
Debugging with gdb
The gnu Source-Level Debugger

Tenth Edition, for gdb version 12.1.2023.68ecdebfa+

(GDB)

Richard Stallman, Roland Pesch, Stan Shebs, et al.

(Send bugs and comments on gdb to
http://www.intel.com/software/products/support/.)

Debugging with gdb
TEXinfo 2016-02-05.07.deb2

Published by the Free Software Foundation
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
ISBN 978-0-9831592-3-0

Copyright c© 1988-2022 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the terms
of the GNU Free Documentation License, Version 1.3 or any later version published by
the Free Software Foundation; with the Invariant Sections being “Free Software” and “Free
Software Needs Free Documentation”, with the Front-Cover Texts being “A GNU Manual,”
and with the Back-Cover Texts as in (a) below.

(a) The FSF’s Back-Cover Text is: “You are free to copy and modify this GNU Man-
ual. Buying copies from GNU Press supports the FSF in developing GNU and promoting
software freedom.”

Copyright c© 2021, Intel Corporation. Intel’s modifications are provided pursuant to the
GNU Free Documentation license.

http://www.intel.com/software/products/support/

i

Table of Contents

Summary of gdb . 1
Free Software . 1
Free Software Needs Free Documentation . 1
Contributors to gdb . 3

1 A Sample gdb Session . 7

2 Getting In and Out of gdb . 11
2.1 Invoking gdb . 11

2.1.1 Choosing Files . 12
2.1.2 Choosing Modes . 13
2.1.3 What gdb Does During Startup . 16
2.1.4 Initialization Files . 17

2.1.4.1 Home directory early initialization files 17
2.1.4.2 System wide initialization files . 18
2.1.4.3 Home directory initialization file . 18
2.1.4.4 Local directory initialization file . 19

2.2 Quitting gdb . 19
2.3 Shell Commands . 19
2.4 Logging Output . 20

3 gdb Commands . 23
3.1 Command Syntax . 23
3.2 Command Settings . 23
3.3 Command Completion . 24
3.4 Command options . 27
3.5 Getting Help . 28

4 Running Programs Under gdb 31
4.1 Compiling for Debugging . 31
4.2 Starting your Program . 32
4.3 Your Program’s Arguments . 36
4.4 Your Program’s Environment . 36
4.5 Your Program’s Working Directory . 37
4.6 Your Program’s Input and Output . 38
4.7 Debugging an Already-running Process . 39
4.8 Killing the Child Process . 40
4.9 Debugging Multiple Inferiors Connections and Programs 40
4.10 Debugging Programs with Multiple Threads 45
4.11 Debugging Forks . 52
4.12 Setting a Bookmark to Return to Later . 54

4.12.1 A Non-obvious Benefit of Using Checkpoints 55

ii Debugging with gdb

5 Stopping and Continuing . 57
5.1 Breakpoints, Watchpoints, and Catchpoints . 57

5.1.1 Setting Breakpoints . 58
5.1.2 Setting Watchpoints . 65
5.1.3 Setting Catchpoints . 68
5.1.4 Deleting Breakpoints . 72
5.1.5 Disabling Breakpoints . 73
5.1.6 Break Conditions . 74
5.1.7 Breakpoint Command Lists . 76
5.1.8 Dynamic Printf . 77
5.1.9 How to save breakpoints to a file . 79
5.1.10 Static Probe Points . 79
5.1.11 “Cannot insert breakpoints” . 81
5.1.12 “Breakpoint address adjusted...” . 81

5.2 Continuing and Stepping . 82
5.3 Skipping Over Functions and Files . 86
5.4 Signals . 88
5.5 Stopping and Starting Multi-thread Programs 92

5.5.1 All-Stop Mode . 92
5.5.2 Non-Stop Mode . 93
5.5.3 Background Execution . 94
5.5.4 Thread-Specific Breakpoints . 95
5.5.5 Inferior-Specific Breakpoints . 96
5.5.6 Interrupted System Calls . 96
5.5.7 Observer Mode . 97

6 Running programs backward 99

7 Recording Inferior’s Execution
and Replaying It . 101

8 Examining the Stack . 109
8.1 Stack Frames . 109
8.2 Backtraces . 110
8.3 Selecting a Frame . 113
8.4 Information About a Frame . 115
8.5 Applying a Command to Several Frames. 117
8.6 Management of Frame Filters. 118

iii

9 Examining Source Files . 121
9.1 Printing Source Lines . 121
9.2 Specifying a Location . 122

9.2.1 Linespec Locations . 122
9.2.2 Explicit Locations . 123
9.2.3 Address Locations . 124

9.3 Editing Source Files . 125
9.3.1 Choosing your Editor . 125

9.4 Searching Source Files . 126
9.5 Specifying Source Directories . 126
9.6 Source and Machine Code . 130
9.7 Disable Reading Source Code . 134

10 Examining Data . 135
10.1 Expressions . 139
10.2 Ambiguous Expressions . 139
10.3 Program Variables . 140
10.4 Artificial Arrays . 143
10.5 Output Formats . 144
10.6 Examining Memory . 145
10.7 Memory Tagging . 148
10.8 Automatic Display . 149
10.9 Print Settings . 151
10.10 Pretty Printing . 161

10.10.1 Pretty-Printer Introduction . 161
10.10.2 Pretty-Printer Example . 161
10.10.3 Pretty-Printer Commands . 162

10.11 Value History . 163
10.12 Convenience Variables . 164
10.13 Convenience Functions . 167
10.14 Registers . 171
10.15 Floating Point Hardware . 173
10.16 Vector Unit . 173
10.17 Operating System Auxiliary Information 173
10.18 Memory Region Attributes . 175

10.18.1 Attributes . 176
10.18.1.1 Memory Access Mode . 176
10.18.1.2 Memory Access Size . 176
10.18.1.3 Data Cache . 177

10.18.2 Memory Access Checking . 177
10.19 Copy Between Memory and a File . 177
10.20 How to Produce a Core File from Your Program 178
10.21 Character Sets . 179
10.22 Caching Data of Targets . 182
10.23 Search Memory . 183
10.24 Value Sizes . 184

iv Debugging with gdb

11 Debugging Optimized Code 187
11.1 Inline Functions . 187
11.2 Tail Call Frames . 188

12 C Preprocessor Macros . 191

13 Tracepoints . 195
13.1 Commands to Set Tracepoints . 195

13.1.1 Create and Delete Tracepoints . 196
13.1.2 Enable and Disable Tracepoints . 198
13.1.3 Tracepoint Passcounts . 198
13.1.4 Tracepoint Conditions . 199
13.1.5 Trace State Variables . 199
13.1.6 Tracepoint Action Lists . 200
13.1.7 Listing Tracepoints . 202
13.1.8 Listing Static Tracepoint Markers . 203
13.1.9 Starting and Stopping Trace Experiments 204
13.1.10 Tracepoint Restrictions . 206

13.2 Using the Collected Data . 207
13.2.1 tfind n . 207
13.2.2 tdump . 209
13.2.3 save tracepoints filename . 210

13.3 Convenience Variables for Tracepoints . 210
13.4 Using Trace Files . 211

14 Debugging Programs That Use Overlays . . 213
14.1 How Overlays Work . 213
14.2 Overlay Commands . 214
14.3 Automatic Overlay Debugging . 216
14.4 Overlay Sample Program . 217

15 Using gdb with Different Languages 219
15.1 Switching Between Source Languages . 219

15.1.1 List of Filename Extensions and Languages 219
15.1.2 Setting the Working Language . 220
15.1.3 Having gdb Infer the Source Language 220

15.2 Displaying the Language . 220
15.3 Type and Range Checking . 221

15.3.1 An Overview of Type Checking . 221
15.3.2 An Overview of Range Checking . 222

15.4 Supported Languages . 223
15.4.1 C and C++ . 223

15.4.1.1 C and C++ Operators . 223
15.4.1.2 C and C++ Constants . 225
15.4.1.3 C++ Expressions . 226
15.4.1.4 C and C++ Defaults . 227

v

15.4.1.5 C and C++ Type and Range Checks 227
15.4.1.6 gdb and C . 227
15.4.1.7 gdb Features for C++ . 227
15.4.1.8 Decimal Floating Point format . 229

15.4.2 D . 230
15.4.3 Go . 230
15.4.4 Objective-C . 230

15.4.4.1 Method Names in Commands . 230
15.4.4.2 The Print Command With Objective-C 231

15.4.5 OpenCL C . 231
15.4.5.1 OpenCL C Datatypes . 231
15.4.5.2 OpenCL C Expressions . 232
15.4.5.3 OpenCL C Operators . 232

15.4.6 Fortran . 232
15.4.6.1 Fortran Types . 232
15.4.6.2 Fortran Operators and Expressions 233
15.4.6.3 Fortran Intrinsics . 233
15.4.6.4 Special Fortran Commands . 234

15.4.7 Pascal . 235
15.4.8 Rust . 235
15.4.9 Modula-2 . 236

15.4.9.1 Operators . 236
15.4.9.2 Built-in Functions and Procedures 237
15.4.9.3 Constants . 238
15.4.9.4 Modula-2 Types . 239
15.4.9.5 Modula-2 Defaults . 241
15.4.9.6 Deviations from Standard Modula-2 241
15.4.9.7 Modula-2 Type and Range Checks 241
15.4.9.8 The Scope Operators :: and . 241
15.4.9.9 gdb and Modula-2 . 242

15.4.10 Ada . 242
15.4.10.1 Introduction . 242
15.4.10.2 Omissions from Ada . 243
15.4.10.3 Additions to Ada . 244
15.4.10.4 Overloading support for Ada . 245
15.4.10.5 Stopping at the Very Beginning 246
15.4.10.6 Ada Exceptions . 246
15.4.10.7 Extensions for Ada Tasks . 247
15.4.10.8 Tasking Support when Debugging Core Files 250
15.4.10.9 Tasking Support when using the Ravenscar Profile . . 250
15.4.10.10 Ada Source Character Set . 251
15.4.10.11 Known Peculiarities of Ada Mode 251

15.5 Unsupported Languages . 252

16 Examining the Symbol Table 253

vi Debugging with gdb

17 Altering Execution . 267
17.1 Assignment to Variables . 267
17.2 Continuing at a Different Address . 268
17.3 Giving your Program a Signal . 269
17.4 Returning from a Function . 270
17.5 Calling Program Functions . 271

17.5.1 Calling functions with no debug info . 272
17.6 Patching Programs . 273
17.7 Compiling and injecting code in gdb . 273

17.7.1 Compilation options for the compile command 275
17.7.2 Caveats when using the compile command 275
17.7.3 Compiler search for the compile command 278

18 gdb Files . 279
18.1 Commands to Specify Files . 279
18.2 File Caching . 288
18.3 Debugging Information in Separate Files . 288
18.4 Debugging information in a special section 292
18.5 Index Files Speed Up gdb . 293

18.5.1 Automatic symbol index cache . 294
18.6 Errors Reading Symbol Files . 294
18.7 GDB Data Files . 295

19 Specifying a Debugging Target 297
19.1 Active Targets . 297
19.2 Commands for Managing Targets . 297
19.3 Choosing Target Byte Order . 300

20 Debugging Remote Programs 301
20.1 Connecting to a Remote Target . 301

20.1.1 Types of Remote Connections . 301
20.1.2 Host and Target Files . 302
20.1.3 Remote Connection Commands . 303

20.2 Sending files to a remote system . 306
20.3 Using the gdbserver Program . 306

20.3.1 Running gdbserver . 307
20.3.1.1 Attaching to a Running Program 307
20.3.1.2 TCP port allocation lifecycle of gdbserver 308
20.3.1.3 Other Command-Line Arguments for gdbserver . . . 308

20.3.2 Connecting to gdbserver . 309
20.3.3 Monitor Commands for gdbserver . 309
20.3.4 Tracepoints support in gdbserver . 310

20.4 Remote Configuration . 311
20.5 Implementing a Remote Stub . 318

20.5.1 What the Stub Can Do for You . 319
20.5.2 What You Must Do for the Stub . 320
20.5.3 Putting it All Together . 321

vii

21 Configuration-Specific Information 323
21.1 Native . 323

21.1.1 BSD libkvm Interface . 323
21.1.2 Process Information . 323
21.1.3 Features for Debugging djgpp Programs 325
21.1.4 Features for Debugging MS Windows PE Executables . . . 328

21.1.4.1 Support for DLLs without Debugging Symbols 329
21.1.4.2 DLL Name Prefixes . 330
21.1.4.3 Working with Minimal Symbols . 330

21.1.5 Commands Specific to gnu Hurd Systems 331
21.1.6 Darwin . 333
21.1.7 FreeBSD . 334

21.2 Embedded Operating Systems . 334
21.3 Embedded Processors . 334

21.3.1 Synopsys ARC . 334
21.3.2 ARM . 335
21.3.3 BPF . 336
21.3.4 M68k . 336
21.3.5 MicroBlaze . 336
21.3.6 MIPS Embedded . 337
21.3.7 OpenRISC 1000 . 337
21.3.8 PowerPC Embedded . 338
21.3.9 Atmel AVR . 339
21.3.10 CRIS . 339
21.3.11 Renesas Super-H . 339

21.4 Architectures . 340
21.4.1 AArch64 . 340

21.4.1.1 AArch64 SVE. 340
21.4.1.2 AArch64 Pointer Authentication. 340
21.4.1.3 AArch64 Memory Tagging Extension. 340

21.4.2 x86 Architecture-specific Issues . 341
21.4.2.1 Intel Memory Protection Extensions (MPX). 341
21.4.2.2 Intel Control-flow Enforcement Technology (CET). . . 342
21.4.2.3 Intel Advanced Matrix Extensions (AMX). 343

21.4.3 Alpha . 344
21.4.4 MIPS . 344
21.4.5 HPPA . 346
21.4.6 PowerPC . 346
21.4.7 Nios II . 346
21.4.8 Sparc64 . 346

21.4.8.1 ADI Support . 346
21.4.9 S12Z . 347

viii Debugging with gdb

22 Controlling gdb . 349
22.1 Prompt . 349
22.2 Command Editing . 349
22.3 Command History . 350
22.4 Screen Size . 352
22.5 Output Styling . 353
22.6 Numbers . 355
22.7 Configuring the Current ABI . 356
22.8 Automatically loading associated files . 357

22.8.1 Automatically loading init file in the current directory . . 358
22.8.2 Automatically loading thread debugging library 359
22.8.3 Security restriction for auto-loading . 359
22.8.4 Displaying files tried for auto-load . 361

22.9 Optional Warnings and Messages . 361
22.10 Optional Messages about Internal Happenings 363
22.11 Other Miscellaneous Settings . 368

23 Extending gdb . 371
23.1 Canned Sequences of Commands . 371

23.1.1 User-defined Commands . 371
23.1.2 User-defined Command Hooks . 374
23.1.3 Command Files . 375
23.1.4 Commands for Controlled Output . 376
23.1.5 Controlling auto-loading native gdb scripts 378

23.2 Command Aliases . 378
23.2.1 Default Arguments . 380

23.3 Extending gdb using Python . 381
23.3.1 Python Commands . 381
23.3.2 Python API . 383

23.3.2.1 Basic Python . 383
23.3.2.2 Exception Handling . 388
23.3.2.3 Values From Inferior . 389
23.3.2.4 Types In Python . 395
23.3.2.5 Pretty Printing API . 401
23.3.2.6 Selecting Pretty-Printers . 402
23.3.2.7 Writing a Pretty-Printer . 403
23.3.2.8 Type Printing API . 405
23.3.2.9 Filtering Frames . 406
23.3.2.10 Decorating Frames . 408
23.3.2.11 Writing a Frame Filter . 411
23.3.2.12 Unwinding Frames in Python . 415
23.3.2.13 Xmethods In Python . 418
23.3.2.14 Xmethod API . 418
23.3.2.15 Writing an Xmethod . 420
23.3.2.16 Inferiors In Python . 423
23.3.2.17 Events In Python . 424
23.3.2.18 Threads In Python . 428

ix

23.3.2.19 Recordings In Python . 430
23.3.2.20 CLI Commands In Python . 434
23.3.2.21 GDB/MI Commands In Python 437
23.3.2.22 Parameters In Python . 439
23.3.2.23 Writing new convenience functions 442
23.3.2.24 Program Spaces In Python . 443
23.3.2.25 Objfiles In Python . 445
23.3.2.26 Accessing inferior stack frames from Python 447
23.3.2.27 Accessing blocks from Python . 451
23.3.2.28 Python representation of Symbols 453
23.3.2.29 Symbol table representation in Python 456
23.3.2.30 Manipulating line tables using Python 458
23.3.2.31 Manipulating breakpoints using Python 459
23.3.2.32 Finish Breakpoints . 463
23.3.2.33 Python representation of lazy strings 463
23.3.2.34 Python representation of architectures 464
23.3.2.35 Registers In Python . 465
23.3.2.36 Connections In Python . 466
23.3.2.37 Implementing new TUI windows 467

23.3.3 Python Auto-loading . 469
23.3.4 Python modules . 470

23.3.4.1 gdb.printing . 470
23.3.4.2 gdb.types . 471
23.3.4.3 gdb.prompt . 472
23.3.4.4 gdb.ptwrite . 473

23.4 Extending gdb using Guile . 474
23.4.1 Guile Introduction . 475
23.4.2 Guile Commands . 475
23.4.3 Guile API . 476

23.4.3.1 Basic Guile . 476
23.4.3.2 Guile Configuration . 478
23.4.3.3 GDB Scheme Data Types . 478
23.4.3.4 Guile Exception Handling . 480
23.4.3.5 Values From Inferior In Guile . 481
23.4.3.6 Arithmetic In Guile . 487
23.4.3.7 Types In Guile . 488
23.4.3.8 Guile Pretty Printing API . 492
23.4.3.9 Selecting Guile Pretty-Printers . 494
23.4.3.10 Writing a Guile Pretty-Printer . 495
23.4.3.11 Commands In Guile . 497
23.4.3.12 Parameters In Guile . 501
23.4.3.13 Program Spaces In Guile . 503
23.4.3.14 Objfiles In Guile . 504
23.4.3.15 Accessing inferior stack frames from Guile. 505
23.4.3.16 Accessing blocks from Guile. 508
23.4.3.17 Guile representation of Symbols. 510
23.4.3.18 Symbol table representation in Guile. 513
23.4.3.19 Manipulating breakpoints using Guile 514

x Debugging with gdb

23.4.3.20 Guile representation of lazy strings. 518
23.4.3.21 Guile representation of architectures 519
23.4.3.22 Disassembly In Guile . 521
23.4.3.23 I/O Ports in Guile . 521
23.4.3.24 Memory Ports in Guile . 522
23.4.3.25 Iterators In Guile . 523

23.4.4 Guile Auto-loading . 525
23.4.5 Guile Modules . 525

23.4.5.1 Guile Printing Module . 525
23.4.5.2 Guile Types Module . 526

23.5 Auto-loading extensions . 526
23.5.1 The objfile-gdb.ext file . 527
23.5.2 The .debug_gdb_scripts section . 528

23.5.2.1 Script File Entries . 528
23.5.2.2 Script Text Entries . 529

23.5.3 Which flavor to choose? . 529
23.6 Multiple Extension Languages . 530

23.6.1 Python comes first . 530

24 Command Interpreters . 531

25 gdb Text User Interface . 533
25.1 TUI Overview . 533
25.2 TUI Key Bindings . 534
25.3 TUI Single Key Mode . 535
25.4 TUI Mouse Support . 536
25.5 TUI-specific Commands . 536
25.6 TUI Configuration Variables . 538

26 Using gdb under gnu Emacs 541

27 The gdb/mi Interface . 543
Function and Purpose . 543
Notation and Terminology . 543
27.3 gdb/mi General Design . 543

27.3.1 Context management . 544
27.3.1.1 Threads and Frames . 544
27.3.1.2 Language . 545

27.3.2 Asynchronous command execution and non-stop mode . . 545
27.3.3 Thread groups . 546

27.4 gdb/mi Command Syntax . 546
27.4.1 gdb/mi Input Syntax . 546
27.4.2 gdb/mi Output Syntax . 547

27.5 gdb/mi Compatibility with CLI . 549
27.6 gdb/mi Development and Front Ends . 549
27.7 gdb/mi Output Records . 550

xi

27.7.1 gdb/mi Result Records . 550
27.7.2 gdb/mi Stream Records . 551
27.7.3 gdb/mi Async Records . 551
27.7.4 gdb/mi Breakpoint Information . 555
27.7.5 gdb/mi Frame Information . 558
27.7.6 gdb/mi Thread Information . 558
27.7.7 gdb/mi Ada Exception Information . 559

27.8 Simple Examples of gdb/mi Interaction . 559
27.9 gdb/mi Command Description Format . 560
27.10 gdb/mi Breakpoint Commands . 561
27.11 gdb/mi Catchpoint Commands . 571

27.11.1 Shared Library gdb/mi Catchpoints 571
27.11.2 Ada Exception gdb/mi Catchpoints 572
27.11.3 C++ Exception gdb/mi Catchpoints 574

27.12 gdb/mi Program Context . 576
27.13 gdb/mi Thread Commands . 578
27.14 gdb/mi Ada Tasking Commands . 581
27.15 gdb/mi Program Execution . 582
27.16 gdb/mi Stack Manipulation Commands . 589
27.17 gdb/mi Variable Objects . 595
27.18 gdb/mi Data Manipulation . 605
27.19 gdb/mi Tracepoint Commands . 614
27.20 gdb/mi Symbol Query Commands . 619
27.21 gdb/mi File Commands . 627
27.22 gdb/mi Target Manipulation Commands 631
27.23 gdb/mi File Transfer Commands . 635
27.24 Ada Exceptions gdb/mi Commands . 636
27.25 gdb/mi Support Commands . 637
27.26 Miscellaneous gdb/mi Commands . 639

28 gdb Annotations . 649
28.1 What is an Annotation? . 649
28.2 The Server Prefix . 650
28.3 Annotation for gdb Input . 650
28.4 Errors . 651
28.5 Invalidation Notices . 651
28.6 Running the Program . 651
28.7 Displaying Source . 652

29 JIT Compilation Interface 653
29.1 JIT Declarations . 653
29.2 Registering Code . 654
29.3 Unregistering Code . 654
29.4 Custom Debug Info . 654

29.4.1 Using JIT Debug Info Readers . 655
29.4.2 Writing JIT Debug Info Readers . 655

xii Debugging with gdb

30 In-Process Agent . 657
30.1 In-Process Agent Protocol . 657

30.1.1 IPA Protocol Objects . 658
30.1.2 IPA Protocol Commands . 659

31 Reporting Bugs in gdb . 661
31.1 Have You Found a Bug? . 661
31.2 How to Report Bugs . 661

32 Command Line Editing . 665
32.1 Introduction to Line Editing . 665
32.2 Readline Interaction . 665

32.2.1 Readline Bare Essentials . 665
32.2.2 Readline Movement Commands . 666
32.2.3 Readline Killing Commands . 666
32.2.4 Readline Arguments . 667
32.2.5 Searching for Commands in the History 667

32.3 Readline Init File . 668
32.3.1 Readline Init File Syntax . 668
32.3.2 Conditional Init Constructs . 676
32.3.3 Sample Init File . 677

32.4 Bindable Readline Commands . 680
32.4.1 Commands For Moving . 680
32.4.2 Commands For Manipulating The History 681
32.4.3 Commands For Changing Text . 682
32.4.4 Killing And Yanking . 684
32.4.5 Specifying Numeric Arguments . 685
32.4.6 Letting Readline Type For You . 685
32.4.7 Keyboard Macros . 686
32.4.8 Some Miscellaneous Commands . 686

32.5 Readline vi Mode . 688

33 Using History Interactively 689
33.1 History Expansion . 689

33.1.1 Event Designators . 689
33.1.2 Word Designators . 690
33.1.3 Modifiers . 690

Appendix A In Memoriam . 693

Appendix B Formatting Documentation 695

xiii

Appendix C Installing gdb . 697
C.1 Requirements for Building gdb . 697
C.2 Invoking the gdb configure Script . 699
C.3 Compiling gdb in Another Directory . 700
C.4 Specifying Names for Hosts and Targets . 701
C.5 configure Options . 701
C.6 System-wide configuration and settings . 705

C.6.1 Installed System-wide Configuration Scripts 705

Appendix D Maintenance Commands 707

Appendix E gdb Remote Serial Protocol 719
E.1 Overview . 719
E.2 Packets . 720
E.3 Stop Reply Packets . 731
E.4 General Query Packets . 735
E.5 Architecture-Specific Protocol Details . 762

E.5.1 ARM-specific Protocol Details . 762
E.5.1.1 ARM Breakpoint Kinds . 762
E.5.1.2 ARM Memory Tag Types . 762

E.5.2 MIPS-specific Protocol Details . 762
E.5.2.1 MIPS Register Packet Format . 762
E.5.2.2 MIPS Breakpoint Kinds . 763

E.6 Tracepoint Packets . 763
E.6.1 Relocate instruction reply packet . 769

E.7 Host I/O Packets . 770
E.8 Interrupts . 772
E.9 Notification Packets . 772
E.10 Remote Protocol Support for Non-Stop Mode 774
E.11 Packet Acknowledgment . 775
E.12 Examples . 775
E.13 File-I/O Remote Protocol Extension . 776

E.13.1 File-I/O Overview . 776
E.13.2 Protocol Basics . 777
E.13.3 The F Request Packet . 777
E.13.4 The F Reply Packet . 778
E.13.5 The ‘Ctrl-C’ Message . 778
E.13.6 Console I/O . 778
E.13.7 List of Supported Calls . 779

open . 779
close . 780
read . 780
write . 781
lseek . 781
rename . 781
unlink . 782
stat/fstat . 783

xiv Debugging with gdb

gettimeofday . 783
isatty . 783
system . 784

E.13.8 Protocol-specific Representation of Datatypes 784
Integral Datatypes . 784
Pointer Values . 784
Memory Transfer . 785
struct stat . 785
struct timeval . 786

E.13.9 Constants . 786
Open Flags . 786
mode t Values . 786
Errno Values . 786
Lseek Flags . 787
Limits . 787

E.13.10 File-I/O Examples . 787
E.14 Library List Format . 788
E.15 Library List Format for SVR4 Targets . 789
E.16 Memory Map Format . 790
E.17 Thread List Format . 791
E.18 Traceframe Info Format . 791
E.19 Branch Trace Format . 792
E.20 Branch Trace Configuration Format . 792

Appendix F The GDB Agent
Expression Mechanism . 795
F.1 General Bytecode Design . 795
F.2 Bytecode Descriptions . 797
F.3 Using Agent Expressions . 802
F.4 Varying Target Capabilities . 803
F.5 Rationale . 803

Appendix G Target Descriptions 807
G.1 Retrieving Descriptions . 807
G.2 Target Description Format . 807

G.2.1 Inclusion . 808
G.2.2 Architecture . 808
G.2.3 OS ABI . 809
G.2.4 Compatible Architecture . 809
G.2.5 Features . 809
G.2.6 Types . 809
G.2.7 Registers . 810

G.3 Predefined Target Types . 811
G.4 Enum Target Types . 812
G.5 Standard Target Features . 813

G.5.1 AArch64 Features . 813
G.5.2 ARC Features . 813

xv

G.5.3 ARM Features . 814
G.5.4 i386 Features . 815
G.5.5 LoongArch Features . 816
G.5.6 MicroBlaze Features . 816
G.5.7 MIPS Features . 816
G.5.8 M68K Features . 816
G.5.9 NDS32 Features . 817
G.5.10 Nios II Features . 817
G.5.11 Openrisc 1000 Features . 817
G.5.12 PowerPC Features . 817
G.5.13 RISC-V Features . 818
G.5.14 RX Features . 819
G.5.15 S/390 and System z Features . 819
G.5.16 Sparc Features . 820
G.5.17 TMS320C6x Features . 820

Appendix H Operating System Information . . 821
H.1 Process list . 821

Appendix I Trace File Format 823

Appendix J .gdb_index section format 825

Appendix K Download debugging
resources with Debuginfod . 829
K.1 Debuginfod Settings . 829

Appendix L Manual pages . 831

Appendix M GNU GENERAL
PUBLIC LICENSE . 841

Appendix N GNU Free Documentation License . . 853

Concept Index . 861

Command, Variable, and Function Index 877

1

Summary of gdb

The purpose of a debugger such as gdb is to allow you to see what is going on “inside”
another program while it executes—or what another program was doing at the moment it
crashed.

gdb can do four main kinds of things (plus other things in support of these) to help you
catch bugs in the act:

• Start your program, specifying anything that might affect its behavior.

• Make your program stop on specified conditions.

• Examine what has happened, when your program has stopped.

• Change things in your program, so you can experiment with correcting the effects of
one bug and go on to learn about another.

You can use gdb to debug programs written in C and C++. For more information, see
Section 15.4 [Supported Languages], page 223. For more information, see Section 15.4.1 [C
and C++], page 223.

Support for D is partial. For information on D, see Section 15.4.2 [D], page 230.

Support for Modula-2 is partial. For information on Modula-2, see Section 15.4.9
[Modula-2], page 236.

Support for OpenCL C is partial. For information on OpenCL C, see Section 15.4.5
[OpenCL C], page 231.

Debugging Pascal programs which use sets, subranges, file variables, or nested functions
does not currently work. gdb does not support entering expressions, printing values, or
similar features using Pascal syntax.

gdb can be used to debug programs written in Fortran, although it may be necessary
to refer to some variables with a trailing underscore.

gdb can be used to debug programs written in Objective-C, using either the Ap-
ple/NeXT or the GNU Objective-C runtime.

Free Software

gdb is free software, protected by the gnu General Public License (GPL). The GPL gives
you the freedom to copy or adapt a licensed program—but every person getting a copy also
gets with it the freedom to modify that copy (which means that they must get access to the
source code), and the freedom to distribute further copies. Typical software companies use
copyrights to limit your freedoms; the Free Software Foundation uses the GPL to preserve
these freedoms.

Fundamentally, the General Public License is a license which says that you have these
freedoms and that you cannot take these freedoms away from anyone else.

Free Software Needs Free Documentation

The biggest deficiency in the free software community today is not in the software—it is the
lack of good free documentation that we can include with the free software. Many of our
most important programs do not come with free reference manuals and free introductory

2 Debugging with gdb

texts. Documentation is an essential part of any software package; when an important free
software package does not come with a free manual and a free tutorial, that is a major gap.
We have many such gaps today.

Consider Perl, for instance. The tutorial manuals that people normally use are non-free.
How did this come about? Because the authors of those manuals published them with
restrictive terms—no copying, no modification, source files not available—which exclude
them from the free software world.

That wasn’t the first time this sort of thing happened, and it was far from the last.
Many times we have heard a GNU user eagerly describe a manual that he is writing, his
intended contribution to the community, only to learn that he had ruined everything by
signing a publication contract to make it non-free.

Free documentation, like free software, is a matter of freedom, not price. The problem
with the non-free manual is not that publishers charge a price for printed copies—that in
itself is fine. (The Free Software Foundation sells printed copies of manuals, too.) The
problem is the restrictions on the use of the manual. Free manuals are available in source
code form, and give you permission to copy and modify. Non-free manuals do not allow
this.

The criteria of freedom for a free manual are roughly the same as for free software.
Redistribution (including the normal kinds of commercial redistribution) must be permitted,
so that the manual can accompany every copy of the program, both on-line and on paper.

Permission for modification of the technical content is crucial too. When people mod-
ify the software, adding or changing features, if they are conscientious they will change
the manual too—so they can provide accurate and clear documentation for the modified
program. A manual that leaves you no choice but to write a new manual to document a
changed version of the program is not really available to our community.

Some kinds of limits on the way modification is handled are acceptable. For example,
requirements to preserve the original author’s copyright notice, the distribution terms, or
the list of authors, are ok. It is also no problem to require modified versions to include
notice that they were modified. Even entire sections that may not be deleted or changed
are acceptable, as long as they deal with nontechnical topics (like this one). These kinds of
restrictions are acceptable because they don’t obstruct the community’s normal use of the
manual.

However, it must be possible to modify all the technical content of the manual, and then
distribute the result in all the usual media, through all the usual channels. Otherwise, the
restrictions obstruct the use of the manual, it is not free, and we need another manual to
replace it.

Please spread the word about this issue. Our community continues to lose manuals
to proprietary publishing. If we spread the word that free software needs free reference
manuals and free tutorials, perhaps the next person who wants to contribute by writing
documentation will realize, before it is too late, that only free manuals contribute to the
free software community.

If you are writing documentation, please insist on publishing it under the GNU Free
Documentation License or another free documentation license. Remember that this deci-
sion requires your approval—you don’t have to let the publisher decide. Some commercial
publishers will use a free license if you insist, but they will not propose the option; it is up

Summary of gdb 3

to you to raise the issue and say firmly that this is what you want. If the publisher you
are dealing with refuses, please try other publishers. If you’re not sure whether a proposed
license is free, write to licensing@gnu.org.

You can encourage commercial publishers to sell more free, copylefted manuals and
tutorials by buying them, and particularly by buying copies from the publishers that paid
for their writing or for major improvements. Meanwhile, try to avoid buying non-free
documentation at all. Check the distribution terms of a manual before you buy it, and
insist that whoever seeks your business must respect your freedom. Check the history of
the book, and try to reward the publishers that have paid or pay the authors to work on it.

The Free Software Foundation maintains a list of free documentation published by other
publishers, at http://www.fsf.org/doc/other-free-books.html.

Contributors to gdb

Richard Stallman was the original author of gdb, and of many other gnu programs. Many
others have contributed to its development. This section attempts to credit major con-
tributors. One of the virtues of free software is that everyone is free to contribute to it;
with regret, we cannot actually acknowledge everyone here. The file ChangeLog in the gdb
distribution approximates a blow-by-blow account.

Changes much prior to version 2.0 are lost in the mists of time.

Plea: Additions to this section are particularly welcome. If you or your friends
(or enemies, to be evenhanded) have been unfairly omitted from this list, we
would like to add your names!

So that they may not regard their many labors as thankless, we particularly thank those
who shepherded gdb through major releases: Andrew Cagney (releases 6.3, 6.2, 6.1, 6.0,
5.3, 5.2, 5.1 and 5.0); Jim Blandy (release 4.18); Jason Molenda (release 4.17); Stan Shebs
(release 4.14); Fred Fish (releases 4.16, 4.15, 4.13, 4.12, 4.11, 4.10, and 4.9); Stu Grossman
and John Gilmore (releases 4.8, 4.7, 4.6, 4.5, and 4.4); John Gilmore (releases 4.3, 4.2, 4.1,
4.0, and 3.9); Jim Kingdon (releases 3.5, 3.4, and 3.3); and Randy Smith (releases 3.2, 3.1,
and 3.0).

Richard Stallman, assisted at various times by Peter TerMaat, Chris Hanson, and
Richard Mlynarik, handled releases through 2.8.

Michael Tiemann is the author of most of the gnu C++ support in gdb, with significant
additional contributions from Per Bothner and Daniel Berlin. James Clark wrote the gnu
C++ demangler. Early work on C++ was by Peter TerMaat (who also did much general
update work leading to release 3.0).

gdb uses the BFD subroutine library to examine multiple object-file formats; BFD was
a joint project of David V. Henkel-Wallace, Rich Pixley, Steve Chamberlain, and John
Gilmore.

David Johnson wrote the original COFF support; Pace Willison did the original support
for encapsulated COFF.

Brent Benson of Harris Computer Systems contributed DWARF 2 support.

Adam de Boor and Bradley Davis contributed the ISI Optimum V support. Per Bothner,
Noboyuki Hikichi, and Alessandro Forin contributed MIPS support. Jean-Daniel Fekete
contributed Sun 386i support. Chris Hanson improved the HP9000 support. Noboyuki

mailto:licensing@gnu.org
http://www.fsf.org/doc/other-free-books.html

4 Debugging with gdb

Hikichi and Tomoyuki Hasei contributed Sony/News OS 3 support. David Johnson con-
tributed Encore Umax support. Jyrki Kuoppala contributed Altos 3068 support. Jeff
Law contributed HP PA and SOM support. Keith Packard contributed NS32K support.
Doug Rabson contributed Acorn Risc Machine support. Bob Rusk contributed Harris
Nighthawk CX-UX support. Chris Smith contributed Convex support (and Fortran de-
bugging). Jonathan Stone contributed Pyramid support. Michael Tiemann contributed
SPARC support. Tim Tucker contributed support for the Gould NP1 and Gould Powern-
ode. Pace Willison contributed Intel 386 support. Jay Vosburgh contributed Symmetry
support. Marko Mlinar contributed OpenRISC 1000 support.

Andreas Schwab contributed M68K gnu/Linux support.

Rich Schaefer and Peter Schauer helped with support of SunOS shared libraries.

Jay Fenlason and Roland McGrath ensured that gdb and GAS agree about several
machine instruction sets.

Patrick Duval, Ted Goldstein, Vikram Koka and Glenn Engel helped develop remote
debugging. Intel Corporation, Wind River Systems, AMD, and ARM contributed remote
debugging modules for the i960, VxWorks, A29K UDI, and RDI targets, respectively.

Brian Fox is the author of the readline libraries providing command-line editing and
command history.

Andrew Beers of SUNY Buffalo wrote the language-switching code, the Modula-2 sup-
port, and contributed the Languages chapter of this manual.

Fred Fish wrote most of the support for Unix System Vr4. He also enhanced the
command-completion support to cover C++ overloaded symbols.

Hitachi America (now Renesas America), Ltd. sponsored the support for H8/300,
H8/500, and Super-H processors.

NEC sponsored the support for the v850, Vr4xxx, and Vr5xxx processors.

Mitsubishi (now Renesas) sponsored the support for D10V, D30V, and M32R/D proces-
sors.

Toshiba sponsored the support for the TX39 Mips processor.

Matsushita sponsored the support for the MN10200 and MN10300 processors.

Fujitsu sponsored the support for SPARClite and FR30 processors.

Kung Hsu, Jeff Law, and Rick Sladkey added support for hardware watchpoints.

Michael Snyder added support for tracepoints.

Stu Grossman wrote gdbserver.

Jim Kingdon, Peter Schauer, Ian Taylor, and Stu Grossman made nearly innumerable
bug fixes and cleanups throughout gdb.

The following people at the Hewlett-Packard Company contributed support for the PA-
RISC 2.0 architecture, HP-UX 10.20, 10.30, and 11.0 (narrow mode), HP’s implementation
of kernel threads, HP’s aC++ compiler, and the Text User Interface (nee Terminal User
Interface): Ben Krepp, Richard Title, John Bishop, Susan Macchia, Kathy Mann, Satish
Pai, India Paul, Steve Rehrauer, and Elena Zannoni. Kim Haase provided HP-specific
information in this manual.

DJ Delorie ported gdb to MS-DOS, for the DJGPP project. Robert Hoehne made
significant contributions to the DJGPP port.

Summary of gdb 5

Cygnus Solutions has sponsored gdb maintenance and much of its development since
1991. Cygnus engineers who have worked on gdb fulltime include Mark Alexander, Jim
Blandy, Per Bothner, Kevin Buettner, Edith Epstein, Chris Faylor, Fred Fish, Martin
Hunt, Jim Ingham, John Gilmore, Stu Grossman, Kung Hsu, Jim Kingdon, John Metzler,
Fernando Nasser, Geoffrey Noer, Dawn Perchik, Rich Pixley, Zdenek Radouch, Keith Seitz,
Stan Shebs, David Taylor, and Elena Zannoni. In addition, Dave Brolley, Ian Carmichael,
Steve Chamberlain, Nick Clifton, JT Conklin, Stan Cox, DJ Delorie, Ulrich Drepper, Frank
Eigler, Doug Evans, Sean Fagan, David Henkel-Wallace, Richard Henderson, Jeff Holcomb,
Jeff Law, Jim Lemke, Tom Lord, Bob Manson, Michael Meissner, Jason Merrill, Catherine
Moore, Drew Moseley, Ken Raeburn, Gavin Romig-Koch, Rob Savoye, Jamie Smith, Mike
Stump, Ian Taylor, Angela Thomas, Michael Tiemann, Tom Tromey, Ron Unrau, Jim
Wilson, and David Zuhn have made contributions both large and small.

Andrew Cagney, Fernando Nasser, and Elena Zannoni, while working for Cygnus Solu-
tions, implemented the original gdb/mi interface.

Jim Blandy added support for preprocessor macros, while working for Red Hat.

Andrew Cagney designed gdb’s architecture vector. Many people including Andrew
Cagney, Stephane Carrez, Randolph Chung, Nick Duffek, Richard Henderson, Mark Ket-
tenis, Grace Sainsbury, Kei Sakamoto, Yoshinori Sato, Michael Snyder, Andreas Schwab,
Jason Thorpe, Corinna Vinschen, Ulrich Weigand, and Elena Zannoni, helped with the
migration of old architectures to this new framework.

Andrew Cagney completely re-designed and re-implemented gdb’s unwinder framework,
this consisting of a fresh new design featuring frame IDs, independent frame sniffers, and
the sentinel frame. Mark Kettenis implemented the dwarf 2 unwinder, Jeff Johnston the
libunwind unwinder, and Andrew Cagney the dummy, sentinel, tramp, and trad unwinders.
The architecture-specific changes, each involving a complete rewrite of the architecture’s
frame code, were carried out by Jim Blandy, Joel Brobecker, Kevin Buettner, Andrew
Cagney, Stephane Carrez, Randolph Chung, Orjan Friberg, Richard Henderson, Daniel
Jacobowitz, Jeff Johnston, Mark Kettenis, Theodore A. Roth, Kei Sakamoto, Yoshinori
Sato, Michael Snyder, Corinna Vinschen, and Ulrich Weigand.

Christian Zankel, Ross Morley, Bob Wilson, and Maxim Grigoriev from Tensilica, Inc.
contributed support for Xtensa processors. Others who have worked on the Xtensa port of
gdb in the past include Steve Tjiang, John Newlin, and Scott Foehner.

Michael Eager and staff of Xilinx, Inc., contributed support for the Xilinx MicroBlaze
architecture.

Initial support for the FreeBSD/mips target and native configuration was developed
by SRI International and the University of Cambridge Computer Laboratory under
DARPA/AFRL contract FA8750-10-C-0237 ("CTSRD"), as part of the DARPA CRASH
research programme.

Initial support for the FreeBSD/riscv target and native configuration was developed by
SRI International and the University of Cambridge Computer Laboratory (Department of
Computer Science and Technology) under DARPA contract HR0011-18-C-0016 ("ECATS"),
as part of the DARPA SSITH research programme.

The original port to the OpenRISC 1000 is believed to be due to Alessandro Forin and
Per Bothner. More recent ports have been the work of Jeremy Bennett, Franck Jullien,
Stefan Wallentowitz and Stafford Horne.

6 Debugging with gdb

Weimin Pan, David Faust and Jose E. Marchesi contributed support for the Linux kernel
BPF virtual architecture. This work was sponsored by Oracle.

7

1 A Sample gdb Session

You can use this manual at your leisure to read all about gdb. However, a handful of
commands are enough to get started using the debugger. This chapter illustrates those
commands.

In this sample session, we emphasize user input like this: input, to make it easier to pick
out from the surrounding output.

One of the preliminary versions of gnu m4 (a generic macro processor) exhibits the
following bug: sometimes, when we change its quote strings from the default, the commands
used to capture one macro definition within another stop working. In the following short m4
session, we define a macro foo which expands to 0000; we then use the m4 built-in defn to
define bar as the same thing. However, when we change the open quote string to <QUOTE>

and the close quote string to <UNQUOTE>, the same procedure fails to define a new synonym
baz:

$ cd gnu/m4
$./m4
define(foo,0000)

foo
0000

define(bar,defn(‘foo’))

bar
0000

changequote(<QUOTE>,<UNQUOTE>)

define(baz,defn(<QUOTE>foo<UNQUOTE>))
baz
Ctrl-d
m4: End of input: 0: fatal error: EOF in string

Let us use gdb to try to see what is going on.

$ gdb m4
gdb is free software and you are welcome to distribute copies

of it under certain conditions; type "show copying" to see

the conditions.

There is absolutely no warranty for gdb; type "show warranty"

for details.

gdb 12.1.2023.68ecdebfa+, Copyright 1999 Free Software Foundation, Inc...

(gdb)

gdb reads only enough symbol data to know where to find the rest when needed; as a result,
the first prompt comes up very quickly. We now tell gdb to use a narrower display width
than usual, so that examples fit in this manual.

(gdb) set width 70

We need to see how the m4 built-in changequote works. Having looked at the source, we
know the relevant subroutine is m4_changequote, so we set a breakpoint there with the
gdb break command.

(gdb) break m4 changequote
Breakpoint 1 at 0x62f4: file builtin.c, line 879.

8 Debugging with gdb

Using the run command, we start m4 running under gdb control; as long as control does
not reach the m4_changequote subroutine, the program runs as usual:

(gdb) run
Starting program: /work/Editorial/gdb/gnu/m4/m4

define(foo,0000)

foo
0000

To trigger the breakpoint, we call changequote. gdb suspends execution of m4, displaying
information about the context where it stops.

changequote(<QUOTE>,<UNQUOTE>)

Breakpoint 1, m4_changequote (argc=3, argv=0x33c70)

at builtin.c:879

879 if (bad_argc(TOKEN_DATA_TEXT(argv[0]),argc,1,3))

Now we use the command n (next) to advance execution to the next line of the current
function.

(gdb) n
882 set_quotes((argc >= 2) ? TOKEN_DATA_TEXT(argv[1])\

: nil,

set_quotes looks like a promising subroutine. We can go into it by using the command s

(step) instead of next. step goes to the next line to be executed in any subroutine, so it
steps into set_quotes.

(gdb) s
set_quotes (lq=0x34c78 "<QUOTE>", rq=0x34c88 "<UNQUOTE>")

at input.c:530

530 if (lquote != def_lquote)

The display that shows the subroutine where m4 is now suspended (and its arguments) is
called a stack frame display. It shows a summary of the stack. We can use the backtrace

command (which can also be spelled bt), to see where we are in the stack as a whole: the
backtrace command displays a stack frame for each active subroutine.

(gdb) bt
#0 set_quotes (lq=0x34c78 "<QUOTE>", rq=0x34c88 "<UNQUOTE>")

at input.c:530

#1 0x6344 in m4_changequote (argc=3, argv=0x33c70)

at builtin.c:882

#2 0x8174 in expand_macro (sym=0x33320) at macro.c:242

#3 0x7a88 in expand_token (obs=0x0, t=209696, td=0xf7fffa30)

at macro.c:71

#4 0x79dc in expand_input () at macro.c:40

#5 0x2930 in main (argc=0, argv=0xf7fffb20) at m4.c:195

We step through a few more lines to see what happens. The first two times, we can use ‘s’;
the next two times we use n to avoid falling into the xstrdup subroutine.

(gdb) s
0x3b5c 532 if (rquote != def_rquote)

(gdb) s
0x3b80 535 lquote = (lq == nil || *lq == ’\0’) ? \

def_lquote : xstrdup(lq);

(gdb) n
536 rquote = (rq == nil || *rq == ’\0’) ? def_rquote\

: xstrdup(rq);

(gdb) n

Chapter 1: A Sample gdb Session 9

538 len_lquote = strlen(rquote);

The last line displayed looks a little odd; we can examine the variables lquote and rquote

to see if they are in fact the new left and right quotes we specified. We use the command
p (print) to see their values.

(gdb) p lquote
$1 = 0x35d40 "<QUOTE>"

(gdb) p rquote
$2 = 0x35d50 "<UNQUOTE>"

lquote and rquote are indeed the new left and right quotes. To look at some context, we
can display ten lines of source surrounding the current line with the l (list) command.

(gdb) l
533 xfree(rquote);

534

535 lquote = (lq == nil || *lq == ’\0’) ? def_lquote\

: xstrdup (lq);

536 rquote = (rq == nil || *rq == ’\0’) ? def_rquote\

: xstrdup (rq);

537

538 len_lquote = strlen(rquote);

539 len_rquote = strlen(lquote);

540 }

541

542 void

Let us step past the two lines that set len_lquote and len_rquote, and then examine the
values of those variables.

(gdb) n
539 len_rquote = strlen(lquote);

(gdb) n
540 }

(gdb) p len lquote
$3 = 9

(gdb) p len rquote
$4 = 7

That certainly looks wrong, assuming len_lquote and len_rquote are meant to be the
lengths of lquote and rquote respectively. We can set them to better values using the p

command, since it can print the value of any expression—and that expression can include
subroutine calls and assignments.

(gdb) p len lquote=strlen(lquote)
$5 = 7

(gdb) p len rquote=strlen(rquote)
$6 = 9

Is that enough to fix the problem of using the new quotes with the m4 built-in defn? We can
allow m4 to continue executing with the c (continue) command, and then try the example
that caused trouble initially:

(gdb) c
Continuing.

define(baz,defn(<QUOTE>foo<UNQUOTE>))

baz

0000

10 Debugging with gdb

Success! The new quotes now work just as well as the default ones. The problem seems to
have been just the two typos defining the wrong lengths. We allow m4 exit by giving it an
EOF as input:

Ctrl-d
Program exited normally.

The message ‘Program exited normally.’ is from gdb; it indicates m4 has finished execut-
ing. We can end our gdb session with the gdb quit command.

(gdb) quit

11

2 Getting In and Out of gdb

This chapter discusses how to start gdb, and how to get out of it. The essentials are:

• type ‘gdb’ to start gdb.

• type quit, exit or Ctrl-d to exit.

2.1 Invoking gdb

Invoke gdb by running the program gdb. Once started, gdb reads commands from the
terminal until you tell it to exit.

You can also run gdb with a variety of arguments and options, to specify more of your
debugging environment at the outset.

The command-line options described here are designed to cover a variety of situations;
in some environments, some of these options may effectively be unavailable.

The most usual way to start gdb is with one argument, specifying an executable program:

gdb program

You can also start with both an executable program and a core file specified:

gdb program core

You can, instead, specify a process ID as a second argument or use option -p, if you
want to debug a running process:

gdb program 1234

gdb -p 1234

would attach gdb to process 1234. With option -p you can omit the program filename.

Taking advantage of the second command-line argument requires a fairly complete op-
erating system; when you use gdb as a remote debugger attached to a bare board, there
may not be any notion of “process”, and there is often no way to get a core dump. gdb
will warn you if it is unable to attach or to read core dumps.

You can optionally have gdb pass any arguments after the executable file to the inferior
using --args. This option stops option processing.

gdb --args gcc -O2 -c foo.c

This will cause gdb to debug gcc, and to set gcc’s command-line arguments (see
Section 4.3 [Arguments], page 36) to ‘-O2 -c foo.c’.

You can run gdb without printing the front material, which describes gdb’s
non-warranty, by specifying --silent (or -q/--quiet):

gdb --silent

You can further control how gdb starts up by using command-line options. gdb itself can
remind you of the options available.

Type

gdb -help

to display all available options and briefly describe their use (‘gdb -h’ is a shorter equiva-
lent).

All options and command line arguments you give are processed in sequential order. The
order makes a difference when the ‘-x’ option is used.

12 Debugging with gdb

2.1.1 Choosing Files

When gdb starts, it reads any arguments other than options as specifying an executable
file and core file (or process ID). This is the same as if the arguments were specified by the
‘-se’ and ‘-c’ (or ‘-p’) options respectively. (gdb reads the first argument that does not
have an associated option flag as equivalent to the ‘-se’ option followed by that argument;
and the second argument that does not have an associated option flag, if any, as equivalent
to the ‘-c’/‘-p’ option followed by that argument.) If the second argument begins with a
decimal digit, gdb will first attempt to attach to it as a process, and if that fails, attempt
to open it as a corefile. If you have a corefile whose name begins with a digit, you can
prevent gdb from treating it as a pid by prefixing it with ./, e.g. ./12345.

If gdb has not been configured to included core file support, such as for most embedded
targets, then it will complain about a second argument and ignore it.

Many options have both long and short forms; both are shown in the following list. gdb
also recognizes the long forms if you truncate them, so long as enough of the option is
present to be unambiguous. (If you prefer, you can flag option arguments with ‘--’ rather
than ‘-’, though we illustrate the more usual convention.)

-symbols file

-s file Read symbol table from file file.

-exec file

-e file Use file file as the executable file to execute when appropriate, and for examining
pure data in conjunction with a core dump.

-se file Read symbol table from file file and use it as the executable file.

-core file

-c file Use file file as a core dump to examine.

-pid number

-p number Connect to process ID number, as with the attach command.

-command file

-x file Execute commands from file file. The contents of this file is evaluated exactly
as the source command would. See Section 23.1.3 [Command files], page 375.

-eval-command command

-ex command

Execute a single gdb command.

This option may be used multiple times to call multiple commands. It may also
be interleaved with ‘-command’ as required.

gdb -ex ’target sim’ -ex ’load’ \

-x setbreakpoints -ex ’run’ a.out

-init-command file

-ix file Execute commands from file file before loading the inferior (but after loading
gdbinit files). See Section 2.1.3 [Startup], page 16.

-init-eval-command command

-iex command

Execute a single gdb command before loading the inferior (but after loading
gdbinit files). See Section 2.1.3 [Startup], page 16.

Chapter 2: Getting In and Out of gdb 13

-early-init-command file

-eix file Execute commands from file very early in the initialization process, before any
output is produced. See Section 2.1.3 [Startup], page 16.

-early-init-eval-command command

-eiex command

Execute a single gdb command very early in the initialization process, before
any output is produced.

-directory directory

-d directory

Add directory to the path to search for source and script files.

-r

-readnow Read each symbol file’s entire symbol table immediately, rather than the default,
which is to read it incrementally as it is needed. This makes startup slower,
but makes future operations faster.

--readnever

Do not read each symbol file’s symbolic debug information. This makes startup
faster but at the expense of not being able to perform symbolic debugging.
DWARF unwind information is also not read, meaning backtraces may become
incomplete or inaccurate. One use of this is when a user simply wants to do
the following sequence: attach, dump core, detach. Loading the debugging
information in this case is an unnecessary cause of delay.

2.1.2 Choosing Modes

You can run gdb in various alternative modes—for example, in batch mode or quiet mode.

-nx

-n Do not execute commands found in any initialization files (see Section 2.1.4
[Initialization Files], page 17).

-nh Do not execute commands found in any home directory initialization file (see
Section 2.1.4 [Home directory initialization file], page 17). The system wide
and current directory initialization files are still loaded.

-quiet

-silent

-q “Quiet”. Do not print the introductory and copyright messages. These mes-
sages are also suppressed in batch mode.

This can also be enabled using set startup-quietly on. The default is
off. Use show startup-quietly to see the current setting. Place set

startup-quietly on into your early initialization file (see Section 2.1.4
[Initialization Files], page 17) to have future gdb sessions startup quietly.

-batch Run in batch mode. Exit with status 0 after processing all the command files
specified with ‘-x’ (and all commands from initialization files, if not inhibited
with ‘-n’). Exit with nonzero status if an error occurs in executing the gdb
commands in the command files. Batch mode also disables pagination, sets un-
limited terminal width and height see Section 22.4 [Screen Size], page 352, and

14 Debugging with gdb

acts as if set confirm off were in effect (see Section 22.9 [Messages/Warnings],
page 361).

Batch mode may be useful for running gdb as a filter, for example to download
and run a program on another computer; in order to make this more useful, the
message

Program exited normally.

(which is ordinarily issued whenever a program running under gdb control
terminates) is not issued when running in batch mode.

-batch-silent

Run in batch mode exactly like ‘-batch’, but totally silently. All gdb output to
stdout is prevented (stderr is unaffected). This is much quieter than ‘-silent’
and would be useless for an interactive session.

This is particularly useful when using targets that give ‘Loading section’ mes-
sages, for example.

Note that targets that give their output via gdb, as opposed to writing directly
to stdout, will also be made silent.

-return-child-result

The return code from gdb will be the return code from the child process (the
process being debugged), with the following exceptions:

• gdb exits abnormally. E.g., due to an incorrect argument or an internal
error. In this case the exit code is the same as it would have been without
‘-return-child-result’.

• The user quits with an explicit value. E.g., ‘quit 1’.

• The child process never runs, or is not allowed to terminate, in which case
the exit code will be -1.

This option is useful in conjunction with ‘-batch’ or ‘-batch-silent’, when
gdb is being used as a remote program loader or simulator interface.

-nowindows

-nw “No windows”. If gdb comes with a graphical user interface (GUI) built in,
then this option tells gdb to only use the command-line interface. If no GUI is
available, this option has no effect.

-windows

-w If gdb includes a GUI, then this option requires it to be used if possible.

-cd directory

Run gdb using directory as its working directory, instead of the current direc-
tory.

-data-directory directory

-D directory

Run gdb using directory as its data directory. The data directory is where gdb
searches for its auxiliary files. See Section 18.7 [Data Files], page 295.

-fullname

-f gnu Emacs sets this option when it runs gdb as a subprocess. It tells gdb to
output the full file name and line number in a standard, recognizable fashion

Chapter 2: Getting In and Out of gdb 15

each time a stack frame is displayed (which includes each time your program
stops). This recognizable format looks like two ‘\032’ characters, followed by
the file name, line number and character position separated by colons, and a
newline. The Emacs-to-gdb interface program uses the two ‘\032’ characters
as a signal to display the source code for the frame.

-annotate level

This option sets the annotation level inside gdb. Its effect is identical to using
‘set annotate level’ (see Chapter 28 [Annotations], page 649). The annota-
tion level controls how much information gdb prints together with its prompt,
values of expressions, source lines, and other types of output. Level 0 is the
normal, level 1 is for use when gdb is run as a subprocess of gnu Emacs, level
3 is the maximum annotation suitable for programs that control gdb, and level
2 has been deprecated.

The annotation mechanism has largely been superseded by gdb/mi (see
Chapter 27 [GDB/MI], page 543).

--args Change interpretation of command line so that arguments following the exe-
cutable file are passed as command line arguments to the inferior. This option
stops option processing.

-baud bps

-b bps Set the line speed (baud rate or bits per second) of any serial interface used by
gdb for remote debugging.

-l timeout

Set the timeout (in seconds) of any communication used by gdb for remote
debugging.

-tty device

-t device Run using device for your program’s standard input and output.

-tui Activate the Text User Interface when starting. The Text User Interface man-
ages several text windows on the terminal, showing source, assembly, regis-
ters and gdb command outputs (see Chapter 25 [gdb Text User Interface],
page 533). Do not use this option if you run gdb from Emacs (see Chapter 26
[Using gdb under gnu Emacs], page 541).

-interpreter interp

Use the interpreter interp for interface with the controlling program or device.
This option is meant to be set by programs which communicate with gdb using
it as a back end. See Chapter 24 [Command Interpreters], page 531.

‘--interpreter=mi’ (or ‘--interpreter=mi3’) causes gdb to use the gdb/mi
interface version 3 (see Chapter 27 [The gdb/mi Interface], page 543) included
since gdb version 9.1. gdb/mi version 2 (mi2), included in gdb 6.0 and version
1 (mi1), included in gdb 5.3, are also available. Earlier gdb/mi interfaces are
no longer supported.

-write Open the executable and core files for both reading and writing. This is equiv-
alent to the ‘set write on’ command inside gdb (see Section 17.6 [Patching],
page 273).

16 Debugging with gdb

-statistics

This option causes gdb to print statistics about time and memory usage after
it completes each command and returns to the prompt.

-version This option causes gdb to print its version number and no-warranty blurb, and
exit.

-configuration

This option causes gdb to print details about its build-time configuration pa-
rameters, and then exit. These details can be important when reporting gdb
bugs (see Chapter 31 [GDB Bugs], page 661).

2.1.3 What gdb Does During Startup

Here’s the description of what gdb does during session startup:

1. Performs minimal setup required to initialize basic internal state.

2. Reads commands from the early initialization file (if any) in your home directory.
Only a restricted set of commands can be placed into an early initialization file, see
Section 2.1.4 [Initialization Files], page 17, for details.

3. Executes commands and command files specified by the ‘-eiex’ and ‘-eix’ command
line options in their specified order. Only a restricted set of commands can be used
with ‘-eiex’ and ‘eix’, see Section 2.1.4 [Initialization Files], page 17, for details.

4. Sets up the command interpreter as specified by the command line (see Section 2.1.2
[Mode Options], page 13).

5. Reads the system wide initialization file and the files from the system wide initialization
directory, see [System Wide Init Files], page 18.

6. Reads the initialization file (if any) in your home directory and executes all the com-
mands in that file, see [Home Directory Init File], page 18.

7. Executes commands and command files specified by the ‘-iex’ and ‘-ix’ options in
their specified order. Usually you should use the ‘-ex’ and ‘-x’ options instead, but
this way you can apply settings before gdb init files get executed and before inferior
gets loaded.

8. Processes command line options and operands.

9. Reads and executes the commands from the initialization file (if any) in the cur-
rent working directory as long as ‘set auto-load local-gdbinit’ is set to ‘on’ (see
Section 22.8.1 [Init File in the Current Directory], page 358). This is only done if the
current directory is different from your home directory. Thus, you can have more than
one init file, one generic in your home directory, and another, specific to the program
you are debugging, in the directory where you invoke gdb. See [Init File in the Current
Directory during Startup], page 19.

10. If the command line specified a program to debug, or a process to attach to, or a core
file, gdb loads any auto-loaded scripts provided for the program or for its loaded shared
libraries. See Section 22.8 [Auto-loading], page 357.

If you wish to disable the auto-loading during startup, you must do something like the
following:

$ gdb -iex "set auto-load python-scripts off" myprogram

Option ‘-ex’ does not work because the auto-loading is then turned off too late.

Chapter 2: Getting In and Out of gdb 17

11. Executes commands and command files specified by the ‘-ex’ and ‘-x’ options in their
specified order. See Section 23.1.3 [Command Files], page 375, for more details about
gdb command files.

12. Reads the command history recorded in the history file. See Section 22.3 [Command
History], page 350, for more details about the command history and the files where
gdb records it.

2.1.4 Initialization Files

During startup (see Section 2.1.3 [Startup], page 16) gdb will execute commands from
several initialization files. These initialization files use the same syntax as command files
(see Section 23.1.3 [Command Files], page 375) and are processed by gdb in the same way.

To display the list of initialization files loaded by gdb at startup, in the order they will
be loaded, you can use gdb --help.

The early initialization file is loaded very early in gdb’s initialization process, before
the interpreter (see Chapter 24 [Interpreters], page 531) has been initialized, and before
the default target (see Chapter 19 [Targets], page 297) is initialized. Only set or source
commands should be placed into an early initialization file, and the only set commands
that can be used are those that control how gdb starts up.

Commands that can be placed into an early initialization file will be documented as such
throughout this manual. Any command that is not documented as being suitable for an
early initialization file should instead be placed into a general initialization file. Command
files passed to --early-init-command or -eix are also early initialization files, with the
same command restrictions. Only commands that can appear in an early initialization file
should be passed to --early-init-eval-command or -eiex.

In contrast, the general initialization files are processed later, after gdb has finished its
own internal initialization process, any valid command can be used in these files.

Throughout the rest of this document the term initialization file refers to one of the
general initialization files, not the early initialization file. Any discussion of the early ini-
tialization file will specifically mention that it is the early initialization file being discussed.

As the system wide and home directory initialization files are processed before most
command line options, changes to settings (e.g. ‘set complaints’) can affect subsequent
processing of command line options and operands.

The following sections describe where gdb looks for the early initialization and initial-
ization files, and the order that the files are searched for.

2.1.4.1 Home directory early initialization files

gdb initially looks for an early initialization file in the users home directory1. There are a
number of locations that gdb will search in the home directory, these locations are searched
in order and gdb will load the first file that it finds, and subsequent locations will not be
checked.

On non-macOS hosts the locations searched are:

• The file gdb/gdbearlyinit within the directory pointed to by the environment variable
XDG_CONFIG_HOME, if it is defined.

1 On DOS/Windows systems, the home directory is the one pointed to by the HOME environment variable.

18 Debugging with gdb

• The file .config/gdb/gdbearlyinit within the directory pointed to by the environ-
ment variable HOME, if it is defined.

• The file .gdbearlyinit within the directory pointed to by the environment variable
HOME, if it is defined.

By contrast, on macOS hosts the locations searched are:

• The file Library/Preferences/gdb/gdbearlyinit within the directory pointed to by
the environment variable HOME, if it is defined.

• The file .gdbearlyinit within the directory pointed to by the environment variable
HOME, if it is defined.

It is possible to prevent the home directory early initialization file from being loaded
using the ‘-nx’ or ‘-nh’ command line options, see Section 2.1.2 [Choosing Modes], page 13.

2.1.4.2 System wide initialization files

There are two locations that are searched for system wide initialization files. Both of these
locations are always checked:

system.gdbinit

This is a single system-wide initialization file. Its location is specified with
the --with-system-gdbinit configure option (see Section C.6 [System-wide
configuration], page 705). It is loaded first when gdb starts, before command
line options have been processed.

system.gdbinit.d

This is the system-wide initialization directory. Its location is specified with the
--with-system-gdbinit-dir configure option (see Section C.6 [System-wide
configuration], page 705). Files in this directory are loaded in alphabetical
order immediately after system.gdbinit (if enabled) when gdb starts, before
command line options have been processed. Files need to have a recognized
scripting language extension (.py/.scm) or be named with a .gdb extension
to be interpreted as regular gdb commands. gdb will not recurse into any
subdirectories of this directory.

It is possible to prevent the system wide initialization files from being loaded using the
‘-nx’ command line option, see Section 2.1.2 [Choosing Modes], page 13.

2.1.4.3 Home directory initialization file

After loading the system wide initialization files gdb will look for an initialization file in the
users home directory2. There are a number of locations that gdb will search in the home
directory, these locations are searched in order and gdb will load the first file that it finds,
and subsequent locations will not be checked.

On non-Apple hosts the locations searched are:

$XDG_CONFIG_HOME/gdb/gdbinit

$HOME/.config/gdb/gdbinit

$HOME/.gdbinit

While on Apple hosts the locations searched are:

2 On DOS/Windows systems, the home directory is the one pointed to by the HOME environment variable.

Chapter 2: Getting In and Out of gdb 19

$HOME/Library/Preferences/gdb/gdbinit

$HOME/.gdbinit

It is possible to prevent the home directory initialization file from being loaded using
the ‘-nx’ or ‘-nh’ command line options, see Section 2.1.2 [Choosing Modes], page 13.

The DJGPP port of gdb uses the name gdb.ini instead of .gdbinit or gdbinit, due
to the limitations of file names imposed by DOS filesystems. The Windows port of gdb
uses the standard name, but if it finds a gdb.ini file in your home directory, it warns you
about that and suggests to rename the file to the standard name.

2.1.4.4 Local directory initialization file

gdb will check the current directory for a file called .gdbinit. It is loaded last, after
command line options other than ‘-x’ and ‘-ex’ have been processed. The command line
options ‘-x’ and ‘-ex’ are processed last, after .gdbinit has been loaded, see Section 2.1.1
[Choosing Files], page 12.

If the file in the current directory was already loaded as the home directory initialization
file then it will not be loaded a second time.

It is possible to prevent the local directory initialization file from being loaded using the
‘-nx’ command line option, see Section 2.1.2 [Choosing Modes], page 13.

2.2 Quitting gdb

quit [expression]
exit [expression]
q To exit gdb, use the quit command (abbreviated q), the exit command, or

type an end-of-file character (usually Ctrl-d). If you do not supply expression,
gdb will terminate normally; otherwise it will terminate using the result of
expression as the error code.

An interrupt (often Ctrl-c) does not exit from gdb, but rather terminates the action
of any gdb command that is in progress and returns to gdb command level. It is safe to
type the interrupt character at any time because gdb does not allow it to take effect until
a time when it is safe.

If you have been using gdb to control an attached process or device, you can release
it with the detach command (see Section 4.7 [Debugging an Already-running Process],
page 39).

2.3 Shell Commands

If you need to execute occasional shell commands during your debugging session, there is
no need to leave or suspend gdb; you can just use the shell command.

shell command-string

!command-string

Invoke a standard shell to execute command-string. Note that no space is
needed between ! and command-string. On GNU and Unix systems, the envi-
ronment variable SHELL, if it exists, determines which shell to run. Otherwise
gdb uses the default shell (/bin/sh on GNU and Unix systems, cmd.exe on
MS-Windows, COMMAND.COM on MS-DOS, etc.).

20 Debugging with gdb

The utility make is often needed in development environments. You do not have to use
the shell command for this purpose in gdb:

make make-args

Execute the make program with the specified arguments. This is equivalent to
‘shell make make-args’.

pipe [command] | shell_command

| [command] | shell_command

pipe -d delim command delim shell_command

| -d delim command delim shell_command

Executes command and sends its output to shell command. Note that no space
is needed around |. If no command is provided, the last command executed is
repeated.

In case the command contains a |, the option -d delim can be used to spec-
ify an alternate delimiter string delim that separates the command from the
shell command.

Example:
(gdb) p var

$1 = {

black = 144,

red = 233,

green = 377,

blue = 610,

white = 987

}

(gdb) pipe p var|wc

7 19 80

(gdb) |p var|wc -l

7

(gdb) p /x var

$4 = {

black = 0x90,

red = 0xe9,

green = 0x179,

blue = 0x262,

white = 0x3db

}

(gdb) ||grep red

red => 0xe9,

(gdb) | -d ! echo this contains a | char\n ! sed -e ’s/|/PIPE/’

this contains a PIPE char

(gdb) | -d xxx echo this contains a | char!\n xxx sed -e ’s/|/PIPE/’

this contains a PIPE char!

(gdb)

The convenience variables $_shell_exitcode and $_shell_exitsignal can be used to
examine the exit status of the last shell command launched by shell, make, pipe and |.
See Section 10.12 [Convenience Variables], page 164.

2.4 Logging Output

You may want to save the output of gdb commands to a file. There are several commands
to control gdb’s logging.

Chapter 2: Getting In and Out of gdb 21

set logging enabled [on|off]

Enable or disable logging.

set logging file file

Change the name of the current logfile. The default logfile is gdb.txt.

set logging overwrite [on|off]

By default, gdb will append to the logfile. Set overwrite if you want set

logging enabled on to overwrite the logfile instead.

set logging redirect [on|off]

By default, gdb output will go to both the terminal and the logfile. Set
redirect if you want output to go only to the log file.

set logging debugredirect [on|off]

By default, gdb debug output will go to both the terminal and the logfile. Set
debugredirect if you want debug output to go only to the log file.

show logging

Show the current values of the logging settings.

You can also redirect the output of a gdb command to a shell command. See [pipe],
page 20.

23

3 gdb Commands

You can abbreviate a gdb command to the first few letters of the command name, if that
abbreviation is unambiguous; and you can repeat certain gdb commands by typing just
RET. You can also use the TAB key to get gdb to fill out the rest of a word in a command
(or to show you the alternatives available, if there is more than one possibility).

3.1 Command Syntax

A gdb command is a single line of input. There is no limit on how long it can be. It
starts with a command name, which is followed by arguments whose meaning depends on
the command name. For example, the command step accepts an argument which is the
number of times to step, as in ‘step 5’. You can also use the step command with no
arguments. Some commands do not allow any arguments.

gdb command names may always be truncated if that abbreviation is unambiguous.
Other possible command abbreviations are listed in the documentation for individual com-
mands. In some cases, even ambiguous abbreviations are allowed; for example, s is specially
defined as equivalent to step even though there are other commands whose names start
with s. You can test abbreviations by using them as arguments to the help command.

A blank line as input to gdb (typing just RET) means to repeat the previous command.
Certain commands (for example, run) will not repeat this way; these are commands whose
unintentional repetition might cause trouble and which you are unlikely to want to repeat.
User-defined commands can disable this feature; see Section 23.1.1 [Define], page 371.

The list and x commands, when you repeat them with RET, construct new arguments
rather than repeating exactly as typed. This permits easy scanning of source or memory.

gdb can also use RET in another way: to partition lengthy output, in a way similar to
the common utility more (see Section 22.4 [Screen Size], page 352). Since it is easy to press
one RET too many in this situation, gdb disables command repetition after any command
that generates this sort of display.

Any text from a # to the end of the line is a comment; it does nothing. This is useful
mainly in command files (see Section 23.1.3 [Command Files], page 375).

The Ctrl-o binding is useful for repeating a complex sequence of commands. This
command accepts the current line, like RET, and then fetches the next line relative to the
current line from the history for editing.

3.2 Command Settings

Many commands change their behavior according to command-specific variables or set-
tings. These settings can be changed with the set subcommands. For example, the print
command (see Chapter 10 [Examining Data], page 135) prints arrays differently depending
on settings changeable with the commands set print elements NUMBER-OF-ELEMENTS and
set print array-indexes, among others.

You can change these settings to your preference in the gdbinit files loaded at gdb
startup. See Section 2.1.3 [Startup], page 16.

The settings can also be changed interactively during the debugging session. For exam-
ple, to change the limit of array elements to print, you can do the following:

(gdb) set print elements 10

24 Debugging with gdb

(gdb) print some_array

$1 = {0, 10, 20, 30, 40, 50, 60, 70, 80, 90...}

The above set print elements 10 command changes the number of elements to print
from the default of 200 to 10. If you only intend this limit of 10 to be used for printing
some_array, then you must restore the limit back to 200, with set print elements 200.

Some commands allow overriding settings with command options. For example, the
print command supports a number of options that allow overriding relevant global print
settings as set by set print subcommands. See [print options], page 135. The example
above could be rewritten as:

(gdb) print -elements 10 -- some_array

$1 = {0, 10, 20, 30, 40, 50, 60, 70, 80, 90...}

Alternatively, you can use the with command to change a setting temporarily, for the
duration of a command invocation.

with setting [value] [-- command]

w setting [value] [-- command]

Temporarily set setting to value for the duration of command.

setting is any setting you can change with the set subcommands. value is the
value to assign to setting while running command.

If no command is provided, the last command executed is repeated.

If a command is provided, it must be preceded by a double dash (--) separator.
This is required because some settings accept free-form arguments, such as
expressions or filenames.

For example, the command
(gdb) with print array on -- print some_array

is equivalent to the following 3 commands:
(gdb) set print array on

(gdb) print some_array

(gdb) set print array off

The with command is particularly useful when you want to override a setting
while running user-defined commands, or commands defined in Python or Guile.
See Chapter 23 [Extending GDB], page 371.

(gdb) with print pretty on -- my_complex_command

To change several settings for the same command, you can nest with com-
mands. For example, with language ada -- with print elements 10 tem-
porarily changes the language to Ada and sets a limit of 10 elements to print
for arrays and strings.

3.3 Command Completion

gdb can fill in the rest of a word in a command for you, if there is only one possibility;
it can also show you what the valid possibilities are for the next word in a command, at
any time. This works for gdb commands, gdb subcommands, command options, and the
names of symbols in your program.

Press the TAB key whenever you want gdb to fill out the rest of a word. If there is only
one possibility, gdb fills in the word, and waits for you to finish the command (or press RET
to enter it). For example, if you type

Chapter 3: gdb Commands 25

(gdb) info bre TAB

gdb fills in the rest of the word ‘breakpoints’, since that is the only info subcommand
beginning with ‘bre’:

(gdb) info breakpoints

You can either press RET at this point, to run the info breakpoints command, or backspace
and enter something else, if ‘breakpoints’ does not look like the command you expected. (If
you were sure you wanted info breakpoints in the first place, you might as well just type
RET immediately after ‘info bre’, to exploit command abbreviations rather than command
completion).

If there is more than one possibility for the next word when you press TAB, gdb sounds a
bell. You can either supply more characters and try again, or just press TAB a second time;
gdb displays all the possible completions for that word. For example, you might want to
set a breakpoint on a subroutine whose name begins with ‘make_’, but when you type b

make_TAB gdb just sounds the bell. Typing TAB again displays all the function names in
your program that begin with those characters, for example:

(gdb) b make_ TAB

gdb sounds bell; press TAB again, to see:
make_a_section_from_file make_environ

make_abs_section make_function_type

make_blockvector make_pointer_type

make_cleanup make_reference_type

make_command make_symbol_completion_list

(gdb) b make_

After displaying the available possibilities, gdb copies your partial input (‘b make_’ in the
example) so you can finish the command.

If you just want to see the list of alternatives in the first place, you can press M-? rather
than pressing TAB twice. M-? means META ?. You can type this either by holding down a
key designated as the META shift on your keyboard (if there is one) while typing ?, or as ESC
followed by ?.

If the number of possible completions is large, gdb will print as much of the list as it
has collected, as well as a message indicating that the list may be truncated.

(gdb) b mTABTAB

main

<... the rest of the possible completions ...>

*** List may be truncated, max-completions reached. ***

(gdb) b m

This behavior can be controlled with the following commands:

set max-completions limit

set max-completions unlimited

Set the maximum number of completion candidates. gdb will stop looking for
more completions once it collects this many candidates. This is useful when
completing on things like function names as collecting all the possible candidates
can be time consuming. The default value is 200. A value of zero disables tab-
completion. Note that setting either no limit or a very large limit can make
completion slow.

26 Debugging with gdb

show max-completions

Show the maximum number of candidates that gdb will collect and show during
completion.

Sometimes the string you need, while logically a “word”, may contain parentheses or
other characters that gdb normally excludes from its notion of a word. To permit word
completion to work in this situation, you may enclose words in ’ (single quote marks) in
gdb commands.

A likely situation where you might need this is in typing an expression that involves a
C++ symbol name with template parameters. This is because when completing expressions,
GDB treats the ‘<’ character as word delimiter, assuming that it’s the less-than comparison
operator (see Section 15.4.1.1 [C and C++ Operators], page 223).

For example, when you want to call a C++ template function interactively using the
print or call commands, you may need to distinguish whether you mean the version
of name that was specialized for int, name<int>(), or the version that was specialized for
float, name<float>(). To use the word-completion facilities in this situation, type a single
quote ’ at the beginning of the function name. This alerts gdb that it may need to consider
more information than usual when you press TAB or M-? to request word completion:

(gdb) p ’func< M-?

func<int>() func<float>()

(gdb) p ’func<

When setting breakpoints however (see Section 9.2 [Specify Location], page 122), you
don’t usually need to type a quote before the function name, because gdb understands that
you want to set a breakpoint on a function:

(gdb) b func< M-?

func<int>() func<float>()

(gdb) b func<

This is true even in the case of typing the name of C++ overloaded functions (multiple
definitions of the same function, distinguished by argument type). For example, when you
want to set a breakpoint you don’t need to distinguish whether you mean the version of
name that takes an int parameter, name(int), or the version that takes a float parameter,
name(float).

(gdb) b bubble(M-?

bubble(int) bubble(double)

(gdb) b bubble(dou M-?

bubble(double)

See [quoting names], page 253, for a description of other scenarios that require quoting.

For more information about overloaded functions, see Section 15.4.1.3 [C++ Expressions],
page 226. You can use the command set overload-resolution off to disable overload
resolution; see Section 15.4.1.7 [gdb Features for C++], page 227.

When completing in an expression which looks up a field in a structure, gdb also tries1

to limit completions to the field names available in the type of the left-hand-side:
(gdb) p gdb_stdout.M-?

magic to_fputs to_rewind

to_data to_isatty to_write

1 The completer can be confused by certain kinds of invalid expressions. Also, it only examines the static
type of the expression, not the dynamic type.

Chapter 3: gdb Commands 27

to_delete to_put to_write_async_safe

to_flush to_read

This is because the gdb_stdout is a variable of the type struct ui_file that is defined in
gdb sources as follows:

struct ui_file

{

int *magic;

ui_file_flush_ftype *to_flush;

ui_file_write_ftype *to_write;

ui_file_write_async_safe_ftype *to_write_async_safe;

ui_file_fputs_ftype *to_fputs;

ui_file_read_ftype *to_read;

ui_file_delete_ftype *to_delete;

ui_file_isatty_ftype *to_isatty;

ui_file_rewind_ftype *to_rewind;

ui_file_put_ftype *to_put;

void *to_data;

}

3.4 Command options

Some commands accept options starting with a leading dash. For example, print -pretty.
Similarly to command names, you can abbreviate a gdb option to the first few letters of
the option name, if that abbreviation is unambiguous, and you can also use the TAB key to
get gdb to fill out the rest of a word in an option (or to show you the alternatives available,
if there is more than one possibility).

Some commands take raw input as argument. For example, the print command processes
arbitrary expressions in any of the languages supported by gdb. With such commands,
because raw input may start with a leading dash that would be confused with an option
or any of its abbreviations, e.g. print -p (short for print -pretty or printing negative
p?), if you specify any command option, then you must use a double-dash (--) delimiter to
indicate the end of options.

Some options are described as accepting an argument which can be either on or off.
These are known as boolean options. Similarly to boolean settings commands—on and off

are the typical values, but any of 1, yes and enable can also be used as “true” value, and
any of 0, no and disable can also be used as “false” value. You can also omit a “true”
value, as it is implied by default.

For example, these are equivalent:
(gdb) print -object on -pretty off -element unlimited -- *myptr

(gdb) p -o -p 0 -e u -- *myptr

You can discover the set of options some command accepts by completing on - after the
command name. For example:

(gdb) print -TABTAB

-address -max-depth -pretty -symbol

-array -memory-tag-violations -raw-values -union

-array-indexes -null-stop -repeats -vtbl

-elements -object -static-members

Completion will in some cases guide you with a suggestion of what kind of argument an
option expects. For example:

(gdb) print -elements TABTAB

28 Debugging with gdb

NUMBER unlimited

Here, the option expects a number (e.g., 100), not literal NUMBER. Such metasyntactical
arguments are always presented in uppercase.

(For more on using the print command, see Chapter 10 [Examining Data], page 135.)

3.5 Getting Help

You can always ask gdb itself for information on its commands, using the command help.

help

h You can use help (abbreviated h) with no arguments to display a short list of
named classes of commands:

(gdb) help

List of classes of commands:

aliases -- User-defined aliases of other commands

breakpoints -- Making program stop at certain points

data -- Examining data

files -- Specifying and examining files

internals -- Maintenance commands

obscure -- Obscure features

running -- Running the program

stack -- Examining the stack

status -- Status inquiries

support -- Support facilities

tracepoints -- Tracing of program execution without

stopping the program

user-defined -- User-defined commands

Type "help" followed by a class name for a list of

commands in that class.

Type "help" followed by command name for full

documentation.

Command name abbreviations are allowed if unambiguous.

(gdb)

help class

Using one of the general help classes as an argument, you can get a list of
the individual commands in that class. If a command has aliases, the aliases
are given after the command name, separated by commas. If an alias has
default arguments, the full definition of the alias is given after the first line.
For example, here is the help display for the class status:

(gdb) help status

Status inquiries.

List of commands:

info, inf, i -- Generic command for showing things

about the program being debugged

info address, iamain -- Describe where symbol SYM is stored.

alias iamain = info address main

info all-registers -- List of all registers and their contents,

for selected stack frame.

...

show, info set -- Generic command for showing things

Chapter 3: gdb Commands 29

about the debugger

Type "help" followed by command name for full

documentation.

Command name abbreviations are allowed if unambiguous.

(gdb)

help command

With a command name as help argument, gdb displays a short paragraph on
how to use that command. If that command has one or more aliases, gdb
will display a first line with the command name and all its aliases separated
by commas. This first line will be followed by the full definition of all aliases
having default arguments.

apropos [-v] regexp

The apropos command searches through all of the gdb commands, and their
documentation, for the regular expression specified in args. It prints out all
matches found. The optional flag ‘-v’, which stands for ‘verbose’, indicates
to output the full documentation of the matching commands and highlight the
parts of the documentation matching regexp. For example:

apropos alias

results in:
alias -- Define a new command that is an alias of an existing command

aliases -- User-defined aliases of other commands

while
apropos -v cut.*thread apply

results in the below output, where ‘cut for ’thread apply’ is highlighted if
styling is enabled.

taas -- Apply a command to all threads (ignoring errors

and empty output).

Usage: taas COMMAND

shortcut for ’thread apply all -s COMMAND’

tfaas -- Apply a command to all frames of all threads

(ignoring errors and empty output).

Usage: tfaas COMMAND

shortcut for ’thread apply all -s frame apply all -s COMMAND’

complete args

The complete args command lists all the possible completions for the begin-
ning of a command. Use args to specify the beginning of the command you
want completed. For example:

complete i

results in:
if

ignore

info

inspect

This is intended for use by gnu Emacs.

In addition to help, you can use the gdb commands info and show to inquire about
the state of your program, or the state of gdb itself. Each command supports many topics

30 Debugging with gdb

of inquiry; this manual introduces each of them in the appropriate context. The listings
under info and under show in the Command, Variable, and Function Index point to all the
sub-commands. See [Command and Variable Index], page 877.

info This command (abbreviated i) is for describing the state of your program. For
example, you can show the arguments passed to a function with info args,
list the registers currently in use with info registers, or list the breakpoints
you have set with info breakpoints. You can get a complete list of the info

sub-commands with help info.

set You can assign the result of an expression to an environment variable with set.
For example, you can set the gdb prompt to a $-sign with set prompt $.

show In contrast to info, show is for describing the state of gdb itself. You can
change most of the things you can show, by using the related command set;
for example, you can control what number system is used for displays with set

radix, or simply inquire which is currently in use with show radix.

To display all the settable parameters and their current values, you can use
show with no arguments; you may also use info set. Both commands produce
the same display.

Here are several miscellaneous show subcommands, all of which are exceptional in lacking
corresponding set commands:

show version

Show what version of gdb is running. You should include this information in
gdb bug-reports. If multiple versions of gdb are in use at your site, you may
need to determine which version of gdb you are running; as gdb evolves, new
commands are introduced, and old ones may wither away. Also, many system
vendors ship variant versions of gdb, and there are variant versions of gdb in
gnu/Linux distributions as well. The version number is the same as the one
announced when you start gdb.

show copying

info copying

Display information about permission for copying gdb.

show warranty

info warranty

Display the gnu “NO WARRANTY” statement, or a warranty, if your version
of gdb comes with one.

show configuration

Display detailed information about the way gdb was configured when it was
built. This displays the optional arguments passed to the configure script
and also configuration parameters detected automatically by configure. When
reporting a gdb bug (see Chapter 31 [GDB Bugs], page 661), it is important
to include this information in your report.

31

4 Running Programs Under gdb

When you run a program under gdb, you must first generate debugging information when
you compile it.

You may start gdb with its arguments, if any, in an environment of your choice. If you
are doing native debugging, you may redirect your program’s input and output, debug an
already running process, or kill a child process.

4.1 Compiling for Debugging

In order to debug a program effectively, you need to generate debugging information when
you compile it. This debugging information is stored in the object file; it describes the data
type of each variable or function and the correspondence between source line numbers and
addresses in the executable code.

To request debugging information, specify the ‘-g’ option when you run the compiler.

Programs that are to be shipped to your customers are compiled with optimizations,
using the ‘-O’ compiler option. However, some compilers are unable to handle the ‘-g’ and
‘-O’ options together. Using those compilers, you cannot generate optimized executables
containing debugging information.

gcc, the gnu C/C++ compiler, supports ‘-g’ with or without ‘-O’, making it possible
to debug optimized code. We recommend that you always use ‘-g’ whenever you compile
a program. You may think your program is correct, but there is no sense in pushing your
luck. For more information, see Chapter 11 [Optimized Code], page 187.

Older versions of the gnu C compiler permitted a variant option ‘-gg’ for debugging
information. gdb no longer supports this format; if your gnu C compiler has this option,
do not use it.

gdb knows about preprocessor macros and can show you their expansion (see Chapter 12
[Macros], page 191). Most compilers do not include information about preprocessor macros
in the debugging information if you specify the -g flag alone. Version 3.1 and later of gcc,
the gnu C compiler, provides macro information if you are using the DWARF debugging
format, and specify the option -g3.

See Section “Options for Debugging Your Program or GCC” in Using the gnu Compiler
Collection (GCC), for more information on gcc options affecting debug information.

You will have the best debugging experience if you use the latest version of the DWARF
debugging format that your compiler supports. DWARF is currently the most expressive
and best supported debugging format in gdb.

32 Debugging with gdb

4.2 Starting your Program

run

r Use the run command to start your program under gdb. You must first specify
the program name with an argument to gdb (see Chapter 2 [Getting In and
Out of gdb], page 11), or by using the file or exec-file command (see
Section 18.1 [Commands to Specify Files], page 279).

If you are running your program in an execution environment that supports processes,
run creates an inferior process and makes that process run your program. In some envi-
ronments without processes, run jumps to the start of your program. Other targets, like
‘remote’, are always running. If you get an error message like this one:

The "remote" target does not support "run".

Try "help target" or "continue".

then use continue to run your program. You may need load first (see [load], page 299).

The execution of a program is affected by certain information it receives from its superior.
gdb provides ways to specify this information, which you must do before starting your
program. (You can change it after starting your program, but such changes only affect your
program the next time you start it.) This information may be divided into four categories:

The arguments.
Specify the arguments to give your program as the arguments of the run com-
mand. If a shell is available on your target, the shell is used to pass the argu-
ments, so that you may use normal conventions (such as wildcard expansion or
variable substitution) in describing the arguments. In Unix systems, you can
control which shell is used with the SHELL environment variable. If you do not
define SHELL, gdb uses the default shell (/bin/sh). You can disable use of any
shell with the set startup-with-shell command (see below for details).

The environment.
Your program normally inherits its environment from gdb, but you can use
the gdb commands set environment and unset environment to change parts
of the environment that affect your program. See Section 4.4 [Your Program’s
Environment], page 36.

The working directory.
You can set your program’s working directory with the command set cwd. If
you do not set any working directory with this command, your program will
inherit gdb’s working directory if native debugging, or the remote server’s work-
ing directory if remote debugging. See Section 4.5 [Your Program’s Working
Directory], page 37.

The standard input and output.
Your program normally uses the same device for standard input and standard
output as gdb is using. You can redirect input and output in the run command
line, or you can use the tty command to set a different device for your program.
See Section 4.6 [Your Program’s Input and Output], page 38.

Chapter 4: Running Programs Under gdb 33

Warning: While input and output redirection work, you cannot use pipes to
pass the output of the program you are debugging to another program; if you
attempt this, gdb is likely to wind up debugging the wrong program.

When you issue the run command, your program begins to execute immediately. See
Chapter 5 [Stopping and Continuing], page 57, for discussion of how to arrange for your
program to stop. Once your program has stopped, you may call functions in your program,
using the print or call commands. See Chapter 10 [Examining Data], page 135.

If the modification time of your symbol file has changed since the last time gdb read its
symbols, gdb discards its symbol table, and reads it again. When it does this, gdb tries to
retain your current breakpoints.

start The name of the main procedure can vary from language to language. With
C or C++, the main procedure name is always main, but other languages such
as Ada do not require a specific name for their main procedure. The debugger
provides a convenient way to start the execution of the program and to stop at
the beginning of the main procedure, depending on the language used.

The ‘start’ command does the equivalent of setting a temporary breakpoint
at the beginning of the main procedure and then invoking the ‘run’ command.

Some programs contain an elaboration phase where some startup code is exe-
cuted before the main procedure is called. This depends on the languages used
to write your program. In C++, for instance, constructors for static and global
objects are executed before main is called. It is therefore possible that the
debugger stops before reaching the main procedure. However, the temporary
breakpoint will remain to halt execution.

Specify the arguments to give to your program as arguments to the ‘start’
command. These arguments will be given verbatim to the underlying ‘run’
command. Note that the same arguments will be reused if no argument is
provided during subsequent calls to ‘start’ or ‘run’.

It is sometimes necessary to debug the program during elaboration. In these
cases, using the start command would stop the execution of your program
too late, as the program would have already completed the elaboration phase.
Under these circumstances, either insert breakpoints in your elaboration code
before running your program or use the starti command.

starti The ‘starti’ command does the equivalent of setting a temporary breakpoint
at the first instruction of a program’s execution and then invoking the ‘run’
command. For programs containing an elaboration phase, the starti command
will stop execution at the start of the elaboration phase.

set exec-wrapper wrapper

show exec-wrapper

unset exec-wrapper

When ‘exec-wrapper’ is set, the specified wrapper is used to launch programs
for debugging. gdb starts your program with a shell command of the form exec

wrapper program. Quoting is added to program and its arguments, but not to
wrapper, so you should add quotes if appropriate for your shell. The wrapper
runs until it executes your program, and then gdb takes control.

34 Debugging with gdb

You can use any program that eventually calls execve with its arguments as
a wrapper. Several standard Unix utilities do this, e.g. env and nohup. Any
Unix shell script ending with exec "$@" will also work.

For example, you can use env to pass an environment variable to the debugged
program, without setting the variable in your shell’s environment:

(gdb) set exec-wrapper env ’LD_PRELOAD=libtest.so’

(gdb) run

This command is available when debugging locally on most targets, excluding
djgpp, Cygwin, MS Windows, and QNX Neutrino.

set startup-with-shell

set startup-with-shell on

set startup-with-shell off

show startup-with-shell

On Unix systems, by default, if a shell is available on your target, gdb) uses it
to start your program. Arguments of the run command are passed to the shell,
which does variable substitution, expands wildcard characters and performs
redirection of I/O. In some circumstances, it may be useful to disable such use
of a shell, for example, when debugging the shell itself or diagnosing startup
failures such as:

(gdb) run

Starting program: ./a.out

During startup program terminated with signal SIGSEGV, Segmentation fault.

which indicates the shell or the wrapper specified with ‘exec-wrapper’ crashed,
not your program. Most often, this is caused by something odd in your shell’s
non-interactive mode initialization file—such as .cshrc for C-shell, $.zshenv
for the Z shell, or the file specified in the BASH_ENV environment variable for
BASH.

set auto-connect-native-target

set auto-connect-native-target on

set auto-connect-native-target off

show auto-connect-native-target

By default, if the current inferior is not connected to any target yet (e.g., with
target remote), the run command starts your program as a native process
under gdb, on your local machine. If you’re sure you don’t want to debug pro-
grams on your local machine, you can tell gdb to not connect to the native tar-
get automatically with the set auto-connect-native-target off command.

If on, which is the default, and if the current inferior is not connected to a
target already, the run command automaticaly connects to the native target, if
one is available.

If off, and if the current inferior is not connected to a target already, the run

command fails with an error:

(gdb) run

Don’t know how to run. Try "help target".

If the current inferior is already connected to a target, gdb always uses it with
the run command.

Chapter 4: Running Programs Under gdb 35

In any case, you can explicitly connect to the native target with the target

native command. For example,

(gdb) set auto-connect-native-target off

(gdb) run

Don’t know how to run. Try "help target".

(gdb) target native

(gdb) run

Starting program: ./a.out

[Inferior 1 (process 10421) exited normally]

In case you connected explicitly to the native target, gdb remains connected
even if all inferiors exit, ready for the next run command. Use the disconnect
command to disconnect.

Examples of other commands that likewise respect the auto-connect-native-
target setting: attach, info proc, info os.

set disable-randomization

set disable-randomization on

This option (enabled by default in gdb) will turn off the native randomiza-
tion of the virtual address space of the started program. This option is useful
for multiple debugging sessions to make the execution better reproducible and
memory addresses reusable across debugging sessions.

This feature is implemented only on certain targets, including gnu/Linux. On
gnu/Linux you can get the same behavior using

(gdb) set exec-wrapper setarch ‘uname -m‘ -R

set disable-randomization off

Leave the behavior of the started executable unchanged. Some bugs rear their
ugly heads only when the program is loaded at certain addresses. If your bug
disappears when you run the program under gdb, that might be because gdb
by default disables the address randomization on platforms, such as gnu/Linux,
which do that for stand-alone programs. Use set disable-randomization off

to try to reproduce such elusive bugs.

