a new (empty) environment with (by default) enclosure the parent frame.
parent .env returns the enclosing environment of its argument.

parent .env<- sets the enclosing environment of its first argument.

environmentName returns a character string, that given when the environment is printed or " "
if it is not a named environment.

env.profile returns a list with the following components: size the number of chains that can
be stored in the hash table, nchains the number of non-empty chains in the table (as reported
by HASHPRI), and counts an integer vector giving the length of each chain (zero for empty
chains). This function is intended to assess the performance of hashed environments. When env is
a non-hashed environment, NULL is returned.

See Also

For the performance implications of hashing or not, see https://en.wikipedia.org/
wiki/Hash_table.

The envir argument of eval, get, and exists.

1s may be used to view the objects in an environment, and hence 1s. str may be useful for an
overview.

sys.source can be used to populate an environment.

https://en.wikipedia.org/wiki/Hash_table
https://en.wikipedia.org/wiki/Hash_table

EnvVar 191

Examples

f <- function() "top level function"
##-— all three give the same:
environment ()

environment (f)

.GlobalEnv

ls(envir = environment (stats::approxfun(l:2, 1:2, method = "const")))

is.environment (.GlobalEnv) # TRUE

el <- new.env(parent = baseenv()) # this one has enclosure package:base.
e2 <- new.env(parent = el)

assign("a", 3, envir = el)

1s(el)

1s (e2)

exists("a", envir = e2) # this succeeds by inheritance

exists("a", envir = e2, inherits = FALSE)

exists ("+", envir e2) # this succeeds by inheritance

eh <- new.env(hash = TRUE, size = NA)

with (env.profile(eh), stopifnot(size == length(counts)))
EnvVar Environment Variables
Description

Details of some of the environment variables which affect an R session.

Details

It is impossible to list all the environment variables which can affect an R session: some affect
the OS system functions which R uses, and others will affect add-on packages. But here are notes
on some of the more important ones. Those that set the defaults for options are consulted only at
startup (as are some of the others).

HOME: The user’s ‘home’ directory.

LANGUAGE: Optional. The language(s) to be used for message translations. This is consulted
when needed.

LC_ALL: (etc) Optional. Use to set various aspects of the locale — see Sys.getlocale. Con-
sulted at startup.

MAKEINDEX: The path to makeindex. If unset to a value determined when R was built. Used
by the emulation mode of texi2dvi and texi2pdf.

R_BATCH: Optional — set in a batch session, that is one started by R CMD BATCH. Most often set
to " ", so test by something like ! is.na (Sys.getenv ("R_BATCH", NA)).

192

EnvVar

R_BROWSER: The path to the default browser. Used to set the default value of
options ("browser").

R_COMPLETION: Optional. If set to FALSE, command-line completion is not used. (Not used by
the macOS GUI.)

R_DEFAULT_PACKAGES: A comma-separated list of packages which are to be attached in every
session. See options.

R_DOC_DTIR: The location of the R ‘doc’ directory. Set by R.
R_ENVIRON: Optional. The path to the site environment file: see Startup. Consulted at startup.

R_GSCMD: Optional. The path to Ghostscript, used by dev2bitmap, bitmap and
embedFonts. Consulted when those functions are invoked. Since it will be treated as if
passed to system, spaces and shell metacharacters should be escaped.

R_HISTFILE: Optional. The path of the history file: see Startup. Consulted at startup and when
the history is saved.

R_HISTSIZE: Optional. The maximum size of the history file, in lines. Exactly how this is used
depends on the interface.

On Unix-alikes, for the readline command-line interface it takes effect when the history
is saved (by savehistory or at the end of a session).

On Windows, for Rgui it controls the number of lines saved to the history file: the size of the
history used in the session is controlled by the console customization: see Rconsole.

R_HOME: The top-level directory of the R installation: see R.home. Set by R.
R_INCLUDE_DTIR: The location of the R ‘include’ directory. Set by R.
R_LIBS: Optional. Used for initial setting of . LibPaths.

R_LIBS_SITE: Optional. Used for initial setting of . 1ibPaths.
R_LIBS_USER: Optional. Used for initial setting of . 1ibPaths.

R_PAPERSIZE: Optional. Used to set the default for options ("papersize"), e.g. used by
pdf and postscript.

R_PCRE_JIT_STACK_MAXSIZE: Optional. Consulted when PCRE’s JIT pattern compiler is
first used. See grep.

R_PDFVIEWER: The path to the default PDF viewer. Used by R CMD Rd2pdf.
R_PLATFORM: The platform — a string of the form cpu—vendor-os, see R.Version.
R_PROFILE: Optional. The path to the site profile file: see Startup. Consulted at startup.
R_RD4PDF: Options for pdflatex processing of Rd files. Used by R CMD Rd2pdf.
R_SHARE_DIR: The location of the R ‘share’ directory. Set by R.

R_TEXI2DVICMD: The path to texi2dvi. Defaults to the value of TEXI2DVI, and if that is
unset to a value determined when R was built.
Only on Unix-alikes:
Consulted at startup to set the default for options ("texi2dvi"), used by texi2dvi
and texi2pdf in package tools.

R_TIDYCMD: The path to HTML tidy. Used by RCMDcheck if
_R_CHECK_RD_VALIDATE_RD2HTML_ is set to a true value (as it is by ‘-—as-cran’.

R_UNZIPCMD: The path to unzip. Sets the initial value for options ("unzip") on a Unix-
alike when namespace utils is loaded.

EnvVar 193

R_ZIPCMD: The pathto zip. Used by zip and by R CMD INSTALL ——build on Windows.

TMPDIR, TMP, TEMP: Consulted (in that order) when setting the temporary directory for the ses-
sion: see tempdir. TMPDIR is also used by some of the utilities see the help for build.

TZ: Optional. The current time zone. See Sys . timezone for the system-specific formats. Con-
sulted as needed.

TZDIR: Optional. The top-level directory of the time-zone database. See Sys .timezone.

no_proxy, http_proxy, ftp_proxy: (and more). Optional. Settings for
download. file: see its help for further details.

Unix-specific

Some variables set on Unix-alikes, and not (in general) on Windows.

DISPLAY: Optional: used by X11, Tk (in package tcltk), the data editor and various packages.

EDITOR: The path to the default editor: sets the default for options ("editor") when names-
pace utils is loaded.

PAGER: The path to the pager with the default setting of options ("pager"). The default
value is chosen at configuration, usually as the path to less.

R_PRINTCMD: Sets the default for options ("printcmd"), which sets the default print com-
mand to be used by postscript.

R_SUPPORT_OLD_TARS logical. Sets the default for the support_old_tars argument of
untar. Should be set to TRUE if an old system tar command is used which does not
support either xz compression or automagically detecting compression type.

Windows-specific
Some Windows-specific variables are

GSC: Optional: the path to Ghostscript, used if R_GSCMD is not set.

R_USER: The user’s ‘home’ directory. Set by R. (HOME will be set to the same value if not already
set.)

See Also

Sys.getenv and Sys . setenv to read and set environmental variables in an R session.

gctorture for environment variables controlling garbage collection.

194 eval

eval Evaluate an (Unevaluated) Expression

Description

Evaluate an R expression in a specified environment.

Usage

eval (expr, envir = parent.frame(),
enclos = if(is.list (envir) || is.pairlist (envir))
parent.frame () else baseenv())
evalg(expr, envir, enclos)
eval.parent (expr, n = 1)
local (expr, envir = new.env())

Arguments

expr an object to be evaluated. See ‘Details’.

envir the environment in which expr is to be evaluated. May also be NULL, a
list, a data frame, a pairlist or an integer as specified to sys.call.

enclos Relevant when envir is a (pair)list or a data frame. Specifies the enclosure, i.e.,
where R looks for objects not found in envir. This can be NULL (interpreted
as the base package environment, baseenv ()) or an environment.

n number of parent generations to go back

Details

eval evaluates the expr argument in the environment specified by envir and returns the com-
puted value. If envir is not specified, then the default is parent . frame () (the environment
where the call to eval was made).

Objects to be evaluated can be of types call or expression or name (when the name is looked
up in the current scope and its binding is evaluated), a promise or any of the basic types such as
vectors, functions and environments (which are returned unchanged).

The evalqg form is equivalent to eval (quote (expr), ...). eval evaluates its first argu-
ment in the current scope before passing it to the evaluator: evalq avoids this.

eval .parent (expr, n) is a shorthand for eval (expr, parent.frame (n)).

If envir is alist (such as a data frame) or pairlist, it is copied into a temporary environment (with
enclosure enclos), and the temporary environment is used for evaluation. So if expr changes
any of the components named in the (pair)list, the changes are lost.

If envir is NULL it is interpreted as an empty list so no values could be found in envir and
look-up goes directly to enclos.

local evaluates an expression in a local environment. It is equivalent to evalqg except that its
default argument creates a new, empty environment. This is useful to create anonymous recursive
functions and as a kind of limited namespace feature since variables defined in the environment are
not visible from the outside.

eval 195

Value

The result of evaluating the object: for an expression vector this is the result of evaluating the last
element.

Note

Due to the difference in scoping rules, there are some differences between R and S in this area. In
particular, the default enclosure in S is the global environment.

When evaluating expressions in a data frame that has been passed as an argument to a func-
tion, the relevant enclosure is often the caller’s environment, i.e., one needs eval (x, data,
parent.frame()).

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole. (eval only.)

See Also

expression, quote, sys.frame, parent.frame, environment.

Further, force to force evaluation, typically of function arguments.

Examples

eval (2 ~ 2 ©~ 3)
mEx <- expression(27273); mEx; 1 + eval (mEx)
eval ({ xx <= pi; xx"2}) ; xx

a <- 3 ; aa <- 4 ; evalg(evalg(atb+aa, list(a = 1)), list(b = 5)) # == 10
a <- 3 ; aa <- 4 ; evalg(evalg(atb+aa, -1), list(b = 5)) # == 12
ev <— function() {

el <- parent.frame /()

Evaluate a in el

aa <- eval (expression(a), el)

evaluate the expression bound to a in el

a <- expression (x+y)

list (aa = aa, eval = eval(a, el))
}
tst.ev <- function(a = 7) { x <= pi; y <= 1; ev() }
tst.ev () #-> aa : 7, eval : 4.14

a <- list(a = 3, b = 4)
with(a, a <= 5) # alters the copy of a from the list, discarded.

##
Example of evalqg()
##

N <= 3

196 exists

env <- new.env ()

assign("N", 27, envir = env)

this version changes the visible copy of N only, since the argument
passed to eval is '4'.

eval (N <- 4, env)

N

get ("N", envir = env)

this version does the assignment in env, and changes N only there.
evalg(N <= 5, env)

N

get ("N", envir = env)
##

Uses of local()

##

Mutually recursive.
gg gets value of last assignment, an anonymous version of f.

gg <- local ({
k <= function(y) f(y)
f <- function(x) 1f(x) xxk(x-1) else 1
})
gg (10)
sapply (1:5, gg)

Nesting locals: a 1is private storage accessible to k
gg <- local ({
k <= local ({
a <-1
function (y) {print (a <<- a+1);f(y)}
})

f <- function(x) if(x) xxk(x-1) else 1

sapply(1:5, gg)

ls (envir environment (gg))
ls (envir = environment (get ("k", envir = environment (gg))))

exists Is an Object Defined?

Description

Look for an R object of the given name and possibly return it

Usage

exists(x, where = -1, envir = , frame, mode = "any",

exists 197

inherits = TRUE)

get0(x, envir = pos.to.env(-1L), mode = "any", inherits = TRUE,
ifnotfound = NULL)

Arguments

X a variable name (given as a character string or a symbol).

where where to look for the object (see the details section); if omitted, the function will
search as if the name of the object appeared unquoted in an expression.

envir an alternative way to specify an environment to look in, but it is usually simpler
to just use the where argument.

frame a frame in the -calling list. Equivalent to giving where as
sys.frame (frame).

mode the mode or type of object sought: see the ‘Details’ section.

inherits should the enclosing frames of the environment be searched?

ifnotfound the return value of get 0 (x, *) when x does not exist.

Details

The where argument can specify the environment in which to look for the object in any of several
ways: as an integer (the position in the search list); as the character string name of an element
in the search list; or as an environment (including using sys . frame to access the currently
active function calls). The envir argument is an alternative way to specify an environment, but is
primarily there for back compatibility.

This function looks to see if the name x has a value bound to it in the specified environment. If
inherits is TRUE and a value is not found for x in the specified environment, the enclosing
frames of the environment are searched until the name x is encountered. See environment
and the ‘R Language Definition’ manual for details about the structure of environments and their
enclosures.

Warning: inherits = TRUE is the default behaviour for R but not for S.

If mode is specified then only objects of that type are sought. The mode may specify one of the
collections "numeric" and "function" (see mode): any member of the collection will suffice.
(This is true even if a member of a collection is specified, so for example mode = "special" will
seek any type of function.)

Value
exists () : Logical, true if and only if an object of the correct name and mode is found.
get0(): The object—as from get (x, »)— if exists(x, x) 1is true, otherwise
ifnotfound.

Note

With get 0 (), instead of the easy to read but somewhat inefficient

198 expand.grid

if (exists (myVarName, envir = myEnvir)) {
r <- get (myVarName, envir = myEnvir)
... deal with r

you now can use the more efficient (and slightly harder to read)

if (!'is.null(r <- getO(myVarName, envir = myEnvir))) {
... deal with r

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

get and hasName. For quite a different kind of “existence” checking, namely if function
arguments were specified, missing; and for yet a different kind, namely if a file exists,
file.exists.

Examples
Define a substitute function if necessary:
if (!exists ("some.fun", mode = "function"))
some.fun <- function(x) { cat("some.fun(x)\n"); x }
search ()
exists("1ls", 2) # true even though 1ls is in pos = 3

exists("1ls", 2, inherits = FALSE) # false

These are true (in most circumstances) :
identical(ls, get0("1s"))

identical (NULL, getO(".foo.bar.")) # default ifnotfound = NULL (!)
expand.grid Create a Data Frame from All Combinations of Factor Variables
Description

Create a data frame from all combinations of the supplied vectors or factors. See the description of
the return value for precise details of the way this is done.

Usage

expand.grid(..., KEEP.OUT.ATTRS = TRUE, stringsAsFactors = TRUE)

expand.grid 199

Arguments

vectors, factors or a list containing these.

KEEP.OUT.ATTRS
a logical indicating the "out .attrs" attribute (see below) should be com-
puted and returned.

stringsAsFactors
logical specifying if character vectors are converted to factors.

Value

A data frame containing one row for each combination of the supplied factors. The first factors vary
fastest. The columns are labelled by the factors if these are supplied as named arguments or named
components of a list. The row names are ‘automatic’.

Attribute "out .attrs" is a list which gives the dimension and dimnames for use by predict
methods.

Note

Conversion to a factor is done with levels in the order they occur in the character vectors (and not
alphabetically, as is most common when converting to factors).

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth & Brooks/Cole.

See Also

combn (package ut ils) for the generation of all combinations of n elements, taken m at a time.

Examples

require (utils)

expand.grid(height = seq(60, 80, 5), weight = seq (100, 300, 50),
sex = c("Male", "Female"))

x <- seq(0, 10, length.out = 100)

y <= seq(-1, 1, length.out = 20)

dl <- expand.grid(x = x, y = V)

d2 <- expand.grid(x = x, y = vy, KEEP.OUT.ATTRS = FALSE)
object.size(dl) - object.size(d2)

##-> 5992 or 8832 (on 32- / 64-bit platform)

200

expression

expression Unevaluated Expressions

Description

Creates or tests for objects of mode and class "expression".

Usage

expression(...)

is.expression (x)
as.expression(x, ...)

Arguments

expression: R objects, typically calls, symbols or constants.
as.expression: arguments to be passed to methods.

x an arbitrary R object.

Details

‘Expression’ here is not being used in its colloquial sense, that of mathematical expressions. Those
are calls (see call) in R, and an R expression vector is a list of calls, symbols etc, for example as
returned by parse.

As an object of mode "expression" is a list, it can be subsetted by [, [[or $, the latter two
extracting individual calls etc. The replacement forms of these operators can be used to replace or
delete elements.

expression and is.expression are primitive functions. expression is ‘special’: it does
not evaluate its arguments.

Value

expression returns a vector of type "expression" containing its arguments (unevaluated).
is.expression returns TRUE if expr is an expression object and FALSE otherwise.

as.expression attempts to coerce its argument into an expression object. It is generic, and
only the default method is described here. (The default method calls as.vector (type =
"expression") and so may dispatch methods for as.vector.) NULL, calls, symbols (see
as.symbol) and pairlists are returned as the element of a length-one expression vector. Atomic
vectors are placed element-by-element into an expression vector (without using any names): 1ists
have their type (t ypeof) changed to an expression vector (keeping all attributes). Other types are
not currently supported.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Extract 201

See Also
call, eval, function. Further, text, legend, and plotmath for plotting mathematical
expressions.

Examples

length (exl <- expression(l + 0:9)) # 1
exl
eval (ex1l) # 1:10

length (ex3 <- expression(u, 2, u + 0:9)) # 3

mode (ex3 [3]) # expression

mode (ex3[[3]]) # call

but not all components are 'call's

sapply (ex3, mode) # name numeric call

sapply (ex3, typeof) # symbol double language

rm(ex3)

Extract Extract or Replace Parts of an Object

Description

Operators acting on vectors, matrices, arrays and lists to extract or replace parts.

Usage
x[1]
x[1i, 3, . , drop = TRUE]
x[[1, exact = TRUE]]
x[[i, 3, ..., exact = TRUE]]
x$name

getElement (object, name)

i] <= wvalue

i, 3, ...] <= value
[[1]] <- value
x$name <- value

Arguments
x, object object from which to extract element(s) or in which to replace element(s).
i, 3, ... indices specifying elements to extract or replace. Indices are numeric or

character vectors or empty (missing) or NULL. Numeric values are coerced
to integer as by as.integer (and hence truncated towards zero). Character
vectors will be matched to the names of the object (or for matrices/arrays, the
dimnames): see ‘Character indices’ below for further details.

202 Extract

For [-indexing only: i, j, ... can be logical vectors, indicating ele-
ments/slices to select. Such vectors are recycled if necessary to match the
corresponding extent. i, j, ... can also be negative integers, indicating el-

ements/slices to leave out of the selection.

When indexing arrays by [a single argument i can be a matrix with as many
columns as there are dimensions of x; the result is then a vector with elements
corresponding to the sets of indices in each row of 1.

An index value of NULL is treated as if it were integer (0).

name A literal character string or a name (possibly backtick quoted). For extraction,
this is normally (see under ‘Environments’) partially matched to the names of
the object.

drop For matrices and arrays. If TRUE the result is coerced to the lowest possible

dimension (see the examples). This only works for extracting elements, not for
the replacement. See drop for further details.

exact Controls possible partial matching of [[when extracting by a character vec-
tor (for most objects, but see under ‘Environments’). The default is no partial
matching. Value NA allows partial matching but issues a warning when it occurs.
Value FALSE allows partial matching without any warning.

value typically an array-like R object of a similar class as x.

Details

These operators are generic. You can write methods to handle indexing of specific classes of objects,
see InternalMethods as well as [.data.frameand [. factor. The descriptions here apply only
to the default methods. Note that separate methods are required for the replacement functions [<-,
[[<- and $<- for use when indexing occurs on the assignment side of an expression.

The most important distinction between [, [[and $ is that the [can select more than one element
whereas the other two select a single element.

The default methods work somewhat differently for atomic vectors, matrices/arrays and for recur-
sive (list-like, see is.recursive) objects. $ is only valid for recursive objects (and NULL), and
is only discussed in the section below on recursive objects.

Subsetting (except by an empty index) will drop all attributes except names, dim and dimnames.

Indexing can occur on the right-hand-side of an expression for extraction, or on the left-hand-side
for replacement. When an index expression appears on the left side of an assignment (known as
subassignment) then that part of x is set to the value of the right hand side of the assignment. In this
case no partial matching of character indices is done, and the left-hand-side is coerced as needed
to accept the values. For vectors, the answer will be of the higher of the types of x and value in
the hierarchy raw < logical < integer < double < complex < character < list < expression. Attributes
are preserved (although names, dim and dimnames will be adjusted suitably). Subassignment is
done sequentially, so if an index is specified more than once the latest assigned value for an index
will result.

It is an error to apply any of these operators to an object which is not subsettable (e.g., a function).

Atomic vectors

The usual form of indexing is [. [[can be used to select a single element dropping names,
whereas [keeps them, e.g.,in c (abc =123) [1].

Extract 203

The index object i can be numeric, logical, character or empty. Indexing by factors is allowed and
is equivalent to indexing by the numeric codes (see factor) and not by the character values which
are printed (for which use [as.character (i)]).

An empty index selects all values: this is most often used to replace all the entries but keep the
attributes.

Matrices and arrays

Matrices and arrays are vectors with a dimension attribute and so all the vector forms of indexing
can be used with a single index. The result will be an unnamed vector unless x is one-dimensional
when it will be a one-dimensional array.

The most common form of indexing a k-dimensional array is to specify k indices to [. As for vector
indexing, the indices can be numeric, logical, character, empty or even factor. And again, indexing
by factors is equivalent to indexing by the numeric codes, see ‘Atomic vectors’ above.

An empty index (a comma separated blank) indicates that all entries in that dimension are selected.
The argument drop applies to this form of indexing.

A third form of indexing is via a numeric matrix with the one column for each dimension: each row
of the index matrix then selects a single element of the array, and the result is a vector. Negative
indices are not allowed in the index matrix. NA and zero values are allowed: rows of an index matrix
containing a zero are ignored, whereas rows containing an NA produce an NA in the result.

Indexing via a character matrix with one column per dimensions is also supported if the array has
dimension names. As with numeric matrix indexing, each row of the index matrix selects a single
element of the array. Indices are matched against the appropriate dimension names. NA is allowed
and will produce an NA in the result. Unmatched indices as well as the empty string (" ") are not
allowed and will result in an error.

A vector obtained by matrix indexing will be unnamed unless x is one-dimensional when the row
names (if any) will be indexed to provide names for the result.

Recursive (list-like) objects

Indexing by [is similar to atomic vectors and selects a list of the specified element(s).

Both [[and $ select a single element of the list. The main difference is that $ does not allow
computed indices, whereas [[does. x$name is equivalentto x [["name", exact = FALSE]].
Also, the partial matching behavior of [[can be controlled using the exact argument.

getElement (x, name) is a version of x[[name, exact = TRUE]] which for formally
classed (S4) objects returns slot (x, name), hence providing access to even more general list-
like objects.

[and [[are sometimes applied to other recursive objects such as calls and expressions. Pairlists
(such as calls) are coerced to lists for extraction by [, but all three operators can be used for re-
placement.

[[can be applied recursively to lists, so that if the single index i is a vector of length p,
alist[[i]] is equivalentto alist [[11]]...[[ip]] providing all but the final indexing
results in a list.

Note that in all three kinds of replacement, a value of NULL deletes the corresponding item of the
list. To set entries to NULL, youneed x [1] <- 1list (NULL).

204 Extract

When $<- is applied to a NULL x, it first coerces x to 1ist (). This is what also happens with
[[<— where in R versions less than 4.y.z, a length one value resulted in a length one (atomic)
vector.

Environments

Both $ and [[can be applied to environments. Only character indices are allowed and no partial
matching is done. The semantics of these operations are those of get (i, env =x, inherits
= FALSE) . If no match is found then NULL is returned. The replacement versions, $<-and [[<—,
can also be used. Again, only character arguments are allowed. The semantics in this case are
those of assign (i, value, env = x, inherits = FALSE). Such an assignment will either
create a new binding or change the existing binding in x.

NAs in indexing

When extracting, a numerical, logical or character NA index picks an unknown element and so
returns NA in the corresponding element of a logical, integer, numeric, complex or character result,
and NULL for a list. (It returns 00 for a raw result.)

When replacing (that is using indexing on the lhs of an assignment) NA does not select any element
to be replaced. As there is ambiguity as to whether an element of the rhs should be used or not,
this is only allowed if the rhs value is of length one (so the two interpretations would have the same
outcome). (The documented behaviour of S was that an NA replacement index ‘goes nowhere’
but uses up an element of value: Becker et al p. 359. However, that has not been true of other
implementations.)

Argument matching

Note that these operations do not match their index arguments in the standard way: argument names
are ignored and positional matching only is used. Som[j =2, i =1] isequivalenttom([2, 1]
andnottom[1, 27.

This may not be true for methods defined for them; for example it is not true for the data . frame
methods described in [.data.frame which warn if i or j is named and have undocumented
behaviour in that case.

To avoid confusion, do not name index arguments (but drop and exact must be named).

S4 methods

These operators are also implicit S4 generics, but as primitives, S4 methods will be dispatched only
on S4 objects x.

The implicit generics for the $ and $<- operators do not have name in their signature because the
grammar only allows symbols or string constants for the name argument.

Character indices

Character indices can in some circumstances be partially matched (see pmatch) to the names or
dimnames of the object being subsetted (but never for subassignment). Unlike S (Becker et al
p- 358), R never uses partial matching when extracting by [, and partial matching is not by default
used by [[(see argument exact).

Extract 205

Thus the default behaviour is to use partial matching only when extracting from recursive
objects (except environments) by $. Even in that case, warnings can be switched on by
options (warnPartialMatchDollar = TRUE).

Neither empty (" ") nor NA indices match any names, not even empty nor missing names. If any
object has no names or appropriate dimnames, they are taken as all "" and so match nothing.

Error conditions

Attempting to apply a subsetting operation to objects for which this is not possible signals an error
of class notSubsettableError. The object component of the error condition contains the
non-subsettable object.

Subscript out of bounds errors are signaled as errors of class subscriptOutOfBoundsError.
The object component of the error condition contains the object being subsetted. The integer
subscript component is zero for vector subscripting, and for multiple subscripts indicates which
subscript was out of bounds. The index component contains the erroneous index.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

names for details of matching to names, and pmat ch for partial matching.

list, array,matrix.

[.data.frame and [.factor for the behaviour when applied to data.frame and factors.
Syntax for operator precedence, and the ‘R Language Definition’ manual about indexing details.

NULL for details of indexing null objects.

Examples

x <= 1:12
m <- matrix(1:6, nrow
1li <= list(pi = pi, e =
x[10] # the tenth element of x
X <— x[-1] # delete the 1lst element of x
] # the first row of matrix m

#

#

#

2, dimnames = list (c("a", "b"), LETTERS[1:3]1))
exp (1))

’

, ,» drop = FALSE] is a l-row matrix

c (TRUE, FALSE, TRUE)] logical indexing
m[cbind(c(1,2,1),3:1)]1# matrix numeric index

ci <-— Cbind(c("a", "b", "a"), C("A", vlcvv, "B"))

m[1l
m[1l
m[,

ml[ci] # matrix character index

m <- m[,-1] # delete the first column of m

1i[[1]] # the first element of list 11

y <-= list(1, 2, a = 4, 5)

yv[c(3, 4)] # a list containing elements 3 and 4 of y
y$a # the element of y named a

non-integer indices are truncated:

206 Extract.data.frame

(1 <= 3.999999999) # "4" is printed
(1:5) [1]1 # 3

named atomic vectors, compare "[" and "[["

nx <- c(Abc = 123, pi = pi)

nx[1l] ; nx["pi"] # keeps names, whereas "[[" does not:
nx[[1]] ; nx[["pi"]]

recursive indexing into lists

z <- list(a = list(b = 9, ¢ = "hello"), d = 1:5)
unlist (z)

z[[c(l, 2)]]

z[[c(1l, 2, 1)]]1 # both "hello"

z[[c("a", "b")]] <= "new"

unlist (z)

check $ and [[for environments
el <- new.env ()

el$Sa <- 10

el[["a"]]

el[["b"]] <= 20

els$b

1s (el)

partial matching - possibly with warning
stopifnot (identical (1i$p, pi))
op <- options(warnPartialMatchDollar = TRUE)
stopifnot (identical (1i$p, pi), #-- a warning
inherits (tryCatch (l1i$p, warning = identity), "warning"))
revert the warning option:
if (is.null(op[[1]1])) opl[[1l]] <- FALSE; options (op)

Extract.data.frame Extractor Replace Parts of a Data Frame

Description

Extract or replace subsets of data frames.

Usage

S3 method for class 'data.frame'

x[i, j, drop = 1]

S3 replacement method for class 'data.frame'
x[1i, J] <= wvalue

S3 method for class 'data.frame'

x[[..., exact = TRUE]]

S3 replacement method for class 'data.frame'
x[[1, J11 <- value

Extract.data.frame 207

S3 replacement method for class 'data.frame'
x$name <- value

Arguments

X data frame.

i, 3, ... elements to extract or replace. For [and [[, these are numeric or
character or, for [only, empty or logical. Numeric values are coerced
to integer as if by as.integer. For replacement by [, a logical matrix is
allowed.

name A literal character string or a name (possibly backtick quoted).

drop logical. If TRUE the result is coerced to the lowest possible dimension. The
default is to drop if only one column is left, but not to drop if only one row is
left.

value A suitable replacement value: it will be repeated a whole number of times if
necessary and it may be coerced: see the Coercion section. If NULL, deletes the
column if a single column is selected.

exact logical: see [, and applies to column names.

Details

Data frames can be indexed in several modes. When [and [[are used with a single vector index
(x[1] orx[[1]1),they index the data frame as if it were a list. In this usage a drop argument is
ignored, with a warning.

There is no data. frame method for $, so x$name uses the default method which treats x as a
list (with partial matching of column names if the match is unique, see Ext ract). The replacement
method (for $) checks value for the correct number of rows, and replicates it if necessary.

When [and [[are used with two indices (x[1, Jj] and x[[1, j]]) they act like indexing
a matrix: [[can only be used to select one element. Note that for each selected column, x j
say, typically (if it is not matrix-like), the resulting column will be xj [1], and hence rely on the
corresponding [method, see the examples section.

If [returns a data frame it will have unique (and non-missing) row names, if necessary transforming
the row names using make .unique. Similarly, if columns are selected column names will be
transformed to be unique if necessary (e.g., if columns are selected more than once, or if more than
one column of a given name is selected if the data frame has duplicate column names).

When drop = TRUE, this is applied to the subsetting of any matrices contained in the data frame
as well as to the data frame itself.

The replacement methods can be used to add whole column(s) by specifying non-existent col-
umn(s), in which case the column(s) are added at the right-hand edge of the data frame and numer-
ical indices must be contiguous to existing indices. On the other hand, rows can be added at any
row after the current last row, and the columns will be in-filled with missing values. Missing values
in the indices are not allowed for replacement.

For [the replacement value can be a list: each element of the list is used to replace (part of) one
column, recycling the list as necessary. If columns specified by number are created, the names (if

208 Extract.data.frame

any) of the corresponding list elements are used to name the columns. If the replacement is not
selecting rows, list values can contain NULL elements which will cause the corresponding columns
to be deleted. (See the Examples.)

Matrix indexing (x [1] with a logical or a 2-column integer matrix i) using [is not recommended.
For extraction, x is first coerced to a matrix. For replacement, logical matrix indices must be of the
same dimension as x. Replacements are done one column at a time, with multiple type coercions
possibly taking place.

Both [and [[extraction methods partially match row names. By default neither partially match
column names, but [[will if exact = FALSE (and with a warning if exact = N3). If you want
to exact matching on row names use match, as in the examples.

Value

For [a data frame, list or a single column (the latter two only when dimensions have been dropped).
If matrix indexing is used for extraction a vector results. If the result would be a data frame an error
results if undefined columns are selected (as there is no general concept of a *missing’ column in a
data frame). Otherwise if a single column is selected and this is undefined the result is NULL.

For [[a column of the data frame or NULL (extraction with one index) or a length-one vector
(extraction with two indices).

For $, a column of the data frame (or NULL).

For [<-, [[<- and $<-, a data frame.

Coercion

The story over when replacement values are coerced is a complicated one, and one that has changed
during R’s development. This section is a guide only.

When [and [[are used to add or replace a whole column, no coercion takes place but value will
be replicated (by calling the generic function rep) to the right length if an exact number of repeats
can be used.

When [is used with a logical matrix, each value is coerced to the type of the column into which it
is to be placed.

When [and [[are used with two indices, the column will be coerced as necessary to accommodate
the value.

Note that when the replacement value is an array (including a matrix) it is not treated as a series of
columns (as data.frame and as.data. frame do) but inserted as a single column.

Warning

The default behaviour when only one row is left is equivalent to specifying drop = FALSE. To
drop from a data frame to a list, drop = TRUE has to be specified explicitly.

Arguments other than drop and exact should not be named: there is a warning if they are and
the behaviour differs from the description here.

See Also

subset which is often easier for extraction, data. frame, Extract.

Extract.data.frame 209

Examples
sw <— swiss[1:5, 1:4] # select a manageable subset
sw[l:3] # select columns
sw[, 1:3] # same
sw[4:5, 1:3] # select rows and columns
sw([l] # a one-column data frame
sw[, 1, drop = FALSE] # the same
swl[, 1] # a (unnamed) vector
sw[[1]] # the same
sw$Fert # the same (possibly w/ warning, see ?Extract)
swll,] # a one-row data frame

sw[l,, drop = TRUE] # a list

sw["C",] # partially matches
sw[match ("C", row.names(sw)),] # no exact match
try(sw[, "Ferti"]) # column names must match exactly

sw[sw$Fertility > 90,] # logical indexing, see also ?subset
swlc(l, 1:2), 1] # duplicate row, unique row names are created

sw[sw <= 6] <- 6 # logical matrix indexing
swW

adding a column

sw["newl"] <- LETTERS[1:5] # adds a character column
sw[["new2"]] <- letters[1l:5] # ditto

sw[, "new3"] <- LETTERS[1:5] # ditto

swSnewd <- 1:5

sapply (sw, class)

swSnew # -> NULL: no unique partial match
swSnewd <- NULL # delete the column
SwW

sw[6:8] <- list(letters[10:14], NULL, aa = 1:5)
update col. 6, delete 7, append

SwW

matrices in a data frame
A <- data.frame(x = 1:3, yv = I(matrix(4:9, 3, 2)),
z = I(matrix(letters[1:9], 3, 3)))

A[l:3, "y"] # a matrix
A[l1:3, "z"] # a matrix
Al, "y"] # a matrix
stopifnot (identical (colnames (A), c("x", "y", "z")), ncol(A) == 3L,

identical (A[,"y"], A[1:3, "y"1),
inherits (A[,"y"], "AsIs"))

keeping special attributes: use a class with a
"as.data.frame" and "[" method;
"avector" := vector that keeps attributes. Could provide a constructor

210 Extract.factor

avector <- function(x) { class(x) <- c("avector", class(x)); x }
as.data.frame.avector <- as.data.frame.vector

“[.avector® <- function(x,i,...) {
r <- NextMethod("[")
mostattributes (r) <- attributes (x)
r

d <- data.frame(i = 0:7, £ = gl(2,4),
u = structure(11:18, unit = "kg", class = "avector"))
str(d[2:4, -1]) # 'u' keeps its "unit"

Extract.factor Extract or Replace Parts of a Factor

Description

Extract or replace subsets of factors.

Usage

S3 method for class 'factor'

x[..., drop = FALSE]

S3 method for class 'factor'

x[[...]]

S3 replacement method for class 'factor'
x[...] <= value

S3 replacement method for class 'factor'
x[[...]] <= value

Arguments

X a factor

a specification of indices — see Extract.

drop logical. If true, unused levels are dropped.
value character: a set of levels. Factor values are coerced to character.
Details

When unused levels are dropped the ordering of the remaining levels is preserved.
If valueisnotin levels (x), a missing value is assigned with a warning.
Any contrasts assigned to the factor are preserved unless drop = TRUE.

The [[method supports argument exact.

Extremes 211

Value

A factor with the same set of levels as x unless drop = TRUE.

See Also

factor, Extract.

Examples

following example (factor)

(ff <- factor(substring("statistics", 1:10, 1:10), levels = letters))
ff[, drop = TRUE]

factor (letters[7:10]) [2:3, drop = TRUE]

Extremes Maxima and Minima

Description

Returns the (regular or parallel) maxima and minima of the input values.

pmax* () and pmin= () take one or more vectors as arguments, recycle them to common length
and return a single vector giving the ‘parallel’ maxima (or minima) of the argument vectors.

Usage

max(..., na.rm = FALSE)
min(..., na.rm = FALSE)

pmax (..., na.rm = FALSE)

pmin(..., na.rm = FALSE)

pmax.int (..., na.rm = FALSE)

pmin.int (..., na.rm = FALSE)
Arguments

numeric or character arguments (see Note).

na.rm a logical indicating whether missing values should be removed.

Details
max and min return the maximum or minimum of all the values present in their arguments, as
integerifallare logical or integer, as double if all are numeric, and character otherwise.

If na.rmis FALSE an NA value in any of the arguments will cause a value of NA to be returned,
otherwise NA values are ignored.

The minimum and maximum of a numeric empty set are +Inf and —Inf (in this order!) which
ensures transitivity, e.g., min (x1, min (x2)) ==min (x1, x2). For numeric x max (x) ==

212 Extremes

—Inf and min (x) == +Inf whenever length (x) == 0 (after removing missing values if re-
quested). However, pmax and pmin return NA if all the parallel elements are NA even for na . rm
= TRUE.

pmax and pmin take one or more vectors (or matrices) as arguments and return a single vector
giving the ‘paralle]’ maxima (or minima) of the vectors. The first element of the result is the
maximum (minimum) of the first elements of all the arguments, the second element of the result is
the maximum (minimum) of the second elements of all the arguments and so on. Shorter inputs (of
non-zero length) are recycled if necessary. Attributes (see attributes: such as names or dim)
are copied from the first argument (if applicable, e.g., not for an S4 object).

pmax.int and pmin.int are faster internal versions only used when all arguments are atomic
vectors and there are no classes: they drop all attributes. (Note that all versions fail for raw and
complex vectors since these have no ordering.)

max and min are generic functions: methods can be defined for them individually or via the
Summary group generic. For this to work properly, the arguments . . . should be unnamed, and
dispatch is on the first argument.

By definition the min/max of a numeric vector containing an NaN is NaN, except that the min/max
of any vector containing an NA is NA even if it also contains an NaN. Note that max (NA, Inf) ==
NA even though the maximum would be Inf whatever the missing value actually is.

Character versions are sorted lexicographically, and this depends on the collating sequence of the
locale in use: the help for ‘Comparison’ gives details. The max/min of an empty character vector
is defined to be character NA. (One could argue that as " " is the smallest character element, the
maximum should be " ", but there is no obvious candidate for the minimum.)

Value
For min or max, a length-one vector. For pmin or pmax, a vector of length the longest of the input
vectors, or length zero if one of the inputs had zero length.

The type of the result will be that of the highest of the inputs in the hierarchy integer < double <
character.

For min and max if there are only numeric inputs and all are empty (after possible removal of NAs),
the result is double (Inf or —Inf).

S4 methods
max and min are part of the S4 Summary group generic. Methods for them must use the signature
X, ..., na.rm

Note

‘Numeric’ arguments are vectors of type integer and numeric, and logical (coerced to integer). For
historical reasons, NULL is accepted as equivalent to integer (0).

pmax and pmin will also work on classed S3 or S4 objects with appropriate methods for compari-
son, is.na and rep (if recycling of arguments is needed).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

extSoftVersion

See Also

213

range (both min and max) and which.min (which.max) for the arg min, i.e., the location

where an extreme value occurs.

‘plotmath’ for the use of min in plot annotation.

Examples

require (stats); require (graphics)
min(5:1, pi) #-> one number
pmin(5:1, pi) #-> 5 numbers

; cH <- 1.35

no names

has names

(-cH, x)), type = "b",

x <— sort (rnorm(100));
pmin (cH, quantlle())
pmin (quantile (x), cH)
plot (x, pmin (cH, pmax

1), 0)
col = 2)
add =

cut0l <- function (x)
x~2 - 1/4,
~2 - 1/4)

pmax (pmin (x,
-1.4, 1.5,
col = "blue",

curve (
curve (cut01 (x
pmax (), pmin ()

D <- diag(x = y/4) ; n0 <— numeric()

stopifnot (identical (D cut01 (D)),
identical (n0, cut01l(n0)),
identical (n0, cutO0l (NULL)),
identical (n0, pmax(3:1, n0, 2)),
identical (n0, pmax(n0, 4)))

main = "Huber's function")

TRUE, n = 500)

preserve attributes of xfirstx argument

extSoftVersion

Report Versions of Third-Party Software

Description

Report versions of (external) third-party software used.

Usage

extSoftVersion ()

Details

The reports the versions of third-party software libraries in use. These are often external but might

have been compiled into R when it was installed.

With dynamic linking, these are the versions of the libraries linked to in this session: with static

linking, of those compiled in.

214 extSoftVersion

Value

A named character vector, currently with components

z1lib The version of z11ib in use.

bzlib The version of bz1ib (from bzip2) in use.

XZ The version of 1ib1lzma (from xz) in use.

PCRE The version of PCRE in use. PCRE1 has versions < 10.00, PCRE2 has versions
>=10.00.

ICU The version of ICU in use (if any, otherwise "").