On targets where it is available, virtual address space randomization protects
the programs against certain kinds of security attacks. In these cases the at-
tacker needs to know the exact location of a concrete executable code. Ran-
domizing its location makes it impossible to inject jumps misusing a code at its
expected addresses.

Prelinking shared libraries provides a startup performance advantage but it
makes addresses in these libraries predictable for privileged processes by having
just unprivileged access at the target system. Reading the shared library binary
gives enough information for assembling the malicious code misusing it. Still
even a prelinked shared library can get loaded at a new random address just
requiring the regular relocation process during the startup. Shared libraries not
already prelinked are always loaded at a randomly chosen address.

Position independent executables (PIE) contain position independent code sim-
ilar to the shared libraries and therefore such executables get loaded at a ran-
domly chosen address upon startup. PIE executables always load even already

36 Debugging with gdb

prelinked shared libraries at a random address. You can build such executable
using gcc -fPIE -pie.

Heap (malloc storage), stack and custom mmap areas are always placed ran-
domly (as long as the randomization is enabled).

show disable-randomization

Show the current setting of the explicit disable of the native randomization of
the virtual address space of the started program.

4.3 Your Program’s Arguments

The arguments to your program can be specified by the arguments of the run command.
They are passed to a shell, which expands wildcard characters and performs redirection of
I/O, and thence to your program. Your SHELL environment variable (if it exists) specifies
what shell gdb uses. If you do not define SHELL, gdb uses the default shell (/bin/sh on
Unix).

On non-Unix systems, the program is usually invoked directly by gdb, which emulates
I/O redirection via the appropriate system calls, and the wildcard characters are expanded
by the startup code of the program, not by the shell.

run with no arguments uses the same arguments used by the previous run, or those set
by the set args command.

set args Specify the arguments to be used the next time your program is run. If set
args has no arguments, run executes your program with no arguments. Once
you have run your program with arguments, using set args before the next
run is the only way to run it again without arguments.

show args Show the arguments to give your program when it is started.

4.4 Your Program’s Environment

The environment consists of a set of environment variables and their values. Environment
variables conventionally record such things as your user name, your home directory, your
terminal type, and your search path for programs to run. Usually you set up environment
variables with the shell and they are inherited by all the other programs you run. When
debugging, it can be useful to try running your program with a modified environment
without having to start gdb over again.

path directory

Add directory to the front of the PATH environment variable (the search path
for executables) that will be passed to your program. The value of PATH used
by gdb does not change. You may specify several directory names, separated
by whitespace or by a system-dependent separator character (‘:’ on Unix, ‘;’
on MS-DOS and MS-Windows). If directory is already in the path, it is moved
to the front, so it is searched sooner.

You can use the string ‘$cwd’ to refer to whatever is the current working direc-
tory at the time gdb searches the path. If you use ‘.’ instead, it refers to the
directory where you executed the path command. gdb replaces ‘.’ in the di-
rectory argument (with the current path) before adding directory to the search
path.

Chapter 4: Running Programs Under gdb 37

show paths

Display the list of search paths for executables (the PATH environment variable).

show environment [varname]
Print the value of environment variable varname to be given to your program
when it starts. If you do not supply varname, print the names and values of
all environment variables to be given to your program. You can abbreviate
environment as env.

set environment varname [=value]
Set environment variable varname to value. The value changes for your pro-
gram (and the shell gdb uses to launch it), not for gdb itself. The value may be
any string; the values of environment variables are just strings, and any inter-
pretation is supplied by your program itself. The value parameter is optional;
if it is eliminated, the variable is set to a null value.

For example, this command:

set env USER = foo

tells the debugged program, when subsequently run, that its user is named
‘foo’. (The spaces around ‘=’ are used for clarity here; they are not actually
required.)

Note that on Unix systems, gdb runs your program via a shell, which also
inherits the environment set with set environment. If necessary, you can avoid
that by using the ‘env’ program as a wrapper instead of using set environment.
See [set exec-wrapper], page 33, for an example doing just that.

Environment variables that are set by the user are also transmitted
to gdbserver to be used when starting the remote inferior. see
[QEnvironmentHexEncoded], page 737.

unset environment varname

Remove variable varname from the environment to be passed to your program.
This is different from ‘set env varname =’; unset environment removes the
variable from the environment, rather than assigning it an empty value.

Environment variables that are unset by the user are also unset on gdbserver

when starting the remote inferior. see [QEnvironmentUnset], page 738.

Warning: On Unix systems, gdb runs your program using the shell indicated by your
SHELL environment variable if it exists (or /bin/sh if not). If your SHELL variable names
a shell that runs an initialization file when started non-interactively—such as .cshrc for
C-shell, $.zshenv for the Z shell, or the file specified in the BASH_ENV environment variable
for BASH—any variables you set in that file affect your program. You may wish to move
setting of environment variables to files that are only run when you sign on, such as .login
or .profile.

4.5 Your Program’s Working Directory

Each time you start your program with run, the inferior will be initialized with the current
working directory specified by the set cwd command. If no directory has been specified by
this command, then the inferior will inherit gdb’s current working directory as its working

38 Debugging with gdb

directory if native debugging, or it will inherit the remote server’s current working directory
if remote debugging.

set cwd [directory]
Set the inferior’s working directory to directory, which will be glob-expanded
in order to resolve tildes (~). If no argument has been specified, the command
clears the setting and resets it to an empty state. This setting has no effect on
gdb’s working directory, and it only takes effect the next time you start the
inferior. The ~ in directory is a short for the home directory, usually pointed
to by the HOME environment variable. On MS-Windows, if HOME is not defined,
gdb uses the concatenation of HOMEDRIVE and HOMEPATH as fallback.

You can also change gdb’s current working directory by using the cd command.
See [cd command], page 38.

show cwd Show the inferior’s working directory. If no directory has been specified by set

cwd, then the default inferior’s working directory is the same as gdb’s working
directory.

cd [directory]
Set the gdb working directory to directory. If not given, directory uses ’~’.

The gdb working directory serves as a default for the commands that specify
files for gdb to operate on. See Section 18.1 [Commands to Specify Files],
page 279. See [set cwd command], page 38.

pwd Print the gdb working directory.

It is generally impossible to find the current working directory of the process being
debugged (since a program can change its directory during its run). If you work on a system
where gdb supports the info proc command (see Section 21.1.2 [Process Information],
page 323), you can use the info proc command to find out the current working directory
of the debuggee.

4.6 Your Program’s Input and Output

By default, the program you run under gdb does input and output to the same terminal
that gdb uses. gdb switches the terminal to its own terminal modes to interact with you,
but it records the terminal modes your program was using and switches back to them when
you continue running your program.

info terminal

Displays information recorded by gdb about the terminal modes your program
is using.

You can redirect your program’s input and/or output using shell redirection with the
run command. For example,

run > outfile

starts your program, diverting its output to the file outfile.

Another way to specify where your program should do input and output is with the
tty command. This command accepts a file name as argument, and causes this file to be

Chapter 4: Running Programs Under gdb 39

the default for future run commands. It also resets the controlling terminal for the child
process, for future run commands. For example,

tty /dev/ttyb

directs that processes started with subsequent run commands default to do input and output
on the terminal /dev/ttyb and have that as their controlling terminal.

An explicit redirection in run overrides the tty command’s effect on the input/output
device, but not its effect on the controlling terminal.

When you use the tty command or redirect input in the run command, only the input
for your program is affected. The input for gdb still comes from your terminal. tty is an
alias for set inferior-tty.

You can use the show inferior-tty command to tell gdb to display the name of the
terminal that will be used for future runs of your program.

set inferior-tty [tty]

Set the tty for the program being debugged to tty. Omitting tty restores the
default behavior, which is to use the same terminal as gdb.

show inferior-tty

Show the current tty for the program being debugged.

4.7 Debugging an Already-running Process

attach process-id

This command attaches to a running process—one that was started outside
gdb. (info files shows your active targets.) The command takes as argument
a process ID. The usual way to find out the process-id of a Unix process is with
the ps utility, or with the ‘jobs -l’ shell command.

attach does not repeat if you press RET a second time after executing the
command.

To use attach, your program must be running in an environment which supports pro-
cesses; for example, attach does not work for programs on bare-board targets that lack an
operating system. You must also have permission to send the process a signal.

When you use attach, the debugger finds the program running in the process first by
looking in the current working directory, then (if the program is not found) by using the
source file search path (see Section 9.5 [Specifying Source Directories], page 126). You can
also use the file command to load the program. See Section 18.1 [Commands to Specify
Files], page 279.

If the debugger can determine that the executable file running in the process it is attach-
ing to does not match the current exec-file loaded by gdb, the option exec-file-mismatch

specifies how to handle the mismatch. gdb tries to compare the files by comparing their
build IDs (see [build ID], page 288), if available.

set exec-file-mismatch ‘ask|warn|off’

Whether to detect mismatch between the current executable file loaded by gdb
and the executable file used to start the process. If ‘ask’, the default, display a
warning and ask the user whether to load the process executable file; if ‘warn’,
just display a warning; if ‘off’, don’t attempt to detect a mismatch. If the user

40 Debugging with gdb

confirms loading the process executable file, then its symbols will be loaded as
well.

show exec-file-mismatch

Show the current value of exec-file-mismatch.

The first thing gdb does after arranging to debug the specified process is to stop it. You
can examine and modify an attached process with all the gdb commands that are ordinarily
available when you start processes with run. You can insert breakpoints; you can step and
continue; you can modify storage. If you would rather the process continue running, you
may use the continue command after attaching gdb to the process.

detach When you have finished debugging the attached process, you can use the detach
command to release it from gdb control. Detaching the process continues its
execution. After the detach command, that process and gdb become com-
pletely independent once more, and you are ready to attach another process
or start one with run. detach does not repeat if you press RET again after
executing the command.

If you exit gdb while you have an attached process, you detach that process. If you use
the run command, you kill that process. By default, gdb asks for confirmation if you try
to do either of these things; you can control whether or not you need to confirm by using
the set confirm command (see Section 22.9 [Optional Warnings and Messages], page 361).

4.8 Killing the Child Process

kill Kill the child process in which your program is running under gdb.

This command is useful if you wish to debug a core dump instead of a running process.
gdb ignores any core dump file while your program is running.

On some operating systems, a program cannot be executed outside gdb while you have
breakpoints set on it inside gdb. You can use the kill command in this situation to permit
running your program outside the debugger.

The kill command is also useful if you wish to recompile and relink your program,
since on many systems it is impossible to modify an executable file while it is running in a
process. In this case, when you next type run, gdb notices that the file has changed, and
reads the symbol table again (while trying to preserve your current breakpoint settings).

4.9 Debugging Multiple Inferiors Connections and Programs

gdb lets you run and debug multiple programs in a single session. In addition, gdb on
some systems may let you run several programs simultaneously (otherwise you have to exit
from one before starting another). On some systems gdb may even let you debug several
programs simultaneously on different remote systems. In the most general case, you can
have multiple threads of execution in each of multiple processes, launched from multiple
executables, running on different machines.

gdb represents the state of each program execution with an object called an inferior.
An inferior typically corresponds to a process, but is more general and applies also to
targets that do not have processes. Inferiors may be created before a process runs, and may

Chapter 4: Running Programs Under gdb 41

be retained after a process exits. Inferiors have unique identifiers that are different from
process ids. Usually each inferior will also have its own distinct address space, although
some embedded targets may have several inferiors running in different parts of a single
address space. Each inferior may in turn have multiple threads running in it.

The commands info inferiors and info connections, which will be introduced below,
accept a space-separated ID list as their argument specifying one or more elements on
which to operate. A list element can be either a single non-negative number, like ‘5’, or an
ascending range of such numbers, like ‘5-7’. A list can consist of any combination of such
elements, even duplicates or overlapping ranges are valid. E.g. ‘1 4-6 5 4-4’ or ‘1 2 4-7’.

To find out what inferiors exist at any moment, use info inferiors:

info inferiors

Print a list of all inferiors currently being managed by gdb. By default all
inferiors are printed, but the ID list (see [ID list], page 41) id . . . can be used
to limit the display to just the requested inferiors.

gdb displays for each inferior (in this order):

1. the inferior number assigned by gdb

2. the target system’s inferior identifier

3. the target connection the inferior is bound to, including the unique con-
nection number assigned by gdb, and the protocol used by the connection.

4. the name of the executable the inferior is running.

An asterisk ‘*’ preceding the gdb inferior number indicates the current inferior.

For example,

(gdb) info inferiors

Num Description Connection Executable

* 1 process 3401 1 (native) goodbye

2 process 2307 2 (extended-remote host:10000) hello

To get information about the current inferior, use inferior:

inferior Shows information about the current inferior.

For example,

(gdb) inferior

[Current inferior is 1 [process 3401] (helloworld)]

Sometimes additional information might be available about inferiors which are considered
devices by gdb. In such a case info inferiors might look as follows:

(gdb) info inferiors

Num Description Connection Executable

* 1 process 3401 1 (native) goodbye

2 device [00:02.0].1 2 (extended-remote host:10000) hello

3 device [00:09.0] 2 (extended-remote host:10000) hello2

displaying the device with its PCI location. As some devices can be further devided
into sub-devices gdb can connect to, the optional suffix to the PCI location indicates the
sub-device ID. Here, gdb is connected to 2 different device inferiors. Inferiors 2 and 3 are
identified with the devices sitting at the PCI slots ‘[00:02.0]’ and ‘[00:09.0]’ respectively
and connected via the same target connection. For inferior 2, gdb is connected to the sub-
device 1, while for inferior 3 no sub-devices were identified. It is important to note, that

42 Debugging with gdb

one could be connected to two different devices sitting at the same PCI slot via different
connections. The above example is a sample output and the actual executables, PCI slots,
sub-devices, and process IDs vary depending on the concrete scenario and system setup.

The description of some inferiors might contain the specifier device plus a PCI location
in brackets, possibly suffixed by a number, the sub-device ID. To query more information
about the available devices, use the info devices command:

info devices

Print an extended list of all devices that are exposed to gdb.

For example,

(gdb) info devices

Location Sub-device Vendor Id Target Id Cores Device Name

* [00:02.0] 0 0x8086 0x9a40 96 ...

[00:09.0] 0 0x8086 0x9a40 96 ...

gdb displays for each device (in this order):

1. the device location as a PCI address.

2. the sub-device ID. Some devices might be composites of multiple sub-devices gdb can
connect to. If no information about sub-devices was given by the target, this column
displays a ‘-’ instead of an ID. This may be the case if the target has no notion for
sub-devices.

3. the device’s PCI vendor ID.

4. the device’s PCI target ID identifying the device type.

5. the amount of available compute cores on the device.

6. the name of the device.

An asterisk ‘*’ preceding the device location indicates the current device. No asterisk might
be printed if the current inferior is not a device.

To find out what open target connections exist at any moment, use info connections:

info connections

Print a list of all open target connections currently being managed by gdb. By
default all connections are printed, but the ID list (see [ID list], page 41) id . . .
can be used to limit the display to just the requested connections.

gdb displays for each connection (in this order):

1. the connection number assigned by gdb.

2. the protocol used by the connection.

3. a textual description of the protocol used by the connection.

An asterisk ‘*’ preceding the connection number indicates the connection of the
current inferior.

For example,

(gdb) info connections

Num What Description

* 1 extended-remote host:10000 Extended remote serial target in gdb-specific protocol

2 native Native process

3 core Local core dump file

Chapter 4: Running Programs Under gdb 43

To switch focus between inferiors, use the inferior command:

inferior infno

Make inferior number infno the current inferior. The argument infno is the infe-
rior number assigned by gdb, as shown in the first field of the ‘info inferiors’
display.

The debugger convenience variable ‘$_inferior’ contains the number of the current
inferior. You may find this useful in writing breakpoint conditional expressions, command
scripts, and so forth. See Section 10.12 [Convenience Variables], page 164, for general
information on convenience variables.

You can get multiple executables into a debugging session via the add-inferior and
clone-inferior commands. On some systems gdb can add inferiors to the debug session
automatically by following calls to fork and exec. To remove inferiors from the debugging
session use the remove-inferiors command.

add-inferior [-copies n] [-exec executable] [-no-connection]

Adds n inferiors to be run using executable as the executable; n defaults to 1.
If no executable is specified, the inferiors begins empty, with no program. You
can still assign or change the program assigned to the inferior at any time by
using the file command with the executable name as its argument.

By default, the new inferior begins connected to the same target connection
as the current inferior. For example, if the current inferior was connected to
gdbserver with target remote, then the new inferior will be connected to
the same gdbserver instance. The ‘-no-connection’ option starts the new
inferior with no connection yet. You can then for example use the target

remote command to connect to some other gdbserver instance, use run to
spawn a local program, etc.

clone-inferior [-copies n] [infno]

Adds n inferiors ready to execute the same program as inferior infno; n defaults
to 1, and infno defaults to the number of the current inferior. This command
copies the values of the args, inferior-tty and cwd properties from the current
inferior to the new one. It also propagates changes the user made to environ-
ment variables using the set environment and unset environment commands.
This is a convenient command when you want to run another instance of the
inferior you are debugging.

(gdb) info inferiors

Num Description Connection Executable

* 1 process 29964 1 (native) helloworld

(gdb) clone-inferior

Added inferior 2.

1 inferiors added.

(gdb) info inferiors

Num Description Connection Executable

* 1 process 29964 1 (native) helloworld

2 <null> 1 (native) helloworld

You can now simply switch focus to inferior 2 and run it.

44 Debugging with gdb

remove-inferiors infno...

Removes the inferior or inferiors infno It is not possible to remove an
inferior that is running with this command. For those, use the kill or detach
command first.

To quit debugging one of the running inferiors that is not the current inferior, you
can either detach from it by using the detach inferior command (allowing it to run
independently), or kill it using the kill inferiors command:

detach inferior infno...

Detach from the inferior or inferiors identified by gdb inferior number(s)
infno Note that the inferior’s entry still stays on the list of inferiors shown
by info inferiors, but its Description will show ‘<null>’.

kill inferiors infno...

Kill the inferior or inferiors identified by gdb inferior number(s) infno
Note that the inferior’s entry still stays on the list of inferiors shown by info

inferiors, but its Description will show ‘<null>’.

After the successful completion of a command such as detach, detach inferiors, kill
or kill inferiors, or after a normal process exit, the inferior is still valid and listed with
info inferiors, ready to be restarted.

To be notified when inferiors are started or exit under gdb’s control use
set print inferior-events:

set print inferior-events

set print inferior-events on

set print inferior-events off

The set print inferior-events command allows you to enable or disable
printing of messages when gdb notices that new inferiors have started or that
inferiors have exited or have been detached. By default, these messages will be
printed.

show print inferior-events

Show whether messages will be printed when gdb detects that inferiors have
started, exited or have been detached.

Many commands will work the same with multiple programs as with a single program:
e.g., print myglobal will simply display the value of myglobal in the current inferior.

Occasionally, when debugging gdb itself, it may be useful to get more info about the
relationship of inferiors, programs, address spaces in a debug session. You can do that with
the maint info program-spaces command.

maint info program-spaces

Print a list of all program spaces currently being managed by gdb.

gdb displays for each program space (in this order):

1. the program space number assigned by gdb

2. the name of the executable loaded into the program space, with e.g., the
file command.

Chapter 4: Running Programs Under gdb 45

An asterisk ‘*’ preceding the gdb program space number indicates the current
program space.

In addition, below each program space line, gdb prints extra information that
isn’t suitable to display in tabular form. For example, the list of inferiors bound
to the program space.

(gdb) maint info program-spaces

Id Executable

* 1 hello

2 goodbye

Bound inferiors: ID 1 (process 21561)

Here we can see that no inferior is running the program hello, while process
21561 is running the program goodbye. On some targets, it is possible that
multiple inferiors are bound to the same program space. The most common
example is that of debugging both the parent and child processes of a vfork

call. For example,
(gdb) maint info program-spaces

Id Executable

* 1 vfork-test

Bound inferiors: ID 2 (process 18050), ID 1 (process 18045)

Here, both inferior 2 and inferior 1 are running in the same program space as
a result of inferior 1 having executed a vfork call.

4.10 Debugging Programs with Multiple Threads

In some operating systems, such as GNU/Linux and Solaris, a single program may have more
than one thread of execution. The precise semantics of threads differ from one operating
system to another, but in general the threads of a single program are akin to multiple
processes—except that they share one address space (that is, they can all examine and
modify the same variables). On the other hand, each thread has its own registers and
execution stack, and perhaps private memory.

Additionally, some instructions can be performed on several data elements simultane-
ously (SIMD: Single Instruction Multiple Data), so a thread computes a vector of data
elements in parallel. There is a 1-to-1 relation between active SIMD lanes in a thread and
data elements that are being processed by the thread at a moment.

gdb provides these facilities for debugging multi-thread programs:

• automatic notification of new threads

• ‘thread thread-id’, a command to switch among threads, and if available, among
SIMD lanes within a thread

• ‘info threads’, a command to inquire about existing threads

• ‘thread apply [thread-id-list | all | all-lanes] args’, a command to apply a
command to a list of threads

• thread-specific breakpoints

• ‘set print thread-events’, which controls printing of messages on thread start and
exit.

• ‘set libthread-db-search-path path’, which lets the user specify which libthread_

db to use if the default choice isn’t compatible with the program.

46 Debugging with gdb

The gdb thread debugging facility allows you to observe all threads while your program
runs—but whenever gdb takes control, one thread in particular is always the focus of
debugging. This thread is called the current thread. If SIMD lanes are available, you can
switch the focus between different active SIMD lanes within a thread. Debugging commands
show program information from the perspective of the current thread and, if applicable, of
the current SIMD lane within this thread.

Whenever gdb detects a new thread in your program, it displays the target system’s
identification for the thread with a message in the form ‘[New systag]’, where systag is a
thread identifier whose form varies depending on the particular system. For example, on
gnu/Linux, you might see

[New Thread 0x41e02940 (LWP 25582)]

when gdb notices a new thread. In contrast, on other systems, the systag is simply some-
thing like ‘process 368’, with no further qualifier.

For debugging purposes, gdb associates its own thread number —always a single
integer—with each thread of an inferior. This number is unique between all threads of an
inferior, but not unique between threads of different inferiors.

You can refer to a given thread in an inferior using the qualified inferior-num.thread-num
syntax, also known as qualified thread ID, with inferior-num being the inferior number and
thread-num being the thread number of the given inferior. For example, thread 2.3 refers
to thread number 3 of inferior 2. If you omit inferior-num (e.g., thread 3), then gdb infers
you’re referring to a thread of the current inferior.

Until you create a second inferior, gdb does not show the inferior-num part of thread
IDs, even though you can always use the full inferior-num.thread-num form to refer to
threads of inferior 1, the initial inferior.

If target supports SIMD lanes, qualified thread ID is extended with inferior-num.thread-
num:simd-lane-num syntax, where simd-lane-num stands for a specific SIMD lane number
within the thread. For example, thread 1.2:3 refers to the SIMD lane number 3 in thread
2 of the inferior 1. If simd-lane-num is omitted, it is treated as if you refer to the first active
SIMD lane of the thread.

Some commands accept a space-separated thread ID list as argument. A thread element
can be:

1. A thread ID as shown in the first field of the ‘info threads’ display, with or without
an inferior qualifier. E.g., ‘2.1’ or ‘1’.

2. A range of thread numbers, again with or without an inferior qualifier, as in inf.thr1-
thr2 or thr1-thr2. E.g., ‘1.2-4’ or ‘2-4’.

3. All threads of an inferior, specified with a star wildcard, with or without an inferior
qualifier, as in inf.* (e.g., ‘1.*’) or *. The former refers to all threads of the given
inferior, and the latter form without an inferior qualifier refers to all threads of the
current inferior.

All thread elements can be extended with a SIMD lane specifiers:

1. A SIMD lane identifier within a thread in the format thread ID:lane. If thread ID is
skipped, then the currently selected thread is taken, e.g. ‘:2’ specifies SIMD lane 2 in
the current thread. Another valid examples: ‘2:3’, ‘2-3:4’, ‘1.*:3’.

Chapter 4: Running Programs Under gdb 47

2. A SIMD lane range in the format thread ID:lane 1-lane 2. Without the thread identifier,
it assumes the currently selected thread. Examples: ‘:2-3’, ‘1.3:2-4’, ‘2-3:2-5’,
‘*:3-5’.

3. A SIMD lane wildcard – all active SIMD lanes of specified thread(s) or the current
thread if no thread is specified: thread ID:*: ‘:*’, ‘1:*’, ‘1.2-3:*’. The thread ID
wildcard can be used together with the SIMD lane wildcard: ‘*:*’ or ‘1.*:*’.

In case when the target architecture supports SIMD lanes but a lane is not specified in
the list item, gdb takes the default SIMD lane, which is the currently selected lane if it is
active, or the first active SIMD lane within the thread.

For example, without SIMD lane support if the current inferior is 1, and inferior 7 has
one thread with ID 7.1, the thread list ‘1 2-3 4.5 6.7-9 7.*’ includes threads 1 to 3 of
inferior 1, thread 5 of inferior 4, threads 7 to 9 of inferior 6 and all threads of inferior 7.
That is, in expanded qualified form, the same as ‘1.1 1.2 1.3 4.5 6.7 6.8 6.9 7.1’.

With the SIMD lane support, if the current inferior is 1, it has three threads (1.1, 1.2,
1.3), the current thread is 1.2, and inferior 4 has one thread with ID 4.1, the expanded
elements look as following:

List item Expanded items

1.2 1.2:<default lane>

1.2:3 1.2:3

:4 1.2:4

:3-4 1.2:3 1.2:4

:* 1.2:<all active lanes>

1:5-7 1.1:5 1.1:6 1.1:7

2-3 1.2:<default lane> 1.3:<default lane>

2-3:4-6 1.2:2 1.2:3 1.2:4 1.3:2 1.3:3 1.3:4

2.3:* 2.3:<all active lanes>

3.4-6 3.4:<default lane> 3.5:<default lane> 3.6:<default lane>

3.4-5:* 3.4:<all active lanes> 3.5:<all active lanes>

* 1.1:<default lane> 1.2:<default lane> 1.3:<default lane>

*:2 1.1:2 1.2:2 1.3:2

*:2-3 1.1:2 1.1:3 1.2:2 1.2:3 1.3:2 1.3:3

: 1.1:<all active lanes> 1.2:<all active lanes> 1.3:<all active lanes>

4.* 4.1:<default lane>

4.*:* 4.1:<all active lanes>

In addition to a per-inferior number, each thread is also assigned a unique global number,
also known as global thread ID, a single integer. Unlike the thread number component of
the thread ID, no two threads have the same global ID, even when you’re debugging multiple
inferiors.

From gdb’s perspective, a process always has at least one thread. In other words,
gdb assigns a thread number to the program’s “main thread” even if the program is not
multi-threaded.

The debugger convenience variables ‘$_thread’ and ‘$_gthread’ contain, respectively,
the per-inferior thread number and the global thread number of the current thread. The
debugger convenience variable ‘$_simd_lane’ contains the currently selected SIMD lane of
the current thread. You may find this useful in writing breakpoint conditional expressions,
command scripts, and so forth. See Section 10.12 [Convenience Variables], page 164, for
general information on convenience variables.

If gdb detects the program is multi-threaded, it augments the usual message about
stopping at a breakpoint with the ID and name of the thread that hit the breakpoint.

48 Debugging with gdb

Thread 2 "client" hit Breakpoint 1, send_message () at client.c:68

Likewise when the program receives a signal:

Thread 1 "main" received signal SIGINT, Interrupt.

info threads [-gid] [-stopped] [thread-id-list]
Display information about one or more threads. With no arguments displays
information about all threads. You can specify the list of threads that you want
to display using the thread ID list syntax (see [thread ID lists], page 46).

gdb displays for each thread (in this order):

1. the per-inferior thread number assigned by gdb

2. the global thread number assigned by gdb, if the ‘-gid’ option was specified

3. the target system’s thread identifier (systag)

4. the thread’s name, if one is known. A thread can either be named by the
user (see thread name, below), or, in some cases, by the program itself.

5. the current stack frame summary for that thread

An asterisk ‘*’ to the left of the gdb thread number indicates the current thread.

For example,

(gdb) info threads

Id Target Id Frame

* 1 process 35 thread 13 main (argc=1, argv=0x7ffffff8)

2 process 35 thread 23 0x34e5 in sigpause ()

3 process 35 thread 27 0x34e5 in sigpause ()

at threadtest.c:68

If you’re debugging multiple inferiors, gdb displays thread IDs using the qualified
inferior-num.thread-num format. Otherwise, only thread-num is shown.

If you specify the ‘-stopped’ option, gdb displays the stopped threads only. This can
be helpful to reduce the output list if there is a large number of unstopped threads.

If you specify the ‘-gid’ option, gdb displays a column indicating each thread’s global
thread ID:

(gdb) info threads

Id GId Target Id Frame

1.1 1 process 35 thread 13 main (argc=1, argv=0x7ffffff8)

1.2 3 process 35 thread 23 0x34e5 in sigpause ()

1.3 4 process 35 thread 27 0x34e5 in sigpause ()

* 2.1 2 process 65 thread 1 main (argc=1, argv=0x7ffffff8)

If SIMD lanes are supported, the list of currently active SIMD lanes is added to the Id
column. Only active SIMD lanes are shown. If thread does not have any active SIMD lanes,
it is marked as inactive. The currently selected SIMD lane of the current thread resides
in a separate row marked with ‘*’. Note that the frame is shared between all SIMD lanes
within a thread, however, values of function arguments might vary.

(gdb) info threads

Id GId Target Id Frame

* 1.1:0 1 process 35 thread 13 main (argc=1, argv=0x7ffffff8)

1.1:[1-7] 1 process 35 thread 13 main (argc=1, argv=0x7ffffff8)

1.2:[0-7] 3 process 35 thread 23 0x34e5 in sigpause ()

1.3:[0-7] 4 process 35 thread 27 0x34e5 in sigpause ()

2.1:[0-7] 2 process 65 thread 1 main (argc=1, argv=0x7ffffff8)

Chapter 4: Running Programs Under gdb 49

On Solaris, you can display more information about user threads with a Solaris-specific
command:

maint info sol-threads

Display info on Solaris user threads.

thread thread-id

Make thread ID thread-id the current thread. The command argument thread-
id is the gdb thread ID, as shown in the first field of the ‘info threads’ display,
with or without an inferior qualifier (e.g., ‘2.1’ or ‘1’).

gdb responds by displaying the system identifier of the thread you selected,
and its current stack frame summary:

(gdb) thread 2

[Switching to thread 2 (Thread 0xb7fdab70 (LWP 12747))]

#0 some_function (ignore=0x0) at example.c:8

8 printf ("hello\n");

When SIMD lanes are supported, with this command you can switch the
thread’s focus from one SIMD lane to another:

(gdb) thread 2:3

[Switching to thread 2:3 (Thread 0xb7fdab70 (LWP 12747) lane 3)]

#0 some_function (ignore=0x0) at example.c:8

8 printf ("hello\n");

If thread-num is omitted, the command switches lanes within the current
thread:

(gdb) thread :5

[Switching to thread 2:5 (Thread 0xb7fdab70 (LWP 12747) lane 5)]

#0 some_function (ignore=0x0) at example.c:8

8 printf ("hello\n");

As with the ‘[New ...]’ message, the form of the text after ‘Switching to’
depends on your system’s conventions for identifying threads.

thread apply [thread-id-list | all [-ascending]| all-lanes [-ascending]]

[flag]... command

The thread apply command allows you to apply the named command to one
or more threads. If SIMD lanes are supported, the command is applied to all
active SIMD lanes within a thread. Specify the threads that you want affected
using the thread ID list syntax (see [thread ID lists], page 46), specify all to
apply to all threads, or specify all-lanes to apply the command to all active
SIMD lanes in all threads. To apply a command to all threads in descending
order, type thread apply all command. To apply a command to all threads
in ascending order, type thread apply all -ascending command. To apply
a command to all active lanes in descending order, type thread apply all-

lanes command. To apply a command to all active lanes in ascending order,
type thread apply all-lanes -ascending command.

The flag arguments control what output to produce and how to handle errors
raised when applying command to a thread. flag must start with a - directly
followed by one letter in qcs. If several flags are provided, they must be given
individually, such as -c -q.

50 Debugging with gdb

By default, gdb displays some thread information before the output produced
by command, and an error raised during the execution of a command will abort
thread apply. The following flags can be used to fine-tune this behavior:

-c The flag -c, which stands for ‘continue’, causes any errors in com-
mand to be displayed, and the execution of thread apply then
continues.

-s The flag -s, which stands for ‘silent’, causes any errors or empty
output produced by a command to be silently ignored. That is, the
execution continues, but the thread information and errors are not
printed.

-q The flag -q (‘quiet’) disables printing the thread information.

Flags -c and -s cannot be used together.

taas [option]... command

Shortcut for thread apply all -s [option]... command. Applies command
on all threads, ignoring errors and empty output.

The taas command accepts the same options as the thread apply all com-
mand. See [thread apply all], page 49.

tfaas [option]... command

Shortcut for thread apply all -s -- frame apply all -s [option]...

command. Applies command on all frames of all threads, ignoring errors and
empty output. Note that the flag -s is specified twice: The first -s ensures
that thread apply only shows the thread information of the threads for which
frame apply produces some output. The second -s is needed to ensure that
frame apply shows the frame information of a frame only if the command
successfully produced some output.

It can for example be used to print a local variable or a function argument
without knowing the thread or frame where this variable or argument is, using:

(gdb) tfaas p some_local_var_i_do_not_remember_where_it_is

The tfaas command accepts the same options as the frame apply command.
See Section 8.5 [frame apply], page 117.

thread name [name]

This command assigns a name to the current thread. If no argument is given,
any existing user-specified name is removed. The thread name appears in the
‘info threads’ display.

On some systems, such as gnu/Linux, gdb is able to determine the name of
the thread as given by the OS. On these systems, a name specified with ‘thread
name’ will override the system-give name, and removing the user-specified name
will cause gdb to once again display the system-specified name.

thread find [regexp]

Search for and display thread ids whose name or systag matches the supplied
regular expression.

Chapter 4: Running Programs Under gdb 51

As well as being the complement to the ‘thread name’ command, this command
also allows you to identify a thread by its target systag. For instance, on
gnu/Linux, the target systag is the LWP id.

(gdb) thread find 26688

Thread 4 has target id ’Thread 0x41e02940 (LWP 26688)’

(gdb) info thread 4

Id Target Id Frame

4 Thread 0x41e02940 (LWP 26688) 0x00000031ca6cd372 in select ()

set print thread-events

set print thread-events on

set print thread-events off

The set print thread-events command allows you to enable or disable print-
ing of messages when gdb notices that new threads have started or that threads
have exited. By default, these messages will be printed if detection of these
events is supported by the target. Note that these messages cannot be disabled
on all targets.

show print thread-events

Show whether messages will be printed when gdb detects that threads have
started and exited.

See Section 5.5 [Stopping and Starting Multi-thread Programs], page 92, for more infor-
mation about how gdb behaves when you stop and start programs with multiple threads.

See Section 5.1.2 [Setting Watchpoints], page 65, for information about watchpoints in
programs with multiple threads.

set libthread-db-search-path [path]
If this variable is set, path is a colon-separated list of directories gdb will use
to search for libthread_db. If you omit path, ‘libthread-db-search-path’
will be reset to its default value ($sdir:$pdir on gnu/Linux and Solaris sys-
tems). Internally, the default value comes from the LIBTHREAD_DB_SEARCH_

PATH macro.

On gnu/Linux and Solaris systems, gdb uses a “helper” libthread_db li-
brary to obtain information about threads in the inferior process. gdb will use
‘libthread-db-search-path’ to find libthread_db. gdb also consults first if
inferior specific thread debugging library loading is enabled by ‘set auto-load

libthread-db’ (see Section 22.8.2 [libthread db.so.1 file], page 359).

A special entry ‘$sdir’ for ‘libthread-db-search-path’ refers to the default
system directories that are normally searched for loading shared libraries. The
‘$sdir’ entry is the only kind not needing to be enabled by ‘set auto-load

libthread-db’ (see Section 22.8.2 [libthread db.so.1 file], page 359).

A special entry ‘$pdir’ for ‘libthread-db-search-path’ refers to the directory
from which libpthread was loaded in the inferior process.

For any libthread_db library gdb finds in above directories, gdb attempts
to initialize it with the current inferior process. If this initialization fails
(which could happen because of a version mismatch between libthread_db

and libpthread), gdb will unload libthread_db, and continue with the next

52 Debugging with gdb

directory. If none of libthread_db libraries initialize successfully, gdb will
issue a warning and thread debugging will be disabled.

Setting libthread-db-search-path is currently implemented only on some
platforms.

show libthread-db-search-path

Display current libthread db search path.

set debug libthread-db

show debug libthread-db

Turns on or off display of libthread_db-related events. Use 1 to enable, 0 to
disable.

set debug threads [on|off]
show debug threads

When ‘on’ gdb will print additional messages when threads are created and
deleted.

4.11 Debugging Forks

On most systems, gdb has no special support for debugging programs which create addi-
tional processes using the fork function. When a program forks, gdb will continue to debug
the parent process and the child process will run unimpeded. If you have set a breakpoint
in any code which the child then executes, the child will get a SIGTRAP signal which (unless
it catches the signal) will cause it to terminate.

However, if you want to debug the child process there is a workaround which isn’t too
painful. Put a call to sleep in the code which the child process executes after the fork. It
may be useful to sleep only if a certain environment variable is set, or a certain file exists,
so that the delay need not occur when you don’t want to run gdb on the child. While the
child is sleeping, use the ps program to get its process ID. Then tell gdb (a new invocation
of gdb if you are also debugging the parent process) to attach to the child process (see
Section 4.7 [Attach], page 39). From that point on you can debug the child process just like
any other process which you attached to.

On some systems, gdb provides support for debugging programs that create additional
processes using the fork or vfork functions. On gnu/Linux platforms, this feature is
supported with kernel version 2.5.46 and later.

The fork debugging commands are supported in native mode and when connected to
gdbserver in either target remote mode or target extended-remote mode.

By default, when a program forks, gdb will continue to debug the parent process and
the child process will run unimpeded.

If you want to follow the child process instead of the parent process, use the command
set follow-fork-mode.

set follow-fork-mode mode

Set the debugger response to a program call of fork or vfork. A call to fork

or vfork creates a new process. The mode argument can be:

parent The original process is debugged after a fork. The child process
runs unimpeded. This is the default.

Chapter 4: Running Programs Under gdb 53

child The new process is debugged after a fork. The parent process runs
unimpeded.

show follow-fork-mode

Display the current debugger response to a fork or vfork call.

On Linux, if you want to debug both the parent and child processes, use the command
set detach-on-fork.

set detach-on-fork mode

Tells gdb whether to detach one of the processes after a fork, or retain debugger
control over them both.

on The child process (or parent process, depending on the value of
follow-fork-mode) will be detached and allowed to run indepen-
dently. This is the default.

off Both processes will be held under the control of gdb. One process
(child or parent, depending on the value of follow-fork-mode) is
debugged as usual, while the other is held suspended.

show detach-on-fork

Show whether detach-on-fork mode is on/off.

If you choose to set ‘detach-on-fork’ mode off, then gdb will retain control of all forked
processes (including nested forks). You can list the forked processes under the control of
gdb by using the info inferiors command, and switch from one fork to another by using
the inferior command (see Section 4.9 [Debugging Multiple Inferiors Connections and
Programs], page 40).

To quit debugging one of the forked processes, you can either detach from it by using
the detach inferiors command (allowing it to run independently), or kill it using the
kill inferiors command. See Section 4.9 [Debugging Multiple Inferiors Connections and
Programs], page 40.

If you ask to debug a child process and a vfork is followed by an exec, gdb executes
the new target up to the first breakpoint in the new target. If you have a breakpoint set on
main in your original program, the breakpoint will also be set on the child process’s main.

On some systems, when a child process is spawned by vfork, you cannot debug the child
or parent until an exec call completes.

If you issue a run command to gdb after an exec call executes, the new target restarts.
To restart the parent process, use the file command with the parent executable name
as its argument. By default, after an exec call executes, gdb discards the symbols of the
previous executable image. You can change this behaviour with the set follow-exec-mode

command.

set follow-exec-mode mode

Set debugger response to a program call of exec. An exec call replaces the
program image of a process.

follow-exec-mode can be:

new gdb creates a new inferior and rebinds the process to this new
inferior. The program the process was running before the exec call
can be restarted afterwards by restarting the original inferior.

54 Debugging with gdb

For example:

(gdb) info inferiors

(gdb) info inferior

Id Description Executable

* 1 <null> prog1

(gdb) run

process 12020 is executing new program: prog2

Program exited normally.

(gdb) info inferiors

Id Description Executable

1 <null> prog1

* 2 <null> prog2

same gdb keeps the process bound to the same inferior. The new exe-
cutable image replaces the previous executable loaded in the infe-
rior. Restarting the inferior after the exec call, with e.g., the run

command, restarts the executable the process was running after the
exec call. This is the default mode.

For example:

(gdb) info inferiors

Id Description Executable

* 1 <null> prog1

(gdb) run

process 12020 is executing new program: prog2

Program exited normally.

(gdb) info inferiors

Id Description Executable

* 1 <null> prog2

follow-exec-mode is supported in native mode and target extended-remote mode.

You can use the catch command to make gdb stop whenever a fork, vfork, or exec
call is made. See Section 5.1.3 [Setting Catchpoints], page 68.

4.12 Setting a Bookmark to Return to Later

On certain operating systems1, gdb is able to save a snapshot of a program’s state, called
a checkpoint, and come back to it later.

Returning to a checkpoint effectively undoes everything that has happened in the pro-
gram since the checkpoint was saved. This includes changes in memory, registers, and even
(within some limits) system state. Effectively, it is like going back in time to the moment
when the checkpoint was saved.

Thus, if you’re stepping thru a program and you think you’re getting close to the point
where things go wrong, you can save a checkpoint. Then, if you accidentally go too far and
miss the critical statement, instead of having to restart your program from the beginning,
you can just go back to the checkpoint and start again from there.

This can be especially useful if it takes a lot of time or steps to reach the point where
you think the bug occurs.

To use the checkpoint/restart method of debugging:

1 Currently, only gnu/Linux.

Chapter 4: Running Programs Under gdb 55

checkpoint

Save a snapshot of the debugged program’s current execution state. The
checkpoint command takes no arguments, but each checkpoint is assigned
a small integer id, similar to a breakpoint id.

info checkpoints

List the checkpoints that have been saved in the current debugging session. For
each checkpoint, the following information will be listed:

Checkpoint ID

Process ID

Code Address

Source line, or label

restart checkpoint-id

Restore the program state that was saved as checkpoint number checkpoint-id.
All program variables, registers, stack frames etc. will be returned to the values
that they had when the checkpoint was saved. In essence, gdb will “wind back
the clock” to the point in time when the checkpoint was saved.

Note that breakpoints, gdb variables, command history etc. are not affected
by restoring a checkpoint. In general, a checkpoint only restores things that
reside in the program being debugged, not in the debugger.

delete checkpoint checkpoint-id

Delete the previously-saved checkpoint identified by checkpoint-id.

Returning to a previously saved checkpoint will restore the user state of the program
being debugged, plus a significant subset of the system (OS) state, including file pointers. It
won’t “un-write” data from a file, but it will rewind the file pointer to the previous location,
so that the previously written data can be overwritten. For files opened in read mode, the
pointer will also be restored so that the previously read data can be read again.

Of course, characters that have been sent to a printer (or other external device) cannot
be “snatched back”, and characters received from eg. a serial device can be removed from
internal program buffers, but they cannot be “pushed back” into the serial pipeline, ready
to be received again. Similarly, the actual contents of files that have been changed cannot
be restored (at this time).

However, within those constraints, you actually can “rewind” your program to a previ-
ously saved point in time, and begin debugging it again — and you can change the course
of events so as to debug a different execution path this time.

Finally, there is one bit of internal program state that will be different when you return
to a checkpoint — the program’s process id. Each checkpoint will have a unique process id
(or pid), and each will be different from the program’s original pid. If your program has
saved a local copy of its process id, this could potentially pose a problem.

4.12.1 A Non-obvious Benefit of Using Checkpoints

On some systems such as gnu/Linux, address space randomization is performed on new
processes for security reasons. This makes it difficult or impossible to set a breakpoint, or
watchpoint, on an absolute address if you have to restart the program, since the absolute
location of a symbol will change from one execution to the next.

56 Debugging with gdb

A checkpoint, however, is an identical copy of a process. Therefore if you create a
checkpoint at (eg.) the start of main, and simply return to that checkpoint instead of
restarting the process, you can avoid the effects of address randomization and your symbols
will all stay in the same place.

57

5 Stopping and Continuing

The principal purposes of using a debugger are so that you can stop your program before it
terminates; or so that, if your program runs into trouble, you can investigate and find out
why.

Inside gdb, your program may stop for any of several reasons, such as a signal, a break-
point, or reaching a new line after a gdb command such as step. You may then examine
and change variables, set new breakpoints or remove old ones, and then continue execu-
tion. Usually, the messages shown by gdb provide ample explanation of the status of your
program—but you can also explicitly request this information at any time.

info program

Display information about the status of your program: whether it is running
or not, what process it is, and why it stopped.

5.1 Breakpoints, Watchpoints, and Catchpoints

A breakpoint makes your program stop whenever a certain point in the program is reached.
For each breakpoint, you can add conditions to control in finer detail whether your program
stops. You can set breakpoints with the break command and its variants (see Section 5.1.1
[Setting Breakpoints], page 58), to specify the place where your program should stop by
line number, function name or exact address in the program.

On some systems, you can set breakpoints in shared libraries before the executable is
run.

A watchpoint is a special breakpoint that stops your program when the value of an
expression changes. The expression may be a value of a variable, or it could involve values
of one or more variables combined by operators, such as ‘a + b’. This is sometimes called
data breakpoints. You must use a different command to set watchpoints (see Section 5.1.2
[Setting Watchpoints], page 65), but aside from that, you can manage a watchpoint like any
other breakpoint: you enable, disable, and delete both breakpoints and watchpoints using
the same commands.

You can arrange to have values from your program displayed automatically whenever
gdb stops at a breakpoint. See Section 10.8 [Automatic Display], page 149.

A catchpoint is another special breakpoint that stops your program when a certain kind
of event occurs, such as the throwing of a C++ exception or the loading of a library. As with
watchpoints, you use a different command to set a catchpoint (see Section 5.1.3 [Setting
Catchpoints], page 68), but aside from that, you can manage a catchpoint like any other
breakpoint. (To stop when your program receives a signal, use the handle command; see
Section 5.4 [Signals], page 88.)

gdb assigns a number to each breakpoint, watchpoint, or catchpoint when you create
it; these numbers are successive integers starting with one. In many of the commands for
controlling various features of breakpoints you use the breakpoint number to say which
breakpoint you want to change. Each breakpoint may be enabled or disabled; if disabled,
it has no effect on your program until you enable it again.

Some gdb commands accept a space-separated list of breakpoints on which to operate.
A list element can be either a single breakpoint number, like ‘5’, or a range of such numbers,

58 Debugging with gdb

like ‘5-7’. When a breakpoint list is given to a command, all breakpoints in that list are
operated on.

5.1.1 Setting Breakpoints

Breakpoints are set with the break command (abbreviated b). The debugger conve-
nience variable ‘$bpnum’ records the number of the breakpoint you’ve set most recently;
see Section 10.12 [Convenience Variables], page 164, for a discussion of what you can do
with convenience variables.

break location

Set a breakpoint at the given location, which can specify a function name, a line
number, or an address of an instruction. (See Section 9.2 [Specify Location],
page 122, for a list of all the possible ways to specify a location.) The breakpoint
will stop your program just before it executes any of the code in the specified
location.

When using source languages that permit overloading of symbols, such as C++,
a function name may refer to more than one possible place to break. See
Section 10.2 [Ambiguous Expressions], page 139, for a discussion of that situa-
tion.

It is also possible to insert a breakpoint that will stop the program only if
a specific thread (see Section 5.5.4 [Thread-Specific Breakpoints], page 95), a
specific task (see Section 15.4.10.7 [Ada Tasks], page 247) or a specific inferior
(see Section 5.5.5 [Inferior-Specific Breakpoints], page 96) hits that breakpoint.

break When called without any arguments, break sets a breakpoint at the next in-
struction to be executed in the selected stack frame (see Chapter 8 [Examining
the Stack], page 109). In any selected frame but the innermost, this makes
your program stop as soon as control returns to that frame. This is similar to
the effect of a finish command in the frame inside the selected frame—except
that finish does not leave an active breakpoint. If you use break without
an argument in the innermost frame, gdb stops the next time it reaches the
current location; this may be useful inside loops.

gdb normally ignores breakpoints when it resumes execution, until at least one
instruction has been executed. If it did not do this, you would be unable to pro-
ceed past a breakpoint without first disabling the breakpoint. This rule applies
whether or not the breakpoint already existed when your program stopped.

break ... if cond

Set a breakpoint with condition cond; evaluate the expression cond each time
the breakpoint is reached, and stop only if the value is nonzero—that is, if cond
evaluates as true. ‘...’ stands for one of the possible arguments described
above (or no argument) specifying where to break. See Section 5.1.6 [Break
Conditions], page 74, for more information on breakpoint conditions.

The breakpoint may be mapped to multiple locations. If the breakpoint condi-
tion cond is invalid at some but not all of the locations, the locations for which
the condition is invalid are disabled. For example, gdb reports below that two
of the three locations are disabled.

(gdb) break func if a == 10

Chapter 5: Stopping and Continuing 59

warning: failed to validate condition at location 0x11ce, disabling:

No symbol "a" in current context.

warning: failed to validate condition at location 0x11b6, disabling:

No symbol "a" in current context.

Breakpoint 1 at 0x11b6: func. (3 locations)

Locations that are disabled because of the condition are denoted by an upper-
case N in the output of the info breakpoints command:

(gdb) info breakpoints

Num Type Disp Enb Address What

1 breakpoint keep y <MULTIPLE>

stop only if a == 10

1.1 N* 0x00000000000011b6 in ...

1.2 y 0x00000000000011c2 in ...

1.3 N* 0x00000000000011ce in ...

(*): Breakpoint condition is invalid at this location.

If the breakpoint condition cond is invalid in the context of all the locations of
the breakpoint, gdb refuses to define the breakpoint. For example, if variable
foo is an undefined variable:

(gdb) break func if foo

No symbol "foo" in current context.

break ... -force-condition if cond

There may be cases where the condition cond is invalid at all the current loca-
tions, but the user knows that it will be valid at a future location; for example,
because of a library load. In such cases, by using the -force-condition key-
word before ‘if’, gdb can be forced to define the breakpoint with the given
condition expression instead of refusing it.

(gdb) break func -force-condition if foo

warning: failed to validate condition at location 1, disabling:

No symbol "foo" in current context.

warning: failed to validate condition at location 2, disabling:

No symbol "foo" in current context.

warning: failed to validate condition at location 3, disabling:

No symbol "foo" in current context.

Breakpoint 1 at 0x1158: test.c:18. (3 locations)

This causes all the present locations where the breakpoint would otherwise be
inserted, to be disabled, as seen in the example above. However, if there exist
locations at which the condition is valid, the -force-condition keyword has
no effect.

tbreak args

Set a breakpoint enabled only for one stop. The args are the same as for the
break command, and the breakpoint is set in the same way, but the breakpoint
is automatically deleted after the first time your program stops there. See
Section 5.1.5 [Disabling Breakpoints], page 73.

hbreak args

Set a hardware-assisted breakpoint. The args are the same as for the break

command and the breakpoint is set in the same way, but the breakpoint re-
quires hardware support and some target hardware may not have this support.
The main purpose of this is EPROM/ROM code debugging, so you can set
a breakpoint at an instruction without changing the instruction. This can be

60 Debugging with gdb

used with the new trap-generation provided by SPARClite DSU and most x86-
based targets. These targets will generate traps when a program accesses some
data or instruction address that is assigned to the debug registers. However
the hardware breakpoint registers can take a limited number of breakpoints.
For example, on the DSU, only two data breakpoints can be set at a time, and
gdb will reject this command if more than two are used. Delete or disable
unused hardware breakpoints before setting new ones (see Section 5.1.5 [Dis-
abling Breakpoints], page 73). See Section 5.1.6 [Break Conditions], page 74.
For remote targets, you can restrict the number of hardware breakpoints gdb
will use, see [set remote hardware-breakpoint-limit], page 312.

thbreak args

Set a hardware-assisted breakpoint enabled only for one stop. The args are the
same as for the hbreak command and the breakpoint is set in the same way.
However, like the tbreak command, the breakpoint is automatically deleted
after the first time your program stops there. Also, like the hbreak command,
the breakpoint requires hardware support and some target hardware may not
have this support. See Section 5.1.5 [Disabling Breakpoints], page 73. See also
Section 5.1.6 [Break Conditions], page 74.

rbreak regex

Set breakpoints on all functions matching the regular expression regex. This
command sets an unconditional breakpoint on all matches, printing a list of all
breakpoints it set. Once these breakpoints are set, they are treated just like the
breakpoints set with the break command. You can delete them, disable them,
or make them conditional the same way as any other breakpoint.

In programs using different languages, gdb chooses the syntax to print the list
of all breakpoints it sets according to the ‘set language’ value: using ‘set
language auto’ (see Section 15.1.3 [Set Language Automatically], page 220)
means to use the language of the breakpoint’s function, other values mean to use
the manually specified language (see Section 15.1.2 [Set Language Manually],
page 220).

The syntax of the regular expression is the standard one used with tools like
grep. Note that this is different from the syntax used by shells, so for instance
foo* matches all functions that include an fo followed by zero or more os.
There is an implicit .* leading and trailing the regular expression you supply,
so to match only functions that begin with foo, use ^foo.

When debugging C++ programs, rbreak is useful for setting breakpoints on
overloaded functions that are not members of any special classes.

The rbreak command can be used to set breakpoints in all the functions in a
program, like this:

(gdb) rbreak .

rbreak file:regex

If rbreak is called with a filename qualification, it limits the search for functions
matching the given regular expression to the specified file. This can be used,
for example, to set breakpoints on every function in a given file:

(gdb) rbreak file.c:.

Chapter 5: Stopping and Continuing 61

The colon separating the filename qualifier from the regex may optionally be
surrounded by spaces.

info breakpoints [list...]
info break [list...]

Print a table of all breakpoints, watchpoints, and catchpoints set and not
deleted. Optional argument n means print information only about the spec-
ified breakpoint(s) (or watchpoint(s) or catchpoint(s)). For each breakpoint,
following columns are printed:

Breakpoint Numbers
Type Breakpoint, watchpoint, or catchpoint.

Disposition
Whether the breakpoint is marked to be disabled or deleted when
hit.

Enabled or Disabled
Enabled breakpoints are marked with ‘y’. ‘n’ marks breakpoints
that are not enabled.

Address Where the breakpoint is in your program, as a memory address.
For a pending breakpoint whose address is not yet known, this
field will contain ‘<PENDING>’. Such breakpoint won’t fire until a
shared library that has the symbol or line referred by breakpoint is
loaded. See below for details. A breakpoint with several locations
will have ‘<MULTIPLE>’ in this field—see below for details.

What Where the breakpoint is in the source for your program, as a file and
line number. For a pending breakpoint, the original string passed
to the breakpoint command will be listed as it cannot be resolved
until the appropriate shared library is loaded in the future.

If a breakpoint is conditional, there are two evaluation modes: “host” and
“target”. If mode is “host”, breakpoint condition evaluation is done by gdb on
the host’s side. If it is “target”, then the condition is evaluated by the target.
The info break command shows the condition on the line following the affected
breakpoint, together with its condition evaluation mode in between parentheses.

Breakpoint commands, if any, are listed after that. A pending breakpoint is
allowed to have a condition specified for it. The condition is not parsed for
validity until a shared library is loaded that allows the pending breakpoint to
resolve to a valid location.

info break with a breakpoint number n as argument lists only that break-
point. The convenience variable $_ and the default examining-address for the
x command are set to the address of the last breakpoint listed (see Section 10.6
[Examining Memory], page 145).

info break displays a count of the number of times the breakpoint has been
hit. This is especially useful in conjunction with the ignore command. You
can ignore a large number of breakpoint hits, look at the breakpoint info to see
how many times the breakpoint was hit, and then run again, ignoring one less
than that number. This will get you quickly to the last hit of that breakpoint.

62 Debugging with gdb

For a breakpoints with an enable count (xref) greater than 1, info break also
displays that count.

gdb allows you to set any number of breakpoints at the same place in your program.
There is nothing silly or meaningless about this. When the breakpoints are conditional,
this is even useful (see Section 5.1.6 [Break Conditions], page 74).

It is possible that a breakpoint corresponds to several locations in your program. Ex-
amples of this situation are:

• Multiple functions in the program may have the same name.

• For a C++ constructor, the gcc compiler generates several instances of the function
body, used in different cases.

• For a C++ template function, a given line in the function can correspond to any number
of instantiations.

• For an inlined function, a given source line can correspond to several places where that
function is inlined.

In all those cases, gdb will insert a breakpoint at all the relevant locations.

A breakpoint with multiple locations is displayed in the breakpoint table using several
rows—one header row, followed by one row for each breakpoint location. The header row
has ‘<MULTIPLE>’ in the address column. The rows for individual locations contain the
actual addresses for locations, and show the functions to which those locations belong. The
number column for a location is of the form breakpoint-number.location-number.

For example:
Num Type Disp Enb Address What

1 breakpoint keep y <MULTIPLE>

stop only if i==1

breakpoint already hit 1 time

1.1 y 0x080486a2 in void foo<int>() at t.cc:8

1.2 y 0x080486ca in void foo<double>() at t.cc:8

You cannot delete the individual locations from a breakpoint. However, each location
can be individually enabled or disabled by passing breakpoint-number.location-number as
argument to the enable and disable commands. It’s also possible to enable and disable

a range of location-number locations using a breakpoint-number and two location-numbers,
in increasing order, separated by a hyphen, like breakpoint-number.location-number1-

location-number2, in which case gdb acts on all the locations in the range (inclusive).
Disabling or enabling the parent breakpoint (see Section 5.1.5 [Disabling], page 73) affects
all of the locations that belong to that breakpoint.

It’s quite common to have a breakpoint inside a shared library. Shared libraries can
be loaded and unloaded explicitly, and possibly repeatedly, as the program is executed.
To support this use case, gdb updates breakpoint locations whenever any shared library
is loaded or unloaded. Typically, you would set a breakpoint in a shared library at the
beginning of your debugging session, when the library is not loaded, and when the symbols
from the library are not available. When you try to set breakpoint, gdb will ask you if you
want to set a so called pending breakpoint—breakpoint whose address is not yet resolved.

After the program is run, whenever a new shared library is loaded, gdb reevaluates all the
breakpoints. When a newly loaded shared library contains the symbol or line referred to by
some pending breakpoint, that breakpoint is resolved and becomes an ordinary breakpoint.

Chapter 5: Stopping and Continuing 63

When a library is unloaded, all breakpoints that refer to its symbols or source lines become
pending again.

This logic works for breakpoints with multiple locations, too. For example, if you have
a breakpoint in a C++ template function, and a newly loaded shared library has an instan-
tiation of that template, a new location is added to the list of locations for the breakpoint.

Except for having unresolved address, pending breakpoints do not differ from regular
breakpoints. You can set conditions or commands, enable and disable them and perform
other breakpoint operations.

gdb provides some additional commands for controlling what happens when the ‘break’
command cannot resolve breakpoint address specification to an address:

set breakpoint pending auto

This is the default behavior. When gdb cannot find the breakpoint location,
it queries you whether a pending breakpoint should be created.

set breakpoint pending on

This indicates that an unrecognized breakpoint location should automatically
result in a pending breakpoint being created.

set breakpoint pending off

This indicates that pending breakpoints are not to be created. Any unrecog-
nized breakpoint location results in an error. This setting does not affect any
pending breakpoints previously created.

show breakpoint pending

Show the current behavior setting for creating pending breakpoints.

The settings above only affect the break command and its variants. Once breakpoint is
set, it will be automatically updated as shared libraries are loaded and unloaded.

For some targets, gdb can automatically decide if hardware or software breakpoints
should be used, depending on whether the breakpoint address is read-only or read-write.
This applies to breakpoints set with the break command as well as to internal breakpoints
set by commands like next and finish. For breakpoints set with hbreak, gdb will always
use hardware breakpoints.

You can control this automatic behaviour with the following commands:

set breakpoint auto-hw on

This is the default behavior. When gdb sets a breakpoint, it will try to use the
target memory map to decide if software or hardware breakpoint must be used.

set breakpoint auto-hw off

This indicates gdb should not automatically select breakpoint type. If the
target provides a memory map, gdb will warn when trying to set software
breakpoint at a read-only address.

gdb normally implements breakpoints by replacing the program code at the breakpoint
address with a special instruction, which, when executed, given control to the debugger.
By default, the program code is so modified only when the program is resumed. As soon as
the program stops, gdb restores the original instructions. This behaviour guards against
leaving breakpoints inserted in the target should gdb abrubptly disconnect. However, with

64 Debugging with gdb

slow remote targets, inserting and removing breakpoint can reduce the performance. This
behavior can be controlled with the following commands::

set breakpoint always-inserted off

All breakpoints, including newly added by the user, are inserted in the target
only when the target is resumed. All breakpoints are removed from the target
when it stops. This is the default mode.

set breakpoint always-inserted on

Causes all breakpoints to be inserted in the target at all times. If the user adds
a new breakpoint, or changes an existing breakpoint, the breakpoints in the
target are updated immediately. A breakpoint is removed from the target only
when breakpoint itself is deleted.

gdb handles conditional breakpoints by evaluating these conditions when a breakpoint
breaks. If the condition is true, then the process being debugged stops, otherwise the process
is resumed.

If the target supports evaluating conditions on its end, gdb may download the break-
point, together with its conditions, to it.

This feature can be controlled via the following commands:

set breakpoint condition-evaluation host

This option commands gdb to evaluate the breakpoint conditions on the host’s
side. Unconditional breakpoints are sent to the target which in turn receives
the triggers and reports them back to GDB for condition evaluation. This is
the standard evaluation mode.

set breakpoint condition-evaluation target

This option commands gdb to download breakpoint conditions to the target at
the moment of their insertion. The target is responsible for evaluating the con-
ditional expression and reporting breakpoint stop events back to gdb whenever
the condition is true. Due to limitations of target-side evaluation, some condi-
tions cannot be evaluated there, e.g., conditions that depend on local data that
is only known to the host. Examples include conditional expressions involving
convenience variables, complex types that cannot be handled by the agent ex-
pression parser and expressions that are too long to be sent over to the target,
specially when the target is a remote system. In these cases, the conditions will
be evaluated by gdb.

set breakpoint condition-evaluation auto

This is the default mode. If the target supports evaluating breakpoint condi-
tions on its end, gdb will download breakpoint conditions to the target (limi-
tations mentioned previously apply). If the target does not support breakpoint
condition evaluation, then gdb will fallback to evaluating all these conditions
on the host’s side.

gdb itself sometimes sets breakpoints in your program for special purposes, such as
proper handling of longjmp (in C programs). These internal breakpoints are assigned
negative numbers, starting with -1; ‘info breakpoints’ does not display them. You can
see these breakpoints with the gdb maintenance command ‘maint info breakpoints’ (see
[maint info breakpoints], page 707).

Chapter 5: Stopping and Continuing 65

5.1.2 Setting Watchpoints

You can use a watchpoint to stop execution whenever the value of an expression changes,
without having to predict a particular place where this may happen. (This is sometimes
called a data breakpoint.) The expression may be as simple as the value of a single variable,
or as complex as many variables combined by operators. Examples include:

• A reference to the value of a single variable.

• An address cast to an appropriate data type. For example, ‘*(int *)0x12345678’ will
watch a 4-byte region at the specified address (assuming an int occupies 4 bytes).

• An arbitrarily complex expression, such as ‘a*b + c/d’. The expression can use any op-
erators valid in the program’s native language (see Chapter 15 [Languages], page 219).

You can set a watchpoint on an expression even if the expression can not be evaluated yet.
For instance, you can set a watchpoint on ‘*global_ptr’ before ‘global_ptr’ is initialized.
gdb will stop when your program sets ‘global_ptr’ and the expression produces a valid
value. If the expression becomes valid in some other way than changing a variable (e.g. if
the memory pointed to by ‘*global_ptr’ becomes readable as the result of a malloc call),
gdb may not stop until the next time the expression changes.

Depending on your system, watchpoints may be implemented in software or hardware.
gdb does software watchpointing by single-stepping your program and testing the variable’s
value each time, which is hundreds of times slower than normal execution. (But this may
still be worth it, to catch errors where you have no clue what part of your program is the
culprit.)

On some systems, such as most PowerPC or x86-based targets, gdb includes support
for hardware watchpoints, which do not slow down the running of your program.

watch [-l|-location] expr [thread thread-id] [mask maskvalue] [task task-id]
Set a watchpoint for an expression. gdb will break when the expression expr
is written into by the program and its value changes. The simplest (and the
most popular) use of this command is to watch the value of a single variable:

(gdb) watch foo

If the command includes a [thread thread-id] argument, gdb breaks only
when the thread identified by thread-id changes the value of expr. If any other
threads change the value of expr, gdb will not break. Note that watchpoints
restricted to a single thread in this way only work with Hardware Watchpoints.

Similarly, if the task argument is given, then the watchpoint will be specific to
the indicated Ada task (see Section 15.4.10.7 [Ada Tasks], page 247).

Ordinarily a watchpoint respects the scope of variables in expr (see below).
The -location argument tells gdb to instead watch the memory referred to
by expr. In this case, gdb will evaluate expr, take the address of the result, and
watch the memory at that address. The type of the result is used to determine
the size of the watched memory. If the expression’s result does not have an
address, then gdb will print an error.

The [mask maskvalue] argument allows creation of masked watchpoints, if the
current architecture supports this feature (e.g., PowerPC Embedded architec-
ture, see Section 21.3.8 [PowerPC Embedded], page 338.) A masked watchpoint
specifies a mask in addition to an address to watch. The mask specifies that

66 Debugging with gdb

some bits of an address (the bits which are reset in the mask) should be ignored
when matching the address accessed by the inferior against the watchpoint ad-
dress. Thus, a masked watchpoint watches many addresses simultaneously—
those addresses whose unmasked bits are identical to the unmasked bits in the
watchpoint address. The mask argument implies -location. Examples:

(gdb) watch foo mask 0xffff00ff

(gdb) watch *0xdeadbeef mask 0xffffff00

rwatch [-l|-location] expr [thread thread-id] [mask maskvalue]
Set a watchpoint that will break when the value of expr is read by the program.

awatch [-l|-location] expr [thread thread-id] [mask maskvalue]
Set a watchpoint that will break when expr is either read from or written into
by the program.

info watchpoints [list...]
This command prints a list of watchpoints, using the same format as info

break (see Section 5.1.1 [Set Breaks], page 58).

If you watch for a change in a numerically entered address you need to dereference it, as
the address itself is just a constant number which will never change. gdb refuses to create
a watchpoint that watches a never-changing value:

(gdb) watch 0x600850

Cannot watch constant value 0x600850.

(gdb) watch *(int *) 0x600850

Watchpoint 1: *(int *) 6293584

gdb sets a hardware watchpoint if possible. Hardware watchpoints execute very quickly,
and the debugger reports a change in value at the exact instruction where the change occurs.
If gdb cannot set a hardware watchpoint, it sets a software watchpoint, which executes more
slowly and reports the change in value at the next statement, not the instruction, after the
change occurs.

You can force gdb to use only software watchpoints with the set can-use-hw-

watchpoints 0 command. With this variable set to zero, gdb will never try to use
hardware watchpoints, even if the underlying system supports them. (Note that
hardware-assisted watchpoints that were set before setting can-use-hw-watchpoints to
zero will still use the hardware mechanism of watching expression values.)

set can-use-hw-watchpoints

Set whether or not to use hardware watchpoints.

show can-use-hw-watchpoints

Show the current mode of using hardware watchpoints.

For remote targets, you can restrict the number of hardware watchpoints gdb will use,
see [set remote hardware-breakpoint-limit], page 312.

When you issue the watch command, gdb reports

Hardware watchpoint num: expr

if it was able to set a hardware watchpoint.

Currently, the awatch and rwatch commands can only set hardware watchpoints, be-
cause accesses to data that don’t change the value of the watched expression cannot be

Chapter 5: Stopping and Continuing 67

detected without examining every instruction as it is being executed, and gdb does not do
that currently. If gdb finds that it is unable to set a hardware breakpoint with the awatch
or rwatch command, it will print a message like this:

Expression cannot be implemented with read/access watchpoint.

Sometimes, gdb cannot set a hardware watchpoint because the data type of the watched
expression is wider than what a hardware watchpoint on the target machine can handle.
For example, some systems can only watch regions that are up to 4 bytes wide; on such sys-
tems you cannot set hardware watchpoints for an expression that yields a double-precision
floating-point number (which is typically 8 bytes wide). As a work-around, it might be pos-
sible to break the large region into a series of smaller ones and watch them with separate
watchpoints.

If you set too many hardware watchpoints, gdb might be unable to insert all of them
when you resume the execution of your program. Since the precise number of active watch-
points is unknown until such time as the program is about to be resumed, gdb might not be
able to warn you about this when you set the watchpoints, and the warning will be printed
only when the program is resumed:

Hardware watchpoint num: Could not insert watchpoint

If this happens, delete or disable some of the watchpoints.

Watching complex expressions that reference many variables can also exhaust the re-
sources available for hardware-assisted watchpoints. That’s because gdb needs to watch
every variable in the expression with separately allocated resources.

If you call a function interactively using print or call, any watchpoints you have set
will be inactive until gdb reaches another kind of breakpoint or the call completes.

gdb automatically deletes watchpoints that watch local (automatic) variables, or expres-
sions that involve such variables, when they go out of scope, that is, when the execution
leaves the block in which these variables were defined. In particular, when the program
being debugged terminates, all local variables go out of scope, and so only watchpoints
that watch global variables remain set. If you rerun the program, you will need to set all
such watchpoints again. One way of doing that would be to set a code breakpoint at the
entry to the main function and when it breaks, set all the watchpoints.

In multi-threaded programs, watchpoints will detect changes to the watched expression
from every thread.

Warning: In multi-threaded programs, software watchpoints have only limited
usefulness. If gdb creates a software watchpoint, it can only watch the value
of an expression in a single thread. If you are confident that the expression can
only change due to the current thread’s activity (and if you are also confident
that no other thread can become current), then you can use software watch-
points as usual. However, gdb may not notice when a non-current thread’s
activity changes the expression. (Hardware watchpoints, in contrast, watch an
expression in all threads.)

See [set remote hardware-watchpoint-limit], page 312.

68 Debugging with gdb

5.1.3 Setting Catchpoints

You can use catchpoints to cause the debugger to stop for certain kinds of program events,
such as C++ exceptions or the loading of a shared library. Use the catch command to set
a catchpoint.

catch event

Stop when event occurs. The event can be any of the following:

throw [regexp]
rethrow [regexp]
catch [regexp]

The throwing, re-throwing, or catching of a C++ exception.

If regexp is given, then only exceptions whose type matches the
regular expression will be caught.

The convenience variable $_exception is available at an exception-
related catchpoint, on some systems. This holds the exception be-
ing thrown.

There are currently some limitations to C++ exception handling in
gdb:

• The support for these commands is system-dependent.
Currently, only systems using the ‘gnu-v3’ C++ ABI (see
Section 22.7 [ABI], page 356) are supported.

• The regular expression feature and the $_exception conve-
nience variable rely on the presence of some SDT probes in
libstdc++. If these probes are not present, then these fea-
tures cannot be used. These probes were first available in the
GCC 4.8 release, but whether or not they are available in your
GCC also depends on how it was built.

• The $_exception convenience variable is only valid at the in-
struction at which an exception-related catchpoint is set.

• When an exception-related catchpoint is hit, gdb stops at a
location in the system library which implements runtime ex-
ception support for C++, usually libstdc++. You can use up

(see Section 8.3 [Selection], page 113) to get to your code.

• If you call a function interactively, gdb normally returns con-
trol to you when the function has finished executing. If the call
raises an exception, however, the call may bypass the mecha-
nism that returns control to you and cause your program either
to abort or to simply continue running until it hits a break-
point, catches a signal that gdb is listening for, or exits. This
is the case even if you set a catchpoint for the exception; catch-
points on exceptions are disabled within interactive calls. See
Section 17.5 [Calling], page 271, for information on controlling
this with set unwind-on-terminating-exception.

• You cannot raise an exception interactively.

• You cannot install an exception handler interactively.

Chapter 5: Stopping and Continuing 69

exception [name]
An Ada exception being raised. If an exception name is specified
at the end of the command (eg catch exception Program_Error),
the debugger will stop only when this specific exception is raised.
Otherwise, the debugger stops execution when any Ada exception
is raised.

When inserting an exception catchpoint on a user-defined exception
whose name is identical to one of the exceptions defined by the lan-
guage, the fully qualified name must be used as the exception name.
Otherwise, gdb will assume that it should stop on the pre-defined
exception rather than the user-defined one. For instance, assum-
ing an exception called Constraint_Error is defined in package
Pck, then the command to use to catch such exceptions is catch

exception Pck.Constraint_Error.

The convenience variable $_ada_exception holds the address of
the exception being thrown. This can be useful when setting a
condition for such a catchpoint.

exception unhandled

An exception that was raised but is not handled by the program.
The convenience variable $_ada_exception is set as for catch

exception.

handlers [name]
An Ada exception being handled. If an exception name is specified
at the end of the command (eg catch handlers Program_Error),
the debugger will stop only when this specific exception is handled.
Otherwise, the debugger stops execution when any Ada exception
is handled.

When inserting a handlers catchpoint on a user-defined exception
whose name is identical to one of the exceptions defined by the lan-
guage, the fully qualified name must be used as the exception name.
Otherwise, gdb will assume that it should stop on the pre-defined
exception rather than the user-defined one. For instance, assum-
ing an exception called Constraint_Error is defined in package
Pck, then the command to use to catch such exceptions handling is
catch handlers Pck.Constraint_Error.

The convenience variable $_ada_exception is set as for catch

exception.

assert A failed Ada assertion. Note that the convenience variable $_ada_
exception is not set by this catchpoint.

exec A call to exec.

syscall

syscall [name | number | group:groupname | g:groupname] ...
A call to or return from a system call, a.k.a. syscall. A syscall is a
mechanism for application programs to request a service from the

70 Debugging with gdb

operating system (OS) or one of the OS system services. gdb can
catch some or all of the syscalls issued by the debuggee, and show
the related information for each syscall. If no argument is specified,
calls to and returns from all system calls will be caught.

name can be any system call name that is valid for the underlying
OS. Just what syscalls are valid depends on the OS. On GNU and
Unix systems, you can find the full list of valid syscall names on
/usr/include/asm/unistd.h.

Normally, gdb knows in advance which syscalls are valid for each
OS, so you can use the gdb command-line completion facilities (see
Section 3.3 [command completion], page 24) to list the available
choices.

You may also specify the system call numerically. A syscall’s num-
ber is the value passed to the OS’s syscall dispatcher to identify
the requested service. When you specify the syscall by its name,
gdb uses its database of syscalls to convert the name into the cor-
responding numeric code, but using the number directly may be
useful if gdb’s database does not have the complete list of syscalls
on your system (e.g., because gdb lags behind the OS upgrades).

You may specify a group of related syscalls to be caught at once us-
ing the group: syntax (g: is a shorter equivalent). For instance, on
some platforms gdb allows you to catch all network related syscalls,
by passing the argument group:network to catch syscall. Note
that not all syscall groups are available in every system. You can
use the command completion facilities (see Section 3.3 [command
completion], page 24) to list the syscall groups available on your
environment.

The example below illustrates how this command works if you don’t
provide arguments to it:

(gdb) catch syscall

Catchpoint 1 (syscall)

(gdb) r

Starting program: /tmp/catch-syscall

Catchpoint 1 (call to syscall ’close’), \

0xffffe424 in __kernel_vsyscall ()

(gdb) c

Continuing.

Catchpoint 1 (returned from syscall ’close’), \

0xffffe424 in __kernel_vsyscall ()

(gdb)

Here is an example of catching a system call by name:
(gdb) catch syscall chroot

Catchpoint 1 (syscall ’chroot’ [61])

(gdb) r

Starting program: /tmp/catch-syscall

Catchpoint 1 (call to syscall ’chroot’), \

Chapter 5: Stopping and Continuing 71

0xffffe424 in __kernel_vsyscall ()

(gdb) c

Continuing.

Catchpoint 1 (returned from syscall ’chroot’), \

0xffffe424 in __kernel_vsyscall ()

(gdb)

An example of specifying a system call numerically. In the case
below, the syscall number has a corresponding entry in the XML
file, so gdb finds its name and prints it:

(gdb) catch syscall 252

Catchpoint 1 (syscall(s) ’exit_group’)

(gdb) r

Starting program: /tmp/catch-syscall

Catchpoint 1 (call to syscall ’exit_group’), \

0xffffe424 in __kernel_vsyscall ()

(gdb) c

Continuing.

Program exited normally.

(gdb)

Here is an example of catching a syscall group:
(gdb) catch syscall group:process

Catchpoint 1 (syscalls ’exit’ [1] ’fork’ [2] ’waitpid’ [7]

’execve’ [11] ’wait4’ [114] ’clone’ [120] ’vfork’ [190]

’exit_group’ [252] ’waitid’ [284] ’unshare’ [310])

(gdb) r

Starting program: /tmp/catch-syscall

Catchpoint 1 (call to syscall fork), 0x00007ffff7df4e27 in open64 ()

from /lib64/ld-linux-x86-64.so.2

(gdb) c

Continuing.

However, there can be situations when there is no corresponding
name in XML file for that syscall number. In this case, gdb prints
a warning message saying that it was not able to find the syscall
name, but the catchpoint will be set anyway. See the example
below:

(gdb) catch syscall 764

warning: The number ’764’ does not represent a known syscall.

Catchpoint 2 (syscall 764)

(gdb)

If you configure gdb using the ‘--without-expat’ option, it will
not be able to display syscall names. Also, if your architecture does
not have an XML file describing its system calls, you will not be
able to see the syscall names. It is important to notice that these
two features are used for accessing the syscall name database. In
either case, you will see a warning like this:

(gdb) catch syscall

warning: Could not open "syscalls/i386-linux.xml"

warning: Could not load the syscall XML file ’syscalls/i386-linux.xml’.

72 Debugging with gdb

GDB will not be able to display syscall names.

Catchpoint 1 (syscall)

(gdb)

Of course, the file name will change depending on your architecture
and system.

Still using the example above, you can also try to catch a syscall
by its number. In this case, you would see something like:

(gdb) catch syscall 252

Catchpoint 1 (syscall(s) 252)

Again, in this case gdb would not be able to display syscall’s names.

fork A call to fork.

vfork A call to vfork.

load [regexp]
unload [regexp]

The loading or unloading of a shared library. If regexp is given,
then the catchpoint will stop only if the regular expression matches
one of the affected libraries.

signal [signal... | ‘all’]
The delivery of a signal.

With no arguments, this catchpoint will catch any signal that is not
used internally by gdb, specifically, all signals except ‘SIGTRAP’ and
‘SIGINT’.

With the argument ‘all’, all signals, including those used by gdb,
will be caught. This argument cannot be used with other signal
names.

Otherwise, the arguments are a list of signal names as given to
handle (see Section 5.4 [Signals], page 88). Only signals specified
in this list will be caught.

One reason that catch signal can be more useful than handle is
that you can attach commands and conditions to the catchpoint.

When a signal is caught by a catchpoint, the signal’s stop and
print settings, as specified by handle, are ignored. However,
whether the signal is still delivered to the inferior depends on the
pass setting; this can be changed in the catchpoint’s commands.

tcatch event

Set a catchpoint that is enabled only for one stop. The catchpoint is automat-
ically deleted after the first time the event is caught.

Use the info break command to list the current catchpoints.

5.1.4 Deleting Breakpoints

It is often necessary to eliminate a breakpoint, watchpoint, or catchpoint once it has done
its job and you no longer want your program to stop there. This is called deleting the
breakpoint. A breakpoint that has been deleted no longer exists; it is forgotten.

Chapter 5: Stopping and Continuing 73

With the clear command you can delete breakpoints according to where they are in your
program. With the delete command you can delete individual breakpoints, watchpoints,
or catchpoints by specifying their breakpoint numbers.

It is not necessary to delete a breakpoint to proceed past it. gdb automatically ignores
breakpoints on the first instruction to be executed when you continue execution without
changing the execution address.

clear Delete any breakpoints at the next instruction to be executed in the selected
stack frame (see Section 8.3 [Selecting a Frame], page 113). When the innermost
frame is selected, this is a good way to delete a breakpoint where your program
just stopped.

clear location

Delete any breakpoints set at the specified location. See Section 9.2 [Specify
Location], page 122, for the various forms of location; the most useful ones are
listed below:

clear function

clear filename:function

Delete any breakpoints set at entry to the named function.

clear linenum

clear filename:linenum

Delete any breakpoints set at or within the code of the specified
linenum of the specified filename.

delete [breakpoints] [list...]
Delete the breakpoints, watchpoints, or catchpoints of the breakpoint list spec-
ified as argument. If no argument is specified, delete all breakpoints (gdb
asks confirmation, unless you have set confirm off). You can abbreviate this
command as d.

5.1.5 Disabling Breakpoints

Rather than deleting a breakpoint, watchpoint, or catchpoint, you might prefer to disable
it. This makes the breakpoint inoperative as if it had been deleted, but remembers the
information on the breakpoint so that you can enable it again later.

You disable and enable breakpoints, watchpoints, and catchpoints with the enable and
disable commands, optionally specifying one or more breakpoint numbers as arguments.
Use info break to print a list of all breakpoints, watchpoints, and catchpoints if you do
not know which numbers to use.

Disabling and enabling a breakpoint that has multiple locations affects all of its locations.

A breakpoint, watchpoint, or catchpoint can have any of several different states of en-
ablement:

• Enabled. The breakpoint stops your program. A breakpoint set with the break com-
mand starts out in this state.

• Disabled. The breakpoint has no effect on your program.

• Enabled once. The breakpoint stops your program, but then becomes disabled.

74 Debugging with gdb

• Enabled for a count. The breakpoint stops your program for the next N times, then
becomes disabled.

• Enabled for deletion. The breakpoint stops your program, but immediately after it
does so it is deleted permanently. A breakpoint set with the tbreak command starts
out in this state.

You can use the following commands to enable or disable breakpoints, watchpoints, and
catchpoints:

disable [breakpoints] [list...]
Disable the specified breakpoints—or all breakpoints, if none are listed. A
disabled breakpoint has no effect but is not forgotten. All options such as
ignore-counts, conditions and commands are remembered in case the breakpoint
is enabled again later. You may abbreviate disable as dis.

enable [breakpoints] [list...]
Enable the specified breakpoints (or all defined breakpoints). They become
effective once again in stopping your program.

enable [breakpoints] once list...

Enable the specified breakpoints temporarily. gdb disables any of these break-
points immediately after stopping your program.

enable [breakpoints] count count list...

Enable the specified breakpoints temporarily. gdb records count with each of
the specified breakpoints, and decrements a breakpoint’s count when it is hit.
When any count reaches 0, gdb disables that breakpoint. If a breakpoint has
an ignore count (see Section 5.1.6 [Break Conditions], page 74), that will be
decremented to 0 before count is affected.

enable [breakpoints] delete list...

Enable the specified breakpoints to work once, then die. gdb deletes any of
these breakpoints as soon as your program stops there. Breakpoints set by the
tbreak command start out in this state.

Except for a breakpoint set with tbreak (see Section 5.1.1 [Setting Breakpoints],
page 58), breakpoints that you set are initially enabled; subsequently, they become
disabled or enabled only when you use one of the commands above. (The command until

can set and delete a breakpoint of its own, but it does not change the state of your other
breakpoints; see Section 5.2 [Continuing and Stepping], page 82.)

5.1.6 Break Conditions

The simplest sort of breakpoint breaks every time your program reaches a specified place.
You can also specify a condition for a breakpoint. A condition is just a Boolean expression in
your programming language (see Section 10.1 [Expressions], page 139). A breakpoint with
a condition evaluates the expression each time your program reaches it, and your program
stops only if the condition is true.

This is the converse of using assertions for program validation; in that situation, you
want to stop when the assertion is violated—that is, when the condition is false. In C, if
you want to test an assertion expressed by the condition assert, you should set the condition
‘! assert’ on the appropriate breakpoint.

Chapter 5: Stopping and Continuing 75

Conditions are also accepted for watchpoints; you may not need them, since a watchpoint
is inspecting the value of an expression anyhow—but it might be simpler, say, to just set a
watchpoint on a variable name, and specify a condition that tests whether the new value is
an interesting one.

Break conditions can have side effects, and may even call functions in your program. This
can be useful, for example, to activate functions that log program progress, or to use your
own print functions to format special data structures. The effects are completely predictable
unless there is another enabled breakpoint at the same address. (In that case, gdb might
see the other breakpoint first and stop your program without checking the condition of
this one.) Note that breakpoint commands are usually more convenient and flexible than
break conditions for the purpose of performing side effects when a breakpoint is reached
(see Section 5.1.7 [Breakpoint Command Lists], page 76).

Breakpoint conditions can also be evaluated on the target’s side if the target supports
it. Instead of evaluating the conditions locally, gdb encodes the expression into an agent
expression (see Appendix F [Agent Expressions], page 795) suitable for execution on the
target, independently of gdb. Global variables become raw memory locations, locals become
stack accesses, and so forth.

In this case, gdb will only be notified of a breakpoint trigger when its condition evaluates
to true. This mechanism may provide faster response times depending on the performance
characteristics of the target since it does not need to keep gdb informed about every break-
point trigger, even those with false conditions.

Break conditions can be specified when a breakpoint is set, by using ‘if’ in the arguments
to the break command. See Section 5.1.1 [Setting Breakpoints], page 58. They can also be
changed at any time with the condition command.

You can also use the if keyword with the watch command. The catch command does
not recognize the if keyword; condition is the only way to impose a further condition on
a catchpoint.

condition bnum expression

Specify expression as the break condition for breakpoint, watchpoint, or catch-
point number bnum. After you set a condition, breakpoint bnum stops your
program only if the value of expression is true (nonzero, in C). When you
use condition, gdb checks expression immediately for syntactic correctness,
and to determine whether symbols in it have referents in the context of your
breakpoint. If expression uses symbols not referenced in the context of the
breakpoint, gdb prints an error message:

No symbol "foo" in current context.

gdb does not actually evaluate expression at the time the condition command
(or a command that sets a breakpoint with a condition, like break if ...) is
given, however. See Section 10.1 [Expressions], page 139.

condition -force bnum expression

When the -force flag is used, define the condition even if expression is invalid
at all the current locations of breakpoint bnum. This is similar to the -force-
condition option of the break command.

76 Debugging with gdb

condition bnum

Remove the condition from breakpoint number bnum. It becomes an ordinary
unconditional breakpoint.

A special case of a breakpoint condition is to stop only when the breakpoint has been
reached a certain number of times. This is so useful that there is a special way to do it,
using the ignore count of the breakpoint. Every breakpoint has an ignore count, which is
an integer. Most of the time, the ignore count is zero, and therefore has no effect. But if
your program reaches a breakpoint whose ignore count is positive, then instead of stopping,
it just decrements the ignore count by one and continues. As a result, if the ignore count
value is n, the breakpoint does not stop the next n times your program reaches it.

ignore bnum count

Set the ignore count of breakpoint number bnum to count. The next count
times the breakpoint is reached, your program’s execution does not stop; other
than to decrement the ignore count, gdb takes no action.

To make the breakpoint stop the next time it is reached, specify a count of zero.

When you use continue to resume execution of your program from a break-
point, you can specify an ignore count directly as an argument to continue,
rather than using ignore. See Section 5.2 [Continuing and Stepping], page 82.

If a breakpoint has a positive ignore count and a condition, the condition is
not checked. Once the ignore count reaches zero, gdb resumes checking the
condition.

You could achieve the effect of the ignore count with a condition such as
‘$foo-- <= 0’ using a debugger convenience variable that is decremented each
time. See Section 10.12 [Convenience Variables], page 164.

Ignore counts apply to breakpoints, watchpoints, and catchpoints.

5.1.7 Breakpoint Command Lists

You can give any breakpoint (or watchpoint or catchpoint) a series of commands to execute
when your program stops due to that breakpoint. For example, you might want to print
the values of certain expressions, or enable other breakpoints.

commands [list...]
... command-list ...

end Specify a list of commands for the given breakpoints. The commands themselves
appear on the following lines. Type a line containing just end to terminate the
commands.

/a modifier forces gdb to execute the breakpoint actions for all SIMD lanes
which match the condition of the specified breakpoint(s). Note, that if there
are active lanes which do not match the breakpoint condition, actions are not
executed for these lanes.

To remove all commands from a breakpoint, type commands and follow it im-
mediately with end; that is, give no commands.

With no argument, commands refers to the last breakpoint, watchpoint, or catch-
point set (not to the breakpoint most recently encountered). If the most recent

Chapter 5: Stopping and Continuing 77

breakpoints were set with a single command, then the commands will apply
to all the breakpoints set by that command. This applies to breakpoints set
by rbreak, and also applies when a single break command creates multiple
breakpoints (see Section 10.2 [Ambiguous Expressions], page 139).

Pressing RET as a means of repeating the last gdb command is disabled within a
command-list.

You can use breakpoint commands to start your program up again. Simply use the
continue command, or step, or any other command that resumes execution.

Any other commands in the command list, after a command that resumes execution, are
ignored. This is because any time you resume execution (even with a simple next or step),
you may encounter another breakpoint—which could have its own command list, leading
to ambiguities about which list to execute.

If the first command you specify in a command list is silent, the usual message about
stopping at a breakpoint is not printed. This may be desirable for breakpoints that are
to print a specific message and then continue. If none of the remaining commands print
anything, you see no sign that the breakpoint was reached. silent is meaningful only at
the beginning of a breakpoint command list.

The commands echo, output, and printf allow you to print precisely controlled output,
and are often useful in silent breakpoints. See Section 23.1.4 [Commands for Controlled
Output], page 376.

For example, here is how you could use breakpoint commands to print the value of x at
entry to foo whenever x is positive.

break foo if x>0

commands

silent

printf "x is %d\n",x

cont

end

One application for breakpoint commands is to compensate for one bug so you can test
for another. Put a breakpoint just after the erroneous line of code, give it a condition
to detect the case in which something erroneous has been done, and give it commands to
assign correct values to any variables that need them. End with the continue command so
that your program does not stop, and start with the silent command so that no output
is produced. Here is an example:

break 403

commands

silent

set x = y + 4

cont

end

5.1.8 Dynamic Printf

The dynamic printf command dprintf combines a breakpoint with formatted printing of
your program’s data to give you the effect of inserting printf calls into your program
on-the-fly, without having to recompile it.

In its most basic form, the output goes to the GDB console. However, you can set
the variable dprintf-style for alternate handling. For instance, you can ask to format

78 Debugging with gdb

the output by calling your program’s printf function. This has the advantage that the
characters go to the program’s output device, so they can recorded in redirects to files and
so forth.

If you are doing remote debugging with a stub or agent, you can also ask to have the
printf handled by the remote agent. In addition to ensuring that the output goes to the
remote program’s device along with any other output the program might produce, you can
also ask that the dprintf remain active even after disconnecting from the remote target.
Using the stub/agent is also more efficient, as it can do everything without needing to
communicate with gdb.

dprintf location,template,expression[,expression...]

Whenever execution reaches location, print the values of one or more expres-
sions under the control of the string template. To print several values, separate
them with commas.

set dprintf-style style

Set the dprintf output to be handled in one of several different styles enumerated
below. A change of style affects all existing dynamic printfs immediately. (If
you need individual control over the print commands, simply define normal
breakpoints with explicitly-supplied command lists.)

gdb Handle the output using the gdb printf command.

call Handle the output by calling a function in your program (normally
printf).

agent Have the remote debugging agent (such as gdbserver) handle the
output itself. This style is only available for agents that support
running commands on the target.

set dprintf-function function

Set the function to call if the dprintf style is call. By default its value is
printf. You may set it to any expression. that gdb can evaluate to a function,
as per the call command.

set dprintf-channel channel

Set a “channel” for dprintf. If set to a non-empty value, gdb will evaluate it as
an expression and pass the result as a first argument to the dprintf-function,
in the manner of fprintf and similar functions. Otherwise, the dprintf format
string will be the first argument, in the manner of printf.

As an example, if you wanted dprintf output to go to a logfile that is a standard
I/O stream assigned to the variable mylog, you could do the following:

(gdb) set dprintf-style call

(gdb) set dprintf-function fprintf

(gdb) set dprintf-channel mylog

(gdb) dprintf 25,"at line 25, glob=%d\n",glob

Dprintf 1 at 0x123456: file main.c, line 25.

(gdb) info break

1 dprintf keep y 0x00123456 in main at main.c:25

call (void) fprintf (mylog,"at line 25, glob=%d\n",glob)

Chapter 5: Stopping and Continuing 79

continue

(gdb)

Note that the info break displays the dynamic printf commands as normal
breakpoint commands; you can thus easily see the effect of the variable settings.

set disconnected-dprintf on

set disconnected-dprintf off

Choose whether dprintf commands should continue to run if gdb has discon-
nected from the target. This only applies if the dprintf-style is agent.

show disconnected-dprintf off

Show the current choice for disconnected dprintf.

gdb does not check the validity of function and channel, relying on you to supply values
that are meaningful for the contexts in which they are being used. For instance, the function
and channel may be the values of local variables, but if that is the case, then all enabled
dynamic prints must be at locations within the scope of those locals. If evaluation fails,
gdb will report an error.

5.1.9 How to save breakpoints to a file

To save breakpoint definitions to a file use the save breakpoints command.

save breakpoints [filename]

This command saves all current breakpoint definitions together with their com-
mands and ignore counts, into a file filename suitable for use in a later debug-
ging session. This includes all types of breakpoints (breakpoints, watchpoints,
catchpoints, tracepoints). To read the saved breakpoint definitions, use the
source command (see Section 23.1.3 [Command Files], page 375). Note that
watchpoints with expressions involving local variables may fail to be recreated
because it may not be possible to access the context where the watchpoint is
valid anymore. Because the saved breakpoint definitions are simply a sequence
of gdb commands that recreate the breakpoints, you can edit the file in your
favorite editing program, and remove the breakpoint definitions you’re not in-
terested in, or that can no longer be recreated.

5.1.10 Static Probe Points

gdb supports SDT probes in the code. SDT stands for Statically Defined Tracing, and
the probes are designed to have a tiny runtime code and data footprint, and no dynamic
relocations.

Currently, the following types of probes are supported on ELF-compatible systems:

• SystemTap (http://sourceware.org/systemtap/) SDT probes1. SystemTap probes
are usable from assembly, C and C++ languages2.

• DTrace (http://oss.oracle.com/projects/DTrace) USDT probes. DTrace probes
are usable from C and C++ languages.

1 See http://sourceware.org/systemtap/wiki/AddingUserSpaceProbingToApps for more information
on how to add SystemTap SDT probes in your applications.