TRE The version of 1ibtre in use.

iconv The implementation and version of the i conv library in use (if known).

readline The version of readline in use (if any, otherwise ""). If using the emulation

by libedit aka editline this will be "EditLine wrapper" preceded
by the readline version it emulates: that is most likely to be seen on macOS.

BLAS Name of the binary/executable file with the implementation of BLAS in use (if
known, otherwise "").

Note that the values for bz1ib and pcre normally contain a date as well as the version number,

and that for t re includes several items separated by spaces, the version number being the second.

For iconv this will give the implementation as well as the version, for example "GNU libiconv
1.14","glibc 2.18" or "win_iconv" (which has no version number).

The name of the binary/executable file for BLAS can be used as an indication of which implemen-
tation is in use. Typically, the R version of BLAS will appear as 1ibR.so (LibR.dylib), R or
libRblas.so (1ibRblas.dylib), depending on how R was built. Note that 1ibRblas. so
(1ibRblas.dylib) may also be shown for an external BLAS implementation that had been
copied, hard-linked or renamed by the system administrator. For an external BLAS, a shared object
file will be given and its path/name may indicate the vendor/version. The detection does not work
on Windows nor for the Accelerate framework on macOS.

See Also

libcurlVersion for the version of 1ibCurl.
La_version for the version of LAPACK in use.
La_library for binary/executable file with LAPACK in use.
grSoftVersion for third-party graphics software.
tclVersion in package txltk for the version of Tcl/Tk.

pcre_config for PCRE configuration options.

Examples

extSoftVersion ()
the PCRE version
sub (" .*", "", extSoftVersion() ["PCRE"])

factor 215

factor Factors

Description

The function factor is used to encode a vector as a factor (the terms ‘category’ and ‘enumerated
type’ are also used for factors). If argument ordered is TRUE, the factor levels are assumed to be
ordered. For compatibility with S there is also a function ordered.

is.factor, is.ordered, as.factor and as.ordered are the membership and coercion
functions for these classes.

Usage
factor (x = character (), levels, labels = levels,
exclude = NA, ordered = is.ordered(x), nmax = NA)
ordered(x, ...)

is.factor (x)
is.ordered (x)

as.factor (x)
as.ordered (x)

addNA (x, ifany = FALSE)

Arguments

X a vector of data, usually taking a small number of distinct values.

levels an optional vector of the unique values (as character strings) that x might have
taken. The default is the unique set of values taken by as.character (x),
sorted into increasing order of x. Note that this set can be specified as smaller
than sort (unique (x)).

labels either an optional character vector of labels for the levels (in the same order as
levels after removing those in exclude), or a character string of length 1.
Duplicated values in 1abels can be used to map different values of x to the
same factor level.

exclude a vector of values to be excluded when forming the set of levels. This may be
factor with the same level set as x or should be a character.

ordered logical flag to determine if the levels should be regarded as ordered (in the order
given).

nmax an upper bound on the number of levels; see ‘Details’.

(in ordered (.)): any of the above, apart from ordered itself.

ifany only add an NA level if it is used, i.e. if any (is.na (x)).

216 factor

Details

The type of the vector x is not restricted; it only must have an as.character method and be
sortable (by order).

Ordered factors differ from factors only in their class, but methods and the model-fitting functions
treat the two classes quite differently.

The encoding of the vector happens as follows. First all the values in exclude are removed from
levels. If x[1] equals levels[j], then the i-th element of the result is j. If no match is
found for x [1] in levels (which will happen for excluded values) then the i-th element of the
result is set to NA.

Normally the ‘levels’ used as an attribute of the result are the reduced set of levels after removing
those in exclude, but this can be altered by supplying labels. This should either be a set of
new labels for the levels, or a character string, in which case the levels are that character string with
a sequence number appended.

factor (x, exclude = NULL) applied to a factor without NAs is a no-operation unless there
are unused levels: in that case, a factor with the reduced level set is returned. If exclude is used,
since R version 3.4.0, excluding non-existing character levels is equivalent to excluding nothing,
and when exclude is a character vector, that is applied to the levels of x. Alternatively,
exclude can be factor with the same level set as x and will exclude the levels present in exclude.

The codes of a factor may contain NA. For a numeric x, set exclude = NULL to make NA an extra
level (prints as <NA>); by default, this is the last level.

If NA is a level, the way to set a code to be missing (as opposed to the code of the missing level)
is to use is.na on the left-hand-side of an assignment (as in is.na (f) [i] <- TRUE; indexing
inside is.na does not work). Under those circumstances missing values are currently printed as
<NA>, i.e., identical to entries of level NA.

is.factor is generic: you can write methods to handle specific classes of objects, see Internal-
Methods.

Where levels is not supplied, unique is called. Since factors typically have quite a small
number of levels, for large vectors x it is helpful to supply nmax as an upper bound on the number
of unique values.

Since R 4.1.0, when using ¢ to combine a (possibly ordered) factor with other objects, if all objects
are (possibly ordered) factors, the result will be a factor with levels the union of the level sets of
the elements, in the order the levels occur in the level sets of the elements (which means that if all
the elements have the same level set, that is the level set of the result), equivalent to how unlist
operates on a list of factor objects.

Value

factor returns an object of class "factor" which has a set of integer codes the length of
x with a "levels" attribute of mode character and unique (!anyDuplicated(.)) en-
tries. If argument ordered is true (or ordered () is used) the result has class c ("ordered",
"factor"). Undocumentedly for a long time, factor (x) loses all attributes (x) but
"names", and resets "levels" and "class".

Applying factor to an ordered or unordered factor returns a factor (of the same type) with just
the levels which occur: see also [. factor for a more transparent way to achieve this.

factor 217

is.factor returns TRUE or FALSE depending on whether its argument is of type factor or not.
Correspondingly, is.ordered returns TRUE when its argument is an ordered factor and FALSE
otherwise.

as.factor coerces its argument to a factor. It is an abbreviated (sometimes faster) form of
factor.

as.ordered (x) returns x if this is ordered, and ordered (x) otherwise.

addNA modifies a factor by turning NA into an extra level (so that NA values are counted in tables,
for instance).

.valid.factor (object) checks the validity of a factor, currently only levels (object),
and returns TRUE if it is valid, otherwise a string describing the validity problem. This function is
used for validObject (<factor>).

Warning

The interpretation of a factor depends on both the codes and the "1levels" attribute. Be careful
only to compare factors with the same set of levels (in the same order). In particular, as . numeric
applied to a factor is meaningless, and may happen by implicit coercion. To transform a factor £
to approximately its original numeric values, as.numeric (levels (f)) [f] is recommended
and slightly more efficient than as .numeric (as.character (f)).

The levels of a factor are by default sorted, but the sort order may well depend on the locale at the
time of creation, and should not be assumed to be ASCII.

There are some anomalies associated with factors that have NA as a level. It is suggested to use
them sparingly, e.g., only for tabulation purposes.

Comparison operators and group generic methods

There are "factor" and "ordered" methods for the group generic Ops which provide meth-
ods for the Comparison operators, and for the min, max, and range generics in Summary of
"ordered". (The rest of the groups and the Math group generate an error as they are not mean-
ingful for factors.)

Only == and ! = can be used for factors: a factor can only be compared to another factor with an
identical set of levels (not necessarily in the same ordering) or to a character vector. Ordered factors
are compared in the same way, but the general dispatch mechanism precludes comparing ordered
and unordered factors.

All the comparison operators are available for ordered factors. Collation is done by the levels of the
operands: if both operands are ordered factors they must have the same level set.

Note

In earlier versions of R, storing character data as a factor was more space efficient if there is even
a small proportion of repeats. However, identical character strings now share storage, so the dif-
ference is small in most cases. (Integer values are stored in 4 bytes whereas each reference to a
character string needs a pointer of 4 or 8 bytes.)

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth & Brooks/Cole.

218 factor

See Also

[. factor for subsetting of factors.

gl for construction of balanced factors and C for factors with specified contrasts. levels and
nlevels for accessing the levels, and unclass to get integer codes.

Examples

(ff <- factor(substring("statistics", 1:10, 1:10), levels = letters))

as.integer (ff) # the internal codes

(f. <- factor (ff)) # drops the levels that do not occur
ff[, drop = TRUE] # the same, more transparently

factor (letters([1:20], labels = "letter")

class (ordered(4:1)) # "ordered", inheriting from "factor"

z <— factor (LETTERS[3:1], ordered = TRUE)
and "relational" methods work:
stopifnot (sort(z) [c(1l,3)] == range(z), min(z) < max(z))

suppose you want "NA" as a level, and to allow missing values.
(x <= factor(c(l, 2, NA), exclude = NULL))

is.na(x) [2] <- TRUE

x # [1] 1 <NA> <NA>

is.na (x)

[1] FALSE TRUE FALSE

More rational, since R 3.4.0

factor(c(l:2, NA), exclude = "") # keeps <NA> , as
factor(c(l:2, NA), exclude = NULL) # always did

exclude = <character>

z # ordered levels 'A < B < C'

factor(z, exclude = "C") # does exclude

factor(z, exclude = "B") # ditto

Now, labels maybe duplicated:

factor() with duplicated labels allowing to "merge levels"

x <— c("Man", "Male", "Man", "Lady", "Female")

Map from 4 different values to only two levels:

(xf <- factor(x, levels = c("Male", "Man" , "Lady", "Female"),
labels = c("Male", "Male", "Female", "Female")))

#> [1] Male Male Male Female Female

#> Levels: Male Female

Using addNA ()

Month <- airquality$Month

table (addNA (Month))

table (addNA (Month, ifany = TRUE))

file.access 219

file.access Ascertain File Accessibility

Description

Utility function to access information about files on the user’s file systems.

Usage
file.access (names, mode = 0)
Arguments
names character vector containing file names. Tilde-expansion will be done: see
path.expand.
mode integer specifying access mode required: see ‘Details’.
Details

The mode value can be the exclusive or of the following values

0 test for existence.
1 test for execute permission.
2 test for write permission.

4 test for read permission.

Permission will be computed for real user ID and real group ID (rather than the effective IDs).

Please note that it is not a good idea to use this function to test before trying to open a file. On a
multi-tasking system, it is possible that the accessibility of a file will change between the time you
call file.access () and the time you try to open the file. It is better to wrap file open attempts
intry.

Value

An integer vector with values 0 for success and -1 for failure.

Note

This is intended as a replacement for the S-PLUS function access, a wrapper for the C function
of the same name, which explains the return value encoding. Note that the return value is false for
success.

See Also

file.info for more details on permissions, Sys.chmod to change permissions, and try for a
‘test it and see’ approach.

file_test for shell-style file tests.

220 file.info

Examples

fa <- file.access(dir("."))
table(fa) # count successes & failures

file.choose Choose a File Interactively

Description

Choose a file interactively.

Usage

file.choose (new = FALSE)

Arguments
new Logical: choose the style of dialog box presented to the user: at present only
new = FALSE is used.
Value

A character vector of length one giving the file path.

See Also

list.files for non-interactive selection.

file.info Extract File Information

Description

Utility function to extract information about files on the user’s file systems.

Usage
file.info (..., extra_cols = TRUE)
file.mode(...)

file.mtime(...)
file.size(...)

file.info 221

Arguments
character vectors containing file paths. Tilde-expansion is done: see
path.expand.

extra_cols Logical: return all cols rather than just the first six.

Details

What constitutes a ‘file’ is OS-dependent but includes directories. (However, directory names
must not include a trailing backslash or slash on Windows.) See also the section in the help for
file.exists on case-insensitive file systems.

The file ‘mode’ follows POSIX conventions, giving three octal digits summarizing the permissions
for the file owner, the owner’s group and for anyone respectively. Each digit is the logical or of read
(4), write (2) and execute/search (1) permissions.

See files for how file paths with marked encodings are interpreted.

On most systems symbolic links are followed, so information is given about the file to which the
link points rather than about the link.

Value

For £ile. info, data frame with row names the file names and columns

size double: File size in bytes.

isdir logical: Is the file a directory?

mode integer of class "octmode". The file permissions, printed in octal, for example
644.

mtime, ctime, atime
object of class "POSIXct": file modification, ‘last status change’ and last ac-

cess times.
uid integer: the user ID of the file’s owner.
gid integer: the group ID of the file’s group.
uname character: uid interpreted as a user name.
grname character: gid interpreted as a group name.

Unknown user and group names will be NA.

If extra_cols is false, only the first six columns are returned: as these can all be found from
a single C system call this can be faster. (However, properly configured systems will use a ‘name
service cache daemon’ to speed up the name lookups.)

Entries for non-existent or non-readable files will be NA. The uid, gid, uname and grname
columns may not be supplied on a non-POSIX Unix-alike system, and will not be on Windows.

What is meant by the three file times depends on the OS and file system. On Windows native file
systems ct ime is the file creation time (something which is not recorded on most Unix-alike file
systems). What is meant by ‘file access’ and hence the ‘last access time’ is system-dependent.

The resolution of the file times depends on both the OS and the type of the file system. Modern file
systems typically record times to an accuracy of a microsecond or better: notable exceptions are
HFS+ on macOS (recorded in seconds) and modification time on older FAT systems (recorded in

222 file.path

increments of 2 seconds). Note that "POSIXct" times are by default printed in whole seconds: to
change that see strftime.

file.mode, file.mtime and file. size are convenience wrappers returning just one of the
columns.

Note

Some (now old) systems allow files of more than 2Gb to be created but not accessed by the stat
system call. Such files may show up as non-readable (and very likely not be readable by any of R’s
input functions).

See Also

Sys.readlink to find out about symbolic links, files, file.access, list.files, and
DateTimeClasses for the date formats.

Sys.chmod to change permissions.

Examples

ncol (finf <- file.info(dir())) # at least six

finf # the whole list

Those that are more than 100 days old

finf <- file.info(dir (), extra_cols = FALSE)

finf[difftime (Sys.time (), finf[,"mtime"], units = "days") > 100 , 1:4]

file.info("no-such-file—-exists")

file.path Construct Path to File

Description

Construct the path to a file from components in a platform-independent way.

Usage

file.path(..., fsep = .Platform$file.sep)

Arguments

character vectors. Long vectors are not supported.

fsep the path separator to use (assumed to be ASCII).

file.show 223

Details

The implementation is designed to be fast (faster than paste) as this function is used extensively
in R itself.

It can also be used for environment paths such as PATH and R_LIBS with fsep=
.Platform$path.sep.

Trailing path separators are invalid for Windows file paths apart from ‘/’ and ‘d: /’ (although some
functions/utilities do accept them), so a trailing / or \ is removed there.
Value

A character vector of the arguments concatenated term-by-term and separated by fsep if all argu-
ments have positive length; otherwise, an empty character vector (unlike paste).

An element of the result will be marked (see Encoding) as UTF-8 if run in a UTF-8 locale (when
marked inputs are converted to UTF-8) or if a component of the result is marked as UTF-8, or as
Latin-1 in a non-Latin-1 locale.

Note

The components are by default separated by / (not \) on Windows.

See Also

basename, normalizePath, path.expand.

file.show Display One or More Text Files

Description

Display one or more (plain) text files, in a platform specific way, typically via a ‘pager’.

Usage
file.show (..., header = rep("", nfiles),
title = "R Information",
delete.file = FALSE, pager = getOption("pager"),
encoding = "")
Arguments
one or more character vectors containing the names of the files to be displayed.
Paths with have tilde expansion.
header character vector (of the same length as the number of files specified in . . .)

giving a header for each file being displayed. Defaults to empty strings.

224 file.show
title an overall title for the display. If a single separate window is used for the display,
title will be used as the window title. If multiple windows are used, their
titles should combine the title and the file-specific header.
delete.file should the files be deleted after display? Used for temporary files.
pager the pager to be used: not used on all platforms
encoding character string giving the encoding to be assumed for the file(s).
Details

This function provides the core of the R help system, but it can be used for other purposes as well,
such as page.

How the pager is implemented is highly system-dependent.

The basic Unix version concatenates the files (using the headers) to a temporary file, and displays
it in the pager selected by the pager argument, which is a character vector specifying a system
command (a full path or a command found on the PATH) to run on the set of files. The ‘factory-
fresh’ default is to use ‘R_HOME /bin/pager’, which is a shell script running the command-line
specified by the environment variable PAGER whose default is set at configuration, usually to less.
On a Unix-alike more is used if pager is empty.

Most GUI systems will use a separate pager window for each file, and let the user leave it up while
R continues running. The selection of such pagers could either be done using special pager names
being intercepted by lower-level code (such as "internal" and "console" on Windows),
or by letting pager be an R function which will be called with arguments (files, header,
title, delete.file) corresponding to the first four arguments of £ile . show and take care
of interfacing to the GUIL.

The R. app GUI on macOS uses its internal pager irrespective of the setting of pager.

Not all implementations will honour delete.file. In particular, using an external pager on
Windows does not, as there is no way to know when the external application has finished with the
file.

Author(s)

Ross Thaka, Brian Ripley.

See Also

files, list.files, help; RShowDoc call file.show () for type = "text". Consider
getOption ("pdfviewer") ande.g., system for displaying pdf files.

file.edit.

Examples

file.show(file.path (R.home ("doc"), "COPYRIGHTS"))

files 225

files File Manipulation

Description

These functions provide a low-level interface to the computer’s file system.

Usage

file.create

file.exists

file.remove)

file.rename (from, to)

file.append(filel, file2)

file.copy(from, to, overwrite = recursive, recursive = FALSE,
copy.mode = TRUE, copy.date = FALSE)

file.symlink (from, to)

file.link (from, to)

, showWarnings

o)

(TRUE)
(
(
(

Arguments

..., filel, file2
character vectors, containing file names or paths.

from, to character vectors, containing file names or paths. For file.copy and
file.symlink to can alternatively be the path to a single existing directory.

overwrite logical; should existing destination files be overwritten?

showWarnings logical; should the warnings on failure be shown?

recursive logical. If to is a directory, should directories in from be copied (and their
contents)? (Like cp —R on POSIX OSes.)

copy .mode logical: should file permission bits be copied where possible?

copy.date logical: should file dates be preserved where possible? See

Sys.setFileTime.

Details

The ... arguments are concatenated to form one character string: you can specify the files
separately or as one vector. All of these functions expand path names: see path.expand.
(file.exists silently reports false for paths that would be too long after expansion: the rest
will give a warning.)

file.create creates files with the given names if they do not already exist and truncates them if
they do. They are created with the maximal read/write permissions allowed by the ‘umask’ setting
(where relevant). By default a warning is given (with the reason) if the operation fails.

file.exists returns a logical vector indicating whether the files named by its argument exist.
(Here ‘exists’ is in the sense of the system’s stat call: a file will be reported as existing only if
you have the permissions needed by stat. Existence can also be checked by file.access,

226 files

which might use different permissions and so obtain a different result. Note that the existence of
a file does not imply that it is readable: for that use file.access.) What constitutes a ‘file’ is
system-dependent, but should include directories. (However, directory names must not include a
trailing backslash or slash on Windows.) Note that if the file is a symbolic link on a Unix-alike, the
result indicates if the link points to an actual file, not just if the link exists. On Windows, the result is
unreliable for a broken symbolic link (junction). Lastly, note the different function exists which
checks for existence of R objects.

file.remove attempts to remove the files named in its argument. On most Unix platforms ‘file’
includes empty directories, symbolic links, fifos and sockets. On Windows, ‘file’ means a regular
file and not, say, an empty directory.

file.rename attempts to rename files (and £ rom and t o must be of the same length). Where file
permissions allow this will overwrite an existing element of to. This is subject to the limitations
of the OS’s corresponding system call (see something like man 2 rename on a Unix-alike): in
particular in the interpretation of ‘file’: most platforms will not rename files from one file system to
another. NB: This means that renaming a file from a temporary directory to the user’s filespace or
during package installation will often fail. (On Windows, file.rename can rename files but not
directories across volumes.) On platforms which allow directories to be renamed, typically neither
or both of from and to must a directory, and if t o exists it must be an empty directory.

file.append attempts to append the files named by its second argument to those named by its
first. The R subscript recycling rule is used to align names given in vectors of different lengths.

file.copy works in a similar way to £ile.append but with the arguments in the natural order
for copying. Copying to existing destination files is skipped unless overwrite = TRUE. The to
argument can specify a single existing directory. If copy.mode = TRUE file read/write/execute
permissions are copied where possible, restricted by ‘umask’. (On Windows this applies only to
files.) Other security attributes such as ACLs are not copied. On a POSIX filesystem the targets of
symbolic links will be copied rather than the links themselves, and hard links are copied separately.
Using copy .date = TRUE may or may not copy the timestamp exactly (for example, fractional
seconds may be omitted), but is more likely to do so as from R 3.4.0.

file.symlink and file.link make symbolic and hard links on those file systems which
support them. For file.symlink the to argument can specify a single existing directory. (Unix
and macOS native filesystems support both. Windows has hard links to files on NTFS file systems
and concepts related to symbolic links on recent versions: see the section below on the Windows
version of this help page. What happens on a FAT or SMB-mounted file system is OS-specific.)

File arguments with a marked encoding (see Encoding are if possible translated to the native
encoding, except on Windows where Unicode file operations are used (so marking as UTF-8 can be
used to access file paths not in the native encoding on suitable file systems).

Value

These functions return a logical vector indicating which operation succeeded for each of the files
attempted. Using a missing value for a file or path name will always be regarded as a failure.

If showWarnings = TRUE, file.create will give a warning for an unexpected failure.

Case-insensitive file systems

Case-insensitive file systems are the norm on Windows and macOS, but can be found on all OSes
(for example a FAT-formatted USB drive is probably case-insensitive).

files 227

These functions will most likely match existing files regardless of case on such file systems: how-
ever this is an OS function and it is possible that file names might be mapped to upper or lower
case.

Warning

Always check the return value of these functions when used in package code. This is especially im-
portant for £ile.rename, which has OS-specific restrictions (and note that the session temporary
directory is commonly on a different file system from the working directory): it is only portable to
use file.rename to change file name(s) within a single directory.

Author(s)

Ross Thaka, Brian Ripley

See Also

file.info, file.access, file.path, file.show, list.files, unlink,
basename, path.expand.

dir.create.
Sys.glob to expand wildcards in file specifications.
file_test, Sys.readlink (for ‘symlink’s).

https://en.wikipedia.org/wiki/Hard_link and https://en.wikipedia.
org/wiki/Symbolic_1link for the concepts of links and their limitations.

Examples
cat ("file A\n", file = "A")
cat ("file B\n", file = "B")

file.append("A", "B")

file.create ("A") # (trashing previous)

file.append ("A", rep("B", 10))

if (interactive()) file.show("A") # -> the 10 lines from 'B'
file.copy ("A", "C")

dir.create ("tmp")

file.copy (c("A", "B"), "tmp")

list.files("tmp") # -> "A" and "B"

setwd ("tmp")

file.remove ("A") # the tmp/A file

file.symlink (file.path("..", c("A", "B")), ".")

|-—> (TRUE,FALSE) : ok for A but not B as it exists already
setwd("..")
unlink ("tmp", recursive = TRUE)

file.remove ("A", "B", "C")

https://en.wikipedia.org/wiki/Hard_link
https://en.wikipedia.org/wiki/Symbolic_link
https://en.wikipedia.org/wiki/Symbolic_link

228 files2

files?2 Manipulation of Directories and File Permissions

Description

These functions provide a low-level interface to the computer’s file system.

Usage
dir.exists (paths)
dir.create(path, showWarnings = TRUE, recursive = FALSE, mode = "0777")
Sys.chmod (paths, mode = "0777", use_umask = TRUE)

Sys.umask (mode = NA)

Arguments
path a character vector containing a single path name. Tilde expansion (see
path.expand) is done.
paths character vectors containing file or directory paths. Tilde expansion (see

path.expand) is done.

showWarnings logical; should the warnings on failure be shown?

recursive logical. Should elements of the path other than the last be created? If true, like
the Unix command mkdir -p.
mode the mode to be used on Unix-alikes: it will be coerced by as.octmode. For
Sys .chmod it is recycled along paths.
use_umask logical: should the mode be restricted by the umask setting?
Details

dir.exists checks that the paths exist (in the same sense as file.exists) and are directo-
ries.

dir.create creates the last element of the path, unless recursive = TRUE. Trailing path
separators are discarded. The mode will be modified by the umask setting in the same way as for
the system function mkdir. What modes can be set is OS-dependent, and it is unsafe to assume
that more than three octal digits will be used. For more details see your OS’s documentation on the
system call mkdir, e.g. man 2 mkdir (and not that on the command-line utility of that name).

One of the idiosyncrasies of Windows is that directory creation may report success but create a
directory with a different name, for example dir.create ("G.S.") creates ‘"G.S"’. This
is undocumented, and what are the precise circumstances is unknown (and might depend on the
version of Windows). Also avoid directory names with a trailing space.

Sys.chmod sets the file permissions of one or more files. It may not be supported on a system
(when a warning is issued). See the comments for dir.create for how modes are interpreted.
Changing mode on a symbolic link is unlikely to work (nor be necessary). For more details see your
OS’s documentation on the system call chmod, e.g. man 2 chmod (and not that on the command-
line utility of that name). Whether this changes the permission of a symbolic link or its target is

files2 229

OS-dependent (although to change the target is more common, and POSIX does not support modes
for symbolic links: BSD-based Unixes do, though).

Sys.umask sets the umask and returns the previous value: as a special case mode = NA just
returns the current value. It may not be supported (when a warning is issued and "0" is returned).
For more details see your OS’s documentation on the system call umask, e.g. man 2 umask.

How modes are handled depends on the file system, even on Unix-alikes (although their documen-
tation is often written assuming a POSIX file system). So treat documentation cautiously if you are
using, say, a FAT/FAT32 or network-mounted file system.

See files for how file paths with marked encodings are interpreted.

Value

dir.exists returns a logical vector of TRUE or FALSE values (without names).

dir.create and Sys.chmod return invisibly a logical vector indicating if the operation suc-
ceeded for each of the files attempted. Using a missing value for a path name will always
be regarded as a failure. dir.create indicates failure if the directory already exists. If
showWarnings = TRUE, dir.create will give a warning for an unexpected failure (e.g., not
for a missing value nor for an already existing component for recursive = TRUE).

Sys .umask returns the previous value of the uma sk, as a length-one object of class "octmode":
the visibility flag is off unless mode is NA.

See also the section in the help for file.exists on case-insensitive file systems for the inter-
pretation of path and paths.

Author(s)

Ross Thaka, Brian Ripley

See Also

file.info, file.exists, file.path, 1list.files, unlink, basename,
path.expand.

Examples

Not run:
Fix up maximal allowed permissions in a file tree

Sys.chmod (list.dirs("."), "777")
f <- list.files(".", all.files = TRUE, full.names = TRUE, recursive = TRUE)
Sys.chmod (f, (file.info(f)S$mode | "664"))

End (Not run)

230 find.package

find.package Find Packages

Description

Find the paths to one or more packages.

Usage

find.package (package, lib.loc = NULL, quiet = FALSE,
verbose = getOption ("verbose"))

path.package (package, quiet = FALSE)

packageNotFoundError (package, lib.loc, call = NULL)

Arguments
package character vector: the names of packages.
lib.loc a character vector describing the location of R library trees to search through, or
NULL. The default value of NULL corresponds to checking the loaded names-
pace, then all libraries currently known in . 1ibPaths ().
quiet logical. Should this not give warnings or an error if the package is not found?
verbose a logical. If TRUE, additional diagnostics are printed, notably when a package
is found more than once.
call call expression.
Details

find.package returns path to the locations where the given packages are found. If 1ib.loc
is NULL, then loaded namespaces are searched before the libraries. If a package is found more
than once, the first match is used. Unless quiet = TRUE a warning will be given about the named
packages which are not found, and an error if none are. If verbose is true, warnings about
packages found more than once are given. For a package to be returned it must contain a either a
‘Meta’ subdirectory or a ‘DESCRIPTION’ file containing a valid version field, but it need not
be installed (it could be a source package if 1ib.loc was set suitably).

find.package is not usually the right tool to find out if a package is available for use: the only
way to do that is to use require to try to load it. It need not be installed for the correct platform, it
might have a version requirement not met by the running version of R, there might be dependencies
which are not available,

path.package returns the paths from which the named packages were loaded, or if none were
named, for all currently attached packages. Unless quiet = TRUE it will warn if some of the
packages named are not attached, and given an error if none are.

packageNotFoundError creates an error condition object of class
packageNotFoundError for signaling errors. The condition object contains the fields
packageand 1ib.loc.

findInterval 231

Value

A character vector of paths of package directories.

See Also

path.expand and normalizePath for path standardization.

Examples

try (find.package ("knitr"))
will not give an error, maybe a warning about xallx locations it is found:
find.package ("kitty", quiet=TRUE, verbose=TRUE)

Find all .libPaths () entries a package is found:
findPkgAll <- function (pkg)
unlist (lapply (.libPaths (), function(lib)
find.package (pkg, lib, gquiet=TRUE, verbose=FALSE)))

findPkgAll ("MASS")
findPkgAll ("knitr")

findInterval Find Interval Numbers or Indices

Description

Given a vector of non-decreasing breakpoints in vec, find the interval containing each element of
x;ie.,if1 <- findInterval (x,v), foreachindex jinxv;; < z; < v;, 41 where vg := —o0,
UN+1 = +00, and N <— length (v). At the two boundaries, the returned index may differ by 1,
depending on the optional arguments rightmost.closedand all.inside.

Usage

findInterval (x, vec, rightmost.closed = FALSE, all.inside = FALSE,
left.open = FALSE)

Arguments

x numeric.

vec numeric, sorted (weakly) increasingly, of length N, say.

rightmost.closed
logical; if true, the rightmost interval, vec [N-1] .. vec[N] is treated as
closed, see below.

all.inside logical; if true, the returned indices are coerced into 1, ...,N-1, i.e., O is
mapped to 1 and N to N-1.

left.open logical; if true all the intervals are open at left and closed at right; in

the formulas below, < should be swapped with < (and > with >), and
rightmost.closed means ‘leftmost is closed’. This may be useful, e.g.,
in survival analysis computations.

232 findInterval

Details

The function findInterval finds the index of one vector x in another, vec, where the latter
must be non-decreasing. Where this is trivial, equivalent to apply (outer (x, vec, “>=7),
1, sum), as a matter of fact, the internal algorithm uses interval search ensuring O(n log N') com-
plexity where n <- length (x) (and N <- length (vec)). For (almost) sorted x, it will be
even faster, basically O(n).

This is the same computation as for the empirical distribution function, and indeed,
findInterval (t, sort (X)) is identical to nF,(t; X1,...,X,) where F,, is the empirical
distribution function of X4, ..., X,,.

When rightmost.closed = TRUE, the result for x [j] = vec [N] (= maxwec), is N — 1 as
for all other values in the last interval.

left.open = TRUE is occasionally useful, e.g., for survival data. For (anti-)symmetry reasons, it
is equivalent to using “mirrored” data, i.e., the following is always true:

identical (
findInterval (x, v, left.open= TRUE, ...)
N - findInterval (-x, -v[N:1], left.open=FALSE, ...))

where N <— length (vec) as above.

Value

vector of length 1ength (x) with values in 0 : N (and NA) where N <— length (vec), or values
coerced to 1: (N-1) if and only if all.inside = TRUE (equivalently coercing all x values
inside the intervals). Note that NAs are propagated from x, and Inf values are allowed in both x
and vec.

Author(s)

Martin Maechler

See Also

approx (x, method = "constant") which is a generalization of findInterval (), ecdf
for computing the empirical distribution function which is (up to a factor of n) also basically the
same as findInterval (.).

Examples

X <- 2:18
v <— c(5, 10, 15) # create two bins [5,10) and [10,15)
cbind(x, findInterval (x, Vv))

N <- 100

X <- sort (round(stats::rt (N, df = 2)
tt <= ¢ (=100, seg(-2, 2, length.out
it <= findInterval (tt, X)

tt[it < 1 | it >= N] # only first and last are outside range (X)

I4

2))
201), +100)

force 233

'left.open = TRUE' means "mirroring"
N <- length (v)
stopifnot (identical (
findInterval(x, v, left.open=TRUE) ,
N - findInterval (-x, -vI[N:1])))

force Force Evaluation of an Argument

Description

Forces the evaluation of a function argument.

Usage

force (x)

Arguments

X a formal argument of the enclosing function.

Details

force forces the evaluation of a formal argument. This can be useful if the argument will be
captured in a closure by the lexical scoping rules and will later be altered by an explicit assignment
or an implicit assignment in a loop or an apply function.

Note

This is semantic sugar: just evaluating the symbol will do the same thing (see the examples).

force does not force the evaluation of other promises. (It works by forcing the promise that is
created when the actual arguments of a call are matched to the formal arguments of a closure, the
mechanism which implements lazy evaluation.)

Examples

f <- function(y) function() vy

1f <- vector("list", 5)

for (i in seqg_along(lf)) 1f[[i]] <- £(i)
1f[[1]]1¢() # returns 5

g <- function(y) { force(y); function() y }
lg <- vector("list", 5)

for (i in seqg_along(lg)) lgl[[i]] <= g(i)
1g[[1]]1() # returns 1

This is identical to
g <- function(y) { y; function() vy }

234 Foreign

forceAndCall Call a function with Some Arguments Forced

Description

Call a function with a specified number of leading arguments forced before the call if the function
is a closure.

Usage
forceAndCall (n, FUN, ...)
Arguments
n number of leading arguments to force.
FUN function to call.
arguments to FUN.
Details
forceAndCall calls the function FUN with arguments specified in If the value of FUN

is a closure then the first n arguments to the function are evaluated (i.e. their delayed evaluation
promises are forced) before executing the function body. If the value of FUN is a primitive then the
call FUN (. . .) is evaluated in the usual way.

forceAndCall is intended to help defining higher order functions like apply to behave more
reasonably when the result returned by the function applied is a closure that captured its arguments.

See Also

force,promise, closure.

Foreign Foreign Function Interface

Description

Functions to make calls to compiled code that has been loaded into R.

Usage

.C(.NAME, ..., NAOK = FALSE, DUP = TRUE, PACKAGE, ENCODING)
.Fortran(.NAME, ..., NAOK FALSE, DUP TRUE, PACKAGE, ENCODING)

Foreign 235
Arguments

. NAME a character string giving the name of a C function or Fortran subroutine, or an
object of class "NativeSymbolInfo", "RegisteredNativeSymbol"
or "NativeSymbol" referring to such a name.
arguments to be passed to the foreign function. Up to 65.

NAOK if TRUE then any NA or NaN or Inf values in the arguments are passed on to
the foreign function. If FALSE, the presence of NA or NaN or Inf values is
regarded as an error.

PACKAGE if supplied, confine the search for a character string . NAME to the DLL given by

this argument (plus the conventional extension, ‘. so’, *.d11’,...).

This is intended to add safety for packages, which can ensure by using this
argument that no other package can override their external symbols, and also
speeds up the search (see ‘Note’).

DUP, ENCODING
For back-compatibility, accepted but ignored.

Details

These functions can be used to make calls to compiled C and Fortran code. Later interfaces are
.Call and .External which are more flexible and have better performance.

These functions are primitive, and . NAME is always matched to the first argument supplied (which
should not be named). The other named arguments follow . . . and so cannot be abbreviated. For
clarity, should avoid using names in the arguments passed to . .. that match or partially match
. NAME.

Value
A list similar to the . . . list of arguments passed in (including any names given to the arguments),
but reflecting any changes made by the C or Fortran code.

Argument types

The mapping of the types of R arguments to C or Fortran arguments is

R C Fortran

integer int * integer

numeric double * double precision
—or— float * real

complex Rcomplex * double complex
logical int * integer
character char ** [see below]

raw unsigned char * not allowed

list SEXP * not allowed
other SEXP not allowed

236 Foreign

Note: The C types corresponding to integer and logical are int, not long as in S. This
difference matters on most 64-bit platforms, where int is 32-bit and 1ong is 64-bit (but not on
64-bit Windows).

Note: The Fortran type corresponding to 1logical is integer, not logical: the difference
matters on some Fortran compilers.

Numeric vectors in R will be passed as type double * to C (and as double precision to
Fortran) unless the argument has attribute Csingle set to TRUE (use as.single or single).
This mechanism is only intended to be used to facilitate the interfacing of existing C and Fortran
code.

The C type Rcomplex is defined in ‘Complex.h’ as a typedef struct {double r;
double i; }. It may or may not be equivalent to the C99 double complex type, depending
on the compiler used.

Logical values are sent as 0 (FALSE), 1 (TRUE) or INT_MIN =-2147483648 (NA, but only if
NAOK = TRUE), and the compiled code should return one of these three values: however non-zero
values other than INT_MIN are mapped to TRUE.

Missing (NA) string values are passed to . C as the string "NA". As the C char type can represent
all possible bit patterns there appears to be no way to distinguish missing strings from the string
"NA". If this distinction is important use . Call.

Using a character string with . Fortran is deprecated and will give a warning. It passes the first
(only) character string of a character vector as a C character array to Fortran: that may be usable
as character*255 if its true length is passed separately. Only up to 255 characters of the string
are passed back. (How well this works, and even if it works at all, depends on the C and Fortran
compilers and the platform.)

Lists, functions or other R objects can (for historical reasons) be passed to .C, but the .Call
interface is much preferred. All inputs apart from atomic vectors should be regarded as read-only,
and all apart from vectors (including lists), functions and environments are now deprecated.

Fortran symbol names

All Fortran compilers known to be usable to compile R map symbol names to lower case, and so
does .Fortran.

Symbol names containing underscores are not valid Fortran 77 (although they are valid in Fortran
9x). Many Fortran 77 compilers will allow them but may translate them in a different way to names
not containing underscores. Such names will often work with .Fortran (since how they are
translated is detected when R is built and the information used by .Fortran), but portable code
should not use Fortran names containing underscores.

Use . Fortran with care for compiled Fortran 9x code: it may not work if the Fortran 9x compiler
used differs from the Fortran compiler used when configuring R, especially if the subroutine name
is not lower-case or includes an underscore. It is possible to use . C and do any necessary symbol-
name translation yourself.

Copying of arguments

Character vectors are copied before calling the compiled code and to collect the results. For other
atomic vectors the argument is copied before calling the compiled code if it is otherwise used in the
calling code.

formals 237

Non-atomic-vector objects are read-only to the C code and are never copied.

This behaviour can be changed by setting opt ions (CBoundsCheck = TRUE) . In that case raw,
logical, integer, double and complex vector arguments are copied both before and after calling the
compiled code. The first copy made is extended at each end by guard bytes, and on return it is
checked that these are unaltered. For . C, each element of a character vector uses guard bytes.

Note

If one of these functions is to be used frequently, do specify PACKAGE (to confine the search to a
single DLL) or pass . NAME as one of the native symbol objects. Searching for symbols can take a
long time, especially when many namespaces are loaded.

You may see PACKAGE = "base™" for symbols linked into R. Do not use this in your own code:
such symbols are not part of the API and may be changed without warning.

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

dyn.load, .Call.

The ‘Writing R Extensions’ manual.

formals Access to and Manipulation of the Formal Arguments

Description

Get or set the formal arguments of a function.

Usage
formals (fun = sys.function(sys.parent()), envir = parent.frame())
formals (fun, envir = environment (fun)) <- value
Arguments
fun a function, or see ‘Details’.
envir environment in which the function should be defined (or found via get ()

in the first case and when fun a character string).

value alist (orpairlist) of R expressions.

238 formals

Details

For the first form, fun can also be a character string naming the function to be manipulated, which
is searched for in envir, by default from the parent frame. If it is not specified, the function calling
formals is used.

Only closures have formals, not primitive functions.

Value

formals returns the formal argument list of the function specified, as a pairlist, or NULL for
a non-function or primitive.

The replacement form sets the formals of a function to the list/pairlist on the right hand side, and
(potentially) resets the environment of the function, dropping attributes.

See Also

formalArgs (from methods), a shortcut for names (formals (.)). args for a human-
readable version, alist to construct a typical formals value, see the examples.

The three parts of a (non-primitive) function are its formals, body, and environment.

Examples

require (stats)
formals (1m)

If you just want the names of the arguments, use formalArgs instead.
names (formals (1m))
methods:: formalArgs (1lm) # same

formals returns a pairlist. Arguments with no default have type symbol (aka name) .
str(formals (1lm))

formals returns NULL for primitive functions. Use it in combination with
args for this case.

is.primitive (T+7)
formals ("+7)
formals (args (T+7))

You can overwrite the formal arguments of a function (though this is
advanced, dangerous coding).

f <- function(x) a + b
formals (f) <- alist(a =, b = 3
f # function(a, b = 3) a + b
f(2) # result =5

)

format

239

format

Encode in a Common Format

Description

Format an R object for pretty printing.

Usage

format (x,

Default S3 method:
format (x, trim = FALSE, digits = NULL, nsmall = 0L,

Justify = c("left", "right", "centre", "none"),
width = NULL, na.encode = TRUE, scientific = NA,
big.mark =", big.interval = 3L,

small.mark = "", small.interval = 5L,
decimal.mark = getOption ("OutDec"),

zero.print = NULL, dropOtrailing = FALSE, ...)

S3 method for class 'data.frame'

format (x,

., Justify = "none")

S3 method for class 'factor'

format (x,

)

S3 method for class 'AsIs'
format (x, width = 12, ...)