2 See http://sourceware.org/systemtap/wiki/UserSpaceProbeImplementation for a good reference on
how the SDT probes are implemented.

http://sourceware.org/systemtap/
http://oss.oracle.com/projects/DTrace
http://sourceware.org/systemtap/wiki/AddingUserSpaceProbingToApps
http://sourceware.org/systemtap/wiki/UserSpaceProbeImplementation

80 Debugging with gdb

Some SystemTap probes have an associated semaphore variable; for instance, this hap-
pens automatically if you defined your probe using a DTrace-style .d file. If your probe
has a semaphore, gdb will automatically enable it when you specify a breakpoint using
the ‘-probe-stap’ notation. But, if you put a breakpoint at a probe’s location by some
other method (e.g., break file:line), then gdb will not automatically set the semaphore.
DTrace probes do not support semaphores.

You can examine the available static static probes using info probes, with optional
arguments:

info probes [type] [provider [name [objfile]]]
If given, type is either stap for listing SystemTap probes or dtrace for listing
DTrace probes. If omitted all probes are listed regardless of their types.

If given, provider is a regular expression used to match against provider names
when selecting which probes to list. If omitted, probes by all probes from all
providers are listed.

If given, name is a regular expression to match against probe names when
selecting which probes to list. If omitted, probe names are not considered when
deciding whether to display them.

If given, objfile is a regular expression used to select which object files (exe-
cutable or shared libraries) to examine. If not given, all object files are consid-
ered.

info probes all

List the available static probes, from all types.

Some probe points can be enabled and/or disabled. The effect of enabling or disabling
a probe depends on the type of probe being handled. Some DTrace probes can be enabled
or disabled, but SystemTap probes cannot be disabled.

You can enable (or disable) one or more probes using the following commands, with
optional arguments:

enable probes [provider [name [objfile]]]
If given, provider is a regular expression used to match against provider names
when selecting which probes to enable. If omitted, all probes from all providers
are enabled.

If given, name is a regular expression to match against probe names when
selecting which probes to enable. If omitted, probe names are not considered
when deciding whether to enable them.

If given, objfile is a regular expression used to select which object files (exe-
cutable or shared libraries) to examine. If not given, all object files are consid-
ered.

disable probes [provider [name [objfile]]]
See the enable probes command above for a description of the optional argu-
ments accepted by this command.

A probe may specify up to twelve arguments. These are available at the point at which
the probe is defined—that is, when the current PC is at the probe’s location. The argu-
ments are available using the convenience variables (see Section 10.12 [Convenience Vars],

Chapter 5: Stopping and Continuing 81

page 164) $_probe_arg0. . .$_probe_arg11. In SystemTap probes each probe argument is
an integer of the appropriate size; types are not preserved. In DTrace probes types are
preserved provided that they are recognized as such by gdb; otherwise the value of the
probe argument will be a long integer. The convenience variable $_probe_argc holds the
number of arguments at the current probe point.

These variables are always available, but attempts to access them at any location other
than a probe point will cause gdb to give an error message.

5.1.11 “Cannot insert breakpoints”

If you request too many active hardware-assisted breakpoints and watchpoints, you will see
this error message:

Stopped; cannot insert breakpoints.

You may have requested too many hardware breakpoints and watchpoints.

This message is printed when you attempt to resume the program, since only then gdb
knows exactly how many hardware breakpoints and watchpoints it needs to insert.

When this message is printed, you need to disable or remove some of the hardware-
assisted breakpoints and watchpoints, and then continue.

5.1.12 “Breakpoint address adjusted...”

Some processor architectures place constraints on the addresses at which breakpoints may
be placed. For architectures thus constrained, gdb will attempt to adjust the breakpoint’s
address to comply with the constraints dictated by the architecture.

One example of such an architecture is the Fujitsu FR-V. The FR-V is a VLIW archi-
tecture in which a number of RISC-like instructions may be bundled together for parallel
execution. The FR-V architecture constrains the location of a breakpoint instruction within
such a bundle to the instruction with the lowest address. gdb honors this constraint by
adjusting a breakpoint’s address to the first in the bundle.

It is not uncommon for optimized code to have bundles which contain instructions from
different source statements, thus it may happen that a breakpoint’s address will be adjusted
from one source statement to another. Since this adjustment may significantly alter gdb’s
breakpoint related behavior from what the user expects, a warning is printed when the
breakpoint is first set and also when the breakpoint is hit.

A warning like the one below is printed when setting a breakpoint that’s been subject
to address adjustment:

warning: Breakpoint address adjusted from 0x00010414 to 0x00010410.

Such warnings are printed both for user settable and gdb’s internal breakpoints. If you
see one of these warnings, you should verify that a breakpoint set at the adjusted address
will have the desired affect. If not, the breakpoint in question may be removed and other
breakpoints may be set which will have the desired behavior. E.g., it may be sufficient to
place the breakpoint at a later instruction. A conditional breakpoint may also be useful in
some cases to prevent the breakpoint from triggering too often.

gdb will also issue a warning when stopping at one of these adjusted breakpoints:
warning: Breakpoint 1 address previously adjusted from 0x00010414

to 0x00010410.

When this warning is encountered, it may be too late to take remedial action except in
cases where the breakpoint is hit earlier or more frequently than expected.

82 Debugging with gdb

5.2 Continuing and Stepping

Continuing means resuming program execution until your program completes normally. In
contrast, stepping means executing just one more “step” of your program, where “step”
may mean either one line of source code, or one machine instruction (depending on what
particular command you use). Either when continuing or when stepping, your program may
stop even sooner, due to a breakpoint or a signal. (If it stops due to a signal, you may want
to use handle, or use ‘signal 0’ to resume execution (see Section 5.4 [Signals], page 88),
or you may step into the signal’s handler (see [stepping and signal handlers], page 90).)

continue [ignore-count]
c [ignore-count]
fg [ignore-count]

Resume program execution, at the address where your program last stopped;
any breakpoints set at that address are bypassed. The optional argument
ignore-count allows you to specify a further number of times to ignore a break-
point at this location; its effect is like that of ignore (see Section 5.1.6 [Break
Conditions], page 74).

The argument ignore-count is meaningful only when your program stopped due
to a breakpoint. At other times, the argument to continue is ignored.

The synonyms c and fg (for foreground, as the debugged program is deemed
to be the foreground program) are provided purely for convenience, and have
exactly the same behavior as continue.

To resume execution at a different place, you can use return (see Section 17.4 [Returning
from a Function], page 270) to go back to the calling function; or jump (see Section 17.2
[Continuing at a Different Address], page 268) to go to an arbitrary location in your program.

A typical technique for using stepping is to set a breakpoint (see Section 5.1 [Breakpoints;
Watchpoints; and Catchpoints], page 57) at the beginning of the function or the section
of your program where a problem is believed to lie, run your program until it stops at
that breakpoint, and then step through the suspect area, examining the variables that are
interesting, until you see the problem happen.

step Continue running your program until control reaches a different source line,
then stop it and return control to gdb. This command is abbreviated s.

Warning: If you use the step command while control is within
a function that was compiled without debugging information, ex-
ecution proceeds until control reaches a function that does have
debugging information. Likewise, it will not step into a function
which is compiled without debugging information. To step through
functions without debugging information, use the stepi command,
described below.

The step command only stops at the first instruction of a source line. This pre-
vents the multiple stops that could otherwise occur in switch statements, for
loops, etc. step continues to stop if a function that has debugging information
is called within the line. In other words, step steps inside any functions called
within the line.

Chapter 5: Stopping and Continuing 83

Also, the step command only enters a function if there is line number infor-
mation for the function. Otherwise it acts like the next command. This avoids
problems when using cc -gl on MIPS machines. Previously, step entered sub-
routines if there was any debugging information about the routine.

step count

Continue running as in step, but do so count times. If a breakpoint is reached,
or a signal not related to stepping occurs before count steps, stepping stops
right away.

next [count]
Continue to the next source line in the current (innermost) stack frame. This
is similar to step, but function calls that appear within the line of code are
executed without stopping. Execution stops when control reaches a different
line of code at the original stack level that was executing when you gave the
next command. This command is abbreviated n.

An argument count is a repeat count, as for step.

The next command only stops at the first instruction of a source line. This
prevents multiple stops that could otherwise occur in switch statements, for
loops, etc.

set step-mode

set step-mode on

The set step-mode on command causes the step command to stop at the first
instruction of a function which contains no debug line information rather than
stepping over it.

This is useful in cases where you may be interested in inspecting the machine
instructions of a function which has no symbolic info and do not want gdb to
automatically skip over this function.

set step-mode off

Causes the step command to step over any functions which contains no debug
information. This is the default.

show step-mode

Show whether gdb will stop in or step over functions without source line debug
information.

set skip-trampoline-functions

set skip-trampoline-functions on

When calling a function in any language, some compilers might generate so-
called trampoline functions, which wrap the actual function call (the target
of the trampoline). The compiler might mark such a trampoline in its debug
information. Often, such trampolines do not have any source line information
associated with them which will lead the step command to behave like a next

and skip the function call completely.

The set skip-trampoline-functions on command will cause the step com-
mand to treat these trampolines differently. When issuing a step at the call
site of a trampoline function if skip-trampoline-functions is set gdb will

84 Debugging with gdb

attempt to determine the target of the trampoline and then step through the
trampoline stopping at the target. If the target could not be found or was
not given in the debug info, gdb will simply continue execution until it leaves
the trampoline code again, even if the trampoline has no line info associated
with it. When returning from a target function call and stepping back into
the trampoline, gdb will again step through the trampoline towards the call
site. Additionally, even if stopped in a trampoline function with source line
information, issuing a step will prompt gdb to resume execution until leaving
the trampoline region again. The stepi command is not affected by the setting
which is enabled by default. Currently, only DWARF trampolines marked via
DW AT trampoline are supported by this.

set skip-trampoline-functions off

Causes the step command to completely ignore any trampoline information a
compiler might have emitted in its debug info. Trampolines will be treated like
any other function when stepping.

show skip-trampoline-functions

Show whether gdb tries to skip trampolines or not.

finish Continue running until just after function in the selected stack frame returns.
Print the returned value (if any). This command can be abbreviated as fin.

Contrast this with the return command (see Section 17.4 [Returning from a
Function], page 270).

set print finish [on|off]
show print finish

By default the finish command will show the value that is returned by the
function. This can be disabled using set print finish off. When disabled,
the value is still entered into the value history (see Section 10.11 [Value History],
page 163), but not displayed.

until

u Continue running until a source line past the current line, in the current stack
frame, is reached. This command is used to avoid single stepping through a loop
more than once. It is like the next command, except that when until encoun-
ters a jump, it automatically continues execution until the program counter is
greater than the address of the jump.

This means that when you reach the end of a loop after single stepping though
it, until makes your program continue execution until it exits the loop. In con-
trast, a next command at the end of a loop simply steps back to the beginning
of the loop, which forces you to step through the next iteration.

until always stops your program if it attempts to exit the current stack frame.

until may produce somewhat counterintuitive results if the order of machine
code does not match the order of the source lines. For example, in the following
excerpt from a debugging session, the f (frame) command shows that execution
is stopped at line 206; yet when we use until, we get to line 195:

(gdb) f

#0 main (argc=4, argv=0xf7fffae8) at m4.c:206

Chapter 5: Stopping and Continuing 85

206 expand_input();

(gdb) until

195 for (; argc > 0; NEXTARG) {

This happened because, for execution efficiency, the compiler had generated
code for the loop closure test at the end, rather than the start, of the loop—
even though the test in a C for-loop is written before the body of the loop.
The until command appeared to step back to the beginning of the loop when
it advanced to this expression; however, it has not really gone to an earlier
statement—not in terms of the actual machine code.

until with no argument works by means of single instruction stepping, and
hence is slower than until with an argument.

until location

u location

Continue running your program until either the specified location is reached,
or the current stack frame returns. The location is any of the forms described
in Section 9.2 [Specify Location], page 122. This form of the command uses
temporary breakpoints, and hence is quicker than until without an argument.
The specified location is actually reached only if it is in the current frame. This
implies that until can be used to skip over recursive function invocations. For
instance in the code below, if the current location is line 96, issuing until 99

will execute the program up to line 99 in the same invocation of factorial, i.e.,
after the inner invocations have returned.

94 int factorial (int value)

95 {

96 if (value > 1) {

97 value *= factorial (value - 1);

98 }

99 return (value);

100 }

advance location

Continue running the program up to the given location. An argument is re-
quired, which should be of one of the forms described in Section 9.2 [Specify
Location], page 122. Execution will also stop upon exit from the current stack
frame. This command is similar to until, but advance will not skip over re-
cursive function calls, and the target location doesn’t have to be in the same
frame as the current one.

stepi

stepi arg

si Execute one machine instruction, then stop and return to the debugger.

It is often useful to do ‘display/i $pc’ when stepping by machine instructions.
This makes gdb automatically display the next instruction to be executed, each
time your program stops. See Section 10.8 [Automatic Display], page 149.

An argument is a repeat count, as in step.

nexti

nexti arg

ni Execute one machine instruction, but if it is a function call, proceed until the
function returns.

86 Debugging with gdb

An argument is a repeat count, as in next.

By default, and if available, gdb makes use of target-assisted range stepping. In other
words, whenever you use a stepping command (e.g., step, next), gdb tells the target to
step the corresponding range of instruction addresses instead of issuing multiple single-steps.
This speeds up line stepping, particularly for remote targets. Ideally, there should be no
reason you would want to turn range stepping off. However, it’s possible that a bug in the
debug info, a bug in the remote stub (for remote targets), or even a bug in gdb could make
line stepping behave incorrectly when target-assisted range stepping is enabled. You can
use the following command to turn off range stepping if necessary:

set range-stepping

show range-stepping

Control whether range stepping is enabled.

If on, and the target supports it, gdb tells the target to step a range of addresses
itself, instead of issuing multiple single-steps. If off, gdb always issues single-
steps, even if range stepping is supported by the target. The default is on.

5.3 Skipping Over Functions and Files

The program you are debugging may contain some functions which are uninteresting to
debug. The skip command lets you tell gdb to skip a function, all functions in a file or a
particular function in a particular file when stepping.

For example, consider the following C function:
101 int func()

102 {

103 foo(boring());

104 bar(boring());

105 }

Suppose you wish to step into the functions foo and bar, but you are not interested in
stepping through boring. If you run step at line 103, you’ll enter boring(), but if you run
next, you’ll step over both foo and boring!

One solution is to step into boring and use the finish command to immediately exit
it. But this can become tedious if boring is called from many places.

A more flexible solution is to execute skip boring. This instructs gdb never to step
into boring. Now when you execute step at line 103, you’ll step over boring and directly
into foo.

Functions may be skipped by providing either a function name, linespec (see Section 9.2
[Specify Location], page 122), regular expression that matches the function’s name, file
name or a glob-style pattern that matches the file name.

On Posix systems the form of the regular expression is “Extended Regular Expressions”.
See for example ‘man 7 regex’ on gnu/Linux systems. On non-Posix systems the form of
the regular expression is whatever is provided by the regcomp function of the underlying
system. See for example ‘man 7 glob’ on gnu/Linux systems for a description of glob-style
patterns.

skip [options]
The basic form of the skip command takes zero or more options that specify
what to skip. The options argument is any useful combination of the following:

Chapter 5: Stopping and Continuing 87

-file file

-fi file Functions in file will be skipped over when stepping.

-gfile file-glob-pattern

-gfi file-glob-pattern

Functions in files matching file-glob-pattern will be skipped over
when stepping.

(gdb) skip -gfi utils/*.c

-function linespec

-fu linespec

Functions named by linespec or the function containing the line
named by linespec will be skipped over when stepping. See
Section 9.2 [Specify Location], page 122.

-rfunction regexp

-rfu regexp

Functions whose name matches regexp will be skipped over when
stepping.

This form is useful for complex function names. For example, there
is generally no need to step into C++ std::string constructors or
destructors. Plus with C++ templates it can be hard to write out
the full name of the function, and often it doesn’t matter what the
template arguments are. Specifying the function to be skipped as
a regular expression makes this easier.

(gdb) skip -rfu ^std::(allocator|basic_string)<.*>::~?\1 *\(

If you want to skip every templated C++ constructor and destructor
in the std namespace you can do:

(gdb) skip -rfu ^std::([a-zA-z0-9_]+)<.*>::~?\1 *\(

If no options are specified, the function you’re currently debugging will be
skipped.

skip function [linespec]
After running this command, the function named by linespec or the function
containing the line named by linespec will be skipped over when stepping. See
Section 9.2 [Specify Location], page 122.

If you do not specify linespec, the function you’re currently debugging will be
skipped.

(If you have a function called file that you want to skip, use skip function

file.)

skip file [filename]
After running this command, any function whose source lives in filename will
be skipped over when stepping.

(gdb) skip file boring.c

File boring.c will be skipped when stepping.

If you do not specify filename, functions whose source lives in the file you’re
currently debugging will be skipped.

88 Debugging with gdb

Skips can be listed, deleted, disabled, and enabled, much like breakpoints. These are
the commands for managing your list of skips:

info skip [range]
Print details about the specified skip(s). If range is not specified, print a table
with details about all functions and files marked for skipping. info skip prints
the following information about each skip:

Identifier A number identifying this skip.

Enabled or Disabled
Enabled skips are marked with ‘y’. Disabled skips are marked with
‘n’.

Glob If the file name is a ‘glob’ pattern this is ‘y’. Otherwise it is ‘n’.

File The name or ‘glob’ pattern of the file to be skipped. If no file is
specified this is ‘<none>’.

RE If the function name is a ‘regular expression’ this is ‘y’. Other-
wise it is ‘n’.

Function The name or regular expression of the function to skip. If no func-
tion is specified this is ‘<none>’.

skip delete [range]
Delete the specified skip(s). If range is not specified, delete all skips.

skip enable [range]
Enable the specified skip(s). If range is not specified, enable all skips.

skip disable [range]
Disable the specified skip(s). If range is not specified, disable all skips.

set debug skip [on|off]
Set whether to print the debug output about skipping files and functions.

show debug skip

Show whether the debug output about skipping files and functions is printed.

5.4 Signals

A signal is an asynchronous event that can happen in a program. The operating system
defines the possible kinds of signals, and gives each kind a name and a number. For example,
in Unix SIGINT is the signal a program gets when you type an interrupt character (often
Ctrl-c); SIGSEGV is the signal a program gets from referencing a place in memory far
away from all the areas in use; SIGALRM occurs when the alarm clock timer goes off (which
happens only if your program has requested an alarm).

Some signals, including SIGALRM, are a normal part of the functioning of your program.
Others, such as SIGSEGV, indicate errors; these signals are fatal (they kill your program
immediately) if the program has not specified in advance some other way to handle the
signal. SIGINT does not indicate an error in your program, but it is normally fatal so it can
carry out the purpose of the interrupt: to kill the program.

Chapter 5: Stopping and Continuing 89

gdb has the ability to detect any occurrence of a signal in your program. You can tell
gdb in advance what to do for each kind of signal.

Normally, gdb is set up to let the non-erroneous signals like SIGALRM be silently passed
to your program (so as not to interfere with their role in the program’s functioning) but to
stop your program immediately whenever an error signal happens. You can change these
settings with the handle command.

info signals

info handle

Print a table of all the kinds of signals and how gdb has been told to handle
each one. You can use this to see the signal numbers of all the defined types of
signals.

info signals sig

Similar, but print information only about the specified signal number.

info handle is an alias for info signals.

catch signal [signal... | ‘all’]
Set a catchpoint for the indicated signals. See Section 5.1.3 [Set Catchpoints],
page 68, for details about this command.

handle signal [keywords...]
Change the way gdb handles signal signal. The signal can be the number of a
signal or its name (with or without the ‘SIG’ at the beginning); a list of signal
numbers of the form ‘low-high’; or the word ‘all’, meaning all the known
signals. Optional arguments keywords, described below, say what change to
make.

The keywords allowed by the handle command can be abbreviated. Their full names
are:

nostop gdb should not stop your program when this signal happens. It may still print
a message telling you that the signal has come in.

stop gdb should stop your program when this signal happens. This implies the
print keyword as well.

print gdb should print a message when this signal happens.

noprint gdb should not mention the occurrence of the signal at all. This implies the
nostop keyword as well.

pass

noignore gdb should allow your program to see this signal; your program can handle the
signal, or else it may terminate if the signal is fatal and not handled. pass and
noignore are synonyms.

nopass

ignore gdb should not allow your program to see this signal. nopass and ignore are
synonyms.

When a signal stops your program, the signal is not visible to the program until you
continue. Your program sees the signal then, if pass is in effect for the signal in question

90 Debugging with gdb

at that time. In other words, after gdb reports a signal, you can use the handle command
with pass or nopass to control whether your program sees that signal when you continue.

The default is set to nostop, noprint, pass for non-erroneous signals such as SIGALRM,
SIGWINCH and SIGCHLD, and to stop, print, pass for the erroneous signals.

You can also use the signal command to prevent your program from seeing a signal, or
cause it to see a signal it normally would not see, or to give it any signal at any time. For
example, if your program stopped due to some sort of memory reference error, you might
store correct values into the erroneous variables and continue, hoping to see more execution;
but your program would probably terminate immediately as a result of the fatal signal once
it saw the signal. To prevent this, you can continue with ‘signal 0’. See Section 17.3
[Giving your Program a Signal], page 269.

gdb optimizes for stepping the mainline code. If a signal that has handle nostop and
handle pass set arrives while a stepping command (e.g., stepi, step, next) is in progress,
gdb lets the signal handler run and then resumes stepping the mainline code once the signal
handler returns. In other words, gdb steps over the signal handler. This prevents signals
that you’ve specified as not interesting (with handle nostop) from changing the focus of
debugging unexpectedly. Note that the signal handler itself may still hit a breakpoint, stop
for another signal that has handle stop in effect, or for any other event that normally
results in stopping the stepping command sooner. Also note that gdb still informs you that
the program received a signal if handle print is set.

If you set handle pass for a signal, and your program sets up a handler for it, then
issuing a stepping command, such as step or stepi, when your program is stopped due to
the signal will step into the signal handler (if the target supports that).

Likewise, if you use the queue-signal command to queue a signal to be delivered to
the current thread when execution of the thread resumes (see Section 17.3 [Giving your
Program a Signal], page 269), then a stepping command will step into the signal handler.

Here’s an example, using stepi to step to the first instruction of SIGUSR1’s handler:

(gdb) handle SIGUSR1

Signal Stop Print Pass to program Description

SIGUSR1 Yes Yes Yes User defined signal 1

(gdb) c

Continuing.

Program received signal SIGUSR1, User defined signal 1.

main () sigusr1.c:28

28 p = 0;

(gdb) si

sigusr1_handler () at sigusr1.c:9

9 {

The same, but using queue-signal instead of waiting for the program to receive the
signal first:

(gdb) n

28 p = 0;

(gdb) queue-signal SIGUSR1

(gdb) si

sigusr1_handler () at sigusr1.c:9

9 {

(gdb)

Chapter 5: Stopping and Continuing 91

On some targets, gdb can inspect extra signal information associated with the inter-
cepted signal, before it is actually delivered to the program being debugged. This informa-
tion is exported by the convenience variable $_siginfo, and consists of data that is passed
by the kernel to the signal handler at the time of the receipt of a signal. The data type of
the information itself is target dependent. You can see the data type using the ptype $_

siginfo command. On Unix systems, it typically corresponds to the standard siginfo_t

type, as defined in the signal.h system header.

Here’s an example, on a gnu/Linux system, printing the stray referenced address that
raised a segmentation fault.

(gdb) continue

Program received signal SIGSEGV, Segmentation fault.

0x0000000000400766 in main ()

69 *(int *)p = 0;

(gdb) ptype $_siginfo

type = struct {

int si_signo;

int si_errno;

int si_code;

union {

int _pad[28];

struct {...} _kill;

struct {...} _timer;

struct {...} _rt;

struct {...} _sigchld;

struct {...} _sigfault;

struct {...} _sigpoll;

} _sifields;

}

(gdb) ptype $_siginfo._sifields._sigfault

type = struct {

void *si_addr;

}

(gdb) p $_siginfo._sifields._sigfault.si_addr

$1 = (void *) 0x7ffff7ff7000

Depending on target support, $_siginfo may also be writable.

On some targets, a SIGSEGV can be caused by a boundary violation, i.e., accessing an ad-
dress outside of the allowed range. In those cases gdb may displays additional information,
depending on how gdb has been told to handle the signal. With handle stop SIGSEGV,
gdb displays the violation kind: "Upper" or "Lower", the memory address accessed and
the bounds, while with handle nostop SIGSEGV no additional information is displayed.

The usual output of a segfault is:

Program received signal SIGSEGV, Segmentation fault

0x0000000000400d7c in upper () at i386-mpx-sigsegv.c:68

68 value = *(p + len);

While a bound violation is presented as:

Program received signal SIGSEGV, Segmentation fault

Upper bound violation while accessing address 0x7fffffffc3b3

Bounds: [lower = 0x7fffffffc390, upper = 0x7fffffffc3a3]

0x0000000000400d7c in upper () at i386-mpx-sigsegv.c:68

68 value = *(p + len);

92 Debugging with gdb

5.5 Stopping and Starting Multi-thread Programs

gdb supports debugging programs with multiple threads (see Section 4.10 [Debugging Pro-
grams with Multiple Threads], page 45). There are two modes of controlling execution of
your program within the debugger. In the default mode, referred to as all-stop mode, when
any thread in your program stops (for example, at a breakpoint or while being stepped), all
other threads in the program are also stopped by gdb. On some targets, gdb also supports
non-stop mode, in which other threads can continue to run freely while you examine the
stopped thread in the debugger.

5.5.1 All-Stop Mode

In all-stop mode, whenever your program stops under gdb for any reason, all threads of
execution stop, not just the current thread. This allows you to examine the overall state
of the program, including switching between threads, without worrying that things may
change underfoot.

Conversely, whenever you restart the program, all threads start executing. This is true
even when single-stepping with commands like step or next.

In particular, gdb cannot single-step all threads in lockstep. Since thread scheduling
is up to your debugging target’s operating system (not controlled by gdb), other threads
may execute more than one statement while the current thread completes a single step.
Moreover, in general other threads stop in the middle of a statement, rather than at a clean
statement boundary, when the program stops.

You might even find your program stopped in another thread after continuing or even
single-stepping and inferior calls. This happens whenever some other thread runs into
a breakpoint, a signal, or an exception before the first thread completes whatever you
requested.

Whenever gdb stops your program, due to a breakpoint or a signal, it automatically
selects the thread where that breakpoint or signal happened. gdb alerts you to the context
switch with a message such as ‘[Switching to Thread n]’ to identify the thread.

On some OSes, you can modify gdb’s default behavior by locking the OS scheduler to
allow only a single thread to run.

set scheduler-locking mode

Set the scheduler locking mode. It applies to normal execution, record mode,
and replay mode. If it is off, then there is no locking and any thread may
run at any time. If on, then only the current thread may run when the inferior
is resumed. The step mode optimizes for single-stepping; it prevents other
threads from preempting the current thread while you are stepping, so that the
focus of debugging does not change unexpectedly. Other threads never get a
chance to run when you step, and they are completely free to run when you
use commands like ‘continue’, ‘until’, or ‘finish’. However, unless another
thread hits a breakpoint during its timeslice, gdb does not change the current
thread away from the thread that you are debugging. The replaymode behaves
like off in record mode and like on in replay mode.

show scheduler-locking

Display the current scheduler locking mode.

Chapter 5: Stopping and Continuing 93

set scheduler-locking-eval

When on, it prevents thread switching during expression evaluations. Thus,
if the current thread starts an inferior call, other threads are not permitted
to run before the call is finished. This setting can be used together with
set scheduler-locking step mode, so the thread focus does not change un-
expectedly for a user.

show scheduler-locking-eval

Display the current scheduler locking evaluation setting.

By default, when you issue one of the execution commands such as continue, next
or step, gdb allows only threads of the current inferior to run. For example, if gdb is
attached to two inferiors, each with two threads, the continue command resumes only the
two threads of the current inferior. This is useful, for example, when you debug a program
that forks and you want to hold the parent stopped (so that, for instance, it doesn’t run to
exit), while you debug the child. In other situations, you may not be interested in inspecting
the current state of any of the processes gdb is attached to, and you may want to resume
them all until some breakpoint is hit. In the latter case, you can instruct gdb to allow all
threads of all the inferiors to run with the set schedule-multiple command.

set schedule-multiple

Set the mode for allowing threads of multiple processes to be resumed when an
execution command is issued. When on, all threads of all processes are allowed
to run. When off, only the threads of the current process are resumed. The
default is off. The scheduler-locking mode takes precedence when set to
on, or while you are stepping and set to step.

show schedule-multiple

Display the current mode for resuming the execution of threads of multiple
processes.

5.5.2 Non-Stop Mode

For some multi-threaded targets, gdb supports an optional mode of operation in which
you can examine stopped program threads in the debugger while other threads continue to
execute freely. This minimizes intrusion when debugging live systems, such as programs
where some threads have real-time constraints or must continue to respond to external
events. This is referred to as non-stop mode.

In non-stop mode, when a thread stops to report a debugging event, only that thread is
stopped; gdb does not stop other threads as well, in contrast to the all-stop mode behavior.
Additionally, execution commands such as continue and step apply by default only to
the current thread in non-stop mode, rather than all threads as in all-stop mode. This
allows you to control threads explicitly in ways that are not possible in all-stop mode — for
example, stepping one thread while allowing others to run freely, stepping one thread while
holding all others stopped, or stepping several threads independently and simultaneously.

To enter non-stop mode, use this sequence of commands before you run or attach to
your program:

If using the CLI, pagination breaks non-stop.

set pagination off

94 Debugging with gdb

Finally, turn it on!

set non-stop on

You can use these commands to manipulate the non-stop mode setting:

set non-stop on

Enable selection of non-stop mode.

set non-stop off

Disable selection of non-stop mode.

show non-stop

Show the current non-stop enablement setting.

Note these commands only reflect whether non-stop mode is enabled, not whether the
currently-executing program is being run in non-stop mode. In particular, the set non-stop

preference is only consulted when gdb starts or connects to the target program, and it is
generally not possible to switch modes once debugging has started. Furthermore, since not
all targets support non-stop mode, even when you have enabled non-stop mode, gdb may
still fall back to all-stop operation by default.

In non-stop mode, all execution commands apply only to the current thread by default.
That is, continue only continues one thread. To continue all threads, issue continue -a

or c -a.

You can use gdb’s background execution commands (see Section 5.5.3 [Background
Execution], page 94) to run some threads in the background while you continue to examine
or step others from gdb. The MI execution commands (see Section 27.15 [GDB/MI Program
Execution], page 582) are always executed asynchronously in non-stop mode.

Suspending execution is done with the interrupt command when running in the back-
ground, or Ctrl-c during foreground execution. In all-stop mode, this stops the whole
process; but in non-stop mode the interrupt applies only to the current thread. To stop the
whole program, use interrupt -a.

Other execution commands do not currently support the -a option.

In non-stop mode, when a thread stops, gdb doesn’t automatically make that thread
current, as it does in all-stop mode. This is because the thread stop notifications are
asynchronous with respect to gdb’s command interpreter, and it would be confusing if gdb
unexpectedly changed to a different thread just as you entered a command to operate on
the previously current thread.

5.5.3 Background Execution

gdb’s execution commands have two variants: the normal foreground (synchronous) behav-
ior, and a background (asynchronous) behavior. In foreground execution, gdb waits for the
program to report that some thread has stopped before prompting for another command.
In background execution, gdb immediately gives a command prompt so that you can issue
other commands while your program runs.

If the target doesn’t support async mode, gdb issues an error message if you attempt
to use the background execution commands.

To specify background execution, add a & to the command. For example, the background
form of the continue command is continue&, or just c&. The execution commands that
accept background execution are:

Chapter 5: Stopping and Continuing 95

run See Section 4.2 [Starting your Program], page 32.

attach See Section 4.7 [Debugging an Already-running Process], page 39.

step See Section 5.2 [Continuing and Stepping], page 82.

stepi See Section 5.2 [Continuing and Stepping], page 82.

next See Section 5.2 [Continuing and Stepping], page 82.

nexti See Section 5.2 [Continuing and Stepping], page 82.

continue See Section 5.2 [Continuing and Stepping], page 82.

finish See Section 5.2 [Continuing and Stepping], page 82.

until See Section 5.2 [Continuing and Stepping], page 82.

Background execution is especially useful in conjunction with non-stop mode for debug-
ging programs with multiple threads; see Section 5.5.2 [Non-Stop Mode], page 93. However,
you can also use these commands in the normal all-stop mode with the restriction that you
cannot issue another execution command until the previous one finishes. Examples of com-
mands that are valid in all-stop mode while the program is running include help and info

break.

You can interrupt your program while it is running in the background by using the
interrupt command.

interrupt

interrupt -a

Suspend execution of the running program. In all-stop mode, interrupt stops
the whole process, but in non-stop mode, it stops only the current thread. To
stop the whole program in non-stop mode, use interrupt -a.

5.5.4 Thread-Specific Breakpoints

When your program has multiple threads (see Section 4.10 [Debugging Programs with
Multiple Threads], page 45), you can choose whether to set breakpoints on all threads, or
on a particular thread.

break location thread thread-id

break location thread thread-id if ...

location specifies source lines; there are several ways of writing them (see
Section 9.2 [Specify Location], page 122), but the effect is always to specify
some source line.

Use the qualifier ‘thread thread-id’ with a breakpoint command to specify
that you only want gdb to stop the program when a particular thread reaches
this breakpoint. The thread-id specifier is one of the thread identifiers assigned
by gdb, shown in the first column of the ‘info threads’ display.

If you do not specify ‘thread thread-id’ when you set a breakpoint, the break-
point applies to all threads of your program.

You can use the thread qualifier on conditional breakpoints as well; in this
case, place ‘thread thread-id’ before or after the breakpoint condition, like
this:

(gdb) break frik.c:13 thread 28 if bartab > lim

96 Debugging with gdb

Thread-specific breakpoints are automatically deleted when gdb detects the correspond-
ing thread is no longer in the thread list. For example:

(gdb) c

Thread-specific breakpoint 3 deleted - thread 28 no longer in the thread list.

There are several ways for a thread to disappear, such as a regular thread exit, but also
when you detach from the process with the detach command (see Section 4.7 [Debugging an
Already-running Process], page 39), or if gdb loses the remote connection (see Chapter 20
[Remote Debugging], page 301), etc. Note that with some targets, gdb is only able to
detect a thread has exited when the user explictly asks for the thread list with the info

threads command.

5.5.5 Inferior-Specific Breakpoints

It is also possible to limit breakpoints to specific inferior program space, which can be
especially useful when doing multi-target debugging with some source files shared between
targets.

break location inferior inferior-num

break location inferior inferior-num if ...

location specifies source lines; there are several ways of writing them (see
Section 9.2 [Specify Location], page 122), but the effect is always to specify
some source line.

Use the qualifier ‘inferior inferior-num’ with a breakpoint command to
specify that you only want gdb to stop the program if execution happens in a
context of the specified inferior. The inferior-num number is one of the inferior
numbers as shown by ‘info inferior’ command output.

One major difference compared to see Section 5.5.4 [Thread-Specific Break-
points], page 95, is that inferior specific breakpoints won’t be inserted at all for
other inferiors and thus won’t be shown by the ‘info break’ command.

If inferior gets removed while inferior-specific breakpoint is present, a warning
will be printed and the breakpoint will never be hit.

You can use the inferior qualifier with the other qualifiers and conditionals
too:

(gdb) break frik.c:13 inferior 1 thread 2 if bartab > lim

5.5.6 Interrupted System Calls

There is an unfortunate side effect when using gdb to debug multi-threaded programs. If
one thread stops for a breakpoint, or for some other reason, and another thread is blocked
in a system call, then the system call may return prematurely. This is a consequence
of the interaction between multiple threads and the signals that gdb uses to implement
breakpoints and other events that stop execution.

To handle this problem, your program should check the return value of each system call
and react appropriately. This is good programming style anyways.

For example, do not write code like this:
sleep (10);

The call to sleep will return early if a different thread stops at a breakpoint or for some
other reason.

Chapter 5: Stopping and Continuing 97

Instead, write this:

int unslept = 10;

while (unslept > 0)

unslept = sleep (unslept);

A system call is allowed to return early, so the system is still conforming to its specifica-
tion. But gdb does cause your multi-threaded program to behave differently than it would
without gdb.

Also, gdb uses internal breakpoints in the thread library to monitor certain events such
as thread creation and thread destruction. When such an event happens, a system call
in another thread may return prematurely, even though your program does not appear to
stop.

5.5.7 Observer Mode

If you want to build on non-stop mode and observe program behavior without any chance
of disruption by gdb, you can set variables to disable all of the debugger’s attempts to
modify state, whether by writing memory, inserting breakpoints, etc. These operate at a
low level, intercepting operations from all commands.

When all of these are set to off, then gdb is said to be observer mode. As a convenience,
the variable observer can be set to disable these, plus enable non-stop mode.

Note that gdb will not prevent you from making nonsensical combinations of these set-
tings. For instance, if you have enabled may-insert-breakpoints but disabled may-write-

memory, then breakpoints that work by writing trap instructions into the code stream will
still not be able to be placed.

set observer on

set observer off

When set to on, this disables all the permission variables below (except for
insert-fast-tracepoints), plus enables non-stop debugging. Setting this to
off switches back to normal debugging, though remaining in non-stop mode.

show observer

Show whether observer mode is on or off.

set may-write-registers on

set may-write-registers off

This controls whether gdb will attempt to alter the values of registers, such as
with assignment expressions in print, or the jump command. It defaults to on.

show may-write-registers

Show the current permission to write registers.

set may-write-memory on

set may-write-memory off

This controls whether gdb will attempt to alter the contents of memory, such
as with assignment expressions in print. It defaults to on.

show may-write-memory

Show the current permission to write memory.

98 Debugging with gdb

set may-insert-breakpoints on

set may-insert-breakpoints off

This controls whether gdb will attempt to insert breakpoints. This affects all
breakpoints, including internal breakpoints defined by gdb. It defaults to on.

show may-insert-breakpoints

Show the current permission to insert breakpoints.

set may-insert-tracepoints on

set may-insert-tracepoints off

This controls whether gdb will attempt to insert (regular) tracepoints at the
beginning of a tracing experiment. It affects only non-fast tracepoints, fast tra-
cepoints being under the control of may-insert-fast-tracepoints. It defaults
to on.

show may-insert-tracepoints

Show the current permission to insert tracepoints.

set may-insert-fast-tracepoints on

set may-insert-fast-tracepoints off

This controls whether gdb will attempt to insert fast tracepoints at the begin-
ning of a tracing experiment. It affects only fast tracepoints, regular (non-fast)
tracepoints being under the control of may-insert-tracepoints. It defaults
to on.

show may-insert-fast-tracepoints

Show the current permission to insert fast tracepoints.

set may-interrupt on

set may-interrupt off

This controls whether gdb will attempt to interrupt or stop program execution.
When this variable is off, the interrupt command will have no effect, nor will
Ctrl-c. It defaults to on.

show may-interrupt

Show the current permission to interrupt or stop the program.

99

6 Running programs backward

When you are debugging a program, it is not unusual to realize that you have gone too far,
and some event of interest has already happened. If the target environment supports it,
gdb can allow you to “rewind” the program by running it backward.

A target environment that supports reverse execution should be able to “undo” the
changes in machine state that have taken place as the program was executing normally.
Variables, registers etc. should revert to their previous values. Obviously this requires a
great deal of sophistication on the part of the target environment; not all target environ-
ments can support reverse execution.

When a program is executed in reverse, the instructions that have most recently been
executed are “un-executed”, in reverse order. The program counter runs backward, follow-
ing the previous thread of execution in reverse. As each instruction is “un-executed”, the
values of memory and/or registers that were changed by that instruction are reverted to
their previous states. After executing a piece of source code in reverse, all side effects of
that code should be “undone”, and all variables should be returned to their prior values1.

On some platforms, gdb has built-in support for reverse execution, activated with the
record or record btrace commands. See Chapter 7 [Process Record and Replay], page 101.
Some remote targets, typically full system emulators, support reverse execution directly
without requiring any special command.

If you are debugging in a target environment that supports reverse execution, gdb
provides the following commands.

reverse-continue [ignore-count]
rc [ignore-count]

Beginning at the point where your program last stopped, start executing in
reverse. Reverse execution will stop for breakpoints and synchronous exceptions
(signals), just like normal execution. Behavior of asynchronous signals depends
on the target environment.

reverse-step [count]
Run the program backward until control reaches the start of a different source
line; then stop it, and return control to gdb.

Like the step command, reverse-step will only stop at the beginning of a
source line. It “un-executes” the previously executed source line. If the pre-
vious source line included calls to debuggable functions, reverse-step will
step (backward) into the called function, stopping at the beginning of the last
statement in the called function (typically a return statement).

Also, as with the step command, if non-debuggable functions are called,
reverse-step will run thru them backward without stopping.

1 Note that some side effects are easier to undo than others. For instance, memory and registers are
relatively easy, but device I/O is hard. Some targets may be able undo things like device I/O, and some
may not.

The contract between gdb and the reverse executing target requires only that the target do something
reasonable when gdb tells it to execute backwards, and then report the results back to gdb. Whatever
the target reports back to gdb, gdb will report back to the user. gdb assumes that the memory and
registers that the target reports are in a consistent state, but gdb accepts whatever it is given.

100 Debugging with gdb

reverse-stepi [count]
Reverse-execute one machine instruction. Note that the instruction to be
reverse-executed is not the one pointed to by the program counter, but the
instruction executed prior to that one. For instance, if the last instruction was
a jump, reverse-stepi will take you back from the destination of the jump to
the jump instruction itself.

reverse-next [count]
Run backward to the beginning of the previous line executed in the current
(innermost) stack frame. If the line contains function calls, they will be
“un-executed” without stopping. Starting from the first line of a function,
reverse-next will take you back to the caller of that function, before the
function was called, just as the normal next command would take you from
the last line of a function back to its return to its caller2.

reverse-nexti [count]
Like nexti, reverse-nexti executes a single instruction in reverse, except
that called functions are “un-executed” atomically. That is, if the previously
executed instruction was a return from another function, reverse-nexti will
continue to execute in reverse until the call to that function (from the current
stack frame) is reached.

reverse-finish

Just as the finish command takes you to the point where the current function
returns, reverse-finish takes you to the point where it was called. Instead
of ending up at the end of the current function invocation, you end up at the
beginning.

set exec-direction

Set the direction of target execution.

set exec-direction reverse

gdb will perform all execution commands in reverse, until the exec-direction
mode is changed to “forward”. Affected commands include step, stepi,

next, nexti, continue, and finish. The return command cannot be used
in reverse mode.

set exec-direction forward

gdb will perform all execution commands in the normal fashion. This is the
default.

2 Unless the code is too heavily optimized.

101

7 Recording Inferior’s Execution and Replaying It

On some platforms, gdb provides a special process record and replay target that can record
a log of the process execution, and replay it later with both forward and reverse execution
commands.

When this target is in use, if the execution log includes the record for the next instruction,
gdb will debug in replay mode. In the replay mode, the inferior does not really execute
code instructions. Instead, all the events that normally happen during code execution are
taken from the execution log. While code is not really executed in replay mode, the values
of registers (including the program counter register) and the memory of the inferior are still
changed as they normally would. Their contents are taken from the execution log.

If the record for the next instruction is not in the execution log, gdb will debug in record
mode. In this mode, the inferior executes normally, and gdb records the execution log for
future replay.

The process record and replay target supports reverse execution (see Chapter 6 [Reverse
Execution], page 99), even if the platform on which the inferior runs does not. However,
the reverse execution is limited in this case by the range of the instructions recorded in the
execution log. In other words, reverse execution on platforms that don’t support it directly
can only be done in the replay mode.

When debugging in the reverse direction, gdb will work in replay mode as long as the
execution log includes the record for the previous instruction; otherwise, it will work in
record mode, if the platform supports reverse execution, or stop if not.

Currently, process record and replay is supported on ARM, Aarch64, Moxie, PowerPC,
PowerPC64, S/390, and x86 (i386/amd64) running GNU/Linux. Process record and replay
can be used both when native debugging, and when remote debugging via gdbserver.

When recording an inferior, GDB may print additional auxiliary information during
stepping commands and commands displaying the execution history.

For architecture environments that support process record and replay, gdb provides the
following commands:

record method

This command starts the process record and replay target. The recording
method can be specified as parameter. Without a parameter the command
uses the full recording method. The following recording methods are avail-
able:

full Full record/replay recording using gdb’s software record and re-
play implementation. This method allows replaying and reverse
execution.

btrace format

Hardware-supported instruction recording, supported on Intel pro-
cessors. This method does not record data. Further, the data is
collected in a ring buffer so old data will be overwritten when the
buffer is full. It allows limited reverse execution. Variables and
registers are not available during reverse execution. In remote de-
bugging, recording continues on disconnect. Recorded data can be

102 Debugging with gdb

inspected after reconnecting. The recording may be stopped using
record stop.

The recording format can be specified as parameter. Without a pa-
rameter the command chooses the recording format. The following
recording formats are available:

bts Use the Branch Trace Store (BTS) recording format.
In this format, the processor stores a from/to record
for each executed branch in the btrace ring buffer.

pt Use the Intel Processor Trace recording format. In this
format, the processor stores the execution trace in a
compressed form that is afterwards decoded by gdb.

The trace can be recorded with very low overhead. The
compressed trace format also allows small trace buffers
to already contain a big number of instructions com-
pared to BTS.

Decoding the recorded execution trace, on the other
hand, is more expensive than decoding BTS trace. This
is mostly due to the increased number of instructions to
process. You should increase the buffer-size with care.

Not all recording formats may be available on all processors.

The process record and replay target can only debug a process that is already
running. Therefore, you need first to start the process with the run or start
commands, and then start the recording with the record method command.

Displaced stepping (see Appendix D [displaced stepping], page 707) will be
automatically disabled when process record and replay target is started. That’s
because the process record and replay target doesn’t support displaced stepping.

If the inferior is in the non-stop mode (see Section 5.5.2 [Non-Stop Mode],
page 93) or in the asynchronous execution mode (see Section 5.5.3 [Background
Execution], page 94), not all recording methods are available. The full record-
ing method does not support these two modes.

record stop

Stop the process record and replay target. When process record and replay
target stops, the entire execution log will be deleted and the inferior will either
be terminated, or will remain in its final state.

When you stop the process record and replay target in record mode (at the
end of the execution log), the inferior will be stopped at the next instruction
that would have been recorded. In other words, if you record for a while and
then stop recording, the inferior process will be left in the same state as if the
recording never happened.

On the other hand, if the process record and replay target is stopped while in
replay mode (that is, not at the end of the execution log, but at some earlier
point), the inferior process will become “live” at that earlier state, and it will
then be possible to continue the usual “live” debugging of the process from that
state.

Chapter 7: Recording Inferior’s Execution and Replaying It 103

When the inferior process exits, or gdb detaches from it, process record and
replay target will automatically stop itself.

record goto

Go to a specific location in the execution log. There are several ways to specify
the location to go to:

record goto begin

record goto start

Go to the beginning of the execution log.

record goto end

Go to the end of the execution log.

record goto n

Go to instruction number n in the execution log.

record save filename

Save the execution log to a file filename. Default filename is
gdb_record.process_id, where process id is the process ID of the inferior.

This command may not be available for all recording methods.

record restore filename

Restore the execution log from a file filename. File must have been created
with record save.

set record full insn-number-max limit

set record full insn-number-max unlimited

Set the limit of instructions to be recorded for the full recording method.
Default value is 200000.

If limit is a positive number, then gdb will start deleting instructions from the
log once the number of the record instructions becomes greater than limit. For
every new recorded instruction, gdb will delete the earliest recorded instruc-
tion to keep the number of recorded instructions at the limit. (Since deleting
recorded instructions loses information, gdb lets you control what happens
when the limit is reached, by means of the stop-at-limit option, described
below.)

If limit is unlimited or zero, gdb will never delete recorded instructions from
the execution log. The number of recorded instructions is limited only by the
available memory.

show record full insn-number-max

Show the limit of instructions to be recorded with the full recording method.

set record full stop-at-limit

Control the behavior of the full recording method when the number of recorded
instructions reaches the limit. If ON (the default), gdb will stop when the limit
is reached for the first time and ask you whether you want to stop the inferior or
continue running it and recording the execution log. If you decide to continue
recording, each new recorded instruction will cause the oldest one to be deleted.

If this option is OFF, gdb will automatically delete the oldest record to make
room for each new one, without asking.

104 Debugging with gdb

show record full stop-at-limit

Show the current setting of stop-at-limit.

set record full memory-query

Control the behavior when gdb is unable to record memory changes caused by
an instruction for the full recording method. If ON, gdb will query whether
to stop the inferior in that case.

If this option is OFF (the default), gdb will automatically ignore the effect of
such instructions on memory. Later, when gdb replays this execution log, it
will mark the log of this instruction as not accessible, and it will not affect the
replay results.

show record full memory-query

Show the current setting of memory-query.

The btrace record target does not trace data. As a convenience, when replay-
ing, gdb reads read-only memory off the live program directly, assuming that
the addresses of the read-only areas don’t change. This for example makes it
possible to disassemble code while replaying, but not to print variables. In some
cases, being able to inspect variables might be useful. You can use the following
command for that:

set record btrace replay-memory-access

Control the behavior of the btrace recording method when accessing memory
during replay. If read-only (the default), gdb will only allow accesses to
read-only memory. If read-write, gdb will allow accesses to read-only and to
read-write memory. Beware that the accessed memory corresponds to the live
target and not necessarily to the current replay position.

set record btrace cpu identifier

Set the processor to be used for enabling workarounds for processor errata when
decoding the trace.

Processor errata are defects in processor operation, caused by its design or
manufacture. They can cause a trace not to match the specification. This, in
turn, may cause trace decode to fail. gdb can detect erroneous trace packets
and correct them, thus avoiding the decoding failures. These corrections are
known as errata workarounds, and are enabled based on the processor on which
the trace was recorded.

By default, gdb attempts to detect the processor automatically, and apply the
necessary workarounds for it. However, you may need to specify the processor
if gdb does not yet support it. This command allows you to do that, and also
allows to disable the workarounds.

The argument identifier identifies the cpu and is of the form: ven-

dor:processor identifier. In addition, there are two special identifiers,
none and auto (default).

The following vendor identifiers and corresponding processor identifiers are cur-
rently supported:

Chapter 7: Recording Inferior’s Execution and Replaying It 105

intel family/model[/stepping]

On GNU/Linux systems, the processor family, model, and stepping can be
obtained from /proc/cpuinfo.

If identifier is auto, enable errata workarounds for the processor on which the
trace was recorded. If identifier is none, errata workarounds are disabled.

For example, when using an old gdb on a new system, decode may fail because
gdb does not support the new processor. It often suffices to specify an older
processor that gdb supports.

(gdb) info record

Active record target: record-btrace

Recording format: Intel Processor Trace.

Buffer size: 16kB.

Failed to configure the Intel Processor Trace decoder: unknown cpu.

(gdb) set record btrace cpu intel:6/158

(gdb) info record

Active record target: record-btrace

Recording format: Intel Processor Trace.

Buffer size: 16kB.

Recorded 84872 instructions in 3189 functions (0 gaps) for thread 1 (...).

show record btrace replay-memory-access

Show the current setting of replay-memory-access.

show record btrace cpu

Show the processor to be used for enabling trace decode errata workarounds.

set record btrace bts buffer-size size

set record btrace bts buffer-size unlimited

Set the requested ring buffer size for branch tracing in BTS format. Default is
64KB.

If size is a positive number, then gdb will try to allocate a buffer of at least size
bytes for each new thread that uses the btrace recording method and the BTS

format. The actually obtained buffer size may differ from the requested size.
Use the info record command to see the actual buffer size for each thread that
uses the btrace recording method and the BTS format.

If limit is unlimited or zero, gdb will try to allocate a buffer of 4MB.

Bigger buffers mean longer traces. On the other hand, gdb will also need longer
to process the branch trace data before it can be used.

show record btrace bts buffer-size size

Show the current setting of the requested ring buffer size for branch tracing in
BTS format.

set record btrace pt buffer-size size

set record btrace pt buffer-size unlimited

Set the requested ring buffer size for branch tracing in Intel Processor Trace
format. Default is 16KB.

If size is a positive number, then gdb will try to allocate a buffer of at least
size bytes for each new thread that uses the btrace recording method and the

106 Debugging with gdb

Intel Processor Trace format. The actually obtained buffer size may differ from
the requested size. Use the info record command to see the actual buffer size
for each thread.

If limit is unlimited or zero, gdb will try to allocate a buffer of 4MB.

Bigger buffers mean longer traces. On the other hand, gdb will also need longer
to process the branch trace data before it can be used.

show record btrace pt buffer-size size

Show the current setting of the requested ring buffer size for branch tracing in
Intel Processor Trace format.

info record

Show various statistics about the recording depending on the recording method:

full For the full recording method, it shows the state of process record
and its in-memory execution log buffer, including:

• Whether in record mode or replay mode.

• Lowest recorded instruction number (counting from when the
current execution log started recording instructions).

• Highest recorded instruction number.

• Current instruction about to be replayed (if in replay mode).

• Number of instructions contained in the execution log.

• Maximum number of instructions that may be contained in the
execution log.

btrace For the btrace recording method, it shows:

• Recording format.

• Number of instructions that have been recorded.

• Number of blocks of sequential control-flow formed by the
recorded instructions.

• Whether in record mode or replay mode.

For the bts recording format, it also shows:

• Size of the perf ring buffer.

For the pt recording format, it also shows:

• Size of the perf ring buffer.

record delete

When record target runs in replay mode (“in the past”), delete the subsequent
execution log and begin to record a new execution log starting from the current
address. This means you will abandon the previously recorded “future” and
begin recording a new “future”.

record instruction-history

Disassembles instructions from the recorded execution log. By default, ten
instructions are disassembled. This can be changed using the set record

instruction-history-size command. Instructions are printed in execution
order.

Chapter 7: Recording Inferior’s Execution and Replaying It 107

It can also print mixed source+disassembly if you specify the the /m or /s

modifier, and print the raw instructions in hex as well as in symbolic form by
specifying the /r modifier.

The current position marker is printed for the instruction at the current program
counter value. This instruction can appear multiple times in the trace and the
current position marker will be printed every time. To omit the current position
marker, specify the /p modifier.

To better align the printed instructions when the trace contains instructions
from more than one function, the function name may be omitted by specifying
the /f modifier.

Speculatively executed instructions are prefixed with ‘?’. This feature is not
available for all recording formats.

There are several ways to specify what part of the execution log to disassemble:

record instruction-history insn

Disassembles ten instructions starting from instruction number
insn.

record instruction-history insn, +/-n

Disassembles n instructions around instruction number insn. If n
is preceded with +, disassembles n instructions after instruction
number insn. If n is preceded with -, disassembles n instructions
before instruction number insn.

record instruction-history

Disassembles ten more instructions after the last disassembly.

record instruction-history -

Disassembles ten more instructions before the last disassembly.

record instruction-history begin, end

Disassembles instructions beginning with instruction number be-
gin until instruction number end. The instruction number end is
included.

This command may not be available for all recording methods.

set record instruction-history-size size

set record instruction-history-size unlimited

Define how many instructions to disassemble in the record

instruction-history command. The default value is 10. A size of
unlimited means unlimited instructions.

show record instruction-history-size

Show how many instructions to disassemble in the record

instruction-history command.

record function-call-history

Prints the execution history at function granularity. For each sequence of in-
structions that belong to the same function, it prints the name of that function,
the source lines for this instruction sequence (if the /l modifier is specified),

108 Debugging with gdb

and the instructions numbers that form the sequence (if the /i modifier is spec-
ified). The function names are indented to reflect the call stack depth if the /c
modifier is specified. Printing auxiliary information is enabled by default and
can be omitted with the /s modifier. The /l, /i, and /c modifiers can be given
together.

(gdb) list 1, 10
1 void foo (void)

2 {

3 }

4

5 void bar (void)

6 {

7 ...

8 foo ();

9 ...

10 }

(gdb) record function-call-history /ilc
1 bar inst 1,4 at foo.c:6,8

2 foo inst 5,10 at foo.c:2,3

3 bar inst 11,13 at foo.c:9,10

By default, ten functions are printed. This can be changed using the set record

function-call-history-size command. Functions are printed in execution
order. There are several ways to specify what to print:

record function-call-history func

Prints ten functions starting from function number func.

record function-call-history func, +/-n

Prints n functions around function number func. If n is preceded
with +, prints n functions after function number func. If n is pre-
ceded with -, prints n functions before function number func.

record function-call-history

Prints ten more functions after the last ten-function print.

record function-call-history -

Prints ten more functions before the last ten-function print.

record function-call-history begin, end

Prints functions beginning with function number begin until func-
tion number end. The function number end is included.

This command may not be available for all recording methods.

set record function-call-history-size size

set record function-call-history-size unlimited

Define how many functions to print in the record function-call-history

command. The default value is 10. A size of unlimited means unlimited
functions.

show record function-call-history-size

Show how many functions to print in the record function-call-history com-
mand.

109

8 Examining the Stack

When your program has stopped, the first thing you need to know is where it stopped and
how it got there.

Each time your program performs a function call, information about the call is generated.
That information includes the location of the call in your program, the arguments of the
call, and the local variables of the function being called. The information is saved in a block
of data called a stack frame. The stack frames are allocated in a region of memory called
the call stack.

When your program stops, the gdb commands for examining the stack allow you to see
all of this information.

One of the stack frames is selected by gdb and many gdb commands refer implicitly
to the selected frame. In particular, whenever you ask gdb for the value of a variable in
your program, the value is found in the selected frame. There are special gdb commands to
select whichever frame you are interested in. See Section 8.3 [Selecting a Frame], page 113.

When your program stops, gdb automatically selects the currently executing frame and
describes it briefly, similar to the frame command (see Section 8.4 [Information about a
Frame], page 115).

8.1 Stack Frames

The call stack is divided up into contiguous pieces called stack frames, or frames for short;
each frame is the data associated with one call to one function. The frame contains the
arguments given to the function, the function’s local variables, and the address at which
the function is executing.

When your program is started, the stack has only one frame, that of the function main.
This is called the initial frame or the outermost frame. Each time a function is called, a
new frame is made. Each time a function returns, the frame for that function invocation
is eliminated. If a function is recursive, there can be many frames for the same function.
The frame for the function in which execution is actually occurring is called the innermost
frame. This is the most recently created of all the stack frames that still exist.

Inside your program, stack frames are identified by their addresses. A stack frame
consists of many bytes, each of which has its own address; each kind of computer has a con-
vention for choosing one byte whose address serves as the address of the frame. Usually this
address is kept in a register called the frame pointer register (see Section 10.14 [Registers],
page 171) while execution is going on in that frame.

gdb labels each existing stack frame with a level, a number that is zero for the innermost
frame, one for the frame that called it, and so on upward. These level numbers give you
a way of designating stack frames in gdb commands. The terms frame number and frame
level can be used interchangeably to describe this number.

Some compilers provide a way to compile functions so that they operate without stack
frames. (For example, the gcc option

‘-fomit-frame-pointer’

generates functions without a frame.) This is occasionally done with heavily used li-
brary functions to save the frame setup time. gdb has limited facilities for dealing with

110 Debugging with gdb

these function invocations. If the innermost function invocation has no stack frame, gdb
nevertheless regards it as though it had a separate frame, which is numbered zero as usual,
allowing correct tracing of the function call chain. However, gdb has no provision for
frameless functions elsewhere in the stack.

8.2 Backtraces

A backtrace is a summary of how your program got where it is. It shows one line per frame,
for many frames, starting with the currently executing frame (frame zero), followed by its
caller (frame one), and on up the stack.

To print a backtrace of the entire stack, use the backtrace command, or its alias bt.
This command will print one line per frame for frames in the stack. By default, all stack
frames are printed. You can stop the backtrace at any time by typing the system interrupt
character, normally Ctrl-c.

backtrace [option]... [qualifier]... [count]

bt [option]... [qualifier]... [count]

Print the backtrace of the entire stack.

The optional count can be one of the following:

n

n Print only the innermost n frames, where n is a positive number.

-n

-n Print only the outermost n frames, where n is a positive number.

Options:

-full Print the values of the local variables also. This can be combined
with the optional count to limit the number of frames shown.

-no-filters

Do not run Python frame filters on this backtrace. See
Section 23.3.2.9 [Frame Filter API], page 406, for more
information. Additionally use [disable frame-filter all], page 118,
to turn off all frame filters. This is only relevant when gdb has
been configured with Python support.

-hide A Python frame filter might decide to “elide” some frames. Nor-
mally such elided frames are still printed, but they are indented
relative to the filtered frames that cause them to be elided. The
-hide option causes elided frames to not be printed at all.

The backtrace command also supports a number of options that allow over-
riding relevant global print settings as set by set backtrace and set print

subcommands:

-past-main [on|off]

Set whether backtraces should continue past main. Related setting:
[set backtrace past-main], page 112.

-past-entry [on|off]

Set whether backtraces should continue past the entry point of a
program. Related setting: [set backtrace past-entry], page 112.

Chapter 8: Examining the Stack 111

-entry-values no|only|preferred|if-needed|both|compact|default

Set printing of function arguments at function entry. Related set-
ting: [set print entry-values], page 154.

-frame-arguments all|scalars|none

Set printing of non-scalar frame arguments. Related setting: [set
print frame-arguments], page 153.

-raw-frame-arguments [on|off]

Set whether to print frame arguments in raw form. Related setting:
[set print raw-frame-arguments], page 154.

-frame-info auto|source-line|location|source-and-

location|location-and-address|short-location

Set printing of frame information. Related setting: [set print frame-
info], page 156.

The optional qualifier is maintained for backward compatibility. It can be one
of the following:

full Equivalent to the -full option.

no-filters

Equivalent to the -no-filters option.

hide Equivalent to the -hide option.

The names where and info stack (abbreviated info s) are additional aliases for
backtrace.

In a multi-threaded program, gdb by default shows the backtrace only for the current
thread. To display the backtrace for several or all of the threads, use the command thread

apply (see Section 4.10 [Threads], page 45). For example, if you type thread apply all

backtrace, gdb will display the backtrace for all the threads; this is handy when you debug
a core dump of a multi-threaded program.

Each line in the backtrace shows the frame number and the function name. The program
counter value is also shown—unless you use set print address off. The backtrace also
shows the source file name and line number, as well as the arguments to the function. The
program counter value is omitted if it is at the beginning of the code for that line number.

Here is an example of a backtrace. It was made with the command ‘bt 3’, so it shows
the innermost three frames.

#0 m4_traceon (obs=0x24eb0, argc=1, argv=0x2b8c8)

at builtin.c:993

#1 0x6e38 in expand_macro (sym=0x2b600, data=...) at macro.c:242

#2 0x6840 in expand_token (obs=0x0, t=177664, td=0xf7fffb08)

at macro.c:71

(More stack frames follow...)

The display for frame zero does not begin with a program counter value, indicating that
your program has stopped at the beginning of the code for line 993 of builtin.c.

The value of parameter data in frame 1 has been replaced by By default, gdb prints
the value of a parameter only if it is a scalar (integer, pointer, enumeration, etc). See
command set print frame-arguments in Section 10.9 [Print Settings], page 151, for more

112 Debugging with gdb

details on how to configure the way function parameter values are printed. The command
set print frame-info (see Section 10.9 [Print Settings], page 151) controls what frame
information is printed.

If your program was compiled with optimizations, some compilers will optimize away
arguments passed to functions if those arguments are never used after the call. Such opti-
mizations generate code that passes arguments through registers, but doesn’t store those
arguments in the stack frame. gdb has no way of displaying such arguments in stack frames
other than the innermost one. Here’s what such a backtrace might look like:

#0 m4_traceon (obs=0x24eb0, argc=1, argv=0x2b8c8)

at builtin.c:993

#1 0x6e38 in expand_macro (sym=<optimized out>) at macro.c:242

#2 0x6840 in expand_token (obs=0x0, t=<optimized out>, td=0xf7fffb08)

at macro.c:71

(More stack frames follow...)

The values of arguments that were not saved in their stack frames are shown as ‘<optimized
out>’.

If you need to display the values of such optimized-out arguments, either deduce that
from other variables whose values depend on the one you are interested in, or recompile
without optimizations.

Most programs have a standard user entry point—a place where system libraries and
startup code transition into user code. For C this is main1. When gdb finds the entry
function in a backtrace it will terminate the backtrace, to avoid tracing into highly system-
specific (and generally uninteresting) code.

If you need to examine the startup code, or limit the number of levels in a backtrace,
you can change this behavior:

set backtrace past-main

set backtrace past-main on

Backtraces will continue past the user entry point.

set backtrace past-main off

Backtraces will stop when they encounter the user entry point. This is the
default.

show backtrace past-main

Display the current user entry point backtrace policy.

set backtrace past-entry

set backtrace past-entry on

Backtraces will continue past the internal entry point of an application. This
entry point is encoded by the linker when the application is built, and is likely
before the user entry point main (or equivalent) is called.

set backtrace past-entry off

Backtraces will stop when they encounter the internal entry point of an appli-
cation. This is the default.

1 Note that embedded programs (the so-called “free-standing” environment) are not required to have a
main function as the entry point. They could even have multiple entry points.

Chapter 8: Examining the Stack 113

show backtrace past-entry

Display the current internal entry point backtrace policy.

set backtrace limit n

set backtrace limit 0

set backtrace limit unlimited

Limit the backtrace to n levels. A value of unlimited or zero means unlimited
levels.

show backtrace limit

Display the current limit on backtrace levels.

You can control how file names are displayed.

set filename-display

set filename-display relative

Display file names relative to the compilation directory. This is the default.

set filename-display basename

Display only basename of a filename.

set filename-display absolute

Display an absolute filename.

show filename-display

Show the current way to display filenames.

8.3 Selecting a Frame

Most commands for examining the stack and other data in your program work on whichever
stack frame is selected at the moment. Here are the commands for selecting a stack frame;
all of them finish by printing a brief description of the stack frame just selected.

frame [frame-selection-spec]
f [frame-selection-spec]

The frame command allows different stack frames to be selected. The frame-
selection-spec can be any of the following:

num

level num Select frame level num. Recall that frame zero is the innermost
(currently executing) frame, frame one is the frame that called the
innermost one, and so on. The highest level frame is usually the
one for main.

As this is the most common method of navigating the frame stack,
the string level can be omitted. For example, the following two
commands are equivalent:

(gdb) frame 3

(gdb) frame level 3

address stack-address

Select the frame with stack address stack-address. The stack-
address for a frame can be seen in the output of info frame, for
example:

(gdb) info frame

114 Debugging with gdb

Stack level 1, frame at 0x7fffffffda30:

rip = 0x40066d in b (amd64-entry-value.cc:59); saved rip 0x4004c5

tail call frame, caller of frame at 0x7fffffffda30

source language c++.

Arglist at unknown address.

Locals at unknown address, Previous frame’s sp is 0x7fffffffda30

The stack-address for this frame is 0x7fffffffda30 as indicated
by the line:

Stack level 1, frame at 0x7fffffffda30:

function function-name

Select the stack frame for function function-name. If there are
multiple stack frames for function function-name then the inner
most stack frame is selected.

view stack-address [pc-addr]
View a frame that is not part of gdb’s backtrace. The frame viewed
has stack address stack-addr, and optionally, a program counter
address of pc-addr.

This is useful mainly if the chaining of stack frames has been dam-
aged by a bug, making it impossible for gdb to assign numbers
properly to all frames. In addition, this can be useful when your
program has multiple stacks and switches between them.

When viewing a frame outside the current backtrace using frame

view then you can always return to the original stack using one of
the previous stack frame selection instructions, for example frame

level 0.

up n Move n frames up the stack; n defaults to 1. For positive numbers n, this
advances toward the outermost frame, to higher frame numbers, to frames that
have existed longer.

down n Move n frames down the stack; n defaults to 1. For positive numbers n, this
advances toward the innermost frame, to lower frame numbers, to frames that
were created more recently. You may abbreviate down as do.

All of these commands end by printing two lines of output describing the frame. The
first line shows the frame number, the function name, the arguments, and the source file
and line number of execution in that frame. The second line shows the text of that source
line.

For example:

(gdb) up

#1 0x22f0 in main (argc=1, argv=0xf7fffbf4, env=0xf7fffbfc)

at env.c:10

10 read_input_file (argv[i]);

After such a printout, the list command with no arguments prints ten lines centered on
the point of execution in the frame. You can also edit the program at the point of execution
with your favorite editing program by typing edit. See Section 9.1 [Printing Source Lines],
page 121, for details.

Chapter 8: Examining the Stack 115

select-frame [frame-selection-spec]
The select-frame command is a variant of frame that does not display the
new frame after selecting it. This command is intended primarily for use in
gdb command scripts, where the output might be unnecessary and distracting.
The frame-selection-spec is as for the frame command described in Section 8.3
[Selecting a Frame], page 113.

up-silently n

down-silently n

These two commands are variants of up and down, respectively; they differ in
that they do their work silently, without causing display of the new frame. They
are intended primarily for use in gdb command scripts, where the output might
be unnecessary and distracting.

8.4 Information About a Frame

There are several other commands to print information about the selected stack frame.

frame

f When used without any argument, this command does not change which frame
is selected, but prints a brief description of the currently selected stack frame.
It can be abbreviated f. With an argument, this command is used to select a
stack frame. See Section 8.3 [Selecting a Frame], page 113.

info frame

info f This command prints a verbose description of the selected stack frame, includ-
ing:

• the address of the frame

• the address of the next frame down (called by this frame)

• the address of the next frame up (caller of this frame)

• the language in which the source code corresponding to this frame is written

• the address of the frame’s arguments

• the address of the frame’s local variables

• the program counter saved in it (the address of execution in the caller
frame)

• which registers were saved in the frame

The verbose description is useful when something has gone wrong that has made
the stack format fail to fit the usual conventions.

info frame [frame-selection-spec]
info f [frame-selection-spec]

Print a verbose description of the frame selected by frame-selection-spec. The
frame-selection-spec is the same as for the frame command (see Section 8.3
[Selecting a Frame], page 113). The selected frame remains unchanged by this
command.

info args [-q]

Print the arguments of the selected frame, each on a separate line.

116 Debugging with gdb

The optional flag ‘-q’, which stands for ‘quiet’, disables printing header infor-
mation and messages explaining why no argument have been printed.

info args [-q] [-t type_regexp] [regexp]

Like info args, but only print the arguments selected with the provided reg-
exp(s).

If regexp is provided, print only the arguments whose names match the regular
expression regexp.

If type regexp is provided, print only the arguments whose types, as printed by
the whatis command, match the regular expression type regexp. If type regexp
contains space(s), it should be enclosed in quote characters. If needed, use
backslash to escape the meaning of special characters or quotes.

If both regexp and type regexp are provided, an argument is printed only if its
name matches regexp and its type matches type regexp.

info locals [-q]

Print the local variables of the selected frame, each on a separate line. These
are all variables (declared either static or automatic) accessible at the point of
execution of the selected frame.

The optional flag ‘-q’, which stands for ‘quiet’, disables printing header infor-
mation and messages explaining why no local variables have been printed.

1: int x = 3;

2: {

3: int x = 4; // breakpt

4: }

(gdb) info locals

x = 4

x = 3 <shadowed: decl at line 1>

If a variable is shadowed, the declaration line is also printed.

info locals [-q] [-t type_regexp] [regexp]

Like info locals, but only print the local variables selected with the provided
regexp(s).

If regexp is provided, print only the local variables whose names match the
regular expression regexp.

If type regexp is provided, print only the local variables whose types, as
printed by the whatis command, match the regular expression type regexp.
If type regexp contains space(s), it should be enclosed in quote characters. If
needed, use backslash to escape the meaning of special characters or quotes.

If both regexp and type regexp are provided, a local variable is printed only if
its name matches regexp and its type matches type regexp.

The command info locals -q -t type_regexp can usefully be combined with
the commands frame apply and thread apply. For example, your program
might use Resource Acquisition Is Initialization types (RAII) such as lock_

something_t: each local variable of type lock_something_t automatically
places a lock that is destroyed when the variable goes out of scope. You can
then list all acquired locks in your program by doing

thread apply all -s frame apply all -s info locals -q -t lock_something_t

Chapter 8: Examining the Stack 117

or the equivalent shorter form

tfaas i lo -q -t lock_something_t

8.5 Applying a Command to Several Frames.

frame apply [all | count | -count | level level...] [option]... command

The frame apply command allows you to apply the named command to one
or more frames.

all Specify all to apply command to all frames.

count Use count to apply command to the innermost count frames, where
count is a positive number.

-count Use -count to apply command to the outermost count frames, where
count is a positive number.

level Use level to apply command to the set of frames identified by the
level list. level is a frame level or a range of frame levels as level1-
level2. The frame level is the number shown in the first field of the
‘backtrace’ command output. E.g., ‘2-4 6-8 3’ indicates to apply
command for the frames at levels 2, 3, 4, 6, 7, 8, and then again on
frame at level 3.

Note that the frames on which frame apply applies a command are also influ-
enced by the set backtrace settings such as set backtrace past-main and
set backtrace limit N. See Section 8.2 [Backtraces], page 110.

The frame apply command also supports a number of options that allow over-
riding relevant set backtrace settings:

-past-main [on|off]

Whether backtraces should continue past main. Related setting:
[set backtrace past-main], page 112.

-past-entry [on|off]

Whether backtraces should continue past the entry point of a pro-
gram. Related setting: [set backtrace past-entry], page 112.

By default, gdb displays some frame information before the output produced
by command, and an error raised during the execution of a command will abort
frame apply. The following options can be used to fine-tune these behaviors:

-c The flag -c, which stands for ‘continue’, causes any errors in com-
mand to be displayed, and the execution of frame apply then con-
tinues.

-s The flag -s, which stands for ‘silent’, causes any errors or empty
output produced by a command to be silently ignored. That is, the
execution continues, but the frame information and errors are not
printed.

-q The flag -q (‘quiet’) disables printing the frame information.

118 Debugging with gdb

The following example shows how the flags -c and -s are working when applying
the command p j to all frames, where variable j can only be successfully printed
in the outermost #1 main frame.

(gdb) frame apply all p j

#0 some_function (i=5) at fun.c:4

No symbol "j" in current context.

(gdb) frame apply all -c p j

#0 some_function (i=5) at fun.c:4

No symbol "j" in current context.

#1 0x565555fb in main (argc=1, argv=0xffffd2c4) at fun.c:11

$1 = 5

(gdb) frame apply all -s p j

#1 0x565555fb in main (argc=1, argv=0xffffd2c4) at fun.c:11

$2 = 5

(gdb)

By default, ‘frame apply’, prints the frame location information before the
command output:

(gdb) frame apply all p $sp

#0 some_function (i=5) at fun.c:4

$4 = (void *) 0xffffd1e0

#1 0x565555fb in main (argc=1, argv=0xffffd2c4) at fun.c:11

$5 = (void *) 0xffffd1f0

(gdb)

If the flag -q is given, no frame information is printed:

(gdb) frame apply all -q p $sp

$12 = (void *) 0xffffd1e0

$13 = (void *) 0xffffd1f0

(gdb)

faas command

Shortcut for frame apply all -s command. Applies command on all frames,
ignoring errors and empty output.

It can for example be used to print a local variable or a function argument
without knowing the frame where this variable or argument is, using:

(gdb) faas p some_local_var_i_do_not_remember_where_it_is

The faas command accepts the same options as the frame apply command.
See Section 8.5 [frame apply], page 117.

Note that the command tfaas command applies command on all frames of all
threads. See See Section 4.10 [Threads], page 45.

8.6 Management of Frame Filters.

Frame filters are Python based utilities to manage and decorate the output of frames. See
Section 23.3.2.9 [Frame Filter API], page 406, for further information.

Managing frame filters is performed by several commands available within gdb, detailed
here.

info frame-filter

Print a list of installed frame filters from all dictionaries, showing their name,
priority and enabled status.

Chapter 8: Examining the Stack 119

disable frame-filter filter-dictionary filter-name

Disable a frame filter in the dictionary matching filter-dictionary and filter-
name. The filter-dictionary may be all, global, progspace, or the name of
the object file where the frame filter dictionary resides. When all is specified,
all frame filters across all dictionaries are disabled. The filter-name is the name
of the frame filter and is used when all is not the option for filter-dictionary.
A disabled frame-filter is not deleted, it may be enabled again later.

enable frame-filter filter-dictionary filter-name

Enable a frame filter in the dictionary matching filter-dictionary and filter-
name. The filter-dictionary may be all, global, progspace or the name of
the object file where the frame filter dictionary resides. When all is specified,
all frame filters across all dictionaries are enabled. The filter-name is the name
of the frame filter and is used when all is not the option for filter-dictionary.

Example:

(gdb) info frame-filter

global frame-filters:

Priority Enabled Name

1000 No PrimaryFunctionFilter

100 Yes Reverse

progspace /build/test frame-filters:

Priority Enabled Name

100 Yes ProgspaceFilter

objfile /build/test frame-filters:

Priority Enabled Name

999 Yes BuildProgramFilter

(gdb) disable frame-filter /build/test BuildProgramFilter

(gdb) info frame-filter

global frame-filters:

Priority Enabled Name

1000 No PrimaryFunctionFilter

100 Yes Reverse

progspace /build/test frame-filters:

Priority Enabled Name

100 Yes ProgspaceFilter

objfile /build/test frame-filters:

Priority Enabled Name

999 No BuildProgramFilter

(gdb) enable frame-filter global PrimaryFunctionFilter

(gdb) info frame-filter

global frame-filters:

Priority Enabled Name

1000 Yes PrimaryFunctionFilter

100 Yes Reverse

progspace /build/test frame-filters:

120 Debugging with gdb

Priority Enabled Name

100 Yes ProgspaceFilter

objfile /build/test frame-filters:

Priority Enabled Name

999 No BuildProgramFilter

set frame-filter priority filter-dictionary filter-name priority

Set the priority of a frame filter in the dictionary matching filter-dictionary,
and the frame filter name matching filter-name. The filter-dictionary may be
global, progspace or the name of the object file where the frame filter dictio-
nary resides. The priority is an integer.

show frame-filter priority filter-dictionary filter-name

Show the priority of a frame filter in the dictionary matching filter-dictionary,
and the frame filter name matching filter-name. The filter-dictionary may be
global, progspace or the name of the object file where the frame filter dictio-
nary resides.

Example:
(gdb) info frame-filter

global frame-filters:

Priority Enabled Name

1000 Yes PrimaryFunctionFilter

100 Yes Reverse

progspace /build/test frame-filters:

Priority Enabled Name

100 Yes ProgspaceFilter

objfile /build/test frame-filters:

Priority Enabled Name

999 No BuildProgramFilter

(gdb) set frame-filter priority global Reverse 50

(gdb) info frame-filter

global frame-filters:

Priority Enabled Name

1000 Yes PrimaryFunctionFilter

50 Yes Reverse

progspace /build/test frame-filters:

Priority Enabled Name

100 Yes ProgspaceFilter

objfile /build/test frame-filters:

Priority Enabled Name

999 No BuildProgramFilter

121

9 Examining Source Files

gdb can print parts of your program’s source, since the debugging information recorded in
the program tells gdb what source files were used to build it. When your program stops,
gdb spontaneously prints the line where it stopped. Likewise, when you select a stack frame
(see Section 8.3 [Selecting a Frame], page 113), gdb prints the line where execution in that
frame has stopped. You can print other portions of source files by explicit command.

If you use gdb through its gnu Emacs interface, you may prefer to use Emacs facilities
to view source; see Chapter 26 [Using gdb under gnu Emacs], page 541.

9.1 Printing Source Lines

To print lines from a source file, use the list command (abbreviated l). By default, ten
lines are printed. There are several ways to specify what part of the file you want to print;
see Section 9.2 [Specify Location], page 122, for the full list.

Here are the forms of the list command most commonly used:

list linenum

Print lines centered around line number linenum in the current source file.

list function

Print lines centered around the beginning of function function.

list Print more lines. If the last lines printed were printed with a list command,
this prints lines following the last lines printed; however, if the last line printed
was a solitary line printed as part of displaying a stack frame (see Chapter 8
[Examining the Stack], page 109), this prints lines centered around that line.

list - Print lines just before the lines last printed.

By default, gdb prints ten source lines with any of these forms of the list command.
You can change this using set listsize:

set listsize count

set listsize unlimited

Make the list command display count source lines (unless the list argument
explicitly specifies some other number). Setting count to unlimited or 0 means
there’s no limit.

show listsize

Display the number of lines that list prints.

Repeating a list command with RET discards the argument, so it is equivalent to typing
just list. This is more useful than listing the same lines again. An exception is made for
an argument of ‘-’; that argument is preserved in repetition so that each repetition moves
up in the source file.

In general, the list command expects you to supply zero, one or two locations. Loca-
tions specify source lines; there are several ways of writing them (see Section 9.2 [Specify
Location], page 122), but the effect is always to specify some source line.

Here is a complete description of the possible arguments for list:

list location

Print lines centered around the line specified by location.

122 Debugging with gdb

list first,last

Print lines from first to last. Both arguments are locations. When a list

command has two locations, and the source file of the second location is omitted,
this refers to the same source file as the first location.

list ,last

Print lines ending with last.

list first,

Print lines starting with first.

list + Print lines just after the lines last printed.

list - Print lines just before the lines last printed.

list As described in the preceding table.

9.2 Specifying a Location

Several gdb commands accept arguments that specify a location of your program’s code.
Since gdb is a source-level debugger, a location usually specifies some line in the source
code. Locations may be specified using three different formats: linespec locations, explicit
locations, or address locations.

9.2.1 Linespec Locations

A linespec is a colon-separated list of source location parameters such as file name, function
name, etc. Here are all the different ways of specifying a linespec:

linenum Specifies the line number linenum of the current source file.

-offset

+offset Specifies the line offset lines before or after the current line. For the list

command, the current line is the last one printed; for the breakpoint commands,
this is the line at which execution stopped in the currently selected stack frame
(see Section 8.1 [Frames], page 109, for a description of stack frames.) When
used as the second of the two linespecs in a list command, this specifies the
line offset lines up or down from the first linespec.

filename:linenum

Specifies the line linenum in the source file filename. If filename is a relative file
name, then it will match any source file name with the same trailing compo-
nents. For example, if filename is ‘gcc/expr.c’, then it will match source file
name of /build/trunk/gcc/expr.c, but not /build/trunk/libcpp/expr.c

or /build/trunk/gcc/x-expr.c.

function Specifies the line that begins the body of the function function. For example,
in C, this is the line with the open brace.

By default, in C++ and Ada, function is interpreted as specifying all functions
named function in all scopes. For C++, this means in all namespaces and classes.
For Ada, this means in all packages.

For example, assuming a program with C++ symbols named A::B::func and
B::func, both commands break func and break B::func set a breakpoint on
both symbols.

Chapter 9: Examining Source Files 123

Commands that accept a linespec let you override this with the -qualified op-
tion. For example, break -qualified func sets a breakpoint on a free-function
named func ignoring any C++ class methods and namespace functions called
func.

See Section 9.2.2 [Explicit Locations], page 123.

function:label

Specifies the line where label appears in function.

filename:function

Specifies the line that begins the body of the function function in the file
filename. You only need the file name with a function name to avoid ambi-
guity when there are identically named functions in different source files.

label Specifies the line at which the label named label appears in the function corre-
sponding to the currently selected stack frame. If there is no current selected
stack frame (for instance, if the inferior is not running), then gdb will not
search for a label.

-pstap|-probe-stap [objfile:[provider:]]name
The gnu/Linux tool SystemTap provides a way for applications to embed static
probes. See Section 5.1.10 [Static Probe Points], page 79, for more information
on finding and using static probes. This form of linespec specifies the location
of such a static probe.

If objfile is given, only probes coming from that shared library or executable
matching objfile as a regular expression are considered. If provider is given,
then only probes from that provider are considered. If several probes match
the spec, gdb will insert a breakpoint at each one of those probes.

9.2.2 Explicit Locations

Explicit locations allow the user to directly specify the source location’s parameters using
option-value pairs.

Explicit locations are useful when several functions, labels, or file names have the same
name (base name for files) in the program’s sources. In these cases, explicit locations point
to the source line you meant more accurately and unambiguously. Also, using explicit
locations might be faster in large programs.

For example, the linespec ‘foo:bar’ may refer to a function bar defined in the file named
foo or the label bar in a function named foo. gdb must search either the file system or
the symbol table to know.

The list of valid explicit location options is summarized in the following table:

-source filename

The value specifies the source file name. To differentiate between files with
the same base name, prepend as many directories as is necessary to uniquely
identify the desired file, e.g., foo/bar/baz.c. Otherwise gdb will use the first
file it finds with the given base name. This option requires the use of either
-function or -line.

124 Debugging with gdb

-function function

The value specifies the name of a function. Operations on function locations
unmodified by other options (such as -label or -line) refer to the line that
begins the body of the function. In C, for example, this is the line with the
open brace.

By default, in C++ and Ada, function is interpreted as specifying all functions
named function in all scopes. For C++, this means in all namespaces and classes.
For Ada, this means in all packages.

For example, assuming a program with C++ symbols named
A::B::func and B::func, both commands break -function func

and break -function B::func set a breakpoint on both symbols.

You can use the -qualified flag to override this (see below).

-qualified

This flag makes gdb interpret a function name specified with -function as a
complete fully-qualified name.

For example, assuming a C++ program with symbols named A::B::func and
B::func, the break -qualified -function B::func command sets a break-
point on B::func, only.

(Note: the -qualified option can precede a linespec as well (see Section 9.2.1
[Linespec Locations], page 122), so the particular example above could be sim-
plified as break -qualified B::func.)

-label label

The value specifies the name of a label. When the function name is not specified,
the label is searched in the function of the currently selected stack frame.

-line number

The value specifies a line offset for the location. The offset may either be
absolute (-line 3) or relative (-line +3), depending on the command. When
specified without any other options, the line offset is relative to the current line.

Explicit location options may be abbreviated by omitting any non-unique trailing char-
acters from the option name, e.g., break -s main.c -li 3.

9.2.3 Address Locations

Address locations indicate a specific program address. They have the generalized form
*address.

For line-oriented commands, such as list and edit, this specifies a source line that
contains address. For break and other breakpoint-oriented commands, this can be used
to set breakpoints in parts of your program which do not have debugging information or
source files.

Here address may be any expression valid in the current working language (see
Chapter 15 [Languages], page 219) that specifies a code address. In addition, as a
convenience, gdb extends the semantics of expressions used in locations to cover several
situations that frequently occur during debugging. Here are the various forms of address:

expression

Any expression valid in the current working language.

Chapter 9: Examining Source Files 125

funcaddr An address of a function or procedure derived from its name. In C, C++,
Objective-C, Fortran, minimal, and assembly, this is simply the function’s name
function (and actually a special case of a valid expression). In Pascal and
Modula-2, this is &function. In Ada, this is function’Address (although the
Pascal form also works).

This form specifies the address of the function’s first instruction, before the
stack frame and arguments have been set up.

’filename’:funcaddr

Like funcaddr above, but also specifies the name of the source file explicitly.
This is useful if the name of the function does not specify the function unam-
biguously, e.g., if there are several functions with identical names in different
source files.

9.3 Editing Source Files

To edit the lines in a source file, use the edit command. The editing program of your
choice is invoked with the current line set to the active line in the program. Alternatively,
there are several ways to specify what part of the file you want to print if you want to see
other parts of the program:

edit location

Edit the source file specified by location. Editing starts at that location,
e.g., at the specified source line of the specified file. See Section 9.2 [Specify
Location], page 122, for all the possible forms of the location argument; here
are the forms of the edit command most commonly used:

edit number

Edit the current source file with number as the active line number.

edit function

Edit the file containing function at the beginning of its definition.

9.3.1 Choosing your Editor

You can customize gdb to use any editor you want1. By default, it is /bin/ex, but you can
change this by setting the environment variable EDITOR before using gdb. For example, to
configure gdb to use the vi editor, you could use these commands with the sh shell:

EDITOR=/usr/bin/vi

export EDITOR

gdb ...

or in the csh shell,

setenv EDITOR /usr/bin/vi

gdb ...

1 The only restriction is that your editor (say ex), recognizes the following command-line syntax:

ex +number file

The optional numeric value +number specifies the number of the line in the file where to start editing.

126 Debugging with gdb

9.4 Searching Source Files

There are two commands for searching through the current source file for a regular expres-
sion.

forward-search regexp

search regexp

The command ‘forward-search regexp’ checks each line, starting with the
one following the last line listed, for a match for regexp. It lists the line that is
found. You can use the synonym ‘search regexp’ or abbreviate the command
name as fo.

reverse-search regexp

The command ‘reverse-search regexp’ checks each line, starting with the one
before the last line listed and going backward, for a match for regexp. It lists
the line that is found. You can abbreviate this command as rev.

9.5 Specifying Source Directories

Executable programs sometimes do not record the directories of the source files from which
they were compiled, just the names. Even when they do, the directories could be moved
between the compilation and your debugging session. gdb has a list of directories to search
for source files; this is called the source path. Each time gdb wants a source file, it tries all
the directories in the list, in the order they are present in the list, until it finds a file with
the desired name.

For example, suppose an executable references the file /usr/src/foo-1.0/lib/foo.c,
does not record a compilation directory, and the source path is /mnt/cross. gdb would
look for the source file in the following locations:

1. /usr/src/foo-1.0/lib/foo.c

2. /mnt/cross/usr/src/foo-1.0/lib/foo.c

3. /mnt/cross/foo.c

If the source file is not present at any of the above locations then an error
is printed. gdb does not look up the parts of the source file name, such as
/mnt/cross/src/foo-1.0/lib/foo.c. Likewise, the subdirectories of the source path are
not searched: if the source path is /mnt/cross, and the binary refers to foo.c, gdb would
not find it under /mnt/cross/usr/src/foo-1.0/lib.

Plain file names, relative file names with leading directories, file names containing dots,
etc. are all treated as described above, except that non-absolute file names are not looked
up literally. If the source path is /mnt/cross, the source file is recorded as ../lib/foo.c,
and no compilation directory is recorded, then gdb will search in the following locations:

1. /mnt/cross/../lib/foo.c

2. /mnt/cross/foo.c

The source path will always include two special entries ‘$cdir’ and ‘$cwd’, these refer to
the compilation directory (if one is recorded) and the current working directory respectively.

‘$cdir’ causes gdb to search within the compilation directory, if one is recorded in the
debug information. If no compilation directory is recorded in the debug information then
‘$cdir’ is ignored.

Chapter 9: Examining Source Files 127

‘$cwd’ is not the same as ‘.’—the former tracks the current working directory as it
changes during your gdb session, while the latter is immediately expanded to the current
directory at the time you add an entry to the source path.

If a compilation directory is recorded in the debug information, and gdb has not found
the source file after the first search using source path, then gdb will combine the compilation
directory and the filename, and then search for the source file again using the source path.

For example, if the executable records the source file as /usr/src/foo-1.0/lib/foo.c,
the compilation directory is recorded as /project/build, and the source path is
/mnt/cross:$cdir:$cwd while the current working directory of the gdb session is
/home/user, then gdb will search for the source file in the following locations:

1. /usr/src/foo-1.0/lib/foo.c

2. /mnt/cross/usr/src/foo-1.0/lib/foo.c

3. /project/build/usr/src/foo-1.0/lib/foo.c

4. /home/user/usr/src/foo-1.0/lib/foo.c

5. /mnt/cross/project/build/usr/src/foo-1.0/lib/foo.c

6. /project/build/project/build/usr/src/foo-1.0/lib/foo.c

7. /home/user/project/build/usr/src/foo-1.0/lib/foo.c

8. /mnt/cross/foo.c

9. /project/build/foo.c

10. /home/user/foo.c

If the file name in the previous example had been recorded in the executable as a relative
path rather than an absolute path, then the first look up would not have occurred, but all
of the remaining steps would be similar.

When searching for source files on MS-DOS and MS-Windows, where absolute paths
start with a drive letter (e.g. C:/project/foo.c), gdb will remove the drive letter from
the file name before appending it to a search directory from source path; for instance
if the executable references the source file C:/project/foo.c and source path is set to
D:/mnt/cross, then gdb will search in the following locations for the source file:

1. C:/project/foo.c

2. D:/mnt/cross/project/foo.c

3. D:/mnt/cross/foo.c

Note that the executable search path is not used to locate the source files.

Whenever you reset or rearrange the source path, gdb clears out any information it has
cached about where source files are found and where each line is in the file.

When you start gdb, its source path includes only ‘$cdir’ and ‘$cwd’, in that order. To
add other directories, use the directory command.

The search path is used to find both program source files and gdb script files (read using
the ‘-command’ option and ‘source’ command).

In addition to the source path, gdb provides a set of commands that manage a list of
source path substitution rules. A substitution rule specifies how to rewrite source directories
stored in the program’s debug information in case the sources were moved to a different

128 Debugging with gdb

directory between compilation and debugging. A rule is made of two strings, the first
specifying what needs to be rewritten in the path, and the second specifying how it should
be rewritten. In [set substitute-path], page 129, we name these two parts from and to
respectively. gdb does a simple string replacement of from with to at the start of the
directory part of the source file name, and uses that result instead of the original file name
to look up the sources.

Using the previous example, suppose the foo-1.0 tree has been moved from /usr/src

to /mnt/cross, then you can tell gdb to replace /usr/src in all source path names with
/mnt/cross. The first lookup will then be /mnt/cross/foo-1.0/lib/foo.c in place of the
original location of /usr/src/foo-1.0/lib/foo.c. To define a source path substitution
rule, use the set substitute-path command (see [set substitute-path], page 129).

To avoid unexpected substitution results, a rule is applied only if the from part
of the directory name ends at a directory separator. For instance, a rule substituting
/usr/source into /mnt/cross will be applied to /usr/source/foo-1.0 but not to
/usr/sourceware/foo-2.0. And because the substitution is applied only at the beginning
of the directory name, this rule will not be applied to /root/usr/source/baz.c either.

In many cases, you can achieve the same result using the directory command. However,
set substitute-path can be more efficient in the case where the sources are organized in
a complex tree with multiple subdirectories. With the directory command, you need to
add each subdirectory of your project. If you moved the entire tree while preserving its
internal organization, then set substitute-path allows you to direct the debugger to all
the sources with one single command.

set substitute-path is also more than just a shortcut command. The source path
is only used if the file at the original location no longer exists. On the other hand, set
substitute-path modifies the debugger behavior to look at the rewritten location instead.
So, if for any reason a source file that is not relevant to your executable is located at the
original location, a substitution rule is the only method available to point gdb at the new
location.

You can configure a default source path substitution rule by configuring gdb with the
‘--with-relocated-sources=dir’ option. The dir should be the name of a directory under
gdb’s configured prefix (set with ‘--prefix’ or ‘--exec-prefix’), and directory names in
debug information under dir will be adjusted automatically if the installed gdb is moved
to a new location. This is useful if gdb, libraries or executables with debug information
and corresponding source code are being moved together.

directory dirname ...

dir dirname ...

Add directory dirname to the front of the source path. Several directory names
may be given to this command, separated by ‘:’ (‘;’ on MS-DOS and MS-
Windows, where ‘:’ usually appears as part of absolute file names) or white-
space. You may specify a directory that is already in the source path; this
moves it forward, so gdb searches it sooner.

The special strings ‘$cdir’ (to refer to the compilation directory, if one is
recorded), and ‘$cwd’ (to refer to the current working directory) can also be
included in the list of directories dirname. Though these will already be in the
source path they will be moved forward in the list so gdb searches them sooner.

Chapter 9: Examining Source Files 129

directory

Reset the source path to its default value (‘$cdir:$cwd’ on Unix systems). This
requires confirmation.

set directories path-list

Set the source path to path-list. ‘$cdir:$cwd’ are added if missing.

show directories

Print the source path: show which directories it contains.

set substitute-path from to

Define a source path substitution rule, and add it at the end of the current list
of existing substitution rules. If a rule with the same from was already defined,
then the old rule is also deleted.

For example, if the file /foo/bar/baz.c was moved to /mnt/cross/baz.c, then
the command

(gdb) set substitute-path /foo/bar /mnt/cross

will tell gdb to replace ‘/foo/bar’ with ‘/mnt/cross’, which will allow gdb to
find the file baz.c even though it was moved.

In the case when more than one substitution rule have been defined, the rules
are evaluated one by one in the order where they have been defined. The first
one matching, if any, is selected to perform the substitution.

For instance, if we had entered the following commands:

(gdb) set substitute-path /usr/src/include /mnt/include

(gdb) set substitute-path /usr/src /mnt/src

gdb would then rewrite /usr/src/include/defs.h into /mnt/include/defs.h
by using the first rule. However, it would use the second rule to rewrite
/usr/src/lib/foo.c into /mnt/src/lib/foo.c.

unset substitute-path [path]

If a path is specified, search the current list of substitution rules for a rule that
would rewrite that path. Delete that rule if found. A warning is emitted by
the debugger if no rule could be found.

If no path is specified, then all substitution rules are deleted.

show substitute-path [path]

If a path is specified, then print the source path substitution rule which would
rewrite that path, if any.

If no path is specified, then print all existing source path substitution rules.

If your source path is cluttered with directories that are no longer of interest, gdb may
sometimes cause confusion by finding the wrong versions of source. You can correct the
situation as follows:

1. Use directory with no argument to reset the source path to its default value.

2. Use directory with suitable arguments to reinstall the directories you want in the
source path. You can add all the directories in one command.

130 Debugging with gdb

9.6 Source and Machine Code

You can use the command info line to map source lines to program addresses (and vice
versa), and the command disassemble to display a range of addresses as machine instruc-
tions. You can use the command set disassemble-next-line to set whether to disas-
semble next source line when execution stops. When run under gnu Emacs mode, the
info line command causes the arrow to point to the line specified. Also, info line prints
addresses in symbolic form as well as hex.

info line

info line location

Print the starting and ending addresses of the compiled code for source line
location. You can specify source lines in any of the ways documented in
Section 9.2 [Specify Location], page 122. With no location information about
the current source line is printed.

For example, we can use info line to discover the location of the object code for the
first line of function m4_changequote:

(gdb) info line m4_changequote

Line 895 of "builtin.c" starts at pc 0x634c <m4_changequote> and \

ends at 0x6350 <m4_changequote+4>.

We can also inquire (using *addr as the form for location) what source line covers a par-
ticular address:

(gdb) info line *0x63ff

Line 926 of "builtin.c" starts at pc 0x63e4 <m4_changequote+152> and \

ends at 0x6404 <m4_changequote+184>.

After info line, the default address for the x command is changed to the starting
address of the line, so that ‘x/i’ is sufficient to begin examining the machine code (see
Section 10.6 [Examining Memory], page 145). Also, this address is saved as the value of the
convenience variable $_ (see Section 10.12 [Convenience Variables], page 164).

After info line, using info line again without specifying a location will display infor-
mation about the next source line.

disassemble

disassemble /m

disassemble /s

disassemble /r

This specialized command dumps a range of memory as machine instructions.
It can also print mixed source+disassembly by specifying the /m or /s modifier
and print the raw instructions in hex as well as in symbolic form by specifying
the /r modifier. The default memory range is the function surrounding the
program counter of the selected frame. A single argument to this command
is a program counter value; gdb dumps the function surrounding this value.
When two arguments are given, they should be separated by a comma, possibly
surrounded by whitespace. The arguments specify a range of addresses to dump,
in one of two forms:

start,end

the addresses from start (inclusive) to end (exclusive)

Chapter 9: Examining Source Files 131

start,+length

the addresses from start (inclusive) to start+length (exclusive).

When 2 arguments are specified, the name of the function is also printed (since
there could be several functions in the given range).

The argument(s) can be any expression yielding a numeric value, such as
‘0x32c4’, ‘&main+10’ or ‘$pc - 8’.

If the range of memory being disassembled contains current program counter,
the instruction at that location is shown with a => marker.

The following example shows the disassembly of a range of addresses of HP PA-RISC
2.0 code:

(gdb) disas 0x32c4, 0x32e4

Dump of assembler code from 0x32c4 to 0x32e4:

0x32c4 <main+204>: addil 0,dp

0x32c8 <main+208>: ldw 0x22c(sr0,r1),r26

0x32cc <main+212>: ldil 0x3000,r31

0x32d0 <main+216>: ble 0x3f8(sr4,r31)

0x32d4 <main+220>: ldo 0(r31),rp

0x32d8 <main+224>: addil -0x800,dp

0x32dc <main+228>: ldo 0x588(r1),r26

0x32e0 <main+232>: ldil 0x3000,r31

End of assembler dump.

Here is an example showing mixed source+assembly for Intel x86 with /m or /s, when
the program is stopped just after function prologue in a non-optimized function with no
inline code.

(gdb) disas /m main

Dump of assembler code for function main:

5 {

0x08048330 <+0>: push %ebp

0x08048331 <+1>: mov %esp,%ebp

0x08048333 <+3>: sub $0x8,%esp

0x08048336 <+6>: and $0xfffffff0,%esp

0x08048339 <+9>: sub $0x10,%esp

6 printf ("Hello.\n");

=> 0x0804833c <+12>: movl $0x8048440,(%esp)

0x08048343 <+19>: call 0x8048284 <puts@plt>

7 return 0;

8 }

0x08048348 <+24>: mov $0x0,%eax

0x0804834d <+29>: leave

0x0804834e <+30>: ret

End of assembler dump.

The /m option is deprecated as its output is not useful when there is either inlined code
or re-ordered code. The /s option is the preferred choice. Here is an example for AMD
x86-64 showing the difference between /m output and /s output. This example has one
inline function defined in a header file, and the code is compiled with ‘-O2’ optimization.
Note how the /m output is missing the disassembly of several instructions that are present
in the /s output.

132 Debugging with gdb

foo.h:

int

foo (int a)

{

if (a < 0)

return a * 2;

if (a == 0)

return 1;

return a + 10;

}

foo.c:

#include "foo.h"

volatile int x, y;

int

main ()

{

x = foo (y);

return 0;

}

(gdb) disas /m main

Dump of assembler code for function main:

5 {

6 x = foo (y);

0x0000000000400400 <+0>: mov 0x200c2e(%rip),%eax # 0x601034 <y>

0x0000000000400417 <+23>: mov %eax,0x200c13(%rip) # 0x601030 <x>

7 return 0;

8 }

0x000000000040041d <+29>: xor %eax,%eax

0x000000000040041f <+31>: retq

0x0000000000400420 <+32>: add %eax,%eax

0x0000000000400422 <+34>: jmp 0x400417 <main+23>

End of assembler dump.

(gdb) disas /s main

Dump of assembler code for function main:

foo.c:

5 {

6 x = foo (y);

0x0000000000400400 <+0>: mov 0x200c2e(%rip),%eax # 0x601034 <y>

foo.h:

4 if (a < 0)

0x0000000000400406 <+6>: test %eax,%eax

0x0000000000400408 <+8>: js 0x400420 <main+32>

6 if (a == 0)

7 return 1;

8 return a + 10;

0x000000000040040a <+10>: lea 0xa(%rax),%edx

0x000000000040040d <+13>: test %eax,%eax

0x000000000040040f <+15>: mov $0x1,%eax

0x0000000000400414 <+20>: cmovne %edx,%eax

foo.c:

6 x = foo (y);

Chapter 9: Examining Source Files 133

0x0000000000400417 <+23>: mov %eax,0x200c13(%rip) # 0x601030 <x>

7 return 0;

8 }

0x000000000040041d <+29>: xor %eax,%eax

0x000000000040041f <+31>: retq

foo.h:

5 return a * 2;

0x0000000000400420 <+32>: add %eax,%eax

0x0000000000400422 <+34>: jmp 0x400417 <main+23>

End of assembler dump.

Here is another example showing raw instructions in hex for AMD x86-64,
(gdb) disas /r 0x400281,+10

Dump of assembler code from 0x400281 to 0x40028b:

0x0000000000400281: 38 36 cmp %dh,(%rsi)

0x0000000000400283: 2d 36 34 2e 73 sub $0x732e3436,%eax

0x0000000000400288: 6f outsl %ds:(%rsi),(%dx)

0x0000000000400289: 2e 32 00 xor %cs:(%rax),%al

End of assembler dump.

Addresses cannot be specified as a location (see Section 9.2 [Specify Location], page 122).
So, for example, if you want to disassemble function bar in file foo.c, you must type
‘disassemble ’foo.c’::bar’ and not ‘disassemble foo.c:bar’.

Some architectures have more than one commonly-used set of instruction mnemonics or
other syntax.

For programs that were dynamically linked and use shared libraries, instructions that
call functions or branch to locations in the shared libraries might show a seemingly bogus
location—it’s actually a location of the relocation table. On some architectures, gdb might
be able to resolve these to actual function names.

set disassembler-options option1[,option2...]

This command controls the passing of target specific information to the disas-
sembler. For a list of valid options, please refer to the -M/--disassembler-
options section of the ‘objdump’ manual and/or the output of objdump --help

(see Section “objdump” in The GNU Binary Utilities). The default value is the
empty string.

If it is necessary to specify more than one disassembler option, then multiple
options can be placed together into a comma separated list. Currently this
command is only supported on targets ARC, ARM, MIPS, PowerPC and S/390.

show disassembler-options

Show the current setting of the disassembler options.

set disassembly-flavor instruction-set

Select the instruction set to use when disassembling the program via the
disassemble or x/i commands.

Currently this command is only defined for the Intel x86 family. You can set
instruction-set to either intel or att. The default is att, the AT&T flavor
used by default by Unix assemblers for x86-based targets.

show disassembly-flavor

Show the current setting of the disassembly flavor.

134 Debugging with gdb

set disassemble-next-line

show disassemble-next-line

Control whether or not gdb will disassemble the next source line or instruction
when execution stops. If ON, gdb will display disassembly of the next source
line when execution of the program being debugged stops. This is in addition
to displaying the source line itself, which gdb always does if possible. If the
next source line cannot be displayed for some reason (e.g., if gdb cannot find
the source file, or there’s no line info in the debug info), gdb will display
disassembly of the next instruction instead of showing the next source line. If
AUTO, gdb will display disassembly of next instruction only if the source line
cannot be displayed. This setting causes gdb to display some feedback when
you step through a function with no line info or whose source file is unavailable.
The default is OFF, which means never display the disassembly of the next line
or instruction.

9.7 Disable Reading Source Code

In some cases it can be desirable to prevent gdb from accessing source code files. One case
where this might be desirable is if the source code files are located over a slow network
connection.

The following command can be used to control whether gdb should access source code
files or not:

set source open [on|off]
show source open

When this option is on, which is the default, gdb will access source code files
when needed, for example to print source lines when gdb stops, or in response
to the list command.

When this option is off, gdb will not access source code files.

135

10 Examining Data

The usual way to examine data in your program is with the print command (abbreviated p),
or its synonym inspect. It evaluates and prints the value of an expression of the language
your program is written in (see Chapter 15 [Using gdb with Different Languages], page 219).
It may also print the expression using a Python-based pretty-printer (see Section 10.10
[Pretty Printing], page 161).

print [[options] --] expr

print [[options] --] /f expr

expr is an expression (in the source language). By default the value of expr is
printed in a format appropriate to its data type; you can choose a different for-
mat by specifying ‘/f’, where f is a letter specifying the format; see Section 10.5
[Output Formats], page 144.

The print command supports a number of options that allow overriding rele-
vant global print settings as set by set print subcommands:

-address [on|off]

Set printing of addresses. Related setting: [set print address],
page 151.

-array [on|off]

Pretty formatting of arrays. Related setting: [set print array],
page 152.

-array-indexes [on|off]

Set printing of array indexes. Related setting: [set print array-
indexes], page 152.

-elements number-of-elements|unlimited

Set limit on string chars or array elements to print. The value
unlimited causes there to be no limit. Related setting: [set print
elements], page 153.

-max-depth depth|unlimited

Set the threshold after which nested structures are replaced with
ellipsis. Related setting: [set print max-depth], page 156.

-memory-tag-violations [on|off]

Set printing of additional information about memory tag violations.
See [set print memory-tag-violations], page 157.

-null-stop [on|off]

Set printing of char arrays to stop at first null char. Related setting:
[set print null-stop], page 157.

-object [on|off]

Set printing C++ virtual function tables. Related setting: [set print
object], page 160.

-pretty [on|off]

Set pretty formatting of structures. Related setting: [set print
pretty], page 158.

136 Debugging with gdb

-raw-values [on|off]

Set whether to print values in raw form, bypassing any pretty-
printers for that value. Related setting: [set print raw-values],
page 158.

-repeats number-of-repeats|unlimited

Set threshold for repeated print elements. unlimited causes all
elements to be individually printed. Related setting: [set print
repeats], page 156.

-static-members [on|off]

Set printing C++ static members. Related setting: [set print static-
members], page 160.

-symbol [on|off]

Set printing of symbol names when printing pointers. Related set-
ting: [set print symbol], page 152.

-union [on|off]

Set printing of unions interior to structures. Related setting: [set
print union], page 158.

-vtbl [on|off]

Set printing of C++ virtual function tables. Related setting: [set
print vtbl], page 160.

Because the print command accepts arbitrary expressions which may look like
options (including abbreviations), if you specify any command option, then you
must use a double dash (--) to mark the end of option processing.

For example, this prints the value of the -p expression:

(gdb) print -p

While this repeats the last value in the value history (see below) with the
-pretty option in effect:

(gdb) print -p --

Here is an example including both on option and an expression:

(gdb) print -pretty -- *myptr

$1 = {

next = 0x0,

flags = {

sweet = 1,

sour = 1

},

meat = 0x54 "Pork"

}

print [options]

print [options] /f

If you omit expr, gdb displays the last value again (from the value history ;
see Section 10.11 [Value History], page 163). This allows you to conveniently
inspect the same value in an alternative format.

Chapter 10: Examining Data 137

If the architecture supports memory tagging, the print command will display
pointer/memory tag mismatches if what is being printed is a pointer or reference type. See
Section 10.7 [Memory Tagging], page 148.

A more low-level way of examining data is with the x command. It examines data
in memory at a specified address and prints it in a specified format. See Section 10.6
[Examining Memory], page 145.

If you are interested in information about types, or about how the fields of a struct
or a class are declared, use the ptype exp command rather than print. See Chapter 16
[Examining the Symbol Table], page 253.

Another way of examining values of expressions and type information is through the
Python extension command explore (available only if the gdb build is configured with
--with-python). It offers an interactive way to start at the highest level (or, the most
abstract level) of the data type of an expression (or, the data type itself) and explore all
the way down to leaf scalar values/fields embedded in the higher level data types.

explore arg

arg is either an expression (in the source language), or a type visible in the
current context of the program being debugged.

The working of the explore command can be illustrated with an example. If a data
type struct ComplexStruct is defined in your C program as

struct SimpleStruct

{

int i;

double d;

};

struct ComplexStruct

{

struct SimpleStruct *ss_p;

int arr[10];

};

followed by variable declarations as
struct SimpleStruct ss = { 10, 1.11 };

struct ComplexStruct cs = { &ss, { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 } };

then, the value of the variable cs can be explored using the explore command as follows.
(gdb) explore cs

The value of ‘cs’ is a struct/class of type ‘struct ComplexStruct’ with

the following fields:

ss_p = <Enter 0 to explore this field of type ‘struct SimpleStruct *’>

arr = <Enter 1 to explore this field of type ‘int [10]’>

Enter the field number of choice:

Since the fields of cs are not scalar values, you are being prompted to chose the field you
want to explore. Let’s say you choose the field ss_p by entering 0. Then, since this field
is a pointer, you will be asked if it is pointing to a single value. From the declaration of
cs above, it is indeed pointing to a single value, hence you enter y. If you enter n, then
you will be asked if it were pointing to an array of values, in which case this field will be
explored as if it were an array.

‘cs.ss_p’ is a pointer to a value of type ‘struct SimpleStruct’

138 Debugging with gdb

Continue exploring it as a pointer to a single value [y/n]: y

The value of ‘*(cs.ss_p)’ is a struct/class of type ‘struct

SimpleStruct’ with the following fields:

i = 10 .. (Value of type ‘int’)

d = 1.1100000000000001 .. (Value of type ‘double’)

Press enter to return to parent value:

If the field arr of cs was chosen for exploration by entering 1 earlier, then since it is as
array, you will be prompted to enter the index of the element in the array that you want
to explore.

‘cs.arr’ is an array of ‘int’.

Enter the index of the element you want to explore in ‘cs.arr’: 5

‘(cs.arr)[5]’ is a scalar value of type ‘int’.

(cs.arr)[5] = 4

Press enter to return to parent value:

In general, at any stage of exploration, you can go deeper towards the leaf values by
responding to the prompts appropriately, or hit the return key to return to the enclosing
data structure (the higher level data structure).

Similar to exploring values, you can use the explore command to explore types. Instead
of specifying a value (which is typically a variable name or an expression valid in the current
context of the program being debugged), you specify a type name. If you consider the
same example as above, your can explore the type struct ComplexStruct by passing the
argument struct ComplexStruct to the explore command.

(gdb) explore struct ComplexStruct

By responding to the prompts appropriately in the subsequent interactive session, you can
explore the type struct ComplexStruct in a manner similar to how the value cs was
explored in the above example.

The explore command also has two sub-commands, explore value and explore type.
The former sub-command is a way to explicitly specify that value exploration of the argu-
ment is being invoked, while the latter is a way to explicitly specify that type exploration
of the argument is being invoked.

explore value expr

This sub-command of explore explores the value of the expression expr (if expr
is an expression valid in the current context of the program being debugged).
The behavior of this command is identical to that of the behavior of the explore
command being passed the argument expr.

explore type arg

This sub-command of explore explores the type of arg (if arg is a type vis-
ible in the current context of program being debugged), or the type of the
value/expression arg (if arg is an expression valid in the current context of the
program being debugged). If arg is a type, then the behavior of this command
is identical to that of the explore command being passed the argument arg.
If arg is an expression, then the behavior of this command will be identical to
that of the explore command being passed the type of arg as the argument.

Chapter 10: Examining Data 139

10.1 Expressions

print and many other gdb commands accept an expression and compute its value. Any
kind of constant, variable or operator defined by the programming language you are using
is valid in an expression in gdb. This includes conditional expressions, function calls, casts,
and string constants. It also includes preprocessor macros, if you compiled your program
to include this information; see Section 4.1 [Compilation], page 31.

gdb supports array constants in expressions input by the user. The syntax is {element,
element. . .}. For example, you can use the command print {1, 2, 3} to create an array
of three integers. If you pass an array to a function or assign it to a program variable, gdb
copies the array to memory that is malloced in the target program.

Because C is so widespread, most of the expressions shown in examples in this manual
are in C. See Chapter 15 [Using gdb with Different Languages], page 219, for information
on how to use expressions in other languages.

In this section, we discuss operators that you can use in gdb expressions regardless of
your programming language.

Casts are supported in all languages, not just in C, because it is so useful to cast a
number into a pointer in order to examine a structure at that address in memory.

gdb supports these operators, in addition to those common to programming languages:

@ ‘@’ is a binary operator for treating parts of memory as arrays. See Section 10.4
[Artificial Arrays], page 143, for more information.

:: ‘::’ allows you to specify a variable in terms of the file or function where it is
defined. See Section 10.3 [Program Variables], page 140.

{type} addr

Refers to an object of type type stored at address addr in memory. The address
addr may be any expression whose value is an integer or pointer (but parenthe-
ses are required around binary operators, just as in a cast). This construct is
allowed regardless of what kind of data is normally supposed to reside at addr.

10.2 Ambiguous Expressions

Expressions can sometimes contain some ambiguous elements. For instance, some program-
ming languages (notably Ada, C++ and Objective-C) permit a single function name to be
defined several times, for application in different contexts. This is called overloading. An-
other example involving Ada is generics. A generic package is similar to C++ templates and
is typically instantiated several times, resulting in the same function name being defined in
different contexts.

In some cases and depending on the language, it is possible to adjust the expression to
remove the ambiguity. For instance in C++, you can specify the signature of the function
you want to break on, as in break function(types). In Ada, using the fully qualified
name of your function often makes the expression unambiguous as well.

When an ambiguity that needs to be resolved is detected, the debugger has the capability
to display a menu of numbered choices for each possibility, and then waits for the selection
with the prompt ‘>’. The first option is always ‘[0] cancel’, and typing 0 RET aborts the
current command. If the command in which the expression was used allows more than one

140 Debugging with gdb

choice to be selected, the next option in the menu is ‘[1] all’, and typing 1 RET selects all
possible choices.

For example, the following session excerpt shows an attempt to set a breakpoint at the
overloaded symbol String::after. We choose three particular definitions of that function
name:

(gdb) b String::after

[0] cancel

[1] all

[2] file:String.cc; line number:867

[3] file:String.cc; line number:860

[4] file:String.cc; line number:875

[5] file:String.cc; line number:853

[6] file:String.cc; line number:846

[7] file:String.cc; line number:735

> 2 4 6

Breakpoint 1 at 0xb26c: file String.cc, line 867.

Breakpoint 2 at 0xb344: file String.cc, line 875.

Breakpoint 3 at 0xafcc: file String.cc, line 846.

Multiple breakpoints were set.

Use the "delete" command to delete unwanted

breakpoints.

(gdb)

set multiple-symbols mode

This option allows you to adjust the debugger behavior when an expression is
ambiguous.

By default, mode is set to all. If the command with which the expression is
used allows more than one choice, then gdb automatically selects all possible
choices. For instance, inserting a breakpoint on a function using an ambiguous
name results in a breakpoint inserted on each possible match. However, if a
unique choice must be made, then gdb uses the menu to help you disambiguate
the expression. For instance, printing the address of an overloaded function will
result in the use of the menu.

Whenmode is set to ask, the debugger always uses the menu when an ambiguity
is detected.

Finally, when mode is set to cancel, the debugger reports an error due to the
ambiguity and the command is aborted.

show multiple-symbols

Show the current value of the multiple-symbols setting.

10.3 Program Variables

The most common kind of expression to use is the name of a variable in your program.

Variables in expressions are understood in the selected stack frame (see Section 8.3
[Selecting a Frame], page 113); they must be either:

• global (or file-static)

or

• visible according to the scope rules of the programming language from the point of
execution in that frame

Chapter 10: Examining Data 141

This means that in the function

foo (a)

int a;

{

bar (a);

{

int b = test ();

bar (b);

}

}

you can examine and use the variable a whenever your program is executing within the
function foo, but you can only use or examine the variable b while your program is executing
inside the block where b is declared.

There is an exception: you can refer to a variable or function whose scope is a single
source file even if the current execution point is not in this file. But it is possible to have
more than one such variable or function with the same name (in different source files). If
that happens, referring to that name has unpredictable effects. If you wish, you can specify
a static variable in a particular function or file by using the colon-colon (::) notation:

file::variable

function::variable

Here file or function is the name of the context for the static variable. In the case of file
names, you can use quotes to make sure gdb parses the file name as a single word—for
example, to print a global value of x defined in f2.c:

(gdb) p ’f2.c’::x

The :: notation is normally used for referring to static variables, since you typically
disambiguate uses of local variables in functions by selecting the appropriate frame and
using the simple name of the variable. However, you may also use this notation to refer to
local variables in frames enclosing the selected frame:

void

foo (int a)

{

if (a < 10)

bar (a);

else

process (a); /* Stop here */

}

int

bar (int a)

{

foo (a + 5);

}

For example, if there is a breakpoint at the commented line, here is what you might see
when the program stops after executing the call bar(0):

(gdb) p a

$1 = 10

(gdb) p bar::a

$2 = 5

(gdb) up 2

#2 0x080483d0 in foo (a=5) at foobar.c:12

(gdb) p a

142 Debugging with gdb

$3 = 5

(gdb) p bar::a

$4 = 0

These uses of ‘::’ are very rarely in conflict with the very similar use of the same notation
in C++. When they are in conflict, the C++ meaning takes precedence; however, this can be
overridden by quoting the file or function name with single quotes.

For example, suppose the program is stopped in a method of a class that has a field
named includefile, and there is also an include file named includefile that defines a
variable, some_global.

(gdb) p includefile

$1 = 23

(gdb) p includefile::some_global

A syntax error in expression, near ‘’.

(gdb) p ’includefile’::some_global

$2 = 27

Warning: Occasionally, a local variable may appear to have the wrong value
at certain points in a function—just after entry to a new scope, and just before
exit.

You may see this problem when you are stepping by machine instructions. This is
because, on most machines, it takes more than one instruction to set up a stack frame
(including local variable definitions); if you are stepping by machine instructions, variables
may appear to have the wrong values until the stack frame is completely built. On exit, it
usually also takes more than one machine instruction to destroy a stack frame; after you
begin stepping through that group of instructions, local variable definitions may be gone.

This may also happen when the compiler does significant optimizations. To be sure of
always seeing accurate values, turn off all optimization when compiling.

Another possible effect of compiler optimizations is to optimize unused variables out of
existence, or assign variables to registers (as opposed to memory addresses). Depending
on the support for such cases offered by the debug info format used by the compiler, gdb
might not be able to display values for such local variables. If that happens, gdb will print
a message like this:

No symbol "foo" in current context.

To solve such problems, either recompile without optimizations, or use a different debug
info format, if the compiler supports several such formats. See Section 4.1 [Compilation],
page 31, for more information on choosing compiler options. See Section 15.4.1 [C and
C++], page 223, for more information about debug info formats that are best suited to C++
programs.

If you ask to print an object whose contents are unknown to gdb, e.g., because its
data type is not completely specified by the debug information, gdb will say ‘<incomplete
type>’. See Chapter 16 [Symbols], page 253, for more about this.

If you try to examine or use the value of a (global) variable for which gdb has no type
information, e.g., because the program includes no debug information, gdb displays an
error message. See Chapter 16 [Symbols], page 253, for more about unknown types. If you
cast the variable to its declared type, gdb gets the variable’s value using the cast-to type
as the variable’s type. For example, in a C program:

(gdb) p var

Chapter 10: Examining Data 143

’var’ has unknown type; cast it to its declared type

(gdb) p (float) var

$1 = 3.14

If you append @entry string to a function parameter name you get its value at the time
the function got called. If the value is not available an error message is printed. Entry
values are available only with some compilers. Entry values are normally also printed at
the function parameter list according to [set print entry-values], page 154.

Breakpoint 1, d (i=30) at gdb.base/entry-value.c:29

29 i++;

(gdb) next

30 e (i);

(gdb) print i

$1 = 31

(gdb) print i@entry

$2 = 30

Strings are identified as arrays of char values without specified signedness. Arrays
of either signed char or unsigned char get printed as arrays of 1 byte sized integers.
-fsigned-char or -funsigned-char gcc options have no effect as gdb defines literal
string type "char" as char without a sign. For program code

char var0[] = "A";

signed char var1[] = "A";

You get during debugging
(gdb) print var0

$1 = "A"

(gdb) print var1

$2 = {65 ’A’, 0 ’\0’}

10.4 Artificial Arrays

It is often useful to print out several successive objects of the same type in memory; a
section of an array, or an array of dynamically determined size for which only a pointer
exists in the program.

You can do this by referring to a contiguous span of memory as an artificial array, using
the binary operator ‘@’. The left operand of ‘@’ should be the first element of the desired
array and be an individual object. The right operand should be the desired length of the
array. The result is an array value whose elements are all of the type of the left argument.
The first element is actually the left argument; the second element comes from bytes of
memory immediately following those that hold the first element, and so on. Here is an
example. If a program says

int *array = (int *) malloc (len * sizeof (int));

you can print the contents of array with
p *array@len

The left operand of ‘@’ must reside in memory. Array values made with ‘@’ in this way
behave just like other arrays in terms of subscripting, and are coerced to pointers when
used in expressions. Artificial arrays most often appear in expressions via the value history
(see Section 10.11 [Value History], page 163), after printing one out.

Another way to create an artificial array is to use a cast. This re-interprets a value as if
it were an array. The value need not be in memory:

(gdb) p/x (short[2])0x12345678

144 Debugging with gdb

$1 = {0x1234, 0x5678}

As a convenience, if you leave the array length out (as in ‘(type[])value’) gdb calcu-
lates the size to fill the value (as ‘sizeof(value)/sizeof(type)’:

(gdb) p/x (short[])0x12345678

$2 = {0x1234, 0x5678}

Sometimes the artificial array mechanism is not quite enough; in moderately complex
data structures, the elements of interest may not actually be adjacent—for example, if you
are interested in the values of pointers in an array. One useful work-around in this situation
is to use a convenience variable (see Section 10.12 [Convenience Variables], page 164) as
a counter in an expression that prints the first interesting value, and then repeat that
expression via RET. For instance, suppose you have an array dtab of pointers to structures,
and you are interested in the values of a field fv in each structure. Here is an example of
what you might type:

set $i = 0

p dtab[$i++]->fv

RET

RET

...

10.5 Output Formats

By default, gdb prints a value according to its data type. Sometimes this is not what you
want. For example, you might want to print a number in hex, or a pointer in decimal. Or
you might want to view data in memory at a certain address as a character string or as an
instruction. To do these things, specify an output format when you print a value.

The simplest use of output formats is to say how to print a value already computed.
This is done by starting the arguments of the print command with a slash and a format
letter. The format letters supported are:

x Print the binary representation of the value in hexadecimal.

d Print the binary representation of the value in decimal.

u Print the binary representation of the value as an decimal, as if it were unsigned.

o Print the binary representation of the value in octal.

t Print the binary representation of the value in binary. The letter ‘t’ stands for
“two”.1

a Print as an address, both absolute in hexadecimal and as an offset from the
nearest preceding symbol. You can use this format used to discover where (in
what function) an unknown address is located:

(gdb) p/a 0x54320

$3 = 0x54320 <_initialize_vx+396>

The command info symbol 0x54320 yields similar results. See Chapter 16
[Symbols], page 253.

1 ‘b’ cannot be used because these format letters are also used with the x command, where ‘b’ stands for
“byte”; see Section 10.6 [Examining Memory], page 145.

Chapter 10: Examining Data 145

c Cast the value to an integer (unlike other formats, this does not just reinterpret
the underlying bits) and print it as a character constant. This prints both the
numerical value and its character representation. The character representation
is replaced with the octal escape ‘\nnn’ for characters outside the 7-bit ascii
range.

Without this format, gdb displays char, unsigned char, and signed char

data as character constants. Single-byte members of vectors are displayed as
integer data.

f Regard the bits of the value as a floating point number and print using typical
floating point syntax.

s Regard as a string, if possible. With this format, pointers to single-byte data are
displayed as null-terminated strings and arrays of single-byte data are displayed
as fixed-length strings. Other values are displayed in their natural types.

Without this format, gdb displays pointers to and arrays of char,
unsigned char, and signed char as strings. Single-byte members of a vector
are displayed as an integer array.

z Like ‘x’ formatting, the value is treated as an integer and printed as hexadec-
imal, but leading zeros are printed to pad the value to the size of the integer
type.

r Print using the ‘raw’ formatting. By default, gdb will use a Python-based
pretty-printer, if one is available (see Section 10.10 [Pretty Printing], page 161).
This typically results in a higher-level display of the value’s contents. The ‘r’
format bypasses any Python pretty-printer which might exist.

For example, to print the program counter in hex (see Section 10.14 [Registers],
page 171), type

p/x $pc

Note that no space is required before the slash; this is because command names in gdb
cannot contain a slash.

To reprint the last value in the value history with a different format, you can use the
print command with just a format and no expression. For example, ‘p/x’ reprints the last
value in hex.

10.6 Examining Memory

You can use the command x (for “examine”) to examine memory in any of several formats,
independently of your program’s data types.

x/nfu addr

x addr

x Use the x command to examine memory.

n, f, and u are all optional parameters that specify how much memory to display and how
to format it; addr is an expression giving the address where you want to start displaying
memory. If you use defaults for nfu, you need not type the slash ‘/’. Several commands set
convenient defaults for addr.

146 Debugging with gdb

n, the repeat count
The repeat count is a decimal integer; the default is 1. It specifies how much
memory (counting by units u) to display. If a negative number is specified,
memory is examined backward from addr.

f, the display format
The display format is one of the formats used by print (‘x’, ‘d’, ‘u’, ‘o’, ‘t’,
‘a’, ‘c’, ‘f’, ‘s’), ‘i’ (for machine instructions) and ‘m’ (for displaying memory
tags). The default is ‘x’ (hexadecimal) initially. The default changes each time
you use either x or print.

u, the unit size
The unit size is any of

b Bytes.

h Halfwords (two bytes).

w Words (four bytes). This is the initial default.

g Giant words (eight bytes).

Each time you specify a unit size with x, that size becomes the default unit
the next time you use x. For the ‘i’ format, the unit size is ignored and is
normally not written. For the ‘s’ format, the unit size defaults to ‘b’, unless it
is explicitly given. Use x /hs to display 16-bit char strings and x /ws to display
32-bit strings. The next use of x /s will again display 8-bit strings. Note that
the results depend on the programming language of the current compilation
unit. If the language is C, the ‘s’ modifier will use the UTF-16 encoding while
‘w’ will use UTF-32. The encoding is set by the programming language and
cannot be altered.

addr, starting display address
addr is the address where you want gdb to begin displaying memory. The ex-
pression need not have a pointer value (though it may); it is always interpreted
as an integer address of a byte of memory. See Section 10.1 [Expressions],
page 139, for more information on expressions. The default for addr is usu-
ally just after the last address examined—but several other commands also set
the default address: info breakpoints (to the address of the last breakpoint
listed), info line (to the starting address of a line), and print (if you use it
to display a value from memory).

For example, ‘x/3uh 0x54320’ is a request to display three halfwords (h) of memory,
formatted as unsigned decimal integers (‘u’), starting at address 0x54320. ‘x/4xw $sp’
prints the four words (‘w’) of memory above the stack pointer (here, ‘$sp’; see Section 10.14
[Registers], page 171) in hexadecimal (‘x’).

You can also specify a negative repeat count to examine memory backward from the given
address. For example, ‘x/-3uh 0x54320’ prints three halfwords (h) at 0x5431a, 0x5431c,
and 0x5431e.

Since the letters indicating unit sizes are all distinct from the letters specifying output
formats, you do not have to remember whether unit size or format comes first; either order

Chapter 10: Examining Data 147

works. The output specifications ‘4xw’ and ‘4wx’ mean exactly the same thing. (However,
the count n must come first; ‘wx4’ does not work.)

Even though the unit size u is ignored for the formats ‘s’ and ‘i’, you might still want to
use a count n; for example, ‘3i’ specifies that you want to see three machine instructions,
including any operands. For convenience, especially when used with the display command,
the ‘i’ format also prints branch delay slot instructions, if any, beyond the count specified,
which immediately follow the last instruction that is within the count. The command
disassemble gives an alternative way of inspecting machine instructions; see Section 9.6
[Source and Machine Code], page 130.

If a negative repeat count is specified for the formats ‘s’ or ‘i’, the command displays
null-terminated strings or instructions before the given address as many as the absolute
value of the given number. For the ‘i’ format, we use line number information in the debug
info to accurately locate instruction boundaries while disassembling backward. If line info
is not available, the command stops examining memory with an error message.

All the defaults for the arguments to x are designed to make it easy to continue scanning
memory with minimal specifications each time you use x. For example, after you have
inspected three machine instructions with ‘x/3i addr’, you can inspect the next seven with
just ‘x/7’. If you use RET to repeat the x command, the repeat count n is used again; the
other arguments default as for successive uses of x.

When examining machine instructions, the instruction at current program counter is
shown with a => marker. For example:

(gdb) x/5i $pc-6

0x804837f <main+11>: mov %esp,%ebp

0x8048381 <main+13>: push %ecx

0x8048382 <main+14>: sub $0x4,%esp

=> 0x8048385 <main+17>: movl $0x8048460,(%esp)

0x804838c <main+24>: call 0x80482d4 <puts@plt>

If the architecture supports memory tagging, the tags can be displayed by using ‘m’. See
Section 10.7 [Memory Tagging], page 148.

The information will be displayed once per granule size (the amount of bytes a particular
memory tag covers). For example, AArch64 has a granule size of 16 bytes, so it will display
a tag every 16 bytes.

Due to the way gdb prints information with the x command (not aligned to a particular
boundary), the tag information will refer to the initial address displayed on a particular line.
If a memory tag boundary is crossed in the middle of a line displayed by the x command,
it will be displayed on the next line.

The ‘m’ format doesn’t affect any other specified formats that were passed to the x

command.

The addresses and contents printed by the x command are not saved in the value history
because there is often too much of them and they would get in the way. Instead, gdb
makes these values available for subsequent use in expressions as values of the convenience
variables $_ and $__. After an x command, the last address examined is available for use
in expressions in the convenience variable $_. The contents of that address, as examined,
are available in the convenience variable $__.

148 Debugging with gdb

If the x command has a repeat count, the address and contents saved are from the last
memory unit printed; this is not the same as the last address printed if several units were
printed on the last line of output.

Most targets have an addressable memory unit size of 8 bits. This means that to each
memory address are associated 8 bits of data. Some targets, however, have other addressable
memory unit sizes. Within gdb and this document, the term addressable memory unit (or
memory unit for short) is used when explicitly referring to a chunk of data of that size.
The word byte is used to refer to a chunk of data of 8 bits, regardless of the addressable
memory unit size of the target. For most systems, addressable memory unit is a synonym
of byte.

When you are debugging a program running on a remote target machine (see Chapter 20
[Remote Debugging], page 301), you may wish to verify the program’s image in the remote
machine’s memory against the executable file you downloaded to the target. Or, on any
target, you may want to check whether the program has corrupted its own read-only sections.
The compare-sections command is provided for such situations.

compare-sections [section-name|-r]
Compare the data of a loadable section section-name in the executable file of the
program being debugged with the same section in the target machine’s memory,
and report any mismatches. With no arguments, compares all loadable sections.
With an argument of -r, compares all loadable read-only sections.

Note: for remote targets, this command can be accelerated if the target sup-
ports computing the CRC checksum of a block of memory (see [qCRC packet],
page 736).

10.7 Memory Tagging

Memory tagging is a memory protection technology that uses a pair of tags to validate
memory accesses through pointers. The tags are integer values usually comprised of a few
bits, depending on the architecture.

There are two types of tags that are used in this setup: logical and allocation. A
logical tag is stored in the pointers themselves, usually at the higher bits of the pointers.
An allocation tag is the tag associated with particular ranges of memory in the physical
address space, against which the logical tags from pointers are compared.

The pointer tag (logical tag) must match the memory tag (allocation tag) for the memory
access to be valid. If the logical tag does not match the allocation tag, that will raise a
memory violation.

Allocation tags cover multiple contiguous bytes of physical memory. This range of bytes
is called a memory tag granule and is architecture-specific. For example, AArch64 has a
tag granule of 16 bytes, meaning each allocation tag spans 16 bytes of memory.

If the underlying architecture supports memory tagging, like AArch64 MTE or SPARC
ADI do, gdb can make use of it to validate pointers against memory allocation tags.

The print (see Chapter 10 [Data], page 135) and x (see Section 10.6 [Memory],
page 145) commands will display tag information when appropriate, and a command prefix
of memory-tag gives access to the various memory tagging commands.

Chapter 10: Examining Data 149

The memory-tag commands are the following:

memory-tag print-logical-tag pointer_expression

Print the logical tag stored in pointer expression.

memory-tag with-logical-tag pointer_expression tag_bytes

Print the pointer given by pointer expression, augmented with a logical tag of
tag bytes.

memory-tag print-allocation-tag address_expression

Print the allocation tag associated with the memory address given by ad-
dress expression.

memory-tag setatag starting_address length tag_bytes

Set the allocation tag(s) for memory range [starting address, starting address
+ length) to tag bytes.

memory-tag check pointer_expression

Check if the logical tag in the pointer given by pointer expression matches the
allocation tag for the memory referenced by the pointer.

This essentially emulates the hardware validation that is done when tagged
memory is accessed through a pointer, but does not cause a memory fault as it
would during hardware validation.

It can be used to inspect potential memory tagging violations in the running
process, before any faults get triggered.

10.8 Automatic Display

If you find that you want to print the value of an expression frequently (to see how it
changes), you might want to add it to the automatic display list so that gdb prints its
value each time your program stops. Each expression added to the list is given a number to
identify it; to remove an expression from the list, you specify that number. The automatic
display looks like this:

2: foo = 38

3: bar[5] = (struct hack *) 0x3804

This display shows item numbers, expressions and their current values. As with displays
you request manually using x or print, you can specify the output format you prefer; in
fact, display decides whether to use print or x depending your format specification—it
uses x if you specify either the ‘i’ or ‘s’ format, or a unit size; otherwise it uses print.

display expr

Add the expression expr to the list of expressions to display each time your
program stops. See Section 10.1 [Expressions], page 139.

display does not repeat if you press RET again after using it.

display/fmt expr

For fmt specifying only a display format and not a size or count, add the
expression expr to the auto-display list but arrange to display it each time in
the specified format fmt. See Section 10.5 [Output Formats], page 144.

150 Debugging with gdb

display/fmt addr

For fmt ‘i’ or ‘s’, or including a unit-size or a number of units, add the expres-
sion addr as a memory address to be examined each time your program stops.
Examining means in effect doing ‘x/fmt addr’. See Section 10.6 [Examining
Memory], page 145.

For example, ‘display/i $pc’ can be helpful, to see the machine instruction about to
be executed each time execution stops (‘$pc’ is a common name for the program counter;
see Section 10.14 [Registers], page 171).

undisplay dnums...

delete display dnums...

Remove items from the list of expressions to display. Specify the numbers of
the displays that you want affected with the command argument dnums. It can
be a single display number, one of the numbers shown in the first field of the
‘info display’ display; or it could be a range of display numbers, as in 2-4.

undisplay does not repeat if you press RET after using it. (Otherwise you would
just get the error ‘No display number ...’.)

disable display dnums...

Disable the display of item numbers dnums. A disabled display item is not
printed automatically, but is not forgotten. It may be enabled again later.
Specify the numbers of the displays that you want affected with the command
argument dnums. It can be a single display number, one of the numbers shown
in the first field of the ‘info display’ display; or it could be a range of display
numbers, as in 2-4.

enable display dnums...

Enable display of item numbers dnums. It becomes effective once again in auto
display of its expression, until you specify otherwise. Specify the numbers of
the displays that you want affected with the command argument dnums. It can
be a single display number, one of the numbers shown in the first field of the
‘info display’ display; or it could be a range of display numbers, as in 2-4.

display Display the current values of the expressions on the list, just as is done when
your program stops.

info display

Print the list of expressions previously set up to display automatically, each
one with its item number, but without showing the values. This includes dis-
abled expressions, which are marked as such. It also includes expressions which
would not be displayed right now because they refer to automatic variables not
currently available.

If a display expression refers to local variables, then it does not make sense outside the
lexical context for which it was set up. Such an expression is disabled when execution enters
a context where one of its variables is not defined. For example, if you give the command
display last_char while inside a function with an argument last_char, gdb displays
this argument while your program continues to stop inside that function. When it stops
elsewhere—where there is no variable last_char—the display is disabled automatically.

Chapter 10: Examining Data 151

The next time your program stops where last_char is meaningful, you can enable the
display expression once again.

10.9 Print Settings

gdb provides the following ways to control how arrays, structures, and symbols are printed.

These settings are useful for debugging programs in any language:

set print address

set print address on

gdb prints memory addresses showing the location of stack traces, structure
values, pointer values, breakpoints, and so forth, even when it also displays the
contents of those addresses. The default is on. For example, this is what a
stack frame display looks like with set print address on:

(gdb) f

#0 set_quotes (lq=0x34c78 "<<", rq=0x34c88 ">>")

at input.c:530

530 if (lquote != def_lquote)

set print address off

Do not print addresses when displaying their contents. For example, this is the
same stack frame displayed with set print address off:

(gdb) set print addr off

(gdb) f

#0 set_quotes (lq="<<", rq=">>") at input.c:530

530 if (lquote != def_lquote)

You can use ‘set print address off’ to eliminate all machine dependent dis-
plays from the gdb interface. For example, with print address off, you
should get the same text for backtraces on all machines—whether or not they
involve pointer arguments.

show print address

Show whether or not addresses are to be printed.

When gdb prints a symbolic address, it normally prints the closest earlier symbol plus
an offset. If that symbol does not uniquely identify the address (for example, it is a name
whose scope is a single source file), you may need to clarify. One way to do this is with info

line, for example ‘info line *0x4537’. Alternately, you can set gdb to print the source
file and line number when it prints a symbolic address:

set print symbol-filename on

Tell gdb to print the source file name and line number of a symbol in the
symbolic form of an address.

set print symbol-filename off

Do not print source file name and line number of a symbol. This is the default.

show print symbol-filename

Show whether or not gdb will print the source file name and line number of a
symbol in the symbolic form of an address.

152 Debugging with gdb

Another situation where it is helpful to show symbol filenames and line numbers is when
disassembling code; gdb shows you the line number and source file that corresponds to each
instruction.

Also, you may wish to see the symbolic form only if the address being printed is reason-
ably close to the closest earlier symbol:

set print max-symbolic-offset max-offset

set print max-symbolic-offset unlimited

Tell gdb to only display the symbolic form of an address if the offset between
the closest earlier symbol and the address is less than max-offset. The default
is unlimited, which tells gdb to always print the symbolic form of an address
if any symbol precedes it. Zero is equivalent to unlimited.

show print max-symbolic-offset

Ask how large the maximum offset is that gdb prints in a symbolic address.

If you have a pointer and you are not sure where it points, try ‘set print

symbol-filename on’. Then you can determine the name and source file location of the
variable where it points, using ‘p/a pointer’. This interprets the address in symbolic
form. For example, here gdb shows that a variable ptt points at another variable t,
defined in hi2.c:

(gdb) set print symbol-filename on

(gdb) p/a ptt

$4 = 0xe008 <t in hi2.c>

Warning: For pointers that point to a local variable, ‘p/a’ does not show the
symbol name and filename of the referent, even with the appropriate set print

options turned on.

You can also enable ‘/a’-like formatting all the time using ‘set print symbol on’:

set print symbol on

Tell gdb to print the symbol corresponding to an address, if one exists.

set print symbol off

Tell gdb not to print the symbol corresponding to an address. In this mode,
gdb will still print the symbol corresponding to pointers to functions. This is
the default.

show print symbol

Show whether gdb will display the symbol corresponding to an address.

Other settings control how different kinds of objects are printed:

set print array

set print array on

Pretty print arrays. This format is more convenient to read, but uses more
space. The default is off.

set print array off

Return to compressed format for arrays.

show print array

Show whether compressed or pretty format is selected for displaying arrays.

Chapter 10: Examining Data 153

set print array-indexes

set print array-indexes on

Print the index of each element when displaying arrays. May be more convenient
to locate a given element in the array or quickly find the index of a given element
in that printed array. The default is off.

set print array-indexes off

Stop printing element indexes when displaying arrays.

show print array-indexes

Show whether the index of each element is printed when displaying arrays.

set print elements number-of-elements

set print elements unlimited

Set a limit on how many elements of an array gdb will print. If gdb is printing
a large array, it stops printing after it has printed the number of elements set
by the set print elements command. This limit also applies to the display of
strings. When gdb starts, this limit is set to 200. Setting number-of-elements
to unlimited or zero means that the number of elements to print is unlimited.

show print elements

Display the number of elements of a large array that gdb will print.

set print frame-arguments value

This command allows to control how the values of arguments are printed when
the debugger prints a frame (see Section 8.1 [Frames], page 109). The possible
values are:

all The values of all arguments are printed.

scalars Print the value of an argument only if it is a scalar. The value of
more complex arguments such as arrays, structures, unions, etc, is
replaced by This is the default. Here is an example where
only scalar arguments are shown:

#1 0x08048361 in call_me (i=3, s=..., ss=0xbf8d508c, u=..., e=green)

at frame-args.c:23

none None of the argument values are printed. Instead, the value of each
argument is replaced by In this case, the example above now
becomes:

#1 0x08048361 in call_me (i=..., s=..., ss=..., u=..., e=...)

at frame-args.c:23

presence Only the presence of arguments is indicated by The ... are
not printed for function without any arguments. None of the ar-
gument names and values are printed. In this case, the example
above now becomes:

#1 0x08048361 in call_me (...) at frame-args.c:23

By default, only scalar arguments are printed. This command can be used to
configure the debugger to print the value of all arguments, regardless of their
type. However, it is often advantageous to not print the value of more complex
parameters. For instance, it reduces the amount of information printed in each

154 Debugging with gdb

frame, making the backtrace more readable. Also, it improves performance
when displaying Ada frames, because the computation of large arguments can
sometimes be CPU-intensive, especially in large applications. Setting print

frame-arguments to scalars (the default), none or presence avoids this com-
putation, thus speeding up the display of each Ada frame.

show print frame-arguments

Show how the value of arguments should be displayed when printing a frame.

set print raw-frame-arguments on

Print frame arguments in raw, non pretty-printed, form.

set print raw-frame-arguments off

Print frame arguments in pretty-printed form, if there is a pretty-printer for
the value (see Section 10.10 [Pretty Printing], page 161), otherwise print the
value in raw form. This is the default.

show print raw-frame-arguments

Show whether to print frame arguments in raw form.

set print entry-values value

Set printing of frame argument values at function entry. In some cases gdb can
determine the value of function argument which was passed by the function
caller, even if the value was modified inside the called function and therefore is
different. With optimized code, the current value could be unavailable, but the
entry value may still be known.

The default value is default (see below for its description). Older gdb behaved
as with the setting no. Compilers not supporting this feature will behave in the
default setting the same way as with the no setting.

This functionality is currently supported only by DWARF 2 debugging format
and the compiler has to produce ‘DW_TAG_call_site’ tags. With gcc, you
need to specify -O -g during compilation, to get this information.

The value parameter can be one of the following:

no Print only actual parameter values, never print values from function
entry point.

#0 equal (val=5)

#0 different (val=6)

#0 lost (val=<optimized out>)

#0 born (val=10)

#0 invalid (val=<optimized out>)

only Print only parameter values from function entry point. The actual
parameter values are never printed.

#0 equal (val@entry=5)

#0 different (val@entry=5)

#0 lost (val@entry=5)

#0 born (val@entry=<optimized out>)

#0 invalid (val@entry=<optimized out>)

Chapter 10: Examining Data 155

preferred

Print only parameter values from function entry point. If value
from function entry point is not known while the actual value is
known, print the actual value for such parameter.

#0 equal (val@entry=5)

#0 different (val@entry=5)

#0 lost (val@entry=5)

#0 born (val=10)

#0 invalid (val@entry=<optimized out>)

if-needed

Print actual parameter values. If actual parameter value is not
known while value from function entry point is known, print the
entry point value for such parameter.

#0 equal (val=5)

#0 different (val=6)

#0 lost (val@entry=5)

#0 born (val=10)

#0 invalid (val=<optimized out>)

both Always print both the actual parameter value and its value from
function entry point, even if values of one or both are not available
due to compiler optimizations.

#0 equal (val=5, val@entry=5)

#0 different (val=6, val@entry=5)

#0 lost (val=<optimized out>, val@entry=5)

#0 born (val=10, val@entry=<optimized out>)

#0 invalid (val=<optimized out>, val@entry=<optimized out>)

compact Print the actual parameter value if it is known and also its value
from function entry point if it is known. If neither is known, print
for the actual value <optimized out>. If not in MI mode (see
Chapter 27 [GDB/MI], page 543) and if both values are known and
identical, print the shortened param=param@entry=VALUE notation.

#0 equal (val=val@entry=5)

#0 different (val=6, val@entry=5)

#0 lost (val@entry=5)

#0 born (val=10)

#0 invalid (val=<optimized out>)

default Always print the actual parameter value. Print also its value from
function entry point, but only if it is known. If not in MI mode (see
Chapter 27 [GDB/MI], page 543) and if both values are known and
identical, print the shortened param=param@entry=VALUE notation.

#0 equal (val=val@entry=5)

#0 different (val=6, val@entry=5)

#0 lost (val=<optimized out>, val@entry=5)

#0 born (val=10)

#0 invalid (val=<optimized out>)

For analysis messages on possible failures of frame argument values at function
entry resolution see [set debug entry-values], page 188.

156 Debugging with gdb

show print entry-values

Show the method being used for printing of frame argument values at function
entry.

set print frame-info value

This command allows to control the information printed when the debugger
prints a frame. See Section 8.1 [Frames], page 109, Section 8.2 [Backtrace],
page 110, for a general explanation about frames and frame information. Note
that some other settings (such as set print frame-arguments and set print

address) are also influencing if and how some frame information is displayed.
In particular, the frame program counter is never printed if set print address

is off.

The possible values for set print frame-info are:

short-location

Print the frame level, the program counter (if not at the beginning
of the location source line), the function, the function arguments.

location Same as short-location but also print the source file and source
line number.

location-and-address

Same as location but print the program counter even if located
at the beginning of the location source line.

source-line

Print the program counter (if not at the beginning of the location
source line), the line number and the source line.

source-and-location

Print what location and source-line are printing.

auto The information printed for a frame is decided automatically by
the gdb command that prints a frame. For example, frame prints
the information printed by source-and-location while stepi will
switch between source-line and source-and-location depend-
ing on the program counter. The default value is auto.

set print repeats number-of-repeats

set print repeats unlimited

Set the threshold for suppressing display of repeated array elements. When
the number of consecutive identical elements of an array exceeds the threshold,
gdb prints the string "<repeats n times>", where n is the number of identical
repetitions, instead of displaying the identical elements themselves. Setting
the threshold to unlimited or zero will cause all elements to be individually
printed. The default threshold is 10.

show print repeats

Display the current threshold for printing repeated identical elements.

Chapter 10: Examining Data 157

set print max-depth depth

set print max-depth unlimited

Set the threshold after which nested structures are replaced with ellipsis, this
can make visualising deeply nested structures easier.

For example, given this C code

typedef struct s1 { int a; } s1;

typedef struct s2 { s1 b; } s2;

typedef struct s3 { s2 c; } s3;

typedef struct s4 { s3 d; } s4;

s4 var = { { { { 3 } } } };

The following table shows how different values of depth will effect how var is
printed by gdb:

depth setting Result of ‘p var’
unlimited $1 = {d = {c = {b = {a = 3}}}}

0 $1 = {...}

1 $1 = {d = {...}}

2 $1 = {d = {c = {...}}}

3 $1 = {d = {c = {b = {...}}}}

4 $1 = {d = {c = {b = {a = 3}}}}

To see the contents of structures that have been hidden the user can either
increase the print max-depth, or they can print the elements of the structure
that are visible, for example

(gdb) set print max-depth 2

(gdb) p var

$1 = {d = {c = {...}}}

(gdb) p var.d

$2 = {c = {b = {...}}}

(gdb) p var.d.c

$3 = {b = {a = 3}}

The pattern used to replace nested structures varies based on language, for
most languages {...} is used, but Fortran uses (...).

show print max-depth

Display the current threshold after which nested structures are replaces with
ellipsis.

set print memory-tag-violations

set print memory-tag-violations on

Cause gdb to display additional information about memory tag violations when
printing pointers and addresses.

set print memory-tag-violations off

Stop printing memory tag violation information.

show print memory-tag-violations

Show whether memory tag violation information is displayed when printing
pointers and addresses.

158 Debugging with gdb

set print null-stop

Cause gdb to stop printing the characters of an array when the first null
is encountered. This is useful when large arrays actually contain only short
strings. The default is off.

show print null-stop

Show whether gdb stops printing an array on the first null character.

set print pretty on

Cause gdb to print structures in an indented format with one member per line,
like this:

$1 = {

next = 0x0,

flags = {

sweet = 1,

sour = 1

},

meat = 0x54 "Pork"

}

set print pretty off

Cause gdb to print structures in a compact format, like this:

$1 = {next = 0x0, flags = {sweet = 1, sour = 1}, \

meat = 0x54 "Pork"}

This is the default format.

show print pretty

Show which format gdb is using to print structures.

set print raw-values on

Print values in raw form, without applying the pretty printers for the value.

set print raw-values off

Print values in pretty-printed form, if there is a pretty-printer for the value
(see Section 10.10 [Pretty Printing], page 161), otherwise print the value in raw
form.

The default setting is “off”.

show print raw-values

Show whether to print values in raw form.

set print sevenbit-strings on

Print using only seven-bit characters; if this option is set, gdb displays any
eight-bit characters (in strings or character values) using the notation \nnn.
This setting is best if you are working in English (ascii) and you use the high-
order bit of characters as a marker or “meta” bit.

set print sevenbit-strings off

Print full eight-bit characters. This allows the use of more international char-
acter sets, and is the default.

show print sevenbit-strings

Show whether or not gdb is printing only seven-bit characters.

Chapter 10: Examining Data 159

set print union on

Tell gdb to print unions which are contained in structures and other unions.
This is the default setting.

set print union off

Tell gdb not to print unions which are contained in structures and other unions.
gdb will print "{...}" instead.

show print union

Ask gdb whether or not it will print unions which are contained in structures
and other unions.

For example, given the declarations

typedef enum {Tree, Bug} Species;

typedef enum {Big_tree, Acorn, Seedling} Tree_forms;

typedef enum {Caterpillar, Cocoon, Butterfly}

Bug_forms;

struct thing {

Species it;

union {

Tree_forms tree;

Bug_forms bug;

} form;

};

struct thing foo = {Tree, {Acorn}};

with set print union on in effect ‘p foo’ would print

$1 = {it = Tree, form = {tree = Acorn, bug = Cocoon}}

and with set print union off in effect it would print

$1 = {it = Tree, form = {...}}

set print union affects programs written in C-like languages and in Pascal.

These settings are of interest when debugging C++ programs:

set print demangle

set print demangle on

Print C++ names in their source form rather than in the encoded (“mangled”)
form passed to the assembler and linker for type-safe linkage. The default is
on.

show print demangle

Show whether C++ names are printed in mangled or demangled form.

set print asm-demangle

set print asm-demangle on

Print C++ names in their source form rather than their mangled form, even in
assembler code printouts such as instruction disassemblies. The default is off.

show print asm-demangle

Show whether C++ names in assembly listings are printed in mangled or de-
mangled form.

160 Debugging with gdb

set demangle-style style

Choose among several encoding schemes used by different compilers to represent
C++ names. If you omit style, you will see a list of possible formats. The
default value is auto, which lets gdb choose a decoding style by inspecting your
program.

show demangle-style

Display the encoding style currently in use for decoding C++ symbols.

set print object

set print object on

When displaying a pointer to an object, identify the actual (derived) type of
the object rather than the declared type, using the virtual function table. Note
that the virtual function table is required—this feature can only work for objects
that have run-time type identification; a single virtual method in the object’s
declared type is sufficient. Note that this setting is also taken into account when
working with variable objects via MI (see Chapter 27 [GDB/MI], page 543).

set print object off

Display only the declared type of objects, without reference to the virtual func-
tion table. This is the default setting.

show print object

Show whether actual, or declared, object types are displayed.

set print static-members

set print static-members on

Print static members when displaying a C++ object. The default is on.

set print static-members off

Do not print static members when displaying a C++ object.

show print static-members

Show whether C++ static members are printed or not.

set print pascal_static-members

set print pascal_static-members on

Print static members when displaying a Pascal object. The default is on.

set print pascal_static-members off

Do not print static members when displaying a Pascal object.

show print pascal_static-members

Show whether Pascal static members are printed or not.

set print vtbl

set print vtbl on

Pretty print C++ virtual function tables. The default is off. (The vtbl com-
mands do not work on programs compiled with the HP ANSI C++ compiler
(aCC).)

set print vtbl off

Do not pretty print C++ virtual function tables.

Chapter 10: Examining Data 161

show print vtbl

Show whether C++ virtual function tables are pretty printed, or not.

10.10 Pretty Printing

gdb provides a mechanism to allow pretty-printing of values using Python code. It greatly
simplifies the display of complex objects. This mechanism works for both MI and the CLI.

10.10.1 Pretty-Printer Introduction

When gdb prints a value, it first sees if there is a pretty-printer registered for the value.
If there is then gdb invokes the pretty-printer to print the value. Otherwise the value is
printed normally.

Pretty-printers are normally named. This makes them easy to manage. The ‘info
pretty-printer’ command will list all the installed pretty-printers with their names. If a
pretty-printer can handle multiple data types, then its subprinters are the printers for the
individual data types. Each such subprinter has its own name. The format of the name is
printer-name;subprinter-name.

Pretty-printers are installed by registering them with gdb. Typically they are auto-
matically loaded and registered when the corresponding debug information is loaded, thus
making them available without having to do anything special.

There are three places where a pretty-printer can be registered.

• Pretty-printers registered globally are available when debugging all inferiors.

• Pretty-printers registered with a program space are available only when debugging that
program. See Section 23.3.2.24 [Progspaces In Python], page 443, for more details on
program spaces in Python.

• Pretty-printers registered with an objfile are loaded and unloaded with the correspond-
ing objfile (e.g., shared library). See Section 23.3.2.25 [Objfiles In Python], page 445,
for more details on objfiles in Python.

See Section 23.3.2.6 [Selecting Pretty-Printers], page 402, for further information on how
pretty-printers are selected,

See Section 23.3.2.7 [Writing a Pretty-Printer], page 403, for implementing pretty print-
ers for new types.

10.10.2 Pretty-Printer Example

Here is how a C++ std::string looks without a pretty-printer:

(gdb) print s

$1 = {

static npos = 4294967295,

_M_dataplus = {

<std::allocator<char>> = {

<__gnu_cxx::new_allocator<char>> = {

<No data fields>}, <No data fields>

},

members of std::basic_string<char, std::char_traits<char>,

std::allocator<char> >::_Alloc_hider:

_M_p = 0x804a014 "abcd"

}

162 Debugging with gdb

}

With a pretty-printer for std::string only the contents are printed:

(gdb) print s

$2 = "abcd"

10.10.3 Pretty-Printer Commands

info pretty-printer [object-regexp [name-regexp]]

Print the list of installed pretty-printers. This includes disabled pretty-printers,
which are marked as such.

object-regexp is a regular expression matching the objects whose pretty-printers
to list. Objects can be global, the program space’s file (see Section 23.3.2.24
[Progspaces In Python], page 443), and the object files within that program
space (see Section 23.3.2.25 [Objfiles In Python], page 445). See Section 23.3.2.6
[Selecting Pretty-Printers], page 402, for details on how gdb looks up a printer
from these three objects.

name-regexp is a regular expression matching the name of the printers to list.

disable pretty-printer [object-regexp [name-regexp]]

Disable pretty-printers matching object-regexp and name-regexp. A disabled
pretty-printer is not forgotten, it may be enabled again later.

enable pretty-printer [object-regexp [name-regexp]]

Enable pretty-printers matching object-regexp and name-regexp.

Example:

Suppose we have three pretty-printers installed: one from library1.so named foo that
prints objects of type foo, and another from library2.so named bar that prints two types
of objects, bar1 and bar2.

(gdb) info pretty-printer

library1.so:

foo

library2.so:

bar

bar1

bar2

(gdb) info pretty-printer library2

library2.so:

bar

bar1

bar2

(gdb) disable pretty-printer library1

1 printer disabled

2 of 3 printers enabled

(gdb) info pretty-printer

library1.so:

foo [disabled]

library2.so:

bar

bar1

bar2

(gdb) disable pretty-printer library2 bar;bar1

1 printer disabled

Chapter 10: Examining Data 163

1 of 3 printers enabled

(gdb) info pretty-printer library2

library1.so:

foo [disabled]

library2.so:

bar

bar1 [disabled]

bar2

(gdb) disable pretty-printer library2 bar

1 printer disabled

0 of 3 printers enabled

(gdb) info pretty-printer library2

library1.so:

foo [disabled]

library2.so:

bar [disabled]

bar1 [disabled]

bar2

Note that for bar the entire printer can be disabled, as can each individual subprinter.

Printing values and frame arguments is done by default using the enabled pretty printers.

The print option -raw-values and gdb setting set print raw-values (see [set print
raw-values], page 158) can be used to print values without applying the enabled pretty
printers.

Similarly, the backtrace option -raw-frame-arguments and gdb setting set print

raw-frame-arguments (see [set print raw-frame-arguments], page 154) can be used to ig-
nore the enabled pretty printers when printing frame argument values.

10.11 Value History

Values printed by the print command are saved in the gdb value history. This allows you
to refer to them in other expressions. Values are kept until the symbol table is re-read or
discarded (for example with the file or symbol-file commands). When the symbol table
changes, the value history is discarded, since the values may contain pointers back to the
types defined in the symbol table.

The values printed are given history numbers by which you can refer to them. These
are successive integers starting with one. print shows you the history number assigned to
a value by printing ‘$num = ’ before the value; here num is the history number.

To refer to any previous value, use ‘$’ followed by the value’s history number. The way
print labels its output is designed to remind you of this. Just $ refers to the most recent
value in the history, and $$ refers to the value before that. $$n refers to the nth value from
the end; $$2 is the value just prior to $$, $$1 is equivalent to $$, and $$0 is equivalent to
$.

For example, suppose you have just printed a pointer to a structure and want to see the
contents of the structure. It suffices to type

p *$

If you have a chain of structures where the component next points to the next one, you
can print the contents of the next one with this:

p *$.next

164 Debugging with gdb

You can print successive links in the chain by repeating this command—which you can do
by just typing RET.

Note that the history records values, not expressions. If the value of x is 4 and you type
these commands:

print x

set x=5

then the value recorded in the value history by the print command remains 4 even though
the value of x has changed.

show values

Print the last ten values in the value history, with their item numbers. This is
like ‘p $$9’ repeated ten times, except that show values does not change the
history.

show values n

Print ten history values centered on history item number n.

show values +

Print ten history values just after the values last printed. If no more values are
available, show values + produces no display.

Pressing RET to repeat show values n has exactly the same effect as ‘show values +’.

10.12 Convenience Variables

gdb provides convenience variables that you can use within gdb to hold on to a value
and refer to it later. These variables exist entirely within gdb; they are not part of your
program, and setting a convenience variable has no direct effect on further execution of your
program. That is why you can use them freely.

Convenience variables are prefixed with ‘$’. Any name preceded by ‘$’ can be used for a
convenience variable, unless it is one of the predefined machine-specific register names (see
Section 10.14 [Registers], page 171). (Value history references, in contrast, are numbers
preceded by ‘$’. See Section 10.11 [Value History], page 163.)

You can save a value in a convenience variable with an assignment expression, just as
you would set a variable in your program. For example:

set $foo = *object_ptr

would save in $foo the value contained in the object pointed to by object_ptr.

Using a convenience variable for the first time creates it, but its value is void until you
assign a new value. You can alter the value with another assignment at any time.

Convenience variables have no fixed types. You can assign a convenience variable any
type of value, including structures and arrays, even if that variable already has a value of
a different type. The convenience variable, when used as an expression, has the type of its
current value.

show convenience

Print a list of convenience variables used so far, and their values, as well as a
list of the convenience functions. Abbreviated show conv.

Chapter 10: Examining Data 165

init-if-undefined $variable = expression

Set a convenience variable if it has not already been set. This is useful for
user-defined commands that keep some state. It is similar, in concept, to using
local static variables with initializers in C (except that convenience variables
are global). It can also be used to allow users to override default values used in
a command script.

If the variable is already defined then the expression is not evaluated so any
side-effects do not occur.

One of the ways to use a convenience variable is as a counter to be incremented or a
pointer to be advanced. For example, to print a field from successive elements of an array
of structures:

set $i = 0

print bar[$i++]->contents

Repeat that command by typing RET.

Some convenience variables are created automatically by gdb and given values likely to
be useful.

$_ The variable $_ is automatically set by the x command to the last address
examined (see Section 10.6 [Examining Memory], page 145). Other commands
which provide a default address for x to examine also set $_ to that address;
these commands include info line and info breakpoint. The type of $_ is
void * except when set by the x command, in which case it is a pointer to the
type of $__.

$__ The variable $__ is automatically set by the x command to the value found in
the last address examined. Its type is chosen to match the format in which the
data was printed.

$_exitcode

When the program being debugged terminates normally, gdb automatically
sets this variable to the exit code of the program, and resets $_exitsignal to
void.

$_exitsignal

When the program being debugged dies due to an uncaught signal, gdb auto-
matically sets this variable to that signal’s number, and resets $_exitcode to
void.

To distinguish between whether the program being debugged has exited (i.e.,
$_exitcode is not void) or signalled (i.e., $_exitsignal is not void), the
convenience function $_isvoid can be used (see Section 10.13 [Convenience
Functions], page 167). For example, considering the following source code:

#include <signal.h>

int

main (int argc, char *argv[])

{

raise (SIGALRM);

return 0;

}

166 Debugging with gdb

A valid way of telling whether the program being debugged has exited or sig-
nalled would be:

(gdb) define has_exited_or_signalled

Type commands for definition of ‘‘has_exited_or_signalled’’.

End with a line saying just ‘‘end’’.

>if $_isvoid ($_exitsignal)

>echo The program has exited\n

>else

>echo The program has signalled\n

>end

>end

(gdb) run

Starting program:

Program terminated with signal SIGALRM, Alarm clock.

The program no longer exists.

(gdb) has_exited_or_signalled

The program has signalled

As can be seen, gdb correctly informs that the program being debugged has
signalled, since it calls raise and raises a SIGALRM signal. If the program being
debugged had not called raise, then gdb would report a normal exit:

(gdb) has_exited_or_signalled

The program has exited

$_exception

The variable $_exception is set to the exception object being thrown at an
exception-related catchpoint. See Section 5.1.3 [Set Catchpoints], page 68.

$_ada_exception

The variable $_ada_exception is set to the address of the exception being
caught or thrown at an Ada exception-related catchpoint. See Section 5.1.3
[Set Catchpoints], page 68.

$_probe_argc

$_probe_arg0...$_probe_arg11

Arguments to a static probe. See Section 5.1.10 [Static Probe Points], page 79.

$_sdata The variable $_sdata contains extra collected static tracepoint data. See
Section 13.1.6 [Tracepoint Action Lists], page 200. Note that $_sdata could
be empty, if not inspecting a trace buffer, or if extra static tracepoint data has
not been collected.

$_siginfo

The variable $_siginfo contains extra signal information (see [extra signal
information], page 90). Note that $_siginfo could be empty, if the application
has not yet received any signals. For example, it will be empty before you
execute the run command.

$_tlb The variable $_tlb is automatically set when debugging applications running
on MS-Windows in native mode or connected to gdbserver that supports the
qGetTIBAddr request. See Section E.4 [General Query Packets], page 735. This
variable contains the address of the thread information block.

Chapter 10: Examining Data 167

$_inferior

The number of the current inferior. See Section 4.9 [Debugging Multiple Infe-
riors Connections and Programs], page 40.

$_thread The thread number of the current thread. See [thread numbers], page 46.

$_gthread

The global number of the current thread. See [global thread numbers], page 47.

$_simd_lane

The selected SIMD lane of the current thread.

$_gdb_major

$_gdb_minor

The major and minor version numbers of the running gdb. Development snap-
shots and pretest versions have their minor version incremented by one; thus,
gdb pretest 9.11.90 will produce the value 12 for $_gdb_minor. These variables
allow you to write scripts that work with different versions of gdb without errors
caused by features unavailable in some of those versions.

$_shell_exitcode

$_shell_exitsignal

gdb commands such as shell and | are launching shell commands. When
a launched command terminates, gdb automatically maintains the variables
$_shell_exitcode and $_shell_exitsignal according to the exit status of
the last launched command. These variables are set and used similarly to the
variables $_exitcode and $_exitsignal.

10.13 Convenience Functions

gdb also supplies some convenience functions. These have a syntax similar to convenience
variables. A convenience function can be used in an expression just like an ordinary function;
however, a convenience function is implemented internally to gdb.

These functions do not require gdb to be configured with Python support, which means
that they are always available.

$_isvoid (expr)

Return one if the expression expr is void. Otherwise it returns zero.

A void expression is an expression where the type of the result is void. For ex-
ample, you can examine a convenience variable (see Section 10.12 [Convenience
Variables], page 164) to check whether it is void:

(gdb) print $_exitcode

$1 = void

(gdb) print $_isvoid ($_exitcode)

$2 = 1

(gdb) run

Starting program: ./a.out

[Inferior 1 (process 29572) exited normally]

(gdb) print $_exitcode

$3 = 0

(gdb) print $_isvoid ($_exitcode)

$4 = 0

168 Debugging with gdb

In the example above, we used $_isvoid to check whether $_exitcode is void
before and after the execution of the program being debugged. Before the
execution there is no exit code to be examined, therefore $_exitcode is void.
After the execution the program being debugged returned zero, therefore $_

exitcode is zero, which means that it is not void anymore.

The void expression can also be a call of a function from the program being
debugged. For example, given the following function:

void

foo (void)

{

}

The result of calling it inside gdb is void:
(gdb) print foo ()

$1 = void

(gdb) print $_isvoid (foo ())

$2 = 1

(gdb) set $v = foo ()

(gdb) print $v

$3 = void

(gdb) print $_isvoid ($v)

$4 = 1

$_gdb_setting_str (setting)

Return the value of the gdb setting as a string. setting is any setting that
can be used in a set or show command (see Chapter 22 [Controlling GDB],
page 349).

(gdb) show print frame-arguments

Printing of non-scalar frame arguments is "scalars".

(gdb) p $_gdb_setting_str("print frame-arguments")

$1 = "scalars"

(gdb) p $_gdb_setting_str("height")

$2 = "30"

(gdb)

$_gdb_setting (setting)

Return the value of the gdb setting. The type of the returned value depends
on the setting.

The value type for boolean and auto boolean settings is int. The boolean
values off and on are converted to the integer values 0 and 1. The value auto
is converted to the value -1.

The value type for integer settings is either unsigned int or int, depending
on the setting.

Some integer settings accept an unlimited value. Depending on the setting,
the set command also accepts the value 0 or the value −1 as a synonym for
unlimited. For example, set height unlimited is equivalent to set height

0.

Some other settings that accept the unlimited value use the value 0 to literally
mean zero. For example, set history size 0 indicates to not record any gdb
commands in the command history. For such settings, −1 is the synonym for
unlimited.

Chapter 10: Examining Data 169

See the documentation of the corresponding set command for the numerical
value equivalent to unlimited.

The $_gdb_setting function converts the unlimited value to a 0 or a −1 value
according to what the set command uses.

(gdb) p $_gdb_setting_str("height")

$1 = "30"

(gdb) p $_gdb_setting("height")

$2 = 30

(gdb) set height unlimited

(gdb) p $_gdb_setting_str("height")

$3 = "unlimited"

(gdb) p $_gdb_setting("height")

$4 = 0

(gdb) p $_gdb_setting_str("history size")

$5 = "unlimited"

(gdb) p $_gdb_setting("history size")

$6 = -1

(gdb) p $_gdb_setting_str("disassemble-next-line")

$7 = "auto"

(gdb) p $_gdb_setting("disassemble-next-line")

$8 = -1

(gdb)

Other setting types (enum, filename, optional filename, string, string noescape)
are returned as string values.

$_gdb_maint_setting_str (setting)

Like the $_gdb_setting_str function, but works with maintenance set vari-
ables.

$_gdb_maint_setting (setting)

Like the $_gdb_setting function, but works with maintenance set variables.

The following functions require gdb to be configured with Python support.

$_memeq(buf1, buf2, length)

Returns one if the length bytes at the addresses given by buf1 and buf2 are
equal. Otherwise it returns zero.

$_regex(str, regex)

Returns one if the string str matches the regular expression regex. Otherwise it
returns zero. The syntax of the regular expression is that specified by Python’s
regular expression support.

$_streq(str1, str2)

Returns one if the strings str1 and str2 are equal. Otherwise it returns zero.

$_strlen(str)

Returns the length of string str.

$_caller_is(name[, number_of_frames])
Returns one if the calling function’s name is equal to name. Otherwise it returns
zero.

If the optional argument number of frames is provided, it is the number of
frames up in the stack to look. The default is 1.

170 Debugging with gdb

Example:
(gdb) backtrace

#0 bottom_func ()

at testsuite/gdb.python/py-caller-is.c:21

#1 0x00000000004005a0 in middle_func ()

at testsuite/gdb.python/py-caller-is.c:27

#2 0x00000000004005ab in top_func ()

at testsuite/gdb.python/py-caller-is.c:33

#3 0x00000000004005b6 in main ()

at testsuite/gdb.python/py-caller-is.c:39

(gdb) print $_caller_is ("middle_func")

$1 = 1

(gdb) print $_caller_is ("top_func", 2)

$1 = 1

$_caller_matches(regexp[, number_of_frames])
Returns one if the calling function’s name matches the regular expression
regexp. Otherwise it returns zero.

If the optional argument number of frames is provided, it is the number of
frames up in the stack to look. The default is 1.

$_any_caller_is(name[, number_of_frames])
Returns one if any calling function’s name is equal to name. Otherwise it
returns zero.

If the optional argument number of frames is provided, it is the number of
frames up in the stack to look. The default is 1.

This function differs from $_caller_is in that this function checks all stack
frames from the immediate caller to the frame specified by number of frames,
whereas $_caller_is only checks the frame specified by number of frames.

$_any_caller_matches(regexp[, number_of_frames])
Returns one if any calling function’s name matches the regular expression
regexp. Otherwise it returns zero.

If the optional argument number of frames is provided, it is the number of
frames up in the stack to look. The default is 1.

This function differs from $_caller_matches in that this function checks
all stack frames from the immediate caller to the frame specified by
number of frames, whereas $_caller_matches only checks the frame specified
by number of frames.

$_as_string(value)

Return the string representation of value.

This function is useful to obtain the textual label (enumerator) of an enumera-
tion value. For example, assuming the variable node is of an enumerated type:

(gdb) printf "Visiting node of type %s\n", $_as_string(node)

Visiting node of type NODE_INTEGER

$_cimag(value)

$_creal(value)

Return the imaginary ($_cimag) or real ($_creal) part of the complex number
value.

Chapter 10: Examining Data 171

The type of the imaginary or real part depends on the type of the complex
number, e.g., using $_cimag on a float complex will return an imaginary part
of type float.

gdb provides the ability to list and get help on convenience functions.

help function

Print a list of all convenience functions.

10.14 Registers

You can refer to machine register contents, in expressions, as variables with names starting
with ‘$’. The names of registers are different for each machine; use info registers to see
the names used on your machine.

info registers

Print the names and values of all registers except floating-point and vector
registers (in the selected stack frame).

info all-registers

Print the names and values of all registers, including floating-point and vector
registers (in the selected stack frame).

info registers reggroup ...

Print the name and value of the registers in each of the specified reggroups.
The reggroup can be any of those returned by maint print reggroups (see
Appendix D [Maintenance Commands], page 707).

info registers regname ...

Print the relativized value of each specified register regname. As discussed in
detail below, register values are normally relative to the selected stack frame.
The regname may be any register name valid on the machine you are using,
with or without the initial ‘$’.

gdb has four “standard” register names that are available (in expressions) on most
machines—whenever they do not conflict with an architecture’s canonical mnemonics for
registers. The register names $pc and $sp are used for the program counter register and
the stack pointer. $fp is used for a register that contains a pointer to the current stack
frame, and $ps is used for a register that contains the processor status. For example, you
could print the program counter in hex with

p/x $pc

or print the instruction to be executed next with
x/i $pc

or add four to the stack pointer2 with
set $sp += 4

Whenever possible, these four standard register names are available on your machine
even though the machine has different canonical mnemonics, so long as there is no conflict.

2 This is a way of removing one word from the stack, on machines where stacks grow downward in memory
(most machines, nowadays). This assumes that the innermost stack frame is selected; setting $sp is not
allowed when other stack frames are selected. To pop entire frames off the stack, regardless of machine
architecture, use return; see Section 17.4 [Returning from a Function], page 270.

172 Debugging with gdb

The info registers command shows the canonical names. For example, on the SPARC,
info registers displays the processor status register as $psr but you can also refer to it
as $ps; and on x86-based machines $ps is an alias for the eflags register.

gdb always considers the contents of an ordinary register as an integer when the register
is examined in this way. Some machines have special registers which can hold nothing but
floating point; these registers are considered to have floating point values. There is no way
to refer to the contents of an ordinary register as floating point value (although you can
print it as a floating point value with ‘print/f $regname’).

Some registers have distinct “raw” and “virtual” data formats. This means that the data
format in which the register contents are saved by the operating system is not the same
one that your program normally sees. For example, the registers of the 68881 floating point
coprocessor are always saved in “extended” (raw) format, but all C programs expect to work
with “double” (virtual) format. In such cases, gdb normally works with the virtual format
only (the format that makes sense for your program), but the info registers command
prints the data in both formats.

Some machines have special registers whose contents can be interpreted in several differ-
ent ways. For example, modern x86-based machines have SSE and MMX registers that can
hold several values packed together in several different formats. gdb refers to such registers
in struct notation:

(gdb) print $xmm1

$1 = {

v4_float = {0, 3.43859137e-038, 1.54142831e-044, 1.821688e-044},

v2_double = {9.92129282474342e-303, 2.7585945287983262e-313},

v16_int8 = "\000\000\000\000\3706;\001\v\000\000\000\r\000\000",

v8_int16 = {0, 0, 14072, 315, 11, 0, 13, 0},

v4_int32 = {0, 20657912, 11, 13},

v2_int64 = {88725056443645952, 55834574859},

uint128 = 0x0000000d0000000b013b36f800000000

}

To set values of such registers, you need to tell gdb which view of the register you wish to
change, as if you were assigning value to a struct member:

(gdb) set $xmm1.uint128 = 0x000000000000000000000000FFFFFFFF

Normally, register values are relative to the selected stack frame (see Section 8.3 [Select-
ing a Frame], page 113). This means that you get the value that the register would contain
if all stack frames farther in were exited and their saved registers restored. In order to see
the true contents of hardware registers, you must select the innermost frame (with ‘frame
0’).

Usually ABIs reserve some registers as not needed to be saved by the callee (a.k.a.:
“caller-saved”, “call-clobbered” or “volatile” registers). It may therefore not be possible for
gdb to know the value a register had before the call (in other words, in the outer frame),
if the register value has since been changed by the callee. gdb tries to deduce where
the inner frame saved (“callee-saved”) registers, from the debug info, unwind info, or the
machine code generated by your compiler. If some register is not saved, and gdb knows the
register is “caller-saved” (via its own knowledge of the ABI, or because the debug/unwind
info explicitly says the register’s value is undefined), gdb displays ‘<not saved>’ as the
register’s value. With targets that gdb has no knowledge of the register saving convention,
if a register was not saved by the callee, then its value and location in the outer frame are

Chapter 10: Examining Data 173

assumed to be the same of the inner frame. This is usually harmless, because if the register
is call-clobbered, the caller either does not care what is in the register after the call, or has
code to restore the value that it does care about. Note, however, that if you change such
a register in the outer frame, you may also be affecting the inner frame. Also, the more
“outer” the frame is you’re looking at, the more likely a call-clobbered register’s value is
to be wrong, in the sense that it doesn’t actually represent the value the register had just
before the call.

10.15 Floating Point Hardware

Depending on the configuration, gdb may be able to give you more information about the
status of the floating point hardware.

info float

Display hardware-dependent information about the floating point unit. The
exact contents and layout vary depending on the floating point chip. Currently,
‘info float’ is supported on the ARM and x86 machines.

10.16 Vector Unit

Depending on the configuration, gdb may be able to give you more information about the
status of the vector unit.

info vector

Display information about the vector unit. The exact contents and layout vary
depending on the hardware.

10.17 Operating System Auxiliary Information

gdb provides interfaces to useful OS facilities that can help you debug your program.

Some operating systems supply an auxiliary vector to programs at startup. This is akin
to the arguments and environment that you specify for a program, but contains a system-
dependent variety of binary values that tell system libraries important details about the
hardware, operating system, and process. Each value’s purpose is identified by an inte-
ger tag; the meanings are well-known but system-specific. Depending on the configuration
and operating system facilities, gdb may be able to show you this information. For re-
mote targets, this functionality may further depend on the remote stub’s support of the
‘qXfer:auxv:read’ packet, see [qXfer auxiliary vector read], page 756.

info auxv Display the auxiliary vector of the inferior, which can be either a live process
or a core dump file. gdb prints each tag value numerically, and also shows
names and text descriptions for recognized tags. Some values in the vector are
numbers, some bit masks, and some pointers to strings or other data. gdb
displays each value in the most appropriate form for a recognized tag, and in
hexadecimal for an unrecognized tag.

On some targets, gdb can access operating system-specific information and show it to
you. The types of information available will differ depending on the type of operating system
running on the target. The mechanism used to fetch the data is described in Appendix H
[Operating System Information], page 821. For remote targets, this functionality depends

174 Debugging with gdb

on the remote stub’s support of the ‘qXfer:osdata:read’ packet, see [qXfer osdata read],
page 760.

info os infotype

Display OS information of the requested type.

On gnu/Linux, the following values of infotype are valid:

cpus Display the list of all CPUs/cores. For each CPU/core, gdb prints
the available fields from /proc/cpuinfo. For each supported archi-
tecture different fields are available. Two common entries are pro-
cessor which gives CPU number and bogomips; a system constant
that is calculated during kernel initialization.

files Display the list of open file descriptors on the target. For each
file descriptor, gdb prints the identifier of the process owning the
descriptor, the command of the owning process, the value of the
descriptor, and the target of the descriptor.

modules Display the list of all loaded kernel modules on the target. For
each module, gdb prints the module name, the size of the module
in bytes, the number of times the module is used, the dependencies
of the module, the status of the module, and the address of the
loaded module in memory.

msg Display the list of all System V message queues on the target. For
each message queue, gdb prints the message queue key, the message
queue identifier, the access permissions, the current number of bytes
on the queue, the current number of messages on the queue, the
processes that last sent and received a message on the queue, the
user and group of the owner and creator of the message queue, the
times at which a message was last sent and received on the queue,
and the time at which the message queue was last changed.

processes

Display the list of processes on the target. For each process, gdb
prints the process identifier, the name of the user, the command
corresponding to the process, and the list of processor cores that
the process is currently running on. (To understand what these
properties mean, for this and the following info types, please consult
the general gnu/Linux documentation.)

procgroups

Display the list of process groups on the target. For each process,
gdb prints the identifier of the process group that it belongs to, the
command corresponding to the process group leader, the process
identifier, and the command line of the process. The list is sorted
first by the process group identifier, then by the process identifier,
so that processes belonging to the same process group are grouped
together and the process group leader is listed first.

Chapter 10: Examining Data 175

semaphores

Display the list of all System V semaphore sets on the target.
For each semaphore set, gdb prints the semaphore set key, the
semaphore set identifier, the access permissions, the number of
semaphores in the set, the user and group of the owner and creator
of the semaphore set, and the times at which the semaphore set
was operated upon and changed.

shm Display the list of all System V shared-memory regions on the tar-
get. For each shared-memory region, gdb prints the region key,
the shared-memory identifier, the access permissions, the size of
the region, the process that created the region, the process that
last attached to or detached from the region, the current number of
live attaches to the region, and the times at which the region was
last attached to, detach from, and changed.

sockets Display the list of Internet-domain sockets on the target. For each
socket, gdb prints the address and port of the local and remote
endpoints, the current state of the connection, the creator of the
socket, the IP address family of the socket, and the type of the
connection.

threads Display the list of threads running on the target. For each thread,
gdb prints the identifier of the process that the thread belongs to,
the command of the process, the thread identifier, and the processor
core that it is currently running on. The main thread of a process
is not listed.

info os If infotype is omitted, then list the possible values for infotype and the kind of
OS information available for each infotype. If the target does not return a list
of possible types, this command will report an error.

10.18 Memory Region Attributes

Memory region attributes allow you to describe special handling required by regions of
your target’s memory. gdb uses attributes to determine whether to allow certain types
of memory accesses; whether to use specific width accesses; and whether to cache target
memory. By default the description of memory regions is fetched from the target (if the
current target supports this), but the user can override the fetched regions.

Defined memory regions can be individually enabled and disabled. When a memory
region is disabled, gdb uses the default attributes when accessing memory in that region.
Similarly, if no memory regions have been defined, gdb uses the default attributes when
accessing all memory.

When a memory region is defined, it is given a number to identify it; to enable, disable,
or remove a memory region, you specify that number.

mem lower upper attributes...

Define a memory region bounded by lower and upper with attributes
attributes . . . , and add it to the list of regions monitored by gdb. Note that

176 Debugging with gdb

upper == 0 is a special case: it is treated as the target’s maximum memory
address. (0xffff on 16 bit targets, 0xffffffff on 32 bit targets, etc.)

mem auto Discard any user changes to the memory regions and use target-supplied regions,
if available, or no regions if the target does not support.

delete mem nums...

Remove memory regions nums . . . from the list of regions monitored by gdb.

disable mem nums...

Disable monitoring of memory regions nums A disabled memory region is
not forgotten. It may be enabled again later.

enable mem nums...

Enable monitoring of memory regions nums

info mem Print a table of all defined memory regions, with the following columns for each
region:

Memory Region Number
Enabled or Disabled.

Enabled memory regions are marked with ‘y’. Disabled memory
regions are marked with ‘n’.

Lo Address
The address defining the inclusive lower bound of the memory re-
gion.

Hi Address
The address defining the exclusive upper bound of the memory
region.

Attributes The list of attributes set for this memory region.

10.18.1 Attributes

10.18.1.1 Memory Access Mode

The access mode attributes set whether gdb may make read or write accesses to a memory
region.

While these attributes prevent gdb from performing invalid memory accesses, they do
nothing to prevent the target system, I/O DMA, etc. from accessing memory.

ro Memory is read only.

wo Memory is write only.

rw Memory is read/write. This is the default.

10.18.1.2 Memory Access Size

The access size attribute tells gdb to use specific sized accesses in the memory region. Often
memory mapped device registers require specific sized accesses. If no access size attribute
is specified, gdb may use accesses of any size.

8 Use 8 bit memory accesses.

Chapter 10: Examining Data 177

16 Use 16 bit memory accesses.

32 Use 32 bit memory accesses.

64 Use 64 bit memory accesses.

10.18.1.3 Data Cache

The data cache attributes set whether gdb will cache target memory. While this generally
improves performance by reducing debug protocol overhead, it can lead to incorrect results
because gdb does not know about volatile variables or memory mapped device registers.

cache Enable gdb to cache target memory.

nocache Disable gdb from caching target memory. This is the default.

10.18.2 Memory Access Checking

gdb can be instructed to refuse accesses to memory that is not explicitly described. This
can be useful if accessing such regions has undesired effects for a specific target, or to provide
better error checking. The following commands control this behaviour.

set mem inaccessible-by-default [on|off]

If on is specified, make gdb treat memory not explicitly described by the mem-
ory ranges as non-existent and refuse accesses to such memory. The checks are
only performed if there’s at least one memory range defined. If off is specified,
make gdb treat the memory not explicitly described by the memory ranges as
RAM. The default value is on.

show mem inaccessible-by-default

Show the current handling of accesses to unknown memory.

10.19 Copy Between Memory and a File

You can use the commands dump, append, and restore to copy data between target memory
and a file. The dump and append commands write data to a file, and the restore command
reads data from a file back into the inferior’s memory. Files may be in binary, Motorola
S-record, Intel hex, Tektronix Hex, or Verilog Hex format; however, gdb can only append
to binary files, and cannot read from Verilog Hex files.

dump [format] memory filename start_addr end_addr

dump [format] value filename expr

Dump the contents of memory from start addr to end addr, or the value of
expr, to filename in the given format.

The format parameter may be any one of:

binary Raw binary form.

ihex Intel hex format.

srec Motorola S-record format.

tekhex Tektronix Hex format.

verilog Verilog Hex format.

178 Debugging with gdb

gdb uses the same definitions of these formats as the gnu binary utilities, like
‘objdump’ and ‘objcopy’. If format is omitted, gdb dumps the data in raw
binary form.

append [binary] memory filename start_addr end_addr

append [binary] value filename expr

Append the contents of memory from start addr to end addr, or the value of
expr, to the file filename, in raw binary form. (gdb can only append data to
files in raw binary form.)

restore filename [binary] bias start end

Restore the contents of file filename into memory. The restore command can
automatically recognize any known bfd file format, except for raw binary. To
restore a raw binary file you must specify the optional keyword binary after
the filename.

If bias is non-zero, its value will be added to the addresses contained in the file.
Binary files always start at address zero, so they will be restored at address
bias. Other bfd files have a built-in location; they will be restored at offset bias
from that location.

If start and/or end are non-zero, then only data between file offset start and
file offset end will be restored. These offsets are relative to the addresses in the
file, before the bias argument is applied.

10.20 How to Produce a Core File from Your Program

A core file or core dump is a file that records the memory image of a running process
and its process status (register values etc.). Its primary use is post-mortem debugging of a
program that crashed while it ran outside a debugger. A program that crashes automatically
produces a core file, unless this feature is disabled by the user. See Section 18.1 [Files],
page 279, for information on invoking gdb in the post-mortem debugging mode.

Occasionally, you may wish to produce a core file of the program you are debugging in
order to preserve a snapshot of its state. gdb has a special command for that.

generate-core-file [file]

gcore [file]

Produce a core dump of the inferior process. The optional argument file specifies
the file name where to put the core dump. If not specified, the file name defaults
to core.pid, where pid is the inferior process ID.

Note that this command is implemented only for some systems (as of this
writing, gnu/Linux, FreeBSD, Solaris, and S390).

On gnu/Linux, this command can take into account the value of the file
/proc/pid/coredump_filter when generating the core dump (see [set use-
coredump-filter], page 178), and by default honors the VM_DONTDUMP flag for
mappings where it is present in the file /proc/pid/smaps (see [set dump-
excluded-mappings], page 179).

Chapter 10: Examining Data 179

set use-coredump-filter on

set use-coredump-filter off

Enable or disable the use of the file /proc/pid/coredump_filter when gen-
erating core dump files. This file is used by the Linux kernel to decide what
types of memory mappings will be dumped or ignored when generating a core
dump file. pid is the process ID of a currently running process.

To make use of this feature, you have to write in the /proc/pid/coredump_

filter file a value, in hexadecimal, which is a bit mask representing the memory
mapping types. If a bit is set in the bit mask, then the memory mappings of
the corresponding types will be dumped; otherwise, they will be ignored. This
configuration is inherited by child processes. For more information about the
bits that can be set in the /proc/pid/coredump_filter file, please refer to the
manpage of core(5).

By default, this option is on. If this option is turned off, gdb does not read
the coredump_filter file and instead uses the same default value as the Linux
kernel in order to decide which pages will be dumped in the core dump file. This
value is currently 0x33, which means that bits 0 (anonymous private mappings),
1 (anonymous shared mappings), 4 (ELF headers) and 5 (private huge pages)
are active. This will cause these memory mappings to be dumped automatically.

set dump-excluded-mappings on

set dump-excluded-mappings off

If on is specified, gdb will dump memory mappings marked with the VM_

DONTDUMP flag. This flag is represented in the file /proc/pid/smaps with the
acronym dd.

The default value is off.

10.21 Character Sets

If the program you are debugging uses a different character set to represent characters and
strings than the one gdb uses itself, gdb can automatically translate between the character
sets for you. The character set gdb uses we call the host character set; the one the inferior
program uses we call the target character set.