Arguments

X

trim

digits

nsmall

Jjustify

any R object (conceptually); typically numeric.

logical; if FALSE, logical, numeric and complex values are right-justified to a
common width: if TRUE the leading blanks for justification are suppressed.

a positive integer indicating how many significant digits are to be used for nu-
meric and complex x. The default, NULL, uses getOption ("digits").
This is a suggestion: enough decimal places will be used so that the smallest (in
magnitude) number has this many significant digits, and also to satisfy nsmall.
(For more, notably the interpretation for complex numbers see signif.)

the minimum number of digits to the right of the decimal point in format-
ting real/complex numbers in non-scientific formats. Allowed values are 0 <=
nsmall <= 20.

should a character vector be left-justified (the default), right-justified, centred
or left alone. Can be abbreviated.

240 format

width default method: the minimum field width or NULL or O for no restriction.

AsIs method: the maximum field width for non-character objects. NULL cor-
responds to the default 12.

na.encode logical: should NA strings be encoded? Note this only applies to elements of
character vectors, not to numerical, complex nor logical NAs, which are always
encoded as "NA".

scientific Either a logical specifying whether elements of a real or complex vec-
tor should be encoded in scientific format, or an integer penalty (see
options ("scipen")). Missing values correspond to the current default
penalty.

further arguments passed to or from other methods.

blg mark, big.interval, small.mark, small.interval, decimal.mark, zero.print, dropOtra
used for prettying (longish) numerical and complex sequences. Passed to
prettyNum: that help page explains the details.

Details

format is a generic function. Apart from the methods described here there are methods for
dates (see format .Date), date-times (see format .POSIXct) and for other classes such as
format.octmode and format .dist.

format.data.frame formats the data frame column by column, applying the appropriate
method of format for each column. Methods for columns are often similar to as.character
but offer more control. Matrix and data-frame columns will be converted to separate columns in the
result, and character columns (normally all) will be given class "AsIs".

format . factor converts the factor to a character vector and then calls the default method (and
so justify applies).

format .AsIs deals with columns of complicated objects that have been extracted from a data
frame. Character objects and (atomic) matrices are passed to the default method (and so width
does not apply). Otherwise it calls t oSt ring to convert the object to character (if a vector or list,
element by element) and then right-justifies the result.

Justification for character vectors (and objects converted to character vectors by their methods)
is done on display width (see nchar), taking double-width characters and the rendering of spe-
cial characters (as escape sequences, including escaping backslash but not double quote: see
print.default) into account. Thus the width is as displayed by print (quote = FALSE)
and not as displayed by cat. Character strings are padded with blanks to the display width of the
widest. (If na.encode = FALSE missing character strings are not included in the width compu-
tations and are not encoded.)

Numeric vectors are encoded with the minimum number of decimal places needed to display all
the elements to at least the digits significant digits. However, if all the elements then have
trailing zeroes, the number of decimal places is reduced until at least one element has a non-zero
final digit; see also the argument documentation for big. », small. x etc, above. See the note in
print.default aboutdigits >= 16.

Raw vectors are converted to their 2-digit hexadecimal representation by as.character.
format.default (x) now provides a “minimal” string when 1sS4 (x) is true.

The internal code respects the option getOption ("OutDec") for the ‘decimal mark’, so if this
is set to something other than " . " then it takes precedence over argument decimal .mark.

format 241

Value

An object of similar structure to x containing character representations of the elements of the first
argument x in a common format, and in the current locale’s encoding.

For character, numeric, complex or factor x, dims and dimnames are preserved on matrices/arrays
and names on vectors: no other attributes are copied.

If x is a list, the result is a character vector obtained by applying format .default (x, ...) to
each element of the list (after un1isting elements which are themselves lists), and then collapsing
the result for each element with paste (collapse =", "). The defaults in this case are trim
= TRUE, justify = "none" since one does not usually want alignment in the collapsed strings.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

format . info indicates how an atomic vector would be formatted.

formatC, paste, as.character, sprintf, print, prettyNum, toString,
encodeString.

Examples

format (1:10)
format (1:10, trim = TRUE)

zz <- data.frame (" (row names)"= c("aaaaa", "b"), check.names = FALSE)
format (zz)
format (zz, justify = "left")

use of nsmall

format (13.7)

format (13.7, nsmall = 3)

format (c (6.0, 13.1), digits = 2)

format (c(6.0, 13.1), digits = 2, nsmall = 1)

use of scientific
format (2731-1)
format (2731-1, scientific = TRUE)

a list

z <— list(a = letters[1:3], b = (-pi+0i)~((-2:2)/2), ¢ = ¢(1,10,100,1000),
d = c("a", "longer", "character", "string"),
g = quote(a + b), e = expression(l+x))

can you find the "2" small differences?

(fl <- format (z, digits = 2))

(f2 <- format(z, digits = 2, justify = "left", trim = FALSE))

fl == f2 ## 2 FALSE, 4 TRUE

A "minimal" format () for S4 objects without their own format () method:

242 format.info

cc <- methods::getClassDef ("standardGeneric")

format (cc) ## "<S4 class >"
format.info format(.) Information
Description

Information is returned on how format (x, digits, nsmall) would be formatted.

Usage

format.info(x, digits = NULL, nsmall = 0)

Arguments
x an atomic vector; a potential argument of format (x, ...).
digits how many significant digits are to be used for numeric and complex x. The
default, NULL, uses getOption ("digits").
nsmall (see format (..., nsmall)).
Value

An integer vector of length 1, 3 or 6, say r.

For logical, integer and character vectors a single element, the width which would be used by
format if width = NULL.

For numeric vectors:

r(l] width (in characters) used by format (x)

r[2] number of digits after decimal point.

r[3] in 0:2; if >1, exponential representation would be used, with exponent length
of r[3]+1.

For a complex vector the first three elements refer to the real parts, and there are three further
elements corresponding to the imaginary parts.

See Also

format (notably about digits >=16), formatC.

format.pval 243

Examples

dd <- options("digits") ; options(digits = 7) #-- for the following

format.info (123) # 300
format.info (pi) # 8 60
format.info (1e8) # 5 0 1 - exponential "le+08"
format.info (1le222) # 6 0 2 - exponential "le+222"

x <= pi*x10%c(-10,-2,0:2,8,20)

names (x) <- formatC(x, width = 1, digits = 3, format = "g")
cbind (sapply (x, format))

t (sapply(x, format.info))

using at least 8 digits right of "."
t (sapply(x, format.info, nsmall = 8))

Reset old options:
options (dd)

format.pval Format P Values

Description

format .pval is intended for formatting p-values.

Usage

format.pval (pv, digits = max(l, getOption("digits") - 2),

eps = .MachineS$double.eps, na.form = "NA", ...)

Arguments

pv a numeric vector.

digits how many significant digits are to be used.

eps a numerical tolerance: see ‘Details’.

na.form character representation of NAs.

further arguments to be passed to format such as nsmall.

Details

format .pval is mainly an auxiliary function for print . summary . lm etc., and does separate
formatting for fixed, floating point and very small values; those less than eps are formatted as "<
[eps] " (where ‘[eps] stands for format (eps, digits)).

Value

A character vector.

244 formatC

Examples

format.pval (c(stats::runif (5), pi~-100, NA))
format.pval(c (0.1, 0.0001, le-27))

formatC Formatting Using C-style Formats

Description

formatC () formats numbers individually and flexibly using C style format specifications.

prettyNum() is wused for “prettifying” (possibly formatted) numbers, also in
format.default.

.format.zeros (x), an auxiliary function of prettyNum (), re-formats the zeros in a vector
x of formatted numbers.

Usage
formatC(x, digits = NULL, width = NULL,
format = NULL, flag = "", mode = NULL,
big.mark = "", big.interval = 3L,
small.mark = "", small.interval = 5L,
decimal.mark = getOption ("OutDec"),
preserve.width = "individual",
zero.print = NULL, replace.zero = TRUE,
dropOtrailing = FALSE)
prettyNum(x, big.mark = "", big.interval = 3L,
small.mark = "", small.interval = 5L,
decimal.mark = getOption ("OutDec"), input.d.mark = decimal.mark,
preserve.width = c("common", "individual", "none"),
zero.print = NULL, replace.zero = FALSE,
dropOtrailing = FALSE, is.cmplx = NA,
-)
.format.zeros (x, zero.print, nx = suppressWarnings(as.numeric(x)),

replace = FALSE, warn.non.fitting = TRUE)

Arguments
X an atomic numerical or character object, possibly complex only for
prettyNum (), typically a vector of real numbers. Any class is discarded,
with a warning.
digits the desired number of digits after the decimal point (format = "£") or signif-

icant digits (format = "g",="e" or="£fg").
Default: 2 for integer, 4 for real numbers. If less than 0, the C default of 6
digits is used. If specified as more than 50, 50 will be used with a warning

formatC

width

format

flag

mode

big.mark

big.interval

small.mark

245

unless format = "£" where it is limited to typically 324. (Not more than 15—
21 digits need be accurate, depending on the OS and compiler used. This limit
is just a precaution against segfaults in the underlying C runtime.)

the total field width; if both digits and width are unspecified, width de-
faults to 1, otherwise to digits + 1. width = 0 willuse width = digits,
width < 0 means left justify the number in this field (equivalent to flag =
"—"). If necessary, the result will have more characters than width. For char-
acter data this is interpreted in characters (not bytes nor display width).

equal to "d" (for integers), "£", "e", "E", "g", "G", "fg" (for reals), or
"s" (for strings). Default is "d" for integers, "g" for reals.

"f" gives numbers in the usual xxx.xxx format; "e" and "E" give
n.ddde+nn or n.dddE+nn (scientific format); "g" and "G" put x [1] into
scientific format only if it saves space to do so and drop trailing zeros and deci-
mal point - unless £1ag contains "#" which keeps trailing zeros for the "g",
"G" formats.

"fg" (our own hybrid format) uses fixed format as "£", but digits as the
minimum number of significant digits. This can lead to quite long result strings,
see examples below. Note that unlike signif this prints large numbers with
more significant digits than digits. Trailing zeros are dropped in this format,
unless f1ag contains " #".

for formatC, a character string giving a format modifier as in Kernighan and
Ritchie (1988, page 243) or the C+99 standard.

"0" pads leading zeros;

"—" does left adjustment,

"+" ensures a sign in all cases, i.e., "+" for positive numbers ,

" v if the first character is not a sign, the space character " " will be used
instead.

"#" specifies “an alternative output form”, specifically depending on format.

"7 " onsome platform—locale combination, activates “thousands’ grouping” for
decimal conversion,

"I" in some versions of ‘glibc’ allow for integer conversion to use the lo-
cale’s alternative output digits, if any.

There can be more than one of these flags, in any order. Other characters used
to have no effect for character formatting, but signal an error since R 3.4.0.

"double" (or "real"), "integer" or "character". Default: Deter-
mined from the storage mode of x.

character; if not empty used as mark between every big.interval decimals
before (hence big) the decimal point.

see big.mark above; defaults to 3.

character; if not empty used as mark between every small.interval deci-
mals after (hence small) the decimal point.

small.interval

decimal.mark

see small.mark above; defaults to 5.

the character to be used to indicate the numeric decimal point.

246 formatC

input.d.mark if x is character, the character known to have been used as the numeric
decimal point in x.

preserve.width
string specifying if the string widths should be preserved where possible in those
cases where marks (big.mark or small.mark) are added. "common™", the
default, corresponds to format-like behavior whereas "individual™ is the
default in formatC (). Value can be abbreviated.

zero.print logical, character string or NULL specifying if and how zeros should be format-
ted specially. Useful for pretty printing ‘sparse’ objects.

replace.zero, replace
logical; if zero.print is a character string, indicates if the exact zero entries
in x should be simply replaced by zero.print. Otherwise, depending on
the widths of the respective strings, the (formatted) zeroes are partly replaced
by zero.print and then padded with " " to the right were applicable. In
that case (false replace([.zero]), if the zero.print string does not fit, a
warning is produced (if warn.non. fitting is true).
This works via prettyNum(), which calls .format.zeros (*,
replace=replace.zero) three times in this case, see the ‘Details’.

warn.non.fitting
logical; if it is true, replace[.zero] is false and the zero.print string
does not fit, a warning is signalled.

dropOtrailing
logical, indicating if trailing zeros, i.e., "0" after the decimal mark, should be
removed; also drops "e+00" in exponential formats. This is simply passed to
prettyNum (), see the ‘Details’.

is.cmplx optional logical, to be used when x is "character" to indicate if it stems
from complex vector or not. By default (NA), x is checked to ‘look like’
complex.

arguments passed to format.

nx numeric vector of the same length as x, typically the numbers of which the
character vector x is the pre-format.

Details

For numbers, formatC() calls prettyNum() when needed which itself calls
.format.zeros (x, replace=replace.zero). (“when needed”: when zero.print is
not NULL, dropOtrailing is true, or one of big.mark, small.mark, or decimal .mark
is not at default.)

If you set format it overrides the setting of mode, so formatC(123.45, mode =
"double", format ="d") gives 123.

The rendering of scientific format is platform-dependent: some systems use n.ddde+nnn or
n.dddenn rather than n.ddde+nn.

formatC does not necessarily align the numbers on the decimal point, so formatC(c(6.11,
13.1), digits =2, format ="£fg") givesc("6.1", " 13"). If you want common for-
matting for several numbers, use format.

formatC 247

prettyNum is the utility function for prettifying x. x can be complex (or
format (<complex>)), here. If x is not a character, format (x[i], ...) is applied
to each element, and then it is left unchanged if all the other arguments are at their defaults. Use the
input.d.mark argument for prettyNum (x) when x is a character vector not resulting
from something like format (<number>) with a period as decimal mark.

Because gsub is used to insert the big.mark and small.mark, special characters need escap-
ing. In particular, to insert a single backslash, use "\\\\".

The C doubles used for R numerical vectors have signed zeros, which formatC may output as -0,
-0.000....

There is a warning if big.mark and decimal .mark are the same: that would be confusing to
those reading the output.

Value

A character object of same size and attributes as x (after discarding any class), in the current locale’s
encoding.

Unlike format, each number is formatted individually. Looping over each element of x, the C
function sprintf (.. .) is called for numeric inputs (inside the C function str_signif).

formatC: for character x, do simple (left or right) padding with white space.

Note

The default for decimal.mark in formatC () was changed in R 3.2.0: for use within
print methods in packages which might be used with earlier versions: use decimal .mark
=getOption ("OutDec") explicitly.

Author(s)

formatC was originally written by Bill Dunlap for S-PLUS, later much improved by Martin
Maechler.

It was first adapted for R by Friedrich Leisch and since much improved by the R Core team.

References

Kernighan, B. W. and Ritchie, D. M. (1988) The C Programming Language. Second edition. Pren-
tice Hall.

See Also

format.

sprintf for more general C-like formatting.

Examples

xx <— pi % 10" (=-5:4)

cbind (format (xx, digits 4), formatC (xx))

cbind (formatC(xx, width = 9, flag = "-"))

cbind (formatC (xx, digits = 5, width = 8, format = "f", flag = "0"))

248 formatC

cbind (format (xx, digits = 4), formatC(xx, digits = 4, format = "fg"))

f <- (=2:4); £ <- fxlo6"f

Default ("g") format:

formatC (pixf)

Fixed ("f") format, more than one flag ('width' partly "enlarged"):
cbind (formatC(pixf, digits = 3, width=9, format = "f", flag = "0+"))

formatC (c("a", "Abc", "no way"), width = -7) # <=> flag = "-"
formatC(c((-1:1)/0,c(1,100)*pi), width = 8, digits = 1)

note that some of the results here depend on the implementation
of long-double arithmetic, which is platform-specific.
xx <- c(le-12,-3.98765e-10,1.45645e-69,1le-70,pix1le37,3.44e4)

#4# 1 2 3 4 5 6

formatC (xx)

formatC (xx, format = "fg") # special "fixed" format.
formatC(xx[1:4], format = "f", digits = 75) #>> even longer strings
formatC(c(3.24, 2.3e-6), format = "f", digits = 11)

formatC(c(3.24, 2.3e-6), format = "f", digits = 11, dropOtrailing = TRUE)

r <- c("76491283764.97430", "29.12345678901", "-7.1234", "-100.1","1123")
American:

prettyNum(r, big.mark = ",")

Some Europeans:

prettyNum(r, big.mark = "'", decimal.mark = ",")

(dd <- sapply(1:10, function(i) paste((9:0)[1l:i], collapse = "")))
prettyNum(dd, big.mark = "'")

examples of 'small.mark'

PN <- stats::pnorm(l:7, lower.tail = FALSE)

cbind (format (pN, small.mark = " ", digits = 15))

cbind (formatC (pN, small.mark = " ", digits = 17, format = "f"))

cbind(ff <- format (1.2345 + 107(0:5), width = 11, big.mark = "'"))
all with same width (one more than the specified minimum)

individual formatting to common width:

fc <- formatC(1.234 + 107(0:8), format = "fg", width = 11, big.mark = "'")
cbind (fc)

Powers of two, stored exactly, formatted individually:

pow.2 <- formatC(2"-(1:32), digits = 24, width = 1, format = "fg")

nicely printed (the last line showing 5732 exactly):
noquote (cbind (pow.2))

complex numbers:

r <- 10.0000001; rv <—- (r/10)"(1:10)

(zv <= (rv + lix*rv))

op <- options(digits = 7) ## (system default)
(pnv <— prettyNum(zv))

stopifnot (pnv == "1+1i", pnv == format (zv),

formatDL 249

pnv == prettyNum(zv, dropOtrailing = TRUE))
more digits change the picture:
options (digits = 8)
head (fv <- format (zv), 3)
prettyNum (fv)
prettyNum(fv, dropOtrailing = TRUE) # a bit nicer
options (op)

The ' flag
doLC <- FALSE # <= R warns, so change to TRUE manually if you want see the effect
if (doLC) |

0ldLC <- Sys.getlocale ("LC_NUMERIC")
Sys.setlocale ("LC_NUMERIC", "de_CH.UTF-8") }
formatC(1.234 + 107(0:4), format = "fg", width = 11, flag = "'")
-——> ... " iroo1" " 10'oo1" on supported platforms
if (doLC) ## revert, typically to "C"
Sys.setlocale ("LC_NUMERIC", o0ldLC)

formatDL Format Description Lists

Description

Format vectors of items and their descriptions as 2-column tables or LaTeX-style description lists.

Usage

formatDL (x, y, style = c("table", "list"),
width = 0.9 % getOption("width"), indent = NULL)

Arguments

X a vector giving the items to be described, or a list of length 2 or a matrix with 2
columns giving both items and descriptions.

y a vector of the same length as x with the corresponding descriptions. Only used
if x does not already give the descriptions.

style a character string specifying the rendering style of the description information.
Can be abbreviated. If "table", a two-column table with items and descrip-
tions as columns is produced (similar to Texinfo’s @table environment). If
"list", a LaTeX-style tagged description list is obtained.

width a positive integer giving the target column for wrapping lines in the output.

indent a positive integer specifying the indentation of the second column in table style,

and the indentation of continuation lines in list style. Must not be greater than
width/2, and defaults to width/3 for table style and width/ 9 for list style.

250 function

Details

After extracting the vectors of items and corresponding descriptions from the arguments, both are
coerced to character vectors.

In table style, items with more than indent - 3 characters are displayed on a line of their own.

Value

a character vector with the formatted entries.

Examples

Provide a nice summary of the numerical characteristics of the

machine R is running on:

writeLines (formatDL (unlist (.Machine)))

Inspect Sys.getenv () results in "list" style (by default, these are
printed in "table" style):

writelLines (formatDL (Sys.getenv (), style = "list"))
function Function Definition
Description

These functions provide the base mechanisms for defining new functions in the R language.

Usage

function(arglist) expr
\ (arglist) expr
return (value)

Arguments
arglist Empty or one or more name or name=expression terms.
expr An expression.
value An expression.

Details

The names in an argument list can be back-quoted non-standard names (see ‘backquote’).

If value is missing, NULL is returned. If it is a single expression, the value of the evaluated
expression is returned. (The expression is evaluated as soon as return is called, in the evaluation
frame of the function and before any on . exit expression is evaluated.)

If the end of a function is reached without calling return, the value of the last evaluated expression
is returned.

The shorthand form \ (x) x + 1 is parsed as function (x) x + 1. It may be helpful in making
code containing simple function expressions more readable.

funprog 251

Technical details
This type of function is not the only type in R: they are called closures (a name with origins in
LISP) to distinguish them from primitive functions.

A closure has three components, its formals (its argument list), its body (expr in the ‘Usage’
section) and its environment which provides the enclosure of the evaluation frame when the
closure is used.

There is an optional further component if the closure has been byte-compiled. This is not normally
user-visible, but is indicated when functions are printed.

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

args.
formals, body and environment for accessing the component parts of a function.

debug for debugging; using invisible inside return (.) for returning invisibly.

Examples

norm <- function (x) sqgrt (x%$*%$x)
norm(1:4)

An anonymous function:
(function(x, y){ z <= x*"2 + y"2; x+ty+z }) (0:7, 1)

funprog Common Higher-Order Functions in Functional Programming Lan-
guages

Description

Reduce uses a binary function to successively combine the elements of a given vector and a pos-
sibly given initial value. Filter extracts the elements of a vector for which a predicate (logical)
function gives true. Find and Position give the first or last such element and its position in
the vector, respectively. Map applies a function to the corresponding elements of given vectors.
Negate creates the negation of a given function.

Usage

Reduce (f, x, init, right = FALSE, accumulate = FALSE)
Filter (f, x)

Find(f, x, right = FALSE, nomatch = NULL)

Map (£, ...)

Negate (f)

Position(f, x, right = FALSE, nomatch = NA_integer_)

252 funprog

Arguments
f a function of the appropriate arity (binary for Reduce, unary for Filter,
Find and Position, k-ary for Map if this is called with k& arguments). An
arbitrary predicate function for Negate.
X a vector.
init an R object of the same kind as the elements of x.
right a logical indicating whether to proceed from left to right (default) or from right

to left.

accumulate a logical indicating whether the successive reduce combinations should be ac-
cumulated. By default, only the final combination is used.

nomatch the value to be returned in the case when “no match” (no element satisfying the
predicate) is found.

vectors.

Details

If init is given, Reduce logically adds it to the start (when proceeding left to right) or the end
of x, respectively. If this possibly augmented vector v has n > 1 elements, Reduce successively
applies f to the elements of v from left to right or right to left, respectively. Le., a left reduce
computes I = f(v1,v2), la = f(l1,v3), etc., and returns I, = f(l,—2,vy), and a right reduce
does r,—1 = f(vp—1,Vn), Tnea = f(vp_2,7,—1) and returns y = f(vy,7r2). (E.g., if v is the
sequence (2, 3, 4) and f is division, left and right reduce give (2/3)/4 = 1/6 and 2/(3/4) = 8/3,
respectively.) If v has only a single element, this is returned; if there are no elements, NULL is
returned. Thus, it is ensured that £ is always called with 2 arguments.

The current implementation is non-recursive to ensure stability and scalability.

Reduce is patterned after Common Lisp’s reduce. A reduce is also known as a fold (e.g., in
Haskell) or an accumulate (e.g., in the C++ Standard Template Library). The accumulative version
corresponds to Haskell’s scan functions.

Filter applies the unary predicate function f to each element of %, coercing to logical if neces-
sary, and returns the subset of x for which this gives true. Note that possible NA values are currently
always taken as false; control over NA handling may be added in the future. Filter corresponds
to filter in Haskell or remove—-1if—-not in Common Lisp.

Find and Position are patterned after Common Lisp’s find-if and position-if, re-
spectively. If there is an element for which the predicate function gives true, then the first or last
such element or its position is returned depending on whether right is false (default) or true, re-
spectively. If there is no such element, the value specified by nomatch is returned. The current
implementation is not optimized for performance.

Map is a simple wrapper to mapply which does not attempt to simplify the result, similar to
Common Lisp’s mapcar (with arguments being recycled, however). Future versions may allow
some control of the result type.

Negate corresponds to Common Lisp’s complement. Given a (predicate) function f, it creates
a function which returns the logical negation of what f returns.

funprog 253

See Also

Function clusterMap and mcmapply (not Windows) in package parallel provide parallel ver-
sions of Map.

Examples

A general-purpose adder:

add <- function(x) Reduce("+, x)

add(list (1, 2, 3))

Like sum (), but can also used for adding matrices etc., as it will
use the appropriate '+' method in each reduction step.

More generally, many generics meant to work on arbitrarily many

arguments can be defined via reduction:

FOO <- function(...) Reduce (FO02, list(...))

FOO2 <- function(x, y) UseMethod ("FOO2")

FOO() methods can then be provided via FOO02 () methods.

A general-purpose cumulative adder:
cadd <- function (x) Reduce(*+°, x, accumulate = TRUE)
cadd (seqg_len (7))

A simple function to compute continued fractions:

cfrac <- function(x) Reduce (function(u, v) u + 1 / v, x, right = TRUE)
Continued fraction approximation for pi:

cfrac(c(3, 7, 15, 1, 292))

Continued fraction approximation for Euler's number (e):

cfrac(c(2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8))

Map () now recycles similar to basic Ops:
Map (*+7, 1, 1 : 3) ; 1+ 1:3
Map (*+°, numeric(), 1 : 3) ; numeric() + 1:3

Iterative function application:
Funcall <- function(f, ...) f(...)
Compute log (exp (acos (cos(0))))
Reduce (Funcall, list(log, exp, acos, cos), 0, right = TRUE)
n-fold iterate of a function, functional style:
Iterate <- function(f, n = 1)
function (x) Reduce (Funcall, rep.int(list(f), n), x, right = TRUE)
Continued fraction approximation to the golden ratio:
Iterate (function(x) 1 + 1 / x, 30) (1)
which is the same as
cfrac(rep.int (1, 31))
Computing square root approximations for x as fixed points of the
function t |-> (t + x / t) / 2, as a function of the initial value:
asqgrt <- function(x, n) Iterate(function(t) (t + x / t) / 2, n)
asqrt (2, 30) (10) # Starting from a positive value => +sqrt (2)
asqrt (2, 30) (-1) # Starting from a negative value => -sqrt(2)

A list of all functions in the base environment:
funs <- Filter(is.function, sapply(ls(baseenv()), get, baseenv()))
Functions in base with more than 10 arguments:

254 gc

names (Filter (function(f) length(formals(f)) > 10, funs))

Number of functions in base with a '...' argument:
length(Filter (function (f)
any (names (formals (f)) %in% "..."),
funs))

Find all objects in the base environment which are *not* functions:

Filter (Negate(is.function), sapply (ls (baseenv()), get, baseenv()))
gc Garbage Collection
Description

A call of gc causes a garbage collection to take place. gcinfo sets a flag so that automatic
collection is either silent (verbose = FALSE) or prints memory usage statistics (verbose =
TRUE).

Usage

gc (verbose = getOption ("verbose"), reset = FALSE, full = TRUE)
gcinfo (verbose)

Arguments
verbose logical; if TRUE, the garbage collection prints statistics about cons cells and the
space allocated for vectors.
reset logical; if TRUE the values for maximum space used are reset to the current
values.
full logical; if TRUE a full collection is performed; otherwise only more recently
allocated objects may be collected.
Details

A call of gc causes a garbage collection to take place. This will also take place automatically
without user intervention, and the primary purpose of calling gc is for the report on memory usage.
For an accurate report full = TRUE should be used.

It can be useful to call gc after a large object has been removed, as this may prompt R to return
memory to the operating system.

R allocates space for vectors in multiples of 8 bytes: hence the report of "Vcells™, a relic of an
earlier allocator (that used a vector heap).

When gcinfo (TRUE) is in force, messages are sent to the message connection at each garbage
collection of the form

Garbage collection 12 = 10+0+2 (level 0)
6.4 Mbytes of cons cells used (58%)
2.0 Mbytes of vectors used (32%)

gc.time 255

Here the last two lines give the current memory usage rounded up to the next 0.1Mb and as a
percentage of the current trigger value. The first line gives a breakdown of the number of garbage
collections at various levels (for an explanation see the ‘R Internals’ manual).

Value

gc returns a matrix with rows "Ncells" (cons cells), usually 28 bytes each on 32-bit systems and
56 bytes on 64-bit systems, and "Vcells" (vector cells, 8 bytes each), and columns "used" and
"gc trigger", each also interpreted in megabytes (rounded up to the next 0.1Mb).

If maxima have been set for either "Ncells" or "Vcells", a fifth column is printed giving the
current limits in Mb (with NA denoting no limit).

The final two columns show the maximum space used since the last call to gc (reset = TRUE)
(or since R started).

gcinfo returns the previous value of the flag.

See Also

The ‘R Internals’ manual.
Memory on R’s memory management, and gctorture if you are an R developer.
gc.time () reports time used for garbage collection.

reg.finalizer for actions to happen at garbage collection.

Examples
gc() #- do it now
gcinfo (TRUE) #-- in the future, show when R does it
vvvvv use larger to *showx something
x <- integer (100000); for(i in 1:18) x <- c(x, 1)
gcinfo (verbose = FALSE) #-- don't show it anymore
gc (TRUE)

gc (reset = TRUE)

gc.time Report Time Spent in Garbage Collection

Description
This function reports the time spent in garbage collection so far in the R session while GC timing
was enabled.

Usage

gc.time (on = TRUE)

256 gctorture

Arguments

on logical; if TRUE, GC timing is enabled.

Details

Due to timer resolution this may be under-estimate.

This is a primitive.

Value

A numerical vector of length 5 giving the user CPU time, the system CPU time, the elapsed time and
children’s user and system CPU times (normally both zero), of time spent doing garbage collection
whilst GC timing was enabled.

Times of child processes are not available on Windows and will always be given as NA.

See Also

gc, proc.time for the timings for the session.

Examples

gc.time ()

gctorture Torture Garbage Collector

Description
Provokes garbage collection on (nearly) every memory allocation. Intended to ferret out memory
protection bugs. Also makes R run very slowly, unfortunately.

Usage

gctorture (on = TRUE)
gctorture? (step, wait = step, inhibit_release = FALSE)

Arguments
on logical; turning it on/off.
step integer; run GC every step allocations; step = 0 turns the GC torture off.
wait integer; number of allocations to wait before starting GC torture.

inhibit_release
logical; do not release free objects for re-use: use with caution.

get 257

Details

Calling gctorture (TRUE) instructs the memory manager to force a full GC on every allocation.
gctorture?2 provides a more refined interface that allows the start of the GC torture to be deferred
and also gives the option of running a GC only every step allocations.

The third argument to gct orture? is only used if R has been configured with a strict write barrier
enabled. When this is the case all garbage collections are full collections, and the memory manager
marks free nodes and enables checks in many situations that signal an error when a free node is
used. This can help greatly in isolating unprotected values in C code. It does not detect the case
where a node becomes free and is reallocated. The inhibit_release argument can be used to
prevent such reallocation. This will cause memory to grow and should be used with caution and in
conjunction with operating system facilities to monitor and limit process memory use.

gctorture2 can also be invoked via environment variables at the start of the R session.
R_GCTORTURE corresponds to the step argument, R_GCTORTURE_WAIT to wait, and
R_GCTORTURE_INHIBIT_RELEASE to inhibit_release.

Value

Previous value of first argument.

Author(s)
Peter Dalgaard and Luke Tierney

get Return the Value of a Named Object

Description

Search by name for an object (get) or zero or more objects (mget).

Usage

get (x, pos = -1, envir = as.environment (pos), mode = "any",
inherits = TRUE)

mget (x, envir as.environment (-1), mode = "any", ifnotfound,
inherits = FALSE)

dynGet (x, ifnotfound = , minframe = 1L, inherits = FALSE)

Arguments
X For get, an object name (given as a character string or a symbol).
For mget, a character vector of object names.
pos, envir where to look for the object (see ‘Details’); if omitted search as if the name of

the object appeared unquoted in an expression.

258 get

mode the mode or type of object sought: see the ‘Details’ section.
inherits should the enclosing frames of the environment be searched?

ifnotfound Formget, a 11ist of values to be used if the item is not found: it will be coerced
to a list if necessary.
For dynGet any R object, e.g., acall to stop ().

minframe integer specifying the minimal frame number to look into.

Details

The pos argument can specify the environment in which to look for the object in any of several
ways: as a positive integer (the position in the search list); as the character string name of an
element in the search list; or as an environment (including using sys.frame to access the
currently active function calls). The default of —1 indicates the current environment of the call to
get. The envir argument is an alternative way to specify an environment.

These functions look to see if each of the name(s) x have a value bound to it in the specified environ-
ment. If inherits is TRUE and a value is not found for x in the specified environment, the enclos-
ing frames of the environment are searched until the name x is encountered. See environment
and the ‘R Language Definition’ manual for details about the structure of environments and their
enclosures.

If mode is specified then only objects of that type are sought. mode here is a mixture of the mean-
ings of typeof andmode: "function" covers primitive functions and operators, "numeric",
"integer" and "double™" all refer to any numeric type, "symbol" and "name" are equiva-
lent but "1language" must be used (and not "call" or " (").

For mget, the values of mode and ifnotfound can be either the same length as x or of length
1. The argument ifnotfound must be a list containing either the value to use if the requested
item is not found or a function of one argument which will be called if the item is not found, with
argument the name of the item being requested.

dynGet () is somewhat experimental and to be used inside another function. It looks for an object
in the callers, i.e., the sys. frame () s of the function. Use with caution.
Value

For get, the object found. If no object is found an error results.

For mget, a named list of objects (found or specified via 1 fnot found).

Note

The reverse (or “inverse”) of a <— get (nam) is assign (nam, a), assigning a to name nam.

inherits = TRUE is the default for get in R but not for S where it had a different meaning.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

getDLLRegisteredRoutines 259

See Also

exists for checking whether an object exists; get 0 for an efficient way of both checking exis-
tence and getting an object.

assign, the inverse of get (), see above.

Use getAnywhere for searching for an object anywhere, including in other namespaces, and
getFromNamespace to find an object in a specific namespace.

Examples

get ("%o%")

test mget

el <- new.env ()

mget (letters,

el, ifnotfound = as.list (LETTERS))

getDLLRegisteredRoutines

Reflectance Information for C/Fortran routines in a DLL

Description

This function allows us to query the set of routines in a DLL that are registered with R to enhance
dynamic lookup, error handling when calling native routines, and potentially security in the future.
This function provides a description of each of the registered routines in the DLL for the different
interfaces, i.e. .C, .Call, .Fortranand .External.

Usage

getDLLRegisteredRoutines (dll, addNames = TRUE)

Arguments

dll

addNames

a character string or DLLInfo object. The character string specifies the
file name of the DLL of interest, and is given without the file name ex-
tension (e.g., the ‘.d11’ or ‘.so’) and with no directory/path informa-
tion. So a file ‘MyPackage/libs/MyPackage.so’ would be specified as
‘MyPackage’.

The DLLInfo objects can be obtained directly in calls to dyn.load and
library.dynam, or can be found after the DLL has been loaded using
getLoadedDLLs, which returns a list of DLLInfo objects (index-able by
DLL file name).

The DLLInfo approach avoids any ambiguities related to two DLLs having the
same name but corresponding to files in different directories.

a logical value. If this is TRUE, the elements of the returned lists are named
using the names of the routines (as seen by R via registration or raw name).
If FALSE, these names are not computed and assigned to the lists. As a re-
sult, the call should be quicker. The name information is also available in the
NativeSymbolInfo objects in the lists.

260 getDLLRegisteredRoutines

Details

This takes the registration information after it has been registered and processed by the R internals.
In other words, it uses the extended information.

There is print methods for the class, which prints only the types which have registered routines.

Value

A list of class "DLLRegisteredRoutines" with four elements corresponding to the routines
registered for the .C, .Call, .Fortran and .External interfaces. Each is a list (of class
"NativeRoutineList") with as many elements as there were routines registered for that in-
terface.

Each element identifies a routine and is an object of class "NativeSymbolInfo". An object of
this class has the following fields:

name the registered name of the routine (not necessarily the name in the C code).

address the memory address of the routine as resolved in the loaded DLL. This may be
NULL if the symbol has not yet been resolved.

dll an object of class DLLInfo describing the DLL. This is same for all elements
returned.

numParameters
the number of arguments the native routine is to be called with.

Author(s)

Duncan Temple Lang <duncan@wald.ucdavis.edu>

References

‘Writing R Extensions’ manual for symbol registration.

Duncan Temple Lang (2001). “In Search of C/C++ & FORTRAN Routines”. R News, 1(3), 20-23.
https://www.r-project.org/doc/Rnews/Rnews_2001-3.pdf.

See Also

getLoadedDLLs, getNativeSymbolInfo for information on the entry points listed.

Examples

dlls <- getLoadedDLLs ()
getDLLRegisteredRoutines (dlls[["base"]])

getDLLRegisteredRoutines ("stats")

https://www.r-project.org/doc/Rnews/Rnews_2001-3.pdf

getLoadedDLLs 261

getLoadedDLLs Get DLLs Loaded in Current Session

Description
This function provides a way to get a list of all the DLLs (see dyn . 1oad) that are currently loaded
in the R session.

Usage

getLoadedDLLs ()

Details

This queries the internal table that manages the DLLs.

Value

Anobject of class "DLLInfoList" whichisa 11ist with an element corresponding to each DLL
that is currently loaded in the session. Each element is an object of class "DLLInfo" which has
the following entries.

name the abbreviated name.
path the fully qualified name of the loaded DLL.
dynamicLookup

a logical value indicating whether R uses only the registration information to
resolve symbols or whether it searches the entire symbol table of the DLL.

handle a reference to the C-level data structure that provides access to the contents of
the DLL. This is an object of class "DLLHandle".

Note that the class DLLInfo has a method for $ which can be used to resolve native symbols
within that DLL. Therefore, one must access the R-level elements described above using [[,
e.g.x[["name"]] orx[["handle"]].

Note

We are starting to use the handle elements in the DLL object to resolve symbols more directly in
R.

Author(s)

Duncan Temple Lang <duncan@wald.ucdavis.edu>.

See Also

getDLLRegisteredRoutines, getNativeSymbolInfo

262 getNativeSymbollnfo

Examples

getLoadedDLLs ()

utils::tail (getLoadedDLLs (), 2) # the last 2 loaded ones, still a DLLInfolList

getNativeSymbolInfo
Obtain a Description of one or more Native (C/Fortran) Symbols

Description

This finds and returns a description of one or more dynamically loaded or ‘exported’ built-in native
symbols. For each name, it returns information about the name of the symbol, the library in which
it is located and, if available, the number of arguments it expects and by which interface it should
be called (i.e .Call, .C, .Fortran,or .External). Additionally, it returns the address of the
symbol and this can be passed to other C routines. Specifically, this provides a way to explicitly
share symbols between different dynamically loaded package libraries. Also, it provides a way to
query where symbols were resolved, and aids diagnosing strange behavior associated with dynamic
resolution.

Usage

getNativeSymbolInfo (name, PACKAGE, unlist = TRUE,
withRegistrationInfo = FALSE)

Arguments
name the name(s) of the native symbol(s).
PACKAGE an optional argument that specifies to which DLL to restrict the search for this
symbol. If this is "base™", we search in the R executable itself.
unlist a logical value which controls how the result is returned if the function is called

with the name of a single symbol. If unlist is TRUE and the number of sym-
bol names in name is one, then the NativeSymbolInfo object is returned.
If it is FALSE, then a list of NativeSymbolInfo objects is returned. This
is ignored if the number of symbols passed in name is more than one. To be
compatible with earlier versions of this function, this defaults to TRUE.
withRegistrationInfo

a logical value indicating whether, if TRUE, to return information that was reg-
istered with R about the symbol and its parameter types if such information is
available, or if FALSE to return just the address of the symbol.

Details

This uses the same mechanism for resolving symbols as is used in all the native interfaces (.Call,
etc.). If the symbol has been explicitly registered by the DLL in which it is contained, information
about the number of arguments and the interface by which it should be called will be returned.
Otherwise, a generic native symbol object is returned.

getNativeSymbollnfo 263

Value

Generally, a list of NativeSymbolInfo elements whose elements can be indexed by the ele-
ments of name in the call. Each NativeSymbolInfo object is a list containing the following
elements:

name the name of the symbol, as given by the name argument.

address if withRegistrationInfo is FALSE, this is the native memory address
of the symbol which can be used to invoke the routine, and also to com-
pare with other symbol addresses. This is an external pointer object and of
class NativeSymbol. If withRegistrationInfo is TRUE and regis-
tration information is available for the symbol, then this is an object of class
RegisteredNativeSymbol and is a reference to an internal data type that
has access to the routine pointer and registration information. This too can be
usedincallsto .Call, .C, .Fortranand .External.

dil a list containing 3 elements:

name the short form of the library name which can be used as the value of the
PACKAGE argument in the different native interface functions.

path the fully qualified name of the DLL.

dynamicLookup alogical value indicating whether dynamic resolution is used
when looking for symbols in this library, or only registered routines can be
located.

If the routine was explicitly registered by the dynamically loaded library, the list contains a fourth
field

numParameters
the number of arguments that should be passed in a call to this routine.