For example, if you are running gdb on a gnu/Linux system, which uses the ISO Latin
1 character set, but you are using gdb’s remote protocol (see Chapter 20 [Remote Debug-
ging], page 301) to debug a program running on an IBM mainframe, which uses the ebcdic
character set, then the host character set is Latin-1, and the target character set is ebcdic.
If you give gdb the command set target-charset EBCDIC-US, then gdb translates be-
tween ebcdic and Latin 1 as you print character or string values, or use character and
string literals in expressions.

gdb has no way to automatically recognize which character set the inferior program
uses; you must tell it, using the set target-charset command, described below.

Here are the commands for controlling gdb’s character set support:

set target-charset charset

Set the current target character set to charset. To display the list of supported
target character sets, type set target-charset TABTAB.

180 Debugging with gdb

set host-charset charset

Set the current host character set to charset.

By default, gdb uses a host character set appropriate to the system it is run-
ning on; you can override that default using the set host-charset command.
On some systems, gdb cannot automatically determine the appropriate host
character set. In this case, gdb uses ‘UTF-8’.

gdb can only use certain character sets as its host character set. If you type
set host-charset TABTAB, gdb will list the host character sets it supports.

set charset charset

Set the current host and target character sets to charset. As above, if you type
set charset TABTAB, gdb will list the names of the character sets that can be
used for both host and target.

show charset

Show the names of the current host and target character sets.

show host-charset

Show the name of the current host character set.

show target-charset

Show the name of the current target character set.

set target-wide-charset charset

Set the current target’s wide character set to charset. This is the character
set used by the target’s wchar_t type. To display the list of supported wide
character sets, type set target-wide-charset TABTAB.

show target-wide-charset

Show the name of the current target’s wide character set.

Here is an example of gdb’s character set support in action. Assume that the following
source code has been placed in the file charset-test.c:

#include <stdio.h>

char ascii_hello[]

= {72, 101, 108, 108, 111, 44, 32, 119,

111, 114, 108, 100, 33, 10, 0};

char ibm1047_hello[]

= {200, 133, 147, 147, 150, 107, 64, 166,

150, 153, 147, 132, 90, 37, 0};

main ()

{

printf ("Hello, world!\n");

}

In this program, ascii_hello and ibm1047_hello are arrays containing the string
‘Hello, world!’ followed by a newline, encoded in the ascii and ibm1047 character sets.

We compile the program, and invoke the debugger on it:
$ gcc -g charset-test.c -o charset-test

$ gdb -nw charset-test

GNU gdb 2001-12-19-cvs

Copyright 2001 Free Software Foundation, Inc.

Chapter 10: Examining Data 181

...

(gdb)

We can use the show charset command to see what character sets gdb is currently
using to interpret and display characters and strings:

(gdb) show charset

The current host and target character set is ‘ISO-8859-1’.

(gdb)

For the sake of printing this manual, let’s use ascii as our initial character set:
(gdb) set charset ASCII

(gdb) show charset

The current host and target character set is ‘ASCII’.

(gdb)

Let’s assume that ascii is indeed the correct character set for our host system — in
other words, let’s assume that if gdb prints characters using the ascii character set, our
terminal will display them properly. Since our current target character set is also ascii, the
contents of ascii_hello print legibly:

(gdb) print ascii_hello

$1 = 0x401698 "Hello, world!\n"

(gdb) print ascii_hello[0]

$2 = 72 ’H’

(gdb)

gdb uses the target character set for character and string literals you use in expressions:
(gdb) print ’+’

$3 = 43 ’+’

(gdb)

The ascii character set uses the number 43 to encode the ‘+’ character.

gdb relies on the user to tell it which character set the target program uses. If we print
ibm1047_hello while our target character set is still ascii, we get jibberish:

(gdb) print ibm1047_hello

$4 = 0x4016a8 "\310\205\223\223\226k@\246\226\231\223\204Z%"

(gdb) print ibm1047_hello[0]

$5 = 200 ’\310’

(gdb)

If we invoke the set target-charset followed by TABTAB, gdb tells us the character
sets it supports:

(gdb) set target-charset

ASCII EBCDIC-US IBM1047 ISO-8859-1

(gdb) set target-charset

We can select ibm1047 as our target character set, and examine the program’s strings
again. Now the ascii string is wrong, but gdb translates the contents of ibm1047_hello
from the target character set, ibm1047, to the host character set, ascii, and they display
correctly:

(gdb) set target-charset IBM1047

(gdb) show charset

The current host character set is ‘ASCII’.

The current target character set is ‘IBM1047’.

(gdb) print ascii_hello

$6 = 0x401698 "\110\145%%?\054\040\167?\162%\144\041\012"

(gdb) print ascii_hello[0]

$7 = 72 ’\110’

182 Debugging with gdb

(gdb) print ibm1047_hello

$8 = 0x4016a8 "Hello, world!\n"

(gdb) print ibm1047_hello[0]

$9 = 200 ’H’

(gdb)

As above, gdb uses the target character set for character and string literals you use in
expressions:

(gdb) print ’+’

$10 = 78 ’+’

(gdb)

The ibm1047 character set uses the number 78 to encode the ‘+’ character.

10.22 Caching Data of Targets

gdb caches data exchanged between the debugger and a target. Each cache is associated
with the address space of the inferior. See Section 4.9 [Inferiors Connections and Programs],
page 40, about inferior and address space. Such caching generally improves performance in
remote debugging (see Chapter 20 [Remote Debugging], page 301), because it reduces the
overhead of the remote protocol by bundling memory reads and writes into large chunks.
Unfortunately, simply caching everything would lead to incorrect results, since gdb does
not necessarily know anything about volatile values, memory-mapped I/O addresses, etc.
Furthermore, in non-stop mode (see Section 5.5.2 [Non-Stop Mode], page 93) memory can
be changed while a gdb command is executing. Therefore, by default, gdb only caches
data known to be on the stack3 or in the code segment. Other regions of memory can be
explicitly marked as cacheable; see Section 10.18 [Memory Region Attributes], page 175.

set remotecache on

set remotecache off

This option no longer does anything; it exists for compatibility with old scripts.

show remotecache

Show the current state of the obsolete remotecache flag.

set stack-cache on

set stack-cache off

Enable or disable caching of stack accesses. When on, use caching. By default,
this option is on.

show stack-cache

Show the current state of data caching for memory accesses.

set code-cache on

set code-cache off

Enable or disable caching of code segment accesses. When on, use caching. By
default, this option is on. This improves performance of disassembly in remote
debugging.

show code-cache

Show the current state of target memory cache for code segment accesses.

3 In non-stop mode, it is moderately rare for a running thread to modify the stack of a stopped thread in
a way that would interfere with a backtrace, and caching of stack reads provides a significant speed up
of remote backtraces.

Chapter 10: Examining Data 183

info dcache [line]
Print the information about the performance of data cache of the current infe-
rior’s address space. The information displayed includes the dcache width and
depth, and for each cache line, its number, address, and how many times it was
referenced. This command is useful for debugging the data cache operation.

If a line number is specified, the contents of that line will be printed in hex.

set dcache size size

Set maximum number of entries in dcache (dcache depth above).

set dcache line-size line-size

Set number of bytes each dcache entry caches (dcache width above). Must be
a power of 2.

show dcache size

Show maximum number of dcache entries. See Section 10.22 [Caching Target
Data], page 182.

show dcache line-size

Show default size of dcache lines.

maint flush dcache

Flush the contents (if any) of the dcache. This maintainer command is useful
when debugging the dcache implementation.

10.23 Search Memory

Memory can be searched for a particular sequence of bytes with the find command.

find [/sn] start_addr, +len, val1 [, val2, ...]
find [/sn] start_addr, end_addr, val1 [, val2, ...]

Search memory for the sequence of bytes specified by val1, val2, etc. The search
begins at address start addr and continues for either len bytes or through to
end addr inclusive.

s and n are optional parameters. They may be specified in either order, apart or together.

s, search query size
The size of each search query value.

b bytes

h halfwords (two bytes)

w words (four bytes)

g giant words (eight bytes)

All values are interpreted in the current language. This means, for example,
that if the current source language is C/C++ then searching for the string “hello”
includes the trailing ’\0’. The null terminator can be removed from searching
by using casts, e.g.: ‘{char[5]}"hello"’.

If the value size is not specified, it is taken from the value’s type in the current
language. This is useful when one wants to specify the search pattern as a

184 Debugging with gdb

mixture of types. Note that this means, for example, that in the case of C-like
languages a search for an untyped 0x42 will search for ‘(int) 0x42’ which is
typically four bytes.

n, maximum number of finds
The maximum number of matches to print. The default is to print all finds.

You can use strings as search values. Quote them with double-quotes ("). The string
value is copied into the search pattern byte by byte, regardless of the endianness of the
target and the size specification.

The address of each match found is printed as well as a count of the number of matches
found.

The address of the last value found is stored in convenience variable ‘$_’. A count of the
number of matches is stored in ‘$numfound’.

For example, if stopped at the printf in this function:

void

hello ()

{

static char hello[] = "hello-hello";

static struct { char c; short s; int i; }

__attribute__ ((packed)) mixed

= { ’c’, 0x1234, 0x87654321 };

printf ("%s\n", hello);

}

you get during debugging:

(gdb) find &hello[0], +sizeof(hello), "hello"

0x804956d <hello.1620+6>

1 pattern found

(gdb) find &hello[0], +sizeof(hello), ’h’, ’e’, ’l’, ’l’, ’o’

0x8049567 <hello.1620>

0x804956d <hello.1620+6>

2 patterns found.

(gdb) find &hello[0], +sizeof(hello), {char[5]}"hello"

0x8049567 <hello.1620>

0x804956d <hello.1620+6>

2 patterns found.

(gdb) find /b1 &hello[0], +sizeof(hello), ’h’, 0x65, ’l’

0x8049567 <hello.1620>

1 pattern found

(gdb) find &mixed, +sizeof(mixed), (char) ’c’, (short) 0x1234, (int) 0x87654321

0x8049560 <mixed.1625>

1 pattern found

(gdb) print $numfound

$1 = 1

(gdb) print $_

$2 = (void *) 0x8049560

10.24 Value Sizes

Whenever gdb prints a value memory will be allocated within gdb to hold the contents of
the value. It is possible in some languages with dynamic typing systems, that an invalid
program may indicate a value that is incorrectly large, this in turn may cause gdb to try
and allocate an overly large amount of memory.

185

set max-value-size bytes

set max-value-size unlimited

Set the maximum size of memory that gdb will allocate for the contents of a
value to bytes, trying to display a value that requires more memory than that
will result in an error.

Setting this variable does not effect values that have already been allocated
within gdb, only future allocations.

There’s a minimum size that max-value-size can be set to in order that gdb
can still operate correctly, this minimum is currently 16 bytes.

The limit applies to the results of some subexpressions as well as to complete
expressions. For example, an expression denoting a simple integer component,
such as x.y.z, may fail if the size of x.y is dynamic and exceeds bytes. On the
other hand, gdb is sometimes clever; the expression A[i], where A is an array
variable with non-constant size, will generally succeed regardless of the bounds
on A, as long as the component size is less than bytes.

The default value of max-value-size is currently 64k.

show max-value-size

Show the maximum size of memory, in bytes, that gdb will allocate for the
contents of a value.

187

11 Debugging Optimized Code

Almost all compilers support optimization. With optimization disabled, the compiler gen-
erates assembly code that corresponds directly to your source code, in a simplistic way.
As the compiler applies more powerful optimizations, the generated assembly code diverges
from your original source code. With help from debugging information generated by the
compiler, gdb can map from the running program back to constructs from your original
source.

gdb is more accurate with optimization disabled. If you can recompile without opti-
mization, it is easier to follow the progress of your program during debugging. But, there
are many cases where you may need to debug an optimized version.

When you debug a program compiled with ‘-g -O’, remember that the optimizer has
rearranged your code; the debugger shows you what is really there. Do not be too surprised
when the execution path does not exactly match your source file! An extreme example: if
you define a variable, but never use it, gdb never sees that variable—because the compiler
optimizes it out of existence.

Some things do not work as well with ‘-g -O’ as with just ‘-g’, particularly on machines
with instruction scheduling. If in doubt, recompile with ‘-g’ alone, and if this fixes the
problem, please report it to us as a bug (including a test case!). See Section 10.3 [Variables],
page 140, for more information about debugging optimized code.

11.1 Inline Functions

Inlining is an optimization that inserts a copy of the function body directly at each call site,
instead of jumping to a shared routine. gdb displays inlined functions just like non-inlined
functions. They appear in backtraces. You can view their arguments and local variables,
step into them with step, skip them with next, and escape from them with finish. You
can check whether a function was inlined by using the info frame command.

For gdb to support inlined functions, the compiler must record information about in-
lining in the debug information — gcc using the dwarf 2 format does this, and sev-
eral other compilers do also. gdb only supports inlined functions when using dwarf 2.
Versions of gcc before 4.1 do not emit two required attributes (‘DW_AT_call_file’ and
‘DW_AT_call_line’); gdb does not display inlined function calls with earlier versions of
gcc. It instead displays the arguments and local variables of inlined functions as local
variables in the caller.

The body of an inlined function is directly included at its call site; unlike a non-inlined
function, there are no instructions devoted to the call. gdb still pretends that the call site
and the start of the inlined function are different instructions. Stepping to the call site
shows the call site, and then stepping again shows the first line of the inlined function, even
though no additional instructions are executed.

This makes source-level debugging much clearer; you can see both the context of the call
and then the effect of the call. Only stepping by a single instruction using stepi or nexti
does not do this; single instruction steps always show the inlined body.

There are some ways that gdb does not pretend that inlined function calls are the same
as normal calls:

188 Debugging with gdb

• Setting breakpoints at the call site of an inlined function may not work, because the
call site does not contain any code. gdb may incorrectly move the breakpoint to the
next line of the enclosing function, after the call. This limitation will be removed in
a future version of gdb; until then, set a breakpoint on an earlier line or inside the
inlined function instead.

• gdb cannot locate the return value of inlined calls after using the finish command.
This is a limitation of compiler-generated debugging information; after finish, you
can step to the next line and print a variable where your program stored the return
value.

11.2 Tail Call Frames

Function B can call function C in its very last statement. In unoptimized compilation the
call of C is immediately followed by return instruction at the end of B code. Optimizing
compiler may replace the call and return in function B into one jump to function C instead.
Such use of a jump instruction is called tail call.

During execution of function C, there will be no indication in the function call stack
frames that it was tail-called from B. If function A regularly calls function B which tail-calls
function C, then gdb will see A as the caller of C. However, in some cases gdb can determine
that C was tail-called from B, and it will then create fictitious call frame for that, with the
return address set up as if B called C normally.

This functionality is currently supported only by DWARF 2 debugging format and the
compiler has to produce ‘DW_TAG_call_site’ tags. With gcc, you need to specify -O -g

during compilation, to get this information.

info frame command (see Section 8.4 [Frame Info], page 115) will indicate the tail call
frame kind by text tail call frame such as in this sample gdb output:

(gdb) x/i $pc - 2

0x40066b <b(int, double)+11>: jmp 0x400640 <c(int, double)>

(gdb) info frame

Stack level 1, frame at 0x7fffffffda30:

rip = 0x40066d in b (amd64-entry-value.cc:59); saved rip 0x4004c5

tail call frame, caller of frame at 0x7fffffffda30

source language c++.

Arglist at unknown address.

Locals at unknown address, Previous frame’s sp is 0x7fffffffda30

The detection of all the possible code path executions can find them ambiguous. There is
no execution history stored (possible Chapter 6 [Reverse Execution], page 99, is never used
for this purpose) and the last known caller could have reached the known callee by multiple
different jump sequences. In such case gdb still tries to show at least all the unambiguous
top tail callers and all the unambiguous bottom tail calees, if any.

set debug entry-values

When set to on, enables printing of analysis messages for both frame argument
values at function entry and tail calls. It will show all the possible valid tail
calls code paths it has considered. It will also print the intersection of them
with the final unambiguous (possibly partial or even empty) code path result.

Chapter 11: Debugging Optimized Code 189

show debug entry-values

Show the current state of analysis messages printing for both frame argument
values at function entry and tail calls.

The analysis messages for tail calls can for example show why the virtual tail call frame
for function c has not been recognized (due to the indirect reference by variable x):

static void __attribute__((noinline, noclone)) c (void);

void (*x) (void) = c;

static void __attribute__((noinline, noclone)) a (void) { x++; }

static void __attribute__((noinline, noclone)) c (void) { a (); }

int main (void) { x (); return 0; }

Breakpoint 1, DW_OP_entry_value resolving cannot find

DW_TAG_call_site 0x40039a in main

a () at t.c:3

3 static void __attribute__((noinline, noclone)) a (void) { x++; }

(gdb) bt

#0 a () at t.c:3

#1 0x000000000040039a in main () at t.c:5

Another possibility is an ambiguous virtual tail call frames resolution:
int i;

static void __attribute__((noinline, noclone)) f (void) { i++; }

static void __attribute__((noinline, noclone)) e (void) { f (); }

static void __attribute__((noinline, noclone)) d (void) { f (); }

static void __attribute__((noinline, noclone)) c (void) { d (); }

static void __attribute__((noinline, noclone)) b (void)

{ if (i) c (); else e (); }

static void __attribute__((noinline, noclone)) a (void) { b (); }

int main (void) { a (); return 0; }

tailcall: initial: 0x4004d2(a) 0x4004ce(b) 0x4004b2(c) 0x4004a2(d)

tailcall: compare: 0x4004d2(a) 0x4004cc(b) 0x400492(e)

tailcall: reduced: 0x4004d2(a) |

(gdb) bt

#0 f () at t.c:2

#1 0x00000000004004d2 in a () at t.c:8

#2 0x0000000000400395 in main () at t.c:9

Frames #0 and #2 are real, #1 is a virtual tail call frame. The code can have possible
execution paths main->a->b->c->d->f or main->a->b->e->f, gdb cannot find which one
from the inferior state.

initial: state shows some random possible calling sequence gdb has found. It then
finds another possible calling sequence - that one is prefixed by compare:. The non-
ambiguous intersection of these two is printed as the reduced: calling sequence. That
one could have many further compare: and reduced: statements as long as there remain
any non-ambiguous sequence entries.

For the frame of function b in both cases there are different possible $pc values (0x4004cc
or 0x4004ce), therefore this frame is also ambiguous. The only non-ambiguous frame is the
one for function a, therefore this one is displayed to the user while the ambiguous frames
are omitted.

There can be also reasons why printing of frame argument values at function entry may
fail:

int v;

190 Debugging with gdb

static void __attribute__((noinline, noclone)) c (int i) { v++; }

static void __attribute__((noinline, noclone)) a (int i);

static void __attribute__((noinline, noclone)) b (int i) { a (i); }

static void __attribute__((noinline, noclone)) a (int i)

{ if (i) b (i - 1); else c (0); }

int main (void) { a (5); return 0; }

(gdb) bt

#0 c (i=i@entry=0) at t.c:2

#1 0x0000000000400428 in a (DW_OP_entry_value resolving has found

function "a" at 0x400420 can call itself via tail calls

i=<optimized out>) at t.c:6

#2 0x000000000040036e in main () at t.c:7

gdb cannot find out from the inferior state if and how many times did function a call
itself (via function b) as these calls would be tail calls. Such tail calls would modify the
i variable, therefore gdb cannot be sure the value it knows would be right - gdb prints
<optimized out> instead.

191

12 C Preprocessor Macros

Some languages, such as C and C++, provide a way to define and invoke “preprocessor
macros” which expand into strings of tokens. gdb can evaluate expressions containing
macro invocations, show the result of macro expansion, and show a macro’s definition,
including where it was defined.

You may need to compile your program specially to provide gdb with information about
preprocessor macros. Most compilers do not include macros in their debugging information,
even when you compile with the -g flag. See Section 4.1 [Compilation], page 31.

A program may define a macro at one point, remove that definition later, and then
provide a different definition after that. Thus, at different points in the program, a macro
may have different definitions, or have no definition at all. If there is a current stack frame,
gdb uses the macros in scope at that frame’s source code line. Otherwise, gdb uses the
macros in scope at the current listing location; see Section 9.1 [List], page 121.

Whenever gdb evaluates an expression, it always expands any macro invocations present
in the expression. gdb also provides the following commands for working with macros
explicitly.

macro expand expression

macro exp expression

Show the results of expanding all preprocessor macro invocations in expression.
Since gdb simply expands macros, but does not parse the result, expression
need not be a valid expression; it can be any string of tokens.

macro expand-once expression

macro exp1 expression

(This command is not yet implemented.) Show the results of expanding those
preprocessor macro invocations that appear explicitly in expression. Macro
invocations appearing in that expansion are left unchanged. This command
allows you to see the effect of a particular macro more clearly, without being
confused by further expansions. Since gdb simply expands macros, but does
not parse the result, expression need not be a valid expression; it can be any
string of tokens.

info macro [-a|-all] [--] macro

Show the current definition or all definitions of the named macro, and describe
the source location or compiler command-line where that definition was estab-
lished. The optional double dash is to signify the end of argument processing
and the beginning of macro for non C-like macros where the macro may begin
with a hyphen.

info macros location

Show all macro definitions that are in effect at the location specified by location,
and describe the source location or compiler command-line where those defini-
tions were established.

macro define macro replacement-list

macro define macro(arglist) replacement-list

Introduce a definition for a preprocessor macro named macro, invocations of
which are replaced by the tokens given in replacement-list. The first form of

192 Debugging with gdb

this command defines an “object-like” macro, which takes no arguments; the
second form defines a “function-like” macro, which takes the arguments given
in arglist.

A definition introduced by this command is in scope in every expression eval-
uated in gdb, until it is removed with the macro undef command, described
below. The definition overrides all definitions for macro present in the program
being debugged, as well as any previous user-supplied definition.

macro undef macro

Remove any user-supplied definition for the macro named macro. This com-
mand only affects definitions provided with the macro define command, de-
scribed above; it cannot remove definitions present in the program being de-
bugged.

macro list

List all the macros defined using the macro define command.

Here is a transcript showing the above commands in action. First, we show our source
files:

$ cat sample.c

#include <stdio.h>

#include "sample.h"

#define M 42

#define ADD(x) (M + x)

main ()

{

#define N 28

printf ("Hello, world!\n");

#undef N

printf ("We’re so creative.\n");

#define N 1729

printf ("Goodbye, world!\n");

}

$ cat sample.h

#define Q <

$

Now, we compile the program using the gnu C compiler, gcc. We pass the -gdwarf-21

and -g3 flags to ensure the compiler includes information about preprocessor macros in the
debugging information.

$ gcc -gdwarf-2 -g3 sample.c -o sample

$

Now, we start gdb on our sample program:

$ gdb -nw sample

GNU gdb 2002-05-06-cvs

Copyright 2002 Free Software Foundation, Inc.

GDB is free software, ...

(gdb)

1 This is the minimum. Recent versions of gcc support -gdwarf-3 and -gdwarf-4; we recommend always
choosing the most recent version of DWARF.

Chapter 12: C Preprocessor Macros 193

We can expand macros and examine their definitions, even when the program is not
running. gdb uses the current listing position to decide which macro definitions are in
scope:

(gdb) list main

3

4 #define M 42

5 #define ADD(x) (M + x)

6

7 main ()

8 {

9 #define N 28

10 printf ("Hello, world!\n");

11 #undef N

12 printf ("We’re so creative.\n");

(gdb) info macro ADD

Defined at /home/jimb/gdb/macros/play/sample.c:5

#define ADD(x) (M + x)

(gdb) info macro Q

Defined at /home/jimb/gdb/macros/play/sample.h:1

included at /home/jimb/gdb/macros/play/sample.c:2

#define Q <

(gdb) macro expand ADD(1)

expands to: (42 + 1)

(gdb) macro expand-once ADD(1)

expands to: once (M + 1)

(gdb)

In the example above, note that macro expand-once expands only the macro invocation
explicit in the original text — the invocation of ADD — but does not expand the invocation
of the macro M, which was introduced by ADD.

Once the program is running, gdb uses the macro definitions in force at the source line
of the current stack frame:

(gdb) break main

Breakpoint 1 at 0x8048370: file sample.c, line 10.

(gdb) run

Starting program: /home/jimb/gdb/macros/play/sample

Breakpoint 1, main () at sample.c:10

10 printf ("Hello, world!\n");

(gdb)

At line 10, the definition of the macro N at line 9 is in force:
(gdb) info macro N

Defined at /home/jimb/gdb/macros/play/sample.c:9

#define N 28

(gdb) macro expand N Q M

expands to: 28 < 42

(gdb) print N Q M

$1 = 1

(gdb)

As we step over directives that remove N’s definition, and then give it a new definition,
gdb finds the definition (or lack thereof) in force at each point:

(gdb) next

Hello, world!

12 printf ("We’re so creative.\n");

(gdb) info macro N

194 Debugging with gdb

The symbol ‘N’ has no definition as a C/C++ preprocessor macro

at /home/jimb/gdb/macros/play/sample.c:12

(gdb) next

We’re so creative.

14 printf ("Goodbye, world!\n");

(gdb) info macro N

Defined at /home/jimb/gdb/macros/play/sample.c:13

#define N 1729

(gdb) macro expand N Q M

expands to: 1729 < 42

(gdb) print N Q M

$2 = 0

(gdb)

In addition to source files, macros can be defined on the compilation command line using
the -Dname=value syntax. For macros defined in such a way, gdb displays the location of
their definition as line zero of the source file submitted to the compiler.

(gdb) info macro __STDC__

Defined at /home/jimb/gdb/macros/play/sample.c:0

-D__STDC__=1

(gdb)

195

13 Tracepoints

In some applications, it is not feasible for the debugger to interrupt the program’s execution
long enough for the developer to learn anything helpful about its behavior. If the program’s
correctness depends on its real-time behavior, delays introduced by a debugger might cause
the program to change its behavior drastically, or perhaps fail, even when the code itself is
correct. It is useful to be able to observe the program’s behavior without interrupting it.

Using gdb’s trace and collect commands, you can specify locations in the program,
called tracepoints, and arbitrary expressions to evaluate when those tracepoints are reached.
Later, using the tfind command, you can examine the values those expressions had when
the program hit the tracepoints. The expressions may also denote objects in memory—
structures or arrays, for example—whose values gdb should record; while visiting a partic-
ular tracepoint, you may inspect those objects as if they were in memory at that moment.
However, because gdb records these values without interacting with you, it can do so quickly
and unobtrusively, hopefully not disturbing the program’s behavior.

The tracepoint facility is currently available only for remote targets. See Chapter 19
[Targets], page 297. In addition, your remote target must know how to collect trace data.
This functionality is implemented in the remote stub; however, none of the stubs distributed
with gdb support tracepoints as of this writing. The format of the remote packets used to
implement tracepoints are described in Section E.6 [Tracepoint Packets], page 763.

It is also possible to get trace data from a file, in a manner reminiscent of corefiles;
you specify the filename, and use tfind to search through the file. See Section 13.4 [Trace
Files], page 211, for more details.

This chapter describes the tracepoint commands and features.

13.1 Commands to Set Tracepoints

Before running such a trace experiment, an arbitrary number of tracepoints can be set. A
tracepoint is actually a special type of breakpoint (see Section 5.1.1 [Set Breaks], page 58),
so you can manipulate it using standard breakpoint commands. For instance, as with
breakpoints, tracepoint numbers are successive integers starting from one, and many of the
commands associated with tracepoints take the tracepoint number as their argument, to
identify which tracepoint to work on.

For each tracepoint, you can specify, in advance, some arbitrary set of data that you
want the target to collect in the trace buffer when it hits that tracepoint. The collected data
can include registers, local variables, or global data. Later, you can use gdb commands to
examine the values these data had at the time the tracepoint was hit.

Tracepoints do not support every breakpoint feature. Ignore counts on tracepoints have
no effect, and tracepoints cannot run gdb commands when they are hit. Tracepoints may
not be thread-specific either.

Some targets may support fast tracepoints, which are inserted in a different way (such
as with a jump instead of a trap), that is faster but possibly restricted in where they may
be installed.

Regular and fast tracepoints are dynamic tracing facilities, meaning that they can be
used to insert tracepoints at (almost) any location in the target. Some targets may also sup-
port controlling static tracepoints from gdb. With static tracing, a set of instrumentation

196 Debugging with gdb

points, also known as markers, are embedded in the target program, and can be activated
or deactivated by name or address. These are usually placed at locations which facilitate
investigating what the target is actually doing. gdb’s support for static tracing includes
being able to list instrumentation points, and attach them with gdb defined high level tra-
cepoints that expose the whole range of convenience of gdb’s tracepoints support. Namely,
support for collecting registers values and values of global or local (to the instrumentation
point) variables; tracepoint conditions and trace state variables. The act of installing a gdb
static tracepoint on an instrumentation point, or marker, is referred to as probing a static
tracepoint marker.

gdbserver supports tracepoints on some target systems. See Section 20.3 [Tracepoints
support in gdbserver], page 306.

This section describes commands to set tracepoints and associated conditions and ac-
tions.

13.1.1 Create and Delete Tracepoints

trace location

The trace command is very similar to the break command. Its argument lo-
cation can be any valid location. See Section 9.2 [Specify Location], page 122.
The trace command defines a tracepoint, which is a point in the target pro-
gram where the debugger will briefly stop, collect some data, and then allow
the program to continue. Setting a tracepoint or changing its actions takes
effect immediately if the remote stub supports the ‘InstallInTrace’ feature
(see [install tracepoint in tracing], page 753). If remote stub doesn’t support
the ‘InstallInTrace’ feature, all these changes don’t take effect until the next
tstart command, and once a trace experiment is running, further changes will
not have any effect until the next trace experiment starts. In addition, gdb
supports pending tracepoints—tracepoints whose address is not yet resolved.
(This is similar to pending breakpoints.) Pending tracepoints are not down-
loaded to the target and not installed until they are resolved. The resolution
of pending tracepoints requires gdb support—when debugging with the remote
target, and gdb disconnects from the remote stub (see [disconnected tracing],
page 204), pending tracepoints can not be resolved (and downloaded to the
remote stub) while gdb is disconnected.

Here are some examples of using the trace command:
(gdb) trace foo.c:121 // a source file and line number

(gdb) trace +2 // 2 lines forward

(gdb) trace my function // first source line of function

(gdb) trace *my function // EXACT start address of function

(gdb) trace *0x2117c4 // an address

You can abbreviate trace as tr.

trace location if cond

Set a tracepoint with condition cond; evaluate the expression cond each time
the tracepoint is reached, and collect data only if the value is nonzero—that is,

Chapter 13: Tracepoints 197

if cond evaluates as true. See Section 13.1.4 [Tracepoint Conditions], page 199,
for more information on tracepoint conditions.

ftrace location [if cond]

The ftrace command sets a fast tracepoint. For targets that support them,
fast tracepoints will use a more efficient but possibly less general technique to
trigger data collection, such as a jump instruction instead of a trap, or some
sort of hardware support. It may not be possible to create a fast tracepoint at
the desired location, in which case the command will exit with an explanatory
message.

gdb handles arguments to ftrace exactly as for trace.

On 32-bit x86-architecture systems, fast tracepoints normally need to be placed
at an instruction that is 5 bytes or longer, but can be placed at 4-byte instruc-
tions if the low 64K of memory of the target program is available to install
trampolines. Some Unix-type systems, such as gnu/Linux, exclude low ad-
dresses from the program’s address space; but for instance with the Linux
kernel it is possible to let gdb use this area by doing a sysctl command to set
the mmap_min_addr kernel parameter, as in

sudo sysctl -w vm.mmap_min_addr=32768

which sets the low address to 32K, which leaves plenty of room for trampolines.
The minimum address should be set to a page boundary.

strace location [if cond]

The strace command sets a static tracepoint. For targets that support it,
setting a static tracepoint probes a static instrumentation point, or marker,
found at location. It may not be possible to set a static tracepoint at the
desired location, in which case the command will exit with an explanatory
message.

gdb handles arguments to strace exactly as for trace, with the addition that
the user can also specify -m marker as location. This probes the marker iden-
tified by the marker string identifier. This identifier depends on the static
tracepoint backend library your program is using. You can find all the marker
identifiers in the ‘ID’ field of the info static-tracepoint-markers command
output. See Section 13.1.8 [Listing Static Tracepoint Markers], page 203. For
example, in the following small program using the UST tracing engine:

main ()

{

trace_mark(ust, bar33, "str %s", "FOOBAZ");

}

the marker id is composed of joining the first two arguments to the trace_mark
call with a slash, which translates to:

(gdb) info static-tracepoint-markers

Cnt Enb ID Address What

1 n ust/bar33 0x0000000000400ddc in main at stexample.c:22

Data: "str %s"

[etc...]

so you may probe the marker above with:
(gdb) strace -m ust/bar33

198 Debugging with gdb

Static tracepoints accept an extra collect action — collect $_sdata. This
collects arbitrary user data passed in the probe point call to the tracing li-
brary. In the UST example above, you’ll see that the third argument to trace_

mark is a printf-like format string. The user data is then the result of run-
ning that formatting string against the following arguments. Note that info

static-tracepoint-markers command output lists that format string in the
‘Data:’ field.

You can inspect this data when analyzing the trace buffer, by printing the
$ sdata variable like any other variable available to gdb. See Section 13.1.6
[Tracepoint Action Lists], page 200.

The convenience variable $tpnum records the tracepoint number of the most
recently set tracepoint.

delete tracepoint [num]
Permanently delete one or more tracepoints. With no argument, the default is
to delete all tracepoints. Note that the regular delete command can remove
tracepoints also.

Examples:
(gdb) delete trace 1 2 3 // remove three tracepoints

(gdb) delete trace // remove all tracepoints

You can abbreviate this command as del tr.

13.1.2 Enable and Disable Tracepoints

These commands are deprecated; they are equivalent to plain disable and enable.

disable tracepoint [num]
Disable tracepoint num, or all tracepoints if no argument num is given. A dis-
abled tracepoint will have no effect during a trace experiment, but it is not for-
gotten. You can re-enable a disabled tracepoint using the enable tracepoint

command. If the command is issued during a trace experiment and the debug
target has support for disabling tracepoints during a trace experiment, then the
change will be effective immediately. Otherwise, it will be applied to the next
trace experiment.

enable tracepoint [num]
Enable tracepoint num, or all tracepoints. If this command is issued during a
trace experiment and the debug target supports enabling tracepoints during a
trace experiment, then the enabled tracepoints will become effective immedi-
ately. Otherwise, they will become effective the next time a trace experiment
is run.

13.1.3 Tracepoint Passcounts

passcount [n [num]]
Set the passcount of a tracepoint. The passcount is a way to automatically
stop a trace experiment. If a tracepoint’s passcount is n, then the trace exper-
iment will be automatically stopped on the n’th time that tracepoint is hit. If
the tracepoint number num is not specified, the passcount command sets the

Chapter 13: Tracepoints 199

passcount of the most recently defined tracepoint. If no passcount is given, the
trace experiment will run until stopped explicitly by the user.

Examples:

(gdb) passcount 5 2 // Stop on the 5th execution of

// tracepoint 2

(gdb) passcount 12 // Stop on the 12th execution of the

// most recently defined tracepoint.

(gdb) trace foo
(gdb) pass 3
(gdb) trace bar
(gdb) pass 2
(gdb) trace baz
(gdb) pass 1 // Stop tracing when foo has been

// executed 3 times OR when bar has

// been executed 2 times

// OR when baz has been executed 1 time.

13.1.4 Tracepoint Conditions

The simplest sort of tracepoint collects data every time your program reaches a specified
place. You can also specify a condition for a tracepoint. A condition is just a Boolean
expression in your programming language (see Section 10.1 [Expressions], page 139). A
tracepoint with a condition evaluates the expression each time your program reaches it,
and data collection happens only if the condition is true.

Tracepoint conditions can be specified when a tracepoint is set, by using ‘if’ in the
arguments to the trace command. See Section 13.1.1 [Setting Tracepoints], page 196.
They can also be set or changed at any time with the condition command, just as with
breakpoints.

Unlike breakpoint conditions, gdb does not actually evaluate the conditional expression
itself. Instead, gdb encodes the expression into an agent expression (see Appendix F [Agent
Expressions], page 795) suitable for execution on the target, independently of gdb. Global
variables become raw memory locations, locals become stack accesses, and so forth.

For instance, suppose you have a function that is usually called frequently, but should
not be called after an error has occurred. You could use the following tracepoint command
to collect data about calls of that function that happen while the error code is propagating
through the program; an unconditional tracepoint could end up collecting thousands of
useless trace frames that you would have to search through.

(gdb) trace normal_operation if errcode > 0

13.1.5 Trace State Variables

A trace state variable is a special type of variable that is created and managed by target-side
code. The syntax is the same as that for GDB’s convenience variables (a string prefixed
with “$”), but they are stored on the target. They must be created explicitly, using a
tvariable command. They are always 64-bit signed integers.

Trace state variables are remembered by gdb, and downloaded to the target along with
tracepoint information when the trace experiment starts. There are no intrinsic limits on
the number of trace state variables, beyond memory limitations of the target.

200 Debugging with gdb

Although trace state variables are managed by the target, you can use them in print
commands and expressions as if they were convenience variables; gdb will get the current
value from the target while the trace experiment is running. Trace state variables share the
same namespace as other “$” variables, which means that you cannot have trace state vari-
ables with names like $23 or $pc, nor can you have a trace state variable and a convenience
variable with the same name.

tvariable $name [= expression]

The tvariable command creates a new trace state variable named $name, and
optionally gives it an initial value of expression. The expression is evaluated
when this command is entered; the result will be converted to an integer if
possible, otherwise gdb will report an error. A subsequent tvariable command
specifying the same name does not create a variable, but instead assigns the
supplied initial value to the existing variable of that name, overwriting any
previous initial value. The default initial value is 0.

info tvariables

List all the trace state variables along with their initial values. Their current
values may also be displayed, if the trace experiment is currently running.

delete tvariable [$name ...]
Delete the given trace state variables, or all of them if no arguments are speci-
fied.

13.1.6 Tracepoint Action Lists

actions [num]
This command will prompt for a list of actions to be taken when the tracepoint
is hit. If the tracepoint number num is not specified, this command sets the
actions for the one that was most recently defined (so that you can define a
tracepoint and then say actions without bothering about its number). You
specify the actions themselves on the following lines, one action at a time, and
terminate the actions list with a line containing just end. So far, the only
defined actions are collect, teval, and while-stepping.

actions is actually equivalent to commands (see Section 5.1.7 [Breakpoint Com-
mand Lists], page 76), except that only the defined actions are allowed; any
other gdb command is rejected.

To remove all actions from a tracepoint, type ‘actions num’ and follow it im-
mediately with ‘end’.

(gdb) collect data // collect some data

(gdb) while-stepping 5 // single-step 5 times, collect data

(gdb) end // signals the end of actions.

In the following example, the action list begins with collect commands indicat-
ing the things to be collected when the tracepoint is hit. Then, in order to single-
step and collect additional data following the tracepoint, a while-stepping

command is used, followed by the list of things to be collected after each step
in a sequence of single steps. The while-stepping command is terminated by

Chapter 13: Tracepoints 201

its own separate end command. Lastly, the action list is terminated by an end

command.
(gdb) trace foo
(gdb) actions
Enter actions for tracepoint 1, one per line:

> collect bar,baz

> collect $regs

> while-stepping 12

> collect $pc, arr[i]

> end

end

collect[/mods] expr1, expr2, ...

Collect values of the given expressions when the tracepoint is hit. This com-
mand accepts a comma-separated list of any valid expressions. In addition to
global, static, or local variables, the following special arguments are supported:

$regs Collect all registers.

$args Collect all function arguments.

$locals Collect all local variables.

$_ret Collect the return address. This is helpful if you want to see more
of a backtrace.

Note: The return address location can not always be reliably de-
termined up front, and the wrong address / registers may end up
collected instead. On some architectures the reliability is higher
for tracepoints at function entry, while on others it’s the opposite.
When this happens, backtracing will stop because the return ad-
dress is found unavailable (unless another collect rule happened to
match it).

$_probe_argc

Collects the number of arguments from the static probe at which
the tracepoint is located. See Section 5.1.10 [Static Probe Points],
page 79.

$_probe_argn

n is an integer between 0 and 11. Collects the nth argument
from the static probe at which the tracepoint is located. See
Section 5.1.10 [Static Probe Points], page 79.

$_sdata Collect static tracepoint marker specific data. Only available for
static tracepoints. See Section 13.1.6 [Tracepoint Action Lists],
page 200. On the UST static tracepoints library backend, an in-
strumentation point resembles a printf function call. The tracing
library is able to collect user specified data formatted to a character
string using the format provided by the programmer that instru-
mented the program. Other backends have similar mechanisms.
Here’s an example of a UST marker call:

const char master_name[] = "$your_name";

trace_mark(channel1, marker1, "hello %s", master_name)

202 Debugging with gdb

In this case, collecting $_sdata collects the string ‘hello
$yourname’. When analyzing the trace buffer, you can inspect
‘$_sdata’ like any other variable available to gdb.

You can give several consecutive collect commands, each one with a single
argument, or one collect command with several arguments separated by com-
mas; the effect is the same.

The optional mods changes the usual handling of the arguments. s requests
that pointers to chars be handled as strings, in particular collecting the contents
of the memory being pointed at, up to the first zero. The upper bound is by
default the value of the print elements variable; if s is followed by a decimal
number, that is the upper bound instead. So for instance ‘collect/s25 mystr’
collects as many as 25 characters at ‘mystr’.

The command info scope (see Chapter 16 [Symbols], page 253) is particularly
useful for figuring out what data to collect.

teval expr1, expr2, ...

Evaluate the given expressions when the tracepoint is hit. This command ac-
cepts a comma-separated list of expressions. The results are discarded, so this
is mainly useful for assigning values to trace state variables (see Section 13.1.5
[Trace State Variables], page 199) without adding those values to the trace
buffer, as would be the case if the collect action were used.

while-stepping n

Perform n single-step instruction traces after the tracepoint, collecting new data
after each step. The while-stepping command is followed by the list of what
to collect while stepping (followed by its own end command):

> while-stepping 12

> collect $regs, myglobal

> end

>

Note that $pc is not automatically collected by while-stepping; you
need to explicitly collect that register if you need it. You may abbreviate
while-stepping as ws or stepping.

set default-collect expr1, expr2, ...

This variable is a list of expressions to collect at each tracepoint hit. It is
effectively an additional collect action prepended to every tracepoint action
list. The expressions are parsed individually for each tracepoint, so for instance
a variable named xyz may be interpreted as a global for one tracepoint, and a
local for another, as appropriate to the tracepoint’s location.

show default-collect

Show the list of expressions that are collected by default at each tracepoint hit.

13.1.7 Listing Tracepoints

info tracepoints [num...]
Display information about the tracepoint num. If you don’t specify a tracepoint
number, displays information about all the tracepoints defined so far. The

Chapter 13: Tracepoints 203

format is similar to that used for info breakpoints; in fact, info tracepoints

is the same command, simply restricting itself to tracepoints.

A tracepoint’s listing may include additional information specific to tracing:

• its passcount as given by the passcount n command

• the state about installed on target of each location

(gdb) info trace
Num Type Disp Enb Address What

1 tracepoint keep y 0x0804ab57 in foo() at main.cxx:7

while-stepping 20

collect globfoo, $regs

end

collect globfoo2

end

pass count 1200

2 tracepoint keep y <MULTIPLE>

collect $eip

2.1 y 0x0804859c in func4 at change-loc.h:35

installed on target

2.2 y 0xb7ffc480 in func4 at change-loc.h:35

installed on target

2.3 y <PENDING> set_tracepoint

3 tracepoint keep y 0x080485b1 in foo at change-loc.c:29

not installed on target

(gdb)

This command can be abbreviated info tp.

13.1.8 Listing Static Tracepoint Markers

info static-tracepoint-markers

Display information about all static tracepoint markers defined in the program.

For each marker, the following columns are printed:

Count An incrementing counter, output to help readability. This is not a
stable identifier.

ID The marker ID, as reported by the target.

Enabled or Disabled
Probed markers are tagged with ‘y’. ‘n’ identifies marks that are
not enabled.

Address Where the marker is in your program, as a memory address.

What Where the marker is in the source for your program, as a file and
line number. If the debug information included in the program does
not allow gdb to locate the source of the marker, this column will
be left blank.

In addition, the following information may be printed for each marker:

Data User data passed to the tracing library by the marker call. In the
UST backend, this is the format string passed as argument to the
marker call.

204 Debugging with gdb

Static tracepoints probing the marker
The list of static tracepoints attached to the marker.

(gdb) info static-tracepoint-markers

Cnt ID Enb Address What

1 ust/bar2 y 0x0000000000400e1a in main at stexample.c:25

Data: number1 %d number2 %d

Probed by static tracepoints: #2

2 ust/bar33 n 0x0000000000400c87 in main at stexample.c:24

Data: str %s

(gdb)

13.1.9 Starting and Stopping Trace Experiments

tstart This command starts the trace experiment, and begins collecting data. It has
the side effect of discarding all the data collected in the trace buffer during the
previous trace experiment. If any arguments are supplied, they are taken as a
note and stored with the trace experiment’s state. The notes may be arbitrary
text, and are especially useful with disconnected tracing in a multi-user context;
the notes can explain what the trace is doing, supply user contact information,
and so forth.

tstop This command stops the trace experiment. If any arguments are supplied, they
are recorded with the experiment as a note. This is useful if you are stopping
a trace started by someone else, for instance if the trace is interfering with the
system’s behavior and needs to be stopped quickly.

Note: a trace experiment and data collection may stop automatically if any
tracepoint’s passcount is reached (see Section 13.1.3 [Tracepoint Passcounts],
page 198), or if the trace buffer becomes full.

tstatus This command displays the status of the current trace data collection.

Here is an example of the commands we described so far:

(gdb) trace gdb c test
(gdb) actions
Enter actions for tracepoint #1, one per line.

> collect $regs,$locals,$args

> while-stepping 11

> collect $regs

> end

> end

(gdb) tstart
[time passes ...]

(gdb) tstop

You can choose to continue running the trace experiment even if gdb disconnects from
the target, voluntarily or involuntarily. For commands such as detach, the debugger will
ask what you want to do with the trace. But for unexpected terminations (gdb crash,
network outage), it would be unfortunate to lose hard-won trace data, so the variable
disconnected-tracing lets you decide whether the trace should continue running without
gdb.

Chapter 13: Tracepoints 205

set disconnected-tracing on

set disconnected-tracing off

Choose whether a tracing run should continue to run if gdb has disconnected
from the target. Note that detach or quit will ask you directly what to do
about a running trace no matter what this variable’s setting, so the variable is
mainly useful for handling unexpected situations, such as loss of the network.

show disconnected-tracing

Show the current choice for disconnected tracing.

When you reconnect to the target, the trace experiment may or may not still be running;
it might have filled the trace buffer in the meantime, or stopped for one of the other reasons.
If it is running, it will continue after reconnection.

Upon reconnection, the target will upload information about the tracepoints in effect.
gdb will then compare that information to the set of tracepoints currently defined, and
attempt to match them up, allowing for the possibility that the numbers may have changed
due to creation and deletion in the meantime. If one of the target’s tracepoints does not
match any in gdb, the debugger will create a new tracepoint, so that you have a number
with which to specify that tracepoint. This matching-up process is necessarily heuristic,
and it may result in useless tracepoints being created; you may simply delete them if they
are of no use.

If your target agent supports a circular trace buffer, then you can run a trace experiment
indefinitely without filling the trace buffer; when space runs out, the agent deletes already-
collected trace frames, oldest first, until there is enough room to continue collecting. This
is especially useful if your tracepoints are being hit too often, and your trace gets termi-
nated prematurely because the buffer is full. To ask for a circular trace buffer, simply set
‘circular-trace-buffer’ to on. You can set this at any time, including during tracing;
if the agent can do it, it will change buffer handling on the fly, otherwise it will not take
effect until the next run.

set circular-trace-buffer on

set circular-trace-buffer off

Choose whether a tracing run should use a linear or circular buffer for trace
data. A linear buffer will not lose any trace data, but may fill up prematurely,
while a circular buffer will discard old trace data, but it will have always room
for the latest tracepoint hits.

show circular-trace-buffer

Show the current choice for the trace buffer. Note that this may not match the
agent’s current buffer handling, nor is it guaranteed to match the setting that
might have been in effect during a past run, for instance if you are looking at
frames from a trace file.

set trace-buffer-size n

set trace-buffer-size unlimited

Request that the target use a trace buffer of n bytes. Not all targets will honor
the request; they may have a compiled-in size for the trace buffer, or some other
limitation. Set to a value of unlimited or -1 to let the target use whatever
size it likes. This is also the default.

206 Debugging with gdb

show trace-buffer-size

Show the current requested size for the trace buffer. Note that this will only
match the actual size if the target supports size-setting, and was able to handle
the requested size. For instance, if the target can only change buffer size between
runs, this variable will not reflect the change until the next run starts. Use
tstatus to get a report of the actual buffer size.

set trace-user text

show trace-user

set trace-notes text

Set the trace run’s notes.

show trace-notes

Show the trace run’s notes.

set trace-stop-notes text

Set the trace run’s stop notes. The handling of the note is as for tstop argu-
ments; the set command is convenient way to fix a stop note that is mistaken
or incomplete.

show trace-stop-notes

Show the trace run’s stop notes.

13.1.10 Tracepoint Restrictions

There are a number of restrictions on the use of tracepoints. As described above, tracepoint
data gathering occurs on the target without interaction from gdb. Thus the full capabilities
of the debugger are not available during data gathering, and then at data examination time,
you will be limited by only having what was collected. The following items describe some
common problems, but it is not exhaustive, and you may run into additional difficulties not
mentioned here.

• Tracepoint expressions are intended to gather objects (lvalues). Thus the full flexibility
of GDB’s expression evaluator is not available. You cannot call functions, cast objects
to aggregate types, access convenience variables or modify values (except by assignment
to trace state variables). Some language features may implicitly call functions (for
instance Objective-C fields with accessors), and therefore cannot be collected either.

• Collection of local variables, either individually or in bulk with $locals or $args,
during while-stepping may behave erratically. The stepping action may enter a new
scope (for instance by stepping into a function), or the location of the variable may
change (for instance it is loaded into a register). The tracepoint data recorded uses the
location information for the variables that is correct for the tracepoint location. When
the tracepoint is created, it is not possible, in general, to determine where the steps
of a while-stepping sequence will advance the program—particularly if a conditional
branch is stepped.

• Collection of an incompletely-initialized or partially-destroyed object may result in
something that gdb cannot display, or displays in a misleading way.

• When gdb displays a pointer to character it automatically dereferences the pointer to
also display characters of the string being pointed to. However, collecting the pointer
during tracing does not automatically collect the string. You need to explicitly deref-
erence the pointer and provide size information if you want to collect not only the

Chapter 13: Tracepoints 207

pointer, but the memory pointed to. For example, *ptr@50 can be used to collect the
50 element array pointed to by ptr.

• It is not possible to collect a complete stack backtrace at a tracepoint. Instead, you may
collect the registers and a few hundred bytes from the stack pointer with something
like *(unsigned char *)$esp@300 (adjust to use the name of the actual stack pointer
register on your target architecture, and the amount of stack you wish to capture).
Then the backtrace command will show a partial backtrace when using a trace frame.
The number of stack frames that can be examined depends on the sizes of the frames
in the collected stack. Note that if you ask for a block so large that it goes past the
bottom of the stack, the target agent may report an error trying to read from an invalid
address.

• If you do not collect registers at a tracepoint, gdb can infer that the value of $pc
must be the same as the address of the tracepoint and use that when you are looking
at a trace frame for that tracepoint. However, this cannot work if the tracepoint has
multiple locations (for instance if it was set in a function that was inlined), or if it has
a while-stepping loop. In those cases gdb will warn you that it can’t infer $pc, and
default it to zero.

13.2 Using the Collected Data

After the tracepoint experiment ends, you use gdb commands for examining the trace
data. The basic idea is that each tracepoint collects a trace snapshot every time it is
hit and another snapshot every time it single-steps. All these snapshots are consecutively
numbered from zero and go into a buffer, and you can examine them later. The way you
examine them is to focus on a specific trace snapshot. When the remote stub is focused on a
trace snapshot, it will respond to all gdb requests for memory and registers by reading from
the buffer which belongs to that snapshot, rather than from real memory or registers of the
program being debugged. This means that all gdb commands (print, info registers,
backtrace, etc.) will behave as if we were currently debugging the program state as it was
when the tracepoint occurred. Any requests for data that are not in the buffer will fail.

13.2.1 tfind n

The basic command for selecting a trace snapshot from the buffer is tfind n, which finds
trace snapshot number n, counting from zero. If no argument n is given, the next snapshot
is selected.

Here are the various forms of using the tfind command.

tfind start

Find the first snapshot in the buffer. This is a synonym for tfind 0 (since 0 is
the number of the first snapshot).

tfind none

Stop debugging trace snapshots, resume live debugging.

tfind end Same as ‘tfind none’.

tfind No argument means find the next trace snapshot or find the first one if no trace
snapshot is selected.

208 Debugging with gdb

tfind - Find the previous trace snapshot before the current one. This permits retracing
earlier steps.

tfind tracepoint num

Find the next snapshot associated with tracepoint num. Search proceeds for-
ward from the last examined trace snapshot. If no argument num is given, it
means find the next snapshot collected for the same tracepoint as the current
snapshot.

tfind pc addr

Find the next snapshot associated with the value addr of the program counter.
Search proceeds forward from the last examined trace snapshot. If no argument
addr is given, it means find the next snapshot with the same value of PC as
the current snapshot.

tfind outside addr1, addr2

Find the next snapshot whose PC is outside the given range of addresses (ex-
clusive).

tfind range addr1, addr2

Find the next snapshot whose PC is between addr1 and addr2 (inclusive).

tfind line [file:]n
Find the next snapshot associated with the source line n. If the optional argu-
ment file is given, refer to line n in that source file. Search proceeds forward
from the last examined trace snapshot. If no argument n is given, it means find
the next line other than the one currently being examined; thus saying tfind

line repeatedly can appear to have the same effect as stepping from line to
line in a live debugging session.

The default arguments for the tfind commands are specifically designed to make it easy
to scan through the trace buffer. For instance, tfind with no argument selects the next
trace snapshot, and tfind - with no argument selects the previous trace snapshot. So, by
giving one tfind command, and then simply hitting RET repeatedly you can examine all
the trace snapshots in order. Or, by saying tfind - and then hitting RET repeatedly you
can examine the snapshots in reverse order. The tfind line command with no argument
selects the snapshot for the next source line executed. The tfind pc command with no
argument selects the next snapshot with the same program counter (PC) as the current
frame. The tfind tracepoint command with no argument selects the next trace snapshot
collected by the same tracepoint as the current one.

In addition to letting you scan through the trace buffer manually, these commands make
it easy to construct gdb scripts that scan through the trace buffer and print out whatever
collected data you are interested in. Thus, if we want to examine the PC, FP, and SP
registers from each trace frame in the buffer, we can say this:

(gdb) tfind start
(gdb) while ($trace frame != -1)
> printf "Frame %d, PC = %08X, SP = %08X, FP = %08X\n", \

$trace_frame, $pc, $sp, $fp

> tfind

> end

Chapter 13: Tracepoints 209

Frame 0, PC = 0020DC64, SP = 0030BF3C, FP = 0030BF44

Frame 1, PC = 0020DC6C, SP = 0030BF38, FP = 0030BF44

Frame 2, PC = 0020DC70, SP = 0030BF34, FP = 0030BF44

Frame 3, PC = 0020DC74, SP = 0030BF30, FP = 0030BF44

Frame 4, PC = 0020DC78, SP = 0030BF2C, FP = 0030BF44

Frame 5, PC = 0020DC7C, SP = 0030BF28, FP = 0030BF44

Frame 6, PC = 0020DC80, SP = 0030BF24, FP = 0030BF44

Frame 7, PC = 0020DC84, SP = 0030BF20, FP = 0030BF44

Frame 8, PC = 0020DC88, SP = 0030BF1C, FP = 0030BF44

Frame 9, PC = 0020DC8E, SP = 0030BF18, FP = 0030BF44

Frame 10, PC = 00203F6C, SP = 0030BE3C, FP = 0030BF14

Or, if we want to examine the variable X at each source line in the buffer:

(gdb) tfind start
(gdb) while ($trace frame != -1)
> printf "Frame %d, X == %d\n", $trace_frame, X

> tfind line

> end

Frame 0, X = 1

Frame 7, X = 2

Frame 13, X = 255

13.2.2 tdump

This command takes no arguments. It prints all the data collected at the current trace
snapshot.

(gdb) trace 444
(gdb) actions
Enter actions for tracepoint #2, one per line:

> collect $regs, $locals, $args, gdb_long_test

> end

(gdb) tstart

(gdb) tfind line 444
#0 gdb_test (p1=0x11, p2=0x22, p3=0x33, p4=0x44, p5=0x55, p6=0x66)

at gdb_test.c:444

444 printp("%s: arguments = 0x%X 0x%X 0x%X 0x%X 0x%X 0x%X\n",)

(gdb) tdump
Data collected at tracepoint 2, trace frame 1:

d0 0xc4aa0085 -995491707

d1 0x18 24

d2 0x80 128

d3 0x33 51

d4 0x71aea3d 119204413

d5 0x22 34

d6 0xe0 224

d7 0x380035 3670069

a0 0x19e24a 1696330

a1 0x3000668 50333288

a2 0x100 256

a3 0x322000 3284992

a4 0x3000698 50333336

a5 0x1ad3cc 1758156

fp 0x30bf3c 0x30bf3c

sp 0x30bf34 0x30bf34

210 Debugging with gdb

ps 0x0 0

pc 0x20b2c8 0x20b2c8

fpcontrol 0x0 0

fpstatus 0x0 0

fpiaddr 0x0 0

p = 0x20e5b4 "gdb-test"

p1 = (void *) 0x11

p2 = (void *) 0x22

p3 = (void *) 0x33

p4 = (void *) 0x44

p5 = (void *) 0x55

p6 = (void *) 0x66

gdb_long_test = 17 ’\021’

(gdb)

tdump works by scanning the tracepoint’s current collection actions and printing the
value of each expression listed. So tdump can fail, if after a run, you change the tracepoint’s
actions to mention variables that were not collected during the run.

Also, for tracepoints with while-stepping loops, tdump uses the collected value of $pc
to distinguish between trace frames that were collected at the tracepoint hit, and frames
that were collected while stepping. This allows it to correctly choose whether to display
the basic list of collections, or the collections from the body of the while-stepping loop.
However, if $pc was not collected, then tdump will always attempt to dump using the basic
collection list, and may fail if a while-stepping frame does not include all the same data
that is collected at the tracepoint hit.

13.2.3 save tracepoints filename

This command saves all current tracepoint definitions together with their actions and pass-
counts, into a file filename suitable for use in a later debugging session. To read the
saved tracepoint definitions, use the source command (see Section 23.1.3 [Command Files],
page 375). The save-tracepoints command is a deprecated alias for save tracepoints

13.3 Convenience Variables for Tracepoints

(int) $trace_frame

The current trace snapshot (a.k.a. frame) number, or -1 if no snapshot is se-
lected.

(int) $tracepoint

The tracepoint for the current trace snapshot.

(int) $trace_line

The line number for the current trace snapshot.

(char []) $trace_file

The source file for the current trace snapshot.

(char []) $trace_func

The name of the function containing $tracepoint.

Note: $trace_file is not suitable for use in printf, use output instead.

Chapter 13: Tracepoints 211

Here’s a simple example of using these convenience variables for stepping through all the
trace snapshots and printing some of their data. Note that these are not the same as trace
state variables, which are managed by the target.

(gdb) tfind start

(gdb) while $trace frame != -1
> output $trace_file

> printf ", line %d (tracepoint #%d)\n", $trace_line, $tracepoint

> tfind

> end

13.4 Using Trace Files

In some situations, the target running a trace experiment may no longer be available;
perhaps it crashed, or the hardware was needed for a different activity. To handle these
cases, you can arrange to dump the trace data into a file, and later use that file as a source
of trace data, via the target tfile command.

tsave [-r] filename

tsave [-ctf] dirname

Save the trace data to filename. By default, this command assumes that file-
name refers to the host filesystem, so if necessary gdb will copy raw trace data
up from the target and then save it. If the target supports it, you can also
supply the optional argument -r (“remote”) to direct the target to save the
data directly into filename in its own filesystem, which may be more efficient
if the trace buffer is very large. (Note, however, that target tfile can only
read from files accessible to the host.) By default, this command will save trace
frame in tfile format. You can supply the optional argument -ctf to save data
in CTF format. The Common Trace Format (CTF) is proposed as a trace for-
mat that can be shared by multiple debugging and tracing tools. Please go to
‘http://www.efficios.com/ctf’ to get more information.

target tfile filename

target ctf dirname

Use the file named filename or directory named dirname as a source of trace
data. Commands that examine data work as they do with a live target, but it
is not possible to run any new trace experiments. tstatus will report the state
of the trace run at the moment the data was saved, as well as the current trace
frame you are examining. Both filename and dirname must be on a filesystem
accessible to the host.

(gdb) target ctf ctf.ctf

(gdb) tfind

Found trace frame 0, tracepoint 2

39 ++a; /* set tracepoint 1 here */

(gdb) tdump

Data collected at tracepoint 2, trace frame 0:

i = 0

a = 0

b = 1 ’\001’

c = {"123", "456", "789", "123", "456", "789"}

d = {{{a = 1, b = 2}, {a = 3, b = 4}}, {{a = 5, b = 6}, {a = 7, b = 8}}}

(gdb) p b

212 Debugging with gdb

$1 = 1

213

14 Debugging Programs That Use Overlays

If your program is too large to fit completely in your target system’s memory, you can some-
times use overlays to work around this problem. gdb provides some support for debugging
programs that use overlays.

14.1 How Overlays Work

Suppose you have a computer whose instruction address space is only 64 kilobytes long, but
which has much more memory which can be accessed by other means: special instructions,
segment registers, or memory management hardware, for example. Suppose further that
you want to adapt a program which is larger than 64 kilobytes to run on this system.

One solution is to identify modules of your program which are relatively independent,
and need not call each other directly; call these modules overlays. Separate the overlays
from the main program, and place their machine code in the larger memory. Place your
main program in instruction memory, but leave at least enough space there to hold the
largest overlay as well.

Now, to call a function located in an overlay, you must first copy that overlay’s machine
code from the large memory into the space set aside for it in the instruction memory, and
then jump to its entry point there.

Data Instruction Larger

Address Space Address Space Address Space

+-----------+ +-----------+ +-----------+

| | | | | |

+-----------+ +-----------+ +-----------+<-- overlay 1

| program | | main | .----| overlay 1 | load address

| variables | | program | | +-----------+

| and heap | | | | | |

+-----------+ | | | +-----------+<-- overlay 2

| | +-----------+ | | | load address

+-----------+ | | | .-| overlay 2 |

| | | | | |

mapped --->+-----------+ | | +-----------+

address | | | | | |

| overlay | <-’ | | |

| area | <---’ +-----------+<-- overlay 3

| | <---. | | load address

+-----------+ ‘--| overlay 3 |

| | | |

+-----------+ | |

+-----------+

| |

+-----------+

A code overlay

The diagram (see [A code overlay], page 213) shows a system with separate data and
instruction address spaces. To map an overlay, the program copies its code from the larger
address space to the instruction address space. Since the overlays shown here all use the
same mapped address, only one may be mapped at a time. For a system with a single
address space for data and instructions, the diagram would be similar, except that the
program variables and heap would share an address space with the main program and the
overlay area.

214 Debugging with gdb

An overlay loaded into instruction memory and ready for use is called a mapped overlay;
its mapped address is its address in the instruction memory. An overlay not present (or only
partially present) in instruction memory is called unmapped; its load address is its address
in the larger memory. The mapped address is also called the virtual memory address, or
VMA; the load address is also called the load memory address, or LMA.

Unfortunately, overlays are not a completely transparent way to adapt a program to
limited instruction memory. They introduce a new set of global constraints you must keep
in mind as you design your program:

• Before calling or returning to a function in an overlay, your program must make sure
that overlay is actually mapped. Otherwise, the call or return will transfer control to
the right address, but in the wrong overlay, and your program will probably crash.

• If the process of mapping an overlay is expensive on your system, you will need to
choose your overlays carefully to minimize their effect on your program’s performance.

• The executable file you load onto your system must contain each overlay’s instruc-
tions, appearing at the overlay’s load address, not its mapped address. However, each
overlay’s instructions must be relocated and its symbols defined as if the overlay were
at its mapped address. You can use GNU linker scripts to specify different load and
relocation addresses for pieces of your program; see Section “Overlay Description” in
Using ld: the GNU linker.

• The procedure for loading executable files onto your system must be able to load their
contents into the larger address space as well as the instruction and data spaces.

The overlay system described above is rather simple, and could be improved in many
ways:

• If your system has suitable bank switch registers or memory management hardware,
you could use those facilities to make an overlay’s load area contents simply appear at
their mapped address in instruction space. This would probably be faster than copying
the overlay to its mapped area in the usual way.

• If your overlays are small enough, you could set aside more than one overlay area, and
have more than one overlay mapped at a time.

• You can use overlays to manage data, as well as instructions. In general, data overlays
are even less transparent to your design than code overlays: whereas code overlays only
require care when you call or return to functions, data overlays require care every time
you access the data. Also, if you change the contents of a data overlay, you must copy
its contents back out to its load address before you can copy a different data overlay
into the same mapped area.

14.2 Overlay Commands

To use gdb’s overlay support, each overlay in your program must correspond to a separate
section of the executable file. The section’s virtual memory address and load memory
address must be the overlay’s mapped and load addresses. Identifying overlays with sections
allows gdb to determine the appropriate address of a function or variable, depending on
whether the overlay is mapped or not.

gdb’s overlay commands all start with the word overlay; you can abbreviate this as ov
or ovly. The commands are:

Chapter 14: Debugging Programs That Use Overlays 215

overlay off

Disable gdb’s overlay support. When overlay support is disabled, gdb assumes
that all functions and variables are always present at their mapped addresses.
By default, gdb’s overlay support is disabled.

overlay manual

Enable manual overlay debugging. In this mode, gdb relies on you to tell it
which overlays are mapped, and which are not, using the overlay map-overlay

and overlay unmap-overlay commands described below.

overlay map-overlay overlay

overlay map overlay

Tell gdb that overlay is now mapped; overlay must be the name of the object
file section containing the overlay. When an overlay is mapped, gdb assumes it
can find the overlay’s functions and variables at their mapped addresses. gdb
assumes that any other overlays whose mapped ranges overlap that of overlay
are now unmapped.

overlay unmap-overlay overlay

overlay unmap overlay

Tell gdb that overlay is no longer mapped; overlay must be the name of the
object file section containing the overlay. When an overlay is unmapped, gdb
assumes it can find the overlay’s functions and variables at their load addresses.

overlay auto

Enable automatic overlay debugging. In this mode, gdb consults a data struc-
ture the overlay manager maintains in the inferior to see which overlays are
mapped. For details, see Section 14.3 [Automatic Overlay Debugging], page 216.

overlay load-target

overlay load

Re-read the overlay table from the inferior. Normally, gdb re-reads the table
gdb automatically each time the inferior stops, so this command should only
be necessary if you have changed the overlay mapping yourself using gdb. This
command is only useful when using automatic overlay debugging.

overlay list-overlays

overlay list

Display a list of the overlays currently mapped, along with their mapped ad-
dresses, load addresses, and sizes.

Normally, when gdb prints a code address, it includes the name of the function the
address falls in:

(gdb) print main

$3 = {int ()} 0x11a0 <main>

When overlay debugging is enabled, gdb recognizes code in unmapped overlays, and prints
the names of unmapped functions with asterisks around them. For example, if foo is a
function in an unmapped overlay, gdb prints it this way:

(gdb) overlay list

No sections are mapped.

(gdb) print foo

216 Debugging with gdb

$5 = {int (int)} 0x100000 <*foo*>

When foo’s overlay is mapped, gdb prints the function’s name normally:

(gdb) overlay list

Section .ov.foo.text, loaded at 0x100000 - 0x100034,

mapped at 0x1016 - 0x104a

(gdb) print foo

$6 = {int (int)} 0x1016 <foo>

When overlay debugging is enabled, gdb can find the correct address for functions and
variables in an overlay, whether or not the overlay is mapped. This allows most gdb com-
mands, like break and disassemble, to work normally, even on unmapped code. However,
gdb’s breakpoint support has some limitations:

• You can set breakpoints in functions in unmapped overlays, as long as gdb can write
to the overlay at its load address.

• gdb can not set hardware or simulator-based breakpoints in unmapped overlays. How-
ever, if you set a breakpoint at the end of your overlay manager (and tell gdb which
overlays are now mapped, if you are using manual overlay management), gdb will re-set
its breakpoints properly.

14.3 Automatic Overlay Debugging

gdb can automatically track which overlays are mapped and which are not, given some
simple co-operation from the overlay manager in the inferior. If you enable automatic
overlay debugging with the overlay auto command (see Section 14.2 [Overlay Commands],
page 214), gdb looks in the inferior’s memory for certain variables describing the current
state of the overlays.

Here are the variables your overlay manager must define to support gdb’s automatic
overlay debugging:

_ovly_table:
This variable must be an array of the following structures:

struct

{

/* The overlay’s mapped address. */

unsigned long vma;

/* The size of the overlay, in bytes. */

unsigned long size;

/* The overlay’s load address. */

unsigned long lma;

/* Non-zero if the overlay is currently mapped;

zero otherwise. */

unsigned long mapped;

}

_novlys: This variable must be a four-byte signed integer, holding the total number of
elements in _ovly_table.

To decide whether a particular overlay is mapped or not, gdb looks for an entry in
_ovly_table whose vma and lma members equal the VMA and LMA of the overlay’s section

Chapter 14: Debugging Programs That Use Overlays 217

in the executable file. When gdb finds a matching entry, it consults the entry’s mapped

member to determine whether the overlay is currently mapped.

In addition, your overlay manager may define a function called _ovly_debug_event. If
this function is defined, gdb will silently set a breakpoint there. If the overlay manager
then calls this function whenever it has changed the overlay table, this will enable gdb to
accurately keep track of which overlays are in program memory, and update any breakpoints
that may be set in overlays. This will allow breakpoints to work even if the overlays are
kept in ROM or other non-writable memory while they are not being executed.

14.4 Overlay Sample Program

When linking a program which uses overlays, you must place the overlays at their load
addresses, while relocating them to run at their mapped addresses. To do this, you must
write a linker script (see Section “Overlay Description” in Using ld: the GNU linker). Un-
fortunately, since linker scripts are specific to a particular host system, target architecture,
and target memory layout, this manual cannot provide portable sample code demonstrating
gdb’s overlay support.

However, the gdb source distribution does contain an overlaid program, with linker
scripts for a few systems, as part of its test suite. The program consists of the following
files from gdb/testsuite/gdb.base:

overlays.c

The main program file.

ovlymgr.c

A simple overlay manager, used by overlays.c.

foo.c

bar.c

baz.c

grbx.c Overlay modules, loaded and used by overlays.c.

d10v.ld

m32r.ld Linker scripts for linking the test program on the d10v-elf and m32r-elf

targets.

You can build the test program using the d10v-elf GCC cross-compiler like this:
$ d10v-elf-gcc -g -c overlays.c

$ d10v-elf-gcc -g -c ovlymgr.c

$ d10v-elf-gcc -g -c foo.c

$ d10v-elf-gcc -g -c bar.c

$ d10v-elf-gcc -g -c baz.c

$ d10v-elf-gcc -g -c grbx.c

$ d10v-elf-gcc -g overlays.o ovlymgr.o foo.o bar.o \

baz.o grbx.o -Wl,-Td10v.ld -o overlays

The build process is identical for any other architecture, except that you must substitute
the appropriate compiler and linker script for the target system for d10v-elf-gcc and
d10v.ld.

219

15 Using gdb with Different Languages

Although programming languages generally have common aspects, they are rarely expressed
in the same manner. For instance, in ANSI C, dereferencing a pointer p is accomplished
by *p, but in Modula-2, it is accomplished by p^. Values can also be represented (and
displayed) differently. Hex numbers in C appear as ‘0x1ae’, while in Modula-2 they appear
as ‘1AEH’.

Language-specific information is built into gdb for some languages, allowing you to
express operations like the above in your program’s native language, and allowing gdb to
output values in a manner consistent with the syntax of your program’s native language.
The language you use to build expressions is called the working language.

15.1 Switching Between Source Languages

There are two ways to control the working language—either have gdb set it automatically,
or select it manually yourself. You can use the set language command for either purpose.
On startup, gdb defaults to setting the language automatically. The working language is
used to determine how expressions you type are interpreted, how values are printed, etc.

In addition to the working language, every source file that gdb knows about has its
own working language. For some object file formats, the compiler might indicate which
language a particular source file is in. However, most of the time gdb infers the language
from the name of the file. The language of a source file controls whether C++ names are
demangled—this way backtrace can show each frame appropriately for its own language.
There is no way to set the language of a source file from within gdb, but you can set the
language associated with a filename extension. See Section 15.2 [Displaying the Language],
page 220.

This is most commonly a problem when you use a program, such as cfront or f2c, that
generates C but is written in another language. In that case, make the program use #line
directives in its C output; that way gdb will know the correct language of the source code
of the original program, and will display that source code, not the generated C code.

15.1.1 List of Filename Extensions and Languages

If a source file name ends in one of the following extensions, then gdb infers that its language
is the one indicated.

.ada

.ads

.adb

.a Ada source file.

.c C source file

.C

.cc

.cp

.cpp

.cxx

.c++ C++ source file

220 Debugging with gdb

.d D source file

.m Objective-C source file

.f

.F Fortran source file

.mod Modula-2 source file

.s

.S Assembler source file. This actually behaves almost like C, but gdb does not
skip over function prologues when stepping.

In addition, you may set the language associated with a filename extension. See
Section 15.2 [Displaying the Language], page 220.

15.1.2 Setting the Working Language

If you allow gdb to set the language automatically, expressions are interpreted the same
way in your debugging session and your program.

If you wish, you may set the language manually. To do this, issue the command ‘set
language lang’, where lang is the name of a language, such as c or modula-2. For a list
of the supported languages, type ‘set language’.

Setting the language manually prevents gdb from updating the working language au-
tomatically. This can lead to confusion if you try to debug a program when the working
language is not the same as the source language, when an expression is acceptable to both
languages—but means different things. For instance, if the current source file were written
in C, and gdb was parsing Modula-2, a command such as:

print a = b + c

might not have the effect you intended. In C, this means to add b and c and place the
result in a. The result printed would be the value of a. In Modula-2, this means to compare
a to the result of b+c, yielding a BOOLEAN value.

15.1.3 Having gdb Infer the Source Language

To have gdb set the working language automatically, use ‘set language local’ or ‘set
language auto’. gdb then infers the working language. That is, when your program stops
in a frame (usually by encountering a breakpoint), gdb sets the working language to the
language recorded for the function in that frame. If the language for a frame is unknown
(that is, if the function or block corresponding to the frame was defined in a source file that
does not have a recognized extension), the current working language is not changed, and
gdb issues a warning.

This may not seem necessary for most programs, which are written entirely in one source
language. However, program modules and libraries written in one source language can be
used by a main program written in a different source language. Using ‘set language auto’
in this case frees you from having to set the working language manually.

15.2 Displaying the Language

The following commands help you find out which language is the working language, and
also what language source files were written in.

Chapter 15: Using gdb with Different Languages 221

show language

Display the current working language. This is the language you can use with
commands such as print to build and compute expressions that may involve
variables in your program.

info frame

Display the source language for this frame. This language becomes the working
language if you use an identifier from this frame. See Section 8.4 [Information
about a Frame], page 115, to identify the other information listed here.

info source

Display the source language of this source file. See Chapter 16 [Examining the
Symbol Table], page 253, to identify the other information listed here.

In unusual circumstances, you may have source files with extensions not in the standard
list. You can then set the extension associated with a language explicitly:

set extension-language ext language

Tell gdb that source files with extension ext are to be assumed as written in
the source language language.

info extensions

List all the filename extensions and the associated languages.

15.3 Type and Range Checking

Some languages are designed to guard you against making seemingly common errors through
a series of compile- and run-time checks. These include checking the type of arguments to
functions and operators and making sure mathematical overflows are caught at run time.
Checks such as these help to ensure a program’s correctness once it has been compiled
by eliminating type mismatches and providing active checks for range errors when your
program is running.

By default gdb checks for these errors according to the rules of the current source
language. Although gdb does not check the statements in your program, it can check
expressions entered directly into gdb for evaluation via the print command, for example.

15.3.1 An Overview of Type Checking

Some languages, such as C and C++, are strongly typed, meaning that the arguments to
operators and functions have to be of the correct type, otherwise an error occurs. These
checks prevent type mismatch errors from ever causing any run-time problems. For example,

int klass::my_method(char *b) { return b ? 1 : 2; }

(gdb) print obj.my_method (0)

$1 = 2

but
(gdb) print obj.my_method (0x1234)

Cannot resolve method klass::my_method to any overloaded instance

The second example fails because in C++ the integer constant ‘0x1234’ is not type-
compatible with the pointer parameter type.

222 Debugging with gdb

For the expressions you use in gdb commands, you can tell gdb to not enforce strict
type checking or to treat any mismatches as errors and abandon the expression; When type
checking is disabled, gdb successfully evaluates expressions like the second example above.

Even if type checking is off, there may be other reasons related to type that prevent gdb
from evaluating an expression. For instance, gdb does not know how to add an int and a
struct foo. These particular type errors have nothing to do with the language in use and
usually arise from expressions which make little sense to evaluate anyway.

gdb provides some additional commands for controlling type checking:

set check type on

set check type off

Set strict type checking on or off. If any type mismatches occur in evaluating an
expression while type checking is on, gdb prints a message and aborts evaluation
of the expression.

show check type

Show the current setting of type checking and whether gdb is enforcing strict
type checking rules.

15.3.2 An Overview of Range Checking

In some languages (such as Modula-2), it is an error to exceed the bounds of a type; this is
enforced with run-time checks. Such range checking is meant to ensure program correctness
by making sure computations do not overflow, or indices on an array element access do not
exceed the bounds of the array.

For expressions you use in gdb commands, you can tell gdb to treat range errors in one
of three ways: ignore them, always treat them as errors and abandon the expression, or
issue warnings but evaluate the expression anyway.

A range error can result from numerical overflow, from exceeding an array index bound,
or when you type a constant that is not a member of any type. Some languages, however,
do not treat overflows as an error. In many implementations of C, mathematical overflow
causes the result to “wrap around” to lower values—for example, if m is the largest integer
value, and s is the smallest, then

m + 1 ⇒ s

This, too, is specific to individual languages, and in some cases specific to individual
compilers or machines. See Section 15.4 [Supported Languages], page 223, for further
details on specific languages.

gdb provides some additional commands for controlling the range checker:

set check range auto

Set range checking on or off based on the current working language. See
Section 15.4 [Supported Languages], page 223, for the default settings for each
language.

set check range on

set check range off

Set range checking on or off, overriding the default setting for the current work-
ing language. A warning is issued if the setting does not match the language

Chapter 15: Using gdb with Different Languages 223

default. If a range error occurs and range checking is on, then a message is
printed and evaluation of the expression is aborted.

set check range warn

Output messages when the gdb range checker detects a range error, but at-
tempt to evaluate the expression anyway. Evaluating the expression may still
be impossible for other reasons, such as accessing memory that the process does
not own (a typical example from many Unix systems).

show check range

Show the current setting of the range checker, and whether or not it is being
set automatically by gdb.

15.4 Supported Languages

gdb supports C, C++, D, Go, Objective-C, Fortran, OpenCL C, Pascal, Rust, assembly,
Modula-2, and Ada. Some gdb features may be used in expressions regardless of the lan-
guage you use: the gdb @ and :: operators, and the ‘{type}addr’ construct (see Section 10.1
[Expressions], page 139) can be used with the constructs of any supported language.

The following sections detail to what degree each source language is supported by gdb.
These sections are not meant to be language tutorials or references, but serve only as a
reference guide to what the gdb expression parser accepts, and what input and output
formats should look like for different languages. There are many good books written on
each of these languages; please look to these for a language reference or tutorial.

15.4.1 C and C++

Since C and C++ are so closely related, many features of gdb apply to both languages.
Whenever this is the case, we discuss those languages together.

The C++ debugging facilities are jointly implemented by the C++ compiler and gdb.
Therefore, to debug your C++ code effectively, you must compile your C++ programs with
a supported C++ compiler, such as gnu g++, or the HP ANSI C++ compiler (aCC).

15.4.1.1 C and C++ Operators

Operators must be defined on values of specific types. For instance, + is defined on numbers,
but not on structures. Operators are often defined on groups of types.

For the purposes of C and C++, the following definitions hold:

• Integral types include int with any of its storage-class specifiers; char; enum; and, for
C++, bool.

• Floating-point types include float, double, and long double (if supported by the
target platform).

• Pointer types include all types defined as (type *).

• Scalar types include all of the above.

The following operators are supported. They are listed here in order of increasing prece-
dence:

, The comma or sequencing operator. Expressions in a comma-separated list are
evaluated from left to right, with the result of the entire expression being the
last expression evaluated.

224 Debugging with gdb

= Assignment. The value of an assignment expression is the value assigned. De-
fined on scalar types.

op= Used in an expression of the form a op= b, and translated to a = a op b. op=

and = have the same precedence. The operator op is any one of the operators
|, ^, &, <<, >>, +, -, *, /, %.

?: The ternary operator. a ? b : c can be thought of as: if a then b else c. The
argument a should be of an integral type.

|| Logical or. Defined on integral types.

&& Logical and. Defined on integral types.

| Bitwise or. Defined on integral types.

^ Bitwise exclusive-or. Defined on integral types.

& Bitwise and. Defined on integral types.

==, != Equality and inequality. Defined on scalar types. The value of these expressions
is 0 for false and non-zero for true.

<, >, <=, >=
Less than, greater than, less than or equal, greater than or equal. Defined on
scalar types. The value of these expressions is 0 for false and non-zero for true.

<<, >> left shift, and right shift. Defined on integral types.

@ The gdb “artificial array” operator (see Section 10.1 [Expressions], page 139).

+, - Addition and subtraction. Defined on integral types, floating-point types and
pointer types.

*, /, % Multiplication, division, and modulus. Multiplication and division are defined
on integral and floating-point types. Modulus is defined on integral types.

++, -- Increment and decrement. When appearing before a variable, the operation is
performed before the variable is used in an expression; when appearing after it,
the variable’s value is used before the operation takes place.

* Pointer dereferencing. Defined on pointer types. Same precedence as ++.

& Address operator. Defined on variables. Same precedence as ++.

For debugging C++, gdb implements a use of ‘&’ beyond what is allowed in the
C++ language itself: you can use ‘&(&ref)’ to examine the address where a C++
reference variable (declared with ‘&ref’) is stored.

- Negative. Defined on integral and floating-point types. Same precedence as ++.

! Logical negation. Defined on integral types. Same precedence as ++.

~ Bitwise complement operator. Defined on integral types. Same precedence as
++.

., -> Structure member, and pointer-to-structure member. For convenience, gdb
regards the two as equivalent, choosing whether to dereference a pointer based
on the stored type information. Defined on struct and union data.

Chapter 15: Using gdb with Different Languages 225

.*, ->* Dereferences of pointers to members.

[] Array indexing. a[i] is defined as *(a+i). Same precedence as ->.

() Function parameter list. Same precedence as ->.

:: C++ scope resolution operator. Defined on struct, union, and class types.

:: Doubled colons also represent the gdb scope operator (see Section 10.1 [Ex-
pressions], page 139). Same precedence as ::, above.

If an operator is redefined in the user code, gdb usually attempts to invoke the redefined
version instead of using the operator’s predefined meaning.

15.4.1.2 C and C++ Constants

gdb allows you to express the constants of C and C++ in the following ways:

• Integer constants are a sequence of digits. Octal constants are specified by a leading
‘0’ (i.e. zero), and hexadecimal constants by a leading ‘0x’ or ‘0X’. Constants may also
end with a letter ‘l’, specifying that the constant should be treated as a long value.

• Floating point constants are a sequence of digits, followed by a decimal point, followed
by a sequence of digits, and optionally followed by an exponent. An exponent is of
the form: ‘e[[+]|-]nnn’, where nnn is another sequence of digits. The ‘+’ is optional
for positive exponents. A floating-point constant may also end with a letter ‘f’ or ‘F’,
specifying that the constant should be treated as being of the float (as opposed to the
default double) type; or with a letter ‘l’ or ‘L’, which specifies a long double constant.

• Enumerated constants consist of enumerated identifiers, or their integral equivalents.

• Character constants are a single character surrounded by single quotes (’), or a
number—the ordinal value of the corresponding character (usually its ascii value).
Within quotes, the single character may be represented by a letter or by escape
sequences, which are of the form ‘\nnn’, where nnn is the octal representation of
the character’s ordinal value; or of the form ‘\x’, where ‘x’ is a predefined special
character—for example, ‘\n’ for newline.

Wide character constants can be written by prefixing a character constant with ‘L’,
as in C. For example, ‘L’x’’ is the wide form of ‘x’. The target wide character set is
used when computing the value of this constant (see Section 10.21 [Character Sets],
page 179).

• String constants are a sequence of character constants surrounded by double quotes (").
Any valid character constant (as described above) may appear. Double quotes within
the string must be preceded by a backslash, so for instance ‘"a\"b’c"’ is a string of
five characters.

Wide string constants can be written by prefixing a string constant with ‘L’, as in C.
The target wide character set is used when computing the value of this constant (see
Section 10.21 [Character Sets], page 179).

• Pointer constants are an integral value. You can also write pointers to constants using
the C operator ‘&’.

• Array constants are comma-separated lists surrounded by braces ‘{’ and ‘}’; for ex-
ample, ‘{1,2,3}’ is a three-element array of integers, ‘{{1,2}, {3,4}, {5,6}}’ is a

226 Debugging with gdb

three-by-two array, and ‘{&"hi", &"there", &"fred"}’ is a three-element array of
pointers.

15.4.1.3 C++ Expressions

gdb expression handling can interpret most C++ expressions.

Warning: gdb can only debug C++ code if you use the proper compiler and
the proper debug format. Currently, gdb works best when debugging C++ code
that is compiled with the most recent version of gcc possible. The DWARF
debugging format is preferred; gcc defaults to this on most popular platforms.
Other compilers and/or debug formats are likely to work badly or not at all
when using gdb to debug C++ code. See Section 4.1 [Compilation], page 31.

1. Member function calls are allowed; you can use expressions like
count = aml->GetOriginal(x, y)

2. While a member function is active (in the selected stack frame), your expressions have
the same namespace available as the member function; that is, gdb allows implicit
references to the class instance pointer this following the same rules as C++. using

declarations in the current scope are also respected by gdb.

3. You can call overloaded functions; gdb resolves the function call to the right definition,
with some restrictions. gdb does not perform overload resolution involving user-defined
type conversions, calls to constructors, or instantiations of templates that do not exist
in the program. It also cannot handle ellipsis argument lists or default arguments.

It does perform integral conversions and promotions, floating-point promotions, arith-
metic conversions, pointer conversions, conversions of class objects to base classes, and
standard conversions such as those of functions or arrays to pointers; it requires an
exact match on the number of function arguments.

Overload resolution is always performed, unless you have specified set

overload-resolution off. See Section 15.4.1.7 [gdb Features for C++], page 227.

You must specify set overload-resolution off in order to use an explicit function
signature to call an overloaded function, as in

p ’foo(char,int)’(’x’, 13)

The gdb command-completion facility can simplify this; see Section 3.3 [Command
Completion], page 24.

4. gdb understands variables declared as C++ lvalue or rvalue references; you can use them
in expressions just as you do in C++ source—they are automatically dereferenced.

In the parameter list shown when gdb displays a frame, the values of reference variables
are not displayed (unlike other variables); this avoids clutter, since references are often
used for large structures. The address of a reference variable is always shown, unless
you have specified ‘set print address off’.

5. gdb supports the C++ name resolution operator ::—your expressions can use it just as
expressions in your program do. Since one scope may be defined in another, you can use
:: repeatedly if necessary, for example in an expression like ‘scope1::scope2::name’.
gdb also allows resolving name scope by reference to source files, in both C and C++
debugging (see Section 10.3 [Program Variables], page 140).

6. gdb performs argument-dependent lookup, following the C++ specification.

Chapter 15: Using gdb with Different Languages 227

15.4.1.4 C and C++ Defaults

If you allow gdb to set range checking automatically, it defaults to off whenever the working
language changes to C or C++. This happens regardless of whether you or gdb selects the
working language.

If you allow gdb to set the language automatically, it recognizes source files whose names
end with .c, .C, or .cc, etc, and when gdb enters code compiled from one of these files,
it sets the working language to C or C++. See Section 15.1.3 [Having gdb Infer the Source
Language], page 220, for further details.

15.4.1.5 C and C++ Type and Range Checks

By default, when gdb parses C or C++ expressions, strict type checking is used. However,
if you turn type checking off, gdb will allow certain non-standard conversions, such as
promoting integer constants to pointers.

Range checking, if turned on, is done on mathematical operations. Array indices are not
checked, since they are often used to index a pointer that is not itself an array.

15.4.1.6 gdb and C

The set print union and show print union commands apply to the union type. When
set to ‘on’, any union that is inside a struct or class is also printed. Otherwise, it appears
as ‘{...}’.

The @ operator aids in the debugging of dynamic arrays, formed with pointers and a
memory allocation function. See Section 10.1 [Expressions], page 139.

15.4.1.7 gdb Features for C++

Some gdb commands are particularly useful with C++, and some are designed specifically
for use with C++. Here is a summary:

breakpoint menus
When you want a breakpoint in a function whose name is overloaded, gdb
has the capability to display a menu of possible breakpoint locations to help
you specify which function definition you want. See Section 10.2 [Ambiguous
Expressions], page 139.

rbreak regex

Setting breakpoints using regular expressions is helpful for setting breakpoints
on overloaded functions that are not members of any special classes. See
Section 5.1.1 [Setting Breakpoints], page 58.

catch throw

catch rethrow

catch catch

Debug C++ exception handling using these commands. See Section 5.1.3 [Set-
ting Catchpoints], page 68.

ptype typename

Print inheritance relationships as well as other information for type typename.
See Chapter 16 [Examining the Symbol Table], page 253.

228 Debugging with gdb

info vtbl expression.

The info vtbl command can be used to display the virtual method tables of
the object computed by expression. This shows one entry per virtual table;
there may be multiple virtual tables when multiple inheritance is in use.

demangle name

Demangle name. See Chapter 16 [Symbols], page 253, for a more complete
description of the demangle command.

set print demangle

show print demangle

set print asm-demangle

show print asm-demangle

Control whether C++ symbols display in their source form, both when displaying
code as C++ source and when displaying disassemblies. See Section 10.9 [Print
Settings], page 151.

set print object

show print object

Choose whether to print derived (actual) or declared types of objects. See
Section 10.9 [Print Settings], page 151.

set print vtbl

show print vtbl

Control the format for printing virtual function tables. See Section 10.9 [Print
Settings], page 151. (The vtbl commands do not work on programs compiled
with the HP ANSI C++ compiler (aCC).)

set overload-resolution on

Enable overload resolution for C++ expression evaluation. The default is on. For
overloaded functions, gdb evaluates the arguments and searches for a function
whose signature matches the argument types, using the standard C++ conver-
sion rules (see Section 15.4.1.3 [C++ Expressions], page 226, for details). If it
cannot find a match, it emits a message.

set overload-resolution off

Disable overload resolution for C++ expression evaluation. For overloaded func-
tions that are not class member functions, gdb chooses the first function of
the specified name that it finds in the symbol table, whether or not its argu-
ments are of the correct type. For overloaded functions that are class member
functions, gdb searches for a function whose signature exactly matches the
argument types.

show overload-resolution

Show the current setting of overload resolution.

Overloaded symbol names
You can specify a particular definition of an overloaded symbol, using the same
notation that is used to declare such symbols in C++: type symbol(types)

rather than just symbol. You can also use the gdb command-line word com-
pletion facilities to list the available choices, or to finish the type list for you.
See Section 3.3 [Command Completion], page 24, for details on how to do this.

Chapter 15: Using gdb with Different Languages 229

Breakpoints in template functions
Similar to how overloaded symbols are handled, gdb will ignore template pa-
rameter lists when it encounters a symbol which includes a C++ template. This
permits setting breakpoints on families of template functions or functions whose
parameters include template types.

The -qualified flag may be used to override this behavior, causing gdb to
search for a specific function or type.

The gdb command-line word completion facility also understands template pa-
rameters and may be used to list available choices or finish template parameter
lists for you. See Section 3.3 [Command Completion], page 24, for details on
how to do this.

Breakpoints in functions with ABI tags
The GNU C++ compiler introduced the notion of ABI “tags”, which correspond
to changes in the ABI of a type, function, or variable that would not otherwise
be reflected in a mangled name. See https://developers.redhat.com/blog/
2015/02/05/gcc5-and-the-c11-abi/ for more detail.

The ABI tags are visible in C++ demangled names. For example, a function
that returns a std::string:

std::string function(int);

when compiled for the C++11 ABI is marked with the cxx11 ABI tag, and gdb
displays the symbol like this:

function[abi:cxx11](int)

You can set a breakpoint on such functions simply as if they had no tag. For
example:

(gdb) b function(int)

Breakpoint 2 at 0x40060d: file main.cc, line 10.

(gdb) info breakpoints

Num Type Disp Enb Address What

1 breakpoint keep y 0x0040060d in function[abi:cxx11](int)

at main.cc:10

On the rare occasion you need to disambiguate between different ABI tags, you
can do so by simply including the ABI tag in the function name, like:

(gdb) b ambiguous[abi:other_tag](int)

15.4.1.8 Decimal Floating Point format

gdb can examine, set and perform computations with numbers in decimal floating point for-
mat, which in the C language correspond to the _Decimal32, _Decimal64 and _Decimal128

types as specified by the extension to support decimal floating-point arithmetic.

There are two encodings in use, depending on the architecture: BID (Binary Integer
Decimal) for x86 and x86-64, and DPD (Densely Packed Decimal) for PowerPC and S/390.
gdb will use the appropriate encoding for the configured target.

Because of a limitation in libdecnumber, the library used by gdb to manipulate decimal
floating point numbers, it is not possible to convert (using a cast, for example) integers wider
than 32-bit to decimal float.

https://developers.redhat.com/blog/2015/02/05/gcc5-and-the-c11-abi/
https://developers.redhat.com/blog/2015/02/05/gcc5-and-the-c11-abi/

230 Debugging with gdb

In addition, in order to imitate gdb’s behaviour with binary floating point computations,
error checking in decimal float operations ignores underflow, overflow and divide by zero
exceptions.

In the PowerPC architecture, gdb provides a set of pseudo-registers to inspect
_Decimal128 values stored in floating point registers. See Section 21.4.6 [PowerPC],
page 346, for more details.

15.4.2 D

gdb can be used to debug programs written in D and compiled with GDC, LDC or DMD
compilers. Currently gdb supports only one D specific feature — dynamic arrays.

15.4.3 Go

gdb can be used to debug programs written in Go and compiled with gccgo or 6g compilers.

Here is a summary of the Go-specific features and restrictions:

The current Go package

The name of the current package does not need to be specified when specifying
global variables and functions.

For example, given the program:

package main

var myglob = "Shall we?"

func main () {

// ...

}

When stopped inside main either of these work:

(gdb) p myglob

(gdb) p main.myglob

Builtin Go types

The string type is recognized by gdb and is printed as a string.

Builtin Go functions

The gdb expression parser recognizes the unsafe.Sizeof function and handles
it internally.

Restrictions on Go expressions

All Go operators are supported except &^. The Go _ “blank identifier” is not
supported. Automatic dereferencing of pointers is not supported.

15.4.4 Objective-C

This section provides information about some commands and command options that are
useful for debugging Objective-C code. See also Chapter 16 [Symbols], page 253, and
Chapter 16 [Symbols], page 253, for a few more commands specific to Objective-C support.

15.4.4.1 Method Names in Commands

The following commands have been extended to accept Objective-C method names as line
specifications:

• clear

Chapter 15: Using gdb with Different Languages 231

• break

• info line

• jump

• list

A fully qualified Objective-C method name is specified as

-[Class methodName]

where the minus sign is used to indicate an instance method and a plus sign (not shown)
is used to indicate a class method. The class name Class and method name methodName
are enclosed in brackets, similar to the way messages are specified in Objective-C source
code. For example, to set a breakpoint at the create instance method of class Fruit in
the program currently being debugged, enter:

break -[Fruit create]

To list ten program lines around the initialize class method, enter:

list +[NSText initialize]

In the current version of gdb, the plus or minus sign is required. In future versions of
gdb, the plus or minus sign will be optional, but you can use it to narrow the search. It is
also possible to specify just a method name:

break create

You must specify the complete method name, including any colons. If your program’s
source files contain more than one create method, you’ll be presented with a numbered
list of classes that implement that method. Indicate your choice by number, or type ‘0’ to
exit if none apply.

As another example, to clear a breakpoint established at the makeKeyAndOrderFront:

method of the NSWindow class, enter:

clear -[NSWindow makeKeyAndOrderFront:]

15.4.4.2 The Print Command With Objective-C

The print command has also been extended to accept methods. For example:

print -[object hash]

will tell gdb to send the hash message to object and print the result. Also, an additional
command has been added, print-object or po for short, which is meant to print the
description of an object. However, this command may only work with certain Objective-C
libraries that have a particular hook function, _NSPrintForDebugger, defined.

15.4.5 OpenCL C

This section provides information about gdbs OpenCL C support.

15.4.5.1 OpenCL C Datatypes

gdb supports the builtin scalar and vector datatypes specified by OpenCL 1.1. In addition
the half- and double-precision floating point data types of the cl_khr_fp16 and cl_khr_

fp64 OpenCL extensions are also known to gdb.

232 Debugging with gdb

15.4.5.2 OpenCL C Expressions

gdb supports accesses to vector components including the access as lvalue where possible.
Since OpenCL C is based on C99 most C expressions supported by gdb can be used as
well.

15.4.5.3 OpenCL C Operators

gdb supports the operators specified by OpenCL 1.1 for scalar and vector data types.

15.4.6 Fortran

gdb can be used to debug programs written in Fortran. Note, that not all Fortran language
features are available yet.

Some Fortran compilers (gnu Fortran 77 and Fortran 95 compilers among them) append
an underscore to the names of variables and functions. When you debug programs com-
piled by those compilers, you will need to refer to variables and functions with a trailing
underscore.

Fortran symbols are usually case-insensitive, so gdb by default uses case-insensitive
matching for Fortran symbols. You can change that with the ‘set case-insensitive’
command, see Chapter 16 [Symbols], page 253, for the details.

15.4.6.1 Fortran Types

In Fortran the primitive data-types have an associated KIND type parameter, written as
‘type*kindparam’, ‘type*kindparam’, or in the gdb-only dialect ‘type_kindparam’. A
concrete example would be ‘Real*4’, ‘Real(kind=4)’, and ‘Real_4’. The kind of a type
can be retrieved by using the intrinsic function KIND, see Section 15.4.6.3 [Fortran Intrinsics],
page 233.

Generally, the actual implementation of the KIND type parameter is compiler specific.
In gdb the kind parameter is implemented in accordance with its use in the gnu gfortran

compiler. Here, the kind parameter for a given type specifies its size in memory — a Fortran
Integer*4 or Integer(kind=4) would be an integer type occupying 4 bytes of memory.
An exception to this rule is the Complex type for which the kind of the type does not specify
its entire size, but the size of each of the two Real’s it is composed of. A Complex*4 would
thus consist of two Real*4s and occupy 8 bytes of memory.

For every type there is also a default kind associated with it, e.g. Integer in gdb will
internally be an Integer*4 (see the table below for default types). The default types are
the same as in gnu compilers but note, that the gnu default types can actually be changed
by compiler flags such as -fdefault-integer-8 and -fdefault-real-8.

Not every kind parameter is valid for every type and in gdb the following type kinds
are available.

Integer Integer*1, Integer*2, Integer*4, Integer*8, and Integer = Integer*4.

Logical Logical*1, Logical*2, Logical*4, Logical*8, and Logical = Logical*4.

Real Real*4, Real*8, Real*16, and Real = Real*4.

Complex Complex*4, Complex*8, Complex*16, and Complex = Complex*4.

Chapter 15: Using gdb with Different Languages 233

15.4.6.2 Fortran Operators and Expressions

Operators must be defined on values of specific types. For instance, + is defined on numbers,
but not on characters or other non- arithmetic types. Operators are often defined on groups
of types.

** The exponentiation operator. It raises the first operand to the power of the
second one.

: The range operator. Normally used in the form of array(low:high) to represent
a section of array.

% The access component operator. Normally used to access elements in derived
types. Also suitable for unions. As unions aren’t part of regular Fortran, this
can only happen when accessing a register that uses a gdbarch-defined union
type.

:: The scope operator. Normally used to access variables in modules or to set
breakpoints on subroutines nested in modules or in other subroutines (internal
subroutines).

15.4.6.3 Fortran Intrinsics

Fortran provides a large set of intrinsic procedures. gdb implements an incomplete subset
of those procedures and their overloads. Some of these procedures take an optional KIND
parameter, see Section 15.4.6.1 [Fortran Types], page 232.

ABS(a) Computes the absolute value of its argument a. Currently not supported for
Complex arguments.

ALLOCATE(array)

Returns whether array is allocated or not.

ASSOCIATED(pointer [, target])

Returns the association status of the pointer pointer or, if target is present,
whether pointer is associated with the target target.

CEILING(a [, kind])

Computes the least integer greater than or equal to a. The optional parameter
kind specifies the kind of the return type Integer(kind).

CMPLX(x [, y [, kind]])

Returns a complex number where x is converted to the real component. If y is
present it is converted to the imaginary component. If y is not present then the
imaginary component is set to 0.0 except if x itself is of Complex type. The
optional parameter kind specifies the kind of the return type Complex(kind).

FLOOR(a [, kind])

Computes the greatest integer less than or equal to a. The optional parameter
kind specifies the kind of the return type Integer(kind).

KIND(a) Returns the kind value of the argument a, see Section 15.4.6.1 [Fortran Types],
page 232.

234 Debugging with gdb

LBOUND(array [, dim [, kind]])

Returns the lower bounds of an array, or a single lower bound along the dim
dimension if present. The optional parameter kind specifies the kind of the
return type Integer(kind).

LOC(x) Returns the address of x as an Integer.

MOD(a, p) Computes the remainder of the division of a by p.

MODULO(a, p)

Computes the a modulo p.

RANK(a) Returns the rank of a scalar or array (scalars have rank 0).

SHAPE(a) Returns the shape of a scalar or array (scalars have shape ‘()’).

SIZE(array[, dim [, kind]])

Returns the extent of array along a specified dimension dim, or the total number
of elements in array if dim is absent. The optional parameter kind specifies the
kind of the return type Integer(kind).

UBOUND(array [, dim [, kind]])

Returns the upper bounds of an array, or a single upper bound along the dim
dimension if present. The optional parameter kind specifies the kind of the
return type Integer(kind).

15.4.6.4 Special Fortran Commands

gdb has some commands to support Fortran-specific features, such as displaying common
blocks.

info common [common-name]
This command prints the values contained in the Fortran COMMON block whose
name is common-name. With no argument, the names of all COMMON blocks
visible at the current program location are printed.

set fortran repack-array-slices [on|off]

show fortran repack-array-slices

When taking a slice from an array, a Fortran compiler can choose to either
produce an array descriptor that describes the slice in place, or it may repack
the slice, copying the elements of the slice into a new region of memory.

When this setting is on, then gdb will also repack array slices in some situations.
When this setting is off, then gdb will create array descriptors for slices that
reference the original data in place.

gdb will never repack an array slice if the data for the slice is contiguous within
the original array.

gdb will always repack string slices if the data for the slice is non-contiguous
within the original string as gdb does not support printing non-contiguous
strings.

The default for this setting is off.

Chapter 15: Using gdb with Different Languages 235

15.4.7 Pascal

Debugging Pascal programs which use sets, subranges, file variables, or nested functions
does not currently work. gdb does not support entering expressions, printing values, or
similar features using Pascal syntax.

The Pascal-specific command set print pascal_static-members controls whether
static members of Pascal objects are displayed. See Section 10.9 [Print Settings], page 151.

15.4.8 Rust

gdb supports the Rust Programming Language (https://www.rust-lang.org/). Type-
and value-printing, and expression parsing, are reasonably complete. However, there are a
few peculiarities and holes to be aware of.

• Linespecs (see Section 9.2 [Specify Location], page 122) are never relative to the current
crate. Instead, they act as if there were a global namespace of crates, somewhat similar
to the way extern crate behaves.

That is, if gdb is stopped at a breakpoint in a function in crate ‘A’, module ‘B’, then
break B::f will attempt to set a breakpoint in a function named ‘f’ in a crate named
‘B’.

As a consequence of this approach, linespecs also cannot refer to items using ‘self::’
or ‘super::’.

• Because gdb implements Rust name-lookup semantics in expressions, it will sometimes
prepend the current crate to a name. For example, if gdb is stopped at a breakpoint
in the crate ‘K’, then print ::x::y will try to find the symbol ‘K::x::y’.

However, since it is useful to be able to refer to other crates when debugging, gdb
provides the extern extension to circumvent this. To use the extension, just put
extern before a path expression to refer to the otherwise unavailable “global” scope.

In the above example, if you wanted to refer to the symbol ‘y’ in the crate ‘x’, you
would use print extern x::y.

• The Rust expression evaluator does not support “statement-like” expressions such as
if or match, or lambda expressions.

• Tuple expressions are not implemented.

• The Rust expression evaluator does not currently implement the Drop trait. Objects
that may be created by the evaluator will never be destroyed.

• gdb does not implement type inference for generics. In order to call generic functions or
otherwise refer to generic items, you will have to specify the type parameters manually.

• gdb currently uses the C++ demangler for Rust. In most cases this does not cause any
problems. However, in an expression context, completing a generic function name will
give syntactically invalid results. This happens because Rust requires the ‘::’ operator
between the function name and its generic arguments. For example, gdb might provide
a completion like crate::f<u32>, where the parser would require crate::f::<u32>.

• As of this writing, the Rust compiler (version 1.8) has a few holes in the debugging
information it generates. These holes prevent certain features from being implemented
by gdb:

• Method calls cannot be made via traits.

https://www.rust-lang.org/

236 Debugging with gdb

• Operator overloading is not implemented.

• When debugging in a monomorphized function, you cannot use the generic type
names.

• The type Self is not available.

• use statements are not available, so some names may not be available in the crate.

15.4.9 Modula-2

The extensions made to gdb to support Modula-2 only support output from the gnu
Modula-2 compiler (which is currently being developed). Other Modula-2 compilers are not
currently supported, and attempting to debug executables produced by them is most likely
to give an error as gdb reads in the executable’s symbol table.

15.4.9.1 Operators

Operators must be defined on values of specific types. For instance, + is defined on numbers,
but not on structures. Operators are often defined on groups of types. For the purposes of
Modula-2, the following definitions hold:

• Integral types consist of INTEGER, CARDINAL, and their subranges.

• Character types consist of CHAR and its subranges.

• Floating-point types consist of REAL.

• Pointer types consist of anything declared as POINTER TO type.

• Scalar types consist of all of the above.

• Set types consist of SET and BITSET types.

• Boolean types consist of BOOLEAN.

The following operators are supported, and appear in order of increasing precedence:

, Function argument or array index separator.

:= Assignment. The value of var := value is value.

<, > Less than, greater than on integral, floating-point, or enumerated types.

<=, >= Less than or equal to, greater than or equal to on integral, floating-point and
enumerated types, or set inclusion on set types. Same precedence as <.

=, <>, # Equality and two ways of expressing inequality, valid on scalar types. Same
precedence as <. In gdb scripts, only <> is available for inequality, since #

conflicts with the script comment character.

IN Set membership. Defined on set types and the types of their members. Same
precedence as <.

OR Boolean disjunction. Defined on boolean types.

AND, & Boolean conjunction. Defined on boolean types.

@ The gdb “artificial array” operator (see Section 10.1 [Expressions], page 139).

+, - Addition and subtraction on integral and floating-point types, or union and
difference on set types.

Chapter 15: Using gdb with Different Languages 237

* Multiplication on integral and floating-point types, or set intersection on set
types.

/ Division on floating-point types, or symmetric set difference on set types. Same
precedence as *.

DIV, MOD Integer division and remainder. Defined on integral types. Same precedence as
*.

- Negative. Defined on INTEGER and REAL data.

^ Pointer dereferencing. Defined on pointer types.

NOT Boolean negation. Defined on boolean types. Same precedence as ^.

. RECORD field selector. Defined on RECORD data. Same precedence as ^.

[] Array indexing. Defined on ARRAY data. Same precedence as ^.

() Procedure argument list. Defined on PROCEDURE objects. Same precedence as
^.

::, . gdb and Modula-2 scope operators.

Warning: Set expressions and their operations are not yet supported, so gdb
treats the use of the operator IN, or the use of operators +, -, *, /, =, , <>, #,
<=, and >= on sets as an error.

15.4.9.2 Built-in Functions and Procedures

Modula-2 also makes available several built-in procedures and functions. In describing these,
the following metavariables are used:

a represents an ARRAY variable.

c represents a CHAR constant or variable.

i represents a variable or constant of integral type.

m represents an identifier that belongs to a set. Generally used in the same func-
tion with the metavariable s. The type of s should be SET OF mtype (where
mtype is the type of m).

n represents a variable or constant of integral or floating-point type.

r represents a variable or constant of floating-point type.

t represents a type.

v represents a variable.

x represents a variable or constant of one of many types. See the explanation of
the function for details.

All Modula-2 built-in procedures also return a result, described below.

ABS(n) Returns the absolute value of n.

CAP(c) If c is a lower case letter, it returns its upper case equivalent, otherwise it
returns its argument.

238 Debugging with gdb

CHR(i) Returns the character whose ordinal value is i.

DEC(v) Decrements the value in the variable v by one. Returns the new value.

DEC(v,i) Decrements the value in the variable v by i. Returns the new value.

EXCL(m,s)

Removes the element m from the set s. Returns the new set.

FLOAT(i) Returns the floating point equivalent of the integer i.

HIGH(a) Returns the index of the last member of a.

INC(v) Increments the value in the variable v by one. Returns the new value.

INC(v,i) Increments the value in the variable v by i. Returns the new value.

INCL(m,s)

Adds the element m to the set s if it is not already there. Returns the new set.

MAX(t) Returns the maximum value of the type t.

MIN(t) Returns the minimum value of the type t.

ODD(i) Returns boolean TRUE if i is an odd number.

ORD(x) Returns the ordinal value of its argument. For example, the ordinal value of a
character is its ascii value (on machines supporting the ascii character set).
The argument x must be of an ordered type, which include integral, character
and enumerated types.

SIZE(x) Returns the size of its argument. The argument x can be a variable or a type.

TRUNC(r) Returns the integral part of r.

TSIZE(x) Returns the size of its argument. The argument x can be a variable or a type.

VAL(t,i) Returns the member of the type t whose ordinal value is i.

Warning: Sets and their operations are not yet supported, so gdb treats the
use of procedures INCL and EXCL as an error.

15.4.9.3 Constants

gdb allows you to express the constants of Modula-2 in the following ways:

• Integer constants are simply a sequence of digits. When used in an expression, a con-
stant is interpreted to be type-compatible with the rest of the expression. Hexadecimal
integers are specified by a trailing ‘H’, and octal integers by a trailing ‘B’.

• Floating point constants appear as a sequence of digits, followed by a decimal point
and another sequence of digits. An optional exponent can then be specified, in the form
‘E[+|-]nnn’, where ‘[+|-]nnn’ is the desired exponent. All of the digits of the floating
point constant must be valid decimal (base 10) digits.

• Character constants consist of a single character enclosed by a pair of like quotes, either
single (’) or double ("). They may also be expressed by their ordinal value (their ascii
value, usually) followed by a ‘C’.

Chapter 15: Using gdb with Different Languages 239

• String constants consist of a sequence of characters enclosed by a pair of like quotes,
either single (’) or double ("). Escape sequences in the style of C are also allowed.
See Section 15.4.1.2 [C and C++ Constants], page 225, for a brief explanation of escape
sequences.

• Enumerated constants consist of an enumerated identifier.

• Boolean constants consist of the identifiers TRUE and FALSE.

• Pointer constants consist of integral values only.

• Set constants are not yet supported.

15.4.9.4 Modula-2 Types

Currently gdb can print the following data types in Modula-2 syntax: array types, record
types, set types, pointer types, procedure types, enumerated types, subrange types and base
types. You can also print the contents of variables declared using these type. This section
gives a number of simple source code examples together with sample gdb sessions.

The first example contains the following section of code:
VAR

s: SET OF CHAR ;

r: [20..40] ;

and you can request gdb to interrogate the type and value of r and s.
(gdb) print s

{’A’..’C’, ’Z’}

(gdb) ptype s

SET OF CHAR

(gdb) print r

21

(gdb) ptype r

[20..40]

Likewise if your source code declares s as:
VAR

s: SET [’A’..’Z’] ;

then you may query the type of s by:
(gdb) ptype s

type = SET [’A’..’Z’]

Note that at present you cannot interactively manipulate set expressions using the debugger.

The following example shows how you might declare an array in Modula-2 and how you
can interact with gdb to print its type and contents:

VAR

s: ARRAY [-10..10] OF CHAR ;

(gdb) ptype s

ARRAY [-10..10] OF CHAR

Note that the array handling is not yet complete and although the type is printed
correctly, expression handling still assumes that all arrays have a lower bound of zero and
not -10 as in the example above.

Here are some more type related Modula-2 examples:
TYPE

colour = (blue, red, yellow, green) ;

t = [blue..yellow] ;

240 Debugging with gdb

VAR

s: t ;

BEGIN

s := blue ;

The gdb interaction shows how you can query the data type and value of a variable.

(gdb) print s

$1 = blue

(gdb) ptype t

type = [blue..yellow]

In this example a Modula-2 array is declared and its contents displayed. Observe that the
contents are written in the same way as their C counterparts.

VAR

s: ARRAY [1..5] OF CARDINAL ;

BEGIN

s[1] := 1 ;

(gdb) print s

$1 = {1, 0, 0, 0, 0}

(gdb) ptype s

type = ARRAY [1..5] OF CARDINAL

The Modula-2 language interface to gdb also understands pointer types as shown in this
example:

VAR

s: POINTER TO ARRAY [1..5] OF CARDINAL ;

BEGIN

NEW(s) ;

s^[1] := 1 ;

and you can request that gdb describes the type of s.

(gdb) ptype s

type = POINTER TO ARRAY [1..5] OF CARDINAL

gdb handles compound types as we can see in this example. Here we combine array
types, record types, pointer types and subrange types:

TYPE

foo = RECORD

f1: CARDINAL ;

f2: CHAR ;

f3: myarray ;

END ;

myarray = ARRAY myrange OF CARDINAL ;

myrange = [-2..2] ;

VAR

s: POINTER TO ARRAY myrange OF foo ;

and you can ask gdb to describe the type of s as shown below.

(gdb) ptype s

type = POINTER TO ARRAY [-2..2] OF foo = RECORD

f1 : CARDINAL;

f2 : CHAR;

f3 : ARRAY [-2..2] OF CARDINAL;

END

Chapter 15: Using gdb with Different Languages 241

15.4.9.5 Modula-2 Defaults

If type and range checking are set automatically by gdb, they both default to on whenever
the working language changes to Modula-2. This happens regardless of whether you or gdb
selected the working language.

If you allow gdb to set the language automatically, then entering code compiled from a
file whose name ends with .mod sets the working language to Modula-2. See Section 15.1.3
[Having gdb Infer the Source Language], page 220, for further details.

15.4.9.6 Deviations from Standard Modula-2

A few changes have been made to make Modula-2 programs easier to debug. This is done
primarily via loosening its type strictness:

• Unlike in standard Modula-2, pointer constants can be formed by integers. This allows
you to modify pointer variables during debugging. (In standard Modula-2, the actual
address contained in a pointer variable is hidden from you; it can only be modified
through direct assignment to another pointer variable or expression that returned a
pointer.)

• C escape sequences can be used in strings and characters to represent non-printable
characters. gdb prints out strings with these escape sequences embedded. Single non-
printable characters are printed using the ‘CHR(nnn)’ format.

• The assignment operator (:=) returns the value of its right-hand argument.

• All built-in procedures both modify and return their argument.

15.4.9.7 Modula-2 Type and Range Checks

Warning: in this release, gdb does not yet perform type or range checking.

gdb considers two Modula-2 variables type equivalent if:

• They are of types that have been declared equivalent via a TYPE t1 = t2 statement

• They have been declared on the same line. (Note: This is true of the gnu Modula-2
compiler, but it may not be true of other compilers.)

As long as type checking is enabled, any attempt to combine variables whose types are
not equivalent is an error.

Range checking is done on all mathematical operations, assignment, array index bounds,
and all built-in functions and procedures.

15.4.9.8 The Scope Operators :: and .

There are a few subtle differences between the Modula-2 scope operator (.) and the gdb
scope operator (::). The two have similar syntax:

module . id

scope :: id

where scope is the name of a module or a procedure, module the name of a module, and
id is any declared identifier within your program, except another module.

Using the :: operator makes gdb search the scope specified by scope for the identifier
id. If it is not found in the specified scope, then gdb searches all scopes enclosing the one
specified by scope.

242 Debugging with gdb

Using the . operator makes gdb search the current scope for the identifier specified by
id that was imported from the definition module specified by module. With this operator,
it is an error if the identifier id was not imported from definition module module, or if id is
not an identifier in module.

15.4.9.9 gdb and Modula-2

Some gdb commands have little use when debugging Modula-2 programs. Five subcom-
mands of set print and show print apply specifically to C and C++: ‘vtbl’, ‘demangle’,
‘asm-demangle’, ‘object’, and ‘union’. The first four apply to C++, and the last to the C
union type, which has no direct analogue in Modula-2.

The @ operator (see Section 10.1 [Expressions], page 139), while available with any
language, is not useful with Modula-2. Its intent is to aid the debugging of dynamic arrays,
which cannot be created in Modula-2 as they can in C or C++. However, because an address
can be specified by an integral constant, the construct ‘{type}adrexp’ is still useful.

In gdb scripts, the Modula-2 inequality operator # is interpreted as the beginning of a
comment. Use <> instead.

15.4.10 Ada

The extensions made to gdb for Ada only support output from the gnu Ada (GNAT)
compiler. Other Ada compilers are not currently supported, and attempting to debug
executables produced by them is most likely to be difficult.

15.4.10.1 Introduction

The Ada mode of gdb supports a fairly large subset of Ada expression syntax, with some
extensions. The philosophy behind the design of this subset is

• That gdb should provide basic literals and access to operations for arithmetic, deref-
erencing, field selection, indexing, and subprogram calls, leaving more sophisticated
computations to subprograms written into the program (which therefore may be called
from gdb).

• That type safety and strict adherence to Ada language restrictions are not particularly
important to the gdb user.

• That brevity is important to the gdb user.

Thus, for brevity, the debugger acts as if all names declared in user-written packages
are directly visible, even if they are not visible according to Ada rules, thus making it
unnecessary to fully qualify most names with their packages, regardless of context. Where
this causes ambiguity, gdb asks the user’s intent.

The debugger will start in Ada mode if it detects an Ada main program. As for other
languages, it will enter Ada mode when stopped in a program that was translated from an
Ada source file.

While in Ada mode, you may use ‘--’ for comments. This is useful mostly for docu-
menting command files. The standard gdb comment (‘#’) still works at the beginning of a
line in Ada mode, but not in the middle (to allow based literals).

Chapter 15: Using gdb with Different Languages 243

15.4.10.2 Omissions from Ada

Here are the notable omissions from the subset:

• Only a subset of the attributes are supported:

− ’First, ’Last, and ’Length on array objects (not on types and subtypes).

− ’Min and ’Max.

− ’Pos and ’Val.

− ’Tag.

− ’Range on array objects (not subtypes), but only as the right operand of the
membership (in) operator.

− ’Access, ’Unchecked_Access, and ’Unrestricted_Access (a GNAT extension).

− ’Address.

• The names in Characters.Latin_1 are not available.

• Equality tests (‘=’ and ‘/=’) on arrays test for bitwise equality of representations. They
will generally work correctly for strings and arrays whose elements have integer or
enumeration types. They may not work correctly for arrays whose element types have
user-defined equality, for arrays of real values (in particular, IEEE-conformant floating
point, because of negative zeroes and NaNs), and for arrays whose elements contain
unused bits with indeterminate values.

• The other component-by-component array operations (and, or, xor, not, and relational
tests other than equality) are not implemented.

• There is limited support for array and record aggregates. They are permitted only on
the right sides of assignments, as in these examples:

(gdb) set An_Array := (1, 2, 3, 4, 5, 6)

(gdb) set An_Array := (1, others => 0)

(gdb) set An_Array := (0|4 => 1, 1..3 => 2, 5 => 6)

(gdb) set A_2D_Array := ((1, 2, 3), (4, 5, 6), (7, 8, 9))

(gdb) set A_Record := (1, "Peter", True);

(gdb) set A_Record := (Name => "Peter", Id => 1, Alive => True)

Changing a discriminant’s value by assigning an aggregate has an undefined effect if
that discriminant is used within the record. However, you can first modify discriminants
by directly assigning to them (which normally would not be allowed in Ada), and then
performing an aggregate assignment. For example, given a variable A_Rec declared to
have a type such as:

type Rec (Len : Small_Integer := 0) is record

Id : Integer;

Vals : IntArray (1 .. Len);

end record;

you can assign a value with a different size of Vals with two assignments:
(gdb) set A_Rec.Len := 4

(gdb) set A_Rec := (Id => 42, Vals => (1, 2, 3, 4))

As this example also illustrates, gdb is very loose about the usual rules concerning
aggregates. You may leave out some of the components of an array or record aggre-
gate (such as the Len component in the assignment to A_Rec above); they will retain
their original values upon assignment. You may freely use dynamic values as indices in
component associations. You may even use overlapping or redundant component asso-
ciations, although which component values are assigned in such cases is not defined.

244 Debugging with gdb

• Calls to dispatching subprograms are not implemented.

• The overloading algorithm is much more limited (i.e., less selective) than that of real
Ada. It makes only limited use of the context in which a subexpression appears to
resolve its meaning, and it is much looser in its rules for allowing type matches. As a
result, some function calls will be ambiguous, and the user will be asked to choose the
proper resolution.

• The new operator is not implemented.

• Entry calls are not implemented.

• Aside from printing, arithmetic operations on the native VAX floating-point formats
are not supported.

• It is not possible to slice a packed array.

• The names True and False, when not part of a qualified name, are interpreted as if
implicitly prefixed by Standard, regardless of context. Should your program redefine
these names in a package or procedure (at best a dubious practice), you will have to
use fully qualified names to access their new definitions.

• Based real literals are not implemented.

15.4.10.3 Additions to Ada

As it does for other languages, gdbmakes certain generic extensions to Ada (see Section 10.1
[Expressions], page 139):

• If the expression E is a variable residing in memory (typically a local variable or array
element) and N is a positive integer, then E@N displays the values of E and the N -1
adjacent variables following it in memory as an array. In Ada, this operator is generally
not necessary, since its prime use is in displaying parts of an array, and slicing will
usually do this in Ada. However, there are occasional uses when debugging programs
in which certain debugging information has been optimized away.

• B::var means “the variable named var that appears in function or file B.” When B is
a file name, you must typically surround it in single quotes.

• The expression {type} addr means “the variable of type type that appears at address
addr.”

• A name starting with ‘$’ is a convenience variable (see Section 10.12 [Convenience
Vars], page 164) or a machine register (see Section 10.14 [Registers], page 171).

In addition, gdb provides a few other shortcuts and outright additions specific to Ada:

• The assignment statement is allowed as an expression, returning its right-hand operand
as its value. Thus, you may enter

(gdb) set x := y + 3

(gdb) print A(tmp := y + 1)

• The semicolon is allowed as an “operator,” returning as its value the value of its right-
hand operand. This allows, for example, complex conditional breaks:

(gdb) break f

(gdb) condition 1 (report(i); k += 1; A(k) > 100)

• An extension to based literals can be used to specify the exact byte contents of a
floating-point literal. After the base, you can use from zero to two ‘l’ characters,
followed by an ‘f’. The number of ‘l’ characters controls the width of the resulting

Chapter 15: Using gdb with Different Languages 245

real constant: zero means Float is used, one means Long_Float, and two means Long_
Long_Float.

(gdb) print 16f#41b80000#

$1 = 23.0

• Rather than use catenation and symbolic character names to introduce special charac-
ters into strings, one may instead use a special bracket notation, which is also used to
print strings. A sequence of characters of the form ‘["XX"]’ within a string or character
literal denotes the (single) character whose numeric encoding is XX in hexadecimal.
The sequence of characters ‘["""]’ also denotes a single quotation mark in strings. For
example,

"One line.["0a"]Next line.["0a"]"

contains an ASCII newline character (Ada.Characters.Latin_1.LF) after each period.

• The subtype used as a prefix for the attributes ’Pos, ’Min, and ’Max is optional (and
is ignored in any case). For example, it is valid to write

(gdb) print ’max(x, y)

• When printing arrays, gdb uses positional notation when the array has a lower bound
of 1, and uses a modified named notation otherwise. For example, a one-dimensional
array of three integers with a lower bound of 3 might print as

(3 => 10, 17, 1)

That is, in contrast to valid Ada, only the first component has a => clause.

• You may abbreviate attributes in expressions with any unique, multi-character subse-
quence of their names (an exact match gets preference). For example, you may use
a’len, a’gth, or a’lh in place of a’length.

• Since Ada is case-insensitive, the debugger normally maps identifiers you type to lower
case. The GNAT compiler uses upper-case characters for some of its internal identifiers,
which are normally of no interest to users. For the rare occasions when you actually
have to look at them, enclose them in angle brackets to avoid the lower-case mapping.
For example,

(gdb) print <JMPBUF_SAVE>[0]

• Printing an object of class-wide type or dereferencing an access-to-class-wide value will
display all the components of the object’s specific type (as indicated by its run-time
tag). Likewise, component selection on such a value will operate on the specific type
of the object.

15.4.10.4 Overloading support for Ada

The debugger supports limited overloading. Given a subprogram call in which the function
symbol has multiple definitions, it will use the number of actual parameters and some
information about their types to attempt to narrow the set of definitions. It also makes
very limited use of context, preferring procedures to functions in the context of the call

command, and functions to procedures elsewhere.

If, after narrowing, the set of matching definitions still contains more than one definition,
gdb will display a menu to query which one it should use, for instance:

(gdb) print f(1)

Multiple matches for f

[0] cancel

246 Debugging with gdb

[1] foo.f (integer) return boolean at foo.adb:23

[2] foo.f (foo.new_integer) return boolean at foo.adb:28

>

In this case, just select one menu entry either to cancel expression evaluation (type 0

and press RET) or to continue evaluation with a specific instance (type the corresponding
number and press RET).

Here are a couple of commands to customize gdb’s behavior in this case:

set ada print-signatures

Control whether parameter types and return types are displayed in overloads
selection menus. It is on by default. See Section 15.4.10.4 [Overloading support
for Ada], page 245.

show ada print-signatures

Show the current setting for displaying parameter types and return types in
overloads selection menu. See Section 15.4.10.4 [Overloading support for Ada],
page 245.

15.4.10.5 Stopping at the Very Beginning

It is sometimes necessary to debug the program during elaboration, and before reaching the
main procedure. As defined in the Ada Reference Manual, the elaboration code is invoked
from a procedure called adainit. To run your program up to the beginning of elaboration,
simply use the following two commands: tbreak adainit and run.

15.4.10.6 Ada Exceptions

A command is provided to list all Ada exceptions:

info exceptions

info exceptions regexp

The info exceptions command allows you to list all Ada exceptions defined
within the program being debugged, as well as their addresses. With a regular
expression, regexp, as argument, only those exceptions whose names match
regexp are listed.

Below is a small example, showing how the command can be used, first without argu-
ment, and next with a regular expression passed as an argument.

(gdb) info exceptions

All defined Ada exceptions:

constraint_error: 0x613da0

program_error: 0x613d20

storage_error: 0x613ce0

tasking_error: 0x613ca0

const.aint_global_e: 0x613b00

(gdb) info exceptions const.aint

All Ada exceptions matching regular expression "const.aint":

constraint_error: 0x613da0

const.aint_global_e: 0x613b00

It is also possible to ask gdb to stop your program’s execution when an exception is
raised. For more details, see Section 5.1.3 [Set Catchpoints], page 68.

Chapter 15: Using gdb with Different Languages 247

15.4.10.7 Extensions for Ada Tasks

Support for Ada tasks is analogous to that for threads (see Section 4.10 [Threads], page 45).
gdb provides the following task-related commands:

info tasks

This command shows a list of current Ada tasks, as in the following example:

(gdb) info tasks

ID TID P-ID Pri State Name

1 8088000 0 15 Child Activation Wait main_task

2 80a4000 1 15 Accept Statement b

3 809a800 1 15 Child Activation Wait a

* 4 80ae800 3 15 Runnable c

In this listing, the asterisk before the last task indicates it to be the task cur-
rently being inspected.

ID Represents gdb’s internal task number.

TID The Ada task ID.

P-ID The parent’s task ID (gdb’s internal task number).

Pri The base priority of the task.

State Current state of the task.

Unactivated

The task has been created but has not been activated.
It cannot be executing.

Runnable The task is not blocked for any reason known to Ada.
(It may be waiting for a mutex, though.) It is concep-
tually "executing" in normal mode.

Terminated

The task is terminated, in the sense of ARM 9.3 (5).
Any dependents that were waiting on terminate alter-
natives have been awakened and have terminated them-
selves.

Child Activation Wait

The task is waiting for created tasks to complete acti-
vation.

Accept Statement

The task is waiting on an accept or selective wait state-
ment.

Waiting on entry call

The task is waiting on an entry call.

Async Select Wait

The task is waiting to start the abortable part of an
asynchronous select statement.

248 Debugging with gdb

Delay Sleep

The task is waiting on a select statement with only a
delay alternative open.

Child Termination Wait

The task is sleeping having completed a master within
itself, and is waiting for the tasks dependent on that
master to become terminated or waiting on a terminate
Phase.

Wait Child in Term Alt

The task is sleeping waiting for tasks on terminate al-
ternatives to finish terminating.

Accepting RV with taskno

The task is accepting a rendez-vous with the task
taskno.

Name Name of the task in the program.

info task taskno

This command shows detailed information on the specified task, as in the fol-
lowing example:

(gdb) info tasks

ID TID P-ID Pri State Name

1 8077880 0 15 Child Activation Wait main_task

* 2 807c468 1 15 Runnable task_1

(gdb) info task 2

Ada Task: 0x807c468

Name: "task_1"

Thread: 0

LWP: 0x1fac

Parent: 1 ("main_task")

Base Priority: 15

State: Runnable

task This command prints the ID and name of the current task.

(gdb) info tasks

ID TID P-ID Pri State Name

1 8077870 0 15 Child Activation Wait main_task

* 2 807c458 1 15 Runnable some_task

(gdb) task

[Current task is 2 "some_task"]

task taskno

This command is like the thread thread-id command (see Section 4.10
[Threads], page 45). It switches the context of debugging from the current
task to the given task.

(gdb) info tasks

Chapter 15: Using gdb with Different Languages 249

ID TID P-ID Pri State Name

1 8077870 0 15 Child Activation Wait main_task

* 2 807c458 1 15 Runnable some_task

(gdb) task 1

[Switching to task 1 "main_task"]

#0 0x8067726 in pthread_cond_wait ()

(gdb) bt

#0 0x8067726 in pthread_cond_wait ()

#1 0x8056714 in system.os_interface.pthread_cond_wait ()

#2 0x805cb63 in system.task_primitives.operations.sleep ()

#3 0x806153e in system.tasking.stages.activate_tasks ()

#4 0x804aacc in un () at un.adb:5

task apply [task-id-list | all] [flag]... command

The task apply command is the Ada tasking analogue of thread apply (see
Section 4.10 [Threads], page 45). It allows you to apply the named command
to one or more tasks. Specify the tasks that you want affected using a list of
task IDs, or specify all to apply to all tasks.

The flag arguments control what output to produce and how to handle errors
raised when applying command to a task. flag must start with a - directly
followed by one letter in qcs. If several flags are provided, they must be given
individually, such as -c -q.

By default, gdb displays some task information before the output produced by
command, and an error raised during the execution of a command will abort
task apply. The following flags can be used to fine-tune this behavior:

-c The flag -c, which stands for ‘continue’, causes any errors in com-
mand to be displayed, and the execution of task apply then con-
tinues.

-s The flag -s, which stands for ‘silent’, causes any errors or empty
output produced by a command to be silently ignored. That is,
the execution continues, but the task information and errors are
not printed.

-q The flag -q (‘quiet’) disables printing the task information.

Flags -c and -s cannot be used together.

break location task taskno

break location task taskno if ...

These commands are like the break ... thread ... command (see Section 5.5
[Thread Stops], page 92). The location argument specifies source lines, as
described in Section 9.2 [Specify Location], page 122.

Use the qualifier ‘task taskno’ with a breakpoint command to specify that you
only want gdb to stop the program when a particular Ada task reaches this
breakpoint. The taskno is one of the numeric task identifiers assigned by gdb,
shown in the first column of the ‘info tasks’ display.

If you do not specify ‘task taskno’ when you set a breakpoint, the breakpoint
applies to all tasks of your program.

You can use the task qualifier on conditional breakpoints as well; in this case,
place ‘task taskno’ before the breakpoint condition (before the if).

250 Debugging with gdb

For example,

(gdb) info tasks

ID TID P-ID Pri State Name

1 140022020 0 15 Child Activation Wait main_task

2 140045060 1 15 Accept/Select Wait t2

3 140044840 1 15 Runnable t1

* 4 140056040 1 15 Runnable t3

(gdb) b 15 task 2

Breakpoint 5 at 0x120044cb0: file test_task_debug.adb, line 15.

(gdb) cont

Continuing.

task # 1 running

task # 2 running

Breakpoint 5, test_task_debug () at test_task_debug.adb:15

15 flush;

(gdb) info tasks

ID TID P-ID Pri State Name

1 140022020 0 15 Child Activation Wait main_task

* 2 140045060 1 15 Runnable t2

3 140044840 1 15 Runnable t1

4 140056040 1 15 Delay Sleep t3

15.4.10.8 Tasking Support when Debugging Core Files

When inspecting a core file, as opposed to debugging a live program, tasking support may
be limited or even unavailable, depending on the platform being used. For instance, on
x86-linux, the list of tasks is available, but task switching is not supported.

On certain platforms, the debugger needs to perform some memory writes in order to
provide Ada tasking support. When inspecting a core file, this means that the core file must
be opened with read-write privileges, using the command ‘"set write on"’ (see Section 17.6
[Patching], page 273). Under these circumstances, you should make a backup copy of the
core file before inspecting it with gdb.

15.4.10.9 Tasking Support when using the Ravenscar Profile

The Ravenscar Profile is a subset of the Ada tasking features, specifically designed for
systems with safety-critical real-time requirements.

set ravenscar task-switching on

Allows task switching when debugging a program that uses the Ravenscar Pro-
file. This is the default.

set ravenscar task-switching off

Turn off task switching when debugging a program that uses the Ravenscar
Profile. This is mostly intended to disable the code that adds support for the
Ravenscar Profile, in case a bug in either gdb or in the Ravenscar runtime is
preventing gdb from working properly. To be effective, this command should
be run before the program is started.

show ravenscar task-switching

Show whether it is possible to switch from task to task in a program using the
Ravenscar Profile.

Chapter 15: Using gdb with Different Languages 251

When Ravenscar task-switching is enabled, Ravenscar tasks are announced by gdb as if
they were threads:

(gdb) continue

[New Ravenscar Thread 0x2b8f0]

Both Ravenscar tasks and the underlying CPU threads will show up in the output of
info threads:

(gdb) info threads

Id Target Id Frame

1 Thread 1 (CPU#0 [running]) simple () at simple.adb:10

2 Thread 2 (CPU#1 [running]) 0x0000000000003d34 in __gnat_initialize_cpu_devices ()

3 Thread 3 (CPU#2 [running]) 0x0000000000003d28 in __gnat_initialize_cpu_devices ()

4 Thread 4 (CPU#3 [halted]) 0x000000000000c6ec in system.task_primitives.operations.idle ()

* 5 Ravenscar Thread 0x2b8f0 simple () at simple.adb:10

6 Ravenscar Thread 0x2f150 0x000000000000c6ec in system.task_primitives.operations.idle ()

One known limitation of the Ravenscar support in gdb is that it isn’t currently possible
to single-step through the runtime initialization sequence. If you need to debug this code,
you should use set ravenscar task-switching off.

15.4.10.10 Ada Source Character Set

The GNAT compiler supports a number of character sets for source files. See Section
“Character Set Control” in gnat_ugn. gdb includes support for this as well.

set ada source-charset charset

Set the source character set for Ada. The character set must be supported
by GNAT. Because this setting affects the decoding of symbols coming from
the debug information in your program, the setting should be set as early as
possible. The default is ISO-8859-1, because that is also GNAT’s default.

show ada source-charset

Show the current source character set for Ada.

15.4.10.11 Known Peculiarities of Ada Mode

Besides the omissions listed previously (see Section 15.4.10.2 [Omissions from Ada],
page 243), we know of several problems with and limitations of Ada mode in gdb, some
of which will be fixed with planned future releases of the debugger and the GNU Ada
compiler.

• Static constants that the compiler chooses not to materialize as objects in storage are
invisible to the debugger.

• Named parameter associations in function argument lists are ignored (the argument
lists are treated as positional).

• Many useful library packages are currently invisible to the debugger.

• Fixed-point arithmetic, conversions, input, and output is carried out using floating-
point arithmetic, and may give results that only approximate those on the host machine.

• The GNAT compiler never generates the prefix Standard for any of the standard
symbols defined by the Ada language. gdb knows about this: it will strip the prefix
from names when you use it, and will never look for a name you have so qualified
among local symbols, nor match against symbols in other packages or subprograms. If
you have defined entities anywhere in your program other than parameters and local

252 Debugging with gdb

variables whose simple names match names in Standard, GNAT’s lack of qualification
here can cause confusion. When this happens, you can usually resolve the confusion
by qualifying the problematic names with package Standard explicitly.

Older versions of the compiler sometimes generate erroneous debugging information,
resulting in the debugger incorrectly printing the value of affected entities. In some cases,
the debugger is able to work around an issue automatically. In other cases, the debugger is
able to work around the issue, but the work-around has to be specifically enabled.

set ada trust-PAD-over-XVS on

Configure GDB to strictly follow the GNAT encoding when computing the
value of Ada entities, particularly when PAD and PAD___XVS types are involved
(see ada/exp_dbug.ads in the GCC sources for a complete description of the
encoding used by the GNAT compiler). This is the default.

set ada trust-PAD-over-XVS off

This is related to the encoding using by the GNAT compiler. If gdb sometimes
prints the wrong value for certain entities, changing ada trust-PAD-over-XVS

to off activates a work-around which may fix the issue. It is always safe to set
ada trust-PAD-over-XVS to off, but this incurs a slight performance penalty,
so it is recommended to leave this setting to on unless necessary.

Internally, the debugger also relies on the compiler following a number of conventions
known as the ‘GNAT Encoding’, all documented in gcc/ada/exp_dbug.ads in the GCC
sources. This encoding describes how the debugging information should be generated for
certain types. In particular, this convention makes use of descriptive types, which are
artificial types generated purely to help the debugger.

These encodings were defined at a time when the debugging information format used was
not powerful enough to describe some of the more complex types available in Ada. Since
DWARF allows us to express nearly all Ada features, the long-term goal is to slowly replace
these descriptive types by their pure DWARF equivalent. To facilitate that transition, a
new maintenance option is available to force the debugger to ignore those descriptive types.
It allows the user to quickly evaluate how well gdb works without them.

maintenance ada set ignore-descriptive-types [on|off]

Control whether the debugger should ignore descriptive types. The default is
not to ignore descriptives types (off).

maintenance ada show ignore-descriptive-types

Show if descriptive types are ignored by gdb.

15.5 Unsupported Languages

In addition to the other fully-supported programming languages, gdb also provides a
pseudo-language, called minimal. It does not represent a real programming language, but
provides a set of capabilities close to what the C or assembly languages provide. This should
allow most simple operations to be performed while debugging an application that uses a
language currently not supported by gdb.

If the language is set to auto, gdb will automatically select this language if the current
frame corresponds to an unsupported language.

253

16 Examining the Symbol Table

The commands described in this chapter allow you to inquire about the symbols (names
of variables, functions and types) defined in your program. This information is inherent in
the text of your program and does not change as your program executes. gdb finds it in
your program’s symbol table, in the file indicated when you started gdb (see Section 2.1.1
[Choosing Files], page 12), or by one of the file-management commands (see Section 18.1
[Commands to Specify Files], page 279).

Occasionally, you may need to refer to symbols that contain unusual characters, which
gdb ordinarily treats as word delimiters. The most frequent case is in referring to static
variables in other source files (see Section 10.3 [Program Variables], page 140). File names
are recorded in object files as debugging symbols, but gdb would ordinarily parse a typical
file name, like foo.c, as the three words ‘foo’ ‘.’ ‘c’. To allow gdb to recognize ‘foo.c’ as
a single symbol, enclose it in single quotes; for example,

p ’foo.c’::x

looks up the value of x in the scope of the file foo.c.

set case-sensitive on

set case-sensitive off

set case-sensitive auto

Normally, when gdb looks up symbols, it matches their names with case sensi-
tivity determined by the current source language. Occasionally, you may wish
to control that. The command set case-sensitive lets you do that by specify-
ing on for case-sensitive matches or off for case-insensitive ones. If you specify
auto, case sensitivity is reset to the default suitable for the source language.
The default is case-sensitive matches for all languages except for Fortran, for
which the default is case-insensitive matches.

show case-sensitive

This command shows the current setting of case sensitivity for symbols lookups.

set print type methods

set print type methods on

set print type methods off

Normally, when gdb prints a class, it displays any methods declared in that
class. You can control this behavior either by passing the appropriate flag
to ptype, or using set print type methods. Specifying on will cause gdb to
display the methods; this is the default. Specifying off will cause gdb to omit
the methods.

show print type methods

This command shows the current setting of method display when printing
classes.

set print type nested-type-limit limit

set print type nested-type-limit unlimited

Set the limit of displayed nested types that the type printer will show. A limit
of unlimited or -1 will show all nested definitions. By default, the type printer
will not show any nested types defined in classes.

254 Debugging with gdb

show print type nested-type-limit

This command shows the current display limit of nested types when printing
classes.

set print type typedefs

set print type typedefs on

set print type typedefs off

Normally, when gdb prints a class, it displays any typedefs defined in that class.
You can control this behavior either by passing the appropriate flag to ptype,
or using set print type typedefs. Specifying on will cause gdb to display the
typedef definitions; this is the default. Specifying off will cause gdb to omit
the typedef definitions. Note that this controls whether the typedef definition
itself is printed, not whether typedef names are substituted when printing other
types.

show print type typedefs

This command shows the current setting of typedef display when printing
classes.

set print type hex

set print type hex on

set print type hex off

When gdb prints sizes and offsets of struct members, it can use either the
decimal or hexadecimal notation. You can select one or the other either by
passing the appropriate flag to ptype, or by using the set print type hex

command.

show print type hex

This command shows whether the sizes and offsets of struct members are printed
in decimal or hexadecimal notation.

info address symbol

Describe where the data for symbol is stored. For a register variable, this says
which register it is kept in. For a non-register local variable, this prints the
stack-frame offset at which the variable is always stored.

Note the contrast with ‘print &symbol’, which does not work at all for a register
variable, and for a stack local variable prints the exact address of the current
instantiation of the variable.

info symbol addr

Print the name of a symbol which is stored at the address addr. If no symbol
is stored exactly at addr, gdb prints the nearest symbol and an offset from it:

(gdb) info symbol 0x54320

_initialize_vx + 396 in section .text

This is the opposite of the info address command. You can use it to find out
the name of a variable or a function given its address.

For dynamically linked executables, the name of executable or shared library
containing the symbol is also printed:

(gdb) info symbol 0x400225

_start + 5 in section .text of /tmp/a.out

Chapter 16: Examining the Symbol Table 255

(gdb) info symbol 0x2aaaac2811cf

__read_nocancel + 6 in section .text of /usr/lib64/libc.so.6

demangle [-l language] [--] name
Demangle name. If language is provided it is the name of the language to
demangle name in. Otherwise name is demangled in the current language.

The ‘--’ option specifies the end of options, and is useful when name begins
with a dash.

The parameter demangle-style specifies how to interpret the kind of mangling
used. See Section 10.9 [Print Settings], page 151.

whatis[/flags] [arg]

Print the data type of arg, which can be either an expression or a name of a
data type. With no argument, print the data type of $, the last value in the
value history.

If arg is an expression (see Section 10.1 [Expressions], page 139), it is not
actually evaluated, and any side-effecting operations (such as assignments or
function calls) inside it do not take place.

If arg is a variable or an expression, whatis prints its literal type as it is used
in the source code. If the type was defined using a typedef, whatis will not
print the data type underlying the typedef. If the type of the variable or the
expression is a compound data type, such as struct or class, whatis never
prints their fields or methods. It just prints the struct/class name (a.k.a.
its tag). If you want to see the members of such a compound data type, use
ptype.

If arg is a type name that was defined using typedef, whatis unrolls only one
level of that typedef. Unrolling means that whatis will show the underlying
type used in the typedef declaration of arg. However, if that underlying type
is also a typedef, whatis will not unroll it.

For C code, the type names may also have the form ‘class class-name’,
‘struct struct-tag’, ‘union union-tag’ or ‘enum enum-tag’.

flags can be used to modify how the type is displayed. Available flags are:

r Display in “raw” form. Normally, gdb substitutes template pa-
rameters and typedefs defined in a class when printing the class’
members. The /r flag disables this.

m Do not print methods defined in the class.

M Print methods defined in the class. This is the default, but the flag
exists in case you change the default with set print type methods.

t Do not print typedefs defined in the class. Note that this controls
whether the typedef definition itself is printed, not whether typedef
names are substituted when printing other types.

T Print typedefs defined in the class. This is the default, but the
flag exists in case you change the default with set print type

typedefs.

256 Debugging with gdb

o Print the offsets and sizes of fields in a struct, similar to what the
pahole tool does. This option implies the /tm flags.

x Use hexadecimal notation when printing offsets and sizes of fields
in a struct.

d Use decimal notation when printing offsets and sizes of fields in a
struct.

For example, given the following declarations:

struct tuv

{

int a1;

char *a2;

int a3;

};

struct xyz

{

int f1;

char f2;

void *f3;

struct tuv f4;

};

union qwe

{

struct tuv fff1;

struct xyz fff2;

};

struct tyu

{

int a1 : 1;

int a2 : 3;

int a3 : 23;

char a4 : 2;

int64_t a5;

int a6 : 5;

int64_t a7 : 3;

};

Issuing a ptype /o struct tuv command would print:

(gdb) ptype /o struct tuv

/* offset | size */ type = struct tuv {

/* 0 | 4 */ int a1;

/* XXX 4-byte hole */

/* 8 | 8 */ char *a2;

/* 16 | 4 */ int a3;

/* total size (bytes): 24 */

}

Notice the format of the first column of comments. There, you
can find two parts separated by the ‘|’ character: the offset, which
indicates where the field is located inside the struct, in bytes, and
the size of the field. Another interesting line is the marker of a hole

Chapter 16: Examining the Symbol Table 257

in the struct, indicating that it may be possible to pack the struct
and make it use less space by reorganizing its fields.

It is also possible to print offsets inside an union:
(gdb) ptype /o union qwe

/* offset | size */ type = union qwe {

/* 24 */ struct tuv {

/* 0 | 4 */ int a1;

/* XXX 4-byte hole */

/* 8 | 8 */ char *a2;

/* 16 | 4 */ int a3;

/* total size (bytes): 24 */

} fff1;

/* 40 */ struct xyz {

/* 0 | 4 */ int f1;

/* 4 | 1 */ char f2;

/* XXX 3-byte hole */

/* 8 | 8 */ void *f3;

/* 16 | 24 */ struct tuv {

/* 16 | 4 */ int a1;

/* XXX 4-byte hole */

/* 24 | 8 */ char *a2;

/* 32 | 4 */ int a3;

/* total size (bytes): 24 */

} f4;

/* total size (bytes): 40 */

} fff2;

/* total size (bytes): 40 */

}

In this case, since struct tuv and struct xyz occupy the same
space (because we are dealing with an union), the offset is not
printed for them. However, you can still examine the offset of each
of these structures’ fields.

Another useful scenario is printing the offsets of a struct containing
bitfields:

(gdb) ptype /o struct tyu

/* offset | size */ type = struct tyu {

/* 0:31 | 4 */ int a1 : 1;

/* 0:28 | 4 */ int a2 : 3;

/* 0: 5 | 4 */ int a3 : 23;

/* 3: 3 | 1 */ signed char a4 : 2;

/* XXX 3-bit hole */

/* XXX 4-byte hole */

/* 8 | 8 */ int64_t a5;

/* 16: 0 | 4 */ int a6 : 5;

/* 16: 5 | 8 */ int64_t a7 : 3;

/* XXX 7-byte padding */

/* total size (bytes): 24 */

}

Note how the offset information is now extended to also include the
first bit of the bitfield.

258 Debugging with gdb

ptype[/flags] [arg]

ptype accepts the same arguments as whatis, but prints a detailed description
of the type, instead of just the name of the type. See Section 10.1 [Expressions],
page 139.

Contrary to whatis, ptype always unrolls any typedefs in its argument dec-
laration, whether the argument is a variable, expression, or a data type. This
means that ptype of a variable or an expression will not print literally its type
as present in the source code—use whatis for that. typedefs at the pointer
or reference targets are also unrolled. Only typedefs of fields, methods and
inner class typedefs of structs, classes and unions are not unrolled even
with ptype.

For example, for this variable declaration:
typedef double real_t;

struct complex { real_t real; double imag; };

typedef struct complex complex_t;

complex_t var;

real_t *real_pointer_var;

the two commands give this output:
(gdb) whatis var

type = complex_t

(gdb) ptype var

type = struct complex {

real_t real;

double imag;

}

(gdb) whatis complex_t

type = struct complex

(gdb) whatis struct complex

type = struct complex

(gdb) ptype struct complex

type = struct complex {

real_t real;

double imag;

}

(gdb) whatis real_pointer_var

type = real_t *

(gdb) ptype real_pointer_var

type = double *

As with whatis, using ptype without an argument refers to the type of $, the
last value in the value history.

Sometimes, programs use opaque data types or incomplete specifications of
complex data structure. If the debug information included in the program
does not allow gdb to display a full declaration of the data type, it will say
‘<incomplete type>’. For example, given these declarations:

struct foo;

struct foo *fooptr;

but no definition for struct foo itself, gdb will say:
(gdb) ptype foo

$1 = <incomplete type>

“Incomplete type” is C terminology for data types that are not completely
specified.

Chapter 16: Examining the Symbol Table 259

Othertimes, information about a variable’s type is completely absent from the
debug information included in the program. This most often happens when the
program or library where the variable is defined includes no debug information
at all. gdb knows the variable exists from inspecting the linker/loader symbol
table (e.g., the ELF dynamic symbol table), but such symbols do not contain
type information. Inspecting the type of a (global) variable for which gdb has
no type information shows:

(gdb) ptype var

type = <data variable, no debug info>

See Section 10.3 [Variables], page 140, for how to print the values of such
variables.

info types [-q] [regexp]

Print a brief description of all types whose names match the regular expression
regexp (or all types in your program, if you supply no argument). Each complete
typename is matched as though it were a complete line; thus, ‘i type value’
gives information on all types in your program whose names include the string
value, but ‘i type ^value$’ gives information only on types whose complete
name is value.

In programs using different languages, gdb chooses the syntax to print the type
description according to the ‘set language’ value: using ‘set language auto’
(see Section 15.1.3 [Set Language Automatically], page 220) means to use the
language of the type, other values mean to use the manually specified language
(see Section 15.1.2 [Set Language Manually], page 220).

This command differs from ptype in two ways: first, like whatis, it does not
print a detailed description; second, it lists all source files and line numbers
where a type is defined.

The output from ‘into types’ is proceeded with a header line describing what
types are being listed. The optional flag ‘-q’, which stands for ‘quiet’, disables
printing this header information.

info type-printers

Versions of gdb that ship with Python scripting enabled may have “type print-
ers” available. When using ptype or whatis, these printers are consulted
when the name of a type is needed. See Section 23.3.2.8 [Type Printing API],
page 405, for more information on writing type printers.

info type-printers displays all the available type printers.

enable type-printer name...

disable type-printer name...

These commands can be used to enable or disable type printers.

info scope location

List all the variables local to a particular scope. This command accepts a
location argument—a function name, a source line, or an address preceded by a
‘*’, and prints all the variables local to the scope defined by that location. (See
Section 9.2 [Specify Location], page 122, for details about supported forms of
location.) For example:

(gdb) info scope command line handler

260 Debugging with gdb

Scope for command_line_handler:

Symbol rl is an argument at stack/frame offset 8, length 4.

Symbol linebuffer is in static storage at address 0x150a18, length 4.

Symbol linelength is in static storage at address 0x150a1c, length 4.

Symbol p is a local variable in register $esi, length 4.

Symbol p1 is a local variable in register $ebx, length 4.

Symbol nline is a local variable in register $edx, length 4.

Symbol repeat is a local variable at frame offset -8, length 4.

This command is especially useful for determining what data to collect during
a trace experiment, see Section 13.1.6 [Tracepoint Actions], page 200.

info source

Show information about the current source file—that is, the source file for the
function containing the current point of execution:

• the name of the source file, and the directory containing it,

• the directory it was compiled in,

• its length, in lines,

• which programming language it is written in,

• if the debug information provides it, the program that compiled the file
(which may include, e.g., the compiler version and command line argu-
ments),

• whether the executable includes debugging information for that file, and if
so, what format the information is in (e.g., STABS, Dwarf 2, etc.), and

• whether the debugging information includes information about preproces-
sor macros.

info sources [-dirname | -basename] [--] [regexp]
With no options ‘info sources’ prints the names of all source files in your pro-
gram for which there is debugging information. The source files are presented
based on a list of object files (executables and libraries) currently loaded into
gdb. For each object file all of the associated source files are listed.

Each source file will only be printed once for each object file, but a single source
file can be repeated in the output if it is part of multiple object files.

If the optional regexp is provided, then only source files that match the regular
expression will be printed. The matching is case-sensitive, except on operating
systems that have case-insensitive filesystem (e.g., MS-Windows). ‘--’ can be
used before regexp to prevent gdb interpreting regexp as a command option
(e.g. if regexp starts with ‘-’).

By default, the regexp is used to match anywhere in the filename. If -dirname,
only files having a dirname matching regexp are shown. If -basename, only files
having a basename matching regexp are shown.

It is possible that an object file may be printed in the list with no associated
source files. This can happen when either no source files match regexp, or, the
object file was compiled without debug information and so gdb is unable to
find any source file names.

Chapter 16: Examining the Symbol Table 261

info functions [-q] [-n]

Print the names and data types of all defined functions. Similarly to ‘info
types’, this command groups its output by source files and annotates each
function definition with its source line number.

In programs using different languages, gdb chooses the syntax to print the func-
tion name and type according to the ‘set language’ value: using ‘set language

auto’ (see Section 15.1.3 [Set Language Automatically], page 220) means to use
the language of the function, other values mean to use the manually specified
language (see Section 15.1.2 [Set Language Manually], page 220).

The ‘-n’ flag excludes non-debugging symbols from the results. A
non-debugging symbol is a symbol that comes from the executable’s symbol
table, not from the debug information (for example, DWARF) associated with
the executable.

The optional flag ‘-q’, which stands for ‘quiet’, disables printing header infor-
mation and messages explaining why no functions have been printed.

info functions [-q] [-n] [-t type_regexp] [regexp]

Like ‘info functions’, but only print the names and data types of the functions
selected with the provided regexp(s).

If regexp is provided, print only the functions whose names match the regu-
lar expression regexp. Thus, ‘info fun step’ finds all functions whose names
include step; ‘info fun ^step’ finds those whose names start with step. If
a function name contains characters that conflict with the regular expression
language (e.g. ‘operator*()’), they may be quoted with a backslash.

If type regexp is provided, print only the functions whose types, as printed by
the whatis command, match the regular expression type regexp. If type regexp
contains space(s), it should be enclosed in quote characters. If needed, use back-
slash to escape the meaning of special characters or quotes. Thus, ‘info fun -t

’^int (’’ finds the functions that return an integer; ‘info fun -t ’(.*int.*’’
finds the functions that have an argument type containing int; ‘info fun -t

’^int (’ ^step’ finds the functions whose names start with step and that
return int.

If both regexp and type regexp are provided, a function is printed only if its
name matches regexp and its type matches type regexp.

info variables [-q] [-n]

Print the names and data types of all variables that are defined outside of
functions (i.e. excluding local variables). The printed variables are grouped by
source files and annotated with their respective source line numbers.

In programs using different languages, gdb chooses the syntax to print the
variable name and type according to the ‘set language’ value: using ‘set
language auto’ (see Section 15.1.3 [Set Language Automatically], page 220)
means to use the language of the variable, other values mean to use the manually
specified language (see Section 15.1.2 [Set Language Manually], page 220).

The ‘-n’ flag excludes non-debugging symbols from the results.

The optional flag ‘-q’, which stands for ‘quiet’, disables printing header infor-
mation and messages explaining why no variables have been printed.

262 Debugging with gdb

info variables [-q] [-n] [-t type_regexp] [regexp]

Like info variables, but only print the variables selected with the provided
regexp(s).

If regexp is provided, print only the variables whose names match the regular
expression regexp.

If type regexp is provided, print only the variables whose types, as printed by
the whatis command, match the regular expression type regexp. If type regexp
contains space(s), it should be enclosed in quote characters. If needed, use
backslash to escape the meaning of special characters or quotes.

If both regexp and type regexp are provided, an argument is printed only if its
name matches regexp and its type matches type regexp.

info modules [-q] [regexp]
List all Fortran modules in the program, or all modules matching the optional
regular expression regexp.

The optional flag ‘-q’, which stands for ‘quiet’, disables printing header infor-
mation and messages explaining why no modules have been printed.

info module functions [-q] [-m module-regexp] [-t type-regexp] [regexp]
info module variables [-q] [-m module-regexp] [-t type-regexp] [regexp]

List all functions or variables within all Fortran modules. The set of functions
or variables listed can be limited by providing some or all of the optional regular
expressions. If module-regexp is provided, then only Fortran modules matching
module-regexp will be searched. Only functions or variables whose type matches
the optional regular expression type-regexp will be listed. And only functions
or variables whose name matches the optional regular expression regexp will be
listed.

The optional flag ‘-q’, which stands for ‘quiet’, disables printing header in-
formation and messages explaining why no functions or variables have been
printed.

info classes

info classes regexp

Display all Objective-C classes in your program, or (with the regexp argument)
all those matching a particular regular expression.

info selectors

info selectors regexp

Display all Objective-C selectors in your program, or (with the regexp argu-
ment) all those matching a particular regular expression.

set opaque-type-resolution on

Tell gdb to resolve opaque types. An opaque type is a type declared as a
pointer to a struct, class, or union—for example, struct MyType *—that
is used in one source file although the full declaration of struct MyType is in
another source file. The default is on.

A change in the setting of this subcommand will not take effect until the next
time symbols for a file are loaded.

Chapter 16: Examining the Symbol Table 263

set opaque-type-resolution off

Tell gdb not to resolve opaque types. In this case, the type is printed as follows:

{<no data fields>}

show opaque-type-resolution

Show whether opaque types are resolved or not.

set print symbol-loading

set print symbol-loading full

set print symbol-loading brief

set print symbol-loading off

The set print symbol-loading command allows you to control the printing of
messages when gdb loads symbol information. By default a message is printed
for the executable and one for each shared library, and normally this is what you
want. However, when debugging apps with large numbers of shared libraries
these messages can be annoying. When set to brief a message is printed for
each executable, and when gdb loads a collection of shared libraries at once it
will only print one message regardless of the number of shared libraries. When
set to off no messages are printed.

show print symbol-loading

Show whether messages will be printed when a gdb command entered from the
keyboard causes symbol information to be loaded.

maint print symbols [-pc address] [filename]
maint print symbols [-objfile objfile] [-source source] [--] [filename]
maint print psymbols [-objfile objfile] [-pc address] [--] [filename]
maint print psymbols [-objfile objfile] [-source source] [--] [filename]
maint print msymbols [-objfile objfile] [--] [filename]

Write a dump of debugging symbol data into the file filename or the terminal if
filename is unspecified. If -objfile objfile is specified, only dump symbols
for that objfile. If -pc address is specified, only dump symbols for the file with
code at that address. Note that address may be a symbol like main. If -source
source is specified, only dump symbols for that source file.

These commands are used to debug the gdb symbol-reading code. These com-
mands do not modify internal gdb state, therefore ‘maint print symbols’ will
only print symbols for already expanded symbol tables. You can use the com-
mand info sources to find out which files these are. If you use ‘maint print

psymbols’ instead, the dump shows information about symbols that gdb only
knows partially—that is, symbols defined in files that gdb has skimmed, but
not yet read completely. Finally, ‘maint print msymbols’ just dumps “minimal
symbols”, e.g., “ELF symbols”.

See Section 18.1 [Commands to Specify Files], page 279, for a discussion of how
gdb reads symbols (in the description of symbol-file).

maint info symtabs [regexp]
maint info psymtabs [regexp]

List the struct symtab or struct partial_symtab structures whose names
match regexp. If regexp is not given, list them all. The output includes expres-

264 Debugging with gdb

sions which you can copy into a gdb debugging this one to examine a particular
structure in more detail. For example:

(gdb) maint info psymtabs dwarf2read

{ objfile /home/gnu/build/gdb/gdb

((struct objfile *) 0x82e69d0)

{ psymtab /home/gnu/src/gdb/dwarf2read.c

((struct partial_symtab *) 0x8474b10)

readin no

fullname (null)

text addresses 0x814d3c8 -- 0x8158074

globals (* (struct partial_symbol **) 0x8507a08 @ 9)

statics (* (struct partial_symbol **) 0x40e95b78 @ 2882)

dependencies (none)

}

}

(gdb) maint info symtabs

(gdb)

We see that there is one partial symbol table whose filename contains the string
‘dwarf2read’, belonging to the ‘gdb’ executable; and we see that gdb has not
read in any symtabs yet at all. If we set a breakpoint on a function, that will
cause gdb to read the symtab for the compilation unit containing that function:

(gdb) break dwarf2_psymtab_to_symtab

Breakpoint 1 at 0x814e5da: file /home/gnu/src/gdb/dwarf2read.c,

line 1574.

(gdb) maint info symtabs

{ objfile /home/gnu/build/gdb/gdb

((struct objfile *) 0x82e69d0)

{ symtab /home/gnu/src/gdb/dwarf2read.c

((struct symtab *) 0x86c1f38)

dirname (null)

fullname (null)

blockvector ((struct blockvector *) 0x86c1bd0) (primary)

linetable ((struct linetable *) 0x8370fa0)

debugformat DWARF 2

}

}

(gdb)

maint info line-table [regexp]
List the struct linetable from all struct symtab instances whose name
matches regexp. If regexp is not given, list the struct linetable from all
struct symtab.

maint set symbol-cache-size size

Set the size of the symbol cache to size. The default size is intended to be
good enough for debugging most applications. This option exists to allow for
experimenting with different sizes.

maint show symbol-cache-size

Show the size of the symbol cache.

maint print symbol-cache

Print the contents of the symbol cache. This is useful when debugging symbol
cache issues.

265

maint print symbol-cache-statistics

Print symbol cache usage statistics. This helps determine how well the cache
is being utilized.

maint flush symbol-cache

maint flush-symbol-cache

Flush the contents of the symbol cache, all entries are removed. This command
is useful when debugging the symbol cache. It is also useful when collecting
performance data. The command maint flush-symbol-cache is deprecated in
favor of maint flush symbol-cache..

267

17 Altering Execution

Once you think you have found an error in your program, you might want to find out for
certain whether correcting the apparent error would lead to correct results in the rest of the
run. You can find the answer by experiment, using the gdb features for altering execution
of the program.

For example, you can store new values into variables or memory locations, give your pro-
gram a signal, restart it at a different address, or even return prematurely from a function.

17.1 Assignment to Variables

To alter the value of a variable, evaluate an assignment expression. See Section 10.1 [Ex-
pressions], page 139. For example,

print x=4

stores the value 4 into the variable x, and then prints the value of the assignment expression
(which is 4). See Chapter 15 [Using gdb with Different Languages], page 219, for more
information on operators in supported languages.

If you are not interested in seeing the value of the assignment, use the set command
instead of the print command. set is really the same as print except that the expression’s
value is not printed and is not put in the value history (see Section 10.11 [Value History],
page 163). The expression is evaluated only for its effects.

If the beginning of the argument string of the set command appears identical to a
set subcommand, use the set variable command instead of just set. This command is
identical to set except for its lack of subcommands. For example, if your program has a
variable width, you get an error if you try to set a new value with just ‘set width=13’,
because gdb has the command set width:

(gdb) whatis width

type = double

(gdb) p width

$4 = 13

(gdb) set width=47

Invalid syntax in expression.

The invalid expression, of course, is ‘=47’. In order to actually set the program’s variable
width, use

(gdb) set var width=47

Because the set command has many subcommands that can conflict with the names of
program variables, it is a good idea to use the set variable command instead of just set.
For example, if your program has a variable g, you run into problems if you try to set a
new value with just ‘set g=4’, because gdb has the command set gnutarget, abbreviated
set g:

268 Debugging with gdb

(gdb) whatis g

type = double

(gdb) p g

$1 = 1

(gdb) set g=4

(gdb) p g

$2 = 1

(gdb) r

The program being debugged has been started already.

Start it from the beginning? (y or n) y

Starting program: /home/smith/cc_progs/a.out

"/home/smith/cc_progs/a.out": can’t open to read symbols:

Invalid bfd target.

(gdb) show g

The current BFD target is "=4".

The program variable g did not change, and you silently set the gnutarget to an invalid
value. In order to set the variable g, use

(gdb) set var g=4

gdb allows more implicit conversions in assignments than C; you can freely store an
integer value into a pointer variable or vice versa, and you can convert any structure to any
other structure that is the same length or shorter.

To store values into arbitrary places in memory, use the ‘{...}’ construct to generate a
value of specified type at a specified address (see Section 10.1 [Expressions], page 139). For
example, {int}0x83040 refers to memory location 0x83040 as an integer (which implies a
certain size and representation in memory), and

set {int}0x83040 = 4

stores the value 4 into that memory location.

17.2 Continuing at a Different Address

Ordinarily, when you continue your program, you do so at the place where it stopped, with
the continue command. You can instead continue at an address of your own choosing,
with the following commands:

jump location

j location

Resume execution at location. Execution stops again immediately if there is a
breakpoint there. See Section 9.2 [Specify Location], page 122, for a description
of the different forms of location. It is common practice to use the tbreak

command in conjunction with jump. See Section 5.1.1 [Setting Breakpoints],
page 58.

The jump command does not change the current stack frame, or the stack
pointer, or the contents of any memory location or any register other than the
program counter. If location is in a different function from the one currently
executing, the results may be bizarre if the two functions expect different pat-
terns of arguments or of local variables. For this reason, the jump command
requests confirmation if the specified line is not in the function currently exe-
cuting. However, even bizarre results are predictable if you are well acquainted
with the machine-language code of your program.

Chapter 17: Altering Execution 269

On many systems, you can get much the same effect as the jump command by storing
a new value into the register $pc. The difference is that this does not start your program
running; it only changes the address of where it will run when you continue. For example,

set $pc = 0x485

makes the next continue command or stepping command execute at address 0x485, rather
than at the address where your program stopped. See Section 5.2 [Continuing and Stepping],
page 82.

The most common occasion to use the jump command is to back up—perhaps with more
breakpoints set—over a portion of a program that has already executed, in order to examine
its execution in more detail.

17.3 Giving your Program a Signal

signal signal

Resume execution where your program is stopped, but immediately give it
the signal signal. The signal can be the name or the number of a signal.
For example, on many systems signal 2 and signal SIGINT are both ways
of sending an interrupt signal.

Alternatively, if signal is zero, continue execution without giving a signal. This
is useful when your program stopped on account of a signal and would ordinarily
see the signal when resumed with the continue command; ‘signal 0’ causes it
to resume without a signal.

Note: When resuming a multi-threaded program, signal is delivered to the
currently selected thread, not the thread that last reported a stop. This includes
the situation where a thread was stopped due to a signal. So if you want to
continue execution suppressing the signal that stopped a thread, you should
select that same thread before issuing the ‘signal 0’ command. If you issue
the ‘signal 0’ command with another thread as the selected one, gdb detects
that and asks for confirmation.

Invoking the signal command is not the same as invoking the kill utility from
the shell. Sending a signal with kill causes gdb to decide what to do with
the signal depending on the signal handling tables (see Section 5.4 [Signals],
page 88). The signal command passes the signal directly to your program.

signal does not repeat when you press RET a second time after executing the
command.

queue-signal signal

Queue signal to be delivered immediately to the current thread when execution
of the thread resumes. The signal can be the name or the number of a signal.
For example, on many systems signal 2 and signal SIGINT are both ways of
sending an interrupt signal. The handling of the signal must be set to pass
the signal to the program, otherwise gdb will report an error. You can control
the handling of signals from gdb with the handle command (see Section 5.4
[Signals], page 88).

Alternatively, if signal is zero, any currently queued signal for the current thread
is discarded and when execution resumes no signal will be delivered. This is

270 Debugging with gdb

useful when your program stopped on account of a signal and would ordinarily
see the signal when resumed with the continue command.

This command differs from the signal command in that the signal is just
queued, execution is not resumed. And queue-signal cannot be used to pass
a signal whose handling state has been set to nopass (see Section 5.4 [Signals],
page 88).

See [stepping into signal handlers], page 90, for information on how stepping commands
behave when the thread has a signal queued.

17.4 Returning from a Function

return

return expression

You can cancel execution of a function call with the return command. If you
give an expression argument, its value is used as the function’s return value.

When you use return, gdb discards the selected stack frame (and all frames within it).
You can think of this as making the discarded frame return prematurely. If you wish to
specify a value to be returned, give that value as the argument to return.

This pops the selected stack frame (see Section 8.3 [Selecting a Frame], page 113), and
any other frames inside of it, leaving its caller as the innermost remaining frame. That
frame becomes selected. The specified value is stored in the registers used for returning
values of functions.

The return command does not resume execution; it leaves the program stopped in the
state that would exist if the function had just returned. In contrast, the finish command
(see Section 5.2 [Continuing and Stepping], page 82) resumes execution until the selected
stack frame returns naturally.

gdb needs to know how the expression argument should be set for the inferior. The
concrete registers assignment depends on the OS ABI and the type being returned by the
selected stack frame. For example it is common for OS ABI to return floating point values
in FPU registers while integer values in CPU registers. Still some ABIs return even floating
point values in CPU registers. Larger integer widths (such as long long int) also have
specific placement rules. gdb already knows the OS ABI from its current target so it needs
to find out also the type being returned to make the assignment into the right register(s).

Normally, the selected stack frame has debug info. gdb will always use the debug info
instead of the implicit type of expression when the debug info is available. For example,
if you type return -1, and the function in the current stack frame is declared to return a
long long int, gdb transparently converts the implicit int value of -1 into a long long

int:

Breakpoint 1, func () at gdb.base/return-nodebug.c:29

29 return 31;

(gdb) return -1

Make func return now? (y or n) y

#0 0x004004f6 in main () at gdb.base/return-nodebug.c:43

43 printf ("result=%lld\n", func ());

(gdb)

Chapter 17: Altering Execution 271

However, if the selected stack frame does not have a debug info, e.g., if the function was
compiled without debug info, gdb has to find out the type to return from user. Specifying
a different type by mistake may set the value in different inferior registers than the caller
code expects. For example, typing return -1 with its implicit type int would set only
a part of a long long int result for a debug info less function (on 32-bit architectures).
Therefore the user is required to specify the return type by an appropriate cast explicitly:

Breakpoint 2, 0x0040050b in func ()

(gdb) return -1

Return value type not available for selected stack frame.

Please use an explicit cast of the value to return.

(gdb) return (long long int) -1

Make selected stack frame return now? (y or n) y

#0 0x00400526 in main ()

(gdb)

17.5 Calling Program Functions

print expr

Evaluate the expression expr and display the resulting value. The expression
may include calls to functions in the program being debugged.

call expr Evaluate the expression expr without displaying void returned values.

You can use this variant of the print command if you want to execute a function
from your program that does not return anything (a.k.a. a void function), but
without cluttering the output with void returned values that gdb will otherwise
print. If the result is not void, it is printed and saved in the value history.

It is possible for the function you call via the print or call command to generate a
signal (e.g., if there’s a bug in the function, or if you passed it incorrect arguments). What
happens in that case is controlled by the set unwindonsignal command.

Similarly, with a C++ program it is possible for the function you call via the print or
call command to generate an exception that is not handled due to the constraints of the
dummy frame. In this case, any exception that is raised in the frame, but has an out-of-frame
exception handler will not be found. GDB builds a dummy-frame for the inferior function
call, and the unwinder cannot seek for exception handlers outside of this dummy-frame.
What happens in that case is controlled by the set unwind-on-terminating-exception

command.

set unwindonsignal

Set unwinding of the stack if a signal is received while in a function that gdb
called in the program being debugged. If set to on, gdb unwinds the stack it
created for the call and restores the context to what it was before the call. If
set to off (the default), gdb stops in the frame where the signal was received.

show unwindonsignal

Show the current setting of stack unwinding in the functions called by gdb.

set unwind-on-terminating-exception

Set unwinding of the stack if a C++ exception is raised, but left unhandled while
in a function that gdb called in the program being debugged. If set to on (the
default), gdb unwinds the stack it created for the call and restores the context

272 Debugging with gdb

to what it was before the call. If set to off, gdb the exception is delivered to
the default C++ exception handler and the inferior terminated.

show unwind-on-terminating-exception

Show the current setting of stack unwinding in the functions called by gdb.

set may-call-functions

Set permission to call functions in the program. This controls whether gdb will
attempt to call functions in the program, such as with expressions in the print
command. It defaults to on.

To call a function in the program, gdb has to temporarily modify the state
of the inferior. This has potentially undesired side effects. Also, having gdb
call nested functions is likely to be erroneous and may even crash the program
being debugged. You can avoid such hazards by forbidding gdb from calling
functions in the program being debugged. If calling functions in the program
is forbidden, GDB will throw an error when a command (such as printing an
expression) starts a function call in the program.

show may-call-functions

Show permission to call functions in the program.

17.5.1 Calling functions with no debug info

Sometimes, a function you wish to call is missing debug information. In such case, gdb
does not know the type of the function, including the types of the function’s parameters.
To avoid calling the inferior function incorrectly, which could result in the called function
functioning erroneously and even crash, gdb refuses to call the function unless you tell it
the type of the function.

For prototyped (i.e. ANSI/ISO style) functions, there are two ways to do that. The
simplest is to cast the call to the function’s declared return type. For example:

(gdb) p getenv ("PATH")

’getenv’ has unknown return type; cast the call to its declared return type

(gdb) p (char *) getenv ("PATH")

$1 = 0x7fffffffe7ba "/usr/local/bin:/"...

Casting the return type of a no-debug function is equivalent to casting the function
to a pointer to a prototyped function that has a prototype that matches the types of the
passed-in arguments, and calling that. I.e., the call above is equivalent to:

(gdb) p ((char * (*) (const char *)) getenv) ("PATH")

and given this prototyped C or C++ function with float parameters:
float multiply (float v1, float v2) { return v1 * v2; }

these calls are equivalent:
(gdb) p (float) multiply (2.0f, 3.0f)

(gdb) p ((float (*) (float, float)) multiply) (2.0f, 3.0f)

If the function you wish to call is declared as unprototyped (i.e. old K&R style), you
must use the cast-to-function-pointer syntax, so that gdb knows that it needs to apply
default argument promotions (promote float arguments to double). See Section 22.7 [ABI],
page 356. For example, given this unprototyped C function with float parameters, and no
debug info:

float

Chapter 17: Altering Execution 273

multiply_noproto (v1, v2)

float v1, v2;

{

return v1 * v2;

}

you call it like this:
(gdb) p ((float (*) ()) multiply_noproto) (2.0f, 3.0f)

17.6 Patching Programs

By default, gdb opens the file containing your program’s executable code (or the corefile)
read-only. This prevents accidental alterations to machine code; but it also prevents you
from intentionally patching your program’s binary.

If you’d like to be able to patch the binary, you can specify that explicitly with the set
write command. For example, you might want to turn on internal debugging flags, or even
to make emergency repairs.

set write on

set write off

If you specify ‘set write on’, gdb opens executable and core files for both
reading and writing; if you specify set write off (the default), gdb opens
them read-only.

If you have already loaded a file, you must load it again (using the exec-file

or core-file command) after changing set write, for your new setting to take
effect.

show write

Display whether executable files and core files are opened for writing as well as
reading.

17.7 Compiling and injecting code in gdb

gdb supports on-demand compilation and code injection into programs running under gdb.
GCC 5.0 or higher built with libcc1.so must be installed for this functionality to be
enabled. This functionality is implemented with the following commands.

compile code source-code

compile code -raw -- source-code

Compile source-code with the compiler language found as the current language
in gdb (see Chapter 15 [Languages], page 219). If compilation and injection
is not supported with the current language specified in gdb, or the compiler
does not support this feature, an error message will be printed. If source-code
compiles and links successfully, gdb will load the object-code emitted, and
execute it within the context of the currently selected inferior. It is important
to note that the compiled code is executed immediately. After execution, the
compiled code is removed from gdb and any new types or variables you have
defined will be deleted.

The command allows you to specify source-code in two ways. The simplest
method is to provide a single line of code to the command. E.g.:

compile code printf ("hello world\n");

274 Debugging with gdb

If you specify options on the command line as well as source code, they may
conflict. The ‘--’ delimiter can be used to separate options from actual source
code. E.g.:

compile code -r -- printf ("hello world\n");

Alternatively you can enter source code as multiple lines of text. To enter
this mode, invoke the ‘compile code’ command without any text following the
command. This will start the multiple-line editor and allow you to type as
many lines of source code as required. When you have completed typing, enter
‘end’ on its own line to exit the editor.

compile code

>printf ("hello\n");

>printf ("world\n");

>end

Specifying ‘-raw’, prohibits gdb from wrapping the provided source-code in
a callable scope. In this case, you must specify the entry point of the code
by defining a function named _gdb_expr_. The ‘-raw’ code cannot access
variables of the inferior. Using ‘-raw’ option may be needed for example when
source-code requires ‘#include’ lines which may conflict with inferior symbols
otherwise.

compile file filename

compile file -raw filename

Like compile code, but take the source code from filename.

compile file /home/user/example.c

compile print [[options] --] expr

compile print [[options] --] /f expr

Compile and execute expr with the compiler language found as the current
language in gdb (see Chapter 15 [Languages], page 219). By default the value
of expr is printed in a format appropriate to its data type; you can choose a
different format by specifying ‘/f’, where f is a letter specifying the format;
see Section 10.5 [Output Formats], page 144. The compile print command
accepts the same options as the print command; see [print options], page 135.

compile print [[options] --]

compile print [[options] --] /f

Alternatively you can enter the expression (source code producing it) as multiple
lines of text. To enter this mode, invoke the ‘compile print’ command without
any text following the command. This will start the multiple-line editor.

The process of compiling and injecting the code can be inspected using:

set debug compile

Turns on or off display of gdb process of compiling and injecting the code. The
default is off.

show debug compile

Displays the current state of displaying gdb process of compiling and injecting
the code.

Chapter 17: Altering Execution 275

set debug compile-cplus-types

Turns on or off the display of C++ type conversion debugging information. The
default is off.

show debug compile-cplus-types

Displays the current state of displaying debugging information for C++ type
conversion.

17.7.1 Compilation options for the compile command

gdb needs to specify the right compilation options for the code to be injected, in part to
make its ABI compatible with the inferior and in part to make the injected code compatible
with gdb’s injecting process.

The options used, in increasing precedence:

target architecture and OS options (gdbarch)
These options depend on target processor type and target operating system,
usually they specify at least 32-bit (-m32) or 64-bit (-m64) compilation option.

compilation options recorded in the target
gcc (since version 4.7) stores the options used for compilation into DW_AT_

producer part of DWARF debugging information according to the gcc option
-grecord-gcc-switches. One has to explicitly specify -g during inferior com-
pilation otherwise gcc produces no DWARF. This feature is only relevant for
platforms where -g produces DWARF by default, otherwise one may try to
enforce DWARF by using -gdwarf-4.

compilation options set by set compile-args

You can override compilation options using the following command:

set compile-args

Set compilation options used for compiling and injecting code with the compile
commands. These options override any conflicting ones from the target archi-
tecture and/or options stored during inferior compilation.

show compile-args

Displays the current state of compilation options override. This does not
show all the options actually used during compilation, use [set debug compile],
page 274, for that.

17.7.2 Caveats when using the compile command

There are a few caveats to keep in mind when using the compile command. As the caveats
are different per language, the table below highlights specific issues on a per language basis.

C code examples and caveats
When the language in gdb is set to ‘C’, the compiler will attempt to compile
the source code with a ‘C’ compiler. The source code provided to the compile

command will have much the same access to variables and types as it normally
would if it were part of the program currently being debugged in gdb.

276 Debugging with gdb

Below is a sample program that forms the basis of the examples that follow.
This program has been compiled and loaded into gdb, much like any other
normal debugging session.

void function1 (void)

{

int i = 42;

printf ("function 1\n");

}

void function2 (void)

{

int j = 12;

function1 ();

}

int main(void)

{

int k = 6;

int *p;

function2 ();

return 0;

}

For the purposes of the examples in this section, the program above has been
compiled, loaded into gdb, stopped at the function main, and gdb is awaiting
input from the user.

To access variables and types for any program in gdb, the program must be
compiled and packaged with debug information. The compile command is not
an exception to this rule. Without debug information, you can still use the
compile command, but you will be very limited in what variables and types
you can access.

So with that in mind, the example above has been compiled with debug infor-
mation enabled. The compile command will have access to all variables and
types (except those that may have been optimized out). Currently, as gdb has
stopped the program in the main function, the compile command would have
access to the variable k. You could invoke the compile command and type some
source code to set the value of k. You can also read it, or do anything with
that variable you would normally do in C. Be aware that changes to inferior
variables in the compile command are persistent. In the following example:

compile code k = 3;

the variable k is now 3. It will retain that value until something else in the
example program changes it, or another compile command changes it.

Normal scope and access rules apply to source code compiled and injected by
the compile command. In the example, the variables j and k are not accessible
yet, because the program is currently stopped in the main function, where these
variables are not in scope. Therefore, the following command

compile code j = 3;

will result in a compilation error message.

Chapter 17: Altering Execution 277

Once the program is continued, execution will bring these variables in scope,
and they will become accessible; then the code you specify via the compile

command will be able to access them.

You can create variables and types with the compile command as part of
your source code. Variables and types that are created as part of the compile

command are not visible to the rest of the program for the duration of its run.
This example is valid:

compile code int ff = 5; printf ("ff is %d\n", ff);

However, if you were to type the following into gdb after that command has
completed:

compile code printf ("ff is %d\n’’, ff);

a compiler error would be raised as the variable ff no longer exists. Object
code generated and injected by the compile command is removed when its
execution ends. Caution is advised when assigning to program variables values
of variables created by the code submitted to the compile command. This
example is valid:

compile code int ff = 5; k = ff;

The value of the variable ff is assigned to k. The variable k does not require the
existence of ff to maintain the value it has been assigned. However, pointers
require particular care in assignment. If the source code compiled with the
compile command changed the address of a pointer in the example program,
perhaps to a variable created in the compile command, that pointer would
point to an invalid location when the command exits. The following example
would likely cause issues with your debugged program:

compile code int ff = 5; p = &ff;

In this example, p would point to ff when the compile command is executing
the source code provided to it. However, as variables in the (example) program
persist with their assigned values, the variable p would point to an invalid
location when the command exists. A general rule should be followed in that
you should either assign NULL to any assigned pointers, or restore a valid location
to the pointer before the command exits.

Similar caution must be exercised with any structs, unions, and typedefs defined
in compile command. Types defined in the compile command will no longer
be available in the next compile command. Therefore, if you cast a variable
to a type defined in the compile command, care must be taken to ensure that
any future need to resolve the type can be achieved.

(gdb) compile code static struct a { int a; } v = { 42 }; argv = &v;

(gdb) compile code printf ("%d\n", ((struct a *) argv)->a);

gdb command line:1:36: error: dereferencing pointer to incomplete type ‘struct a’

Compilation failed.

(gdb) compile code struct a { int a; }; printf ("%d\n", ((struct a *) argv)-

>a);

42

Variables that have been optimized away by the compiler are not accessible to
the code submitted to the compile command. Access to those variables will
generate a compiler error which gdb will print to the console.

278 Debugging with gdb

17.7.3 Compiler search for the compile command

gdb needs to find gcc for the inferior being debugged which may not be obvious for remote
targets of different architecture than where gdb is running. Environment variable PATH on
gdb host is searched for gcc binary matching the target architecture and operating system.
This search can be overriden by set compile-gcc gdb command below. PATH is taken from
shell that executed gdb, it is not the value set by gdb command set environment). See
Section 4.4 [Environment], page 36.

Specifically PATH is searched for binaries matching regular expression arch(-[^-]*)?-

os-gcc according to the inferior target being debugged. arch is processor name — multiarch
is supported, so for example both i386 and x86_64 targets look for pattern (x86_64|i.86)

and both s390 and s390x targets look for pattern s390x?. os is currently supported only
for pattern linux(-gnu)?.

On Posix hosts the compiler driver gdb needs to find also shared library libcc1.so from
the compiler. It is searched in default shared library search path (overridable with usual
environment variable LD_LIBRARY_PATH), unrelated to PATH or set compile-gcc settings.
Contrary to it libcc1plugin.so is found according to the installation of the found compiler
— as possibly specified by the set compile-gcc command.

set compile-gcc

Set compilation command used for compiling and injecting code with the
compile commands. If this option is not set (it is set to an empty string), the
search described above will occur — that is the default.

show compile-gcc

Displays the current compile command gcc driver filename. If set, it is the main
command gcc, found usually for example under name x86_64-linux-gnu-gcc.

279

18 gdb Files

gdb needs to know the file name of the program to be debugged, both in order to read its
symbol table and in order to start your program. To debug a core dump of a previous run,
you must also tell gdb the name of the core dump file.

18.1 Commands to Specify Files

You may want to specify executable and core dump file names. The usual way to do this is
at start-up time, using the arguments to gdb’s start-up commands (see Chapter 2 [Getting
In and Out of gdb], page 11).

Occasionally it is necessary to change to a different file during a gdb session. Or you
may run gdb and forget to specify a file you want to use. Or you are debugging a remote
target via gdbserver (see Section 20.3 [Using the gdbserver Program], page 306). In these
situations the gdb commands to specify new files are useful.

file filename

Use filename as the program to be debugged. It is read for its symbols and for
the contents of pure memory. It is also the program executed when you use
the run command. If you do not specify a directory and the file is not found
in the gdb working directory, gdb uses the environment variable PATH as a list
of directories to search, just as the shell does when looking for a program to
run. You can change the value of this variable, for both gdb and your program,
using the path command.

You can load unlinked object .o files into gdb using the file command. You
will not be able to “run” an object file, but you can disassemble functions and
inspect variables. Also, if the underlying BFD functionality supports it, you
could use gdb -write to patch object files using this technique. Note that gdb
can neither interpret nor modify relocations in this case, so branches and some
initialized variables will appear to go to the wrong place. But this feature is
still handy from time to time.

file file with no argument makes gdb discard any information it has on both
executable file and the symbol table.

exec-file [filename]
Specify that the program to be run (but not the symbol table) is found in
filename. gdb searches the environment variable PATH if necessary to locate
your program. Omitting filename means to discard information on the exe-
cutable file.

symbol-file [filename [-o offset]]
Read symbol table information from file filename. PATH is searched when nec-
essary. Use the file command to get both symbol table and program to run
from the same file.

If an optional offset is specified, it is added to the start address of each section
in the symbol file. This is useful if the program is relocated at runtime, such
as the Linux kernel with kASLR enabled.

280 Debugging with gdb

symbol-file with no argument clears out gdb information on your program’s
symbol table.

The symbol-file command causes gdb to forget the contents of some break-
points and auto-display expressions. This is because they may contain pointers
to the internal data recording symbols and data types, which are part of the
old symbol table data being discarded inside gdb.

symbol-file does not repeat if you press RET again after executing it once.

When gdb is configured for a particular environment, it understands debugging
information in whatever format is the standard generated for that environment;
you may use either a gnu compiler, or other compilers that adhere to the local
conventions. Best results are usually obtained from gnu compilers; for example,
using gcc you can generate debugging information for optimized code.

For most kinds of object files, with the exception of old SVR3 systems using
COFF, the symbol-file command does not normally read the symbol table in
full right away. Instead, it scans the symbol table quickly to find which source
files and which symbols are present. The details are read later, one source file
at a time, as they are needed.

The purpose of this two-stage reading strategy is to make gdb start up faster.
For the most part, it is invisible except for occasional pauses while the symbol
table details for a particular source file are being read. (The set verbose

command can turn these pauses into messages if desired. See Section 22.9
[Optional Warnings and Messages], page 361.)

We have not implemented the two-stage strategy for COFF yet. When the
symbol table is stored in COFF format, symbol-file reads the symbol table
data in full right away. Note that “stabs-in-COFF” still does the two-stage
strategy, since the debug info is actually in stabs format.

symbol-file [-readnow] filename
file [-readnow] filename

You can override the gdb two-stage strategy for reading symbol tables by us-
ing the ‘-readnow’ option with any of the commands that load symbol table
information, if you want to be sure gdb has the entire symbol table available.

symbol-file [-readnever] filename
file [-readnever] filename

You can instruct gdb to never read the symbolic information contained in
filename by using the ‘-readnever’ option. See [–readnever], page 13.

core-file [filename]
core Specify the whereabouts of a core dump file to be used as the “contents of

memory”. Traditionally, core files contain only some parts of the address space
of the process that generated them; gdb can access the executable file itself for
other parts.

core-file with no argument specifies that no core file is to be used.