Additionally, the list will have an additional class, being CRoutine, CallRoutine,
FortranRoutine or ExternalRoutine corresponding to the R interface by which it should
be invoked.

If any of the symbols is not found, an error is raised.

If name contains only one symbol name and unlist is TRUE, then the single
NativeSymbolInfo is returned rather than the list containing that one element.

Note

The third element of the NativeSymbolInfo objects was renamed from package to d11 in
R version 3.6.0, for consistency with the names of the NativeSymbolInfo objects returned by
getDLLRegisteredRoutines ().

Note

One motivation for accessing this reflectance information is to be able to pass native routines to
C routines as function pointers in C. This allows us to treat native routines and R functions in a
similar manner, such as when passing an R function to C code that makes callbacks to that function
at different points in its computation (e.g., n1s). Additionally, we can resolve the symbol just once
and avoid resolving it repeatedly or using the internal cache.

264 gettext

Author(s)

Duncan Temple Lang

References

For information about registering native routines, see “In Search of C/C++ & FORTRAN Rou-
tines”, R-News, volume 1, number 3, 2001, p20-23 (https://www.r—-project.org/doc/
Rnews/Rnews_2001-3.pdf).

See Also
getDLLRegisteredRoutines, is.loaded, .C, .Fortran, .External, .Call,
dyn.load.
gettext Translate Text Messages
Description

Translation of text messages typically from calls to stop (), warning (), or message () hap-
pens when Native Language Support (NLS) was enabled in this build of R as it is almost always,
see also the bindtextdomain () example.

The functions documented here are the low level building blocks used explicitly or implicitly in
almost all such message producing calls and they attempt to translate character vectors or set where
the translations are to be found.

Usage

gettext (..., domain = NULL, trim = TRUE)

ngettext (n, msgl, msg2, domain = NULL)

bindtextdomain (domain, dirname NULL)

Sys.setLanguage (lang, unset = "en")

Arguments
One or more character vectors.
trim logical indicating if the white space trimming in gettext () should happen.
trim=FALSE may be needed for compiled code (C / C++) messages which
often end with \n.
domain the ‘domain’ for the translation, a character string, or NULL to flush the

cache; see ‘Details’.

n a non-negative integer.

https://www.r-project.org/doc/Rnews/Rnews_2001-3.pdf
https://www.r-project.org/doc/Rnews/Rnews_2001-3.pdf

gettext 265

msgl the message to be used in English for n = 1.

msg2 the message to be used in English forn=0, 2, 3,

dirname The directory in which to find translated message catalogs for the domain.

lang a character string specifying a language for which translations should be
sought.

unset a string, specifying the default language assumed to be current in the case

Sys.getenv ("LANGUAGE") is unset or empty.

Details

If domain is NULL (the default) in gettext or ngettext, the domain is inferred. If gettext
or ngettext is called from a function in the namespace of package pkg including called via
stop (), warning (), or message () from the function, or, say, evaluated as if called from
that namespace, see the evalqg () example, the domain is set to "R-pkg". Otherwise there is no
default domain and messages are not translated.

Setting domain = NA in gettext or ngettext suppresses any translation.

" " does not match any domain. In gettext or ngettext, domain = "" is effectively the same
as domain = NA.

If the domain is found, each character string is offered for translation, and replaced by its translation
into the current language if one is found.

The language to be used for message translation is determined by your OS default and/or the locale
setting at R’s startup, see Sys.getlocale (), and notably the LANGUAGE environment variable.

Conventionally the domain for R warning/error messages in package pkg is "R-pkg", and that for
C-level messages is "pkg".

For gettext, when trim is true as by default, leading and trailing whitespace is ignored
(“trimmed”) when looking for the translation.

ngettext is used where the message needs to vary by a single integer. Translating such messages
is subject to very specific rules for different languages: see the GNU Gettext Manual. The string
will often contain a single instance of $d to be used in sprintf. If English is used, msgl is
returned if n == 1 and msg2 in all other cases.

bindtextdomain is typically wrapper for the C function of the same name: your system
may have a man page for it. With a non-NULL dirname it specifies where to look for mes-
sage catalogues: with dirname = NULL it returns the current location. If NLS is not enabled,
bindtextdomain (*, =) returns NULL.

The special case bindtextdomain (NULL) calls C level
textdomain (textdomain (NULL)) for the purpose of flushing (i.e., emptying) the
cache of already translated strings; it returns TRUE when NLS is enabled.

Value
For gettext, a character vector, one element per string in If translation is not enabled or no
domain is found or no translation is found in that domain, the original strings are returned.
For ngettext, a character string.

For bindtextdomain, a character string giving the current base directory, or NULL if setting it
failed.

266 gettext

For Sys.setLanguage (), the previous LANGUAGE setting with attribute attr (x, "ok"),a
logical indicating success. Note that currently, using a non-existing language lang is still set
and no translation will happen, without any message.

See Also

stop and warning make use of gettext to translate messages.

xgettext (package tools) for extracting translatable strings from R source files.

Examples

bindtextdomain ("R") # non-null if and only if NLS is enabled

for(n in 0:3)
print (sprintf (ngettext (n, "%d variable has missing wvalues",
"$d variables have missing values"),

n))

Not run:
for translation, those strings should appear in R-pkg.pot as

msgid "%$d variable has missing values"
msgid_plural "%d variables have missing values"
msgstr[0] ""

msgstr[1] ""

End (Not run)

miss <—- "One only" # this line, or the next for the ngettext () below
miss <- c("one", "or", "another")
cat (ngettext (length (miss), "variable", "variables"),

paste (sQuote (miss), collapse =", "),

ngettext (length (miss), "contains", "contain"), "missing values\n")

better for translators would be to use
cat (sprintf (ngettext (length (miss),
"variable %s contains missing values\n",
"variables %s contain missing values\n"),
paste (sQuote (miss), collapse =", ")))

thisLang <- Sys.getenv ("LANGUAGE", unset = NA) # so we can reset it

if (is.na(thisLang) || !nzchar(thisLang)) thisLang <- "en" # "factory" default
enT <- "empty model supplied"

Sys.setenv (LANGUAGE = "de") # may not always 'work'

gettext (enT, domain="R-stats")# "leeres Modell angegeben" (if translation works)
tget <- function () gettext (enT)

tget () # not translated as fn tget() is not from "stats" pkg/namespace
evalqg(function () gettext (enT), asNamespace ("stats")) () # xis*x translated

Sys.setLanguage() -—- typical usage —-

Sys.setLanguage ("en") -> oldSet # does set LANGUAGE env.var

errMsg <- function(expr) tryCatch(expr, error=conditionMessage)
(errMsg(l + "2") —-> err)

getwd 267

Sys.setLanguage ("fr")

errMsg(l + "2")

Sys.setLanguage ("de")

errMsg (1l + "2")

Usually, you would reset the language to "previous" via
Sys.setLanguage (oldSet)

A show off of translations -- platform (font etc) dependent:
The translation languages available for "base" R in this version of R:
IGNORE_RDIFF_BEGIN
if (capabilities ("NLS")) withAutoprint ({
langs <- list.files (bindtextdomain ("R"),
pattern = "*[a-z]1{2} (_[A-Z]{2}]|@quot)?s8")
langs
txts <- sapply (setNames (, langs),
function(lang) { Sys.setLanguage (lang)
gettext ("incompatible dimensions", domain="R-stats") })
cbind (txts)
(nTrans <- length (unique (txts)))
(not_translated <- names (txts[txts == txts[["en"]1]1]))
})
IGNORE_RDIFF_END
Here, we reset to the xoriginalx setting before the full example started:
if (nzchar (thisLang)) { ## reset to previous and check
Sys.setLanguage (thisLang)
stopifnot (identical (errMsg(l + "2"), err))
} # else staying at 'de'

getwd Get or Set Working Directory

Description
getwd returns an absolute filepath representing the current working directory of the R process;
setwd (dir) is used to set the working directory to dir.
Usage
getwd ()
setwd (dir)
Arguments

dir A character string: tilde expansion will be done.

Details

See files for how file paths with marked encodings are interpreted.

268 gl

Value

getwd returns a character string or NULL if the working directory is not available. On Windows
the path returned will use / as the path separator and be encoded in UTF-8. The path will not have
a trailing / unless it is the root directory (of a drive or share on Windows).

setwd returns the current directory before the change, invisibly and with the same conventions as
getwd. It will give an error if it does not succeed (including if it is not implemented).

Note

Note that the return value is said to be an absolute filepath: there can be more than one repre-
sentation of the path to a directory and on some OSes the value returned can differ after changing
directories and changing back to the same directory (for example if symbolic links have been tra-
versed).

See Also

list.files for the contents of a directory.

normalizePath for a ‘canonical’ path name.

Examples

(WD <- getwd())
if (!is.null (WD)) setwd (WD)

gl Generate Factor Levels

Description

Generate factors by specifying the pattern of their levels.

Usage

gl(n, k, length = nxk, labels = seqg _len(n), ordered = FALSE)

Arguments
n an integer giving the number of levels.
k an integer giving the number of replications.
length an integer giving the length of the result.
labels an optional vector of labels for the resulting factor levels.

ordered a logical indicating whether the result should be ordered or not.

grep 269

Value

The result has levels from 1 to n with each value replicated in groups of length k out to a total
length of 1ength.

gl is modelled on the GLIM function of the same name.

See Also

The underlying factor ().

Examples

First control, then treatment:

gl(2, 8, labels = c("Control", "Treat"))
20 alternating 1ls and 2s

gl(2, 1, 20)

alternating pairs of 1s and 2s

gl(2, 2, 20)

grep Pattern Matching and Replacement

Description

grep, grepl, regexpr, gregexpr, regexec and gregexec search for matches to argument
pattern within each element of a character vector: they differ in the format of and amount of
detail in the results.

sub and gsub perform replacement of the first and all matches respectively.

Usage

grep (pattern, x, ignore.case = FALSE, perl = FALSE, value = FALSE,
fixed = FALSE, useBytes FALSE, invert = FALSE)

grepl (pattern, x, ignore.case = FALSE, perl = FALSE,
fixed = FALSE, useBytes FALSE)

sub (pattern, replacement, x, ignore.case = FALSE, perl = FALSE,
fixed = FALSE, useBytes = FALSE)

gsub (pattern, replacement, x, ignore.case = FALSE, perl = FALSE,
fixed = FALSE, useBytes = FALSE)

regexpr (pattern, text, ignore.case = FALSE, perl = FALSE,
fixed = FALSE, useBytes = FALSE)

gregexpr (pattern, text, ignore.case = FALSE, perl = FALSE,
fixed = FALSE, useBytes = FALSE)

270

&rep

regexec (pattern, text, ignore.case = FALSE, perl = FALSE,
fixed = FALSE, useBytes = FALSE)

gregexec (pattern, text, ignore.case = FALSE, perl = FALSE,
fixed = FALSE, useBytes = FALSE)

Arguments

pattern

x, text

ignore.case

perl

value

fixed

useBytes

invert

replacement

Details

character string containing a regular expression (or character string for
fixed = TRUE) to be matched in the given character vector. Coerced by
as.character to a character string if possible. If a character vector of length
2 or more is supplied, the first element is used with a warning. Missing values
are allowed except for regexpr, gregexpr and regexec.

a character vector where matches are sought, or an object which can be coerced
by as.character to a character vector. Long vectors are supported.

if FALSE, the pattern matching is case sensitive and if TRUE, case is ignored
during matching.

logical. Should Perl-compatible regexps be used?

if FALSE, a vector containing the (integer) indices of the matches deter-
mined by grep is returned, and if TRUE, a vector containing the matching ele-
ments themselves is returned.

logical. If TRUE, pattern is a string to be matched as is. Overrides all con-
flicting arguments.

logical. If TRUE the matching is done byte-by-byte rather than character-by-
character. See ‘Details’.

logical. If TRUE return indices or values for elements that do nor match.

a replacement for matched pattern in sub and gsub. Coerced to character if
possible. For fixed = FALSE this can include backreferences "\1" to "\ 9"
to parenthesized subexpressions of pattern. For perl = TRUE only, it can
also contain "\U" or "\L" to convert the rest of the replacement to upper or
lower case and "\E" to end case conversion. If a character vector of length 2 or
more is supplied, the first element is used with a warning. If NA, all elements in
the result corresponding to matches will be set to NA.

Arguments which should be character strings or character vectors are coerced to character if possi-

ble.

Each of these functions operates in one of three modes:

1. fixed = TRUE: use exact matching.

2. perl = TRUE: use Perl-style regular expressions.

3. fixed =FALSE, perl = FALSE: use POSIX 1003.2 extended regular expressions (the de-

fault).

grep 271

See the help pages on regular expression for details of the different types of regular expressions.

The two = sub functions differ only in that sub replaces only the first occurrence of a pattern
whereas gsub replaces all occurrences. If replacement contains backreferences which are not
defined in pattern the result is undefined (but most often the backreference is taken to be "").

For regexpr, gregexpr, regexec and gregexec it is an error for pattern to be NA,
otherwise NA is permitted and gives an NA match.

Both grep and grepl take missing values in x as not matching a non-missing pattern.

The main effect of useBytes = TRUE is to avoid errors/warnings about invalid inputs and spurious
matches in multibyte locales, but for regexpr it changes the interpretation of the output. It inhibits
the conversion of inputs with marked encodings, and is forced if any input is found which is marked
as "bytes" (see Encoding).

Caseless matching does not make much sense for bytes in a multibyte locale, and you should expect
it only to work for ASCII characters if useBytes = TRUE.

regexpr and gregexpr with perl = TRUE allow Python-style named captures, but not for long
vector inputs.

Invalid inputs in the current locale are warned about up to 5 times.

Caseless matching with perl = TRUE for non-ASCII characters depends on the PCRE library
being compiled with ‘Unicode property support’, which PCRE2 is by default.

Value

grep (value = FALSE) returns a vector of the indices of the elements of x that yielded a match
(or not, for invert = TRUE). This will be an integer vector unless the input is a long vector, when
it will be a double vector.

grep (value = TRUE) returns a character vector containing the selected elements of x (after
coercion, preserving names but no other attributes).

grepl returns a logical vector (match or not for each element of x).

sub and gsub return a character vector of the same length and with the same attributes as x (after
possible coercion to character). Elements of character vectors x which are not substituted will
be returned unchanged (including any declared encoding). If useBytes = FALSE a non-ASCII
substituted result will often be in UTF-8 with a marked encoding (e.g., if there is a UTF-8 input, and
in a multibyte locale unless £ixed = TRUE). Such strings can be re-encoded by enc2native.

regexpr returns an integer vector of the same length as text giving the starting position of
the first match or —1 if there is none, with attribute "match.length", an integer vector giv-
ing the length of the matched text (or —1 for no match). The match positions and lengths are
in characters unless useBytes = TRUE is used, when they are in bytes (as they are for ASCII-
only matching: in either case an attribute useBytes with value TRUE is set on the result). If
named capture is used there are further attributes "capture.start", "capture.length"
and "capture.names".

gregexpr returns a list of the same length as text each element of which is of the same form as
the return value for regexpr, except that the starting positions of every (disjoint) match are given.

regexec returns a list of the same length as text each element of which is either —1 if there
is no match, or a sequence of integers with the starting positions of the match and all substrings
corresponding to parenthesized subexpressions of pattern, with attribute "match.length" a

272 grep

vector giving the lengths of the matches (or —1 for no match). The interpretation of positions and
length and the attributes follows regexpr.

gregexec returns the same as regexec, except that to accommodate multiple matches per ele-
ment of text, the integer sequences for each match are made into columns of a matrix, with one
matrix per element of text with matches.

Where matching failed because of resource limits (especially for per1l = TRUE) this is regarded as
a non-match, usually with a warning.

Warning

The POSIX 1003.2 mode of gsub and gregexpr does not work correctly with repeated word-
boundaries (e.g., pattern = "\b"). Use perl = TRUE for such matches (but that may not work
as expected with non-ASCII inputs, as the meaning of ‘word’ is system-dependent).

Performance considerations

If you are doing a lot of regular expression matching, including on very long strings, you will
want to consider the options used. Generally perl = TRUE will be faster than the default regular
expression engine, and fixed = TRUE faster still (especially when each pattern is matched only a
few times).

If you are working in a single-byte locale and have marked UTF-8 strings that are representable
in that locale, convert them first as just one UTF-8 string will force all the matching to be done in
Unicode, which attracts a penalty of around 3 x for the default POSIX 1003.2 mode.

If you can make use of useBytes = TRUE, the strings will not be checked before matching, and
the actual matching will be faster. Often byte-based matching suffices in a UTF-8 locale since byte
patterns of one character never match part of another. Character ranges may produce unexpected
results.

PCRE-based matching by default used to put additional effort into ‘studying’ the compiled pat-
tern when x/text has length 10 or more. That study may use the PCRE JIT compiler on plat-
forms where it is available (see pcre_config). As from PCRE2 (PCRE version >= 10.00
as reported by ext SoftVersion), there is no study phase, but the patterns are optimized au-
tomatically when possible, and PCRE JIT is used when enabled. The details are controlled by
options PCRE_study and PCRE_use_JIT. (Some timing comparisons can be seen by run-
ning file ‘tests/PCRE.R’ in the R sources (and perhaps installed).) People working with PCRE
and very long strings can adjust the maximum size of the JIT stack by setting environment vari-
able R_PCRE_JIT_STACK_MAXSIZE before JIT is used to a value between 1 and 1000 in MB:
the default is 64. When JIT is not used with PCRE version < 10.30 (that is with PCRE1 and old
versions of PCRE2), it might also be wise to set the option PCRE_1imit_recursion.

Note

Aspects will be platform-dependent as well as locale-dependent: for example the implementation
of character classes (except [:digit:] and [:xdigit:]). One can expect results to be con-
sistent for ASCII inputs and when working in UTF-8 mode (when most platforms will use Unicode
character tables, although those are updated frequently and subject to some degree of interpretation
—is a circled capital letter alphabetic or a symbol?). However, results in 8-bit encodings can differ
considerably between platforms, modes and from the UTF-8 versions.

grep 273

Source

The C code for POSIX-style regular expression matching has changed over the years. As from R
2.10.0 (Oct 2009) the TRE library of Ville Laurikari (https://github.com/laurikari/
tre) is used. The POSIX standard does give some room for interpretation, especially in the han-
dling of invalid regular expressions and the collation of character ranges, so the results will have
changed slightly over the years.

For Perl-style matching PCRE2 or PCRE (https://www.pcre.orqg)is used: again the results
may depend (slightly) on the version of PCRE in use.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole (grep)

See Also

regular expression (aka regexp) for the details of the pattern specification.

regmatches for extracting matched substrings based on the results of regexpr, gregexpr
and regexec.

glob2rx to turn wildcard matches into regular expressions.
agrep for approximate matching.

charmatch, pmatch for partial matching, mat ch for matching to whole strings, startsWith
for matching of initial parts of strings.

tolower, toupper and chartr for character translations.

apropos uses regexps and has more examples.

grepRaw for matching raw vectors.

Options PCRE_1imit_recursion, PCRE_study and PCRE_use_JIT.

extSoftVersion for the versions of regex and PCRE libraries in use, pcre_config for more
details for PCRE.

Examples

grep ("[a-z]", letters)

txt <= c("arm","foot","lefroo", "bafoobar")
if (length (i <- grep("foo", txt)))

cat ("'foo' appears at least once in\n\t", txt, "\n")
i # 2 and 4
txt[1]

Double all 'a' or 'b's; "\" must be escaped, i.e., 'doubled'
gsub(" ([ab}) u’ "\\1_\\1_"’ "sbe and ABC")

txt <- ¢ ("The", "licenses", "for", "most", "software", "are",
"designed", "to", "take", "away", "your", "freedom",
lltoll, Ilsharell’ lland"’ "Change", llit."’
wr, "By", "contrast,", "the", "GNU", "General", "Public", "License",

https://github.com/laurikari/tre
https://github.com/laurikari/tre
https://www.pcre.org

274 grep

"is", "intended", "to", "guarantee", "your", "freedom", "to",
"share", "and", "change", "free", "software", "--",
"tOH, "make"’ "Sure", "the", "SOftWare", "j_S",
"free", "for", "all", "itS", "usersll)
(i <- grep("[gul", txt)) # indices
stopifnot (txt[i] == grep("[gul", txt, value = TRUE))

Note that for some implementations character ranges are

locale-dependent (but not currently). Then [b-e] in locales such as
en_US may include B as the collation order is aAbBcCdDe

(ot <= sub("[b-e]l",".", txt))

txt[ot != gsub("[b-e]",".", txt)]#- gsub does "global" substitution

In caseless matching, ranges include both cases:

a <- grep("[b-el", txt, value = TRUE)

b <- grep("[b-e]", txt, ignore.case = TRUE, value = TRUE)

setdiff (b, a)

txt [gsub("g","#", txt) !=
gsub ("g","#", txt, ignore.case = TRUE)] # the "G" words

regexpr ("en", txt)
gregexpr ("e", txt)
Using grepl () for filtering

Find functions with argument names matching "warn":
findArgs <- function (env, pattern) {

nms <- ls(envir = as.environment (env))
nms <- nms[is.na(match(nms, c("F","T")))] # <-- work around "checking hack"
aa <- sapply(nms, function(.) { o <- get(.)

if (is.function (o)) names (formals (o)) })
iw <- sapply(aa, function(a) any(grepl (pattern, a, ignore.case=TRUE)))
aaliw]
}

findArgs ("package:base", "warn")

trim trailing white space

str <- "Now is the time "

sub (" +$", "", str) ## spaces only

what 1s considered 'white space' depends on the locale.
sub (" [[:space:]]+$", "", str) ## white space, POSIX-style

what PCRE considered white space changed in version 8.34: see ?regex
sub ("\\s+$", "", str, perl = TRUE) ## PCRE-style white space

capitalizing

txt <- "a test of capitalizing"
gsub (" (\\w) (\\w=*)", "\\U\\I\\L\\2", txt, perl=TRUE)
gsub ("\\b (\\w) ", "NAUNN\L", txt, perl=TRUE)

txt2 <- "useRs may fly into JFK or laGuardia"
gsub (" (\\w) (\\wx) (\\w) ", "\\UN\I\\E\\2\\U\\3", txt2, perl=TRUE)
sub (" (\\w) (\\wx) (\\w) ", "\\NUN\IN\EA\2\\U\\3", txt2, perl=TRUE)

grepRaw 275

named capture

notables <- ¢ (" Ben Franklin and Jefferson Davis",
"\tMillard Fillmore")

name groups 'first' and 'last'

name.rex <- " (?<first>[[:upper:]][[:lower:]]+) (?<last>[[:upper:]][[:lower:]]+)"
(parsed <- regexpr (name.rex, notables, perl = TRUE))
gregexpr (name.rex, notables, perl = TRUE) [[2]]

parse.one <- function(res, result) {
m <- do.call(rbind, lapply(seq_along(res), function(i) {

if (result[i] == -1) return("")
st <- attr(result, "capture.start")[i,]
substring(res[i], st, st + attr(result, "capture.length")[i,] - 1)

1))
colnames (m) <- attr (result, "capture.names")
m

}

parse.one (notables, parsed)

Decompose a URL into its components.

Example by LT (http://www.cs.uiowa.edu/~luke/R/regexp.html) .

x <— "http://stat.umn.edu:80/xyz"

m <- regexec ("M (([":1+)://)2([":/1+) (: ([0=-9]1+))2(/.%x)", x)

m

regmatches (x, m)

Element 3 is the protocol, 4 is the host, 6 is the port, and 7

is the path. We can use this to make a function for extracting the
parts of a URL:

URL_parts <- function (x) {

m <- regexec ("M (([":]14)://)2([":/1+) (: ([0-9]1+))2(/.*)", X)
parts <- do.call (rbind,
lapply (regmatches(x, m), ~[°, c(3L, 4L, 6L, 7L)))
colnames (parts) <- c("protocol","host", "port", "path")
parts

}
URL_parts (x)

gregexec () may match multiple times within a single string.
pattern <- " ([[:alpha:]]+) ([[:digit:]]+)"

s <— "Test: Al BC23 DEF456"

m <—- gregexec (pattern, s)

m

regmatches (s, m)

Before gregexec () was implemented, one could emulate it by running
regexec() on the regmatches obtained via gregexpr (). E.g.:
lapply (regmatches (s, gregexpr (pattern, s)),

function(e) regmatches (e, regexec (pattern, e)))

grepRaw Pattern Matching for Raw Vectors

276 grepRaw

Description

grepRaw searches for substring pat tern matches within a raw vector x.

Usage

grepRaw (pattern, x, offset = 1L, ignore.case = FALSE,
value = FALSE, fixed = FALSE, all = FALSE, invert = FALSE)

Arguments
pattern raw vector containing a regular expression (or fixed pattern for £ ixed = TRUE)
to be matched in the given raw vector. Coerced by charToRaw to a character
string if possible.
x a raw vector where matches are sought, or an object which can be coerced by

charToRaw to a raw vector. Long vectors are not supported.

ignore.case if FALSE, the pattern matching is case sensitive and if TRUE, case is ignored
during matching.

offset An integer specifying the offset from which the search should start. Must be
positive. The beginning of line is defined to be at that offset so "~ " will match
there.

value logical. Determines the return value: see ‘Value’.

fixed logical. If TRUE, pattern is a pattern to be matched as is.

all logical. If TRUE all matches are returned, otherwise just the first one.

invert logical. If TRUE return indices or values for elements that do not match. Ignored

(with a warning) unless value = TRUE.

Details

Unlike grep, seeks matching patterns within the raw vector x . This has implications especially
in the all = TRUE case, e.g., patterns matching empty strings are inherently infinite and thus may
lead to unexpected results.

The argument invert is interpreted as asking to return the complement of the match, which is
only meaningful for value = TRUE. Argument of fset determines the start of the search, not of
the complement. Note that invert = TRUE with all = TRUE will split x into pieces delimited by
the pattern including leading and trailing empty strings (consequently the use of regular expressions
with "~ " or "$" in that case may lead to less intuitive results).

Some combinations of arguments such as fixed = TRUE with value = TRUE are supported but
are less meaningful.

Value

grepRaw (value = FALSE) returns an integer vector of the offsets at which matches have oc-
curred. If a1l = FALSE then it will be either of length zero (no match) or length one (first matching
position).

grepRaw (value = TRUE, all = FALSE) returns a raw vector which is either empty (no
match) or the matched part of x.

groupGeneric

grepRaw (value = TRUE, all = TRUE) returns a (potentially empty) list of raw vectors cor-

responding to the matched parts.

Source

The TRE library of Ville Laurikari (https://github.com/laurikari/tre/) is used ex-

cept for fixed = TRUE.

See Also

regular expression (aka regexp) for the details of the pattern specification.

grep for matching character vectors.

Examples
grepRaw ("no match", "textText") # integer (0) : no match
grepRaw ("adf", "adadfadfdfadadf") # 3 - the first match
grepRaw ("adf", "adadfadfdfadadf", all=TRUE, fixed=TRUE)
#4# [1] 3 6 13 —— three matches
groupGeneric S3 Group Generic Functions
Description

Group generic methods can be defined for four pre-specified groups of functions, Math, Ops,
Summary and Complex. (There are no objects of these names in base R, but there are in the
methods package.)

A method defined for an individual member of the group takes precedence over a method defined
for the group as a whole.

Usage

S3 methods for group generics have prototypes:
Math (x, ...)

Ops (el, e2)

Complex (z)

Summary (..., na.rm = FALSE)

Arguments

X, z, el, e2 objects.
further arguments passed to methods.

na.rm logical: should missing values be removed?

https://github.com/laurikari/tre/

278 groupGeneric

Details

There are four groups for which S3 methods can be written, namely the "Math", "Ops",
"Summary" and "Complex" groups. These are not R objects in base R, but methods can be
supplied for them and base R contains factor, data.frame and dif ftime methods for the
first three groups. (There is also a ordered method for Ops, POSIXt and Date methods for
Math and Ops, package_version methods for Ops and Summary, as well as a t s method
for Ops in package stats.)

1. Group "Math":

* abs, sign, sqgrt,
floor,ceiling, trunc,
round, signif

* exp, log, expml, loglp,
cos, sin, tan,
cospi, sinpi, tanpi,
acos, asin, atan
cosh, sinh, tanh,
acosh, asinh, atanh

¢ lgamma, gamma, digamma, trigamma

e cumsum, cumprod, cummax, cummin

Members of this group dispatch on x. Most members accept only one argument, but members
log, round and signif accept one or two arguments, and t runc accepts one or more.

2. Group "Ops™":

AL " n n " " n n nAmn noomn nmo on
o MM m_m e wm , "%, "%/%
o " n n mwpw
& 9 I b -
o MM W [W Wl Wl W1 N
b M b < b < b > b >

This group contains both binary and unary operators (+, — and !): when a unary operator is
encountered the Ops method is called with one argument and e2 is missing.

The classes of both arguments are considered in dispatching any member of this group. For
each argument its vector of classes is examined to see if there is a matching specific (preferred)
or Ops method. If a method is found for just one argument or the same method is found
for both, it is used. If different methods are found, there is a warning about ‘incompatible
methods’: in that case or if no method is found for either argument the internal method is
used.

Note that the data . frame methods for the comparison ("Compare": ==, <, ...) and
logic ("Logic™": & | and !) operators return a logical mat rix instead of a data frame, for
convenience and back compatibility.

If the members of this group are called as functions, any argument names are removed to
ensure that positional matching is always used.

3. Group "Summary":
e all, any
* sum, prod
* min, max

* range

groupGeneric 279

Members of this group dispatch on the first argument supplied.

Note that the data.frame methods for the "Summary" and "Math" groups require
“numeric-alike” columns x, i.e., fulfilling

is.numeric(x) || is.logical(x) || is.complex (x)

4. Group "Complex":
e Arg, Conj, Im, Mod, Re

Members of this group dispatch on z.

Note that a method will be used for one of these groups or one of its members only if it corresponds
toa "class" attribute, as the internal code dispatches on o1dClass and not on class. This is
for efficiency: having to dispatch on, say, Ops . integer would be too slow.

The number of arguments supplied for primitive members of the "Math" group generic methods
is not checked prior to dispatch.

There is no lazy evaluation of arguments for group-generic functions.

Technical Details

These functions are all primitive and internal generic.

The details of method dispatch and variables such as .Generic are discussed in the help for
UseMethod. There are a few small differences:

* For the operators of group Ops, the object .Method is a length-two character vector with
elements the methods selected for the left and right arguments respectively. (If no method was
selected, the corresponding element is " ".)

* Object .Group records the group used for dispatch (if a specific method is used this is " ").

Note

Package methods does contain objects with these names, which it has re-used in confusing similar
(but different) ways. See the help for that package.

References

Appendix A, Classes and Methods of
Chambers, J. M. and Hastie, T. J. eds (1992) Statistical Models in S. Wadsworth & Brooks/Cole.

See Also

methods for methods of non-internal generic functions.

S4groupGeneric for group generics for S4 methods.

280 grouping

Examples

require (utils)

d.fr <- data.frame(x = 1:9, y = stats::rnorm(9))
class(l + d.fr) == "data.frame" ##-—- add to d.f.
methods ("Math")
methods ("Ops")
methods ("Summary")
methods ("Complex") # none in base R

grouping Grouping Permutation

Description

grouping returns a permutation which rearranges its first argument such that identical values are
adjacent to each other. Also returned as attributes are the group-wise partitioning and the maximum

group size.
Usage
grouping(...)
Arguments
a sequence of numeric, character or logical vectors, all of the same length, or a
classed R object.
Details

The function partially sorts the elements so that identical values are adjacent. NA values come last.
This is guaranteed to be stable, so ties are preserved, and if the data are already grouped/sorted, the
grouping is unchanged. This is useful for aggregation and is particularly fast for character vectors.

Under the covers, the "radix" method of order is used, and the same caveats apply, including
restrictions on character encodings and lack of support for long vectors (those with 23! or more
elements). Real-valued numbers are slightly rounded to account for numerical imprecision.

Like order, for a classed R object the grouping is based on the result of xt frm.

Value

An object of class "grouping", the representation of which should be considered experimental
and subject to change. It is an integer vector with two attributes:

ends subscripts in the result corresponding to the last member of each group

maxgrpn the maximum group size

gzcon 281

See Also

order, xt frm.

Examples

(ii <= grouping(x <- c(1, 1, 3:1, 1:4, 3), y <= c(9, 9:1), z <= c(2, 1:9)))
6 5 2 1 7 410 8 3 9
rbind(x, y, z)[, 1ii]

gzcon (De)compress 1/0 Through Connections

Description
gzcon provides a modified connection that wraps an existing connection, and decompresses reads
or compresses writes through that connection. Standard gz ip headers are assumed.

Usage

gzcon (con, level = 6, allowNonCompressed = TRUE, text = FALSE)

Arguments
con a connection.
level integer between 0 and 9, the compression level when writing.

allowNonCompressed
logical. When reading, should non-compressed input be allowed?

text logical. Should the connection be text-oriented? This is distinct from the mode
of the connection (must always be binary). If TRUE, pushBack works on the
connection, otherwise readBin and friends apply.

Details
If con is open then the modified connection is opened. Closing the wrapper connection will also
close the underlying connection.

Reading from a connection which does not supply a gzip magic header is equivalent to reading
from the original connection if allowNonCompressed is true, otherwise an error.

Compressed output will contain embedded NUL bytes, and so con is not permitted to be a
textConnection opened with open = "w". Use a writable rawConnection to compress
data into a variable.

The original connection becomes unusable: any object pointing to it will now refer to the modified
connection. For this reason, the new connection needs to be closed explicitly.
Value

An object inheriting from class "connection™. This is the same connection number as supplied,
but with a modified internal structure. It has binary mode.

282 hexmode

See Also

gzfile

Examples

Uncompress a data file from a URL

z <—- gzcon (url ("https://www.stats.ox.ac.uk/pub/datasets/csb/chl2.dat.gz"))
read.table can only read from a text-mode connection.

raw <- textConnection (readLines (z))

close(z)

dat <- read.table (raw)

close (raw)

dat[1l:4, 1]

gzfile and gzcon can inter-work.

Of course here one would use gzfile, but file() can be replaced by

any other connection generator.

zzfil <- tempfile(fileext = ".gz")

zz <- gzfile(zzfil, "w")

cat ("TITLE extra line", "2 3 5 7", "", "11 13 17", file = zz, sep = "\n")

close(zz)

readlLines (zz <- gzcon(file(zzfil, "rb")))
close(zz)

unlink (zzfil)

zzfil2 <- tempfile(fileext = ".gz")
zz <— gzcon(file(zz£fil2, "wb"))
cat ("TITLE extra line", "2 3 5 7", "", "11 13 17", file = zz, sep = "\n")

close(zz)

readlLines (zz <- gzfile(zzfil2))
close(zz)

unlink (zzfil2)

hexmode Integer Numbers Displayed in Hexadecimal

Description

Integers which are displayed in hexadecimal (short ‘hex’) format, with as many digits as are needed
to display the largest, using leading zeroes as necessary.

Arithmetic works as for integers, and non-integer valued mathematical functions typically work by
truncating the result to integer.

hexmode 283
Usage
as.hexmode (x)

S3 method for class 'hexmode'
as.character(x, ...)

S3 method for class 'hexmode'
format (x, width = NULL, upper.case = FALSE, ...)

S3 method for class 'hexmode'

print(x, ...)
Arguments
X An object, for the methods inheriting from class "hexmode".
width NULL or a positive integer specifying the minimum field width to be used, with

padding by leading zeroes.

upper.case a logical indicating whether to use upper-case letters or lower-case letters (de-
fault).

further arguments passed to or from other methods.

Details

Class "hexmode" consists of integer vectors with that class attribute, used primarily to ensure that
they are printed in hex. Subsetting ([) works too, as do arithmetic or other mathematical operations,
albeit truncated to integer.

as.character (x) converts each entry individually, hence with no leading zeroes, whereas in
format (), when width = NULL (the default), the output is padded with leading zeroes to the
smallest width needed for all the non-missing elements.

as.hexmode can convert integers (of type "integer" or "double") and character vectors
whose elements contain only 0-9, a—f, A-F (or are NA) to class "hexmode".

There is a ! method and methods for | and &:

these recycle their arguments to the length of the longer and then apply the operators bitwise to each
element.

See Also

octmode, sprintf for other options in converting integers to hex, strtoi to convert hex
strings to integers.

Examples

i <- as.hexmode ("7fffffff")
i; class (i)
identical (as.integer (i), .Machine$integer.max)

hm <- as.hexmode (c(NA, 1)); hm

284 Hyperbolic

as.integer (hm)

Xm <- as.hexmode (1:16)

Xm # print()s via format ()
stopifnot (nchar (format (Xm)) == 2)

Xm[-16] # xnox leading zeroes!

stopifnot (format (Xm[-16]) == (1:9, letters[l:6]))

Integer arithmetic (remaining "hexmode") :

16*xXm

Xm"2

—Xm

(fac <- factorial (Xm[1:12])) # !'1, '2, !3, !4 .. in hexadecimals
as.integer (fac) # indeed the same as factorial(l:12)

Hyperbolic Hyperbolic Functions

Description

These functions give the obvious hyperbolic functions. They respectively compute the hyperbolic
cosine, sine, tangent, and their inverses, arc-cosine, arc-sine, arc-tangent (or ‘area cosine’, etc).

Usage

cosh (
sinh (
tanh (
acosh
)
)

asinh

X
X
X
(
(
atanh (

)

)

)
x)
X
X

Arguments

X a numeric or complex vector

Details

These are internal generic primitive functions: methods can be defined for them individually or via
the Math group generic.

Branch cuts are consistent with the inverse trigonometric functions asin et seq, and agree with
those defined in Abramowitz and Stegun, figure 4.7, page 86. The behaviour actually on the cuts fol-
lows the C99 standard which requires continuity coming round the endpoint in a counter-clockwise
direction.

S4 methods

All are S4 generic functions: methods can be defined for them individually or via the Math group
generic.

iconv

References

285

Abramowitz, M. and Stegun, 1. A. (1972) Handbook of Mathematical Functions. New York: Dover.
Chapter 4. Elementary Transcendental Functions: Logarithmic, Exponential, Circular and Hyper-

bolic Functions

See Also

The trigonometric functions, cos, sin, tan, and their inverses acos, asin, atan.

The logistic distribution function plogis is a shifted version of tanh () for numeric x.

iconv

Convert Character Vector between Encodings

Description

This uses system facilities to convert a character vector between encodings: the ‘i’ stands for ‘in-

ternationalization’.

Usage

iconv (x,

iconvlist ()

Arguments

X

from
to

sub

mark

toRaw

from = "", to = "", sub = NA, mark = TRUE, toRaw = FALSE)

A character vector, or an object to be converted to a character vector by
as.character, or a list with NULL and raw elements as returned by
iconv (toRaw = TRUE).

A character string describing the current encoding.
A character string describing the target encoding.

character string. If not NA it is used to replace any non-convertible bytes in the
input. (This would normally be a single character, but can be more.) If "byte",
the indication is "<xx>" with the hex code of the byte. If "Unicode" and
converting from UTF-8, the Unicode point in the form "<U+xxxx>", or if
c99, a C99-style escape "\uxxxx".

logical, for expert use. Should encodings be marked?

logical. Should a list of raw vectors be returned rather than a character vector?

286 iconv

Details

The names of encodings and which ones are available are platform-dependent. All R platforms
support "" (for the encoding of the current locale), "latinl" and "UTF-8". Generally case is
ignored when specifying an encoding.

On most platforms iconvlist provides an alphabetical list of the supported encodings. On oth-
ers, the information is on the man page for iconv (5) or elsewhere in the man pages (but beware
that the system command iconv may not support the same set of encodings as the C functions R
calls). Unfortunately, the names are rarely supported across all platforms.

Elements of x which cannot be converted (perhaps because they are invalid or because they cannot
be represented in the target encoding) will be returned as NA unless sub is specified.

Most versions of iconv will allow transliteration by appending ‘//TRANSLIT’ to the to encod-
ing: see the examples.

Encoding "ASCII" is accepted, and on most systems "C" and "POSIX" are synonyms for ASCIL.

Any encoding bits (see Encoding) on elements of x are ignored: they will always be translated
as if from encoding from even if declared otherwise. enc2native and enc2utf8 provide
alternatives which do take declared encodings into account.

Note that implementations of iconv typically do not do much validity checking and will often
mis-convert inputs which are invalid in encoding from.

If sub ="Unicode" or sub = "c99" is used for a non-UTF-8 input it is the same as sub =
"byte n .

Value

If toRaw = FALSE (the default), the value is a character vector of the same length and the same
attributes as x (after conversion to a character vector).

If mark = TRUE (the default) the elements of the result have a declared encoding if to is
"latinl" or "UTF-8", or if to = "" and the current locale’s encoding is detected as Latin-
1 (or its superset CP1252 on Windows) or UTF-8.

If toRaw = TRUE, the value is a list of the same length and the same attributes as x whose elements
are either NULL (if conversion fails) or a raw vector.

For iconvlist (), a character vector (typically of a few hundred elements) of known encoding
names.