Note that the core file is ignored when your program is actually running under
gdb. So, if you have been running your program and you wish to debug a core
file instead, you must kill the subprocess in which the program is running. To

Chapter 18: gdb Files 281

do this, use the kill command (see Section 4.8 [Killing the Child Process],
page 40).

add-symbol-file filename [-readnow | -readnever] [-o offset] [textaddress] [
-s section address ...]

The add-symbol-file command reads additional symbol table information
from the file filename. You would use this command when filename has been
dynamically loaded (by some other means) into the program that is running.
The textaddress parameter gives the memory address at which the file’s text
section has been loaded. You can additionally specify the base address of other
sections using an arbitrary number of ‘-s section address’ pairs. If a section
is omitted, gdb will use its default addresses as found in filename. Any address
or textaddress can be given as an expression.

If an optional offset is specified, it is added to the start address of each section,
except those for which the address was specified explicitly.

The symbol table of the file filename is added to the symbol table originally read
with the symbol-file command. You can use the add-symbol-file command
any number of times; the new symbol data thus read is kept in addition to the
old.

Changes can be reverted using the command remove-symbol-file.

Although filename is typically a shared library file, an executable file, or some
other object file which has been fully relocated for loading into a process, you
can also load symbolic information from relocatable .o files, as long as:

• the file’s symbolic information refers only to linker symbols defined in that
file, not to symbols defined by other object files,

• every section the file’s symbolic information refers to has actually been
loaded into the inferior, as it appears in the file, and

• you can determine the address at which every section was loaded, and
provide these to the add-symbol-file command.

Some embedded operating systems, like Sun Chorus and VxWorks, can load
relocatable files into an already running program; such systems typically make
the requirements above easy to meet. However, it’s important to recognize that
many native systems use complex link procedures (.linkonce section factoring
and C++ constructor table assembly, for example) that make the requirements
difficult to meet. In general, one cannot assume that using add-symbol-file

to read a relocatable object file’s symbolic information will have the same effect
as linking the relocatable object file into the program in the normal way.

add-symbol-file does not repeat if you press RET after using it.

remove-symbol-file filename

remove-symbol-file -a address

Remove a symbol file added via the add-symbol-file command. The file to
remove can be identified by its filename or by an address that lies within the
boundaries of this symbol file in memory. Example:

(gdb) add-symbol-file /home/user/gdb/mylib.so 0x7ffff7ff9480

add symbol table from file "/home/user/gdb/mylib.so" at

282 Debugging with gdb

.text_addr = 0x7ffff7ff9480

(y or n) y

Reading symbols from /home/user/gdb/mylib.so...

(gdb) remove-symbol-file -a 0x7ffff7ff9480

Remove symbol table from file "/home/user/gdb/mylib.so"? (y or n) y

(gdb)

remove-symbol-file does not repeat if you press RET after using it.

add-symbol-file-from-memory address

Load symbols from the given address in a dynamically loaded object file whose
image is mapped directly into the inferior’s memory. For example, the Linux
kernel maps a syscall DSO into each process’s address space; this DSO provides
kernel-specific code for some system calls. The argument can be any expres-
sion whose evaluation yields the address of the file’s shared object file header.
For this command to work, you must have used symbol-file or exec-file

commands in advance.

section section addr

The section command changes the base address of the named section of the
exec file to addr. This can be used if the exec file does not contain section
addresses, (such as in the a.out format), or when the addresses specified in the
file itself are wrong. Each section must be changed separately. The info files

command, described below, lists all the sections and their addresses.

info files

info target

info files and info target are synonymous; both print the current target
(see Chapter 19 [Specifying a Debugging Target], page 297), including the
names of the executable and core dump files currently in use by gdb, and
the files from which symbols were loaded. The command help target lists all
possible targets rather than current ones.

maint info sections [-all-objects] [filter-list]
Another command that can give you extra information about program sections
is maint info sections. In addition to the section information displayed by
info files, this command displays the flags and file offset of each section in
the executable and core dump files.

When ‘-all-objects’ is passed then sections from all loaded object files, in-
cluding shared libraries, are printed.

The optional filter-list is a space separated list of filter keywords. Sections that
match any one of the filter criteria will be printed. There are two types of filter:

section-name

Display information about any section named section-name.

section-flag

Display information for any section with section-flag. The section
flags that gdb currently knows about are:

ALLOC Section will have space allocated in the process when
loaded. Set for all sections except those containing de-
bug information.

Chapter 18: gdb Files 283

LOAD Section will be loaded from the file into the child pro-
cess memory. Set for pre-initialized code and data,
clear for .bss sections.

RELOC Section needs to be relocated before loading.

READONLY Section cannot be modified by the child process.

CODE Section contains executable code only.

DATA Section contains data only (no executable code).

ROM Section will reside in ROM.

CONSTRUCTOR

Section contains data for constructor/destructor lists.

HAS_CONTENTS

Section is not empty.

NEVER_LOAD

An instruction to the linker to not output the section.

COFF_SHARED_LIBRARY

A notification to the linker that the section contains
COFF shared library information.

IS_COMMON

Section contains common symbols.

maint info target-sections

This command prints gdb’s internal section table. For each target gdb main-
tains a table containing the allocatable sections from all currently mapped ob-
jects, along with information about where the section is mapped.

set trust-readonly-sections on

Tell gdb that readonly sections in your object file really are read-only (i.e.
that their contents will not change). In that case, gdb can fetch values from
these sections out of the object file, rather than from the target program. For
some targets (notably embedded ones), this can be a significant enhancement
to debugging performance.

The default is off.

set trust-readonly-sections off

Tell gdb not to trust readonly sections. This means that the contents of the
section might change while the program is running, and must therefore be
fetched from the target when needed.

show trust-readonly-sections

Show the current setting of trusting readonly sections.

All file-specifying commands allow both absolute and relative file names as arguments.
gdb always converts the file name to an absolute file name and remembers it that way.

gdb supports gnu/Linux, MS-Windows, SunOS, Darwin/Mach-O, SVr4, IBM RS/6000
AIX, QNX Neutrino, FDPIC (FR-V), and DSBT (TIC6X) shared libraries.

284 Debugging with gdb

On MS-Windows gdb must be linked with the Expat library to support shared libraries.
See [Expat], page 697.

gdb automatically loads symbol definitions from shared libraries when you use the run
command, or when you examine a core file. (Before you issue the run command, gdb
does not understand references to a function in a shared library, however—unless you are
debugging a core file).

There are times, however, when you may wish to not automatically load symbol defini-
tions from shared libraries, such as when they are particularly large or there are many of
them.

To control the automatic loading of shared library symbols, use the commands:

set auto-solib-add mode

If mode is on, symbols from all shared object libraries will be loaded auto-
matically when the inferior begins execution, you attach to an independently
started inferior, or when the dynamic linker informs gdb that a new library
has been loaded. If mode is off, symbols must be loaded manually, using the
sharedlibrary command. The default value is on.

If your program uses lots of shared libraries with debug info that takes large
amounts of memory, you can decrease the gdb memory footprint by prevent-
ing it from automatically loading the symbols from shared libraries. To that
end, type set auto-solib-add off before running the inferior, then load each
library whose debug symbols you do need with sharedlibrary regexp, where
regexp is a regular expression that matches the libraries whose symbols you
want to be loaded.

show auto-solib-add

Display the current autoloading mode.

To explicitly load shared library symbols, use the sharedlibrary command:

info share regex

info sharedlibrary regex

Print the names of the shared libraries which are currently loaded that match
regex. If regex is omitted then print all shared libraries that are loaded.

info dll regex

This is an alias of info sharedlibrary.

sharedlibrary regex

share regex

Load shared object library symbols for files matching a Unix regular expression.
As with files loaded automatically, it only loads shared libraries required by your
program for a core file or after typing run. If regex is omitted all shared libraries
required by your program are loaded.

nosharedlibrary

Unload all shared object library symbols. This discards all symbols that have
been loaded from all shared libraries. Symbols from shared libraries that were
loaded by explicit user requests are not discarded.

Chapter 18: gdb Files 285

Sometimes you may wish that gdb stops and gives you control when any of shared
library events happen. The best way to do this is to use catch load and catch unload

(see Section 5.1.3 [Set Catchpoints], page 68).

gdb also supports the set stop-on-solib-events command for this. This command
exists for historical reasons. It is less useful than setting a catchpoint, because it does not
allow for conditions or commands as a catchpoint does.

set stop-on-solib-events

This command controls whether gdb should give you control when the dynamic
linker notifies it about some shared library event. The most common event of
interest is loading or unloading of a new shared library.

show stop-on-solib-events

Show whether gdb stops and gives you control when shared library events
happen.

Shared libraries are also supported in many cross or remote debugging configurations.
gdb needs to have access to the target’s libraries; this can be accomplished either by
providing copies of the libraries on the host system, or by asking gdb to automatically
retrieve the libraries from the target. If copies of the target libraries are provided, they need
to be the same as the target libraries, although the copies on the target can be stripped as
long as the copies on the host are not.

For remote debugging, you need to tell gdb where the target libraries are, so that it
can load the correct copies—otherwise, it may try to load the host’s libraries. gdb has two
variables to specify the search directories for target libraries.

set sysroot path

Use path as the system root for the program being debugged. Any absolute
shared library paths will be prefixed with path; many runtime loaders store the
absolute paths to the shared library in the target program’s memory. When
starting processes remotely, and when attaching to already-running processes
(local or remote), their executable filenames will be prefixed with path if re-
ported to gdb as absolute by the operating system. If you use set sysroot

to find executables and shared libraries, they need to be laid out in the same
way that they are on the target, with e.g. a /bin, /lib and /usr/lib hierarchy
under path.

If path starts with the sequence target: and the target system is remote then
gdb will retrieve the target binaries from the remote system. This is only
supported when using a remote target that supports the remote get command
(see Section 20.2 [Sending files to a remote system], page 306). The part of path
following the initial target: (if present) is used as system root prefix on the
remote file system. If path starts with the sequence remote: this is converted
to the sequence target: by set sysroot1. If you want to specify a local system
root using a directory that happens to be named target: or remote:, you need
to use some equivalent variant of the name like ./target:.

1 Historically the functionality to retrieve binaries from the remote system was provided by prefixing path
with remote:

286 Debugging with gdb

For targets with an MS-DOS based filesystem, such as MS-Windows, gdb tries
prefixing a few variants of the target absolute file name with path. But first,
on Unix hosts, gdb converts all backslash directory separators into forward
slashes, because the backslash is not a directory separator on Unix:

c:\foo\bar.dll ⇒ c:/foo/bar.dll

Then, gdb attempts prefixing the target file name with path, and looks for the
resulting file name in the host file system:

c:/foo/bar.dll ⇒ /path/to/sysroot/c:/foo/bar.dll

If that does not find the binary, gdb tries removing the ‘:’ character from the
drive spec, both for convenience, and, for the case of the host file system not
supporting file names with colons:

c:/foo/bar.dll ⇒ /path/to/sysroot/c/foo/bar.dll

This makes it possible to have a system root that mirrors a target with more
than one drive. E.g., you may want to setup your local copies of the target
system shared libraries like so (note ‘c’ vs ‘z’):

/path/to/sysroot/c/sys/bin/foo.dll

/path/to/sysroot/c/sys/bin/bar.dll

/path/to/sysroot/z/sys/bin/bar.dll

and point the system root at /path/to/sysroot, so that gdb can find the
correct copies of both c:\sys\bin\foo.dll, and z:\sys\bin\bar.dll.

If that still does not find the binary, gdb tries removing the whole drive spec
from the target file name:

c:/foo/bar.dll ⇒ /path/to/sysroot/foo/bar.dll

This last lookup makes it possible to not care about the drive name, if you
don’t want or need to.

The set solib-absolute-prefix command is an alias for set sysroot.

You can set the default system root by using the configure-time
‘--with-sysroot’ option. If the system root is inside gdb’s configured binary
prefix (set with ‘--prefix’ or ‘--exec-prefix’), then the default system root
will be updated automatically if the installed gdb is moved to a new location.

show sysroot

Display the current executable and shared library prefix.

set solib-search-path path

If this variable is set, path is a colon-separated list of directories to search for
shared libraries. ‘solib-search-path’ is used after ‘sysroot’ fails to locate the
library, or if the path to the library is relative instead of absolute. If you want
to use ‘solib-search-path’ instead of ‘sysroot’, be sure to set ‘sysroot’
to a nonexistent directory to prevent gdb from finding your host’s libraries.
‘sysroot’ is preferred; setting it to a nonexistent directory may interfere with
automatic loading of shared library symbols.

show solib-search-path

Display the current shared library search path.

set target-file-system-kind kind

Set assumed file system kind for target reported file names.

Chapter 18: gdb Files 287

Shared library file names as reported by the target system may not make sense
as is on the system gdb is running on. For example, when remote debugging
a target that has MS-DOS based file system semantics, from a Unix host, the
target may be reporting to gdb a list of loaded shared libraries with file names
such as c:\Windows\kernel32.dll. On Unix hosts, there’s no concept of drive
letters, so the ‘c:\’ prefix is not normally understood as indicating an absolute
file name, and neither is the backslash normally considered a directory separator
character. In that case, the native file system would interpret this whole abso-
lute file name as a relative file name with no directory components. This would
make it impossible to point gdb at a copy of the remote target’s shared libraries
on the host using set sysroot, and impractical with set solib-search-path.
Setting target-file-system-kind to dos-based tells gdb to interpret such
file names similarly to how the target would, and to map them to file names
valid on gdb’s native file system semantics. The value of kind can be "auto",
in addition to one of the supported file system kinds. In that case, gdb tries
to determine the appropriate file system variant based on the current target’s
operating system (see Section 22.7 [Configuring the Current ABI], page 356).
The supported file system settings are:

unix Instruct gdb to assume the target file system is of Unix kind. Only
file names starting the forward slash (‘/’) character are considered
absolute, and the directory separator character is also the forward
slash.

dos-based

Instruct gdb to assume the target file system is DOS based. File
names starting with either a forward slash, or a drive letter followed
by a colon (e.g., ‘c:’), are considered absolute, and both the slash
(‘/’) and the backslash (‘\\’) characters are considered directory
separators.

auto Instruct gdb to use the file system kind associated with the target
operating system (see Section 22.7 [Configuring the Current ABI],
page 356). This is the default.

When processing file names provided by the user, gdb frequently needs to compare
them to the file names recorded in the program’s debug info. Normally, gdb compares
just the base names of the files as strings, which is reasonably fast even for very large
programs. (The base name of a file is the last portion of its name, after stripping all the
leading directories.) This shortcut in comparison is based upon the assumption that files
cannot have more than one base name. This is usually true, but references to files that use
symlinks or similar filesystem facilities violate that assumption. If your program records
files using such facilities, or if you provide file names to gdb using symlinks etc., you can
set basenames-may-differ to true to instruct gdb to completely canonicalize each pair
of file names it needs to compare. This will make file-name comparisons accurate, but at a
price of a significant slowdown.

set basenames-may-differ

Set whether a source file may have multiple base names.

288 Debugging with gdb

show basenames-may-differ

Show whether a source file may have multiple base names.

18.2 File Caching

To speed up file loading, and reduce memory usage, gdb will reuse the bfd objects used to
track open files. See Section “BFD” in The Binary File Descriptor Library . The following
commands allow visibility and control of the caching behavior.

maint info bfds

This prints information about each bfd object that is known to gdb.

maint set bfd-sharing

maint show bfd-sharing

Control whether bfd objects can be shared. When sharing is enabled gdb
reuses already open bfd objects rather than reopening the same file. Turning
sharing off does not cause already shared bfd objects to be unshared, but all
future files that are opened will create a new bfd object. Similarly, re-enabling
sharing does not cause multiple existing bfd objects to be collapsed into a single
shared bfd object.

set debug bfd-cache level

Turns on debugging of the bfd cache, setting the level to level.

show debug bfd-cache

Show the current debugging level of the bfd cache.

18.3 Debugging Information in Separate Files

gdb allows you to put a program’s debugging information in a file separate from the exe-
cutable itself, in a way that allows gdb to find and load the debugging information automat-
ically. Since debugging information can be very large—sometimes larger than the executable
code itself—some systems distribute debugging information for their executables in separate
files, which users can install only when they need to debug a problem.

gdb supports two ways of specifying the separate debug info file:

• The executable contains a debug link that specifies the name of the separate debug
info file. The separate debug file’s name is usually executable.debug, where exe-
cutable is the name of the corresponding executable file without leading directories
(e.g., ls.debug for /usr/bin/ls). In addition, the debug link specifies a 32-bit Cyclic
Redundancy Check (CRC) checksum for the debug file, which gdb uses to validate
that the executable and the debug file came from the same build.

• The executable contains a build ID, a unique bit string that is also present in the
corresponding debug info file. (This is supported only on some operating systems,
when using the ELF or PE file formats for binary files and the gnu Binutils.) For more
details about this feature, see the description of the --build-id command-line option
in Section “Command Line Options” in The GNU Linker. The debug info file’s name
is not specified explicitly by the build ID, but can be computed from the build ID, see
below.

Chapter 18: gdb Files 289

Depending on the way the debug info file is specified, gdb uses two different methods of
looking for the debug file:

• For the “debug link” method, gdb looks up the named file in the directory of the
executable file, then in a subdirectory of that directory named .debug, and finally under
each one of the global debug directories, in a subdirectory whose name is identical to
the leading directories of the executable’s absolute file name. (On MS-Windows/MS-
DOS, the drive letter of the executable’s leading directories is converted to a one-
letter subdirectory, i.e. d:/usr/bin/ is converted to /d/usr/bin/, because Windows
filesystems disallow colons in file names.)

• For the “build ID” method, gdb looks in the .build-id subdirectory of each one of the
global debug directories for a file named nn/nnnnnnnn.debug, where nn are the first 2
hex characters of the build ID bit string, and nnnnnnnn are the rest of the bit string.
(Real build ID strings are 32 or more hex characters, not 10.) gdb can automatically
query debuginfod servers using build IDs in order to download separate debug files
that cannot be found locally. For more information see Appendix K [Debuginfod],
page 829.

So, for example, suppose you ask gdb to debug /usr/bin/ls, which has a debug link
that specifies the file ls.debug, and a build ID whose value in hex is abcdef1234. If the
list of the global debug directories includes /usr/lib/debug, then gdb will look for the
following debug information files, in the indicated order:

− /usr/lib/debug/.build-id/ab/cdef1234.debug

− /usr/bin/ls.debug

− /usr/bin/.debug/ls.debug

− /usr/lib/debug/usr/bin/ls.debug.

If the debug file still has not been found and debuginfod (see Appendix K [Debuginfod],
page 829) is enabled, gdb will attempt to download the file from debuginfod servers.

Global debugging info directories default to what is set by gdb configure option --with-

separate-debug-dir. During gdb run you can also set the global debugging info directo-
ries, and view the list gdb is currently using.

set debug-file-directory directories

Set the directories which gdb searches for separate debugging information files
to directory. Multiple path components can be set concatenating them by a
path separator.

show debug-file-directory

Show the directories gdb searches for separate debugging information files.

A debug link is a special section of the executable file named .gnu_debuglink. The
section must contain:

• A filename, with any leading directory components removed, followed by a zero byte,

• zero to three bytes of padding, as needed to reach the next four-byte boundary within
the section, and

• a four-byte CRC checksum, stored in the same endianness used for the executable file
itself. The checksum is computed on the debugging information file’s full contents by
the function given below, passing zero as the crc argument.

290 Debugging with gdb

Any executable file format can carry a debug link, as long as it can contain a section
named .gnu_debuglink with the contents described above.

The build ID is a special section in the executable file (and in other ELF binary files that
gdb may consider). This section is often named .note.gnu.build-id, but that name is
not mandatory. It contains unique identification for the built files—the ID remains the same
across multiple builds of the same build tree. The default algorithm SHA1 produces 160
bits (40 hexadecimal characters) of the content for the build ID string. The same section
with an identical value is present in the original built binary with symbols, in its stripped
variant, and in the separate debugging information file.

The debugging information file itself should be an ordinary executable, containing a full
set of linker symbols, sections, and debugging information. The sections of the debugging
information file should have the same names, addresses, and sizes as the original file, but
they need not contain any data—much like a .bss section in an ordinary executable.

The gnu binary utilities (Binutils) package includes the ‘objcopy’ utility that can pro-
duce the separated executable / debugging information file pairs using the following com-
mands:

objcopy --only-keep-debug foo foo.debug

strip -g foo

These commands remove the debugging information from the executable file foo and place
it in the file foo.debug. You can use the first, second or both methods to link the two files:

• The debug link method needs the following additional command to also leave behind
a debug link in foo:

objcopy --add-gnu-debuglink=foo.debug foo

Ulrich Drepper’s elfutils package, starting with version 0.53, contains a version of
the strip command such that the command strip foo -f foo.debug has the same
functionality as the two objcopy commands and the ln -s command above, together.

• Build ID gets embedded into the main executable using ld --build-id or the gcc
counterpart gcc -Wl,--build-id. Build ID support plus compatibility fixes for debug
files separation are present in gnu binary utilities (Binutils) package since version 2.18.

The CRC used in .gnu_debuglink is the CRC-32 defined in IEEE 802.3 using the
polynomial:

x32 + x26 + x23 + x22 + x16 + x12 + x11

+ x10 + x8 + x7 + x5 + x4 + x2 + x + 1

The function is computed byte at a time, taking the least significant bit of each byte
first. The initial pattern 0xffffffff is used, to ensure leading zeros affect the CRC and
the final result is inverted to ensure trailing zeros also affect the CRC.

Note: This is the same CRC polynomial as used in handling the Remote Serial Protocol
qCRC packet (see [qCRC packet], page 736). However in the case of the Remote Serial
Protocol, the CRC is computed most significant bit first, and the result is not inverted, so
trailing zeros have no effect on the CRC value.

To complete the description, we show below the code of the function which produces the
CRC used in .gnu_debuglink. Inverting the initially supplied crc argument means that an
initial call to this function passing in zero will start computing the CRC using 0xffffffff.

unsigned long

Chapter 18: gdb Files 291

gnu_debuglink_crc32 (unsigned long crc,

unsigned char *buf, size_t len)

{

static const unsigned long crc32_table[256] =

{

0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419,

0x706af48f, 0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4,

0xe0d5e91e, 0x97d2d988, 0x09b64c2b, 0x7eb17cbd, 0xe7b82d07,

0x90bf1d91, 0x1db71064, 0x6ab020f2, 0xf3b97148, 0x84be41de,

0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7, 0x136c9856,

0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9,

0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4,

0xa2677172, 0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b,

0x35b5a8fa, 0x42b2986c, 0xdbbbc9d6, 0xacbcf940, 0x32d86ce3,

0x45df5c75, 0xdcd60dcf, 0xabd13d59, 0x26d930ac, 0x51de003a,

0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423, 0xcfba9599,

0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924,

0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190,

0x01db7106, 0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f,

0x9fbfe4a5, 0xe8b8d433, 0x7807c9a2, 0x0f00f934, 0x9609a88e,

0xe10e9818, 0x7f6a0dbb, 0x086d3d2d, 0x91646c97, 0xe6635c01,

0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e, 0x6c0695ed,

0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950,

0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3,

0xfbd44c65, 0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2,

0x4adfa541, 0x3dd895d7, 0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a,

0x346ed9fc, 0xad678846, 0xda60b8d0, 0x44042d73, 0x33031de5,

0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa, 0xbe0b1010,

0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f,

0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17,

0x2eb40d81, 0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6,

0x03b6e20c, 0x74b1d29a, 0xead54739, 0x9dd277af, 0x04db2615,

0x73dc1683, 0xe3630b12, 0x94643b84, 0x0d6d6a3e, 0x7a6a5aa8,

0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1, 0xf00f9344,

0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb,

0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a,

0x67dd4acc, 0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5,

0xd6d6a3e8, 0xa1d1937e, 0x38d8c2c4, 0x4fdff252, 0xd1bb67f1,

0xa6bc5767, 0x3fb506dd, 0x48b2364b, 0xd80d2bda, 0xaf0a1b4c,

0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55, 0x316e8eef,

0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236,

0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe,

0xb2bd0b28, 0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31,

0x2cd99e8b, 0x5bdeae1d, 0x9b64c2b0, 0xec63f226, 0x756aa39c,

0x026d930a, 0x9c0906a9, 0xeb0e363f, 0x72076785, 0x05005713,

0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38, 0x92d28e9b,

0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242,

0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1,

0x18b74777, 0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c,

0x8f659eff, 0xf862ae69, 0x616bffd3, 0x166ccf45, 0xa00ae278,

0xd70dd2ee, 0x4e048354, 0x3903b3c2, 0xa7672661, 0xd06016f7,

0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc, 0x40df0b66,

0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9,

0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605,

0xcdd70693, 0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8,

0x5d681b02, 0x2a6f2b94, 0xb40bbe37, 0xc30c8ea1, 0x5a05df1b,

0x2d02ef8d

};

292 Debugging with gdb

unsigned char *end;

crc = ~crc & 0xffffffff;

for (end = buf + len; buf < end; ++buf)

crc = crc32_table[(crc ^ *buf) & 0xff] ^ (crc >> 8);

return ~crc & 0xffffffff;

}

This computation does not apply to the “build ID” method.

18.4 Debugging information in a special section

Some systems ship pre-built executables and libraries that have a special ‘.gnu_debugdata’
section. This feature is called MiniDebugInfo. This section holds an LZMA-compressed
object and is used to supply extra symbols for backtraces.

The intent of this section is to provide extra minimal debugging information for use
in simple backtraces. It is not intended to be a replacement for full separate debugging
information (see Section 18.3 [Separate Debug Files], page 288). The example below shows
the intended use; however, gdb does not currently put restrictions on what sort of debugging
information might be included in the section.

gdb has support for this extension. If the section exists, then it is used provided that
no other source of debugging information can be found, and that gdb was configured with
LZMA support.

This section can be easily created using objcopy and other standard utilities:
Extract the dynamic symbols from the main binary, there is no need

to also have these in the normal symbol table.

nm -D binary --format=posix --defined-only \

| awk ’{ print $1 }’ | sort > dynsyms

Extract all the text (i.e. function) symbols from the debuginfo.

(Note that we actually also accept "D" symbols, for the benefit

of platforms like PowerPC64 that use function descriptors.)

nm binary --format=posix --defined-only \

| awk ’{ if ($2 == "T" || $2 == "t" || $2 == "D") print $1 }’ \

| sort > funcsyms

Keep all the function symbols not already in the dynamic symbol

table.

comm -13 dynsyms funcsyms > keep_symbols

Separate full debug info into debug binary.

objcopy --only-keep-debug binary debug

Copy the full debuginfo, keeping only a minimal set of symbols and

removing some unnecessary sections.

objcopy -S --remove-section .gdb_index --remove-section .comment \

--keep-symbols=keep_symbols debug mini_debuginfo

Drop the full debug info from the original binary.

strip --strip-all -R .comment binary

Inject the compressed data into the .gnu_debugdata section of the

original binary.

xz mini_debuginfo

objcopy --add-section .gnu_debugdata=mini_debuginfo.xz binary

Chapter 18: gdb Files 293

18.5 Index Files Speed Up gdb

When gdb finds a symbol file, it scans the symbols in the file in order to construct an
internal symbol table. This lets most gdb operations work quickly—at the cost of a delay
early on. For large programs, this delay can be quite lengthy, so gdb provides a way to
build an index, which speeds up startup.

For convenience, gdb comes with a program, gdb-add-index, which can be used to add
the index to a symbol file. It takes the symbol file as its only argument:

$ gdb-add-index symfile

See [gdb-add-index], page 838.

It is also possible to do the work manually. Here is what gdb-add-index does behind
the curtains.

The index is stored as a section in the symbol file. gdb can write the index to a file,
then you can put it into the symbol file using objcopy.

To create an index file, use the save gdb-index command:

save gdb-index [-dwarf-5] directory

Create index files for all symbol files currently known by gdb. For each known
symbol-file, this command by default creates it produces a single file symbol-

file.gdb-index. If you invoke this command with the -dwarf-5 option, it pro-
duces 2 files: symbol-file.debug_names and symbol-file.debug_str. The
files are created in the given directory.

Once you have created an index file you can merge it into your symbol file, here named
symfile, using objcopy:

$ objcopy --add-section .gdb_index=symfile.gdb-index \

--set-section-flags .gdb_index=readonly symfile symfile

Or for -dwarf-5:

$ objcopy --dump-section .debug_str=symfile.debug_str.new symfile

$ cat symfile.debug_str >>symfile.debug_str.new

$ objcopy --add-section .debug_names=symfile.gdb-index \

--set-section-flags .debug_names=readonly \

--update-section .debug_str=symfile.debug_str.new symfile symfile

gdb will normally ignore older versions of .gdb_index sections that have been dep-
recated. Usually they are deprecated because they are missing a new feature or have
performance issues. To tell gdb to use a deprecated index section anyway specify set

use-deprecated-index-sections on. The default is off. This can speed up startup,
but may result in some functionality being lost. See Appendix J [Index Section Format],
page 825.

Warning: Setting use-deprecated-index-sections to on must be done before gdb
reads the file. The following will not work:

$ gdb -ex "set use-deprecated-index-sections on" <program>

Instead you must do, for example,

$ gdb -iex "set use-deprecated-index-sections on" <program>

Indices only work when using DWARF debugging information, not stabs.

294 Debugging with gdb

18.5.1 Automatic symbol index cache

It is possible for gdb to automatically save a copy of this index in a cache on disk and
retrieve it from there when loading the same binary in the future. This feature can be
turned on with set index-cache enabled on. The following commands can be used to
tweak the behavior of the index cache.

set index-cache enabled on

set index-cache enabled off

Enable or disable the use of the symbol index cache.

set index-cache directory directory

show index-cache directory

Set/show the directory where index files will be saved.

The default value for this directory depends on the host platform. On most
systems, the index is cached in the gdb subdirectory of the directory pointed
to by the XDG_CACHE_HOME environment variable, if it is defined, else in the
.cache/gdb subdirectory of your home directory. However, on some systems,
the default may differ according to local convention.

There is no limit on the disk space used by index cache. It is perfectly safe to
delete the content of that directory to free up disk space.

show index-cache stats

Print the number of cache hits and misses since the launch of gdb.

18.6 Errors Reading Symbol Files

While reading a symbol file, gdb occasionally encounters problems, such as symbol types
it does not recognize, or known bugs in compiler output. By default, gdb does not notify
you of such problems, since they are relatively common and primarily of interest to peo-
ple debugging compilers. If you are interested in seeing information about ill-constructed
symbol tables, you can either ask gdb to print only one message about each such type of
problem, no matter how many times the problem occurs; or you can ask gdb to print more
messages, to see how many times the problems occur, with the set complaints command
(see Section 22.9 [Optional Warnings and Messages], page 361).

The messages currently printed, and their meanings, include:

inner block not inside outer block in symbol

The symbol information shows where symbol scopes begin and end (such as at
the start of a function or a block of statements). This error indicates that an
inner scope block is not fully contained in its outer scope blocks.

gdb circumvents the problem by treating the inner block as if it had the same
scope as the outer block. In the error message, symbol may be shown as “(don’t
know)” if the outer block is not a function.

block at address out of order

The symbol information for symbol scope blocks should occur in order of in-
creasing addresses. This error indicates that it does not do so.

gdb does not circumvent this problem, and has trouble locating symbols in
the source file whose symbols it is reading. (You can often determine what

Chapter 18: gdb Files 295

source file is affected by specifying set verbose on. See Section 22.9 [Optional
Warnings and Messages], page 361.)

bad block start address patched

The symbol information for a symbol scope block has a start address smaller
than the address of the preceding source line. This is known to occur in the
SunOS 4.1.1 (and earlier) C compiler.

gdb circumvents the problem by treating the symbol scope block as starting
on the previous source line.

bad string table offset in symbol n

Symbol number n contains a pointer into the string table which is larger than
the size of the string table.

gdb circumvents the problem by considering the symbol to have the name foo,
which may cause other problems if many symbols end up with this name.

unknown symbol type 0xnn

The symbol information contains new data types that gdb does not yet know
how to read. 0xnn is the symbol type of the uncomprehended information, in
hexadecimal.

gdb circumvents the error by ignoring this symbol information. This usually
allows you to debug your program, though certain symbols are not accessible. If
you encounter such a problem and feel like debugging it, you can debug gdb with
itself, breakpoint on complain, then go up to the function read_dbx_symtab

and examine *bufp to see the symbol.

stub type has NULL name

gdb could not find the full definition for a struct or class.

const/volatile indicator missing (ok if using g++ v1.x), got...

The symbol information for a C++member function is missing some information
that recent versions of the compiler should have output for it.

info mismatch between compiler and debugger

gdb could not parse a type specification output by the compiler.

18.7 GDB Data Files

gdb will sometimes read an auxiliary data file. These files are kept in a directory known as
the data directory.

You can set the data directory’s name, and view the name gdb is currently using.

set data-directory directory

Set the directory which gdb searches for auxiliary data files to directory.

show data-directory

Show the directory gdb searches for auxiliary data files.

You can set the default data directory by using the configure-time ‘--with-gdb-datadir’
option. If the data directory is inside gdb’s configured binary prefix (set with ‘--prefix’
or ‘--exec-prefix’), then the default data directory will be updated automatically if the
installed gdb is moved to a new location.

296 Debugging with gdb

The data directory may also be specified with the --data-directory command line
option. See Section 2.1.2 [Mode Options], page 13.

297

19 Specifying a Debugging Target

A target is the execution environment occupied by your program.

Often, gdb runs in the same host environment as your program; in that case, the de-
bugging target is specified as a side effect when you use the file or core commands.
When you need more flexibility—for example, running gdb on a physically separate host,
or controlling a standalone system over a serial port or a realtime system over a TCP/IP
connection—you can use the target command to specify one of the target types configured
for gdb (see Section 19.2 [Commands for Managing Targets], page 297).

It is possible to build gdb for several different target architectures. When gdb is built
like that, you can choose one of the available architectures with the set architecture

command.

set architecture arch

This command sets the current target architecture to arch. The value of arch
can be "auto", in addition to one of the supported architectures.

show architecture

Show the current target architecture.

set processor

processor

These are alias commands for, respectively, set architecture and show

architecture.

19.1 Active Targets

There are multiple classes of targets such as: processes, executable files or recording sessions.
Core files belong to the process class, making core file and process mutually exclusive.
Otherwise, gdb can work concurrently on multiple active targets, one in each class. This
allows you to (for example) start a process and inspect its activity, while still having access to
the executable file after the process finishes. Or if you start process recording (see Chapter 6
[Reverse Execution], page 99) and reverse-step there, you are presented a virtual layer of
the recording target, while the process target remains stopped at the chronologically last
point of the process execution.

Use the core-file and exec-file commands to select a new core file or executable
target (see Section 18.1 [Commands to Specify Files], page 279). To specify as a target a
process that is already running, use the attach command (see Section 4.7 [Debugging an
Already-running Process], page 39).

19.2 Commands for Managing Targets

target type parameters

Connects the gdb host environment to a target machine or process. A target
is typically a protocol for talking to debugging facilities. You use the argument
type to specify the type or protocol of the target machine.

Further parameters are interpreted by the target protocol, but typically include
things like device names or host names to connect with, process numbers, and
baud rates.

298 Debugging with gdb

The target command does not repeat if you press RET again after executing
the command.

help target

Displays the names of all targets available. To display targets currently selected,
use either info target or info files (see Section 18.1 [Commands to Specify
Files], page 279).

help target name

Describe a particular target, including any parameters necessary to select it.

set gnutarget args

gdb uses its own library BFD to read your files. gdb knows whether it is
reading an executable, a core, or a .o file; however, you can specify the file
format with the set gnutarget command. Unlike most target commands,
with gnutarget the target refers to a program, not a machine.

Warning: To specify a file format with set gnutarget, you must
know the actual BFD name.

See Section 18.1 [Commands to Specify Files], page 279.

show gnutarget

Use the show gnutarget command to display what file format gnutarget is set
to read. If you have not set gnutarget, gdb will determine the file format for
each file automatically, and show gnutarget displays ‘The current BFD target

is "auto"’.

Here are some common targets (available, or not, depending on the GDB configuration):

target exec program

An executable file. ‘target exec program’ is the same as ‘exec-file program’.

target core filename

A core dump file. ‘target core filename’ is the same as ‘core-file
filename’.

target remote medium

A remote system connected to gdb via a serial line or network connection. This
command tells gdb to use its own remote protocol over medium for debugging.
See Chapter 20 [Remote Debugging], page 301.

For example, if you have a board connected to /dev/ttya on the machine
running gdb, you could say:

target remote /dev/ttya

target remote supports the load command. This is only useful if you have
some other way of getting the stub to the target system, and you can put it
somewhere in memory where it won’t get clobbered by the download.

target sim [simargs] ...
Builtin CPU simulator. gdb includes simulators for most architectures. In
general,

target sim

load

Chapter 19: Specifying a Debugging Target 299

run

works; however, you cannot assume that a specific memory map, device drivers,
or even basic I/O is available, although some simulators do provide these. For
info about any processor-specific simulator details, see the appropriate section
in Section 21.3 [Embedded Processors], page 334.

target native

Setup for local/native process debugging. Useful to make the run command
spawn native processes (likewise attach, etc.) even when set auto-connect-

native-target is off (see [set auto-connect-native-target], page 34).

Different targets are available on different configurations of gdb; your configuration may
have more or fewer targets.

Many remote targets require you to download the executable’s code once you’ve success-
fully established a connection. You may wish to control various aspects of this process.

set hash This command controls whether a hash mark ‘#’ is displayed while downloading
a file to the remote monitor. If on, a hash mark is displayed after each S-record
is successfully downloaded to the monitor.

show hash Show the current status of displaying the hash mark.

set debug monitor

Enable or disable display of communications messages between gdb and the
remote monitor.

show debug monitor

Show the current status of displaying communications between gdb and the
remote monitor.

load filename offset

Depending on what remote debugging facilities are configured into gdb, the
load command may be available. Where it exists, it is meant to make filename
(an executable) available for debugging on the remote system—by downloading,
or dynamic linking, for example. load also records the filename symbol table
in gdb, like the add-symbol-file command.

If your gdb does not have a load command, attempting to execute it gets the
error message “You can’t do that when your target is ...”

The file is loaded at whatever address is specified in the executable. For some
object file formats, you can specify the load address when you link the program;
for other formats, like a.out, the object file format specifies a fixed address.

It is also possible to tell gdb to load the executable file at a specific offset
described by the optional argument offset. When offset is provided, filename
must also be provided.

Depending on the remote side capabilities, gdb may be able to load programs
into flash memory.

load does not repeat if you press RET again after using it.

flash-erase

Erases all known flash memory regions on the target.

300 Debugging with gdb

19.3 Choosing Target Byte Order

Some types of processors, such as the MIPS, PowerPC, and Renesas SH, offer the ability
to run either big-endian or little-endian byte orders. Usually the executable or symbol will
include a bit to designate the endian-ness, and you will not need to worry about which to
use. However, you may still find it useful to adjust gdb’s idea of processor endian-ness
manually.

set endian big

Instruct gdb to assume the target is big-endian.

set endian little

Instruct gdb to assume the target is little-endian.

set endian auto

Instruct gdb to use the byte order associated with the executable.

show endian

Display gdb’s current idea of the target byte order.

If the set endian auto mode is in effect and no executable has been selected, then the
endianness used is the last one chosen either by one of the set endian big and set endian

little commands or by inferring from the last executable used. If no endianness has been
previously chosen, then the default for this mode is inferred from the target gdb has been
built for, and is little if the name of the target CPU has an el suffix and big otherwise.

Note that these commands merely adjust interpretation of symbolic data on the host,
and that they have absolutely no effect on the target system.

301

20 Debugging Remote Programs

If you are trying to debug a program running on a machine that cannot run gdb in the
usual way, it is often useful to use remote debugging. For example, you might use remote
debugging on an operating system kernel, or on a small system which does not have a
general purpose operating system powerful enough to run a full-featured debugger.

Some configurations of gdb have special serial or TCP/IP interfaces to make this work
with particular debugging targets. In addition, gdb comes with a generic serial protocol
(specific to gdb, but not specific to any particular target system) which you can use if you
write the remote stubs—the code that runs on the remote system to communicate with
gdb.

Other remote targets may be available in your configuration of gdb; use help target

to list them.

20.1 Connecting to a Remote Target

This section describes how to connect to a remote target, including the types of connections
and their differences, how to set up executable and symbol files on the host and target, and
the commands used for connecting to and disconnecting from the remote target.

20.1.1 Types of Remote Connections

gdb supports two types of remote connections, target remote mode and target

extended-remote mode. Note that many remote targets support only target remote

mode. There are several major differences between the two types of connections,
enumerated here:

Result of detach or program exit
With target remote mode: When the debugged program exits or you detach
from it, gdb disconnects from the target. When using gdbserver, gdbserver
will exit.

With target extended-remote mode: When the debugged program exits or you
detach from it, gdb remains connected to the target, even though no program
is running. You can rerun the program, attach to a running program, or use
monitor commands specific to the target.

When using gdbserver in this case, it does not exit unless it was invoked using
the --once option. If the --once option was not used, you can ask gdbserver to
exit using the monitor exit command (see [Monitor Commands for gdbserver],
page 309).

Specifying the program to debug
For both connection types you use the file command to specify the program
on the host system. If you are using gdbserver there are some differences in
how to specify the location of the program on the target.

With target remote mode: You must either specify the program to debug on
the gdbserver command line or use the --attach option (see [Attaching to a
Running Program], page 307).

302 Debugging with gdb

With target extended-remote mode: You may specify the program to debug
on the gdbserver command line, or you can load the program or attach to it
using gdb commands after connecting to gdbserver.

You can start gdbserver without supplying an initial command to run or pro-
cess ID to attach. To do this, use the --multi command line option. Then
you can connect using target extended-remote and start the program you
want to debug (see below for details on using the run command in this sce-
nario). Note that the conditions under which gdbserver terminates depend
on how gdb connects to it (target remote or target extended-remote). The
--multi option to gdbserver has no influence on that.

The run command
With target remote mode: The run command is not supported. Once a connec-
tion has been established, you can use all the usual gdb commands to examine
and change data. The remote program is already running, so you can use
commands like step and continue.

With target extended-remote mode: The run command is supported. The run
command uses the value set by set remote exec-file (see [set remote exec-
file], page 313) to select the program to run. Command line arguments are
supported, except for wildcard expansion and I/O redirection (see Section 4.3
[Arguments], page 36).

If you specify the program to debug on the command line, then the run com-
mand is not required to start execution, and you can resume using commands
like step and continue as with target remote mode.

Attaching With target remote mode: The gdb command attach is not supported. To
attach to a running program using gdbserver, you must use the --attach

option (see [Running gdbserver], page 307).

With target extended-remote mode: To attach to a running program, you may
use the attach command after the connection has been established. If you are
using gdbserver, you may also invoke gdbserver using the --attach option
(see [Running gdbserver], page 307).

Some remote targets allow gdb to determine the executable file running in the
process the debugger is attaching to. In such a case, gdb uses the value of
exec-file-mismatch to handle a possible mismatch between the executable
file name running in the process and the name of the current exec-file loaded
by gdb (see [set exec-file-mismatch], page 39).

20.1.2 Host and Target Files

gdb, running on the host, needs access to symbol and debugging information for your
program running on the target. This requires access to an unstripped copy of your program,
and possibly any associated symbol files. Note that this section applies equally to both
target remote mode and target extended-remote mode.

Some remote targets (see [qXfer executable filename read], page 757, and see Section E.7
[Host I/O Packets], page 770) allow gdb to access program files over the same connection
used to communicate with gdb. With such a target, if the remote program is unstripped,
the only command you need is target remote (or target extended-remote).

Chapter 20: Debugging Remote Programs 303

If the remote program is stripped, or the target does not support remote program file
access, start up gdb using the name of the local unstripped copy of your program as the
first argument, or use the file command. Use set sysroot to specify the location (on
the host) of target libraries (unless your gdb was compiled with the correct sysroot using
--with-sysroot). Alternatively, you may use set solib-search-path to specify how gdb
locates target libraries.

The symbol file and target libraries must exactly match the executable and libraries on
the target, with one exception: the files on the host system should not be stripped, even if
the files on the target system are. Mismatched or missing files will lead to confusing results
during debugging. On gnu/Linux targets, mismatched or missing files may also prevent
gdbserver from debugging multi-threaded programs.

20.1.3 Remote Connection Commands

gdb can communicate with the target over a serial line, a local Unix domain socket, or over
an IP network using TCP or UDP. In each case, gdb uses the same protocol for debug-
ging your program; only the medium carrying the debugging packets varies. The target

remote and target extended-remote commands establish a connection to the target. Both
commands accept the same arguments, which indicate the medium to use:

target remote serial-device

target extended-remote serial-device

Use serial-device to communicate with the target. For example, to use a serial
line connected to the device named /dev/ttyb:

target remote /dev/ttyb

If you’re using a serial line, you may want to give gdb the ‘--baud’ option, or
use the set serial baud command (see Section 20.4 [Remote Configuration],
page 311) before the target command.

target remote local-socket

target extended-remote local-socket

Use local-socket to communicate with the target. For example, to use a local
Unix domain socket bound to the file system entry /tmp/gdb-socket0:

target remote /tmp/gdb-socket0

Note that this command has the same form as the command to connect to
a serial line. gdb will automatically determine which kind of file you have
specified and will make the appropriate kind of connection. This feature is not
available if the host system does not support Unix domain sockets.

304 Debugging with gdb

target remote host:port

target remote [host]:port

target remote tcp:host:port

target remote tcp:[host]:port

target remote tcp4:host:port

target remote tcp6:host:port

target remote tcp6:[host]:port

target extended-remote host:port

target extended-remote [host]:port

target extended-remote tcp:host:port

target extended-remote tcp:[host]:port

target extended-remote tcp4:host:port

target extended-remote tcp6:host:port

target extended-remote tcp6:[host]:port

Debug using a TCP connection to port on host. The host may be either a host
name, a numeric IPv4 address, or a numeric IPv6 address (with or without the
square brackets to separate the address from the port); port must be a decimal
number. The host could be the target machine itself, if it is directly connected
to the net, or it might be a terminal server which in turn has a serial line to
the target.

For example, to connect to port 2828 on a terminal server named manyfarms:

target remote manyfarms:2828

To connect to port 2828 on a terminal server whose address is
2001:0db8:85a3:0000:0000:8a2e:0370:7334, you can either use the square
bracket syntax:

target remote [2001:0db8:85a3:0000:0000:8a2e:0370:7334]:2828

or explicitly specify the IPv6 protocol:

target remote tcp6:2001:0db8:85a3:0000:0000:8a2e:0370:7334:2828

This last example may be confusing to the reader, because there is no visible
separation between the hostname and the port number. Therefore, we rec-
ommend the user to provide IPv6 addresses using square brackets for clarity.
However, it is important to mention that for gdb there is no ambiguity: the
number after the last colon is considered to be the port number.

If your remote target is actually running on the same machine as your debugger
session (e.g. a simulator for your target running on the same host), you can omit
the hostname. For example, to connect to port 1234 on your local machine:

target remote :1234

Note that the colon is still required here.

Chapter 20: Debugging Remote Programs 305

target remote udp:host:port

target remote udp:[host]:port

target remote udp4:host:port

target remote udp6:[host]:port

target extended-remote udp:host:port

target extended-remote udp:host:port

target extended-remote udp:[host]:port

target extended-remote udp4:host:port

target extended-remote udp6:host:port

target extended-remote udp6:[host]:port

Debug using UDP packets to port on host. For example, to connect to UDP

port 2828 on a terminal server named manyfarms:

target remote udp:manyfarms:2828

When using a UDP connection for remote debugging, you should keep in mind
that the ‘U’ stands for “Unreliable”. UDP can silently drop packets on busy or
unreliable networks, which will cause havoc with your debugging session.

target remote | command

target extended-remote | command

Run command in the background and communicate with it using a pipe. The
command is a shell command, to be parsed and expanded by the system’s com-
mand shell, /bin/sh; it should expect remote protocol packets on its standard
input, and send replies on its standard output. You could use this to run a
stand-alone simulator that speaks the remote debugging protocol, to make net
connections using programs like ssh, or for other similar tricks.

If command closes its standard output (perhaps by exiting), gdb will try to
send it a SIGTERM signal. (If the program has already exited, this will have no
effect.)

Whenever gdb is waiting for the remote program, if you type the interrupt character
(often Ctrl-c), gdb attempts to stop the program. This may or may not succeed, depending
in part on the hardware and the serial drivers the remote system uses. If you type the
interrupt character once again, gdb displays this prompt:

Interrupted while waiting for the program.

Give up (and stop debugging it)? (y or n)

In target remote mode, if you type y, gdb abandons the remote debugging session. (If
you decide you want to try again later, you can use target remote again to connect once
more.) If you type n, gdb goes back to waiting.

In target extended-remote mode, typing n will leave gdb connected to the target.

detach When you have finished debugging the remote program, you can use the detach
command to release it from gdb control. Detaching from the target normally re-
sumes its execution, but the results will depend on your particular remote stub.
After the detach command in target remote mode, gdb is free to connect to
another target. In target extended-remote mode, gdb is still connected to
the target.

306 Debugging with gdb

disconnect

The disconnect command closes the connection to the target, and the target
is generally not resumed. It will wait for gdb (this instance or another one)
to connect and continue debugging. After the disconnect command, gdb is
again free to connect to another target.

monitor cmd

This command allows you to send arbitrary commands directly to the remote
monitor. Since gdb doesn’t care about the commands it sends like this, this
command is the way to extend gdb—you can add new commands that only
the external monitor will understand and implement.

20.2 Sending files to a remote system

Some remote targets offer the ability to transfer files over the same connection used to
communicate with gdb. This is convenient for targets accessible through other means, e.g.
gnu/Linux systems running gdbserver over a network interface. For other targets, e.g.
embedded devices with only a single serial port, this may be the only way to upload or
download files.

Not all remote targets support these commands.

remote put hostfile targetfile

Copy file hostfile from the host system (the machine running gdb) to targetfile
on the target system.

remote get targetfile hostfile

Copy file targetfile from the target system to hostfile on the host system.

remote delete targetfile

Delete targetfile from the target system.

20.3 Using the gdbserver Program

gdbserver is a control program for Unix-like systems, which allows you to connect your
program with a remote gdb via target remote or target extended-remote—but without
linking in the usual debugging stub.

gdbserver is not a complete replacement for the debugging stubs, because it requires
essentially the same operating-system facilities that gdb itself does. In fact, a system that
can run gdbserver to connect to a remote gdb could also run gdb locally! gdbserver is
sometimes useful nevertheless, because it is a much smaller program than gdb itself. It is
also easier to port than all of gdb, so you may be able to get started more quickly on a
new system by using gdbserver. Finally, if you develop code for real-time systems, you
may find that the tradeoffs involved in real-time operation make it more convenient to do
as much development work as possible on another system, for example by cross-compiling.
You can use gdbserver to make a similar choice for debugging.

gdb and gdbserver communicate via either a serial line or a TCP connection, using the
standard gdb remote serial protocol.

Warning: gdbserver does not have any built-in security. Do not run
gdbserver connected to any public network; a gdb connection to gdbserver

Chapter 20: Debugging Remote Programs 307

provides access to the target system with the same privileges as the user
running gdbserver.

20.3.1 Running gdbserver

Run gdbserver on the target system. You need a copy of the program you want to debug,
including any libraries it requires. gdbserver does not need your program’s symbol table,
so you can strip the program if necessary to save space. gdb on the host system does all
the symbol handling.

To use the server, you must tell it how to communicate with gdb; the name of your
program; and the arguments for your program. The usual syntax is:

target> gdbserver comm program [args ...]

comm is either a device name (to use a serial line), or a TCP hostname and portnumber,
or - or stdio to use stdin/stdout of gdbserver. For example, to debug Emacs with the
argument ‘foo.txt’ and communicate with gdb over the serial port /dev/com1:

target> gdbserver /dev/com1 emacs foo.txt

gdbserver waits passively for the host gdb to communicate with it.

To use a TCP connection instead of a serial line:
target> gdbserver host:2345 emacs foo.txt

The only difference from the previous example is the first argument, specifying that you
are communicating with the host gdb via TCP. The ‘host:2345’ argument means that
gdbserver is to expect a TCP connection from machine ‘host’ to local TCP port 2345.
(Currently, the ‘host’ part is ignored.) You can choose any number you want for the port
number as long as it does not conflict with any TCP ports already in use on the target
system (for example, 23 is reserved for telnet).1 You must use the same port number with
the host gdb target remote command.

The stdio connection is useful when starting gdbserver with ssh:
(gdb) target remote | ssh -T hostname gdbserver - hello

The ‘-T’ option to ssh is provided because we don’t need a remote pty, and we don’t
want escape-character handling. Ssh does this by default when a command is provided, the
flag is provided to make it explicit. You could elide it if you want to.

Programs started with stdio-connected gdbserver have /dev/null for stdin, and
stdout,stderr are sent back to gdb for display through a pipe connected to gdbserver.
Both stdout and stderr use the same pipe.

20.3.1.1 Attaching to a Running Program

On some targets, gdbserver can also attach to running programs. This is accomplished
via the --attach argument. The syntax is:

target> gdbserver --attach comm pid

pid is the process ID of a currently running process. It isn’t necessary to point gdbserver
at a binary for the running process.

In target extended-remote mode, you can also attach using the gdb attach command
(see [Attaching in Types of Remote Connections], page 302).

1 If you choose a port number that conflicts with another service, gdbserver prints an error message and
exits.

308 Debugging with gdb

You can debug processes by name instead of process ID if your target has the pidof

utility:

target> gdbserver --attach comm ‘pidof program‘

In case more than one copy of program is running, or program has multiple threads,
most versions of pidof support the -s option to only return the first process ID.

20.3.1.2 TCP port allocation lifecycle of gdbserver

This section applies only when gdbserver is run to listen on a TCP port.

gdbserver normally terminates after all of its debugged processes have terminated in
target remote mode. On the other hand, for target extended-remote, gdbserver stays
running even with no processes left. gdb normally terminates the spawned debugged pro-
cess on its exit, which normally also terminates gdbserver in the target remote mode.
Therefore, when the connection drops unexpectedly, and gdb cannot ask gdbserver to kill
its debugged processes, gdbserver stays running even in the target remote mode.

When gdbserver stays running, gdb can connect to it again later. Such reconnecting
is useful for features like [disconnected tracing], page 204. For completeness, at most one
gdb can be connected at a time.

By default, gdbserver keeps the listening TCP port open, so that subsequent connec-
tions are possible. However, if you start gdbserver with the --once option, it will stop
listening for any further connection attempts after connecting to the first gdb session. This
means no further connections to gdbserver will be possible after the first one. It also means
gdbserver will terminate after the first connection with remote gdb has closed, even for
unexpectedly closed connections and even in the target extended-remote mode. The
--once option allows reusing the same port number for connecting to multiple instances
of gdbserver running on the same host, since each instance closes its port after the first
connection.

20.3.1.3 Other Command-Line Arguments for gdbserver

You can use the --multi option to start gdbserver without specifying a program to debug
or a process to attach to. Then you can attach in target extended-remote mode and
run or attach to a program. For more information, see [–multi Option in Types of Remote
Connnections], page 302.

The --debug option tells gdbserver to display extra status information about the de-
bugging process. The --remote-debug option tells gdbserver to display remote protocol
debug output. The --debug-file=filename option tells gdbserver to write any debug
output to the given filename. These options are intended for gdbserver development and
for bug reports to the developers.

The --debug-format=option1[,option2,...] option tells gdbserver to include addi-
tional information in each output. Possible options are:

none Turn off all extra information in debugging output.

all Turn on all extra information in debugging output.

timestamps

Include a timestamp in each line of debugging output.

Chapter 20: Debugging Remote Programs 309

Options are processed in order. Thus, for example, if none appears last then no additional
information is added to debugging output.

The --wrapper option specifies a wrapper to launch programs for debugging. The option
should be followed by the name of the wrapper, then any command-line arguments to pass
to the wrapper, then -- indicating the end of the wrapper arguments.

gdbserver runs the specified wrapper program with a combined command line including
the wrapper arguments, then the name of the program to debug, then any arguments to the
program. The wrapper runs until it executes your program, and then gdb gains control.

You can use any program that eventually calls execve with its arguments as a wrapper.
Several standard Unix utilities do this, e.g. env and nohup. Any Unix shell script ending
with exec "$@" will also work.

For example, you can use env to pass an environment variable to the debugged program,
without setting the variable in gdbserver’s environment:

$ gdbserver --wrapper env LD_PRELOAD=libtest.so -- :2222 ./testprog

The --selftest option runs the self tests in gdbserver:

$ gdbserver --selftest

Ran 2 unit tests, 0 failed

These tests are disabled in release.

20.3.2 Connecting to gdbserver

The basic procedure for connecting to the remote target is:

• Run gdb on the host system.

• Make sure you have the necessary symbol files (see [Host and target files], page 302).
Load symbols for your application using the file command before you connect. Use
set sysroot to locate target libraries (unless your gdb was compiled with the correct
sysroot using --with-sysroot).

• Connect to your target (see Section 20.1 [Connecting to a Remote Target], page 301).
For TCP connections, you must start up gdbserver prior to using the target com-
mand. Otherwise you may get an error whose text depends on the host system, but
which usually looks something like ‘Connection refused’. Don’t use the load com-
mand in gdb when using target remote mode, since the program is already on the
target.

20.3.3 Monitor Commands for gdbserver

During a gdb session using gdbserver, you can use the monitor command to send special
requests to gdbserver. Here are the available commands.

monitor help

List the available monitor commands.

monitor set debug 0

monitor set debug 1

Disable or enable general debugging messages.

310 Debugging with gdb

monitor set remote-debug 0

monitor set remote-debug 1

Disable or enable specific debugging messages associated with the remote pro-
tocol (see Appendix E [Remote Protocol], page 719).

monitor set debug-file filename

monitor set debug-file

Send any debug output to the given file, or to stderr.

monitor set debug-format option1[,option2,...]
Specify additional text to add to debugging messages. Possible options are:

none Turn off all extra information in debugging output.

all Turn on all extra information in debugging output.

timestamps

Include a timestamp in each line of debugging output.

Options are processed in order. Thus, for example, if none appears last then
no additional information is added to debugging output.

monitor set libthread-db-search-path [PATH]

When this command is issued, path is a colon-separated list of directories
to search for libthread_db (see Section 4.10 [set libthread-db-search-path],
page 45). If you omit path, ‘libthread-db-search-path’ will be reset to its
default value.

The special entry ‘$pdir’ for ‘libthread-db-search-path’ is not supported in
gdbserver.

monitor exit

Tell gdbserver to exit immediately. This command should be followed by
disconnect to close the debugging session. gdbserver will detach from any
attached processes and kill any processes it created. Use monitor exit to ter-
minate gdbserver at the end of a multi-process mode debug session.

20.3.4 Tracepoints support in gdbserver

On some targets, gdbserver supports tracepoints, fast tracepoints and static tracepoints.

For fast or static tracepoints to work, a special library called the in-process agent (IPA),
must be loaded in the inferior process. This library is built and distributed as an inte-
gral part of gdbserver. In addition, support for static tracepoints requires building the
in-process agent library with static tracepoints support. At present, the UST (LTTng
Userspace Tracer, http://lttng.org/ust) tracing engine is supported. This support is
automatically available if UST development headers are found in the standard include path
when gdbserver is built, or if gdbserver was explicitly configured using --with-ust to
point at such headers. You can explicitly disable the support using --with-ust=no.

There are several ways to load the in-process agent in your program:

Specifying it as dependency at link time

You can link your program dynamically with the in-process agent library. On
most systems, this is accomplished by adding -linproctrace to the link com-
mand.

http://lttng.org/ust

Chapter 20: Debugging Remote Programs 311

Using the system’s preloading mechanisms

You can force loading the in-process agent at startup time by using your sys-
tem’s support for preloading shared libraries. Many Unixes support the concept
of preloading user defined libraries. In most cases, you do that by specifying
LD_PRELOAD=libinproctrace.so in the environment. See also the description
of gdbserver’s --wrapper command line option.

Using gdb to force loading the agent at run time

On some systems, you can force the inferior to load a shared library, by calling
a dynamic loader function in the inferior that takes care of dynamically looking
up and loading a shared library. On most Unix systems, the function is dlopen.
You’ll use the call command for that. For example:

(gdb) call dlopen ("libinproctrace.so", ...)

Note that on most Unix systems, for the dlopen function to be available, the
program needs to be linked with -ldl.

On systems that have a userspace dynamic loader, like most Unix systems, when you
connect to gdbserver using target remote, you’ll find that the program is stopped at
the dynamic loader’s entry point, and no shared library has been loaded in the program’s
address space yet, including the in-process agent. In that case, before being able to use any
of the fast or static tracepoints features, you need to let the loader run and load the shared
libraries. The simplest way to do that is to run the program to the main procedure. E.g.,
if debugging a C or C++ program, start gdbserver like so:

$ gdbserver :9999 myprogram

Start GDB and connect to gdbserver like so, and run to main:

$ gdb myprogram

(gdb) target remote myhost:9999

0x00007f215893ba60 in ?? () from /lib64/ld-linux-x86-64.so.2

(gdb) b main

(gdb) continue

The in-process tracing agent library should now be loaded into the process; you can
confirm it with the info sharedlibrary command, which will list libinproctrace.so as
loaded in the process. You are now ready to install fast tracepoints, list static tracepoint
markers, probe static tracepoints markers, and start tracing.

20.4 Remote Configuration

This section documents the configuration options available when debugging remote pro-
grams. For the options related to the File I/O extensions of the remote protocol, see
[system], page 784.

set remoteaddresssize bits

Set the maximum size of address in a memory packet to the specified number
of bits. gdb will mask off the address bits above that number, when it passes
addresses to the remote target. The default value is the number of bits in the
target’s address.

show remoteaddresssize

Show the current value of remote address size in bits.

312 Debugging with gdb

set serial baud n

Set the baud rate for the remote serial I/O to n baud. The value is used to set
the speed of the serial port used for debugging remote targets.

show serial baud

Show the current speed of the remote connection.

set serial parity parity

Set the parity for the remote serial I/O. Supported values of parity are: even,
none, and odd. The default is none.

show serial parity

Show the current parity of the serial port.

set remotebreak

If set to on, gdb sends a BREAK signal to the remote when you type Ctrl-c

to interrupt the program running on the remote. If set to off, gdb sends the
‘Ctrl-C’ character instead. The default is off, since most remote systems expect
to see ‘Ctrl-C’ as the interrupt signal.

show remotebreak

Show whether gdb sends BREAK or ‘Ctrl-C’ to interrupt the remote program.

set remoteflow on

set remoteflow off

Enable or disable hardware flow control (RTS/CTS) on the serial port used to
communicate to the remote target.

show remoteflow

Show the current setting of hardware flow control.

set remotelogbase base

Set the base (a.k.a. radix) of logging serial protocol communications to base.
Supported values of base are: ascii, octal, and hex. The default is ascii.

show remotelogbase

Show the current setting of the radix for logging remote serial protocol.

set remotelogfile file

Record remote serial communications on the named file. The default is not to
record at all.

show remotelogfile

Show the current setting of the file name on which to record the serial commu-
nications.

set remotetimeout num

Set the timeout limit to wait for the remote target to respond to num seconds.
The default is 2 seconds.

show remotetimeout

Show the current number of seconds to wait for the remote target responses.

Chapter 20: Debugging Remote Programs 313

set remote hardware-watchpoint-limit limit

set remote hardware-breakpoint-limit limit

Restrict gdb to using limit remote hardware watchpoints or breakpoints. The
limit can be set to 0 to disable hardware watchpoints or breakpoints, and
unlimited for unlimited watchpoints or breakpoints.

show remote hardware-watchpoint-limit

show remote hardware-breakpoint-limit

Show the current limit for the number of hardware watchpoints or breakpoints
that gdb can use.

set remote hardware-watchpoint-length-limit limit

Restrict gdb to using limit bytes for the maximum length of a remote hardware
watchpoint. A limit of 0 disables hardware watchpoints and unlimited allows
watchpoints of any length.

show remote hardware-watchpoint-length-limit

Show the current limit (in bytes) of the maximum length of a remote hardware
watchpoint.

set remote exec-file filename

show remote exec-file

Select the file used for run with target extended-remote. This should be set
to a filename valid on the target system. If it is not set, the target will use a
default filename (e.g. the last program run).

set remote interrupt-sequence

Allow the user to select one of ‘Ctrl-C’, a BREAK or ‘BREAK-g’ as the sequence
to the remote target in order to interrupt the execution. ‘Ctrl-C’ is a default.
Some system prefers BREAK which is high level of serial line for some certain
time. Linux kernel prefers ‘BREAK-g’, a.k.a Magic SysRq g. It is BREAK signal
followed by character g.

show remote interrupt-sequence

Show which of ‘Ctrl-C’, BREAK or BREAK-g is sent by gdb to interrupt the
remote program. BREAK-g is BREAK signal followed by g and also known as
Magic SysRq g.

set remote interrupt-on-connect

Specify whether interrupt-sequence is sent to remote target when gdb connects
to it. This is mostly needed when you debug Linux kernel. Linux kernel expects
BREAK followed by g which is known as Magic SysRq g in order to connect gdb.

show remote interrupt-on-connect

Show whether interrupt-sequence is sent to remote target when gdb connects
to it.

set tcp auto-retry on

Enable auto-retry for remote TCP connections. This is useful if the remote
debugging agent is launched in parallel with gdb; there is a race condition
because the agent may not become ready to accept the connection before gdb
attempts to connect. When auto-retry is enabled, if the initial attempt to

314 Debugging with gdb

connect fails, gdb reattempts to establish the connection using the timeout
specified by set tcp connect-timeout.

set tcp auto-retry off

Do not auto-retry failed TCP connections.

show tcp auto-retry

Show the current auto-retry setting.

set tcp connect-timeout seconds

set tcp connect-timeout unlimited

Set the timeout for establishing a TCP connection to the remote target to
seconds. The timeout affects both polling to retry failed connections (enabled
by set tcp auto-retry on) and waiting for connections that are merely slow
to complete, and represents an approximate cumulative value. If seconds is
unlimited, there is no timeout and gdb will keep attempting to establish a
connection forever, unless interrupted with Ctrl-c. The default is 15 seconds.

show tcp connect-timeout

Show the current connection timeout setting.

The gdb remote protocol autodetects the packets supported by your debugging stub. If
you need to override the autodetection, you can use these commands to enable or disable
individual packets. Each packet can be set to ‘on’ (the remote target supports this packet),
‘off’ (the remote target does not support this packet), or ‘auto’ (detect remote target
support for this packet). They all default to ‘auto’. For more information about each
packet, see Appendix E [Remote Protocol], page 719.

During normal use, you should not have to use any of these commands. If you do, that
may be a bug in your remote debugging stub, or a bug in gdb. You may want to report
the problem to the gdb developers.

For each packet name, the command to enable or disable the packet is set remote

name-packet. The available settings are:

Command Name Remote Packet Related Features

fetch-register p info registers

set-register P set

binary-download X load, set

read-aux-vector qXfer:auxv:read info auxv

symbol-lookup qSymbol Detecting multiple
threads

attach vAttach attach

verbose-resume vCont Stepping or resum-
ing multiple threads

Chapter 20: Debugging Remote Programs 315

run vRun run

software-breakpoint Z0 break

hardware-breakpoint Z1 hbreak

write-watchpoint Z2 watch

read-watchpoint Z3 rwatch

access-watchpoint Z4 awatch

pid-to-exec-file qXfer:exec-file:read attach, run

target-features qXfer:features:read set architecture

library-info qXfer:libraries:read info

sharedlibrary

memory-map qXfer:memory-map:read info mem

read-sdata-object qXfer:sdata:read print $_sdata

read-siginfo-object qXfer:siginfo:read print $_siginfo

write-siginfo-object qXfer:siginfo:write set $_siginfo

threads qXfer:threads:read info threads

get-thread-local-

storage-address

qGetTLSAddr Displaying
__thread variables

get-thread-

information-block-

address

qGetTIBAddr Display MS-
Windows Thread
Information Block.

search-memory qSearch:memory find

supported-packets qSupported Remote com-
munications
parameters

catch-syscalls QCatchSyscalls catch syscall

pass-signals QPassSignals handle signal

316 Debugging with gdb

program-signals QProgramSignals handle signal

hostio-close-packet vFile:close remote get, remote
put

hostio-open-packet vFile:open remote get, remote
put

hostio-pread-packet vFile:pread remote get, remote
put

hostio-pwrite-packet vFile:pwrite remote get, remote
put

hostio-unlink-packet vFile:unlink remote delete

hostio-readlink-

packet

vFile:readlink Host I/O

hostio-fstat-packet vFile:fstat Host I/O

hostio-setfs-packet vFile:setfs Host I/O

noack-packet QStartNoAckMode Packet acknowledg-
ment

osdata qXfer:osdata:read info os

query-attached qAttached Querying remote
process attach
state.

query-fixed-thread-

list

qFixedThreadList Querying if the re-
mote target’s thread
list is fixed.

trace-buffer-size QTBuffer:size set trace-buffer-

size

trace-status qTStatus tstatus

traceframe-info qXfer:traceframe-info:readTraceframe info

install-in-trace InstallInTrace Install tracepoint in
tracing

Chapter 20: Debugging Remote Programs 317

disable-randomization QDisableRandomization set

disable-randomization

startup-with-shell QStartupWithShell set startup-with-

shell

environment-hex-

encoded

QEnvironmentHexEncoded set environment

environment-unset QEnvironmentUnset unset environment

environment-reset QEnvironmentReset Reset the

inferior

environment

(i.e., unset

user-set

variables)

set-working-dir QSetWorkingDir set cwd

conditional-breakpoints-

packet

Z0 and Z1 Support for

target-side

breakpoint

condition

evaluation

multiprocess-extensionsmultiprocess

extensions

Debug multiple pro-
cesses and remote
process PID aware-
ness

multi-address-space-

extensions

multi-address-space-

feature extensions

Access multiple ad-
dress spaces via op-
tional address space
argument

swbreak-feature swbreak stop reason break

hwbreak-feature hwbreak stop reason hbreak

fork-event-feature fork stop reason fork

vfork-event-feature vfork stop reason vfork

exec-event-feature exec stop reason exec

318 Debugging with gdb

thread-events QThreadEvents Tracking thread life-
time.

no-resumed-stop-reply no resumed thread left

stop reply

Tracking thread life-
time.

unavailable-stop-

reply

thread unavailable

stop reply

Tracking thread life-
time.

20.5 Implementing a Remote Stub

The stub files provided with gdb implement the target side of the communication protocol,
and the gdb side is implemented in the gdb source file remote.c. Normally, you can simply
allow these subroutines to communicate, and ignore the details. (If you’re implementing
your own stub file, you can still ignore the details: start with one of the existing stub files.
sparc-stub.c is the best organized, and therefore the easiest to read.)

To debug a program running on another machine (the debugging target machine), you
must first arrange for all the usual prerequisites for the program to run by itself. For
example, for a C program, you need:

1. A startup routine to set up the C runtime environment; these usually have a name like
crt0. The startup routine may be supplied by your hardware supplier, or you may
have to write your own.

2. A C subroutine library to support your program’s subroutine calls, notably managing
input and output.

3. A way of getting your program to the other machine—for example, a download pro-
gram. These are often supplied by the hardware manufacturer, but you may have to
write your own from hardware documentation.

The next step is to arrange for your program to use a serial port to communicate with
the machine where gdb is running (the host machine). In general terms, the scheme looks
like this:

On the host,
gdb already understands how to use this protocol; when everything else is
set up, you can simply use the ‘target remote’ command (see Chapter 19
[Specifying a Debugging Target], page 297).

On the target,
you must link with your program a few special-purpose subroutines that imple-
ment the gdb remote serial protocol. The file containing these subroutines is
called a debugging stub.

On certain remote targets, you can use an auxiliary program gdbserver instead
of linking a stub into your program. See Section 20.3 [Using the gdbserver

Program], page 306, for details.

The debugging stub is specific to the architecture of the remote machine; for example,
use sparc-stub.c to debug programs on sparc boards.

Chapter 20: Debugging Remote Programs 319

These working remote stubs are distributed with gdb:

i386-stub.c

For Intel 386 and compatible architectures.

m68k-stub.c

For Motorola 680x0 architectures.

sh-stub.c

For Renesas SH architectures.

sparc-stub.c

For sparc architectures.

sparcl-stub.c

For Fujitsu sparclite architectures.

The README file in the gdb distribution may list other recently added stubs.

20.5.1 What the Stub Can Do for You

The debugging stub for your architecture supplies these three subroutines:

set_debug_traps

This routine arranges for handle_exception to run when your program stops.
You must call this subroutine explicitly in your program’s startup code.

handle_exception

This is the central workhorse, but your program never calls it explicitly—the
setup code arranges for handle_exception to run when a trap is triggered.

handle_exception takes control when your program stops during execution
(for example, on a breakpoint), and mediates communications with gdb on
the host machine. This is where the communications protocol is implemented;
handle_exception acts as the gdb representative on the target machine. It
begins by sending summary information on the state of your program, then con-
tinues to execute, retrieving and transmitting any information gdb needs, until
you execute a gdb command that makes your program resume; at that point,
handle_exception returns control to your own code on the target machine.

breakpoint

Use this auxiliary subroutine to make your program contain a breakpoint. De-
pending on the particular situation, this may be the only way for gdb to get
control. For instance, if your target machine has some sort of interrupt button,
you won’t need to call this; pressing the interrupt button transfers control to
handle_exception—in effect, to gdb. On some machines, simply receiving
characters on the serial port may also trigger a trap; again, in that situation,
you don’t need to call breakpoint from your own program—simply running
‘target remote’ from the host gdb session gets control.

Call breakpoint if none of these is true, or if you simply want to make certain
your program stops at a predetermined point for the start of your debugging
session.

320 Debugging with gdb

20.5.2 What You Must Do for the Stub

The debugging stubs that come with gdb are set up for a particular chip architecture, but
they have no information about the rest of your debugging target machine.

First of all you need to tell the stub how to communicate with the serial port.

int getDebugChar()

Write this subroutine to read a single character from the serial port. It may be
identical to getchar for your target system; a different name is used to allow
you to distinguish the two if you wish.

void putDebugChar(int)

Write this subroutine to write a single character to the serial port. It may be
identical to putchar for your target system; a different name is used to allow
you to distinguish the two if you wish.

If you want gdb to be able to stop your program while it is running, you need to use
an interrupt-driven serial driver, and arrange for it to stop when it receives a ^C (‘\003’,
the control-C character). That is the character which gdb uses to tell the remote system
to stop.

Getting the debugging target to return the proper status to gdb probably requires
changes to the standard stub; one quick and dirty way is to just execute a breakpoint
instruction (the “dirty” part is that gdb reports a SIGTRAP instead of a SIGINT).

Other routines you need to supply are:

void exceptionHandler (int exception_number, void *exception_address)

Write this function to install exception address in the exception handling ta-
bles. You need to do this because the stub does not have any way of knowing
what the exception handling tables on your target system are like (for exam-
ple, the processor’s table might be in rom, containing entries which point to a
table in ram). The exception number specifies the exception which should be
changed; its meaning is architecture-dependent (for example, different numbers
might represent divide by zero, misaligned access, etc). When this exception
occurs, control should be transferred directly to exception address, and the
processor state (stack, registers, and so on) should be just as it is when a pro-
cessor exception occurs. So if you want to use a jump instruction to reach
exception address, it should be a simple jump, not a jump to subroutine.

For the 386, exception address should be installed as an interrupt gate so that
interrupts are masked while the handler runs. The gate should be at privilege
level 0 (the most privileged level). The sparc and 68k stubs are able to mask
interrupts themselves without help from exceptionHandler.

void flush_i_cache()

On sparc and sparclite only, write this subroutine to flush the instruction
cache, if any, on your target machine. If there is no instruction cache, this
subroutine may be a no-op.

On target machines that have instruction caches, gdb requires this function to
make certain that the state of your program is stable.

Chapter 20: Debugging Remote Programs 321

You must also make sure this library routine is available:

void *memset(void *, int, int)

This is the standard library function memset that sets an area of memory to a
known value. If you have one of the free versions of libc.a, memset can be found
there; otherwise, you must either obtain it from your hardware manufacturer,
or write your own.

If you do not use the GNU C compiler, you may need other standard library subroutines
as well; this varies from one stub to another, but in general the stubs are likely to use any
of the common library subroutines which gcc generates as inline code.

20.5.3 Putting it All Together

In summary, when your program is ready to debug, you must follow these steps.

1. Make sure you have defined the supporting low-level routines (see Section 20.5.2 [What
You Must Do for the Stub], page 320):

getDebugChar, putDebugChar,
flush_i_cache, memset, exceptionHandler.

2. Insert these lines in your program’s startup code, before the main procedure is called:
set_debug_traps();

breakpoint();

On some machines, when a breakpoint trap is raised, the hardware automatically makes
the PC point to the instruction after the breakpoint. If your machine doesn’t do that,
you may need to adjust handle_exception to arrange for it to return to the instruction
after the breakpoint on this first invocation, so that your program doesn’t keep hitting
the initial breakpoint instead of making progress.

3. For the 680x0 stub only, you need to provide a variable called exceptionHook. Nor-
mally you just use:

void (*exceptionHook)() = 0;

but if before calling set_debug_traps, you set it to point to a function in your program,
that function is called when gdb continues after stopping on a trap (for example, bus
error). The function indicated by exceptionHook is called with one parameter: an int

which is the exception number.

4. Compile and link together: your program, the gdb debugging stub for your target
architecture, and the supporting subroutines.

5. Make sure you have a serial connection between your target machine and the gdb host,
and identify the serial port on the host.

6. Download your program to your target machine (or get it there by whatever means the
manufacturer provides), and start it.

7. Start gdb on the host, and connect to the target (see Section 20.1 [Connecting to a
Remote Target], page 301).

323

21 Configuration-Specific Information

While nearly all gdb commands are available for all native and cross versions of the de-
bugger, there are some exceptions. This chapter describes things that are only available in
certain configurations.

There are three major categories of configurations: native configurations, where the host
and target are the same, embedded operating system configurations, which are usually the
same for several different processor architectures, and bare embedded processors, which are
quite different from each other.

21.1 Native

This section describes details specific to particular native configurations.

21.1.1 BSD libkvm Interface

BSD-derived systems (FreeBSD/NetBSD/OpenBSD) have a kernel memory interface that
provides a uniform interface for accessing kernel virtual memory images, including live
systems and crash dumps. gdb uses this interface to allow you to debug live kernels and
kernel crash dumps on many native BSD configurations. This is implemented as a special
kvm debugging target. For debugging a live system, load the currently running kernel into
gdb and connect to the kvm target:

(gdb) target kvm

For debugging crash dumps, provide the file name of the crash dump as an argument:

(gdb) target kvm /var/crash/bsd.0

Once connected to the kvm target, the following commands are available:

kvm pcb Set current context from the Process Control Block (PCB) address.

kvm proc Set current context from proc address. This command isn’t available on modern
FreeBSD systems.

21.1.2 Process Information

Some operating systems provide interfaces to fetch additional information about running
processes beyond memory and per-thread register state. If gdb is configured for an op-
erating system with a supported interface, the command info proc is available to report
information about the process running your program, or about any process running on your
system.

One supported interface is a facility called ‘/proc’ that can be used to examine the image
of a running process using file-system subroutines. This facility is supported on gnu/Linux
and Solaris systems.

On FreeBSD and NetBSD systems, system control nodes are used to query process
information.

In addition, some systems may provide additional process information in core files. Note
that a core file may include a subset of the information available from a live process. Process
information is currently available from cores created on gnu/Linux and FreeBSD systems.

324 Debugging with gdb

info proc

info proc process-id

Summarize available information about a process. If a process ID is specified by
process-id, display information about that process; otherwise display informa-
tion about the program being debugged. The summary includes the debugged
process ID, the command line used to invoke it, its current working directory,
and its executable file’s absolute file name.

On some systems, process-id can be of the form ‘[pid]/tid’ which specifies
a certain thread ID within a process. If the optional pid part is missing, it
means a thread from the process being debugged (the leading ‘/’ still needs to
be present, or else gdb will interpret the number as a process ID rather than a
thread ID).

info proc cmdline

Show the original command line of the process. This command is supported on
gnu/Linux, FreeBSD and NetBSD.

info proc cwd

Show the current working directory of the process. This command is supported
on gnu/Linux, FreeBSD and NetBSD.

info proc exe

Show the name of executable of the process. This command is supported on
gnu/Linux, FreeBSD and NetBSD.

info proc files

Show the file descriptors open by the process. For each open file descriptor, gdb
shows its number, type (file, directory, character device, socket), file pointer
offset, and the name of the resource open on the descriptor. The resource name
can be a file name (for files, directories, and devices) or a protocol followed
by socket address (for network connections). This command is supported on
FreeBSD.

This example shows the open file descriptors for a process using a tty for stan-
dard input and output as well as two network sockets:

(gdb) info proc files 22136

process 22136

Open files:

FD Type Offset Flags Name

text file - r-------- /usr/bin/ssh

ctty chr - rw------- /dev/pts/20

cwd dir - r-------- /usr/home/john

root dir - r-------- /

0 chr 0x32933a4 rw------- /dev/pts/20

1 chr 0x32933a4 rw------- /dev/pts/20

2 chr 0x32933a4 rw------- /dev/pts/20

3 socket 0x0 rw----n-- tcp4 10.0.1.2:53014 -> 10.0.1.10:22

4 socket 0x0 rw------- unix stream:/tmp/ssh-FIt89oAzOn5f/agent.2456

info proc mappings

Report the memory address space ranges accessible in a process. On Solaris,
FreeBSD and NetBSD systems, each memory range includes information on

Chapter 21: Configuration-Specific Information 325

whether the process has read, write, or execute access rights to each range. On
gnu/Linux, FreeBSD and NetBSD systems, each memory range includes the
object file which is mapped to that range.

info proc stat

info proc status

Show additional process-related information, including the user ID and group
ID; virtual memory usage; the signals that are pending, blocked, and ignored;
its TTY; its consumption of system and user time; its stack size; its ‘nice’ value;
etc. These commands are supported on gnu/Linux, FreeBSD and NetBSD.

For gnu/Linux systems, see the ‘proc’ man page for more information (type
man 5 proc from your shell prompt).

For FreeBSD and NetBSD systems, info proc stat is an alias for info proc

status.

info proc all

Show all the information about the process described under all of the above
info proc subcommands.

set procfs-trace

This command enables and disables tracing of procfs API calls.

show procfs-trace

Show the current state of procfs API call tracing.

set procfs-file file

Tell gdb to write procfs API trace to the named file. gdb appends the trace
info to the previous contents of the file. The default is to display the trace on
the standard output.

show procfs-file

Show the file to which procfs API trace is written.

proc-trace-entry

proc-trace-exit

proc-untrace-entry

proc-untrace-exit

These commands enable and disable tracing of entries into and exits from the
syscall interface.

info pidlist

For QNX Neutrino only, this command displays the list of all the processes and
all the threads within each process.

info meminfo

For QNX Neutrino only, this command displays the list of all mapinfos.

21.1.3 Features for Debugging djgpp Programs

djgpp is a port of the gnu development tools to MS-DOS and MS-Windows. djgpp
programs are 32-bit protected-mode programs that use the DPMI (DOS Protected-Mode
Interface) API to run on top of real-mode DOS systems and their emulations.

326 Debugging with gdb

gdb supports native debugging of djgpp programs, and defines a few commands specific
to the djgpp port. This subsection describes those commands.

info dos This is a prefix of djgpp-specific commands which print information about the
target system and important OS structures.

info dos sysinfo

This command displays assorted information about the underlying platform:
the CPU type and features, the OS version and flavor, the DPMI version, and
the available conventional and DPMI memory.

info dos gdt

info dos ldt

info dos idt

These 3 commands display entries from, respectively, Global, Local, and Inter-
rupt Descriptor Tables (GDT, LDT, and IDT). The descriptor tables are data
structures which store a descriptor for each segment that is currently in use.
The segment’s selector is an index into a descriptor table; the table entry for
that index holds the descriptor’s base address and limit, and its attributes and
access rights.

A typical djgpp program uses 3 segments: a code segment, a data segment
(used for both data and the stack), and a DOS segment (which allows access to
DOS/BIOS data structures and absolute addresses in conventional memory).
However, the DPMI host will usually define additional segments in order to
support the DPMI environment.

These commands allow to display entries from the descriptor tables. Without
an argument, all entries from the specified table are displayed. An argument,
which should be an integer expression, means display a single entry whose index
is given by the argument. For example, here’s a convenient way to display
information about the debugged program’s data segment:

(gdb) info dos ldt $ds

0x13f: base=0x11970000 limit=0x0009ffff 32-Bit Data (Read/Write, Exp-up)

This comes in handy when you want to see whether a pointer is outside the
data segment’s limit (i.e. garbled).

info dos pde

info dos pte

These two commands display entries from, respectively, the Page Directory and
the Page Tables. Page Directories and Page Tables are data structures which
control how virtual memory addresses are mapped into physical addresses. A
Page Table includes an entry for every page of memory that is mapped into the
program’s address space; there may be several Page Tables, each one holding
up to 4096 entries. A Page Directory has up to 4096 entries, one each for every
Page Table that is currently in use.

Without an argument, info dos pde displays the entire Page Directory, and
info dos pte displays all the entries in all of the Page Tables. An argument,
an integer expression, given to the info dos pde command means display only
that entry from the Page Directory table. An argument given to the info dos

Chapter 21: Configuration-Specific Information 327

pte command means display entries from a single Page Table, the one pointed
to by the specified entry in the Page Directory.

These commands are useful when your program uses DMA (Direct Memory
Access), which needs physical addresses to program the DMA controller.

These commands are supported only with some DPMI servers.

info dos address-pte addr

This command displays the Page Table entry for a specified linear address. The
argument addr is a linear address which should already have the appropriate
segment’s base address added to it, because this command accepts addresses
which may belong to any segment. For example, here’s how to display the Page
Table entry for the page where a variable i is stored:
(gdb) info dos address-pte __djgpp_base_address + (char *)&i

Page Table entry for address 0x11a00d30:

Base=0x02698000 Dirty Acc. Not-Cached Write-Back Usr Read-Write +0xd30

This says that i is stored at offset 0xd30 from the page whose physical base
address is 0x02698000, and shows all the attributes of that page.

Note that you must cast the addresses of variables to a char *, since otherwise
the value of __djgpp_base_address, the base address of all variables and func-
tions in a djgpp program, will be added using the rules of C pointer arithmetics:
if i is declared an int, gdb will add 4 times the value of __djgpp_base_address
to the address of i.

Here’s another example, it displays the Page Table entry for the transfer buffer:
(gdb) info dos address-pte *((unsigned *)&_go32_info_block + 3)

Page Table entry for address 0x29110:

Base=0x00029000 Dirty Acc. Not-Cached Write-Back Usr Read-Write +0x110

(The + 3 offset is because the transfer buffer’s address is the 3rd member of the
_go32_info_block structure.) The output clearly shows that this DPMI server
maps the addresses in conventional memory 1:1, i.e. the physical (0x00029000
+ 0x110) and linear (0x29110) addresses are identical.

This command is supported only with some DPMI servers.

In addition to native debugging, the DJGPP port supports remote debugging via a serial
data link. The following commands are specific to remote serial debugging in the DJGPP
port of gdb.

set com1base addr

This command sets the base I/O port address of the COM1 serial port.

set com1irq irq

This command sets the Interrupt Request (IRQ) line to use for the COM1 serial
port.

There are similar commands ‘set com2base’, ‘set com3irq’, etc. for setting the
port address and the IRQ lines for the other 3 COM ports.

The related commands ‘show com1base’, ‘show com1irq’ etc. display the cur-
rent settings of the base address and the IRQ lines used by the COM ports.

info serial

This command prints the status of the 4 DOS serial ports. For each port,
it prints whether it’s active or not, its I/O base address and IRQ number,

328 Debugging with gdb

whether it uses a 16550-style FIFO, its baudrate, and the counts of various
errors encountered so far.

21.1.4 Features for Debugging MS Windows PE Executables

gdb supports native debugging of MSWindows programs, including DLLs with and without
symbolic debugging information.

MS-Windows programs that call SetConsoleMode to switch off the special meaning of
the ‘Ctrl-C’ keystroke cannot be interrupted by typing C-c. For this reason, gdb on MS-
Windows supports C-BREAK as an alternative interrupt key sequence, which can be used to
interrupt the debuggee even if it ignores C-c.

There are various additional Cygwin-specific commands, described in this section. Work-
ing with DLLs that have no debugging symbols is described in Section 21.1.4.1 [Non-debug
DLL Symbols], page 329.

info w32 This is a prefix of MS Windows-specific commands which print information
about the target system and important OS structures.

info w32 selector

This command displays information returned by the Win32 API
GetThreadSelectorEntry function. It takes an optional argument that is
evaluated to a long value to give the information about this given selector.
Without argument, this command displays information about the six segment
registers.

info w32 thread-information-block

This command displays thread specific information stored in the Thread Infor-
mation Block (readable on the X86 CPU family using $fs selector for 32-bit
programs and $gs for 64-bit programs).

signal-event id

This command signals an event with user-provided id. Used to resume crashing
process when attached to it using MS-Windows JIT debugging (AeDebug).

To use it, create or edit the following keys in HKLM\SOFTWARE\Microsoft\Windows
NT\CurrentVersion\AeDebug and/or HKLM\SOFTWARE\Wow6432Node\Microsoft\Windows
NT\CurrentVersion\AeDebug (for x86 64 versions):

− Debugger (REG SZ) — a command to launch the debugger. Suggested
command is: fully-qualified-path-to-gdb.exe -ex "attach %ld" -ex

"signal-event %ld" -ex "continue".

The first %ld will be replaced by the process ID of the crashing process, the
second %ld will be replaced by the ID of the event that blocks the crashing
process, waiting for gdb to attach.

− Auto (REG SZ) — either 1 or 0. 1 will make the system run debugger
specified by the Debugger key automatically, 0 will cause a dialog box with
“OK” and “Cancel” buttons to appear, which allows the user to either
terminate the crashing process (OK) or debug it (Cancel).

set cygwin-exceptions mode

Ifmode is on, gdb will break on exceptions that happen inside the Cygwin DLL.
If mode is off, gdb will delay recognition of exceptions, and may ignore some

Chapter 21: Configuration-Specific Information 329

exceptions which seem to be caused by internal Cygwin DLL “bookkeeping”.
This option is meant primarily for debugging the Cygwin DLL itself; the default
value is off to avoid annoying gdb users with false SIGSEGV signals.

show cygwin-exceptions

Displays whether gdb will break on exceptions that happen inside the Cygwin
DLL itself.

set new-console mode

If mode is on the debuggee will be started in a new console on next start. If
mode is off, the debuggee will be started in the same console as the debugger.

show new-console

Displays whether a new console is used when the debuggee is started.

set new-group mode

This boolean value controls whether the debuggee should start a new group or
stay in the same group as the debugger. This affects the way the Windows OS
handles ‘Ctrl-C’.

show new-group

Displays current value of new-group boolean.

set debugevents

This boolean value adds debug output concerning kernel events related to the
debuggee seen by the debugger. This includes events that signal thread and
process creation and exit, DLL loading and unloading, console interrupts, and
debugging messages produced by the Windows OutputDebugString API call.

set debugexec

This boolean value adds debug output concerning execute events (such as re-
sume thread) seen by the debugger.

set debugexceptions

This boolean value adds debug output concerning exceptions in the debuggee
seen by the debugger.

set debugmemory

This boolean value adds debug output concerning debuggee memory reads and
writes by the debugger.

set shell This boolean values specifies whether the debuggee is called via a shell or di-
rectly (default value is on).

show shell

Displays if the debuggee will be started with a shell.

21.1.4.1 Support for DLLs without Debugging Symbols

Very often on windows, some of the DLLs that your program relies on do not include
symbolic debugging information (for example, kernel32.dll). When gdb doesn’t recognize
any debugging symbols in a DLL, it relies on the minimal amount of symbolic information
contained in the DLL’s export table. This section describes working with such symbols,
known internally to gdb as “minimal symbols”.

330 Debugging with gdb

Note that before the debugged program has started execution, no DLLs will have been
loaded. The easiest way around this problem is simply to start the program — either by
setting a breakpoint or letting the program run once to completion.

21.1.4.2 DLL Name Prefixes

In keeping with the naming conventions used by the Microsoft debugging tools, DLL
export symbols are made available with a prefix based on the DLL name, for instance
KERNEL32!CreateFileA. The plain name is also entered into the symbol table, so
CreateFileA is often sufficient. In some cases there will be name clashes within a program
(particularly if the executable itself includes full debugging symbols) necessitating the use
of the fully qualified name when referring to the contents of the DLL. Use single-quotes
around the name to avoid the exclamation mark (“!”) being interpreted as a language
operator.

Note that the internal name of the DLL may be all upper-case, even though the file
name of the DLL is lower-case, or vice-versa. Since symbols within gdb are case-sensitive
this may cause some confusion. If in doubt, try the info functions and info variables

commands or even maint print msymbols (see Chapter 16 [Symbols], page 253). Here’s an
example:

(gdb) info function CreateFileA

All functions matching regular expression "CreateFileA":

Non-debugging symbols:

0x77e885f4 CreateFileA

0x77e885f4 KERNEL32!CreateFileA

(gdb) info function !

All functions matching regular expression "!":

Non-debugging symbols:

0x6100114c cygwin1!__assert

0x61004034 cygwin1!_dll_crt0@0

0x61004240 cygwin1!dll_crt0(per_process *)

[etc...]

21.1.4.3 Working with Minimal Symbols

Symbols extracted from a DLL’s export table do not contain very much type information.
All that gdb can do is guess whether a symbol refers to a function or variable depending
on the linker section that contains the symbol. Also note that the actual contents of the
memory contained in a DLL are not available unless the program is running. This means
that you cannot examine the contents of a variable or disassemble a function within a DLL
without a running program.

Variables are generally treated as pointers and dereferenced automatically. For this
reason, it is often necessary to prefix a variable name with the address-of operator (“&”)
and provide explicit type information in the command. Here’s an example of the type of
problem:

(gdb) print ’cygwin1!__argv’

’cygwin1!__argv’ has unknown type; cast it to its declared type

(gdb) x ’cygwin1!__argv’

’cygwin1!__argv’ has unknown type; cast it to its declared type

Chapter 21: Configuration-Specific Information 331

And two possible solutions:
(gdb) print ((char **)’cygwin1!__argv’)[0]

$2 = 0x22fd98 "/cygdrive/c/mydirectory/myprogram"

(gdb) x/2x &’cygwin1!__argv’

0x610c0aa8 <cygwin1!__argv>: 0x10021608 0x00000000

(gdb) x/x 0x10021608

0x10021608: 0x0022fd98

(gdb) x/s 0x0022fd98

0x22fd98: "/cygdrive/c/mydirectory/myprogram"

Setting a break point within a DLL is possible even before the program starts execu-
tion. However, under these circumstances, gdb can’t examine the initial instructions of the
function in order to skip the function’s frame set-up code. You can work around this by
using “*&” to set the breakpoint at a raw memory address:

(gdb) break *&’python22!PyOS_Readline’

Breakpoint 1 at 0x1e04eff0

The author of these extensions is not entirely convinced that setting a break point within
a shared DLL like kernel32.dll is completely safe.