Implementation Details

There are three main implementations of iconv in use. Linux’s most common C runtime,
‘glibc’, contains one. Several platforms supply GNU ‘libiconv’, including macOS and
FreeBSD, in some cases with additional encodings. On Windows we use a version of Yukihiro
Nakadaira’s ‘win_iconv’, which is based on Windows’ codepages. (We have added many en-
coding names for compatibility with other systems.) All three have iconvlist, ignore case in
encoding names and support ‘//TRANSLIT (but with different results, and for ‘win_iconv’
currently a ‘best fit’ strategy is used except for to = "ASCII").

Most commercial Unixes contain an implementation of iconv but none we have encountered have
supported the encoding names we need: the ‘R Installation and Administration’ manual recom-
mends installing GNU ‘1ibiconv’ on Solaris and AIX, for example.

iconv 287

Some Linux distributions use ‘mus1’ as their C runtime. This is less comprehensive than ‘glibc’:
it does not support ‘//TRANSLIT’ but does inexact conversions (currently using ‘x”).

There are other implementations, e.g. NetBSD has used one from the Citrus project (which does
not support °//TRANSLIT’) and there is an older FreeBSD port (‘1ibiconv’ is usually used
there): it has not been reported whether or not these work with R.

Note that you cannot rely on invalid inputs being detected, especially for to = "ASCII" where
some implementations allow 8-bit characters and pass them through unchanged or with translitera-
tion or substitution.

Some of the implementations have interesting extra encodings: for example GNU ‘libiconv’
allows to = "C99" to use ‘\uxxxx’ escapes for non-ASCII characters.

Byte Order Marks

most commonly known as ‘BOMs’.

Encodings using character units which are more than one byte in size can be written on a file in
either big-endian or little-endian order: this applies most commonly to UCS-2, UTF-16 and UTF-
32/UCS-4 encodings. Some systems will write the Unicode character U+FEFF at the beginning of
a file in these encodings and perhaps also in UTF-8. In that usage the character is known as a BOM,
and should be handled during input (see the ‘Encodings’ section under connection: re-encoded
connections have some special handling of BOMs). The rest of this section applies when this has
not been done so x starts with a BOM.

Implementations will generally interpret a BOM for from given as one of "UCS—-2", "UTF-16"
and "UTF-32". Implementations differ in how they treat BOMs in x in other from encodings:
they may be discarded, returned as character U+FEFF or regarded as invalid.

Note

The only reasonably portable name for the ISO 8859-15 encoding, commonly known as ‘Latin 9°,
is "latin-9": some platforms support "1atin9" but GNU ‘libiconv’ does not.

Encoding names "utf8", "mac" and "macroman" are not portable. "utf8" is con-
verted to "UTF-8" for from and to by iconv, but not for e.g. £ileEncoding arguments.
"macintosh" is the official (and most widely supported) name for ‘Mac Roman’ (https:
//en.wikipedia.org/wiki/Mac_0OS_Roman).

See Also

localeToCharset, file.

Examples

In principle, as not all systems have iconvlist
try(utils::head(iconvlist (), n = 50))

Not run:

convert from Latin-2 to UTF-8: two of the glibc iconv variants.
iconv(x, "ISO_8859-2", "UTF-8")

iconv(x, "LATIN2", "UTF-8")

https://en.wikipedia.org/wiki/Mac_OS_Roman
https://en.wikipedia.org/wiki/Mac_OS_Roman

288 icuSetCollate

End (Not run)

Both x below are in latinl and will only display correctly in a
locale that can represent and display latinl.

x <— "fa\xE7ile"

Encoding(x) <- "latinl"

X

charToRaw (xx <- iconv(x, "latinl", "UTF-8"))

XX
iconv(x, "latinl", "ASCII") # NA

iconv(x, "latinl", "ASCII", "2") # "fazile"

iconv(x, "latinl", "ASCII", "") # "faile"

iconv(x, "latinl", "ASCII", "byte") # "fa<e7>ile"

iconv (xx, "UTF-8", "ASCII", "Unicode") # "fa<U+00E7>ile"
iconv(xx, "UTF-8", "ASCII", "c99") # "fa\uOOE7ile"

Extracts from old R help files (they are nowadays in UTF-8)
x <— c("Ekstr\xf8m", "J\xf6reskog", "bi\xdfchen Z\xfcrcher")

Encoding(x) <-— "latinl"

X

try(iconv(x, "latinl", "ASCII//TRANSLIT")) # platform-dependent
iconv(x, "latinl", "ASCII", sub = "byte")

and for Windows' 'Unicode'
str(xx <- iconv(x, "latinl", "UTF-16LE", toRaw = TRUE))
iconv (xx, "UTF-16LE", "UTF-8")

icuSetCollate Setup Collation by ICU

Description

Controls the way collation is done by ICU (an optional part of the R build).

Usage

icuSetCollate(...)

icuGetCollate (type = c("actual", "valid"))

Arguments
... Named arguments, see ‘Details’.
type character string: can be abbreviated. Either the actual locale in use for collation

or the most specific locale which would be valid.

icuSetCollate 289

Details

Optionally, R can be built to collate character strings by ICU (https://icu.unicode.org/).
For such systems, icuSetCollate can be used to tune the way collation is done. On other builds
calling this function does nothing, with a warning.

Possible arguments are

locale: A character string such as "da_DK" giving the language and country whose collation
rules are to be used. If present, this should be the first argument.

case_first: "upper", "lower" or "default", asking for upper- or lower-case characters
to be sorted first. The default is usually lower-case first, but not in all languages (not under the
default settings for Danish, for example).

alternate_handling: Controls the handling of ‘variable’ characters (mainly punctuation and
symbols). Possible values are "non_ignorable" (primary strength) and "shifted"
(quaternary strength).

strength: Which components should be used? Possible values "primary", "secondary",
"tertiary" (default), "quaternary" and "identical™".

french_collation: In a French locale the way accents affect collation is from right to left,
whereas in most other locales it is from left to right. Possible values "on", "off" and
"default".

normalization: Should strings be normalized? Possible values are "on" and "of£f" (de-
fault). This affects the collation of composite characters.

case_level: An additional level between secondary and tertiary, used to distinguish large and
small Japanese Kana characters. Possible values "on" and "of£" (default).

hiragana_quaternary: Possible values "on" (sort Hiragana first at quaternary level) and
n @) f f " .

Only the first three are likely to be of interest except to those with a detailed understanding of
collation and specialized requirements.

Some special values are accepted for Llocale:

"none": ICU is not used for collation: the OS’s collation services are used instead.

"ASCII": ICU is not used for collation: the C function strcmp is used instead, which should
sort byte-by-byte in (unsigned) numerical order.

"default": obtains the locale from the OS as is done at the start of the session (except on
Windows). If environment variable R_ICU_LOCALE is set to a non-empty value, its value
is used rather than consulting the OS, unless environment variable LC_ALL is set to "C’ (or
unset but LC_COLLATE is set to 'C’).

"o "root": the ‘root’ collation: see https://www.unicode.org/reports/tr35/
tr35-collation.html#Root_Collation.

For the specifications of ‘real’ ICU locales, see https://unicode-org.github.io/
icu/userguide/locale/. Note that ICU does not report that a locale is not supported,
but falls back to its idea of ‘best fit’ (which could be rather different and is reported by
icuGetCollate ("actual"), often "root"). Most English locales fall back to "root"
as although e.g. "en_GB" is a valid locale (at least on some platforms), it contains no special rules

https://icu.unicode.org/
https://www.unicode.org/reports/tr35/tr35-collation.html#Root_Collation
https://www.unicode.org/reports/tr35/tr35-collation.html#Root_Collation
https://unicode-org.github.io/icu/userguide/locale/
https://unicode-org.github.io/icu/userguide/locale/

290 icuSetCollate

for collation. Note that "C" is not a supported ICU locale and hence R_ICU_LOCALE should
never be setto "C".

Some examples are case_level = "on", strength = "primary" to ignore accent differ-
ences and alternate_handling = "shifted" toignore space and punctuation characters.

Initially ICU will not be used for collation if the OS is set to use the C locale for collation and
R_ICU_LOCALE is not set. Once this function is called with a value for 1ocale, ICU will be used
until it is called again with 1locale = "none". ICU will not be used once Sys.setlocaleis
called with a "C" value for LC_ALL or LC_COLLATE, evenif R_ICU_LOCALE is set. ICU will be
used again honoring R_ ICU_LOCALE once Sys.setlocale is called to set a different collation
order. Environment variables LC_ALL (or LC_COLLATE) take precedence over R_ICU_LOCALE
if and only if they are set to *C’. Due to the interaction with other ways of setting the collation order,
R_ICU_LOCALE should be used with care and only when needed.

All customizations are reset to the default for the locale if 1ocale is specified: the collation engine
is reset if the OS collation locate category is changed by Sys.setlocale.

Value

For icuGetCollate, a character string describing the ICU locale in use (which may be reported
as "ICU not in use™). The ‘actual’ locale may be simpler than the requested locale: for example
"da" rather than "da_DK": English locales are likely to report "root".

Note

Except on Windows, ICU is used by default wherever it is available. As it works internally in
UTEF-8, it will be most efficient in UTF-8 locales.

On Windows, R is normally built including ICU, but it will only be used if environment vari-
able R_TICU_LOCALE had been set when R is started or after icuSetCollate is called
to select the locale (as ICU and Windows differ in their idea of locale names). Note that
icuSetCollate (locale = "default") should work reasonably well, but finds the system
default ignoring environment variables such as LC_COLLATE.

See Also

Comparison, sort.
capabilities for whether ICU is available; ext SoftVersion for its version.

The ICU user guide chapter on collation (https://unicode-org.github.io/icu/
userguide/collation/).

Examples

These examples depend on having ICU available, and on the locale.
As we don't know the current settings, we can only reset to the default.
if (capabilities ("ICU")) withAutoprint ({

icuGetCollate ()

icuGetCollate ("valid")

x <- c("Aarhus", "aarhus", "safe", "test", "Zoo")

sort (x)

icuSetCollate (case_first = "upper"); sort (x)

https://unicode-org.github.io/icu/userguide/collation/
https://unicode-org.github.io/icu/userguide/collation/

identical 291

icuSetCollate (case_first = "lower"); sort (x)

Danish collates upper-case-first and with 'aa' as a single letter
icuSetCollate (locale = "da_DK", case_first = "default"); sort (x)

Estonian collates Z between S and T

icuSetCollate (locale "et_EE"); sort (x)

icuSetCollate (locale = "default"); icuGetCollate("valid")
1)
identical Test Objects for Exact Equality
Description

The safe and reliable way to test two objects for being exactly equal. It returns TRUE in this case,
FALSE in every other case.

Usage

identical (x, y, num.eq = TRUE, single.NA = TRUE, attrib.as.set = TRUE,
ignore.bytecode = TRUE, ignore.environment = FALSE,
ignore.srcref = TRUE, extptr.as.ref = FALSE)

Arguments
X,y any R objects.
num.eq logical indicating if (double and complex non-NA) numbers should be com-
pared using == (‘equal’), or by bitwise comparison. The latter (non-default)
differentiates between —0 and +0.
single.NA logical indicating if there is conceptually just one numeric NA and one NaN;

single.NA = FALSE differentiates bit patterns.
attrib.as.set
logical indicating if attributes of x and y should be treated as unordered
tagged pairlists (“sets”); this currently also applies to slots of S4 objects. It
may well be too strict to set attrib.as.set = FALSE.
ignore.bytecode
logical indicating if byte code should be ignored when comparing closures.
ignore.environment
logical indicating if their environments should be ignored when comparing clo-
sures.
ignore.srcref
logical indicating if their "srcref" attributes should be ignored when com-
paring closures.
extptr.as.ref
logical indicating whether external pointer objects should be compared as refer-
ence objects and considered identical only if they are the same object in mem-
ory. By default, external pointers are considered identical if the addresses they
contain are identical.

292 identical

Details

A call to identical is the way to test exact equality in i f and while statements, as well as in
logical expressions that use && or | |. In all these applications you need to be assured of getting a
single logical value.

Users often use the comparison operators, such as == or ! =, in these situations. It looks natural,
but it is not what these operators are designed to do in R. They return an object like the arguments.
If you expected x and y to be of length 1, but it happened that one of them was not, you will not
get a single FALSE. Similarly, if one of the arguments is NA, the result is also NA. In either case,
the expression 1f (x ==y) won’t work as expected.

The function all.equal is also sometimes used to test equality this way, but was intended for
something different: it allows for small differences in numeric results.

The computations in identical are also reliable and usually fast. There should never be an error.
The only known way to kill identical is by having an invalid pointer at the C level, generating a
memory fault. It will usually find inequality quickly. Checking equality for two large, complicated
objects can take longer if the objects are identical or nearly so, but represent completely independent
copies. For most applications, however, the computational cost should be negligible.

If single.NA is true, as by default, identical sees NaN as different from NA_real_, butall
NaNs are equal (and all NA of the same type are equal).

Character strings (except those in marked encoding "bytes") are regarded as identical even if
they are in different marked encodings but would agree when translated to UTF-8. A character
string in marked encoding "bytes" is only regarded as identical to a character string in the same
encoding and with the same content.

If attrib.as.set is true, as by default, comparison of attributes view them as a set (and not a
vector, so order is not tested).

If ignore.bytecode is true (the default), the compiled bytecode of a function (see cmpfun)
will be ignored in the comparison. If it is false, functions will compare equal only if they are copies
of the same compiled object (or both are uncompiled). To check whether two different compiles are
equal, you should compare the results of disassemble ().

You almost never want to use identical on datetimes of class "POSIX1t": not only can differ-
ent times in the different time zones represent the same time and time zones have multiple names,
but several of the components are optional.

Note that the strictest test for equality is

identical (%, v,
num.eq = FALSE, single.NA = FALSE, attrib.as.set = FALSE,
ignore.bytecode = FALSE, ignore.environment = FALSE,
ignore.srcref = FALSE, extptr.as.ref = TRUE)

Value

A single logical value, TRUE or FALSE, never NA and never anything other than a single value.

Author(s)
John Chambers and R Core

identical 293

References

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer.

See Also

all.equal for descriptions of how two objects differ; Comparison and Logic for element-
wise comparisons.

Examples
identical (1, NULL) ## FALSE —-- don't try this with ==
identical (1, 1.) ## TRUE in R (both are stored as doubles)

identical (1, as.integer(l)) ## FALSE, stored as different types

x <— 1.0; y <— 0.99999999999

how to test for object equality allowing for numeric fuzz

(E <- all.equal (x, y))

identical (TRUE, E)

1sTRUE (E) # alternative test

If all.equal thinks the objects are different, it returns a
character string, and the above expression evaluates to FALSE

even for unusual R objects
identical (.GlobalEnv, environment ())

#HE ——————— Pickyness Flags : —————————————————————————————

the infamous example:

identical (0., -0.) # TRUE, i.e. not differentiated
identical (0., -0., num.eq = FALSE)

similar:

identical (NaN, -NaN) # TRUE

identical (NaN, -NaN, single.NA = FALSE) # differ on bit-level

For functions ("closure"s): ————————————————————————————
#HE s

f <- function(x) x

f

g <- compiler::cmpfun (f)

g

identical (£, g) # TRUE, as bytecode is ignored by default

identical (f, g, ignore.bytecode=FALSE) # FALSE: bytecode differs

GLM families contain several functions, some of which share an environment:
pl <- poisson() ; p2 <- poisson()

identical (pl, p2) # FALSE

identical (pl, p2, ignore.environment=TRUE) # TRUE

in interactive use, the 'keep.source' option is typically true:

op <- options (keep.source = TRUE) # and so, these have differing "srcref"
f1l <- function() {}

f2 <—- function () {}

294 ifelse

identical (fl, f2)# ignore.srcref= TRUE : TRUE
identical (f1,f2, ignore.srcref=FALSE)# FALSE
options (op) # revert to previous state

identity Identity Function

Description

A trivial identity function returning its argument.

Usage

identity (x)

Arguments

x an R object.

See Also

diag creates diagonal matrices, including identity ones.

ifelse Conditional Element Selection

Description

ifelse returns a value with the same shape as test which is filled with elements selected from
either yes or no depending on whether the element of test is TRUE or FALSE.

Usage

ifelse(test, yes, no)

Arguments
test an object which can be coerced to logical mode.
yes return values for true elements of test.

no return values for false elements of test.

ifelse 295

Details
If yes or no are too short, their elements are recycled. yes will be evaluated if and only if any
element of test is true, and analogously for no.

Missing values in test give missing values in the result.

Value

A vector of the same length and attributes (including dimensions and "class") as test and data
values from the values of yes or no. The mode of the answer will be coerced from logical to
accommodate first any values taken from yes and then any values taken from no.

Warning

The mode of the result may depend on the value of test (see the examples), and the class attribute
(see o1dClass) of the result is taken from test and may be inappropriate for the values selected
from yes and no.

Sometimes it is better to use a construction such as
(tmp <- yes; tmp['!test] <- no[!test]; tmp)

, possibly extended to handle missing values in test.

Further note that if (test) yes else no is much more efficient and often much prefer-
able to ifelse (test, yes, no) whenever test is a simple true/false result, i.e., when
length (test) ==

The srcref attribute of functions is handled specially: if test is a simple true result and yes
evaluates to a function with srcref attribute, i felse returns yes including its attribute (the
same applies to a false test and no argument). This functionality is only for backwards compati-
bility, the form i f (test) yes else no should be used whenever yes and no are functions.

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also
if.

Examples

X <= c(6:-4)
sqrt (x) #- gives warning
sgrt (ifelse(x >= 0, x, NA)) # no warning

Note: the following also gives the warning !
ifelse(x >= 0, sqgrt(x), NA)

ifelse() strips attributes

296 integer

This is important when working with Dates and factors

x <- seqg(as.Date("2000-02-29"), as.Date("2004-10-04"), by = "1 month")

has many "yyyy-mm-29", but a few "yyyy-03-01" in the non-leap years

y <- ifelse(as.POSIX1lt (x)Smday == 29, x, NA)

head(y) # not what you expected ... ==> need restore the class attribute:
class (y) <- class(x)

Y

This is a (not atypical) case where it is better xnotx to use ifelse(),
but rather the more efficient and still clear:

y2 <- x
y2[as.POSIX1lt (x) $Smday != 29] <- NA
which gives the same as ifelse()+class () hack:

stopifnot (identical (y2, vy))

example of different return modes (and 'test' alone determining length):
yes <—- 1:3

no <- pi~(1l:4)

utils::str(ifelse (NA, yes, no)) # logical, length 1
utils::str(ifelse(TRUE, yes, no)) # integer, length 1
utils::str(ifelse (FALSE, yes, no)) # double, length 1

integer Integer Vectors

Description

Creates or tests for objects of type "integer™".

Usage

integer (length = 0)
as.integer (x,)
is.integer (x)

Arguments
length A non-negative integer specifying the desired length. Double values will be
coerced to integer: supplying an argument of length other than one is an error.
X object to be coerced or tested.
ce further arguments passed to or from other methods.
Details

Integer vectors exist so that data can be passed to C or Fortran code which expects them, and so that
(small) integer data can be represented exactly and compactly.

Note that current implementations of R use 32-bit integers for integer vectors, so the range of
representable integers is restricted to about +2 x 10°: doubles can hold much larger integers
exactly.

integer 297

Value

integer creates a integer vector of the specified length. Each element of the vector is equal to O.

as.integer attempts to coerce its argument to be of integer type. The answer will be NA unless
the coercion succeeds. Real values larger in modulus than the largest integer are coerced to NA
(unlike S which gives the most extreme integer of the same sign). Non-integral numeric values are
truncated towards zero (i.e., as.integer (x) equals trunc (x) there), and imaginary parts of
complex numbers are discarded (with a warning). Character strings containing optional whitespace
followed by either a decimal representation or a hexadecimal representation (starting with 0x or
0X) can be converted, as well as any allowed by the platform for real numbers. Like as.vector
it strips attributes including names. (To ensure that an object x is of integer type without stripping
attributes, use storage .mode (x) <- "integer".)

is.integer returns TRUE or FALSE depending on whether its argument is of integer type or
not, unless it is a factor when it returns FALSE.

Note

is.integer (x) does not test if x contains integer numbers! For that, use round, as in the
function is.wholenumber (x) in the examples.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

numeric, storage.mode.

round (and ceiling and f1loor on that help page) to convert to integral values.

Examples

as.integer () truncates:
X <= pi x c(-1:1, 10)
as.integer (x)

is.integer(l) # is FALSE !

is.wholenumber <-
function(x, tol = .MachineS$double.eps”0.5) abs(x - round(x)) < tol
is.wholenumber (1) # is TRUE
(x <- seq(l, 5, by = 0.5))
is.wholenumber(x) #-—-> TRUE FALSE TRUE

298 interaction

interaction Compute Factor Interactions

Description

interaction computes a factor which represents the interaction of the given factors. The result
of interaction is always unordered.

Usage
interaction(..., drop = FALSE, sep = ".", lex.order = FALSE)
Arguments
the factors for which interaction is to be computed, or a single list giving those
factors.
drop if drop is TRUE, unused factor levels are dropped from the result. The default
is to retain all factor levels.
sep string to construct the new level labels by joining the constituent ones.
lex.order logical indicating if the order of factor concatenation should be lexically or-
dered.
Value

A factor which represents the interaction of the given factors. The levels are labelled as the levels
of the individual factors joined by sep which is . by default.

By default, when 1lex .order = FALSE, the levels are ordered so the level of the first factor varies
fastest, then the second and so on. This is the reverse of lexicographic ordering (which you can get
by lex.order = TRUE), and differs from :. (It is done this way for compatibility with S.)

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth & Brooks/Cole.

See Also

factor; : where f:qgis similar to interaction (f, g, sep=":") when f and g are fac-
tors.

Examples

a <- gl(2, 4, 8)
b <- gl(2, 2, 8, labels = c("ctrl", "treat"))
s <- gl(2, 1, 8, labels = c("M", "F"))
interaction(a, b)

interaction(a, b, s, sep = ":")

stopifnot (identical (a:s,

interactive 299

interaction(a, s, sep = ":", lex.order = TRUE)),
identical (a:s:b,
interaction(a, s, b, sep = ":", lex.order = TRUE)))
interactive Is R Running Interactively?

Description

Return TRUE when R is being used interactively and FALSE otherwise.

Usage

interactive ()

Details

An interactive R session is one in which it is assumed that there is a human operator to interact
with, so for example R can prompt for corrections to incorrect input or ask what to do next or if it
is OK to move to the next plot.

GUI consoles will arrange to start R in an interactive session. When R is run in a terminal
(via Rterm.exe on Windows), it assumes that it is interactive if ‘stdin’ is connected to a
(pseudo-)terminal and not if ‘stdin’ is redirected to a file or pipe. Command-line options
‘~—interactive’ (Unix) and ‘—-ess’ (Windows, Rterm. exe) override the default assump-
tion. (On a Unix-alike, whether the readl ine command-line editor is used is not overridden by
‘——interactive’))

Embedded uses of R can set a session to be interactive or not.
Internally, whether a session is interactive determines
* how some errors are handled and reported, eg. see stop and
options ("showWarnCalls").

 whether one of ‘--save’, ‘~—no-save’ or ‘-—vanilla’ is required, and if R ever asks
whether to save the workspace.

 the choice of default graphics device launched when needed and by dev.new: see
options ("device")

» whether graphics devices ever ask for confirmation of a new page.

In addition, R’s own R code makes use of interactive () : for example help, debugger and
install.packages do.

Note

This is a primitive function.

See Also

source, .First

300 InternalMethods

Examples
.First <- function() if (interactive()) =x11()
Internal Call an Internal Function
Description

.Internal performs a call to an internal code which is built in to the R interpreter.

Only true R wizards should even consider using this function, and only R developers can add to the
list of internal functions.

Usage

.Internal (call)

Arguments

call a call expression

See Also

.Primitive, .External (the nearest equivalent available to users).

InternalMethods Internal Generic Functions

Description

Many R-internal functions are generic and allow methods to be written for.

Details

The following primitive and internal functions are generic, i.e., you can write methods for them:

$<_3
length,
length<-,

InternalMethods 301

lengths,
dimnames,
dimnames<-,
dim,

dim<-—,

names,

names<-,
levels<—,

@<-,

c,

unlist, cbind, rbind,
as.character,
as.complex,
as.double,
as.integer,
as.logical,
as.raw,
as.vector,
as.call,
as.environment
is.array,
is.matrix,
is.na,

anyNA,

is.nan,
is.finite
is.infinite
is.numeric,
nchar

rep,

rep.int
rep_len
seq.int (which dispatches methods for "seq"),
is.unsorted and
xtfrm

In addition, is.name is a synonym for is.symbol and dispatches methods for the latter. Simi-
larly, as.numeric is a synonym for as.double and dispatches methods for the latter, i.e., S3
methods are for as . double, whereas S4 methods are to be written for as .numeric.

302 invisible

Note that all of the group generic functions are also internal/primitive and allow methods to be
written for them.

.S3PrimitiveGenerics is a character vector listing the primitives which are internal generic
and not group generic. Currently as.vector, cbind, rbind and unlist are the internal
non-primitive functions which are internally generic.

For efficiency, internal dispatch only occurs on objects, that is those for which is.object returns
true.

See Also

methods for the methods which are available.

invisible Change the Print Mode to Invisible

Description

Return a (temporarily) invisible copy of an object.

Usage

invisible (x)

Arguments

x an arbitrary R object.

Details

This function can be useful when it is desired to have functions return values which can be assigned,
but which do not print when they are not assigned.

This is a primitive function.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

withVisible, return, function.

Examples

These functions both return their argument
fl <- function(x) x

f2 <- function(x) 1invisible (x)

f1(1) # prints

f2(1) # does not

is.finite 303

is.finite Finite, Infinite and NaN Numbers

Description

is.finite and is.infinite return a vector of the same length as x, indicating which ele-
ments are finite (not infinite and not missing) or infinite.

Inf and —Inf are positive and negative infinity whereas NaN means ‘Not a Number’. (These
apply to numeric values and real and imaginary parts of complex values but not to values of integer
vectors.) Inf and NaN are reserved words in the R language.

Usage

is.finite (x)
is.infinite (x)
is.nan (x)

Inf
NaN

Arguments

X R object to be tested: the default methods handle atomic vectors.

Details

is.finite returns a vector of the same length as x the jth element of which is TRUE if x []
is finite (i.e., it is not one of the values NA, NaN, Inf or —Inf) and FALSE otherwise. Complex
numbers are finite if both the real and imaginary parts are.

is.infinite returns a vector of the same length as x the jth element of which is TRUE if x []
is infinite (i.e., equal to one of Inf or —Inf) and FALSE otherwise. This will be false unless x is
numeric or complex. Complex numbers are infinite if either the real or the imaginary part is.

is.nan tests if a numeric value is NaN. Do not test equality to NaN, or even use identical,
since systems typically have many different NaN values. One of these is used for the numeric
missing value NA, and is.nan is false for that value. A complex number is regarded as NaN if
either the real or imaginary part is NaN but not NA. All elements of logical, integer and raw vectors
are considered not to be NaN.

All three functions accept NULL as input and return a length zero result. The default methods accept
character and raw vectors, and return FALSE for all entries. Prior to R version 2.14.0 they accepted
all input, returning FALSE for most non-numeric values; cases which are not atomic vectors are
now signalled as errors.

All three functions are generic: you can write methods to handle specific classes of objects, see
InternalMethods.

304 is.finite

Value

A logical vector of the same length as x: dim, dimnames and names attributes are preserved.

Note

In R, basically all mathematical functions (including basic Arithmetic), are supposed to work
properly with +/- Inf and NaN as input or output.

The basic rule should be that calls and relations with Infs really are statements with a proper
mathematical limit.

Computations involving NaN will return NaN or perhaps NA: which of those two is not guaranteed
and may depend on the R platform (since compilers may re-order computations).

References
The IEC 60559 standard, also known as the ANSI/IEEE 754 Floating-Point Standard.
https://en.wikipedia.org/wiki/NaN.

D. Goldberg (1991). What Every Computer Scientist Should Know about Floating-Point Arith-
metic. ACM Computing Surveys, 23(1), 5-48. doi:10.1145/103162.103163.

Also available at https://docs.oracle.com/cd/E19957-01/806-3568/ncg_
goldberg.html.

The C99 function isfiniteisused for is.finite.

See Also

NA, ‘Not Available’ which is not a number as well, however usually used for missing values and
applies to many modes, not just numeric and complex.

Arithmetic, double.

Examples

pi / O ## = Inf a non-zero number divided by zero creates infinity
0/ 0 ## = NaN

1/0 + 1/0 # Inf
1/0 - 1/0 # NaN

stopifnot (
1/0 == Inf,
1/Inf == 0
)
sin (Inf)
cos (Inf)

tan (Inf)

https://en.wikipedia.org/wiki/NaN
https://doi.org/10.1145/103162.103163
https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html

is.function 305

is.function Is an Object of Type (Primitive) Function?

Description

Checks whether its argument is a (primitive) function.

Usage
is.function (x)
is.primitive (x)

Arguments

x an R object.

Details
is.primitive (x) tests if x is a primitive function, i.e, if typeof (x) is either "builtin"
or "special".

Value

TRUE if x is a (primitive) function, and FALSE otherwise.

Examples

is.function (1) # FALSE

is.function (is.primitive) # TRUE: it is a function, but

is.primitive(is.primitive) # FALSE: it's not a primitive one, whereas
(

is.primitive (is.function) # TRUE: that one xisx
is.language Is an Object a Language Object?
Description

is.language returns TRUE if x is a variable name, a call, or an expression.

Usage

is.language (x)

Arguments

X object to be tested.

306 is.object

Note

A name is also known as ‘symbol’, from its type (t ypeof), see is.symbol.

If typeof (x) == "language", then is.language (x) is always true, but the reverse does
not hold as expressions or names y also fulfill is.language (y), see the examples.

This is a primitive function.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Examples

11 <= list(a = expression(x”2 - 2xx + 1), b = as.name("Jim"),
c = as.expression(exp(l)), d = call("sin", pi))

sapply (11, typeof)

sapply (11, mode)

stopifnot (sapply(ll, is.language))

is.object Is an Object ‘internally classed’?

Description

A function rather for internal use. It returns TRUE if the object x has the R internal OBJECT bit set,
and FALSE otherwise. The OBJECT bit is set when a "class" attribute is added and removed
when that attribute is removed, so this is a very efficient way to check if an object has a class
attribute. (S4 objects always should.)

Usage

is.object (x)

Arguments

X object to be tested.

Note

This is a primitive function.

See Also

class, and methods.

isS4.

is.R 307

Examples

is.object (1) # FALSE
is.object (as.factor(1:3)) # TRUE

is.R Are we using R, rather than S?

Description

Test if running under R.

Usage

is.R()

Details

The function has been written such as to correctly run in all versions of R, S and S-PLUS. In order
for code to be runnable in both R and S dialects previous to S-PLUS 8.0, your code must either
define is.R or use it as

if (exists ("is.R") && is.function(is.R) && is.R()) {

R-specific code

} else {

S-version of code

}

Value

is.Rreturns TRUE if we are using R and FALSE otherwise.

See Also

R.version, system.

Examples

x <- stats::runif (20); small <- x < 0.4

In the early years of R, 'which()' only existed in R:
if(is.R()) which(small) else seqg(along = small) [small]

308

is.recursive

is.recursive

Is an Object Atomic or Recursive?

Description

is.atomic returns TRUE if x is of an atomic type (or NULL) and FALSE otherwise.

is.recursive returns TRUE if x has a recursive (list-like) structure and FALSE otherwise.

Usage

is.atomic (x)

is.recursive (x)

Arguments
X object to be tested.
Details
is.atomic is true for the atomic types ("logical", "integer", "numeric",

"complex", "character" and "raw") and NULL.

Most types of objects are regarded as recursive. Exceptions are the atomic types, NULL, symbols (as
given by as.name), S4 objects with slots, external pointers, and—rarely visible from R—weak
references and byte code, see typeof.

It is common to call the atomic types ‘atomic vectors’, but note that i s .vector imposes further
restrictions: an object can be atomic but not a vector (in that sense).

These are primitive functions.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

is.list, is.language, etc, and the demo ("is.things™").

Examples

require (stats)

is.a.r <- function (x)

is.
is.
is.
is.

a
a.
a
a

He o o

c(is.atomic(x), is.recursive (x))

TRUE FALSE
FALSE TRUE - a list is a list
FALSE TRUE
FALSE TRUE

is.single 309

is.a.r(y ~ x) # FALSE TRUE
is.a.r(expression(x+1l)) # FALSE TRUE
is.a.r (quote (exp)) # FALSE FALSE
is.single Is an Object of Single Precision Type?
Description

is.single reports an error. There are no single precision values in R.

Usage

is.single (x)

Arguments

X object to be tested.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

is.unsorted Test if an Object is Not Sorted

Description

Test if an object is not sorted (in increasing order), without the cost of sorting it.

Usage

is.unsorted(x, na.rm = FALSE, strictly = FALSE)

Arguments
X an R object with a class or a numeric, complex, character, logical or raw vector.
na.rm logical. Should missing values be removed before checking?
strictly logical indicating if the check should be for strictly increasing values.

Details

is.unsorted is generic: you can write methods to handle specific classes of objects, see Inter-
nalMethods.

310 ISOdatetime

Value

A length-one logical value. All objects of length 0 or 1 are sorted. Otherwise, the result will be
NA except for atomic vectors and objects with an S3 class (where the >= or > method is used to
compare x [1] with x[i-1] for 1 in 2:1length (x)) or with an S4 class where you have to
provide a method for is.unsorted ().

Note

This function is designed for objects with one-dimensional indices, as described above. Data
frames, matrices and other arrays may give surprising results.

See Also

sort, order.

ISOdatetime Date-time Conversion Functions from Numeric Representations

Description

Convenience wrappers to create date-times from numeric representations.

Usage

ISOdatetime (year, month, day, hour, min, sec, tz = "")

ISOdate (year, month, day, hour = 12, min = 0, sec = 0, tz = "GMI")
Arguments

year, month, day
numerical values to specify a day.

hour, min, sec
numerical values for a time within a day. Fractional seconds are allowed.

tz A time zone specification to be used for the conversion. "" is the current time
zone and "GMT" is UTC. Invalid values are most commonly treated as UTC, on
some platforms with a warning.

Details

ISOdatetime and ISOdate are convenience wrappers for st rpt ime that differ only in their
defaults and that ISOdate sets UTC as the time zone. For dates without times it would normally
be better to use the "Date" class.

The main arguments will be recycled using the usual recycling rules.

Because these make use of st rpt ime, only years in the range 0: 9999 are accepted.

sS4 311

Value

An object of class "POSIXct".

See Also
DateTimeClasses for details of the date-time classes; st rpt ime for conversions from character
strings.
isS4 Test for an S4 object
Description

Tests whether the object is an instance of an S4 class.

Usage

isS4 (object)

asS4 (object, flag TRUE, complete TRUE)
asS3 (object, flag = TRUE, complete = TRUE)

Arguments
object Any R object.
flag Optional, logical: indicate direction of conversion.
complete Optional, logical: whether conversion to S3 is completed. Not usually needed,
but see the details section.
Details

Note that isS4 does not rely on the methods package, so in particular it can be used to detect the
need to require that package.

asS3 uses the value of complete to control whether an attempt is made to transform object
into a valid object of the implied S3 class. If complete is TRUE, then an object from an S4 class
extending an S3 class will be transformed into an S3 object with the corresponding S3 class (see
S3Part). This includes classes extending the pseudo-classes array and matrix: such objects
will have their class attribute set to NULL.

isS4 is primitive.

Value

isS4 always returns TRUE or FALSE according to whether the internal flag marking an S4 object
has been turned on for this object.

asS4 and asS3 will turn this flag on or off, and asS3 will set the class from the objects
.S3Class slot if one exists. Note that asS3 will not turn the object into an S3 object unless
there is a valid conversion; that is, an object of type other than "S4" for which the S4 object is an
extension, unless argument complete is FALSE.

312 isSymmetric

See Also

is.object for a more general test; Introduction for general information on S4; Classes_Details
for more on S4 class definitions.

Examples

isS4 (pi) # FALSE

isS4 (getClass ("MethodDefinition")) # TRUE
isSymmetric Test if a Matrix or other Object is Symmetric (Hermitian)
Description

Generic function to test if object is symmetric or not. Currently only a matrix method is imple-
mented, where a complex matrix Z must be “Hermitian” for i sSymmetric (Z) to be true.

Usage

isSymmetric (object, ...)
S3 method for class 'matrix'
isSymmetric(object, tol = 100 x .MachineS$double.eps,

toll = 8 % tol, ...)
Arguments
object any R object; a mat rix for the matrix method.
tol numeric scalar >= 0. Smaller differences are not considered, see
all.equal.numeric.
toll numeric scalar >= 0. isSymmetric.matrix () ‘pre-tests’ the first and last
few rows for fast detection of ‘obviously’ asymmetric cases with this tolerance.
Setting it to length zero will skip the pre-tests.
further arguments passed to methods; the matrix method passes these to
all.equal. If the row and column names of object are allowed to differ
for the symmetry check do use check.attributes = FALSE!
Details

The mat rix method is used inside eigen by default to test symmetry of matrices up fo rounding
error, using all.equal. It might not be appropriate in all situations.

Note that a matrix m is only symmetric if its rownames and colnames are identical. Consider
using unname (m) .

Value

logical indicating if object is symmetric or not.

Jjitter 313

See Also

eigen which calls i sSymmetric when its symmet ric argument is missing.

Examples

isSymmetric (D3 <- diag(3)) # -> TRUE

D3[2, 1] <- 1le-100

D3

isSymmetric (D3) # TRUE

isSymmetric (D3, tol = 0) # FALSE for zero-tolerance

Complex Matrices - Hermitian or not

7 <— sqgrt (matrix(-1:2 + 0i, 2)); Z <- t(Conj(Z)) %*% Z

Z

isSymmetric (Z) # TRUE

isSymmetric(Z + 1) # TRUE

isSymmetric(Z + 1i) # FALSE -- a Hermitian matrix has a xrealx diagonal

colnames (D3) <- c("X", "y",6 "z")
isSymmetric (D3) # FALSE (as row and column names differ)
isSymmetric (D3, check.attributes=FALSE) # TRUE (as names are not checked)

jitter Jitter’ (Add Noise) to Numbers

Description

Add a small amount of noise to a numeric vector.

Usage

jitter (x, factor = 1, amount = NULL)

Arguments
b numeric vector to which jitter should be added.
factor numeric.
amount numeric; if positive, used as amount (see below), otherwise, if = 0 the default is

factor x z/50.

Default (NULL): factor » d/5 where d is about the smallest difference be-
tween x values.

314 kappa

Details

The result, say r,is r <- x + runif (n, —a, a) wheren <- length (x) and a is the amount
argument (if specified).

Let z <- max (x) —min (x) (assuming the usual case). The amount a to be added is either pro-
vided as positive argument amount or otherwise computed from z, as follows:

If amount == 0, we set a <— factor x z/50 (same as S).

If amount is NULL (default), we set a <— factor = d/5 where d is the smallest difference
between adjacent unique (apart from fuzz) x values.

Value
jitter (x, ...) returns a numeric of the same length as x, but with an amount of noise added
in order to break ties.

Author(s)

Werner Stahel and Martin Maechler, ETH Zurich

References

Chambers, J. M., Cleveland, W. S., Kleiner, B. and Tukey, P.A. (1983) Graphical Methods for Data
Analysis. Wadsworth; figures 2.8, 4.22, 5.4.

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth & Brooks/Cole.

See Also

rug which you may want to combine with jitter.

Examples

round (jitter (c(rep(l, 3), rep(l.2, 4), rep(3, 3))), 3)
These two 'fail' with S-plus 3.x:

jitter (rep (0, 7))

jitter (rep (10000, 5))

kappa Compute or Estimate the Condition Number of a Matrix

Description
The condition number of a regular (square) matrix is the product of the norm of the matrix and the
norm of its inverse (or pseudo-inverse), and hence depends on the kind of matrix-norm.

kappa () computes by default (an estimate of) the 2-norm condition number of a matrix or of the
R matrix of a QR decomposition, perhaps of a linear fit. The 2-norm condition number can be
shown to be the ratio of the largest to the smallest non-zero singular value of the matrix.

rcond () computes an approximation of the reciprocal condition number, see the details.

kappa 315

Usage

kappa(z, ...)
Default S3 method:
kappa(z, exact = FALSE,
norm = NULL, method = c("gr", "direct"), ...)
S3 method for class 'lm'

kappa(z, ...)
S3 method for class 'qr'
kappa(z, ...)

.kappa_tri(z, exact = FALSE, LINPACK = TRUE, norm = NULL, ...)

rcond(x, norm = c("Oo","1I","1"), triangular = FALSE, ...)
Arguments
z, X A matrix or a the result of gr or a fit from a class inheriting from "1m".
exact logical. Should the result be exact?
norm character string, specifying the matrix norm with respect to which the condition

number is to be computed, see also norm. For rcond, the default is "O",
meaning the One- or 1-norm. The (currently only) other possible value is "I"
for the infinity norm.

method a partially matched character string specifying the method to be used; "gr" is
the default for back-compatibility, mainly.

triangular logical. If true, the matrix used is just the lower triangular part of z.

LINPACK logical. If true and z is not complex, the LINPACK routine dtrco () is called;
otherwise the relevant LAPACK routine is.

further arguments passed to or from other methods; for kappa. * (), notably
LINPACK when normisnot "2".

Details

For kappa (), if exact = FALSE (the default) the 2-norm condition number is estimated by a
cheap approximation. However, the exact calculation (via svd) is also likely to be quick enough.

Note that the 1- and Inf-norm condition numbers are much faster to calculate, and rcond () com-
putes these reciprocal condition numbers, also for complex matrices, using standard LAPACK rou-
tines.

kappa and rcond are different interfaces to partly identical functionality.
.kappa_tri is an internal function called by kappa . qr and kappa.default.

Unsuccessful results from the underlying LAPACK code will result in an error giving a positive
error code: these can only be interpreted by detailed study of the FORTRAN code.

Value

The condition number, kappa, or an approximation if exact = FALSE.

316 kronecker

Author(s)

The design was inspired by (but differs considerably from) the S function of the same name de-
scribed in Chambers (1992).

Source

The LAPACK routines DTRCON and ZTRCON and the LINPACK routine DTRCO.

LAPACK and LINPACK are from https://www.netlib.org/lapack/ and https://
www.netlib.org/linpack/ and their guides are listed in the references.

References

Anderson. E. and ten others (1999) LAPACK Users’ Guide. Third Edition. SIAM.
Available on-line at https://www.netlib.org/lapack/lug/lapack_lug.html.

Chambers, J. M. (1992) Linear models. Chapter 4 of Statistical Models in S eds J. M. Chambers
and T. J. Hastie, Wadsworth & Brooks/Cole.

Dongarra, J. J., Bunch, J. R., Moler, C. B. and Stewart, G. W. (1978) LINPACK Users Guide.
Philadelphia: STAM Publications.

See Also

norm; svd for the singular value decomposition and gr for the QR one.

Examples

kappa (x1 <= cbind (1, 1:10)) # 15.71
kappa (x1, exact = TRUE) # 13.68
kappa (x2 <- cbind(x1l, 2:11)) # high! [x2 is singular!]

hilbert <- function(n) { i <- 1:n; 1 / outer(i - 1, i, ~+7) }

sv9 <- svd(h9 <- hilbert(9))$ d

kappa (h9) # pretty high!

kappa (h9, exact = TRUE) == max(sv9) / min(sv9)

kappa (h9, exact = TRUE) / kappa (h9) # 0.677 (i.e., rel.error = 32%)

kronecker Kronecker Products on Arrays

Description

Computes the generalised kronecker product of two arrays, X and Y.

Usage

kronecker (X, Y, FUN = "x", make.dimnames = FALSE, ...)
X %$x% Y

https://www.netlib.org/lapack/
https://www.netlib.org/linpack/
https://www.netlib.org/linpack/
https://www.netlib.org/lapack/lug/lapack_lug.html

kronecker 317

Arguments
X A vector or array.
Y A vector or array.
FUN a function; it may be a quoted string.

make.dimnames
Provide dimnames that are the product of the dimnames of X and Y.

optional arguments to be passed to FUN.

Details

If X and Y do not have the same number of dimensions, the smaller array is padded with dimensions
of size one. The returned array comprises submatrices constructed by taking X one term at a time
and expanding that term as FUN (x, Y, ...).

%$x% is an alias for kronecker (where FUN is hardwired to "+ ").

Value

An array A with dimensions dim (X) = dim(Y).

Author(s)

Jonathan Rougier

References

Shayle R. Searle (1982) Matrix Algebra Useful for Statistics. John Wiley and Sons.

See Also

outer, on which kronecker is built and %% for usual matrix multiplication.

Examples

simple scalar multiplication
(M <- matrix(l:6, ncol = 2))
kronecker (4, M)

Block diagonal matrix:
kronecker (diag(1l, 3), M)

ask for dimnames
fred <- matrix(1:12, 3, 4, dimnames = 1list (LETTERS[1:3], LETTERS[4:7]))

bill <- c("happy" = 100, "sad" = 1000)
kronecker (fred, bill, make.dimnames = TRUE)

bill <- outer(bill, c("cat" = 3, "dog" = 4))
kronecker (fred, bill, make.dimnames = TRUE)

318 110n_info

110n_info Localization Information

Description

Report on localization information.

Usage

110n_info ()

Details

‘A Latin-1 locale’ includes supersets (for printable characters) such as Windows codepage 1252 but
not Latin-9 (ISO 8859-15).

On Windows (where the resulting list contains codepage and system. codepage components
additionally), common codepages are 1252 (Western European), 1250 (Central European), 1251
(Cyrillic), 1253 (Greek), 1254 (Turkish), 1255 (Hebrew), 1256 (Arabic), 1257 (Baltic), 1258 (Viet-
namese), 874 (Thai), 932 (Japanese), 936 (Simplified Chinese), 949 (Korean) and 950 (Traditional
Chinese). Codepage 28605 is Latin-9 and 65001 is UTF-8 (where supported). R does not allow the
C locale, and uses 1252 as the default codepage.

Value

A list with three logical elements and further OS-specific elements:

MBCS If a multi-byte character set in use?
UTF-8 Is this known to be a UTF-8 locale?
Latin-1 Is this known to be a Latin-1 locale?

Not on Windows:

codeset character. The encoding name as reported by the OS, possibly "". (Added in R
4.1.0. Encoding names are OS-specific.)

Only on Windows:

codepage integer: the Windows codepage corresponding to the locale R is using (and not

necessarily that Windows is using).
system.codepage
integer: the Windows system/ANSI codepage (the codepage Windows is using).
Added in R 4.1.0.
See Also

Sys.getlocale, localeconv

Examples

110n_info ()

labels 319

labels Find Labels from Object

Description

Find a suitable set of labels from an object for use in printing or plotting, for example. A generic
function.

Usage

labels (object, ...)

Arguments
object Any R object: the function is generic.
further arguments passed to or from other methods.
Value

A character vector or list of such vectors. For a vector the results is the names or seq_along (x)
and for a data frame or array it is the dimnames (with NULL expanded to seq_len (d[i])).

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth & Brooks/Cole.

lapply Apply a Function over a List or Vector

Description

lapply returns a list of the same length as X, each element of which is the result of applying FUN
to the corresponding element of X.

sapply is a user-friendly version and wrapper of lapply by default returning a vector, ma-
trix or, if simplify = "array", an array if appropriate, by applying simplify2array ().
sapply (x, £, simplify = FALSE, USE.NAMES = FALSE) is the same as lapply (x,
f).

vapply is similar to sapply, but has a pre-specified type of return value, so it can be safer (and
sometimes faster) to use.

replicate is a wrapper for the common use of sapply for repeated evaluation of an expression
(which will usually involve random number generation).

simplify2array () is the utility called from sapply () when simplify is not false and is
similarly called from mapply ().

320

Usage

lapply

lapply (X, FUN, ...)

sapply (X, FUN, ..., simplify = TRUE, USE.NAMES = TRUE)

vapply (X, FUN, FUN.VALUE, ..., USE.NAMES = TRUE)

replicate (n,

expr, simplify = "array")

simplify2array(x, higher = TRUE, except = c (0L, 1L))

Arguments

X

FUN

simplify

USE.NAMES

FUN.VALUE
n

expr

higher

except

Details

a vector (atomic or list) or an expression object. Other objects (including
classed objects) will be coerced by base: :as.list.

the function to be applied to each element of X: see ‘Details’. In the case of
functions like +, %+ %, the function name must be backquoted or quoted.

optional arguments to FUN.

logical or character string; should the result be simplified to a vector, matrix or
higher dimensional array if possible? For sapply it must be named and not
abbreviated. The default value, TRUE, returns a vector or matrix if appropri-
ate, whereas if simplify = "array" the result may be an array of “rank”
(=length (dim(.))) one higher than the result of FUN (X[[1]]).

logical; if TRUE and if X is character, use X as names for the result unless it had
names already. Since this argument follows . . . its name cannot be abbreviated.

a (generalized) vector; a template for the return value from FUN. See ‘Details’.
integer: the number of replications.

the expression (a language object, usually a call) to evaluate repeatedly.

a list, typically returned from lapply ().

logical; if true, simplify2array () will produce a (“higher rank™) array
when appropriate, whereas higher = FALSE would return a matrix (or vector)
only. These two cases correspond to sapply (*, simplify = "array") or
simplify = TRUE, respectively.

integer vector or NULL; the default ¢ (0L, 1L) corresponds to the exceptions
used by sapply: a list with elements of common length O or 1 is not simplified
to an array but is returned, respectively, as is or unlisted. These exceptions can
be disabled by specifying only a subset of 0: 1, or NULL to always simplify to
an array (if possible).

FUN is found by a call to match. fun and typically is specified as a function or a symbol (e.g., a
backquoted name) or a character string specifying a function to be searched for from the environ-
ment of the call to Lapply.

lapply 321

Function FUN must be able to accept as input any of the elements of X. If the latter is an atomic
vector, FUN will always be passed a length-one vector of the same type as X.

Arguments in . .. cannot have the same name as any of the other arguments, and care may be
needed to avoid partial matching to FUN. In general-purpose code it is good practice to name the
first two arguments X and FUN if . . . is passed through: this both avoids partial matching to FUN
and ensures that a sensible error message is given if arguments named X or FUN are passed through

Simplification in sapply is only attempted if X has length greater than zero and if the return values
from all elements of X are all of the same (positive) length. If the common length is one the result
is a vector, and if greater than one is a matrix with a column corresponding to each element of X.

Simplification is always done in vapply. This function checks that all values of FUN are compati-
ble with the FUN . VALUE, in that they must have the same length and type. (Types may be promoted
to a higher type within the ordering logical < integer < double < complex, but not demoted.)

Users of S4 classes should pass a list to lapply and vapply: the internal coercion is done by the
as.list in the base namespace and not one defined by a user (e.g., by setting S4 methods on the
base function).

Value

For lapply, sapply (simplify = FALSE) and replicate (simplify = FALSE), a list.

For sapply (simplify = TRUE) and replicate (simplify = TRUE) : if X has length zero
or n = 0, an empty list. Otherwise an atomic vector or matrix or list of the same length as X (of
length n for replicate). If simplification occurs, the output type is determined from the highest
type of the return values in the hierarchy NULL < raw < logical < integer < double < complex <
character < list < expression, after coercion of pairlists to lists.

vapply returns a vector or array of type matching the FUN.VALUE. If length (FUN.VALUE)
== 1 a vector of the same length as X is returned, otherwise an array. If FUN.VALUE is not
an array, the result is a matrix with length (FUN.VALUE) rows and length (X) columns,
otherwise an array a with dim (a) == ¢ (dim (FUN.VALUE), length (X)).

The (Dim)names of the array value are taken from the FUN . VALUE if it is named, otherwise from
the result of the first function call. Column names of the matrix or more generally the names of the
last dimension of the array value or names of the vector value are set from X as in sapply.

Note

sapply (*, simplify = FALSE, USE.NAMES = FALSE) is equivalent to lapply (*).

For historical reasons, the calls created by 1apply are unevaluated, and code has been written (e.g.,
bqguote) that relies on this. This means that the recorded call is always of the form FUN (X[[1]1],
...), with i replaced by the current (integer or double) index. This is not normally a problem,
but it can be if FUN uses sys.call or match.call orif it is a primitive function that makes
use of the call. This means that it is often safer to call primitive functions with a wrapper, so
that e.g. lapply (11, function(x) is.numeric (x)) is required to ensure that method
dispatch for is.numeric occurs correctly.

If expr is a function call, be aware of assumptions about where it is evaluated, and in particular
what . . . might refer to. You can pass additional named arguments to a function call as additional
named arguments to replicate: see ‘Examples’.

322 Last.value

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

apply, tapply, mapply for applying a function to multiple arguments, and rapply for
a recursive version of lapply (), eapply for applying a function to each entry in an
environment.

Examples

require (stats); require (graphics)

x <- list(a = 1:10, beta = exp(-3:3), logic = c(TRUE,FALSE,FALSE, TRUE))
compute the list mean for each list element

lapply (x, mean)

median and quartiles for each list element

lapply (x, quantile, probs = 1:3/4)

sapply (x, quantile)

139 <- sapply(3:9, seq) # list of vectors

sapply (139, fivenum)

vapply (139, fivenum,

c(Min. = 0, "l1st Qu." = 0, Median = 0, "3rd Qu." = 0, Max. = 0))
sapply(*, "array") -- artificial example
(v <= structure (10%(5:8), names = LETTERS[1:4]))
f2 <- function(x, y) outer(rep(x, length.out = 3), vy)
(a2 <- sapply(v, f2, y = 2%(1:5), simplify = "array"))
a.z2 <- vapply(v, f2, outer(1:3, 1:5), yv = 2x(1:5))
stopifnot (dim(a2) == c(3,5,4), all.equal (a2, a.2),

identical (dimnames (a2), list (NULL,NULL,LETTERS[1:41)))
hist (replicate (100, mean (rexp(10))))

use of replicate() with parameters:

foo <- function(x =1, y = 2) c(x, Vy)

does not work: bar <- function(n, ...) replicate(n, foo(...))
bar <- function(n, x) replicate(n, foo(x = x))

bar (5, x = 3)

Last.value Value of Last Evaluated Expression

Description

The value of the internal evaluation of a top-level R expression is always assigned to
.Last .value (in package :base) before further processing (e.g., printing).

La_library 323

Usage

.Last.value

Details

The value of a top-level assignment is putin . Last .value, unlike S.

Do not assign to . Last . value in the workspace, because this will always mask the object of the
same name in package :base.

See Also

eval

Examples

These will not work correctly from example(),

but they will in make check or if pasted in,

as example () does not run them at the top level

gamma (1:15) # think of some intensive calculation...
facl4 <- .Last.value # keep them

library ("splines") # returns invisibly
.Last.value # shows what library(.) above returned
La_library LAPACK Library
Description

Report the name of the shared object file with LAPACK implementation in use.

Usage

La_library ()

Value

A character vector of length one ("" when the name is not known). The value can be used as an
indication of which LAPACK implementation is in use. Typically, the R version of LAPACK will
appear as 1ibRlapack.so (1ibRlapack.dylib), depending on how R was built. Note that
libRlapack.so (1ibRlapack.dylib) may also be shown for an external LAPACK imple-
mentation that had been copied, hard-linked or renamed by the system administrator. Otherwise,
the shared object file will be given and its path/name may indicate the vendor/version.

The detection does not work on Windows, nor for the Accelerate framework on macOS, nor in the
rare case of a static external library.

It is possible to build R against an enhanced BLAS which contains some but not all LAPACK
routines, in which case this function reports the library containing routine ILAVER.

324 La_version

See Also

extSoftVersion for versions of other third-party software including BLAS.

La_version for the version of LAPACK in use.

Examples

La_library()

La_version LAPACK Version

Description

Report the version of LAPACK in use.

Usage

La_version ()

Value

A character vector of length one.

Note that this is the version as reported by the library at runtime. It may differ from the reference
(‘netlib’) implementation, for example by having some optimized or patched routines. For the
version included with R, the older (not Fortran 90) versions of

DLARTG DLASSQ ZLARTG ZLASSQ

are used.

See Also

extSoftVersion for versions of other third-party software.

La_library for binary/executable file with LAPACK in use.

Examples

La_version ()

length 325

length Length of an Object

Description

Get or set the length of vectors (including lists) and factors, and of any other R object for which a
method has been defined.

Usage

length (x)
length (x) <- value

Arguments

x an R object. For replacement, a vector or factor.

value a non-negative integer or double (which will be rounded down).
Details

Both functions are generic: you can write methods to handle specific classes of objects, see Inter-
nalMethods. length<—hasa "factor" method.

The replacement form can be used to reset the length of a vector. If a vector is shortened, extra
values are discarded and when a vector is lengthened, it is padded out to its new length with NAs
(nul for raw vectors).

Both are primitive functions.

Value

The default method for 1ength currently returns a non-negative integer of length 1, except for
vectors of more than 23! — 1 elements, when it returns a double.

For vectors (including lists) and factors the length is the number of elements. For an environment it
is the number of objects in the environment, and NULL has length 0. For expressions and pairlists
(including language objects and dotlists) it is the length of the pairlist chain. All other objects
(including functions) have length one: note that for functions this differs from S.

The replacement form removes all the attributes of x except its names, which are adjusted (and if
necessary extended by "").

Warning

Package authors have written methods that return a result of length other than one (Formula) and
that return a vector of type double (Matrix), even with non-integer values (earlier versions of
sets). Where a single double value is returned that can be represented as an integer it is returned as
a length-one integer vector.

https://CRAN.R-project.org/package=Formula
https://CRAN.R-project.org/package=Matrix
https://CRAN.R-project.org/package=sets

326 lengths

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

nchar for counting the number of characters in character vectors, lengths for getting the length
of every element in a list.

Examples

length
length
length
length

diag(4)) # = 16 (4 x 4)

options()) # 12 or more

y ~ x1 + x2 + x3) # 3

expression(x, {y <- x"2; y+2}, x%y)) # 3

from example (warpbreaks)
require (stats)

fml <- 1lm(breaks ~ wool % tension, data = warpbreaks)

length (fml$call) # 3, 1lm() and two arguments.
length (formula (fml)) # 3, ~ lhs rhs
lengths Lengths of List or Vector Elements
Description

Get the length of each element of a 1ist or atomic vector (is.atomic) as an integer or numeric

vector.
Usage
lengths (x, use.names = TRUE)
Arguments
X a 1ist, list-like such as an expression or an atomic vector (for which the
result is trivial).
use.names logical indicating if the result should inherit the names from x.
Details

This function loops over x and returns a compatible vector containing the length of each element in
x. Effectively, length (x [[1]]) is called for all i, so any methods on 1ength are considered.

lengths is generic: you can write methods to handle specific classes of objects, see InternalMeth-
ods.

levels 327

Value

A non-negative integer of length length (x), except when any element has a length of more
than 23! — 1 elements, when it returns a double vector. When use . names is true, the names are
taken from the names on x, if any.

Note

One raison d’étre of lengths (x) is its use as a more efficient version of sapply (x, length)
and similar xrapply calls to length. This is the reason why x may be an atomic vector, even
though lengths (x) is trivial in that case.

See Also

length for getting the length of any R object.

Examples

require (stats)

summarize by month

1 <- split(airquality$0Ozone, airquality$Month)

avgOz <- lapply(l, mean, na.rm=TRUE)

merge result

airquality$avgOz <- rep(unlist (avgOz, use.names=FALSE), lengths(l))
but this is safer and cleaner, but can be slower
airquality$avgOz <- unsplit (avgOz, airquality$Month)

should always be true, except when a length does not fit in 32 bits
stopifnot (identical (lengths (1), vapply(l, length, integer(1L))))

empty lists are not a problem
x <— list ()
stopifnot (identical (lengths (x), integer()))

nor are "list-like" expressions:
lengths (expression(u, v, 1+ 0:9))

and we should dispatch to length methods

f <- c(rep(l, 3), rep(2, 6), 3)

dates <- split (as.POSIX1lt (Sys.time() + 1:10), £f)

stopifnot (identical (lengths (dates), vapply(dates, length, integer(1lL))))

levels Levels Attributes

Description

levels provides access to the levels attribute of a variable. The first form returns the value of the
levels of its argument and the second sets the attribute.

328 levels
Usage
levels (x)
levels (x) <— value
Arguments
X an object, for example a factor.
value A valid value for levels (x). For the default method, NULL or a character
vector. For the factor method, a vector of character strings with length at
least the number of levels of x, or a named list specifying how to rename the
levels.
Details

Both the extractor and replacement forms are generic and new methods can be written for them.

The most important method for the replacement function is that for factors.

For the factor replacement method, a NA in value causes that level to be removed from the levels

and the elements formerly with that level to be replaced by NA.

Note that for a factor, replacing the levels via levels (x) <- value is not the same as (and is

preferred to) attr (x, "levels") <-value.

The replacement function is primitive.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &

Brooks/Cole.

See Also

nlevels, relevel, reorder.

Examples

assign individual levels
x <- gl(2, 4, 8)
levels (x) [1] <= "low"
levels (x) [2] <= "high"

X

or as a group

y <- gl(zl 4/ 8)

levels(y) <—= c("low", "high")
Yy

combine some levels

z <- gl(3, 2, 12, labels = c("apple", "salad",

Z
levels(z) <- c("fruit", "veg", "fruit")
z

"orange"))

libcurl Version 329

same, using a named list
z <- gl(3, 2, 12, labels = c("apple", "salad", "orange"))
Z

levels(z) <- list("fruit" = c("apple","orange"),
llvegll = "Salad")

we can add levels this way:
f <- factor(c("a","b"))
levels(f) <— c(llcll, Ilall, llbll)
£

f <- factor(c("a","b"))

levels(f) <- list(C = "C", A = "a", B = "b")
f
libcurlVersion Report Version of libcurl
Description

Report version of 1ibcurl in use.

Usage

libcurlVersion ()

Value

A character string, with value the 1ibcurl version in use or "" if none is. If libcurl is
available, has attributes

ssl_version A character string naming the SSL/TLS implementation and version, possi-
bly "none". It is intended for the version of OpenSSL used, but not all
implementations of 1ibcurl use OpenSSL — for example macOS reports
"SecureTranspart", its wrapper for SSL/TLS.

libssh_version
A character string naming the 1ibssh version, which may or may not be avail-
able (it is used for e.g. scp and sftp protocols). Where present, something
like "1ibssh2/1.5.0".

protocols A character vector of the names of supported protocols, also known as ‘schemes’
when part of a URL.

Warning

In late 2017 a libcurl installation was seen divided into two libraries, libcurl and
libcurl-feature, and the first had been updated but not the second. As the compiled function
recording the version was in the latter, the version reported by 1 ibcurlVersion was misleading.

330 libPaths

See Also

extSoftVersion for versions of other third-party software.
curlGetHeaders, download.file and url for functions which (optionally) use 1ibcurl.

https://curl.se/docs/sslcerts.html and https://curl.se/docs/
ssl-compared.html for more details on SSL versions (the current standard being known as
TLS). Normally 1ibcurl used with R uses SecureTransport on macOS, OpenSSL on Windows
and GnuTLS, NSS or OpenSSL on Unix-alikes. (At the time of writing Debian-based Linuxen use
GnuTLS and RedHat-based ones use OpenSSL, having previously used NSS.)

Examples

libcurlVersion ()

libPaths Search Paths for Packages

Description

.libPaths gets/sets the library trees within which packages are looked for.

Usage

.libPaths (new, include.site = TRUE)

.Library
.Library.site

Arguments

new a character vector with the locations of R library trees. Tilde expansion
(path.expand) is done, and if any element contains one of *? [, globbing
is done where supported by the platform: see Sys.glob.

include.site a logical value indicating whether the value of .Library.site should be
included in the new set of library tree locations. Defaulting to TRUE, it is ignored
when . 1ibPaths is called without the new argument.

Details

.Library is a character string giving the location of the default library, the ‘1ibrary’ subdirec-
tory of R_HOME.

.Library.site is a (possibly empty) character vector giving the locations of the site libraries.
.libPaths is used for getting or setting the library trees that R knows about and hence uses
when looking for packages (the library search path). If called with argument new, by default,

the library search path is set to the existing directories in unique (c (new, .Library.site,
.Library)) and this is returned. If include.site is FALSE when the new argument is set,

https://curl.se/docs/sslcerts.html
https://curl.se/docs/ssl-compared.html
https://curl.se/docs/ssl-compared.html

libPaths 331

.Library.site is not added to the new library search path. If called without the new argument,
a character vector with the currently active library trees is returned.

How paths in new with a trailing slash are treated is OS-dependent. On a POSIX filesystem existing
directories can usually be specified with a trailing slash. On Windows filepaths with a trailing slash
(or backslash) are invalid and existing directories specified with a trailing slash may not be added
to the library search path.

At startup, the library search path is initialized from the environment variables R_LIBS,
R_LIBS_USER and R_LIBS_SITE, which if set should give lists of directories where R library
trees are rooted, colon-separated on Unix-alike systems and semicolon-separated on Windows. For
the latter two, a value of NULL indicates an empty list of directories. (Note that as from R 4.2.0,
both are set by R start-up code if not already set or empty so can be interrogated from an R session
to find the their defaults: in earlier versions this was true only for R_LIBS_USER.)

First, .Library.site is initialized from R_LIBS_SITE. If this is unset or empty, the
‘site-library’ subdirectory of R_HOME is used. Only directories which exist at the time of
initialization are retained. Then, . 1ibPaths () is called with the combination of the directories
given by R_LIBS and R_LIBS_USER. By default R_LIBS is unset, and if R_LIBS_USER is
unset or empty, it is set to directory ‘R/R.version$platform—1ibrary/x.y’ of the home directory
on Unix-alike systems (or ‘Library/R/m/x.y/library’ for CRAN macOS builds, with m
Sys.info () ["machine"]) and ‘R/win-library/x.y’ subdirectory of LOCALAPPDATA
on Windows (before R 4.2.0, it was a subdirectory of the home directory even on Windows), for R
X.V.Z.

Both R_LIBS_USER and R_LIBS_SITE feature possible expansion of specifiers for R-version-
specific information as part of the startup process. The possible conversion specifiers all start with a
‘%’ and are followed by a single letter (use ‘%%’ to obtain ‘%’), with currently available conversion
specifications as follows:

‘v’ R version number including the patchlevel (e.g., ‘2.5.07).

‘sv” R version number excluding the patchlevel (e.g., ‘2.5").

‘sp’ the platform for which R was built, the value of R.version$platform.

‘%0’ the underlying operating system, the value of R.version$os.

‘9a’ the architecture (CPU) R was built on/for, the value of R. version$arch.

(See version for details on R version information.) In addition, ‘U’ and ‘%S’ expand to the R
defaults for, respectively, R_1LIBS_USER and R_LIBS_SITE.

Function .1ibPaths always uses the values of .Library and .Library.site in the base
namespace. .Library.site can be set by the site in ‘Rprofile.site’, which should be
followed by acallto . 1ibPaths (.1ibPaths ()) to make use of the updated value.

For consistency, the paths are always normalized by normalizePath (winslash="/").
LOCALAPPDATA (usually C:\Users\username\AppDatal\Local) on Windows is a
hidden directory and may not be viewed by some software. It may be opened by
shell.exec (Sys.getenv ("LOCALAPPDATA")).

Value

A character vector of file paths.

332 library
References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.
See Also
library
Examples
.libPaths () # all library trees R knows about
library Loading/Attaching and Listing of Packages
Description
library and require load and attach add-on packages.
Usage
library (package, help, pos = 2, lib.loc = NULL,
character.only = FALSE, logical.return = FALSE,
warn.conflicts, quietly = FALSE,
verbose = getOption ("verbose"),
mask.ok, exclude, include.only,
attach.required = missing(include.only))
require (package, lib.loc = NULL, quietly = FALSE,
warn.conflicts,
character.only = FALSE,
mask.ok, exclude, include.only,
attach.required = missing(include.only))
conflictRules (pkg, mask.ok = NULL, exclude = NULL)
Arguments

package, help

pos

lib.loc

the name of a package, given as a name or literal character string, or a character
string, depending on whether character.only is FALSE (default) or TRUE.

the position on the search list at which to attach the loaded namespace. Can also
be the name of a position on the current search list as given by search ().

a character vector describing the location of R library trees to search through, or
NULL. The default value of NULL corresponds to all libraries currently known

to . 1ibPaths (). Non-existent library trees are silently ignored.

library 333

character.only
a logical indicating whether package or help can be assumed to be character
strings.

logical.return
logical. If it is TRUE, FALSE or TRUE is returned to indicate success.

warn.conflicts
logical. If TRUE, warnings are printed about conflicts from attaching the
new package. A conflict is a function masking a function, or a non-function
masking a non-function. The default is TRUE unless specified as FALSE in the
conflicts.policy option.

verbose a logical. If TRUE, additional diagnostics are printed.

quietly a logical. If TRUE, no message confirming package attaching is printed, and
most often, no errors/warnings are printed if package attaching fails.

pkg character string naming a package.

mask .ok character vector of names of objects that can mask objects on the search path
without signaling an error when strict conflict checking is enabled

exclude, include.only
character vector of names of objects to exclude or include in the attached frame.
Only one of these arguments may be used inacall to library or require.

attach.required
logical specifying whether required packages listed in the Depends clause of
the DESCRIPTION file should be attached automatically.

Details

library (package) and require (package) both load the namespace of the package with
name package and attach it on the search list. requi re is designed for use inside other functions;
it returns FALSE and gives a warning (rather than an error as 1ibrary () does by default) if the
package does not exist. Both functions check and update the list of currently attached packages
and do not reload a namespace which is already loaded. (If you want to reload such a package,
call detach (unload = TRUE) or unloadNamespace first.) If you want to load a package
without attaching it on the search list, see requireNamespace.

To suppress messages during the loading of packages use
suppressPackageStartupMessages: this will suppress all messages from R itself
but not necessarily all those from package authors.

If library is called with no package or help argument, it lists all available pack-
ages in the libraries specified by 1ib.loc, and returns the corresponding information in an
object of class "libraryIQR". (The structure of this class may change in future ver-
sions.) Use .packages (all = TRUE) to obtain just the names of all available packages, and
installed.packages () for even more information.

library (help = somename) computes basic information about the package somename, and
returns this in an object of class "packageInfo". (The structure of this class may change in
future versions.) When used with the default value (NULL) for 1ib. loc, the attached packages
are searched before the libraries.

334 library

Value

Normally library returns (invisibly) the list of attached packages, but TRUE or FALSE
if logical.return is TRUE. When called as library () it returns an object of class
"libraryIQR", and for library (help=), one of class "packageInfo".

require returns (invisibly) a logical indicating whether the required package is available.

Conflicts

Handling of conflicts depends on the setting of the conflicts.policy option. If this op-
tion is not set, then conflicts result in warning messages if the argument warn.conflicts is
TRUE. If the option is set to the character string "strict™", then all unresolved conflicts signal
errors. Conflicts can be resolved using the mask .ok, exclude, and include.only argu-
ments to library and require. Defaults for mask .ok and exclude can be specified using
conflictRules.

If the conflicts.policy option is set to the string "depends.ok" then conflicts resulting
from attaching declared dependencies will not produce errors, but other conflicts will. This is likely
to be the best setting for most users wanting some additional protection against unexpected conflicts.

The policy can be tuned further by specifying the conflicts.policy option as a named list
with the following fields:

error: logical; if TRUE treat unresolved conflicts as errors.

warn: logical; unless FALSE issue a warning message when conflicts are found.

generics.ok: logical; if TRUE ignore conflicts created by defining S4 generics for functions on
the search path.

depends. ok: logical; if TRUE do not treat conflicts with required packages as errors.

can.mask: character vector of names of packages that are allowed to be masked. These would
typically be base packages attached by default.

Licenses

Some packages have restrictive licenses, and there is a mechanism to allow users to be aware of
such licenses. If getOption ("checkPackageLicense") == TRUE, then at first use of a
package with a not-known-to-be-FOSS (see below) license the user is asked to view and accept the
license: a list of accepted licenses is stored in file ‘~/ .R/1icensed’. In a non-interactive session
it is an error to use such a package whose license has not already been recorded as accepted.

As from R 3.4.0 the license check is done when the namespace is loaded.

Free or Open Source Software (FOSS, e.g. https://en.wikipedia.org/wiki/FOSS)
packages are determined by the same filters used by available.packages but applied to just
the current package, not its dependencies.

There can also be a site-wide file ‘R_HOME /etc/licensed.site’ of packages (one per line).

Formal methods

library takes some further actions when package methods is attached (as it is by default). Pack-
ages may define formal generic functions as well as re-defining functions in other packages (notably

https://en.wikipedia.org/wiki/FOSS

library 335

base) to be generic, and this information is cached whenever such a namespace is loaded after meth-
ods and re-defined functions (implicit generics) are excluded from the list of conflicts. The caching
and check for conflicts require looking for a pattern of objects; the search may be avoided by defin-
ing an object .noGenerics (with any value) in the namespace. Naturally, if the package does
have any such methods, this will prevent them from being used.

Note

library and require can only load/attach an installed package, and this is detected by having
a ‘DESCRIPTION’ file containing a ‘Built:’ field.

Under Unix-alikes, the code checks that the package was installed under a similar operating sys-
tem as given by R.version$platform (the canonical name of the platform under which R
was compiled), provided it contains compiled code. Packages which do not contain compiled
code can be shared between Unix-alikes, but not to other OSes because of potential problems
with line endings and OS-specific help files. If sub-architectures are used, the OS similarity is
not checked since the OS used to build may differ (e.g. 1386-pc—1inux—gnu code can be built
onan x86_64-unknown—-1inux—-gnu OS).

The package name given to library and require must match the name given in the pack-
age’s ‘DESCRIPTION’ file exactly, even on case-insensitive file systems such as are common on
Windows and macOS.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

.libPaths, .packages.

attach, detach, search, objects, autoload, requireNamespace,
library.dynam, data, install.packages and installed.packages; INSTALL,
REMOVE.
The initial set of packages attached is set by options (defaultPackages=): see also
Startup.

Examples
library () list all available packages
library(lib.loc = .Library) list all packages in the default library

documentation on package 'splines'
attach package 'splines'

the same

"splines", too

library(splines)

require (splines)

search ()

detach ("package:splines")

(
(
library (help = splines)
(
(

S o o

if the package name is in a character vector, use

pkg <- "splines"

library (pkg, character.only = TRUE)

detach (pos = match (paste ("package", pkg, sep = ":"), search()))

336 library.dynam

require (pkg, character.only = TRUE)
detach (pos = match (paste ("package", pkg, sep = ":"), search()))

require (nonexistent) # FALSE

Not run:

1f you want to mask as little as possible, use
library (mypkg, pos = "package:base")

End (Not run)

library.dynam Loading DLLs from Packages

Description

Load the specified file of compiled code if it has not been loaded already, or unloads it.

Usage

library.dynam(chname, package, lib.loc,
verbose = getOption ("verbose"),
file.ext = .PlatformS$Sdynlib.ext, ...)

library.dynam.unload (chname, libpath,

verbose = getOption ("verbose"),
file.ext = .Platform$Sdynlib.ext)
.dynLibs (new)
Arguments
chname a character string naming a DLL (also known as a dynamic shared object or
library) to load.
package a character vector with the name of package.
lib.loc a character vector describing the location of R library trees to search through.
libpath the path to the loaded package whose DLL is to be unloaded.
verbose a logical value indicating whether an announcement is printed on the console
before loading the DLL. The default value is taken from the verbose entry in the
system options.
file.ext the extension (including .’ if used) to append to the file name to specify the
library to be loaded. This defaults to the appropriate value for the operating
system.
additional arguments needed by some libraries that are passed to the call to
dyn. load to control how the library and its dependencies are loaded.
new a list of "DLLInfo" objects corresponding to the DLLs loaded by packages.

Can be missing.

library.dynam 337

Details

See dyn . load for what sort of objects these functions handle.

library.dynam is designed to be used inside a package rather than at the command line, and
should really only be used inside . onLoad. The system-specific extension for DLLs (e.g., ‘. so’
or ‘. s1’ on Unix-alike systems, ‘. d11’ on Windows) should not be added.

library.dynam.unload is designed for use in . onUnload: it unloads the DLL and updates
the value of . dynLibs ()

.dynLibs is used for getting (with no argument) or setting the DLLs which are currently loaded
by packages (using 1ibrary.dynam).

Value

If chname is not specified, 1ibrary.dynam returns an object of class "DLLInfoList" cor-
responding to the DLLs loaded by packages.

If chname is specified, an object of class "DLLInfo" that identifies the DLL and which can be
used in future calls is returned invisibly. Note that the class "DLLInfo" has a method for $ which
can be used to resolve native symbols within that DLL.

library.dynam.unload invisibly returns an object of class "DLLInfo" identifying the DLL
successfully unloaded.

.dynLibs returns an object of class "DLLInfoList" corresponding corresponding to its cur-
rent value.

Warning

Do not wuse dyn.unload on a DLL loaded by library.dynam: use
library.dynam.unload to ensure that .dynLibs gets updated. Otherwise a subse-
quent call to 1library.dynam will be told the object is already loaded.

Note that whether or not it is possible to unload a DLL and then reload a revised version of the same
file is OS-dependent: see the ‘Value’ section of the help for dyn.unload.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

getLoadedDLLs for information on "DLLInfo" and "DLLInfoList" objects.
.onLoad, library,dyn.load, .packages, .1ibPaths
SHLIB for how to create suitable DLLs.

Examples

Which DLLs were dynamically loaded by packages?
library.dynam()

338 license

More on library.dynam.unload ()

require (nlme)

nlme:::.onUnload # shows library.dynam.unload() call
detach ("package:nlme") # by default, unload=FALSE , so,
tail (library.dynam(), 2)# nlme still there

How to unload the DLL 2

Best 1s to unload the namespace, unloadNamespace ("nlme")

If we need to do it separately which should be exceptional:
pd.file <- attr (packageDescription("nlme"), "file")
library.dynam.unload ("nlme", libpath = sub("/Meta.*", '', pd.file))
tail (library.dynam(), 2)# 'nlme' is gone now

unloadNamespace ("nlme") # now gives warning
license The R License Terms
Description

The license terms under which R is distributed.

Usage

license ()
licence ()

Details

R is distributed under the terms of the GNU GENERAL PUBLIC LICENSE, either Version 2, June
1991 or Version 3, June 2007. A copy of the version 2 license is in file ‘R_HOME/doc/COPYING’
and can be viewed by RShowDoc ("COPYING"). Version 3 of the license can be displayed by
RShowDoc ("GPL-3").

A small number of files (some of the API header files) are distributed under the
LESSER GNU GENERAL PUBLIC LICENSE, version 2.1 or later. A copy of
this license is in file ‘SR_SHARE_DIR/licenses/LGPL-2.1" and can be viewed
by RShowDoc ("LGPL-2.1"). Version 3 of the license can be displayed by
RShowDoc ("LGPL-3").

list

339

list

Lists — Generic and Dotted Pairs

Description

Functions to construct, coerce and check for both kinds of R lists.

Usage
list(...)
pairlist(...)
as.list(x, ...)
S3 method for class 'environment'
as.list(x, all.names = FALSE, sorted = FALSE,
as.pairlist (x)
is.list (x)
is.pairlist (x)
alist(...)
Arguments
objects, possibly named.
X object to be coerced or tested.

all.names

sorted

Details

names do not begin with a dot.

a logical indicating whether to copy all values or (default) only those whose

a logical indicating whether the names of the resulting list should be sorted (in-

creasingly). Note that this is somewhat costly, but may be useful for comparison

of environments.

Almost all lists in R internally are Generic Vectors, whereas traditional dotted pair lists (as in LISP)

remain available but rarely seen by users (except as formals of functions).

The arguments to 1ist or pairlist are of the form value or tag = value. The functions
return a list or dotted pair list composed of its arguments with each value either tagged or untagged,
depending on how the argument was specified.

alist handles its arguments as if they described function arguments. So the values are not evalu-
ated, and tagged arguments with no value are allowed whereas 11 st simply ignores them. alist
is most often used in conjunction with formals.

as.list attempts to coerce its argument to a list. For functions, this returns the concatenation of
the list of formal arguments and the function body. For expressions, the list of constituent elements
isreturned. as . list is generic, and as the default method calls as . vector (mode = "1ist")

340 list

for a non-list, methods for as . vector may be invoked. as. 1ist turns a factor into a list of one-
element factors, keeping namess. Other attributes may be dropped unless the argument already is a
list or expression. (This is inconsistent with functions such as as . character which always drop
attributes, and is for efficiency since lists can be expensive to copy.)

is.list returns TRUE if and only if its argument is a 1ist or apairlist of length > 0.
is.pairlist returns TRUE if and only if the argument is a pairlist or NULL (see below).

The "environment" method for as.list copies the name-value pairs (for names not begin-
ning with a dot) from an environment to a named list. The user can request that all named objects
are copied. Unless sorted = TRUE, the list is in no particular order (the order depends on the
order of creation of objects and whether the environment is hashed). No enclosing environments
are searched. (Objects copied are duplicated so this can be an expensive operation.) Note that there
is an inverse operation, the as .environment () method for list objects.

An empty pairlist, pairlist () is the same as NULL. This is different from 1ist (): some but
not all operations will promote an empty pairlist to an empty list.

as.pairlist is implemented as as.vector (x, "pairlist"), and hence will dispatch
methods for the generic function as.vector. Lists are copied element-by-element into a pairlist
and the names of the list used as tags for the pairlist: the return value for other types of argument is
undocumented.

list,is.list and is.pairlist are primitive functions.

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

vector ("list", length) for creation of a list with empty components; c, for concatenation;
formals. unlist is an approximate inverse to as.list ().

‘plotmath’ for the use of 1ist in plot annotation.

Examples

require (graphics)

create a plotting structure

pts <- list(x = cars(,1l], v = carsl[,2])
plot (pts)
is.pairlist (.Options) # a user-level pairlist

"pre-allocate" an empty list of length 5
vector ("list", 5)

Argument lists

f <- function() x

Note the specification of a "..." argument:
formals (f) <- al <- alist(x =, y = 243, ... =)
f

list.files

al

341

environment->list coercion

el <- new.env()

el$Sa <- 10
elSb <- 20
as.list (el)

list.files

List the Files in a Directory/Folder

Description

These functions produce a character vector of the names of files or directories in the named direc-

tory.
Usage
list.files(path = ".", pattern = NULL, all.files = FALSE,
full.names = FALSE, recursive = FALSE,
ignore.case = FALSE, include.dirs = FALSE, no.. = FALSE)
dir(path = ".", pattern = NULL, all.files = FALSE,
full.names = FALSE, recursive = FALSE,
ignore.case = FALSE, include.dirs = FALSE, no.. = FALSE)
list.dirs(path = ".", full.names = TRUE, recursive = TRUE)
Arguments
path a character vector of full path names; the default corresponds to the working di-
rectory, getwd () . Tilde expansion (see path.expand) is performed. Miss-
ing values will be ignored. Elements with a marked encoding will be converted
to the native encoding (and if that fails, considered non-existent).
pattern an optional regular expression. Only file names which match the regular expres-
sion will be returned.
all.files alogical value. If FALSE, only the names of visible files are returned (following

full.names

recursive
ignore.case

include.dirs

no..

Unix-style visibility, that is files whose name does not start with a dot). If TRUE,
all file names will be returned.

alogical value. If TRUE, the directory path is prepended to the file names to give
a relative file path. If FALSE, the file names (rather than paths) are returned.

logical. Should the listing recurse into directories?

logical. Should pattern-matching be case-insensitive?

logical. Should subdirectory names be included in recursive listings? (They
always are in non-recursive ones).

logical. Should both ". " and " . ." be excluded also from non-recursive list-
ings?

342 list2DF

Value
A character vector containing the names of the files in the specified directories (empty if there were
no files). If a path does not exist or is not a directory or is unreadable it is skipped.
The files are sorted in alphabetical order, on the full path if full.names = TRUE.

list.dirs implicitly has all.files = TRUE, and if recursive = TRUE, the answer in-
cludes path itself (provided it is a readable directory).

dirisanaliasfor 1ist.files.

Note
File naming conventions are platform dependent. The pattern matching works with the case of file
names as returned by the OS.

On a POSIX filesystem recursive listings will follow symbolic links to directories.

Author(s)

Ross Thaka, Brian Ripley

See Also

file.info, file.access and files for many more file handling functions and
file.choose for interactive selection.

glob2rx to convert wildcards (as used by system file commands and shells) to regular expressions.

Sys.glob for wildcard expansion on file paths. basename and dirname, useful for splitting
paths into non-directory (aka ‘filename’) and directory parts.

Examples

list.files (R.home())

Only files starting with a-1 or r

Note that a-1 is locale-dependent, but using case-insensitive

matching makes it unambiguous in English locales

dir("../..", pattern = ""[a-1lr]", full.names = TRUE, ignore.case = TRUE)

list.dirs (R.home ("doc"))
list.dirs (R.home ("doc"), full.names = FALSE)

1ist2DF Create Data Frame From List

Description

Create a data frame from a list of variables.

Usage

1list2DF (x = list (), nrow = 0)

list2env 343

Arguments
X A list of same-length variables for the data frame.
nrow An integer giving the desired number of rows for the data frame in case x gives
no variables (i.e., has length zero).
Details

Note that all list elements are taken “as is”.

Value

A data frame with the given variables.

See Also

data.frame

Examples

Create a data frame holding a list of character vectors and the
corresponding lengths:

x <— list (character (), "A", c("B", "C"))

n <- lengths (x)

1ist2DF (list(x = x, n = n))

Create data frames with no variables and the desired number of rows:
11ist2DF ()
1ist2DF (nrow = 3L)

list2env From A List, Build or Add To an Environment

Description

From a named 1ist x, create an environment containing all list components as objects, or
“multi-assign” from x into a pre-existing environment.

Usage

list2env(x, envir = NULL, parent = parent.frame(),
hash = (length(x) > 100), size = max(29L, length(x)))

344 list2env

Arguments
X a list, where names (x) must not contain empty (" ") elements.
envir an environment or NULL.
parent (for the case envir = NULL): a parent frame aka enclosing environment, see
new.env.
hash (for the case envir = NULL): logical indicating if the created environment
should use hashing, see new.env.
size (in the case envir = NULL, hash = TRUE): hash size, see new.env.
Details

This will be very slow for large inputs unless hashing is used on the environment.

Environments must have uniquely named entries, but named lists need not: where the list has du-
plicate names it is the /ast element with the name that is used. Empty names throw an error.
Value

An environment, either newly created (as by new.env) if the envir argument was NULL,
otherwise the updated environment envir. Since environments are never duplicated, the argument
envir is also changed.

Author(s)

Martin Maechler

See Also

environment, new.env, as.environment; further, assign.

The (semantical) “inverse”: as.list.environment.

Examples

L <- list(a =1, b = 2:4, p = pi, ff = gl (3, 4, labels = LETTERS[1:3]))
e <—- list2env (L)
1s (e)
stopifnot (1s(e) == sort (names (L)),
identical (Lb, eb)) # "$" working for environments as for lists

consistency, when we do the inverse:

11 <- as.list (e) # —-> dispatching to the as.list.environment () method
rbind (names (L), names(l1l)) # not in the same order, typically,
but the same content:
stopifnot (identical (L [sort.list (names(L))],
1l[sort.list (names (11))]))
now add to e —— can be seen as a fast "multi-assign":
list2env(list (abc = LETTERS, note = "just an example",

df = data.frame(x = rnorm(20), y = rbinom(20, 1, prob = 0.2))),

envir = e)

load 345

utils::1ls.str(e)

load Reload Saved Datasets

Description

Reload datasets written with the function save.

Usage

load(file, envir = parent.frame (), verbose = FALSE)

Arguments
file a (readable binary-mode) connection or a character string giving the name of the
file to load (when tilde expansion is done).
envir the environment where the data should be loaded.
verbose should item names be printed during loading?
Details

load can load R objects saved in the current or any earlier format. It can read a compressed file
(see save) directly from a file or from a suitable connection (including a call to ur1l).

A not-open connection will be opened in mode "rb" and closed after use. Any connection other
than a gzfile or gzcon connection will be wrapped in gzcon to allow compressed saves to be
handled: note that this leaves the connection in an altered state (in particular, binary-only), and that
it needs to be closed explicitly (it will not be garbage-collected).

Only R objects saved in the current format (used since R 1.4.0) can be read from a connection. If
no input is available on a connection a warning will be given, but any input not in the current format
will result in a error.

Loading from an earlier version will give a warning about the ‘magic number’: magic numbers
1971:1977 are from R <0.99.0, and RD [ABX] 1 from R 0.99.0 to R 1.3.1. These are all obsolete,
and you are strongly recommended to re-save such files in a current format.

The verbose argument is mainly intended for debugging. If it is TRUE, then as objects from the
file are loaded, their names will be printed to the console. If verbose is set to an integer value
greater than one, additional names corresponding to attributes and other parts of individual objects
will also be printed. Larger values will print names to a greater depth.

Objects can be saved with references to namespaces, usually as part of the environment of a function
or formula. Such objects can be loaded even if the namespace is not available: it is replaced by a
reference to the global environment with a warning. The warning identifies the first object with
such a reference (but there may be more than one).

Value

A character vector of the names of objects created, invisibly.

346 load

Warning

Saved R objects are binary files, even those saved with ascii = TRUE, so ensure that they are
transferred without conversion of end of line markers. 1oad tries to detect such a conversion and
gives an informative error message.

load (<file>) replaces all existing objects with the same names in the current environment
(typically your workspace, .GlobalEnv) and hence potentially overwrites important data. It is
considerably safer to use envir = to load into a different environment, or to attach (file)
which 1oad () s into a new entry in the search path.

See Also

save, download. file; further attach as wrapper for 1oad ().

For other interfaces to the underlying serialization format, see unserialize and readRDS.

Examples

save all data

xx <- pl # to ensure there is some data

save (list = ls(all.names = TRUE), file= "all.rda")
rm(xx)

restore the saved values to the current environment
local ({

load("all.rda")

1s ()
})

xx <— exp(l:3)

restore the saved values to the user's workspace

load("all.rda") ## which is here xequivalent* to

load("all.rda", .GlobalEnv)

This however annihilates all objects in .GlobalEnv with the same names !
xx # no longer exp(l:3)

rm(xx)
attach("all.rda") # safer and will warn about masked objects w/ same name in .GlobalEnv
ls(pos = 2)

also typically need to cleanup the search path:
detach ("file:all.rda")

clean up (the example):
unlink ("all.rda")

Not run:

con <— url ("http://some.where.net/R/data/example.rda")
print the value to see what objects were created.
print (load(con))

close(con) # url() always opens the connection

End (Not run)

locales 347

locales Query or Set Aspects of the Locale

Description

Get details of or set aspects of the locale for the R process.

Usage
Sys.getlocale (category = "LC_ALL")
Sys.setlocale (category = "LC_ALL", locale = "")

.LC.categories

Arguments

category character string. The following categories should always be sup-
ported: "LC_ALL", "LC_COLLATE", "LC_CTYPE", "LC_MONETARY",
"LC_NUMERIC" and "LC_TIME". Some systems (not Windows) will also
support "LC_MESSAGES", "LC_PAPER" and "LC_MEASUREMENT". These
category names are available in . LC.categories; even when not supported,
Sys.getlocale (.) will return "", e.g., for the "LC_PAPER" example on
Windows.

locale character string. A valid locale name on the system in use. Normally "" (the
default) will pick up the default locale for the system.

Details

The locale describes aspects of the internationalization of a program. Initially most aspects of the
locale of R are set to "C" (which is the default for the C language and reflects North-American
usage — also known as "POSIX"). R sets "LC_CTYPE" and "LC_COLLATE", which allow the
use of a different character set and alphabetic comparisons in that character set (including the use
of sort), "LC_MONETARY" (for use by Sys.localeconv) and "LC_TIME" may affect the
behaviour of as.POSIX1t and st rpt ime and functions which use them (but not date).

The first seven categories described here are those specified by POSIX. "LC_MESSAGES" will be
"C" on systems that do not support message translation, and is not supported on Windows, where
you must use the LANGUAGE environment variable for message translation, see below. Trying to
use an unsupported category is an error for Sys.setlocale.

Note that setting category "LC_ALL" sets only categories "LC_COLLATE", "LC_CTYPE",
"LC_MONETARY" and "LC_TIME".

Attempts to set an invalid locale are ignored. There may or may not be a warning, depending on the
OS.

Attempts to change the character set (by Sys.setlocale ("LC_CTYPE",), if that implies a
different character set) during a session may not work and are likely to lead to some confusion.

Note that the LANGUAGE environment variable has precedence over "LC_MESSAGES" in selecting
the language for message translation on most R platforms.

348 locales

On platforms where ICU is used for collation the locale used for collation can be reset by
icuSetCollate. Except on Windows, the initial setting is taken from the "LC_COLLATE"
category, and it is reset when this is changed by a call to Sys.setlocale.

Value

A character string of length one describing the locale in use (after setting for Sys.setlocale),
or an empty character string if the current locale settings are invalid or NULL if locale information
is unavailable.

For category = "LC_ALL" the details of the string are system-specific: it might be a single
locale name or a set of locale names separated by " /" (Solaris, macOS) or "; " (Windows, Linux).
For portability, it is best to query categories individually: it is not necessarily the case that the
result of foo <— Sys.getlocale () canbeusedin Sys.setlocale ("LC_ALL", locale
=foo).

Available locales

On most Unix-alikes the POSIX shell command Locale —a will list the ‘available public’ locales.
What that means is platform-dependent. On recent Linuxen this may mean ‘available to be installed’
as on some RPM-based systems the locale data is in separate RPMs. On Debian/Ubuntu the set of
available locales is managed by OS-specific facilities such as locale—gen and locale —a lists
those currently enabled.

For Windows, Microsoft moves its documentation frequently so a Web search is the best way
to find current information. From R 4.2, UCRT locale names should be used. The charac-
ter set should match the system/ANSI codepage (110n_info () $codepage be the same as
110n_info () $system.codepage). Setting it to any other value results in a warning and
may cause encoding problems. In R 4.2 on recent Windows the system codepage is 65001 and
one should always use locale names ending with " . UTF-8" (except for "C" and " "), otherwise
Windows may add a different character set.

Warning

Setting "L.C_NUMERIC" to any value other than "C" may cause R to function anomalously, so
gives a warning. Input conversions in R itself are unaffected, but the reading and writing of ASCII
save files will be, as may packages which do their own input/output.

Setting it temporarily on a Unix-alike to produce graphical or text output may work well enough,
but opt ions (OutDec) is often preferable.

Almost all the output routines used by R itself under Windows ignore the setting of
"LC_NUMERIC" since they make use of the Trio library which is not internationalized.

Note

Changing the values of locale categories whilst R is running ought to be noticed by the OS services,
and usually is but exceptions have been seen (usually in collation services).

Do not use the value of Sys.getlocale ("LC_CTYPE") to attempt to find the character set
— for example UTF-8 locales can have suffix ‘. UTF-8" or ‘.ut£8’ (more common on Linux
than ‘UTF-8’) or none (as on macOS) and Latin-9 locales can have suffix ‘1S08859-15,
‘1508859157, ‘1is0885915@euro’ or ‘'IS08859-15Reuro’. Use 110n_info instead.

log 349
See Also
strptime for uses of category = "LC_TIME". Sys.localeconv for details of numerical
and monetary representations.
110n_info gives some summary facts about the locale and its encoding (including if it is UTF-8).
The ‘R Installation and Administration’ manual for background on locales and how to find out
locale names on your system.
Examples
Sys.getlocale ()
Sys.getlocale ("LC_TIME")
Not run:
Sys.setlocale ("LC_TIME", "de") # Solaris: details are OS-dependent
Sys.setlocale ("LC_TIME", "de_DE") # Many Unix-alikes
Sys.setlocale("LC_TIME", "de_DE.UTF-8") # Linux, macOS, other Unix-alikes
Sys.setlocale ("LC_TIME", "de_DE.utf8") # some Linux versions
Sys.setlocale ("LC_TIME", "German.UTF-8") # Windows
End(Not run)
Sys.getlocale ("LC_PAPER") # may or may not be set
.LC.categories # of length 9 on all platforms
Not run:
Sys.setlocale ("LC_COLLATE", "C") # turn off locale-specific sorting,
usually (but not on all platforms)
Sys.setenv ("LANGUAGE" = "es") # set the language for error/warning messages
End(Not run)
some nice formatting; should work on most platforms:
sys <— Sys.info () [["sysname"]]
sep <- switch(sys,
"Darwin"=, "Sunos" = " /" ,
"Linuxll :, "WindOwS" = "; ")
sg <- matrix(unlist (strsplit (strsplit(Sys.getlocale(), sep)[[1l]], "=")), nrow=2)
str(sloc <- setNames(sgl[2,], sgll,1))
print.Dlist (sloc) # nicely readable
log Logarithms and Exponentials
Description

log computes logarithms, by default natural logarithms, 10g10 computes common (i.e., base 10)

logarithms, and 10g2 computes binary (i.e., base 2) logarithms. The general form 1og (x, base)

computes logarithms with base base.
loglp (x) computes log(1 4 x) accurately also for |z| < 1.
exp computes the exponential function.

expml (x) computes exp(z) — 1 accurately also for |z] < 1.

350 log

Usage

log(x, base = exp/(
logb(x, base = exp
1logl0 (x)
log2 (x)

loglp (x)

exp (x)
expml (x)

Arguments

X a numeric or complex vector.

base a positive or complex number: the base with respect to which logarithms are
computed. Defaults to e=exp (1) .

Details

All except Logb are generic functions: methods can be defined for them individually or via the
Math group generic.

1logl0 and 1log2 are only convenience wrappers, but logs to bases 10 and 2 (whether computed
via 1og or the wrappers) will be computed more efficiently and accurately where supported by the
OS. Methods can be set for them individually (and otherwise methods for 1og will be used).

logb is a wrapper for 1og for compatibility with S. If (S3 or S4) methods are set for 1og they will
be dispatched. Do not set S4 methods on 1ogb itself.

All except Log are primitive functions.

Value

A vector of the same length as x containing the transformed values. 1og (0) gives —Inf, and
log (x) for negative values of x is NaN. exp (-Inf) is 0.

For complex inputs to the log functions, the value is a complex number with imaginary part in the
range [—m, 7r|: which end of the range is used might be platform-specific.

S4 methods

exp, expml, 1log, 1ogl0, log2 and loglp are S4 generic and are members of the Math group
generic.

Note that this means that the S4 generic for 1og has a signature with only one argument, x, but that
base can be passed to methods (but will not be used for method selection). On the other hand, if
you only set a method for the Math group generic then base argument of 1og will be ignored for
your class.

Logic 351

Source

loglp and expml may be taken from the operating system, but if not available there then they
are based on the Fortran subroutine d1nrel by W. Fullerton of Los Alamos Scientific Laboratory

(see https://www.netlib.org/slatec/fnlib/dlnrel. f) and (for small x) a single
Newton step for the solution of 1oglp (y) = x respectively.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole. (for 1og, 1og10 and exp.)

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer. (for Logb.)

See Also

Trig, sqrt,Arithmetic.

Examples

log(exp(3))
loglO(1le7) # =7

x <= 10"=(1+2%1:9)
cbind(x, log(l+x), loglp(x), exp(x)-1, expml (x))

Logic Logical Operators

Description

These operators act on raw, logical and number-like vectors.

Usage

I x

&y
&& Y
Iy

Iy
XOor (x, V)

XX X X

isTRUE (x)
isFALSE (x)
Arguments
X, Y raw, logical or ‘number-like’ vectors (i.e., of types double (class

numeric), integer and complex), or objects for which methods have been
written.

https://www.netlib.org/slatec/fnlib/dlnrel.f

352 Logic

Details
! indicates logical negation (NOT).

& and &¢& indicate logical AND and | and | | indicate logical OR. The shorter forms performs
elementwise comparisons in much the same way as arithmetic operators. The longer forms evalu-
ates left to right, proceeding only until the result is determined. The longer form is appropriate for
programming control-flow and typically preferred in if clauses.

Using vectors of more than one element in && or | | will give a warning (as from R 4.2.0), or an
error if the environment variable _R_CHECK_LENGTH_1_TLOGIC2_ is set to a true value (this is
intended to become the default in future).

xor indicates elementwise exclusive OR.

1sTRUE (x) is the same as { is.logical (x) && length(x) ==1&& !is.na(x) && x
}; 1sFALSE () is defined analogously. Consequently, 1 f (1sTRUE (cond)) may be preferable
to 1f (cond) because of NAs.

In earlier R versions, 1sTRUE <— function (x) identical (x, TRUE), had the drawback
to be false e.g., for x <— c (val = TRUE).

Numeric and complex vectors will be coerced to logical values, with zero being false and all non-
zero values being true. Raw vectors are handled without any coercion for !, &, | and xor, with
these operators being applied bitwise (so ! is the 1s-complement).

The operators !, & and | are generic functions: methods can be written for them individually or
via the Ops (or S4 Logic, see below) group generic function. (See Ops for how dispatch is
computed.)

NA is a valid logical object. Where a component of x or y is NA, the result will be NA if the outcome
is ambiguous. In other words NA & TRUE evaluates to NA, but NA & FALSE evaluates to FALSE.
See the examples below.

See Syntax for the precedence of these operators: unlike many other languages (including S) the
AND and OR operators do not have the same precedence (the AND operators have higher prece-
dence than the OR operators).

Value

For !, a logical or raw vector(for raw x) of the same length as x: names, dims and dimnames are
copied from x, and all other attributes (including class) if no coercion is done.

For |, & and xor a logical or raw vector. If involving a zero-length vector the result has length
zero. Otherwise, the elements of shorter vectors are recycled as necessary (with a warning when
they are recycled only fractionally). The rules for determining the attributes of the result are rather
complicated. Most attributes are taken from the longer argument, the first if they are of the same
length. Names will be copied from the first if it is the same length as the answer, otherwise from
the second if that is. For time series, these operations are allowed only if the series are compatible,
when the class and t sp attribute of whichever is a time series (the same, if both are) are used. For
arrays (and an array result) the dimensions and dimnames are taken from first argument if it is an
array, otherwise the second.

For | |, && and isTRUE, a length-one logical vector.

logical 353

S4 methods

!, & and | are S4 generics, the latter two part of the Logic group generic (and hence methods
need argument names el, e2).

Note

The elementwise operators are sometimes called as functions as e.g. ~ &~ (x, y): see the descrip-
tion of how argument-matching is done in Ops.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

TRUE or logical.
any and all for OR and AND on many scalar arguments.
Syntax for operator precedence.

bitwAnd for bitwise versions for integer vectors.

Examples

y <= 1 + (x <- stats::rpois (50, lambda = 1.5) / 4 - 1)
x[(x > 0) & (x < 1)] # all x values between 0 and 1
if (any(x == 0) || any(y == 0)) "zero encountered"

construct truth tables

x <- c(NA, FALSE, TRUE)
names (x) <- as.character (x)

outer (x, x, ~&°) ## AND table

outer(x, x, ~|7) ## OR table
logical Logical Vectors
Description

Create or test for objects of type "1ogical™, and the basic logical constants.

354 logical

Usage

TRUE
FALSE
T, F

logical (length = 0)
as.logical (x,)
is.logical (x)

Arguments
length A non-negative integer specifying the desired length. Double values will be
coerced to integer: supplying an argument of length other than one is an error.
X object to be coerced or tested.
further arguments passed to or from other methods.
Details

TRUE and FALSE are reserved words denoting logical constants in the R language, whereas T and
F are global variables whose initial values set to these. All four are 1ogical (1) vectors.

Logical vectors are coerced to integer vectors in contexts where a numerical value is required, with
TRUE being mapped to 1L, FALSE to 0L and NA to NA_integer_.

Value

logical creates a logical vector of the specified length. Each element of the vector is equal to
FALSE.

as.logical attempts to coerce its argument to be of logical type. In numeric and complex
vectors, zeros are FALSE and non-zero values are TRUE. For factors, this uses the levels (la-
bels). Like as . vector it strips attributes including names. Character strings c ("T", "TRUE",
"True", "true") areregarded as true, c ("F", "FALSE", "False", "false") as false,
and all others as NA.

is.logical returns TRUE or FALSE depending on whether its argument is of logical type or
not.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

NA, the other logical constant. Logical operators are documented in Logic.

LongVectors 355

Examples

non-zero values are TRUE
as.logical (c(pi, 0))
if (length(letters)) cat("26 is TRUE\n")

logical interpretation of particular strings
charvec <- c("FALSE", "F", "False", "false", "fAlse", "O",
IITRUE" ll’I‘ll |lTruell lltruell lltRuell lllll)
4 14 ’ 4 14
as.logical (charvec)

factors are converted via their levels, so string conversion is used
as.logical (factor (charvec))

as.logical (factor(c(0,1))) # "O0" and "1" give NA
LongVectors Long Vectors
Description

Vectors of 23! or more elements were added in R 3.0.0.

Details

Prior to R 3.0.0, all vectors in R were restricted to at most 231 — 1 elements and could be indexed
by integer vectors.

Currently all atomic (raw, logical, integer, numeric, complex, character) vectors, lists and expres-
sions can be much longer on 64-bit platforms: such vectors are referred to as ‘long vectors’ and
have a slightly different internal structure. In theory they can contain up to 2°2 elements, but ad-
dress space limits of current CPUs and OSes will be much smaller. Such objects will have a length
that is expressed as a double, and can be indexed by double vectors.

Arrays (including matrices) can be based on long vectors provided each of their dimensions is at
most 231 — 1: thus there are no 1-dimensional long arrays.

R code typically only needs minor changes to work with long vectors, maybe only checking that
as.integer is not used unnecessarily for e.g. lengths. However, compiled code typically needs
quite extensive changes. Note that the . C and . Fortran interfaces do not accept long vectors, so
.Call (or similar) has to be used.

Because of the storage requirements (a minimum of 64 bytes per character string), character vectors
are only going to be usable if they have a small number of distinct elements, and even then factors
will be more efficient (4 bytes per element rather than 8). So it is expected that most of the usage of
long vectors will be integer vectors (including factors) and numeric vectors.

Matrix algebra

It is now possible to use m x n matrices with more than 2 billion elements. Whether matrix algebra
(including $+%, crossprod, svd, gr, solve and eigen) will actually work is somewhat im-
plementation dependent, including the Fortran compiler used and if an external BLAS or LAPACK
is used.

356 Is

An efficient parallel BLAS implementation will often be important to obtain usable performance.
For example on one particular platform chol on a 47,000 square matrix took about 5 hours with
the internal BLAS, 21 minutes using an optimized BLAS on one core, and 2 minutes using an
optimized BLAS on 16 cores.

lower.tri Lower and Upper Triangular Part of a Matrix

Description

Returns a matrix of logicals the same size of a given matrix with entries TRUE in the lower or upper
triangle.

Usage

lower.tri(x, diag FALSE)
upper.tri(x, diag = FALSE)

Arguments
X a matrix or other R object with length (dim(x)) == 2. For back compati-
bility reasons, when the above is not fulfilled, as.matrix (x) is called first.
diag logical. Should the diagonal be included?
See Also

diag, matrix; further row and col on which lower.tri () and upper.tri () are built.

Examples

(m2 <- matrix(1:20, 4, 5))
lower.tri (m2)
m2[lower.tri(m2)] <- NA
m2

1s List Objects

Description

1s and objects return a vector of character strings giving the names of the objects in the specified
environment. When invoked with no argument at the top level prompt, 1s shows what data sets and
functions a user has defined. When invoked with no argument inside a function, 1s returns the
names of the function’s local variables: this is useful in conjunction with browser.

Is

Usage

ls (name, pos
all.names
objects (name,

357

= -1L, envir = as.environment (pos),
= FALSE, pattern, sorted = TRUE)
pos= —-1L, envir = as.environment (pos),

all.names = FALSE, pattern, sorted = TRUE)

Arguments

name

pos

envir

all.names

pattern

sorted

Details

which environment to use in listing the available objects. Defaults to the cur-
rent environment. Although called name for back compatibility, in fact this
argument can specify the environment in any form; see the ‘Details’ section.

an alternative argument to name for specifying the environment as a position in
the search list. Mostly there for back compatibility.

an alternative argument to name for specifying the environment. Mostly there
for back compatibility.

a logical value. If TRUE, all object names are returned. If FALSE, names which
begin with a *.” are omitted.

an optional regular expression. Only names matching pattern are returned.
glob2rx can be used to convert wildcard patterns to regular expressions.

logical indicating if the resulting character should be sorted alphabetically.
Note that this is part of 1s () may take most of the time.

The name argument can specify the environment from which object names are taken in one of
several forms: as an integer (the position in the search list); as the character string name of an
element in the search list; or as an explicit environment (including using sys . f rame to access
the currently active function calls). By default, the environment of the call to 1s or objects is
used. The pos and envir arguments are an alternative way to specify an environment, but are
primarily there for back compatibility.

Note that the order of strings for sorted = TRUE is locale dependent, see Sys.getlocale.
If sorted = FALSE the order is arbitrary, depending if the environment is hashed, the order of
insertion of objects,

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &

Brooks/Cole.

See Also

glob2rx for converting wildcard patterns to regular expressions.

1s.str for a long listing based on str. apropos (or £ind) for finding objects in the whole

search path; grep

for more details on ‘regular expressions’; class, methods, etc., for object-

oriented programming.

358 make.names

Examples

.Ob <=1
ls(pattern = "O")
ls (pattern= "O", all.names = TRUE) # also shows ".[foo]"

shows an empty list because inside myfunc no variables are defined
myfunc <- function() {1ls()}

myfunc ()

define a local variable inside myfunc

myfunc <- function() {y <= 1; 1ls{()}
my func () # shows "y"
make.names Make Syntactically Valid Names
Description

Make syntactically valid names out of character vectors.

Usage
make.names (names, unique = FALSE, allow_ = TRUE)
Arguments
names character vector to be coerced to syntactically valid names. This is coerced to
character if necessary.
unique logical; if TRUE, the resulting elements are unique. This may be desired for,
e.g., column names.
allow_ logical. For compatibility with R prior to 1.9.0.
Details

A syntactically valid name consists of letters, numbers and the dot or underline characters and
starts with a letter or the dot not followed by a number. Names such as " . 2way™" are not valid, and
neither are the reserved words.

The definition of a letter depends on the current locale, but only ASCII digits are considered to be
digits.
The character "X" is prepended if necessary. All invalid characters are translated to ".". A

missing value is translated to "NA". Names which match R keywords have a dot appended to them.
Duplicated values are altered by make . unique.

Value

A character vector of same length as names with each changed to a syntactically valid name, in the
current locale’s encoding.

make.unique 359

Warning

Some OSes, notably FreeBSD, report extremely incorrect information about which characters are
alphabetic in some locales (typically, all multi-byte locales including UTF-8 locales). However, R
provides substitutes on Windows, macOS and AIX.

Note

Prior to R version 1.9.0, underscores were not valid in variable names, and code that relies on them
being converted to dots will no longer work. Use allow_ = FALSE for back-compatibility.

allow_ = FALSE is also useful when creating names for export to applications which do not allow
underline in names (for example, S-PLUS and some DBMSes).

See Also

make.unique, names, character, data. frame.

Examples

make.names (c ("a and b", "a-and-b"), unique = TRUE)

"a.and.b" "a.and.b.l1"

make.names (c("a and b", "a_and_b"), unique = TRUE)

"a.and.b" "a_and_b"

make.names (c ("a and b", "a_and_b"), unique = TRUE, allow_ = FALSE)
"a.and.b" "a.and.b.l"

make.names (c("", "X"), unique = TRUE)

"X.1" "X" currently; R up to 3.0.2 gave "X" "X.1"

state.name [make.names (state.name) != state.name] # those 10 with a space
make.unique Make Character Strings Unique
Description

Makes the elements of a character vector unique by appending sequence numbers to duplicates.

Usage

make.unique (names, sep = ".")

Arguments

names a character vector

sep a character string used to separate a duplicate name from its sequence number.

360 mapply

Details
The algorithm used by make.unique has the property that make.unique (c (A, B)) ==
make.unique (c (make.unique (A), B)).

In other words, you can append one string at a time to a vector, making it unique each time, and get
the same result as applying make . unique to all of the strings at once.

If character vector A is already unique, then make .unique (c (A, B)) preserves A.

Value

A character vector of same length as name s with duplicates changed, in the current locale’s encod-
ing.

Author(s)
Thomas P. Minka

See Also

make.names

Examples

make.unique (c("a", "a", "a"))
make.unique (c (make.unique (c ("a", "a")), "a"))

make.unique (c("a", "a", "a.2", "a"))
make.unique (c (make.unique (c ("a", "a")), "a.2", "a"))

Now show a bit where this is used

trace (make.unique)

Applied in data.frame() constructions:

(dl <—- data.frame(x =1, x = 2, x = 3)) # direct

d2 <- data.frame(data.frame(x = 1, x = 2), x = 3) # pairwise
stopifnot (identical (dl, d2),

colnames (dl) == ("x", "x.1", "x.2"))

untrace (make.unique)

mapply Apply a Function to Multiple List or Vector Arguments

Description

mapply is a multivariate version of sapply. mapply applies FUN to the first elements of each
...argument, the second elements, the third elements, and so on. Arguments are recycled if neces-
sary.

.mapply () is a bare-bones version of mapply (), e.g., to be used in other functions.

mapply 361

Usage

mapply (FUN, ..., MoreArgs = NULL, SIMPLIFY = TRUE,
USE.NAMES = TRUE)
.mapply (FUN, dots, MoreArgs)

Arguments
FUN function to apply, found viamatch. fun.
arguments to vectorize over, will be recycled to common length (zero if one of
them is). See also ‘Details’.
dots list orpairlist of arguments to vectorize over, see . . . above.
MoreArgs a list of other arguments to FUN.
SIMPLIFY logical or character string; attempt to reduce the result to a vector, matrix or
higher dimensional array; see the simplify argument of sapply.
USE .NAMES logical; use the names of the first . .. argument, or if that is an unnamed character
vector, use that vector as the names.
Details
mapply calls FUN for the values of . .. (re-cycled to the length of the longest, unless any have
length zero where recycling to zero length will return 1ist ()), followed by the arguments given
in MoreArgs. The arguments in the call will be named if . . . or MoreArgs are named.
For the arguments in ... (or components in dots) class specific subsetting (such as [) and

length methods will be used where applicable.

Value

A list,orfor SIMPLIFY = TRUE, a vector, array or list.

See Also

sapply, after which mapply () is modelled.

outer, which applies a vectorized function to all combinations of two arguments.
Examples
mapply (rep, 1:4, 4:1)
mapply (rep, times = 1:4, x = 4:1)
mapply (rep, times = 1:4, MoreArgs = list(x = 42))
mapply (function(x, y) seqg_len(x) + vy,
c(a= 1, b =2, ¢ =3), # names from first

c(A =10, B =0, C = -10))

word <- function(C, k) paste(rep.int(C, k), collapse = "")
names from the first, too:

362 marginSums

utils::str(L <- mapply(word, LETTERS[1:6], 6:1, SIMPLIFY = FALSE))

mapply (word, "A", integer()) # gave Error, now list ()

marginSums Compute table margins

Description

For a contingency table in array form, compute the sum of table entries for a given margin or set of
margins.

Usage

marginSums (x, margin = NULL)
margin.table(x, margin = NULL)

Arguments
X an array
margin a vector giving the margins to compute sums for. E.g., for a matrix 1 indicates
rows, 2 indicates columns, ¢ (1, 2) indicates rows and columns. When x has
named dimnames, it can be a character vector selecting dimension names.
Value

The relevant marginal table, or just the sum of all entries if margin has length zero. The class of
x is copied to the output table if margin is non-NULL.

Note

margin.table is an earlier name, retained for back-compatibility.

Author(s)

Peter Dalgaard

See Also

proportions and addmargins.

mat.or.vec 363

Examples

m <- matrix(l:4, 2)
marginSums (m, 1)
marginSums (m, 2)

DF <- as.data.frame (UCBAdmissions)
tbl <- xtabs(Freq ~ Gender + Admit, DF)

marginSums (tbl, "Gender")
proportions (tbl, "Gender")

mat.or.vec Create a Matrix or a Vector

Description
mat .or.vec creates an nr by nc zero matrix if nc is greater than 1, and a zero vector of length
nr if nc equals 1.

Usage

mat.or.vec (nr, nc)

Arguments

nr, nc numbers of rows and columns.

Examples

mat.or.vec (3, 1)
mat.or.vec (3, 2)

match Value Matching

Description

match returns a vector of the positions of (first) matches of its first argument in its second.

%$in% is a more intuitive interface as a binary operator, which returns a logical vector indicating if
there is a match or not for its left operand.

Usage

match (x, table, nomatch = NA_integer_, incomparables = NULL)

364 match
Arguments
x vector or NULL: the values to be matched. Long vectors are supported.
table vector or NULL: the values to be matched against. Long vectors are not sup-
ported.
nomatch the value to be returned in the case when no match is found. Note that it is
coerced to integer.
incomparables
a vector of values that cannot be matched. Any value in x matching a value in
this vector is assigned the nomatch value. For historical reasons, FALSE is
equivalent to NULL.
Details

%$1n% is currently defined as
"%$in%" <- function(x, table) match (x, table, nomatch=0) >0

Factors, raw vectors and lists are converted to character vectors, internally classed objects are trans-
formed via mt frm, and then x and table are coerced to a common type (the later of the two
types in R’s ordering, logical < integer < numeric < complex < character) before matching. If
incomparables has positive length it is coerced to the common type.

Matching for lists is potentially very slow and best avoided except in simple cases.

Exactly what matches what is to some extent a matter of definition. For all types, NA matches NA
and no other value. For real and complex values, NaN values are regarded as matching any other
NaN value, but not matching N2, where for complex x, real and imaginary parts must match both
(unless containing at least one N2).

Character strings will be compared as byte sequences if any input is marked as "bytes", and
otherwise are regarded as equal if they are in different encodings but would agree when translated
to UTF-8 (see Encoding).

That $in% never returns NA makes it particularly useful in i f conditions.

Value

A vector of the same length as x.

match: An integer vector giving the position in table of the first match if there is a match,
otherwise nomatch.

If x[i] is found to equal table[]j] then the value returned in the i-th position of the return
value is j, for the smallest possible j. If no match is found, the value is nomatch.

%$in%: A logical vector, indicating if a match was located for each element of x: thus the values are
TRUE or FALSE and never NA.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

match 365

See Also

pmatch and charmatch for (partial) string matching, match.arg, etc for function argument
matching. findInterval similarly returns a vector of positions, but finds numbers within inter-
vals, rather than exact matches.

is.element for an S-compatible equivalent of $in%.

unique (and duplicated) are using the same definitions of “match” or “equality” asmatch (),
and these are less strict than ==, e.g., for NA and NaN in numeric or complex vectors, or for strings
with different encodings, see also above.

Examples

The intersection of two sets can be defined via match () :
Simple version:

intersect <- function(x, y) yl[match(x, y, nomatch = 0)]
intersect # the R function in base is slightly more careful
intersect (1:10, 7:20)

1:10 %in% c(1,3,5,9)
SStI <_ C("C","ab","B","bba","C",NA, "@","bla","a"’"Ba"’"%")
sstr[sstr %in% c(letters, LETTERS)]

"$w/o%" <- function(x, y) x[!x %in% y] #-— x without y

(1:10) %w/0% c(3,7,12)

Note that setdiff() is very similar and typically makes more sense:
c(l:6,7:2) %$w/0% c(3,7,12) # —-> keeps duplicates

setdiff(c(l:6,7:2), c(3,7,12)) # -> unique values

Illuminating example about NA matching

r <- c(1, NA, NaN)

zN <- c(complex(real = NA , imaginary = 1r), complex(real = r , imaginary
complex(real = r , imaginary = NaN), complex(real = NaN, imaginary =

zM <- cbind(Re=Re (zN), Im=Im(zN), match = match(zN, zN))

rownames (zM) <- format (zN)

zM ##--> many "NA's" (= 1) and the four non-NA's (3 different ones, at 7,9,10)

length(zN) # 12
unique (zN) # the "NA" and the 3 different non-NA NaN's
stopifnot (identical (unique (zN), zN[c(l, 7,9,10)1))

very strict equality would have 4 duplicates (of 12):

symnum (outer (zN, zN, Vectorize(identical,c("x","y")),
FALSE, FALSE, FALSE, FALSE))

removing " (very strictly) duplicates",

i <= ¢(5,8,11,12) # we get 8 pairwise non-identicals

Ixy <- outer (zN[-i], zN[-i], Vectorize(identical,c("x","y")),
FALSE, FALSE, FALSE, FALSE)

stopifnot (identical (Ixy, diag(8) == 1))

NA

-~

366 match.arg

match.arg Argument Verification Using Partial Matching

Description

match.arg matches a character arg against a table of candidate values as specified by choices.

Usage

match.arg(arg, choices, several.ok = FALSE)

Arguments
arg a character vector (of length one unless several . ok is TRUE) or NULL which
means to take choices[1].
choices a character vector of candidate values, often missing, see ‘Details’.

several.ok logical specifying if arg should be allowed to have more than one element.

Details

In the one-argument form match.arg (arg), the choices are obtained from a default setting
for the formal argument arg of the function from which match.arg was called. (Since default
argument matching will set arg to choices, this is allowed as an exception to the ‘length one
unless several .ok is TRUE’ rule, and returns the first element.)

Matching is done using pmatch, so arg may be abbreviated and the empty string (" ") never
matches, not even itself, see pmatch.

Value

The unabbreviated version of the exact or unique partial match if there is one; otherwise, an error
is signalled if several. ok is false, as per default. When several. ok is true and (at least) one
element of arg has a match, all unabbreviated versions of matches are returned.

Warning

The error messages given are liable to change and did so in R 4.2.0. Do not test them in packages.

See Also

pmatch, match. fun,match.call.

match.call 367

Examples

require (stats)

Extends the example for 'switch'

center <- function(x, type = c("mean", "median", "trimmed")) {
type <- match.arg(type)
switch (type,

mean = mean (x),
median = median (x),
trimmed = mean(x, trim = .1))

}
x <— rcauchy (10)

center (x, "t") # Works

center (x, "med") # Works

try (center(x, "m")) # Error

stopifnot (identical (center (x), center (x, "mean")),

identical (center (x, NULL), center(x, "mean")))

Allowing more than one 'arg' and hence more than one match:

match.arg(c("gauss", "rect", "ep"),
c("gaussian", "epanechnikov", "rectangular", "triangular"),

several.ok = TRUE)

match.arg(c("a", ""), c("", NA, "bb", "abc"), several.ok=TRUE) # |-——> "abc"
match.call Argument Matching
Description

match.call returns a call in which all of the specified arguments are specified by their full

names.
Usage
match.call (definition = sys.function(sys.parent()),
call = sys.call(sys.parent()),
expand.dots = TRUE,
envir = parent.frame (2L))
Arguments

definition a function, by default the function from which match.call is called. See

details.

call an unevaluated call to the function specified by definition, as generated by
call.

expand.dots logical. Should arguments matching . . . in the call be included or leftasa . . .
argument?

envir an environment, from which the . . . in call are retrieved, if any.

368 match.fun

Details

‘function’ on this help page means an interpreted function (also known as a ‘closure’):
match.call does not support primitive functions (where argument matching is normally po-
sitional).

match.call is most commonly used in two circumstances:

* To record the call for later re-use: for example most model-fitting functions record the call as
element call of the list they return. Here the default expand.dots = TRUE is appropriate.

* To pass most of the call to another function, often model . frame. Here the common idiom is
that expand.dots = FALSE is used, and the . . . element of the matched call is removed.
An alternative is to explicitly select the arguments to be passed on, as is done in 1m.

Calling match.call outside a function without specifying definition is an error.
Value

An object of class call.
References

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer.

See Also

sys.call () is similar, but does not expand the argument names; call, pmatch, match.arg,
match. fun.

Examples
match.call (get, call("get", "abc", i = FALSE, p = 3))
—> get (x = "abc", pos = 3, inherits = FALSE)
fun <- function(x, lower = 0, upper = 1) {
structure ((x - lower) / (upper - lower), CALL = match.call())

}
fun(4 x atan(l), u = pi)

match. fun Extract a Function Specified by Name

Description

When called inside functions that take a function as argument, extract the desired function object
while avoiding undesired matching to objects of other types.

Usage

match. fun (FUN, descend = TRUE)

match.fun 369

Arguments
FUN item to match as function: a function, symbol or character string. See ‘Details’.
descend logical; control whether to search past non-function objects.

Details

match. fun is not intended to be used at the top level since it will perform matching in the parent
of the caller.

If FUN is a function, it is returned. If it is a symbol (for example, enclosed in backquotes) or a
character vector of length one, it will be looked up using get in the environment of the parent of
the caller. If it is of any other mode, it is attempted first to get the argument to the caller as a symbol
(using substitute twice), and if that fails, an error is declared.

If descend = TRUE, match. fun will look past non-function objects with the given name; oth-
erwise if FUN points to a non-function object then an error is generated.

This is used in base functions such as apply, lapply, outer, and sweep.

Value

A function matching FUN or an error is generated.

Bugs
The descend argument is a bit of misnomer and probably not actually needed by anything. It may
go away in the future.

It is impossible to fully foolproof this. If one at t aches a list or data frame containing a length-one
character vector with the same name as a function, it may be used (although namespaces will help).

Author(s)

Peter Dalgaard and Robert Gentleman, based on an earlier version by Jonathan Rougier.

See Also

match.arg, get

Examples

Same as get ("x"):

match.fun ("*")

Overwrite outer with a vector

outer <- 1:5

try (match.fun (outer, descend = FALSE)) #-> Error: not a function
match.fun (outer) # finds it anyway

is.function (match.fun ("outer")) # as well

370 MathFun

MathFun Miscellaneous Mathematical Functions

Description

abs (x) computes the absolute value of X, sgrt (x) computes the (principal) square root of X,
V.

The naming follows the standard for computer languages such as C or Fortran.

Usage
abs (x)
sgrt (x)
Arguments

x a numeric or complex vector or array.

Details

These are internal generic primitive functions: methods can be defined for them individually or
via the Math group generic. For complex arguments (and the default method), z, abs (z) ==
Mod (z) and sqrt (z) ==z"0.5.

abs (x) returns an integer vector when x is integer or logical.

S4 methods

Both are S4 generic and members of the Math group generic.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

Arithmetic for simple, Log for logarithmic, sin for trigonometric, and Special for special
mathematical functions.

‘plotmath’ for the use of sgrt in plot annotation.

Examples

require (stats) # for spline

require (graphics)

xx <— —-9:9

plot (xx, sqgrt (abs(xx)), col = "red")

lines (spline (xx, sqgrt (abs(xx)), n=101), col = "pink")

matmult 371

matmult Matrix Multiplication

Description

Multiplies two matrices, if they are conformable. If one argument is a vector, it will be promoted to
either a row or column matrix to make the two arguments conformable. If both are vectors of the
same length, it will return the inner product (as a matrix).

Usage

X

o

*

o
=

Arguments

X,y numeric or complex matrices or vectors.

Details

When a vector is promoted to a matrix, its names are not promoted to row or column names, unlike
as.matrix.

Promotion of a vector to a 1-row or 1-column matrix happens when one of the two choices allows
x and y to get conformable dimensions.

This operator is S4 generic but not S3 generic. S4 methods need to be written for a function of two
arguments named x and y.
Value

A double or complex matrix product. Use drop to remove dimensions which have only one level.

Note
The propagation of NaN/Inf values, precision, and performance of matrix products can be controlled
by options ("matprod").

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

For matrix crossproducts, crossprod() and tcrossprod() are typically preferable.
matrix, Arithmetic,diag.

372 matrix

Examples
x <- 1:4
(z <= X %*% X) # scalar ("inner") product (1 x 1 matrix)
drop (z) # as scalar
y <- diag(x)
z <- matrix(1l:12, ncol = 3, nrow = 4)
y %%% z
Yy %% %
X %*% z
matrix Matrices
Description

matrix creates a matrix from the given set of values.
as.matrix attempts to turn its argument into a matrix.

is.matrix tests if its argument is a (strict) matrix.

Usage

matrix (data = NA, nrow = 1, ncol = 1, byrow = FALSE,
dimnames = NULL)

as.matrix(x, ...)
S3 method for class 'data.frame'
as.matrix (x, rownames.force = NA, ...)

is.matrix (x)

Arguments

data an optional data vector (including a list or expression vector). Non-atomic
classed R objects are coerced by as.vector and all attributes discarded.

nrow the desired number of rows.

ncol the desired number of columns.

byrow logical. If FALSE (the default) the matrix is filled by columns, otherwise the
matrix is filled by rows.

dimnames A dimnames attribute for the matrix: NULL or a 1ist of length 2 giving the
row and column names respectively. An empty list is treated as NULL, and a list
of length one as row names. The list can be named, and the list names will be
used as names for the dimensions.

x an R object.

additional arguments to be passed to or from methods.

matrix 373

rownames.force
logical indicating if the resulting matrix should have character (rather than
NULL) rownames. The default, NA, uses NULL rownames if the data frame
has ‘automatic’ row.names or for a zero-row data frame.

Details
If one of nrow or ncol is not given, an attempt is made to infer it from the length of data and
the other parameter. If neither is given, a one-column matrix is returned.

If there are too few elements in data to fill the matrix, then the elements in data are recycled. If
data has length zero, NA of an appropriate type is used for atomic vectors (0 for raw vectors) and
NULL for lists.

is.matrix returns TRUE if x is a vector and has a "dim" attribute of length 2 and FALSE
otherwise. Note that a data . frame is not a matrix by this test. The function is generic: you can
write methods to handle specific classes of objects, see InternalMethods.

as.matrix is a generic function. The method for data frames will return a character ma-
trix if there is only atomic columns and any non-(numeric/logical/complex) column, applying
as.vector to factors and format to other non-character columns. Otherwise, the usual co-
ercion hierarchy (logical < integer < double < complex) will be used, e.g., all-logical data frames
will be coerced to a logical matrix, mixed logical-integer will give a integer matrix, etc.

The default method for as.matrix calls as.vector (x), and hence e.g. coerces factors to
character vectors.

When coercing a vector, it produces a one-column matrix, and promotes the names (if any) of the
vector to the rownames of the matrix.

is.matrix is a primitive function.
The print method for a matrix gives a rectangular layout with dimnames or indices. For a list
matrix, the entries of length not one are printed in the form ‘integer, 7’ indicating the type and
length.

Note

If you just want to convert a vector to a matrix, something like

dim(x) <- c(nx, ny)
dimnames (x) <—- list (row_names, col_names)

will avoid duplicating x and preserve class (x) which may be useful, e.g., for Date objects.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

data.matrix, which attempts to convert to a numeric matrix.

A matrix is the special case of a two-dimensional array. Since R 4.0.0, inherits (m,
"array") istrue foramatrix m.

374 maxCol

Examples

is.matrix(as.matrix (1:10))

lis.matrix (warpbreaks) # data.frame, NOT matrix!
warpbreaks[1:10,]
as.matrix (warpbreaks([1:10,]) # using as.matrix.data.frame(.) method

Example of setting row and column names
mdat <- matrix(c(1,2,3, 11,12,13), nrow = 2, ncol = 3, byrow = TRUE,
dimnames = list (c("rowl", "row2"),
c("c.1i", "c.2", "C.3")))
mdat

maxCol Find Maximum Position in Matrix

Description

Find the maximum position for each row of a matrix, breaking ties at random.

Usage

max.col (m, ties.method = c¢("random", "first", "last"))

Arguments

m numerical matrix

ties.method a character string specifying how ties are handled, "random" by default; can
be abbreviated; see ‘Details’.

Details

When ties.method = "random", as per default, ties are broken at random. In this case, the
determination of a tie assumes that the entries are probabilities: there is a relative tolerance of 1072,
relative to the largest (in magnitude, omitting infinity) entry in the row.

Ifties.method="first", max.col returns the column number of the first of several max-
ima in every row, the same as unname (apply (m, 1, which.max)) if mhasno missing values.
Correspondingly, ties .method = "last" returns the last of possibly several indices.

Value

index of a maximal value for each row, an integer vector of length nrow (m) .

References

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. New York: Springer
(4th ed).

mean 375

See Also

which.max for vectors.

Examples

table (mc <- max.col (swiss)) # mostly "1" and "5", 5 x "2" and once "4"
swiss[unique (print (mr <- max.col(t(swiss)))) ,] # 3 33 45 45 33 6

set.seed (1) # reproducible example:

(mm <- rbind(x = round(2*stats::runif (12)),
y = round(5xstats::runif(12)),

round (8+stats::runif (12))))

N
Il

Not run:

,11 ,21 (,3) [,41 [,5) [,e) [,71 [,81 [,9] [,10] [,11] [,12]
X 1 1 1 2 0 2 2 1 1 0 0 0
y 3 2 4 2 4 5 2 4 5 1 3 1
z 2 3 0 3 7 3 4 5 4 1 7 5

End (Not run)

column indices of all row maxima

utils::str(lapply(1:3, function(i) which(mm[i,] == max(mm[i,]))))
max.col (mm) ; max.col (mm) # "random"

max.col (mm, "first") # -> 4 6 5

max.col (mm, "last") # -> 7 9 11

mean Arithmetic Mean

Description

Generic function for the (trimmed) arithmetic mean.

Usage

mean (X, ...)

Default S3 method:

mean (x, trim = 0, na.rm = FALSE, ...)
Arguments
x An R object. Currently there are methods for numeric/logical vectors and date,
date-time and time interval objects. Complex vectors are allowed for trim =
0, only.
trim the fraction (0 to 0.5) of observations to be trimmed from each end of x before

the mean is computed. Values of trim outside that range are taken as the nearest
endpoint.

376 memCompress

na.rm a logical evaluating to TRUE or FALSE indicating whether NA values should be
stripped before the computation proceeds.

further arguments passed to or from other methods.

Value

If trim is zero (the default), the arithmetic mean of the values in x is computed, as a numeric or
complex vector of length one. If x is not logical (coerced to numeric), numeric (including integer)
or complex, NA_real_ isreturned, with a warning.

If t rimis non-zero, a symmetrically trimmed mean is computed with a fraction of t r im observa-
tions deleted from each end before the mean is computed.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

weighted.mean, mean.POSIXct, colMeans for row and column means.

Examples

x <-= c¢(0:10, 50)
xm <— mean (x)

c(xm, mean(x, trim = 0.10))
memCompress In-memory Compression and Decompression
Description

In-memory compression or decompression for raw vectors.

Usage

"XZ“, "none"))

memCompress (from, type = c("gzip", "bzip2",
memDecompress (from,
type = c("unknown", "gzip", "bzip2", "xz", "none"),
asChar = FALSE)

memCompress 377

Arguments
from A raw vector. For memCompress a character vector will be converted to a raw
vector with character strings separated by "\n". Types "gzip" and "xz"
support long raw vectors as from R 4.0.0.
type character string, the type of compression. May be abbreviated to a single letter,
defaults to the first of the alternatives.
asChar logical: should the result be converted to a character string? NB: character
strings have a limit of 23! — 1 bytes, so raw vectors should be used for large
inputs.
Details

type = "none" passes the input through unchanged, but may be useful if t ype is a variable.

type = "unknown" attempts to detect the type of compression applied (if any): this will always
succeed for bzip2 compression, and will succeed for other forms if there is a suitable header. It
will auto-detect the ‘magic’ header ("\x1£\x8b") added to files by the gzip program (and to
files written by gzfile), but memCompress does not add such a header. (It supports RFC 1950
format, sometimes known as ‘zlib’ format, for compression and decompression and RFC 1952 for
decompression only.)

gz ip compression uses whatever is the default compression level of the underlying library (usually
6).

bzip2 compression always adds a header ("BZh"). The underlying library only supports in-
memory (de)compression of up to 23! — 1 elements. Compression is equivalent to bzip2 —9 (the
default).

Compressing with type = "xz" is equivalent to compressing a file with xz —9e (including adding
the ‘magic’ header): decompression should cope with the contents of any file compressed by xz
version 4.999 and later, as well as by some versions of 1zma. There are other versions, in particular
‘raw’ streams, that are not currently handled.

All the types of compression can expand the input: for "gzip" and "bzip2" the maximum
expansion is known and so memCompress can always allocate sufficient space. For "xz" it is
possible (but extremely unlikely) that compression will fail if the output would have been too large.

Value

A raw vector or a character string (if asChar = TRUE).

See Also

connections.
extSoftVersion for the versions of the z11ib, bzip2 and xz libraries in use.

https://en.wikipedia.org/wiki/Data_compression for background on data com-
pression, https://zlib.net/,https://en.wikipedia.org/wiki/Gzip, http://
www.bzip.org/, https://en.wikipedia.org/wiki/Bzip2, https://tukaani.
org/xz/ and https://en.wikipedia.org/wiki/Xz for references about the particular
schemes used.

https://en.wikipedia.org/wiki/Data_compression
https://zlib.net/
https://en.wikipedia.org/wiki/Gzip
http://www.bzip.org/
http://www.bzip.org/
https://en.wikipedia.org/wiki/Bzip2
https://tukaani.org/xz/
https://tukaani.org/xz/
https://en.wikipedia.org/wiki/Xz

378 memlimits

Examples

txt <- readLines (file.path (R.home ("doc"), "COPYING"))

sum (nchar (txt))

txt.gz <- memCompress (txt, "g")

length (txt.gz)

txt2 <- strsplit (memDecompress (txt.gz, "g", asChar = TRUE), "\n")[[1]]
stopifnot (identical (txt, txt2))

txt.bz2 <- memCompress (txt, "b")

length (txt.bz2)

can auto-detect bzip2:

txt3 <- strsplit (memDecompress (txt.bz2, asChar = TRUE), "\n")[[1]]
stopifnot (identical (txt, txt3))

xz compression is only worthwhile for large objects

txt.xz <- memCompress (txt, "x")

length (txt.xz)

txt3 <- strsplit (memDecompress (txt.xz, asChar = TRUE), "\n")[[1]]
stopifnot (identical (txt, txt3))

memlimits Query and Set Heap Size Limits

Description

Query and set the maximal size of the vector heap and the maximal number of heap nodes for the
current R process.

Usage
mem.maxVSize (vsize = 0)
mem.maxNSize (nsize = 0)
Arguments
vsize numeric; new size limit in Mb.
nsize numeric; new maximal node number.
Details

New Limits lower than current usage are ignored. Specifying a size of Inf sets the limit to the
maximal possible value for the platform.

The default maximal values are unlimited on most platforms, but can be adjusted using environment
variables as described in Memory. On macOS a lower default vector heap limit is used to protect
against the R process being killed when macOS over-commits memory.

Adjusting the maximal number of nodes is rarely necessary. Adjusting the vector heap size limit
can be useful on macOS in particular but should be done with caution.

Memory 379

Value

The current or new value, in Mb for mem.maxVSize. Inf is returned if the current value is
unlimited.

See Also

Memory.

Memory Memory Available for Data Storage

Description

How R manages its workspace.

Details

R has a variable-sized workspace. There are (rarely-used) command-line options to control its
minimum size, but no longer any to control the maximum size.

R maintains separate areas for fixed and variable sized objects. The first of these is allocated as an
array of cons cells (Lisp programmers will know what they are, others may think of them as the
building blocks of the language itself, parse trees, etc.), and the second are thrown on a heap of
“Veells’ of 8 bytes each. Each cons cell occupies 28 bytes on a 32-bit build of R, (usually) 56 bytes
on a 64-bit build.

The default values are (currently) an initial setting of 350k cons cells and 6Mb of vector heap. Note
that the areas are not actually allocated initially: rather these values are the sizes for triggering
garbage collection. These values can be set by the command line options ‘~-min-nsize’ and
‘——min-vsize’ (or if they are not used, the environment variables R_NSIZE and R_VSIZE)
when R is started. Thereafter R will grow or shrink the areas depending on usage, never decreasing
below the initial values. The maximal vector heap size can be set with the environment variable
R_MAX_VSIZE.

How much time R spends in the garbage collector will depend on these initial settings and on the
trade-off the memory manager makes, when memory fills up, between collecting garbage to free up
unused memory and growing these areas. The strategy used for growth can be specified by setting
the environment variable R_GC_MEM_GROW to an integer value between 0 and 3. This variable is
read at start-up. Higher values grow the heap more aggressively, thus reducing garbage collection
time but using more memory.

You can find out the current memory consumption (the heap and cons cells used as numbers and
megabytes) by typing gc () at the R prompt. Note that following gcinfo (TRUE), automatic
garbage collection always prints memory use statistics.

The command-line option ‘——max-ppsize’ controls the maximum size of the pointer protection
stack. This defaults to 50000, but can be increased to allow deep recursion or large and complicated
calculations to be done. Note that parts of the garbage collection process goes through the full
reserved pointer protection stack and hence becomes slower when the size is increased. Currently
the maximum value accepted is 500000.

380 Memory-limits

See Also

An Introduction to R for more command-line options.
Memory-1limits for the design limitations.

gc for information on the garbage collector and total memory usage, object.size (a) for the
(approximate) size of R object a. memory .profile for profiling the usage of cons cells.

Memory-limits Memory Limits in R

Description

R holds objects it is using in virtual memory. This help file documents the current design limitations
on large objects: these differ between 32-bit and 64-bit builds of R.

Details

Currently R runs on 32- and 64-bit operating systems, and most 64-bit OSes (including Linux,
Solaris, Windows and macOS) can run either 32- or 64-bit builds of R. The memory limits depends
mainly on the build, but for a 32-bit build of R on Windows they also depend on the underlying OS
version.

R holds all objects in virtual memory, and there are limits based on the amount of memory that can
be used by all objects:

* There may be limits on the size of the heap and the number of cons cells allowed — see
Memory — but these are usually not imposed.

* There is a limit on the (user) address space of a single process such as the R executable. This
is system-specific, and can depend on the executable.

* The environment may impose limitations on the resources available to a single process: Win-
dows’ versions of R do so directly.

Error messages beginning cannot allocate vector of size indicate a failure to obtain
memory, either because the size exceeded the address-space limit for a process or, more likely,
because the system was unable to provide the memory. Note that on a 32-bit build there may well
be enough free memory available, but not a large enough contiguous block of address space into
which to map it.

There are also limits on individual objects. The storage space cannot exceed the address limit, and if
you try to exceed that limit, the error message begins cannot allocate vector of length.
The number of bytes in a character string is limited to 23! — 1 ~ 210, which is also the limit on
each dimension of an array.

memory.profile 381

Unix

The address-space limit is system-specific: 32-bit OSes imposes a limit of no more than 4Gb: it is
often 3Gb. Running 32-bit executables on a 64-bit OS will have similar limits: 64-bit executables
will have an essentially infinite system-specific limit (e.g., 128Tb for Linux on x86_64 cpus).

See the OS/shell’s help on commands such as 1imit or ulimit for how to impose limitations on
the resources available to a single process. For example a bash user could use

ulimit -t 600 -v 4000000
whereas a csh user might use

limit cputime 10m
limit vmemoryuse 4096m

to limit a process to 10 minutes of CPU time and (around) 4Gb of virtual memory. (There are other
options to set the RAM in use, but they are not generally honoured.)

Windows

The address-space limit is 2Gb under 32-bit Windows unless the OS’s default has been
changed to allow more (up to 3Gb). See https://docs.microsoft.com/en-gb/
windows/desktop/Memory/physical-address—extension and https://docs.
microsoft.com/en—-gb/windows/desktop/Memory/4—-gigabyte—tuning. Under
most 64-bit versions of Windows the limit for a 32-bit build of R is 4Gb: for the oldest ones it is
2Gb. The limit for a 64-bit build of R (imposed by the OS) is 8Tb.

It is not normally possible to allocate as much as 2Gb to a single vector in a 32-bit build of R even
on 64-bit Windows because of preallocations by Windows in the middle of the address space.

See Also

object.size (a) for the (approximate) size of R object a.

memory.profile Profile the Usage of Cons Cells

Description

Lists the usage of the cons cells by SEXPREC type.

Usage

memory.profile ()

Details

The current types and their uses are listed in the include file ‘Rinternals.h’.

https://docs.microsoft.com/en-gb/windows/desktop/Memory/physical-address-extension
https://docs.microsoft.com/en-gb/windows/desktop/Memory/physical-address-extension
https://docs.microsoft.com/en-gb/windows/desktop/Memory/4-gigabyte-tuning
https://docs.microsoft.com/en-gb/windows/desktop/Memory/4-gigabyte-tuning

382 merge

Value

A vector of counts, named by the types. See typeof for an explanation of types.

See Also

gc for the overall usage of cons cells. Rprofmem and tracemem allow memory profiling of
specific code or objects, but need to be enabled at compile time.

Examples

memory.profile ()

merge Merge Two Data Frames

Description

Merge two data frames by common columns or row names, or do other versions of database join
operations.

Usage

merge (X, y, ...)

Default S3 method:
merge (x, y, ...)

S3 method for class 'data.frame'

merge (x, y, by = intersect (names (x), names(y)),
by.x = by, by.y = by, all = FALSE, all.x = all, all.y = all,
sort = TRUE, suffixes = c(".x",".y"), no.dups = TRUE,
incomparables = NULL, ...)

Arguments

X, Yy data frames, or objects to be coerced to one.
by, by.x, by.y
specifications of the columns used for merging. See ‘Details’.

all logical; a11 = Lis shorthand forall.x = Land all.y = L, where L is either
TRUE or FALSE.

all.x logical; if TRUE, then extra rows will be added to the output, one for each row
in x that has no matching row in y. These rows will have NAs in those columns
that are usually filled with values from y. The default is FALSE, so that only
rows with data from both x and y are included in the output.

all.y logical; analogous to all. x.

sort logical. Should the result be sorted on the by columns?

merge 383

suffixes a character vector of length 2 specifying the suffixes to be used for making
unique the names of columns in the result which are not used for merging (ap-
pearing in by etc).

no.dups logical indicating that suf fixes are appended in more cases to avoid dupli-
cated column names in the result. This was implicitly false before R version
3.5.0.

incomparables

values which cannot be matched. See match. This is intended to be used for
merging on one column, so these are incomparable values of that column.

arguments to be passed to or from methods.

Details

merge is a generic function whose principal method is for data frames: the default method coerces
its arguments to data frames and calls the "data . frame" method.

By default the data frames are merged on the columns with names they both have, but separate
specifications of the columns can be given by by .x and by .y. The rows in the two data frames
that match on the specified columns are extracted, and joined together. If there is more than one
match, all possible matches contribute one row each. For the precise meaning of ‘match’, see
match.

Columns to merge on can be specified by name, number or by a logical vector: the name
"row.names" or the number O specifies the row names. If specified by name it must correspond
uniquely to a named column in the input.

If by or both by.x and by.y are of length 0 (a length zero vector or NULL), the result,
r, is the Cartesian product of x and y, i.e., dim(r) = ¢ (nrow (x) *nrow (y) , ncol (x) +
ncol (y)).

If all.x is true, all the non matching cases of x are appended to the result as well, with NA filled
in the corresponding columns of y; analogously for all.y.

If the columns in the data frames not used in merging have any common names, these have
suffixes (".x" and ".y" by default) appended to try to make the names of the result unique.
If this is not possible, an error is thrown.

If a by . x column name matches one of y, and if no.dups is true (as by default), the y version
gets suffixed as well, avoiding duplicate column names in the result.

The complexity of the algorithm used is proportional to the length of the answer.

In SQL database terminology, the default value of all = FALSE gives a natural join, a special case
of an inner join. Specifying all . x = TRUE gives a left (outer) join, a1l .y = TRUE a right (outer)
join, and both (a1l = TRUE) a (full) outer join. DBMSes do not match NULL records, equivalent
to incomparables =NAin R.

Value

A data frame. The rows are by default lexicographically sorted on the common columns, but for
sort = FALSE are in an unspecified order. The columns are the common columns followed by
the remaining columns in x and then those in y. If the matching involved row names, an extra
character column called Row . names is added at the left, and in all cases the result has ‘automatic’
rOW names.

384 merge

Note

This is intended to work with data frames with vector-like columns: some aspects work with data
frames containing matrices, but not all.

Currently long vectors are not accepted for inputs, which are thus restricted to less than 2731 rows.
That restriction also applies to the result for 32-bit platforms.

See Also

data.frame, by, cbind

dendrogram for a class which has a merge method.

Examples

authors <- data.frame(

I(x) : use character columns of names to get sensible sort order
surname = I (c("Tukey", "Venables", "Tierney", "Ripley", "McNeil")),
nationality = c("US", "Australia", "US", "UK", "Australia"),
deceased = c("yes", rep("no", 4)))

authorN <- within (authors, { name <- surname; rm(surname) })
books <- data.frame (
name = I(c("Tukey", "Venables", "Tierney",
"Ripley", "Ripley", "McNeil", "R Core")),
title = c("Exploratory Data Analysis",
"Modern Applied Statistics ...",
"LISP-STAT",
"Spatial Statistics", "Stochastic Simulation",
"Interactive Data Analysis",
"An Introduction to R"),
other.author = c(NA, "Ripley", NA, NA, NA, NA,
"Venables & Smith"))

(m0 <- merge (authorN, books))

(
(

(ml <- merge (authors, books, by.x = "surname", by.y = "name"))
m2 <- merge (books, authors, by.x = "name", by.y = "surname")
stopifnot (exprs = {

identical (mO, m2[, names (m0)])

as.character(ml[, 1]) == as.character(m2[, 1])

all.equal(ml[, -1], m2[, -1][names(ml) [-1] 1)
identical (dim(merge (ml, m2, by = NULL)),
c(nrow (ml) *nrow (m2), ncol (ml)+ncol (m2)))

b

"R core" is missing from authors and appears only here
merge (authors, books, by.x = "surname", by.y = "name", all = TRUE)

example of using 'incomparables'

x <- data.frame(kl = c(NA,NA,3,4,5), k2 = ¢c(1,NA,NA,4,5), data =
y <- data.frame(kl = c(NA,2,NA,4,5), k2 = c(NA,NA, 3,4,5), data
merge (x, y, by = c("k1","k2")) # NA's match

merge (x, y, by = "k1") # NA's match, so 6 rows

([
o
SS)]

message 385

merge (x, y, by = "k2", incomparables = NA) # 2 rows
message Diagnostic Messages
Description

Generate a diagnostic message from its arguments.

Usage
message (..., domain = NULL, appendLF = TRUE)
suppressMessages (expr, classes = "message")
packageStartupMessage (..., domain = NULL, appendLF = TRUE)

suppressPackageStartupMessages (expr)

.makeMessage (..., domain = NULL, appendLF = FALSE)

Arguments
zero or more objects which can be coerced to character (and which are pasted
together with no separator) or (for message only) a single condition object.
domain see gettext. If NA, messages will not be translated, see also the note in st op.
appendLF logical: should messages given as a character string have a newline appended?
expr expression to evaluate.
classes character, indicating which classes of messages should be suppressed.
Details

message is used for generating ‘simple’ diagnostic messages which are neither warnings nor
errors, but nevertheless represented as conditions. Unlike warnings and errors, a final newline is
regarded as part of the message, and is optional. The default handler sends the message to the
stderr () connection.

If a condition object is supplied to message it should be the only argument, and further arguments
will be ignored, with a warning.

While the message is being processed, a muf f1eMessage restart is available.

suppressMessages evaluates its expression in a context that ignores all ‘simple’ diagnostic
messages.

packageStartupMessage is a variant whose messages can be suppressed separately by
suppressPackageStartupMessages. (They are still messages, so can be suppressed by
suppressMessages.)

.makeMessage is a utility used by message, warning and stop to generate a text message
from the . . . arguments by possible translation (see gettext) and concatenation (with no sepa-
rator).

386 missing

See Also

warning and stop for generating warnings and errors; conditions for condition handling
and recovery.

gettext for the mechanisms for the automated translation of text.

Examples

message ("ABC", "DEF")
suppressMessages (message ("ABC"))

testit <- function() {
message ("testing package startup messages")
packageStartupMessage ("initializing ...", appendLF = FALSE)
Sys.sleep (1)
packageStartupMessage (" done")

testit ()
suppressPackageStartupMessages (testit ())
suppressMessages (testit ())

missing Does a Formal Argument have a Value?

Description

missing can be used to test whether a value was specified as an argument to a function.

Usage

missing (x)

Arguments

X a formal argument.

Details

missing (x) is only reliable if x has not been altered since entering the function: in particular it
will always be false after x <- match.arg (x).

The example shows how a plotting function can be written to work with either a pair of vectors
giving x and y coordinates of points to be plotted or a single vector giving y values to be plotted
against their indices.

Currently missing can only be used in the immediate body of the function that defines the argu-
ment, not in the body of a nested function or a 1ocal call. This may change in the future.

This is a ‘special’ primitive function: it must not evaluate its argument.

mode 387

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer.

See Also

substitute for argument expression; NA for missing values in data.

Examples

myplot <- function(x, y) {
if (missing(y)) |
y <= X
x <— l:length (y)
}
plot (x, V)

mode The (Storage) Mode of an Object

Description

Get or set the ‘mode’ (a kind of ‘type’), or the storage mode of an R object.

Usage

mode (x)

mode (x) <- value
storage.mode (x)
storage.mode (x) <- value

Arguments

x any R object.

value a character string giving the desired mode or ‘storage mode’ (type) of the object.
Details

Both mode and storage.mode return a character string giving the (storage) mode of the object
— often the same — both relying on the output of t ypeof (x), see the example below.

mode (x) <— "newmode" changes the mode of object x to newmode. This is only sup-
ported if there is an appropriate as . newmode function, for example "logical™", "integer",
"double", "complex", "raw", "character", "list", "expression", "name",
"symbol" and "function". Attributes are preserved (but see below).

388 mode

storage.mode (x) <- "newmode" is a more efficient primitive version of mode<-, which
works for "newmode" which is one of the internal types (see typeof), but not for "single™".
Attributes are preserved.

As storage mode "single" is only a pseudo-mode in R, it will not be reported by mode or
storage.mode: use attr (object, "Csingle") to examine this. However, mode<-
can be used to set the mode to "single", which sets the real mode to "double" and the
"Csingle" attribute to TRUE. Setting any other mode will remove this attribute.

Note (in the examples below) that some calls have mode " (" which is S compatible.

Mode names

Modes have the same set of names as types (see typeof) except that

* types "integer" and "double" are returned as "numeric".
* types "special”, "builtin" and "closure" arereturned as "function".
* type "symbol" is called mode "name".

* type "language" isreturned as " (" or "call™.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

typeof for the R-internal ‘mode’ or ‘type’, type.convert, attributes.

Examples

require (stats)
sapply (options (), mode)

cex3 <- c("NULL", "1", "1:1", "1i", "list (1)
"pairlist(pi)", "c", "1lm", "formals(lm) [[1l
"y ~ x","expression((1))[[1]11", "(yv ~ x)I[I[
"expression(x <- pi) [[1]1][[111™)

lex3 <- sapply(cex3, function(x) eval(str2lang(x)))

mex3 <- t(sapply(lex3,

function (x) c(typeof(x), storage.mode (x), mode(x))))
dimnames (mex3) <- list(cex3, c("typeof(.)","storage.mode(.)","mode(.)"))
mex3

", "data.frame(x = 1)",
11", "formals(lm)[[2]]",
i1,

This also makes a local copy of 'pi':
storage.mode (pi) <- "complex"
storage.mode (pi)

rm(pi)

mtfrm 389

mtfrm Auxiliary Function for Matching

Description

A generic auxiliary function to transform objects for matching.

Usage

mtfrm(x)

Arguments

x an R object

Details

Matching via match will use mt £ rm to transform internally classed objects (see is.object) to
a vector representation appropriate for matching. The default method performs as.character
if this preserves the length.

Ideally, methods for mt £ rm should ensure that comparisons of same-classed objects via match
are consistent with those employed by methods for duplicated/unique and ==/!= (where
applicable).

Value

A vector of the same length as x.

NA ‘Not Available’ / Missing Values

Description

NA is a logical constant of length 1 which contains a missing value indicator. NA can be co-
erced to any other vector type except raw. There are also constants NA_integer_, NA_real_,
NA_complex_ and NA_character_ of the other atomic vector types which support missing
values: all of these are reserved words in the R language.

The generic function is . na indicates which elements are missing.
The generic function is.na<- sets elements to NA.

The generic function anyNA implements any (is.na (x)) in a possibly faster way (especially
for atomic vectors).

390 NA

Usage

NA
is.na (x)
anyNA (x, recursive = FALSE)

S3 method for class 'data.frame'
is.na (x)

is.na(x) <- wvalue

Arguments
X an R object to be tested: the default method for is.na and anyNA handle
atomic vectors, lists, pairlists, and NULL.
recursive logical: should anyNA be applied recursively to lists and pairlists?
value a suitable index vector for use with x.
Details

The NA of character type is distinct from the string "NA". Programmers who need to specify an
explicit missing string should use NA_character_ (rather than "NA") or set elements to NA
using is.na<-.

is.na and anyNA are generic: you can write methods to handle specific classes of objects, see
InternalMethods.

Function is.na<- may provide a safer way to set missingness. It behaves differently for factors,
for example.

Numerical computations using NA will normally result in NA: a possible exception is where NaN is
also involved, in which case either might result (which may depend on the R platform). However,
this is not guaranteed and future CPUs and/or compilers may behave differently. Dynamic binary
translation may also impact this behavior (with valgrind, computations using NA may result in NaN
even when no NaN is involved).

Logical computations treat NA as a missing TRUE/FALSE value, and so may return TRUE or
FALSE if the expression does not depend on the NA operand.

The default method for anyNA handles atomic vectors without a class and NULL. It calls
any (is.na(x)) on objects with classes and for recursive = FALSE, on lists and pairlists.

Value

The default method for is.na applied to an atomic vector returns a logical vector of the same
length as its argument x, containing TRUE for those elements marked N2 or, for numeric or complex
vectors, NaN, and FALSE otherwise. (A complex value is regarded as NA if either its real or
imaginary part is NA or NaN.) dim, dimnames and names attributes are copied to the result.

The default methods also work for lists and pairlists:

For is.na, elementwise the result is false unless that element is a length-one atomic vector and
the single element of that vector is regarded as NA or NaN (note that any is.na method for the
class of the element is ignored).

NA 391

anyNA (recursive = FALSE) works the same way as is.na; anyNA (recursive =
TRUE) applies anyNA (with method dispatch) to each element.

The data frame method for is.na returns a logical matrix with the same dimensions as the data
frame, and with dimnames taken from the row and column names of the data frame.

anyNA (NULL) is false; is.na (NULL) is logical (0) (no longer warning since R version
3.5.0).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer.

See Also

NaN, is.nan, etc., and the utility function complete.cases.

na.action,na.omit,na.fail on how methods can be tuned to deal with missing values.

Examples

is.na(c (1, NA)) #> FALSE TRUE
is.na(paste(c(l, NA))) #> FALSE FALSE

(xx <= c(0:4))

is.na(xx) <- c (2, 4)

XX #> 0 NA 2 NA 4
anyNA (xx) # TRUE

Some logical operations do not return NA
c (TRUE, FALSE) & NA
c(TRUE, FALSE) | NA

Measure speed difference in a favourable case:
the difference depends on the platform, on most ca 3x.
X <= 1:10000; x[5000] <- NaN # coerces x to be double

if (require ("microbenchmark")) { # does not work reliably on all platforms
print (microbenchmark (any (is.na(x)), anyNA(x)))

} else {
nSim <- 2713

print (rbind(is.na = system.time (replicate (nSim, any(is.na(x)))),
anyNA = system.time (replicate (nSim, anyNA(x)))))

anyNA () can work recursively with list()s:

LL <- list(l:5, c(NA, 5:8), c("A","NA"), c("a", NA_character_))
L2 <= LL[c(1,3)]

sapply (LL, anyNA); c(anyNA(LL), anyNA(LL, TRUE))

sapply (L2, anyNA); c(anyNA(L2), anyNA(L2, TRUE))

392 name

... lists, and hence data frames, too:
dN <- dd <- USJudgeRatings; dN[3,6] <- NA
anyNA (dd) # FALSE
anyNA (dN) # TRUE

name Names and Symbols

Description

A ‘name’ (also known as a ‘symbol’) is a way to refer to R objects by name (rather than the value
of the object, if any, bound to that name).

as.name and as.symbol are identical: they attempt to coerce the argument to a name.

is.symbol and the identical is.name return TRUE or FALSE depending on whether the argu-
ment is a name or not.

Usage

as.symbol (x)
is.symbol (x)

as.name (x)
is.name (x)

Arguments

X object to be coerced or tested.

Details

Names are limited to 10,000 bytes (and were to 256 bytes in versions of R before 2.13.0).

as.name first coerces its argument internally to a character vector (so methods for
as.character are not used). It then takes the first element and provided it is not " ", returns a
symbol of that name (and if the element is NA_character_, the name is "NA™).

as.name is implemented as as . vector (x, "symbol"), and hence will dispatch methods for
the generic function as.vector.

is.name and is.symbol are primitive functions.

Value

For as.name and as.symbol, an R object of type "symbol™" (see typeof).

For is.name and is.symbol, alength-one logical vector with value TRUE or FALSE.

names 393

Note

The term ‘symbol’ is from the LISP background of R, whereas ‘name’ has been the standard S term
for this.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

call, is.language. For the internal object mode, t ypeof.

plotmath for another use of ‘symbol’.

Examples

an <- as.name ("arrg")
is.name (an) # TRUE
mode (an) # name
typeof (an) # symbol

names The Names of an Object

Description

Functions to get or set the names of an object.

Usage

names (x)
names (x) <- value

Arguments

x an R object.

value a character vector of up to the same length as x, or NULL.
Details

names is a generic accessor function, and name s<- is a generic replacement function. The default
methods get and set the "names™" attribute of a vector (including a list) or pairlist.

For an environment env, names (env) gives the names of the corresponding list,
ie.,, names(as.list (env, all.names =TRUE)) which are also given by ls (env,
all.names = TRUE, sorted =FALSE). If the environment is used as a hash table,
names (env) are its “keys”.

If value is shorter than x, it is extended by character NAs to the length of x.

394 names

It is possible to update just part of the names attribute via the general rules: see the examples. This
works because the expression there is evaluated as z <— "names<-" (z, " [<-" (names (z),
3 , n C2 ")) .

The name " " is special: it is used to indicate that there is no name associated with an element of a
(atomic or generic) vector. Subscripting by " " will match nothing (not even elements which have
no name).

A name can be character N2, but such a name will never be matched and is likely to lead to confu-
sion.

Both are primitive functions.

Value

For names, NULL or a character vector of the same length as x. (NULL is given if the object has
no names, including for objects of types which cannot have names.) For an environment, the length
is the number of objects in the environment but the order of the names is arbitrary.

For names<—, the updated object. (Note that the value of names (x) <- value is that of the
assignment, value, not the return value from the left-hand side.)

Note

For vectors, the names are one of the attributes with restrictions on the possible values. For pairlists,
the names are the tags and converted to and from a character vector.

For a one-dimensional array the names attribute really is dimnames [[1]].

Formally classed aka “S4” objects typically have slotNames () (and no names ()).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

slotNames, dimnames.

Examples

print the names attribute of the islands data set
names (islands)

remove the names attribute

names (islands) <- NULL

islands

rm(islands) # remove the copy made

z <- list(a =1, b = "c¢", ¢c = 1:3)

names (z)

change just the name of the third element.
names (z) [3] <= "c2"

z

nargs 395

7z <— 1:3

names (z)

assign Jjust one name
names (z) [2] <— "b"

Z

nargs The Number of Arguments to a Function

Description
When used inside a function body, nargs returns the number of arguments supplied to that func-
tion, including positional arguments left blank.

Usage

nargs ()

Details

The count includes empty (missing) arguments, so that foo (x, , z) will be considered to have
three arguments (see ‘Examples’). This can occur in rather indirect ways, so for example x []
might dispatch a call to ~ [. some_method” (x,) which is considered to have two arguments.

This is a primitive function.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New