21.1.5 Commands Specific to gnu Hurd Systems

This subsection describes gdb commands specific to the gnu Hurd native debugging.

set signals

set sigs This command toggles the state of inferior signal interception by gdb. Mach
exceptions, such as breakpoint traps, are not affected by this command. sigs

is a shorthand alias for signals.

show signals

show sigs Show the current state of intercepting inferior’s signals.

set signal-thread

set sigthread

This command tells gdb which thread is the libc signal thread. That thread
is run when a signal is delivered to a running process. set sigthread is the
shorthand alias of set signal-thread.

show signal-thread

show sigthread

These two commands show which thread will run when the inferior is delivered
a signal.

set stopped

This commands tells gdb that the inferior process is stopped, as with the
SIGSTOP signal. The stopped process can be continued by delivering a signal
to it.

show stopped

This command shows whether gdb thinks the debuggee is stopped.

set exceptions

Use this command to turn off trapping of exceptions in the inferior. When
exception trapping is off, neither breakpoints nor single-stepping will work. To
restore the default, set exception trapping on.

332 Debugging with gdb

show exceptions

Show the current state of trapping exceptions in the inferior.

set task pause

This command toggles task suspension when gdb has control. Setting it to on
takes effect immediately, and the task is suspended whenever gdb gets control.
Setting it to off will take effect the next time the inferior is continued. If this
option is set to off, you can use set thread default pause on or set thread

pause on (see below) to pause individual threads.

show task pause

Show the current state of task suspension.

set task detach-suspend-count

This command sets the suspend count the task will be left with when gdb
detaches from it.

show task detach-suspend-count

Show the suspend count the task will be left with when detaching.

set task exception-port

set task excp

This command sets the task exception port to which gdb will forward excep-
tions. The argument should be the value of the send rights of the task. set

task excp is a shorthand alias.

set noninvasive

This command switches gdb to a mode that is the least invasive as far as
interfering with the inferior is concerned. This is the same as using set task

pause, set exceptions, and set signals to values opposite to the defaults.

info send-rights

info receive-rights

info port-rights

info port-sets

info dead-names

info ports

info psets

These commands display information about, respectively, send rights, receive
rights, port rights, port sets, and dead names of a task. There are also short-
hand aliases: info ports for info port-rights and info psets for info

port-sets.

set thread pause

This command toggles current thread suspension when gdb has control. Setting
it to on takes effect immediately, and the current thread is suspended whenever
gdb gets control. Setting it to off will take effect the next time the inferior is
continued. Normally, this command has no effect, since when gdb has control,
the whole task is suspended. However, if you used set task pause off (see
above), this command comes in handy to suspend only the current thread.

show thread pause

This command shows the state of current thread suspension.

Chapter 21: Configuration-Specific Information 333

set thread run

This command sets whether the current thread is allowed to run.

show thread run

Show whether the current thread is allowed to run.

set thread detach-suspend-count

This command sets the suspend count gdb will leave on a thread when de-
taching. This number is relative to the suspend count found by gdb when it
notices the thread; use set thread takeover-suspend-count to force it to an
absolute value.

show thread detach-suspend-count

Show the suspend count gdb will leave on the thread when detaching.

set thread exception-port

set thread excp

Set the thread exception port to which to forward exceptions. This overrides
the port set by set task exception-port (see above). set thread excp is the
shorthand alias.

set thread takeover-suspend-count

Normally, gdb’s thread suspend counts are relative to the value gdb finds
when it notices each thread. This command changes the suspend counts to be
absolute instead.

set thread default

show thread default

Each of the above set thread commands has a set thread default counter-
part (e.g., set thread default pause, set thread default exception-port,
etc.). The thread default variety of commands sets the default thread prop-
erties for all threads; you can then change the properties of individual threads
with the non-default commands.

21.1.6 Darwin

gdb provides the following commands specific to the Darwin target:

set debug darwin num

When set to a non zero value, enables debugging messages specific to the Darwin
support. Higher values produce more verbose output.

show debug darwin

Show the current state of Darwin messages.

set debug mach-o num

When set to a non zero value, enables debugging messages while gdb is reading
Darwin object files. (Mach-O is the file format used on Darwin for object
and executable files.) Higher values produce more verbose output. This is a
command to diagnose problems internal to gdb and should not be needed in
normal usage.

show debug mach-o

Show the current state of Mach-O file messages.

334 Debugging with gdb

set mach-exceptions on

set mach-exceptions off

On Darwin, faults are first reported as a Mach exception and are then mapped
to a Posix signal. Use this command to turn on trapping of Mach exceptions
in the inferior. This might be sometimes useful to better understand the cause
of a fault. The default is off.

show mach-exceptions

Show the current state of exceptions trapping.

21.1.7 FreeBSD

When the ABI of a system call is changed in the FreeBSD kernel, this is implemented by
leaving a compatibility system call using the old ABI at the existing number and allocating
a new system call number for the version using the new ABI. As a convenience, when a
system call is caught by name (see [catch syscall], page 69), compatibility system calls are
also caught.

For example, FreeBSD 12 introduced a new variant of the kevent system call and catch-
ing the kevent system call by name catches both variants:

(gdb) catch syscall kevent

Catchpoint 1 (syscalls ’freebsd11_kevent’ [363] ’kevent’ [560])

(gdb)

21.2 Embedded Operating Systems

This section describes configurations involving the debugging of embedded operating sys-
tems that are available for several different architectures.

gdb includes the ability to debug programs running on various real-time operating sys-
tems.

21.3 Embedded Processors

This section goes into details specific to particular embedded configurations.

Whenever a specific embedded processor has a simulator, gdb allows to send an arbitrary
command to the simulator.

sim command

Send an arbitrary command string to the simulator. Consult the documentation
for the specific simulator in use for information about acceptable commands.

21.3.1 Synopsys ARC

gdb provides the following ARC-specific commands:

set debug arc

Control the level of ARC specific debug messages. Use 0 for no messages (the
default), 1 for debug messages, and 2 for even more debug messages.

show debug arc

Show the level of ARC specific debugging in operation.

maint print arc arc-instruction address

Print internal disassembler information about instruction at a given address.

Chapter 21: Configuration-Specific Information 335

21.3.2 ARM

gdb provides the following ARM-specific commands:

set arm disassembler

This commands selects from a list of disassembly styles. The "std" style is the
standard style.

show arm disassembler

Show the current disassembly style.

set arm apcs32

This command toggles ARM operation mode between 32-bit and 26-bit.

show arm apcs32

Display the current usage of the ARM 32-bit mode.

set arm fpu fputype

This command sets the ARM floating-point unit (FPU) type. The argument
fputype can be one of these:

auto Determine the FPU type by querying the OS ABI.

softfpa Software FPU, with mixed-endian doubles on little-endian ARM
processors.

fpa GCC-compiled FPA co-processor.

softvfp Software FPU with pure-endian doubles.

vfp VFP co-processor.

show arm fpu

Show the current type of the FPU.

set arm abi

This command forces gdb to use the specified ABI.

show arm abi

Show the currently used ABI.

set arm fallback-mode (arm|thumb|auto)

gdb uses the symbol table, when available, to determine whether instructions
are ARM or Thumb. This command controls gdb’s default behavior when the
symbol table is not available. The default is ‘auto’, which causes gdb to use
the current execution mode (from the T bit in the CPSR register).

show arm fallback-mode

Show the current fallback instruction mode.

set arm force-mode (arm|thumb|auto)

This command overrides use of the symbol table to determine whether instruc-
tions are ARM or Thumb. The default is ‘auto’, which causes gdb to use the
symbol table and then the setting of ‘set arm fallback-mode’.

show arm force-mode

Show the current forced instruction mode.

336 Debugging with gdb

set debug arm

Toggle whether to display ARM-specific debugging messages from the ARM
target support subsystem.

show debug arm

Show whether ARM-specific debugging messages are enabled.

target sim [simargs] ...
The gdb ARM simulator accepts the following optional arguments.

--swi-support=type

Tell the simulator which SWI interfaces to support. The argument
type may be a comma separated list of the following values. The
default value is all.

none

demon

angel

redboot

all

21.3.3 BPF

target sim [simargs] ...
The gdb BPF simulator accepts the following optional arguments.

--skb-data-offset=offset

Tell the simulator the offset, measured in bytes, of the skb_data

field in the kernel struct sk_buff structure. This offset is used by
some BPF specific-purpose load/store instructions. Defaults to 0.

21.3.4 M68k

The Motorola m68k configuration includes ColdFire support.

21.3.5 MicroBlaze

The MicroBlaze is a soft-core processor supported on various Xilinx FPGAs, such as Spar-
tan or Virtex series. Boards with these processors usually have JTAG ports which connect
to a host system running the Xilinx Embedded Development Kit (EDK) or Software De-
velopment Kit (SDK). This host system is used to download the configuration bitstream
to the target FPGA. The Xilinx Microprocessor Debugger (XMD) program communicates
with the target board using the JTAG interface and presents a gdbserver interface to the
board. By default xmd uses port 1234. (While it is possible to change this default port, it
requires the use of undocumented xmd commands. Contact Xilinx support if you need to
do this.)

Use these GDB commands to connect to the MicroBlaze target processor.

target remote :1234

Use this command to connect to the target if you are running gdb on the same
system as xmd.

Chapter 21: Configuration-Specific Information 337

target remote xmd-host:1234

Use this command to connect to the target if it is connected to xmd running on
a different system named xmd-host.

load Use this command to download a program to the MicroBlaze target.

set debug microblaze n

Enable MicroBlaze-specific debugging messages if non-zero.

show debug microblaze n

Show MicroBlaze-specific debugging level.

21.3.6 MIPS Embedded

gdb supports these special commands for MIPS targets:

set mipsfpu double

set mipsfpu single

set mipsfpu none

set mipsfpu auto

show mipsfpu

If your target board does not support the MIPS floating point coprocessor, you
should use the command ‘set mipsfpu none’ (if you need this, you may wish to
put the command in your gdb init file). This tells gdb how to find the return
value of functions which return floating point values. It also allows gdb to avoid
saving the floating point registers when calling functions on the board. If you
are using a floating point coprocessor with only single precision floating point
support, as on the r4650 processor, use the command ‘set mipsfpu single’.
The default double precision floating point coprocessor may be selected using
‘set mipsfpu double’.

In previous versions the only choices were double precision or no floating point,
so ‘set mipsfpu on’ will select double precision and ‘set mipsfpu off’ will se-
lect no floating point.

As usual, you can inquire about the mipsfpu variable with ‘show mipsfpu’.

21.3.7 OpenRISC 1000

The OpenRISC 1000 provides a free RISC instruction set architecture. It is mainly provided
as a soft-core which can run on Xilinx, Altera and other FPGA’s.

gdb for OpenRISC supports the below commands when connecting to a target:

target sim

Runs the builtin CPU simulator which can run very basic programs but does
not support most hardware functions like MMU. For more complex use cases the
user is advised to run an external target, and connect using ‘target remote’.

Example: target sim

set debug or1k

Toggle whether to display OpenRISC-specific debugging messages from the
OpenRISC target support subsystem.

show debug or1k

Show whether OpenRISC-specific debugging messages are enabled.

338 Debugging with gdb

21.3.8 PowerPC Embedded

gdb supports using the DVC (Data Value Compare) register to implement in hardware
simple hardware watchpoint conditions of the form:

(gdb) watch address|variable \

if address|variable == constant expression

The DVC register will be automatically used when gdb detects such pattern in a
condition expression, and the created watchpoint uses one debug register (either the
exact-watchpoints option is on and the variable is scalar, or the variable has a length of
one byte). This feature is available in native gdb running on a Linux kernel version 2.6.34
or newer.

When running on PowerPC embedded processors, gdb automatically uses ranged hard-
ware watchpoints, unless the exact-watchpoints option is on, in which case watchpoints
using only one debug register are created when watching variables of scalar types.

You can create an artificial array to watch an arbitrary memory region using one of the
following commands (see Section 10.1 [Expressions], page 139):

(gdb) watch *((char *) address)@length

(gdb) watch {char[length]} address

PowerPC embedded processors support masked watchpoints. See the discussion about
the mask argument in Section 5.1.2 [Set Watchpoints], page 65.

PowerPC embedded processors support hardware accelerated ranged breakpoints. A
ranged breakpoint stops execution of the inferior whenever it executes an instruction at
any address within the range it specifies. To set a ranged breakpoint in gdb, use the
break-range command.

gdb provides the following PowerPC-specific commands:

break-range start-location, end-location

Set a breakpoint for an address range given by start-location and end-location,
which can specify a function name, a line number, an offset of lines from the
current line or from the start location, or an address of an instruction (see
Section 9.2 [Specify Location], page 122, for a list of all the possible ways to
specify a location.) The breakpoint will stop execution of the inferior whenever
it executes an instruction at any address within the specified range, (including
start-location and end-location.)

set powerpc soft-float

show powerpc soft-float

Force gdb to use (or not use) a software floating point calling convention. By
default, gdb selects the calling convention based on the selected architecture
and the provided executable file.

set powerpc vector-abi

show powerpc vector-abi

Force gdb to use the specified calling convention for vector arguments and
return values. The valid options are ‘auto’; ‘generic’, to avoid vector registers
even if they are present; ‘altivec’, to use AltiVec registers; and ‘spe’ to use
SPE registers. By default, gdb selects the calling convention based on the
selected architecture and the provided executable file.

Chapter 21: Configuration-Specific Information 339

set powerpc exact-watchpoints

show powerpc exact-watchpoints

Allow gdb to use only one debug register when watching a variable of scalar
type, thus assuming that the variable is accessed through the address of its first
byte.

21.3.9 Atmel AVR

When configured for debugging the Atmel AVR, gdb supports the following AVR-specific
commands:

info io_registers

This command displays information about the AVR I/O registers. For each
register, gdb prints its number and value.

21.3.10 CRIS

When configured for debugging CRIS, gdb provides the following CRIS-specific commands:

set cris-version ver

Set the current CRIS version to ver, either ‘10’ or ‘32’. The CRIS version affects
register names and sizes. This command is useful in case autodetection of the
CRIS version fails.

show cris-version

Show the current CRIS version.

set cris-dwarf2-cfi

Set the usage of DWARF-2 CFI for CRIS debugging. The default is ‘on’.
Change to ‘off’ when using gcc-cris whose version is below R59.

show cris-dwarf2-cfi

Show the current state of using DWARF-2 CFI.

set cris-mode mode

Set the current CRIS mode tomode. It should only be changed when debugging
in guru mode, in which case it should be set to ‘guru’ (the default is ‘normal’).

show cris-mode

Show the current CRIS mode.

21.3.11 Renesas Super-H

For the Renesas Super-H processor, gdb provides these commands:

set sh calling-convention convention

Set the calling-convention used when calling functions from gdb. Allowed val-
ues are ‘gcc’, which is the default setting, and ‘renesas’. With the ‘gcc’ setting,
functions are called using the gcc calling convention. If the DWARF-2 infor-
mation of the called function specifies that the function follows the Renesas
calling convention, the function is called using the Renesas calling convention.
If the calling convention is set to ‘renesas’, the Renesas calling convention is
always used, regardless of the DWARF-2 information. This can be used to
override the default of ‘gcc’ if debug information is missing, or the compiler
does not emit the DWARF-2 calling convention entry for a function.

340 Debugging with gdb

show sh calling-convention

Show the current calling convention setting.

21.4 Architectures

This section describes characteristics of architectures that affect all uses of gdb with the
architecture, both native and cross.

21.4.1 AArch64

When gdb is debugging the AArch64 architecture, it provides the following special com-
mands:

set debug aarch64

This command determines whether AArch64 architecture-specific debugging
messages are to be displayed.

show debug aarch64

Show whether AArch64 debugging messages are displayed.

21.4.1.1 AArch64 SVE.

When gdb is debugging the AArch64 architecture, if the Scalable Vector Extension (SVE)
is present, then gdb will provide the vector registers $z0 through $z31, vector predicate
registers $p0 through $p15, and the $ffr register. In addition, the pseudo register $vg will
be provided. This is the vector granule for the current thread and represents the number
of 64-bit chunks in an SVE z register.

If the vector length changes, then the $vg register will be updated, but the lengths of
the z and p registers will not change. This is a known limitation of gdb and does not affect
the execution of the target process.

21.4.1.2 AArch64 Pointer Authentication.

When gdb is debugging the AArch64 architecture, and the program is using the v8.3-A
feature Pointer Authentication (PAC), then whenever the link register $lr is pointing to
an PAC function its value will be masked. When GDB prints a backtrace, any addresses
that required unmasking will be postfixed with the marker [PAC]. When using the MI, this
is printed as part of the addr_flags field.

21.4.1.3 AArch64 Memory Tagging Extension.

When gdb is debugging the AArch64 architecture, the program is using the v8.5-A fea-
ture Memory Tagging Extension (MTE) and there is support in the kernel for MTE, gdb
will make memory tagging functionality available for inspection and editing of logical and
allocation tags. See Section 10.7 [Memory Tagging], page 148.

To aid debugging, gdb will output additional information when SIGSEGV signals are
generated as a result of memory tag failures.

If the tag violation is synchronous, the following will be shown:
Program received signal SIGSEGV, Segmentation fault

Memory tag violation while accessing address 0x0500fffff7ff8000

Allocation tag 0x1

Logical tag 0x5.

Chapter 21: Configuration-Specific Information 341

If the tag violation is asynchronous, the fault address is not available. In this case gdb
will show the following:

Program received signal SIGSEGV, Segmentation fault

Memory tag violation

Fault address unavailable.

A special register, tag_ctl, is made available through the org.gnu.gdb.aarch64.mte

feature. This register exposes some options that can be controlled at runtime and emulates
the prctl option PR_SET_TAGGED_ADDR_CTRL. For further information, see the documenta-
tion in the Linux kernel.

21.4.2 x86 Architecture-specific Issues

set struct-convention mode

Set the convention used by the inferior to return structs and unions from
functions to mode. Possible values of mode are "pcc", "reg", and "default"

(the default). "default" or "pcc" means that structs are returned on the
stack, while "reg" means that a struct or a union whose size is 1, 2, 4, or 8
bytes will be returned in a register.

show struct-convention

Show the current setting of the convention to return structs from functions.

21.4.2.1 Intel Memory Protection Extensions (MPX).

Memory Protection Extension (MPX) adds the bound registers ‘BND0’1 through ‘BND3’.
Bound registers store a pair of 64-bit values which are the lower bound and upper bound.
Bounds are effective addresses or memory locations. The upper bounds are architecturally
represented in 1’s complement form. A bound having lower bound = 0, and upper bound
= 0 (1’s complement of all bits set) will allow access to the entire address space.

‘BND0’ through ‘BND3’ are represented in gdb as ‘bnd0raw’ through ‘bnd3raw’. Pseudo
registers ‘bnd0’ through ‘bnd3’ display the upper bound performing the complement of one
operation on the upper bound value, i.e. when upper bound in ‘bnd0raw’ is 0 in the gdb
‘bnd0’ it will be 0xfff.... In this sense it can also be noted that the upper bounds are
inclusive.

As an example, assume that the register BND0 holds bounds for a pointer having access
allowed for the range between 0x32 and 0x71. The values present on bnd0raw and bnd
registers are presented as follows:

bnd0raw = {0x32, 0xffffffff8e}

bnd0 = {lbound = 0x32, ubound = 0x71} : size 64

This way the raw value can be accessed via bnd0raw. . .bnd3raw. Any change on
bnd0. . .bnd3 or bnd0raw. . .bnd3raw is reflect on its counterpart. When the bnd0. . .bnd3
registers are displayed via Python, the display includes the memory size, in bits, accessible
to the pointer.

Bounds can also be stored in bounds tables, which are stored in application memory.
These tables store bounds for pointers by specifying the bounds pointer’s value along with

1 The register named with capital letters represent the architecture registers.

342 Debugging with gdb

its bounds. Evaluating and changing bounds located in bound tables is therefore interesting
while investigating bugs on MPX context. gdb provides commands for this purpose:

show mpx bound pointer

Display bounds of the given pointer.

set mpx bound pointer, lbound, ubound

Set the bounds of a pointer in the bound table. This command takes three
parameters: pointer is the pointers whose bounds are to be changed, lbound
and ubound are new values for lower and upper bounds respectively.

When you call an inferior function on an Intel MPX enabled program, GDB sets the
inferior’s bound registers to the init (disabled) state before calling the function. As a
consequence, bounds checks for the pointer arguments passed to the function will always
pass.

This is necessary because when you call an inferior function, the program is usually in
the middle of the execution of other function. Since at that point bound registers are in
an arbitrary state, not clearing them would lead to random bound violations in the called
function.

You can still examine the influence of the bound registers on the execution of the called
function by stopping the execution of the called function at its prologue, setting bound
registers, and continuing the execution. For example:

$ break *upper

Breakpoint 2 at 0x4009de: file i386-mpx-call.c, line 47.

$ print upper (a, b, c, d, 1)

Breakpoint 2, upper (a=0x0, b=0x6e0000005b, c=0x0, d=0x0, len=48)....

$ print $bnd0

{lbound = 0x0, ubound = ffffffff} : size -1

At this last step the value of bnd0 can be changed for investigation of bound violations
caused along the execution of the call. In order to know how to set the bound registers or
bound table for the call consult the ABI.

21.4.2.2 Intel Control-flow Enforcement Technology (CET).

Control-flow Enforcement Technology (CET) provides two capabilities to defend against
“Return-oriented Programming” and “call/jmp-oriented programming” style control-flow
attacks:

• Shadow Stack: A shadow stack is a second stack for the program which holds the return
addresses pushed by the call instruction. The ret instruction pops the return addresses
from both call and shadow stack. If the return addresses from the two stacks do not
match, the processor signals a control protection exception.

• Indirect Branch Tracking (IBT): When IBT is enabled, the CPU implements a state
machine that tracks indirect jmp and call instructions. The state machine can be
either “IDLE” or “WAIT FOR ENDBRANCH”. In WAIT FOR ENDBRANCH state
the next instruction in the program stream must be an ENDBRANCH, otherwise the
processor signals a control protection exception.

gdb provides commands to show the CET status and shadow stack backtrace:

Chapter 21: Configuration-Specific Information 343

info cet status

This command prints general status information of CET at the current point
of execution.

(gdb) info cet status

Target Id: process 30055

Shadow Stack: enabled

Shadow Stack Pointer: 0x7ffff7ffefe8

WR_SHSTK_EN: disabled

Indirect Branch Tracking: enabled

TRACKER: WAIT_FOR_ENDBRANCH

LEG_IW_EN: disabled

NO_TRACK_EN: enabled

SUPRESS_DIS: disabled

SUPRESS: disabled

EB_LEG_BITMAP_BASE: 0x000000000000

info cet backtrace

This command prints the backtrace of the shadow stack for the current process.
For example, using the command info cet backtrace while stopped at the
stack frame corresponding to the function func2 () will display:

Address Symbol

#0 0x000000000040141f func1 ()

#1 0x0000000000401578 main (int, char const**)

#2 0x00007ffff72aa393 __libc_start_main

#3 0x000000000040125e _start

Impact on other GDB commands:

• Return: The command resets the current PC and discards the current stack frame (and
all frames within). Thus, the ret instruction of the current frame is not executed and
the return address is not popped from the shadow stack. To avoid a control protection
exception, gdb decrements the shadow stack pointer to match with the new current
frame.

• Call/Print: Inferior calls in gdb reset the current PC to the beginning of the function
that is called. No call instruction is executed, but the RET instruction actually is. To
avoid a control protection exception due to the missing return address on the shadow
stack, gdb pushes the new return address to the shadow stack and increments the
shadow stack pointer.

• Step: With displaced stepping, gdb may run an out of line copy of a call instruction.
In this case, the wrong RET address is pushed on the shadow stack. gdb corrects this
value to avoid a control protection exception. For more details on displaced stepping,
see [displaced-stepping], page 708.

21.4.2.3 Intel Advanced Matrix Extensions (AMX).

Advanced Matrix Extensions (AMX) adds one 64 byte ‘TILECFG’ register and eight 1024
byte tile registers ‘TMM0’, ‘TMM1’, ..., ‘TMM7’. The tile registers each represent a matrix, whose
dimensions are configured via ‘TILECFG’. Future platforms might also partition the register
area of 8 * 1024 bytes between a different number of tiles.

To present such big registers in a user friendly way, gdb represents the ‘TILECFG’ and
tile registers as pseudo registers. The ‘TILECFG’ is shown as a struct, omitting reserved

344 Debugging with gdb

bits. The full register can still be viewed using ‘TILECFG_RAW’. The tile registers are sized
dynamically according to the configuration in ‘TILECFG’. For example:

(gdb) print/x $tilecfg_raw

$1 = 0x20302001000

10000c00000000000000000000000000000001

(gdb) print $tilecfg

$2 = {palette = 0x1, start_row = 0x0, tile0.colsb = 0xc,

tile1.colsb = 0x10, tile2.colsb = 0x10, tile3.colsb = 0x0,

tile4.colsb = 0x0, tile5.colsb = 0x0, tile6.colsb = 0x0,

tile7.colsb = 0x0, tile0.rows = 0x2, tile1.rows = 0x3, tile2.rows = 0x2,

tile3.rows = 0x0, tile4.rows = 0x0, tile5.rows = 0x0, tile6.rows = 0x0,

tile7.rows = 0x0}

(gdb) p $tmm0.m_int8

$3 = {{0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2}, {1, 1, 1, 1, 2, 2, 2,

2, 3, 3, 3, 3}}

The raw register data for tiles can be seen in the register ‘TILEDATA’, which represents
the whole 8 * 1024 bytes available for tiles. Setting any pseudo register will result in changes
in the corresponding raw register (e.g. ‘TILECFG_RAW’ and ‘TILEDATA’).

21.4.3 Alpha

See the following section.

21.4.4 MIPS

Alpha- and MIPS-based computers use an unusual stack frame, which sometimes requires
gdb to search backward in the object code to find the beginning of a function.

To improve response time (especially for embedded applications, where gdb may be
restricted to a slow serial line for this search) you may want to limit the size of this search,
using one of these commands:

set heuristic-fence-post limit

Restrict gdb to examining at most limit bytes in its search for the beginning
of a function. A value of 0 (the default) means there is no limit. However,
except for 0, the larger the limit the more bytes heuristic-fence-post must
search and therefore the longer it takes to run. You should only need to use
this command when debugging a stripped executable.

show heuristic-fence-post

Display the current limit.

These commands are available only when gdb is configured for debugging programs on
Alpha or MIPS processors.

Several MIPS-specific commands are available when debugging MIPS programs:

set mips abi arg

Tell gdb which MIPS ABI is used by the inferior. Possible values of arg are:

‘auto’ The default ABI associated with the current binary (this is the
default).

‘o32’

‘o64’

Chapter 21: Configuration-Specific Information 345

‘n32’

‘n64’

‘eabi32’

‘eabi64’

show mips abi

Show the MIPS ABI used by gdb to debug the inferior.

set mips compression arg

Tell gdb which MIPS compressed ISA (Instruction Set Architecture) encoding
is used by the inferior. gdb uses this for code disassembly and other internal
interpretation purposes. This setting is only referred to when no executable has
been associated with the debugging session or the executable does not provide
information about the encoding it uses. Otherwise this setting is automatically
updated from information provided by the executable.

Possible values of arg are ‘mips16’ and ‘micromips’. The default compressed
ISA encoding is ‘mips16’, as executables containing MIPS16 code frequently are
not identified as such.

This setting is “sticky”; that is, it retains its value across debugging sessions
until reset either explicitly with this command or implicitly from an executable.

The compiler and/or assembler typically add symbol table annotations to iden-
tify functions compiled for the MIPS16 or microMIPS ISAs. If these function-
scope annotations are present, gdb uses them in preference to the global com-
pressed ISA encoding setting.

show mips compression

Show the MIPS compressed ISA encoding used by gdb to debug the inferior.

set mipsfpu

show mipsfpu

See Section 21.3.6 [MIPS Embedded], page 337.

set mips mask-address arg

This command determines whether the most-significant 32 bits of 64-bit MIPS

addresses are masked off. The argument arg can be ‘on’, ‘off’, or ‘auto’. The
latter is the default setting, which lets gdb determine the correct value.

show mips mask-address

Show whether the upper 32 bits of MIPS addresses are masked off or not.

set remote-mips64-transfers-32bit-regs

This command controls compatibility with 64-bit MIPS targets that transfer
data in 32-bit quantities. If you have an old MIPS 64 target that transfers 32
bits for some registers, like sr and fsr, and 64 bits for other registers, set this
option to ‘on’.

show remote-mips64-transfers-32bit-regs

Show the current setting of compatibility with older MIPS 64 targets.

346 Debugging with gdb

set debug mips

This command turns on and off debugging messages for the MIPS-specific target
code in gdb.

show debug mips

Show the current setting of MIPS debugging messages.

21.4.5 HPPA

When gdb is debugging the HP PA architecture, it provides the following special commands:

set debug hppa

This command determines whether HPPA architecture-specific debugging mes-
sages are to be displayed.

show debug hppa

Show whether HPPA debugging messages are displayed.

maint print unwind address

This command displays the contents of the unwind table entry at the given
address.

21.4.6 PowerPC

When gdb is debugging the PowerPC architecture, it provides a set of pseudo-registers to
enable inspection of 128-bit wide Decimal Floating Point numbers stored in the floating
point registers. These values must be stored in two consecutive registers, always starting
at an even register like f0 or f2.

The pseudo-registers go from $dl0 through $dl15, and are formed by joining the
even/odd register pairs f0 and f1 for $dl0, f2 and f3 for $dl1 and so on.

For POWER7 processors, gdb provides a set of pseudo-registers, the 64-bit wide Ex-
tended Floating Point Registers (‘f32’ through ‘f63’).

21.4.7 Nios II

When gdb is debugging the Nios II architecture, it provides the following special commands:

set debug nios2

This command turns on and off debugging messages for the Nios II target code
in gdb.

show debug nios2

Show the current setting of Nios II debugging messages.

21.4.8 Sparc64

21.4.8.1 ADI Support

The M7 processor supports an Application Data Integrity (ADI) feature that detects invalid
data accesses. When software allocates memory and enables ADI on the allocated memory,
it chooses a 4-bit version number, sets the version in the upper 4 bits of the 64-bit pointer
to that data, and stores the 4-bit version in every cacheline of that data. Hardware saves
the latter in spare bits in the cache and memory hierarchy. On each load and store, the

Chapter 21: Configuration-Specific Information 347

processor compares the upper 4 VA (virtual address) bits to the cacheline’s version. If there
is a mismatch, the processor generates a version mismatch trap which can be either precise
or disrupting. The trap is an error condition which the kernel delivers to the process as a
SIGSEGV signal.

Note that only 64-bit applications can use ADI and need to be built with ADI-enabled.

Values of the ADI version tags, which are in granularity of a cacheline (64 bytes), can
be viewed or modified.

adi (examine | x) [/ n] addr

The adi examine command displays the value of one ADI version tag per cache-
line.

n is a decimal integer specifying the number in bytes; the default is 1. It specifies
how much ADI version information, at the ratio of 1:ADI block size, to display.

addr is the address in user address space where you want gdb to begin display-
ing the ADI version tags.

Below is an example of displaying ADI versions of variable "shmaddr".
(gdb) adi x/100 shmaddr

0xfff800010002c000: 0 0

adi (assign | a) [/ n] addr = tag

The adi assign command is used to assign new ADI version tag to an address.

n is a decimal integer specifying the number in bytes; the default is 1. It specifies
how much ADI version information, at the ratio of 1:ADI block size, to modify.

addr is the address in user address space where you want gdb to begin modi-
fying the ADI version tags.

tag is the new ADI version tag.

For example, do the following to modify then verify ADI versions of variable
"shmaddr":

(gdb) adi a/100 shmaddr = 7

(gdb) adi x/100 shmaddr

0xfff800010002c000: 7 7

21.4.9 S12Z

When gdb is debugging the S12Z architecture, it provides the following special command:

maint info bdccsr

This command displays the current value of the microprocessor’s BDCCSR
register.

349

22 Controlling gdb

You can alter the way gdb interacts with you by using the set command. For commands
controlling how gdb displays data, see Section 10.9 [Print Settings], page 151. Other settings
are described here.

22.1 Prompt

gdb indicates its readiness to read a command by printing a string called the prompt.
This string is normally ‘(gdb)’. You can change the prompt string with the set prompt

command. For instance, when debugging gdb with gdb, it is useful to change the prompt
in one of the gdb sessions so that you can always tell which one you are talking to.

Note: set prompt does not add a space for you after the prompt you set. This allows
you to set a prompt which ends in a space or a prompt that does not.

set prompt newprompt

Directs gdb to use newprompt as its prompt string henceforth.

show prompt

Prints a line of the form: ‘Gdb’s prompt is: your-prompt’

Versions of gdb that ship with Python scripting enabled have prompt extensions. The
commands for interacting with these extensions are:

set extended-prompt prompt

Set an extended prompt that allows for substitutions. See Section 23.3.4.3
[gdb.prompt], page 472, for a list of escape sequences that can be used for
substitution. Any escape sequences specified as part of the prompt string are
replaced with the corresponding strings each time the prompt is displayed.

For example:
set extended-prompt Current working directory: \w (gdb)

Note that when an extended-prompt is set, it takes control of the prompt hook
hook. See [prompt hook], page 387, for further information.

show extended-prompt

Prints the extended prompt. Any escape sequences specified as part of the
prompt string with set extended-prompt, are replaced with the corresponding
strings each time the prompt is displayed.

22.2 Command Editing

gdb reads its input commands via the Readline interface. This gnu library provides consis-
tent behavior for programs which provide a command line interface to the user. Advantages
are gnu Emacs-style or vi-style inline editing of commands, csh-like history substitution,
and a storage and recall of command history across debugging sessions.

You may control the behavior of command line editing in gdb with the command set.

set editing

set editing on

Enable command line editing (enabled by default).

350 Debugging with gdb

set editing off

Disable command line editing.

show editing

Show whether command line editing is enabled.

See Chapter 32 [Command Line Editing], page 665, for more details about the Readline
interface. Users unfamiliar with gnu Emacs or vi are encouraged to read that chapter.

gdb sets the Readline application name to ‘gdb’. This is useful for conditions in
.inputrc.

gdb defines a bindable Readline command, operate-and-get-next. This is bound to
C-o by default. This command accepts the current line for execution and fetches the next
line relative to the current line from the history for editing. Any argument is ignored.

22.3 Command History

gdb can keep track of the commands you type during your debugging sessions, so that
you can be certain of precisely what happened. Use these commands to manage the gdb
command history facility.

gdb uses the gnu History library, a part of the Readline package, to provide the history
facility. See Chapter 33 [Using History Interactively], page 689, for the detailed description
of the History library.

To issue a command to gdb without affecting certain aspects of the state which is seen
by users, prefix it with ‘server ’ (see Section 28.2 [Server Prefix], page 650). This means
that this command will not affect the command history, nor will it affect gdb’s notion of
which command to repeat if RET is pressed on a line by itself.

The server prefix does not affect the recording of values into the value history; to print
a value without recording it into the value history, use the output command instead of the
print command.

Here is the description of gdb commands related to command history.

set history filename [fname]
Set the name of the gdb command history file to fname. This is the file where
gdb reads an initial command history list, and where it writes the command
history from this session when it exits. You can access this list through history
expansion or through the history command editing characters listed below.
This file defaults to the value of the environment variable GDBHISTFILE, or to
./.gdb_history (./_gdb_history on MS-DOS) if this variable is not set.

The GDBHISTFILE environment variable is read after processing any gdb ini-
tialization files (see Section 2.1.3 [Startup], page 16) and after processing any
commands passed using command line options (for example, -ex).

If the fname argument is not given, or if the GDBHISTFILE is the empty string
then gdb will neither try to load an existing history file, nor will it try to save
the history on exit.

set history save

set history save on

Record command history in a file, whose name may be specified with the set

history filename command. By default, this option is disabled. The com-

Chapter 22: Controlling gdb 351

mand history will be recorded when gdb exits. If set history filename is set
to the empty string then history saving is disabled, even when set history

save is on.

set history save off

Don’t record the command history into the file specified by set history

filename when gdb exits.

set history size size

set history size unlimited

Set the number of commands which gdb keeps in its history list. This defaults
to the value of the environment variable GDBHISTSIZE, or to 256 if this variable
is not set. Non-numeric values of GDBHISTSIZE are ignored. If size is unlimited
or if GDBHISTSIZE is either a negative number or the empty string, then the
number of commands gdb keeps in the history list is unlimited.

The GDBHISTSIZE environment variable is read after processing any gdb ini-
tialization files (see Section 2.1.3 [Startup], page 16) and after processing any
commands passed using command line options (for example, -ex).

set history remove-duplicates count

set history remove-duplicates unlimited

Control the removal of duplicate history entries in the command history list.
If count is non-zero, gdb will look back at the last count history entries and
remove the first entry that is a duplicate of the current entry being added to the
command history list. If count is unlimited then this lookbehind is unbounded.
If count is 0, then removal of duplicate history entries is disabled.

Only history entries added during the current session are considered for removal.
This option is set to 0 by default.

History expansion assigns special meaning to the character !. See Section 33.1.1 [Event
Designators], page 689, for more details.

Since ! is also the logical not operator in C, history expansion is off by default. If you
decide to enable history expansion with the set history expansion on command, you may
sometimes need to follow ! (when it is used as logical not, in an expression) with a space
or a tab to prevent it from being expanded. The readline history facilities do not attempt
substitution on the strings != and !(, even when history expansion is enabled.

The commands to control history expansion are:

set history expansion on

set history expansion

Enable history expansion. History expansion is off by default.

set history expansion off

Disable history expansion.

352 Debugging with gdb

show history

show history filename

show history save

show history size

show history expansion

These commands display the state of the gdb history parameters. show

history by itself displays all four states.

show commands

Display the last ten commands in the command history.

show commands n

Print ten commands centered on command number n.

show commands +

Print ten commands just after the commands last printed.

22.4 Screen Size

Certain commands to gdb may produce large amounts of information output to the screen.
To help you read all of it, gdb pauses and asks you for input at the end of each page
of output. Type RET when you want to see one more page of output, q to discard the
remaining output, or c to continue without paging for the rest of the current command.
Also, the screen width setting determines when to wrap lines of output. Depending on what
is being printed, gdb tries to break the line at a readable place, rather than simply letting
it overflow onto the following line.

Normally gdb knows the size of the screen from the terminal driver software. For
example, on Unix gdb uses the termcap data base together with the value of the TERM

environment variable and the stty rows and stty cols settings. If this is not correct, you
can override it with the set height and set width commands:

set height lpp

set height unlimited

show height

set width cpl

set width unlimited

show width

These set commands specify a screen height of lpp lines and a screen width of
cpl characters. The associated show commands display the current settings.

If you specify a height of either unlimited or zero lines, gdb does not pause
during output no matter how long the output is. This is useful if output is to
a file or to an editor buffer.

Likewise, you can specify ‘set width unlimited’ or ‘set width 0’ to prevent
gdb from wrapping its output.

set pagination on

set pagination off

Turn the output pagination on or off; the default is on. Turning pagination off
is the alternative to set height unlimited. Note that running gdb with the

Chapter 22: Controlling gdb 353

--batch option (see Section 2.1.2 [Mode Options], page 13) also automatically
disables pagination.

show pagination

Show the current pagination mode.

22.5 Output Styling

gdb can style its output on a capable terminal. This is enabled by default on most systems,
but disabled by default when in batch mode (see Section 2.1.2 [Mode Options], page 13).
Various style settings are available; and styles can also be disabled entirely.

set style enabled ‘on|off’

Enable or disable all styling. The default is host-dependent, with most hosts
defaulting to ‘on’.

show style enabled

Show the current state of styling.

set style sources ‘on|off’

Enable or disable source code styling. This affects whether source code, such as
the output of the list command, is styled. The default is ‘on’. Note that source
styling only works if styling in general is enabled, and if a source highlighting
library is available to gdb.

There are two ways that highlighting can be done. First, if gdb was linked
with the GNU Source Highlight library, then it is used. Otherwise, if gdb was
configured with Python scripting support, and if the Python Pygments package
is available, then it will be used.

show style sources

Show the current state of source code styling.

set style disassembler enabled ‘on|off’

Enable or disable disassembler styling. This affects whether disassembler out-
put, such as the output of the disassemble command, is styled. Disassembler
styling only works if styling in general is enabled (with set style enabled on),
and if a source highlighting library is available to gdb.

To highlight disassembler output, gdb must be compiled with Python support,
and the Python Pygments package must be available. If these requirements are
not met then gdb will not highlight disassembler output, even when this option
is ‘on’.

show style disassembler enabled

Show the current state of disassembler styling.

Subcommands of set style control specific forms of styling. These subcommands all
follow the same pattern: each style-able object can be styled with a foreground color, a
background color, and an intensity.

For example, the style of file names can be controlled using the set style filename

group of commands:

354 Debugging with gdb

set style filename background color

Set the background to color. Valid colors are ‘none’ (meaning the termi-
nal’s default color), ‘black’, ‘red’, ‘green’, ‘yellow’, ‘blue’, ‘magenta’, ‘cyan’,
and‘white’.

set style filename foreground color

Set the foreground to color. Valid colors are ‘none’ (meaning the terminal’s
default color), ‘black’, ‘red’, ‘green’, ‘yellow’, ‘blue’, ‘magenta’, ‘cyan’,
and‘white’.

set style filename intensity value

Set the intensity to value. Valid intensities are ‘normal’ (the default), ‘bold’,
and ‘dim’.

The show style command and its subcommands are styling a style name in their output
using its own style. So, use show style to see the complete list of styles, their characteristics
and the visual aspect of each style.

The style-able objects are:

filename Control the styling of file names. By default, this style’s foreground color is
green.

function Control the styling of function names. These are managed with the set style

function family of commands. By default, this style’s foreground color is
yellow.

variable Control the styling of variable names. These are managed with the set style

variable family of commands. By default, this style’s foreground color is cyan.

address Control the styling of addresses. These are managed with the set style

address family of commands. By default, this style’s foreground color is blue.

version Control the styling of gdb’s version number text. By default, this style’s fore-
ground color is magenta and it has bold intensity. The version number is
displayed in two places, the output of show version, and when gdb starts up.

In order to control how gdb styles the version number at startup, add the set
style version family of commands to the early initialization command file
(see Section 2.1.4 [Initialization Files], page 17).

title Control the styling of titles. These are managed with the set style title

family of commands. By default, this style’s intensity is bold. Commands are
using the title style to improve the readability of large output. For example, the
commands apropos and help are using the title style for the command names.

highlight

Control the styling of highlightings. These are managed with the set style

highlight family of commands. By default, this style’s foreground color is
red. Commands are using the highlight style to draw the user attention to
some specific parts of their output. For example, the command apropos -v

REGEXP uses the highlight style to mark the documentation parts matching
regexp.

Chapter 22: Controlling gdb 355

tui-border

Control the styling of the TUI border. Note that, unlike other styling options,
only the color of the border can be controlled via set style. This was done
for compatibility reasons, as TUI controls to set the border’s intensity predated
the addition of general styling to gdb. See Section 25.6 [TUI Configuration],
page 538.

tui-active-border

Control the styling of the active TUI border; that is, the TUI window that has
the focus.

22.6 Numbers

You can always enter numbers in octal, decimal, or hexadecimal in gdb by the usual
conventions: octal numbers begin with ‘0’, decimal numbers end with ‘.’, and hexadecimal
numbers begin with ‘0x’. Numbers that neither begin with ‘0’ or ‘0x’, nor end with a ‘.’
are, by default, entered in base 10; likewise, the default display for numbers—when no
particular format is specified—is base 10. You can change the default base for both input
and output with the commands described below.

set input-radix base

Set the default base for numeric input. Supported choices for base are decimal
8, 10, or 16. The base must itself be specified either unambiguously or using
the current input radix; for example, any of

set input-radix 012

set input-radix 10.

set input-radix 0xa

sets the input base to decimal. On the other hand, ‘set input-radix 10’ leaves
the input radix unchanged, no matter what it was, since ‘10’, being without any
leading or trailing signs of its base, is interpreted in the current radix. Thus,
if the current radix is 16, ‘10’ is interpreted in hex, i.e. as 16 decimal, which
doesn’t change the radix.

set output-radix base

Set the default base for numeric display. Supported choices for base are decimal
8, 10, or 16. The base must itself be specified either unambiguously or using
the current input radix.

show input-radix

Display the current default base for numeric input.

show output-radix

Display the current default base for numeric display.

set radix [base]
show radix

These commands set and show the default base for both input and output
of numbers. set radix sets the radix of input and output to the same base;
without an argument, it resets the radix back to its default value of 10.

356 Debugging with gdb

22.7 Configuring the Current ABI

gdb can determine the ABI (Application Binary Interface) of your application automati-
cally. However, sometimes you need to override its conclusions. Use these commands to
manage gdb’s view of the current ABI.

One gdb configuration can debug binaries for multiple operating system targets, either
via remote debugging or native emulation. gdb will autodetect the OS ABI (Operating
System ABI) in use, but you can override its conclusion using the set osabi command. One
example where this is useful is in debugging of binaries which use an alternate C library (e.g.
uClibc for gnu/Linux) which does not have the same identifying marks that the standard
C library for your platform provides.

When gdb is debugging the AArch64 architecture, it provides a “Newlib” OS ABI. This
is useful for handling setjmp and longjmp when debugging binaries that use the newlib
C library. The “Newlib” OS ABI can be selected by set osabi Newlib.

show osabi

Show the OS ABI currently in use.

set osabi With no argument, show the list of registered available OS ABI’s.

set osabi abi

Set the current OS ABI to abi.

Generally, the way that an argument of type float is passed to a function depends on
whether the function is prototyped. For a prototyped (i.e. ANSI/ISO style) function, float
arguments are passed unchanged, according to the architecture’s convention for float. For
unprototyped (i.e. K&R style) functions, float arguments are first promoted to type double
and then passed.

Unfortunately, some forms of debug information do not reliably indicate whether a func-
tion is prototyped. If gdb calls a function that is not marked as prototyped, it consults
set coerce-float-to-double.

set coerce-float-to-double

set coerce-float-to-double on

Arguments of type float will be promoted to double when passed to an un-
prototyped function. This is the default setting.

set coerce-float-to-double off

Arguments of type float will be passed directly to unprototyped functions.

show coerce-float-to-double

Show the current setting of promoting float to double.

gdb needs to know the ABI used for your program’s C++ objects. The correct C++ ABI
depends on which C++ compiler was used to build your application. gdb only fully supports
programs with a single C++ ABI; if your program contains code using multiple C++ ABI’s
or if gdb can not identify your program’s ABI correctly, you can tell gdb which ABI to use.
Currently supported ABI’s include “gnu-v2”, for g++ versions before 3.0, “gnu-v3”, for g++
versions 3.0 and later, and “hpaCC” for the HP ANSI C++ compiler. Other C++ compilers
may use the “gnu-v2” or “gnu-v3” ABI’s as well. The default setting is “auto”.

show cp-abi

Show the C++ ABI currently in use.

Chapter 22: Controlling gdb 357

set cp-abi

With no argument, show the list of supported C++ ABI’s.

set cp-abi abi

set cp-abi auto

Set the current C++ ABI to abi, or return to automatic detection.

22.8 Automatically loading associated files

gdb sometimes reads files with commands and settings automatically, without being ex-
plicitly told so by the user. We call this feature auto-loading. While auto-loading is useful
for automatically adapting gdb to the needs of your project, it can sometimes produce un-
expected results or introduce security risks (e.g., if the file comes from untrusted sources).

There are various kinds of files gdb can automatically load. In addition to these files,
gdb supports auto-loading code written in various extension languages. See Section 23.5
[Auto-loading extensions], page 526.

Note that loading of these associated files (including the local .gdbinit file) requires
accordingly configured auto-load safe-path (see Section 22.8.3 [Auto-loading safe path],
page 359).

For these reasons, gdb includes commands and options to let you control when to auto-
load files and which files should be auto-loaded.

set auto-load off

Globally disable loading of all auto-loaded files. You may want to use this
command with the ‘-iex’ option (see [Option -init-eval-command], page 16)
such as:

$ gdb -iex "set auto-load off" untrusted-executable corefile

Be aware that system init file (see Section C.6 [System-wide configuration],
page 705) and init files from your home directory (see [Home Directory Init
File], page 18) still get read (as they come from generally trusted directories).
To prevent gdb from auto-loading even those init files, use the -nx option (see
Section 2.1.2 [Mode Options], page 13), in addition to set auto-load no.

show auto-load

Show whether auto-loading of each specific ‘auto-load’ file(s) is enabled or
disabled.

(gdb) show auto-load

gdb-scripts: Auto-loading of canned sequences of commands scripts is on.

libthread-db: Auto-loading of inferior specific libthread_db is on.

local-gdbinit: Auto-loading of .gdbinit script from current directory

is on.

python-scripts: Auto-loading of Python scripts is on.

safe-path: List of directories from which it is safe to auto-load files

is $debugdir:$datadir/auto-load.

scripts-directory: List of directories from which to load auto-loaded scripts

is $debugdir:$datadir/auto-load.

info auto-load

Print whether each specific ‘auto-load’ file(s) have been auto-loaded or not.

(gdb) info auto-load

358 Debugging with gdb

gdb-scripts:

Loaded Script

Yes /home/user/gdb/gdb-gdb.gdb

libthread-db: No auto-loaded libthread-db.

local-gdbinit: Local .gdbinit file "/home/user/gdb/.gdbinit" has been

loaded.

python-scripts:

Loaded Script

Yes /home/user/gdb/gdb-gdb.py

These are gdb control commands for the auto-loading:

See [set auto-load off], page 357. Disable auto-loading globally.
See [show auto-load], page 357. Show setting of all kinds of files.
See [info auto-load], page 357. Show state of all kinds of files.
See [set auto-load gdb-scripts], page 378. Control for gdb command scripts.
See [show auto-load gdb-scripts], page 378. Show setting of gdb command scripts.
See [info auto-load gdb-scripts], page 378. Show state of gdb command scripts.
See [set auto-load python-scripts], page 469. Control for gdb Python scripts.
See [show auto-load python-scripts], page 469. Show setting of gdb Python scripts.
See [info auto-load python-scripts], page 469. Show state of gdb Python scripts.
See [set auto-load guile-scripts], page 525. Control for gdb Guile scripts.
See [show auto-load guile-scripts], page 525. Show setting of gdb Guile scripts.
See [info auto-load guile-scripts], page 525. Show state of gdb Guile scripts.
See [set auto-load scripts-directory], page 527. Control for gdb auto-loaded scripts

location.

See [show auto-load scripts-directory],
page 528.

Show gdb auto-loaded scripts location.

See [add-auto-load-scripts-directory],
page 528.

Add directory for auto-loaded scripts loca-
tion list.

See [set auto-load local-gdbinit], page 359. Control for init file in the current directory.
See [show auto-load local-gdbinit], page 359. Show setting of init file in the current

directory.

See [info auto-load local-gdbinit], page 359. Show state of init file in the current
directory.

See [set auto-load libthread-db], page 359. Control for thread debugging library.
See [show auto-load libthread-db], page 359. Show setting of thread debugging library.
See [info auto-load libthread-db], page 359. Show state of thread debugging library.
See [set auto-load safe-path], page 360. Control directories trusted for automatic

loading.

See [show auto-load safe-path], page 360. Show directories trusted for automatic
loading.

See [add-auto-load-safe-path], page 360. Add directory trusted for automatic
loading.

22.8.1 Automatically loading init file in the current directory

By default, gdb reads and executes the canned sequences of commands from init file (if any)
in the current working directory, see [Init File in the Current Directory during Startup],
page 19.

Chapter 22: Controlling gdb 359

Note that loading of this local .gdbinit file also requires accordingly configured
auto-load safe-path (see Section 22.8.3 [Auto-loading safe path], page 359).

set auto-load local-gdbinit [on|off]

Enable or disable the auto-loading of canned sequences of commands (see
Section 23.1 [Sequences], page 371) found in init file in the current directory.

show auto-load local-gdbinit

Show whether auto-loading of canned sequences of commands from init file in
the current directory is enabled or disabled.

info auto-load local-gdbinit

Print whether canned sequences of commands from init file in the current di-
rectory have been auto-loaded.

22.8.2 Automatically loading thread debugging library

This feature is currently present only on gnu/Linux native hosts.

gdb reads in some cases thread debugging library from places specific to the inferior
(see [set libthread-db-search-path], page 51).

The special ‘libthread-db-search-path’ entry ‘$sdir’ is processed without checking
this ‘set auto-load libthread-db’ switch as system libraries have to be trusted in general.
In all other cases of ‘libthread-db-search-path’ entries gdb checks first if ‘set auto-load

libthread-db’ is enabled before trying to open such thread debugging library.

Note that loading of this debugging library also requires accordingly configured
auto-load safe-path (see Section 22.8.3 [Auto-loading safe path], page 359).

set auto-load libthread-db [on|off]

Enable or disable the auto-loading of inferior specific thread debugging library.

show auto-load libthread-db

Show whether auto-loading of inferior specific thread debugging library is en-
abled or disabled.

info auto-load libthread-db

Print the list of all loaded inferior specific thread debugging libraries and for
each such library print list of inferior pids using it.

22.8.3 Security restriction for auto-loading

As the files of inferior can come from untrusted source (such as submitted by an application
user) gdb does not always load any files automatically. gdb provides the ‘set auto-load

safe-path’ setting to list directories trusted for loading files not explicitly requested by
user. Each directory can also be a shell wildcard pattern.

If the path is not set properly you will see a warning and the file will not get loaded:

$./gdb -q ./gdb

Reading symbols from /home/user/gdb/gdb...

warning: File "/home/user/gdb/gdb-gdb.gdb" auto-loading has been

declined by your ‘auto-load safe-path’ set

to "$debugdir:$datadir/auto-load".

warning: File "/home/user/gdb/gdb-gdb.py" auto-loading has been

declined by your ‘auto-load safe-path’ set

360 Debugging with gdb

to "$debugdir:$datadir/auto-load".

To instruct gdb to go ahead and use the init files anyway, invoke gdb like this:
$ gdb -q -iex "set auto-load safe-path /home/user/gdb" ./gdb

The list of trusted directories is controlled by the following commands:

set auto-load safe-path [directories]
Set the list of directories (and their subdirectories) trusted for automatic load-
ing and execution of scripts. You can also enter a specific trusted file. Each
directory can also be a shell wildcard pattern; wildcards do not match directory
separator - see FNM_PATHNAME for system function fnmatch (see Section “Wild-
card Matching” in GNU C Library Reference Manual). If you omit directories,
‘auto-load safe-path’ will be reset to its default value as specified during gdb
compilation.

The list of directories uses path separator (‘:’ on GNU and Unix systems, ‘;’
on MS-Windows and MS-DOS) to separate directories, similarly to the PATH

environment variable.

show auto-load safe-path

Show the list of directories trusted for automatic loading and execution of
scripts.

add-auto-load-safe-path

Add an entry (or list of entries) to the list of directories trusted for automatic
loading and execution of scripts. Multiple entries may be delimited by the host
platform path separator in use.

This variable defaults to what --with-auto-load-dir has been configured to (see [with-
auto-load-dir], page 527). $debugdir and $datadir substitution applies the same as for
[set auto-load scripts-directory], page 527. The default set auto-load safe-path value
can be also overriden by gdb configuration option --with-auto-load-safe-path.

Setting this variable to / disables this security protection, corresponding gdb configu-
ration option is --without-auto-load-safe-path. This variable is supposed to be set to
the system directories writable by the system superuser only. Users can add their source
directories in init files in their home directories (see [Home Directory Init File], page 18).
See also deprecated init file in the current directory (see [Init File in the Current Directory
during Startup], page 19).

To force gdb to load the files it declined to load in the previous example, you could use
one of the following ways:

~/.gdbinit: ‘add-auto-load-safe-path ~/src/gdb’
Specify this trusted directory (or a file) as additional component of the list. You
have to specify also any existing directories displayed by by ‘show auto-load

safe-path’ (such as ‘/usr:/bin’ in this example).

gdb -iex "set auto-load safe-path /usr:/bin:~/src/gdb" ...

Specify this directory as in the previous case but just for a single gdb session.

gdb -iex "set auto-load safe-path /" ...

Disable auto-loading safety for a single gdb session. This assumes all the files
you debug during this gdb session will come from trusted sources.

Chapter 22: Controlling gdb 361

./configure --without-auto-load-safe-path

During compilation of gdb you may disable any auto-loading safety. This
assumes all the files you will ever debug with this gdb come from trusted
sources.

On the other hand you can also explicitly forbid automatic files loading which also
suppresses any such warning messages:

gdb -iex "set auto-load no" ...

You can use gdb command-line option for a single gdb session.

~/.gdbinit: ‘set auto-load no’
Disable auto-loading globally for the user (see [Home Directory Init File],
page 18). While it is improbable, you could also use system init file instead
(see Section C.6 [System-wide configuration], page 705).

This setting applies to the file names as entered by user. If no entry matches gdb
tries as a last resort to also resolve all the file names into their canonical form (typically
resolving symbolic links) and compare the entries again. gdb already canonicalizes most of
the filenames on its own before starting the comparison so a canonical form of directories
is recommended to be entered.

22.8.4 Displaying files tried for auto-load

For better visibility of all the file locations where you can place scripts to be auto-loaded
with inferior — or to protect yourself against accidental execution of untrusted scripts —
gdb provides a feature for printing all the files attempted to be loaded. Both existing and
non-existing files may be printed.

For example the list of directories from which it is safe to auto-load files (see
Section 22.8.3 [Auto-loading safe path], page 359) applies also to canonicalized filenames
which may not be too obvious while setting it up.

(gdb) set debug auto-load on

(gdb) file ~/src/t/true

auto-load: Loading canned sequences of commands script "/tmp/true-gdb.gdb"

for objfile "/tmp/true".

auto-load: Updating directories of "/usr:/opt".

auto-load: Using directory "/usr".

auto-load: Using directory "/opt".

warning: File "/tmp/true-gdb.gdb" auto-loading has been declined

by your ‘auto-load safe-path’ set to "/usr:/opt".

set debug auto-load [on|off]

Set whether to print the filenames attempted to be auto-loaded.

show debug auto-load

Show whether printing of the filenames attempted to be auto-loaded is turned
on or off.

22.9 Optional Warnings and Messages

By default, gdb is silent about its inner workings. If you are running on a slow machine,
you may want to use the set verbose command. This makes gdb tell you when it does a
lengthy internal operation, so you will not think it has crashed.

362 Debugging with gdb

Currently, the messages controlled by set verbose are those which announce that the
symbol table for a source file is being read; see symbol-file in Section 18.1 [Commands to
Specify Files], page 279.

set verbose on

Enables gdb output of certain informational messages.

set verbose off

Disables gdb output of certain informational messages.

show verbose

Displays whether set verbose is on or off.

By default, if gdb encounters bugs in the symbol table of an object file, it is silent; but if
you are debugging a compiler, you may find this information useful (see Section 18.6 [Errors
Reading Symbol Files], page 294).

set complaints limit

Permits gdb to output limit complaints about each type of unusual symbols
before becoming silent about the problem. Set limit to zero to suppress all com-
plaints; set it to a large number to prevent complaints from being suppressed.

show complaints

Displays how many symbol complaints gdb is permitted to produce.

By default, gdb is cautious, and asks what sometimes seems to be a lot of stupid
questions to confirm certain commands. For example, if you try to run a program which is
already running:

(gdb) run

The program being debugged has been started already.

Start it from the beginning? (y or n)

If you are willing to unflinchingly face the consequences of your own commands, you can
disable this “feature”:

set confirm off

Disables confirmation requests. Note that running gdb with the --batch op-
tion (see Section 2.1.2 [Mode Options], page 13) also automatically disables
confirmation requests.

set confirm on

Enables confirmation requests (the default).

show confirm

Displays state of confirmation requests.

If you need to debug user-defined commands or sourced files you may find it useful to
enable command tracing. In this mode each command will be printed as it is executed, pre-
fixed with one or more ‘+’ symbols, the quantity denoting the call depth of each command.

set trace-commands on

Enable command tracing.

set trace-commands off

Disable command tracing.

Chapter 22: Controlling gdb 363

show trace-commands

Display the current state of command tracing.

22.10 Optional Messages about Internal Happenings

gdb has commands that enable optional debugging messages from various gdb subsystems;
normally these commands are of interest to gdb maintainers, or when reporting a bug. This
section documents those commands.

set exec-done-display

Turns on or off the notification of asynchronous commands’ completion. When
on, gdb will print a message when an asynchronous command finishes its exe-
cution. The default is off.

show exec-done-display

Displays the current setting of asynchronous command completion notification.

set debug aarch64

Turns on or off display of debugging messages related to ARM AArch64. The
default is off.

show debug aarch64

Displays the current state of displaying debugging messages related to ARM
AArch64.

set debug arch

Turns on or off display of gdbarch debugging info. The default is off

show debug arch

Displays the current state of displaying gdbarch debugging info.

set debug aix-solib

Control display of debugging messages from the AIX shared library support
module. The default is off.

show debug aix-solib

Show the current state of displaying AIX shared library debugging messages.

set debug aix-thread

Display debugging messages about inner workings of the AIX thread module.

show debug aix-thread

Show the current state of AIX thread debugging info display.

set debug check-physname

Check the results of the “physname” computation. When reading DWARF
debugging information for C++, gdb attempts to compute each entity’s name.
gdb can do this computation in two different ways, depending on exactly what
information is present. When enabled, this setting causes gdb to compute the
names both ways and display any discrepancies.

show debug check-physname

Show the current state of “physname” checking.

364 Debugging with gdb

set debug coff-pe-read

Control display of debugging messages related to reading of COFF/PE exported
symbols. The default is off.

show debug coff-pe-read

Displays the current state of displaying debugging messages related to reading
of COFF/PE exported symbols.

set debug dwarf-die

Dump DWARF DIEs after they are read in. The value is the number of nesting
levels to print. A value of zero turns off the display.

show debug dwarf-die

Show the current state of DWARF DIE debugging.

set debug dwarf-line

Turns on or off display of debugging messages related to reading DWARF line
tables. The default is 0 (off). A value of 1 provides basic information. A value
greater than 1 provides more verbose information.

show debug dwarf-line

Show the current state of DWARF line table debugging.

set debug dwarf-read

Turns on or off display of debugging messages related to reading DWARF debug
info. The default is 0 (off). A value of 1 provides basic information. A value
greater than 1 provides more verbose information.

show debug dwarf-read

Show the current state of DWARF reader debugging.

set debug displaced

Turns on or off display of gdb debugging info for the displaced stepping support.
The default is off.

show debug displaced

Displays the current state of displaying gdb debugging info related to displaced
stepping.

set debug event

Turns on or off display of gdb event debugging info. The default is off.

show debug event

Displays the current state of displaying gdb event debugging info.

set debug event-loop

Controls output of debugging info about the event loop. The possible values
are ‘off’, ‘all’ (shows all debugging info) and ‘all-except-ui’ (shows all
debugging info except those about UI-related events).

show debug event-loop

Shows the current state of displaying debugging info about the event loop.

set debug expression

Turns on or off display of debugging info about gdb expression parsing. The
default is off.

Chapter 22: Controlling gdb 365

show debug expression

Displays the current state of displaying debugging info about gdb expression
parsing.

set debug fbsd-lwp

Turns on or off debugging messages from the FreeBSD LWP debug support.

show debug fbsd-lwp

Show the current state of FreeBSD LWP debugging messages.

set debug fbsd-nat

Turns on or off debugging messages from the FreeBSD native target.

show debug fbsd-nat

Show the current state of FreeBSD native target debugging messages.

set debug fortran-array-slicing

Turns on or off display of gdb Fortran array slicing debugging info. The default
is off.

show debug fortran-array-slicing

Displays the current state of displaying gdb Fortran array slicing debugging
info.

set debug frame

Turns on or off display of gdb frame debugging info. The default is off.

show debug frame

Displays the current state of displaying gdb frame debugging info.

set debug gnu-nat

Turn on or off debugging messages from the gnu/Hurd debug support.

show debug gnu-nat

Show the current state of gnu/Hurd debugging messages.

set debug infrun

Turns on or off display of gdb debugging info for running the inferior. The
default is off. infrun.c contains GDB’s runtime state machine used for imple-
menting operations such as single-stepping the inferior.

show debug infrun

Displays the current state of gdb inferior debugging.

set debug jit

Turn on or off debugging messages from JIT debug support.

show debug jit

Displays the current state of gdb JIT debugging.

set debug linux-nat [on|off]
Turn on or off debugging messages from the Linux native target debug support.

show debug linux-nat

Show the current state of Linux native target debugging messages.

366 Debugging with gdb

set debug linux-namespaces

Turn on or off debugging messages from the Linux namespaces debug support.

show debug linux-namespaces

Show the current state of Linux namespaces debugging messages.

set debug mach-o

Control display of debugging messages related to Mach-O symbols processing.
The default is off.

show debug mach-o

Displays the current state of displaying debugging messages related to reading
of COFF/PE exported symbols.

set debug notification

Turn on or off debugging messages about remote async notification. The default
is off.

show debug notification

Displays the current state of remote async notification debugging messages.

set debug observer

Turns on or off display of gdb observer debugging. This includes info such as
the notification of observable events.

show debug observer

Displays the current state of observer debugging.

set debug overload

Turns on or off display of gdb C++ overload debugging info. This includes info
such as ranking of functions, etc. The default is off.

show debug overload

Displays the current state of displaying gdb C++ overload debugging info.

set debug parser

Turns on or off the display of expression parser debugging output. Internally,
this sets the yydebug variable in the expression parser. See Section “Tracing
Your Parser” in Bison, for details. The default is off.

show debug parser

Show the current state of expression parser debugging.

set debug remote

Turns on or off display of reports on all packets sent back and forth across the
serial line to the remote machine. The info is printed on the gdb standard
output stream. The default is off.

show debug remote

Displays the state of display of remote packets.

set debug remote-packet-max-chars

Sets the maximum number of characters to display for each remote packet when
set debug remote is on. This is useful to prevent gdb from displaying lengthy
remote packets and polluting the console.

Chapter 22: Controlling gdb 367

The default value is 512, which means gdb will truncate each remote packet
after 512 bytes.

Setting this option to unlimited will disable truncation and will output the
full length of the remote packets.

show debug remote-packet-max-chars

Displays the number of bytes to output for remote packet debugging.

set debug separate-debug-file

Turns on or off display of debug output about separate debug file search.

show debug separate-debug-file

Displays the state of separate debug file search debug output.

set debug serial

Turns on or off display of gdb serial debugging info. The default is off.

show debug serial

Displays the current state of displaying gdb serial debugging info.

set debug solib-frv

Turn on or off debugging messages for FR-V shared-library code.

show debug solib-frv

Display the current state of FR-V shared-library code debugging messages.

set debug symbol-lookup

Turns on or off display of debugging messages related to symbol lookup. The
default is 0 (off). A value of 1 provides basic information. A value greater than
1 provides more verbose information.

show debug symbol-lookup

Show the current state of symbol lookup debugging messages.

set debug symfile

Turns on or off display of debugging messages related to symbol file functions.
The default is off. See Section 18.1 [Files], page 279.

show debug symfile

Show the current state of symbol file debugging messages.

set debug symtab-create

Turns on or off display of debugging messages related to symbol table creation.
The default is 0 (off). A value of 1 provides basic information. A value greater
than 1 provides more verbose information.

show debug symtab-create

Show the current state of symbol table creation debugging.

set debug target

Turns on or off display of gdb target debugging info. This info includes what
is going on at the target level of GDB, as it happens. The default is 0. Set it
to 1 to track events, and to 2 to also track the value of large memory transfers.

show debug target

Displays the current state of displaying gdb target debugging info.

368 Debugging with gdb

set debug timestamp

Turns on or off display of timestamps with gdb debugging info. When enabled,
seconds and microseconds are displayed before each debugging message.

show debug timestamp

Displays the current state of displaying timestamps with gdb debugging info.

set debug varobj

Turns on or off display of gdb variable object debugging info. The default is
off.

show debug varobj

Displays the current state of displaying gdb variable object debugging info.

set debug xml

Turn on or off debugging messages for built-in XML parsers.

show debug xml

Displays the current state of XML debugging messages.

22.11 Other Miscellaneous Settings

set interactive-mode

If on, forces gdb to assume that GDB was started in a terminal. In practice,
this means that gdb should wait for the user to answer queries generated by
commands entered at the command prompt. If off, forces gdb to operate in
the opposite mode, and it uses the default answers to all queries. If auto (the
default), gdb tries to determine whether its standard input is a terminal, and
works in interactive-mode if it is, non-interactively otherwise.

In the vast majority of cases, the debugger should be able to guess correctly
which mode should be used. But this setting can be useful in certain specific
cases, such as running a MinGW gdb inside a cygwin window.

show interactive-mode

Displays whether the debugger is operating in interactive mode or not.

set suppress-cli-notifications

If on, command-line-interface (CLI) notifications that are printed by gdb are
suppressed. If off, the notifications are printed as usual. The default value is
off. CLI notifications occur when you change the selected context or when the
program being debugged stops, as detailed below.

User-selected context changes:
When you change the selected context (i.e. the current inferior,
thread and/or the frame), gdb prints information about the new
context. For example, the default behavior is below:

(gdb) inferior 1

[Switching to inferior 1 [process 634] (/tmp/test)]

[Switching to thread 1 (process 634)]

#0 main () at test.c:3

3 return 0;

(gdb)

369

When the notifications are suppressed, the new context is not
printed:

(gdb) set suppress-cli-notifications on

(gdb) inferior 1

(gdb)

The program being debugged stops:
When the program you are debugging stops (e.g. because of hitting
a breakpoint, completing source-stepping, an interrupt, etc.), gdb
prints information about the stop event. For example, below is a
breakpoint hit:

(gdb) break test.c:3

Breakpoint 2 at 0x555555555155: file test.c, line 3.

(gdb) continue

Continuing.

Breakpoint 2, main () at test.c:3

3 return 0;

(gdb)

When the notifications are suppressed, the output becomes:
(gdb) break test.c:3

Breakpoint 2 at 0x555555555155: file test.c, line 3.

(gdb) set suppress-cli-notifications on

(gdb) continue

Continuing.

(gdb)

Suppressing CLI notifications may be useful in scripts to obtain a
reduced output from a list of commands.

show suppress-cli-notifications

Displays whether printing CLI notifications is suppressed or not.

371

23 Extending gdb

gdb provides several mechanisms for extension. gdb also provides the ability to automati-
cally load extensions when it reads a file for debugging. This allows the user to automatically
customize gdb for the program being debugged.

To facilitate the use of extension languages, gdb is capable of evaluating the contents of
a file. When doing so, gdb can recognize which extension language is being used by looking
at the filename extension. Files with an unrecognized filename extension are always treated
as a gdb Command Files. See Section 23.1.3 [Command files], page 375.

You can control how gdb evaluates these files with the following setting:

set script-extension off

All scripts are always evaluated as gdb Command Files.

set script-extension soft

The debugger determines the scripting language based on filename extension.
If this scripting language is supported, gdb evaluates the script using that
language. Otherwise, it evaluates the file as a gdb Command File.

set script-extension strict

The debugger determines the scripting language based on filename extension,
and evaluates the script using that language. If the language is not supported,
then the evaluation fails.

show script-extension

Display the current value of the script-extension option.

23.1 Canned Sequences of Commands

Aside from breakpoint commands (see Section 5.1.7 [Breakpoint Command Lists], page 76),
gdb provides two ways to store sequences of commands for execution as a unit: user-defined
commands and command files.

23.1.1 User-defined Commands

A user-defined command is a sequence of gdb commands to which you assign a new name
as a command. This is done with the define command. User commands may accept an
unlimited number of arguments separated by whitespace. Arguments are accessed within
the user command via $arg0...$argN. A trivial example:

define adder

print $arg0 + $arg1 + $arg2

end

To execute the command use:

adder 1 2 3

This defines the command adder, which prints the sum of its three arguments. Note the
arguments are text substitutions, so they may reference variables, use complex expressions,
or even perform inferior functions calls.

In addition, $argc may be used to find out how many arguments have been passed.

define adder

372 Debugging with gdb

if $argc == 2

print $arg0 + $arg1

end

if $argc == 3

print $arg0 + $arg1 + $arg2

end

end

Combining with the eval command (see [eval], page 378) makes it easier to process a
variable number of arguments:

define adder

set $i = 0

set $sum = 0

while $i < $argc

eval "set $sum = $sum + $arg%d", $i

set $i = $i + 1

end

print $sum

end

define commandname

Define a command named commandname. If there is already a command by
that name, you are asked to confirm that you want to redefine it. The argument
commandname may be a bare command name consisting of letters, numbers,
dashes, dots, and underscores. It may also start with any predefined or user-
defined prefix command. For example, ‘define target my-target’ creates a
user-defined ‘target my-target’ command.

The definition of the command is made up of other gdb command lines, which
are given following the define command. The end of these commands is marked
by a line containing end.

document commandname

Document the user-defined command commandname, so that it can be ac-
cessed by help. The command commandname must already be defined. This
command reads lines of documentation just as define reads the lines of the
command definition, ending with end. After the document command is fin-
ished, help on command commandname displays the documentation you have
written.

You may use the document command again to change the documentation of a
command. Redefining the command with define does not change the docu-
mentation.

define-prefix commandname

Define or mark the command commandname as a user-defined prefix com-
mand. Once marked, commandname can be used as prefix command by the
define command. Note that define-prefix can be used with a not yet de-
fined commandname. In such a case, commandname is defined as an empty
user-defined command. In case you redefine a command that was marked as a
user-defined prefix command, the subcommands of the redefined command are
kept (and gdb indicates so to the user).

Example:

(gdb) define-prefix abc

Chapter 23: Extending gdb 373

(gdb) define-prefix abc def

(gdb) define abc def

Type commands for definition of "abc def".

End with a line saying just "end".

>echo command initial def\n

>end

(gdb) define abc def ghi

Type commands for definition of "abc def ghi".

End with a line saying just "end".

>echo command ghi\n

>end

(gdb) define abc def

Keeping subcommands of prefix command "def".

Redefine command "def"? (y or n) y

Type commands for definition of "abc def".

End with a line saying just "end".

>echo command def\n

>end

(gdb) abc def ghi

command ghi

(gdb) abc def

command def

(gdb)

dont-repeat

Used inside a user-defined command, this tells gdb that this command should
not be repeated when the user hits RET (see Section 3.1 [Command Syntax],
page 23).

help user-defined

List all user-defined commands and all python commands defined in class COM-
MAND USER. The first line of the documentation or docstring is included (if
any).

show user

show user commandname

Display the gdb commands used to define commandname (but not its documen-
tation). If no commandname is given, display the definitions for all user-defined
commands. This does not work for user-defined python commands.

show max-user-call-depth

set max-user-call-depth

The value of max-user-call-depth controls how many recursion levels are
allowed in user-defined commands before gdb suspects an infinite recursion and
aborts the command. This does not apply to user-defined python commands.

In addition to the above commands, user-defined commands frequently use control flow
commands, described in Section 23.1.3 [Command Files], page 375.

When user-defined commands are executed, the commands of the definition are not
printed. An error in any command stops execution of the user-defined command.

374 Debugging with gdb

If used interactively, commands that would ask for confirmation proceed without asking
when used inside a user-defined command. Many gdb commands that normally print mes-
sages to say what they are doing omit the messages when used in a user-defined command.

23.1.2 User-defined Command Hooks

You may define hooks, which are a special kind of user-defined command. Whenever you
run the command ‘foo’, if the user-defined command ‘hook-foo’ exists, it is executed (with
no arguments) before that command.

A hook may also be defined which is run after the command you executed. Whenever you
run the command ‘foo’, if the user-defined command ‘hookpost-foo’ exists, it is executed
(with no arguments) after that command. Post-execution hooks may exist simultaneously
with pre-execution hooks, for the same command.

It is valid for a hook to call the command which it hooks. If this occurs, the hook is not
re-executed, thereby avoiding infinite recursion.

In addition, a pseudo-command, ‘stop’ exists. Defining (‘hook-stop’) makes the asso-
ciated commands execute every time execution stops in your program: before breakpoint
commands are run, displays are printed, or the stack frame is printed.

For example, to ignore SIGALRM signals while single-stepping, but treat them normally
during normal execution, you could define:

define hook-stop

handle SIGALRM nopass

end

define hook-run

handle SIGALRM pass

end

define hook-continue

handle SIGALRM pass

end

As a further example, to hook at the beginning and end of the echo command, and to
add extra text to the beginning and end of the message, you could define:

define hook-echo

echo <<<---

end

define hookpost-echo

echo --->>>\n

end

(gdb) echo Hello World

<<<---Hello World--->>>

(gdb)

You can define a hook for any single-word command in gdb, but not for command
aliases; you should define a hook for the basic command name, e.g. backtrace rather than
bt. You can hook a multi-word command by adding hook- or hookpost- to the last word
of the command, e.g. ‘define target hook-remote’ to add a hook to ‘target remote’.

Chapter 23: Extending gdb 375

If an error occurs during the execution of your hook, execution of gdb commands stops
and gdb issues a prompt (before the command that you actually typed had a chance to
run).

If you try to define a hook which does not match any known command, you get a warning
from the define command.

23.1.3 Command Files

A command file for gdb is a text file made of lines that are gdb commands. Comments
(lines starting with #) may also be included. An empty line in a command file does nothing;
it does not mean to repeat the last command, as it would from the terminal.

You can request the execution of a command file with the source command. Note that
the source command is also used to evaluate scripts that are not Command Files. The
exact behavior can be configured using the script-extension setting. See Chapter 23
[Extending GDB], page 371.

source [-s] [-v] filename

Execute the command file filename.

The lines in a command file are generally executed sequentially, unless the order of
execution is changed by one of the flow-control commands described below. The commands
are not printed as they are executed. An error in any command terminates execution of
the command file and control is returned to the console.

gdb first searches for filename in the current directory. If the file is not found there, and
filename does not specify a directory, then gdb also looks for the file on the source search
path (specified with the ‘directory’ command); except that $cdir is not searched because
the compilation directory is not relevant to scripts.

If -s is specified, then gdb searches for filename on the search path even if filename speci-
fies a directory. The search is done by appending filename to each element of the search path.
So, for example, if filename is mylib/myscript and the search path contains /home/user
then gdb will look for the script /home/user/mylib/myscript. The search is also done if
filename is an absolute path. For example, if filename is /tmp/myscript and the search
path contains /home/user then gdb will look for the script /home/user/tmp/myscript.
For DOS-like systems, if filename contains a drive specification, it is stripped before con-
catenation. For example, if filename is d:myscript and the search path contains c:/tmp
then gdb will look for the script c:/tmp/myscript.

If -v, for verbose mode, is given then gdb displays each command as it is executed. The
option must be given before filename, and is interpreted as part of the filename anywhere
else.

Commands that would ask for confirmation if used interactively proceed without asking
when used in a command file. Many gdb commands that normally print messages to say
what they are doing omit the messages when called from command files.

gdb also accepts command input from standard input. In this mode, normal output
goes to standard output and error output goes to standard error. Errors in a command
file supplied on standard input do not terminate execution of the command file—execution
continues with the next command.

gdb < cmds > log 2>&1

376 Debugging with gdb

(The syntax above will vary depending on the shell used.) This example will execute
commands from the file cmds. All output and errors would be directed to log.

Since commands stored on command files tend to be more general than commands typed
interactively, they frequently need to deal with complicated situations, such as different or
unexpected values of variables and symbols, changes in how the program being debugged
is built, etc. gdb provides a set of flow-control commands to deal with these complexities.
Using these commands, you can write complex scripts that loop over data structures, execute
commands conditionally, etc.

if

else This command allows to include in your script conditionally executed com-
mands. The if command takes a single argument, which is an expression to
evaluate. It is followed by a series of commands that are executed only if the
expression is true (its value is nonzero). There can then optionally be an else

line, followed by a series of commands that are only executed if the expression
was false. The end of the list is marked by a line containing end.

while This command allows to write loops. Its syntax is similar to if: the command
takes a single argument, which is an expression to evaluate, and must be fol-
lowed by the commands to execute, one per line, terminated by an end. These
commands are called the body of the loop. The commands in the body of while
are executed repeatedly as long as the expression evaluates to true.

loop_break

This command exits the while loop in whose body it is included. Execution of
the script continues after that whiles end line.

loop_continue

This command skips the execution of the rest of the body of commands in the
while loop in whose body it is included. Execution branches to the beginning
of the while loop, where it evaluates the controlling expression.

end Terminate the block of commands that are the body of if, else, or while

flow-control commands.

23.1.4 Commands for Controlled Output

During the execution of a command file or a user-defined command, normal gdb output
is suppressed; the only output that appears is what is explicitly printed by the commands
in the definition. This section describes three commands useful for generating exactly the
output you want.

echo text Print text. Nonprinting characters can be included in text using C escape se-
quences, such as ‘\n’ to print a newline. No newline is printed unless you specify
one. In addition to the standard C escape sequences, a backslash followed by a
space stands for a space. This is useful for displaying a string with spaces at the
beginning or the end, since leading and trailing spaces are otherwise trimmed
from all arguments. To print ‘ and foo = ’, use the command ‘echo \ and foo

= \ ’.

A backslash at the end of text can be used, as in C, to continue the command
onto subsequent lines. For example,

Chapter 23: Extending gdb 377

echo This is some text\n\

which is continued\n\

onto several lines.\n

produces the same output as
echo This is some text\n

echo which is continued\n

echo onto several lines.\n

output expression

Print the value of expression and nothing but that value: no newlines, no ‘$nn
= ’. The value is not entered in the value history either. See Section 10.1
[Expressions], page 139, for more information on expressions.

output/fmt expression

Print the value of expression in format fmt. You can use the same formats as
for print. See Section 10.5 [Output Formats], page 144, for more information.

printf template, expressions...

Print the values of one or more expressions under the control of the string
template. To print several values, make expressions be a comma-separated
list of individual expressions, which may be either numbers or pointers. Their
values are printed as specified by template, exactly as a C program would do
by executing the code below:

printf (template, expressions...);

As in C printf, ordinary characters in template are printed verbatim, while
conversion specification introduced by the ‘%’ character cause subsequent ex-
pressions to be evaluated, their values converted and formatted according to
type and style information encoded in the conversion specifications, and then
printed.

For example, you can print two values in hex like this:
printf "foo, bar-foo = 0x%x, 0x%x\n", foo, bar-foo

printf supports all the standard C conversion specifications, including the flags
and modifiers between the ‘%’ character and the conversion letter, with the
following exceptions:

• The argument-ordering modifiers, such as ‘2$’, are not supported.

• The modifier ‘*’ is not supported for specifying precision or width.

• The ‘’’ flag (for separation of digits into groups according to LC_NUMERIC’)
is not supported.

• The type modifiers ‘hh’, ‘j’, ‘t’, and ‘z’ are not supported.

• The conversion letter ‘n’ (as in ‘%n’) is not supported.

• The conversion letters ‘a’ and ‘A’ are not supported.

Note that the ‘ll’ type modifier is supported only if the underlying C imple-
mentation used to build gdb supports the long long int type, and the ‘L’ type
modifier is supported only if long double type is available.

As in C, printf supports simple backslash-escape sequences, such as \n, ‘\t’,
‘\\’, ‘\"’, ‘\a’, and ‘\f’, that consist of backslash followed by a single character.
Octal and hexadecimal escape sequences are not supported.

378 Debugging with gdb

Additionally, printf supports conversion specifications for DFP (Decimal
Floating Point) types using the following length modifiers together with a
floating point specifier. letters:

• ‘H’ for printing Decimal32 types.

• ‘D’ for printing Decimal64 types.

• ‘DD’ for printing Decimal128 types.

If the underlying C implementation used to build gdb has support for the three
length modifiers for DFP types, other modifiers such as width and precision
will also be available for gdb to use.

In case there is no such C support, no additional modifiers will be available and
the value will be printed in the standard way.

Here’s an example of printing DFP types using the above conversion letters:

printf "D32: %Hf - D64: %Df - D128: %DDf\n",1.2345df,1.2E10dd,1.2E1dl

eval template, expressions...

Convert the values of one or more expressions under the control of the string
template to a command line, and call it.

23.1.5 Controlling auto-loading native gdb scripts

When a new object file is read (for example, due to the file command, or because the
inferior has loaded a shared library), gdb will look for the command file objfile-gdb.gdb.
See Section 23.5 [Auto-loading extensions], page 526.

Auto-loading can be enabled or disabled, and the list of auto-loaded scripts can be
printed.

set auto-load gdb-scripts [on|off]

Enable or disable the auto-loading of canned sequences of commands scripts.

show auto-load gdb-scripts

Show whether auto-loading of canned sequences of commands scripts is enabled
or disabled.

info auto-load gdb-scripts [regexp]

Print the list of all canned sequences of commands scripts that gdb auto-loaded.

If regexp is supplied only canned sequences of commands scripts with matching names
are printed.

23.2 Command Aliases

Aliases allow you to define alternate spellings for existing commands. For example, if a new
gdb command defined in Python (see Section 23.3 [Python], page 381) has a long name, it
is handy to have an abbreviated version of it that involves less typing.

gdb itself uses aliases. For example ‘s’ is an alias of the ‘step’ command even though
it is otherwise an ambiguous abbreviation of other commands like ‘set’ and ‘show’.

Aliases are also used to provide shortened or more common versions of multi-word com-
mands. For example, gdb provides the ‘tty’ alias of the ‘set inferior-tty’ command.

Chapter 23: Extending gdb 379

You can define a new alias with the ‘alias’ command.

alias [-a] [--] alias = command [default-args]

alias specifies the name of the new alias. Each word of alias must consist of letters,
numbers, dashes and underscores.

command specifies the name of an existing command that is being aliased.

command can also be the name of an existing alias. In this case, command cannot be
an alias that has default arguments.

The ‘-a’ option specifies that the new alias is an abbreviation of the command. Abbre-
viations are not used in command completion.

The ‘--’ option specifies the end of options, and is useful when alias begins with a dash.

You can specify default-args for your alias. These default-args will be automatically
added before the alias arguments typed explicitly on the command line.

For example, the below defines an alias btfullall that shows all local variables and all
frame arguments:

(gdb) alias btfullall = backtrace -full -frame-arguments all

For more information about default-args, see Section 23.2.1 [Default Arguments],
page 380.

Here is a simple example showing how to make an abbreviation of a command so that
there is less to type. Suppose you were tired of typing ‘disas’, the current shortest un-
ambiguous abbreviation of the ‘disassemble’ command and you wanted an even shorter
version named ‘di’. The following will accomplish this.

(gdb) alias -a di = disas

Note that aliases are different from user-defined commands. With a user-defined com-
mand, you also need to write documentation for it with the ‘document’ command. An alias
automatically picks up the documentation of the existing command.

Here is an example where we make ‘elms’ an abbreviation of ‘elements’ in the ‘set
print elements’ command. This is to show that you can make an abbreviation of any part
of a command.

(gdb) alias -a set print elms = set print elements

(gdb) alias -a show print elms = show print elements

(gdb) set p elms 200

(gdb) show p elms

Limit on string chars or array elements to print is 200.

Note that if you are defining an alias of a ‘set’ command, and you want to have an alias
for the corresponding ‘show’ command, then you need to define the latter separately.

Unambiguously abbreviated commands are allowed in command and alias, just as they
are normally.

(gdb) alias -a set pr elms = set p ele

Finally, here is an example showing the creation of a one word alias for a more complex
command. This creates alias ‘spe’ of the command ‘set print elements’.

(gdb) alias spe = set print elements

(gdb) spe 20

380 Debugging with gdb

23.2.1 Default Arguments

You can tell gdb to always prepend some default arguments to the list of arguments provided
explicitly by the user when using a user-defined alias.

If you repeatedly use the same arguments or options for a command, you can define an
alias for this command and tell gdb to automatically prepend these arguments or options
to the list of arguments you type explicitly when using the alias1.

For example, if you often use the command thread apply all specifying to work on the
threads in ascending order and to continue in case it encounters an error, you can tell gdb
to automatically preprend the -ascending and -c options by using:

(gdb) alias thread apply asc-all = thread apply all -ascending -c

Once you have defined this alias with its default args, any time you type the thread

apply asc-all followed by some arguments, gdb will execute thread apply all

-ascending -c some arguments.

To have even less to type, you can also define a one word alias:
(gdb) alias t_a_c = thread apply all -ascending -c

As usual, unambiguous abbreviations can be used for alias and default-args.

The different aliases of a command do not share their default args. For example, you
define a new alias bt_ALL showing all possible information and another alias bt_SMALL

showing very limited information using:
(gdb) alias bt_ALL = backtrace -entry-values both -frame-arg all \

-past-main -past-entry -full

(gdb) alias bt_SMALL = backtrace -entry-values no -frame-arg none \

-past-main off -past-entry off

(For more on using the alias command, see Section 23.2 [Aliases], page 378.)

Default args are not limited to the arguments and options of command, but can specify
nested commands if command accepts such a nested command as argument. For example,
the below defines faalocalsoftype that lists the frames having locals of a certain type,
together with the matching local vars:

(gdb) alias faalocalsoftype = frame apply all info locals -q -t

(gdb) faalocalsoftype int

#1 0x55554f5e in sleeper_or_burner (v=0xdf50) at sleepers.c:86

i = 0

ret = 21845

This is also very useful to define an alias for a set of nested with commands to have a
particular combination of temporary settings. For example, the below defines the alias pp10
that pretty prints an expression argument, with a maximum of 10 elements if the expression
is a string or an array:

(gdb) alias pp10 = with print pretty -- with print elements 10 -- print

This defines the alias pp10 as being a sequence of 3 commands. The first part with

print pretty -- temporarily activates the setting set print pretty, then launches the
command that follows the separator --. The command following the first part is also
a with command that temporarily changes the setting set print elements to 10, then
launches the command that follows the second separator --. The third part print is the

1 gdb could easily accept default arguments for pre-defined commands and aliases, but it was deemed this
would be confusing, and so is not allowed.

Chapter 23: Extending gdb 381

command the pp10 alias will launch, using the temporary values of the settings and the
arguments explicitly given by the user. For more information about the with command
usage, see Section 3.2 [Command Settings], page 23.

23.3 Extending gdb using Python

You can extend gdb using the Python programming language (http://www.python.org/
). This feature is available only if gdb was configured using --with-python.

Python scripts used by gdb should be installed in data-directory/python, where data-
directory is the data directory as determined at gdb startup (see Section 18.7 [Data Files],
page 295). This directory, known as the python directory, is automatically added to the
Python Search Path in order to allow the Python interpreter to locate all scripts installed
at this location.

Additionally, gdb commands and convenience functions which are written in
Python and are located in the data-directory/python/gdb/command or data-

directory/python/gdb/function directories are automatically imported when gdb
starts.

23.3.1 Python Commands

gdb provides two commands for accessing the Python interpreter, and one related setting:

python-interactive [command]
pi [command]

Without an argument, the python-interactive command can be used to start
an interactive Python prompt. To return to gdb, type the EOF character (e.g.,
Ctrl-D on an empty prompt).

Alternatively, a single-line Python command can be given as an argument and
evaluated. If the command is an expression, the result will be printed; other-
wise, nothing will be printed. For example:

(gdb) python-interactive 2 + 3

5

python [command]
py [command]

The python command can be used to evaluate Python code.

If given an argument, the python command will evaluate the argument as a
Python command. For example:

(gdb) python print 23

23

If you do not provide an argument to python, it will act as a multi-line com-
mand, like define. In this case, the Python script is made up of subsequent
command lines, given after the python command. This command list is termi-
nated using a line containing end. For example:

(gdb) python

>print 23

>end

23

http://www.python.org/
http://www.python.org/

382 Debugging with gdb

set python print-stack

By default, gdb will print only the message component of a Python exception
when an error occurs in a Python script. This can be controlled using set

python print-stack: if full, then full Python stack printing is enabled; if
none, then Python stack and message printing is disabled; if message, the
default, only the message component of the error is printed.

set python ignore-environment [on|off]
By default this option is ‘off’, and, when gdb initializes its internal Python
interpreter, the Python interpreter will check the environment for variables that
will effect how it behaves, for example PYTHONHOME, and PYTHONPATH2.

If this option is set to ‘on’ before Python is initialized then Python will ignore
all such environment variables. As Python is initialized early during gdb’s
startup process, then this option must be placed into the early initialization file
(see Section 2.1.4 [Initialization Files], page 17) to have the desired effect.

This option is equivalent to passing -E to the real python executable.

set python dont-write-bytecode [auto|on|off]
When this option is ‘off’, then, once gdb has initialized the Python interpreter,
the interpreter will byte-compile any Python modules that it imports and write
the byte code to disk in .pyc files.

If this option is set to ‘on’ before Python is initialized then Python will no
longer write the byte code to disk. As Python is initialized early during gdb’s
startup process, then this option must be placed into the early initialization file
(see Section 2.1.4 [Initialization Files], page 17) to have the desired effect.

By default this option is set to ‘auto’, in this mode Python will check the
environment variable PYTHONDONTWRITEBYTECODE to see if it should write out
byte-code or not.

This option is equivalent to passing -B to the real python executable.

It is also possible to execute a Python script from the gdb interpreter:

source script-name

The script name must end with ‘.py’ and gdb must be configured to recognize
the script language based on filename extension using the script-extension

setting. See Chapter 23 [Extending GDB], page 371.

The following commands are intended to help debug gdb itself:

set debug py-breakpoint on|off

show debug py-breakpoint

When ‘on’, gdb prints debug messages related to the Python breakpoint API.
This is ‘off’ by default.

set debug py-unwind on|off

show debug py-unwind

When ‘on’, gdb prints debug messages related to the Python unwinder API.
This is ‘off’ by default.

2 See the ENVIRONMENT VARIABLES section of man 1 python for a comprehensive list.

Chapter 23: Extending gdb 383

23.3.2 Python API

You can get quick online help for gdb’s Python API by issuing the command
python help (gdb).

Functions and methods which have two or more optional arguments allow them to be
specified using keyword syntax. This allows passing some optional arguments while skipping
others. Example: gdb.some_function (’foo’, bar = 1, baz = 2).

23.3.2.1 Basic Python

At startup, gdb overrides Python’s sys.stdout and sys.stderr to print using gdb’s
output-paging streams. A Python program which outputs to one of these streams may
have its output interrupted by the user (see Section 22.4 [Screen Size], page 352). In this
situation, a Python KeyboardInterrupt exception is thrown.

Some care must be taken when writing Python code to run in gdb. Two things worth
noting in particular:

• gdb install handlers for SIGCHLD and SIGINT. Python code must not override these,
or even change the options using sigaction. If your program changes the handling of
these signals, gdb will most likely stop working correctly. Note that it is unfortunately
common for GUI toolkits to install a SIGCHLD handler.

• gdb takes care to mark its internal file descriptors as close-on-exec. However, this
cannot be done in a thread-safe way on all platforms. Your Python programs should
be aware of this and should both create new file descriptors with the close-on-exec flag
set and arrange to close unneeded file descriptors before starting a child process.

gdb introduces a new Python module, named gdb. All methods and classes added by
gdb are placed in this module. gdb automatically imports the gdb module for use in all
scripts evaluated by the python command.

Some types of the gdb module come with a textual representation (accessible through
the repr or str functions). These are offered for debugging purposes only, expect them to
change over time.

[Variable]gdb.PYTHONDIR
A string containing the python directory (see Section 23.3 [Python], page 381).

[Function]gdb.execute (command [, from tty [, to string]])
Evaluate command, a string, as a gdb CLI command. If a GDB exception happens
while command runs, it is translated as described in Section 23.3.2.2 [Exception
Handling], page 388.

The from tty flag specifies whether gdb ought to consider this command as having
originated from the user invoking it interactively. It must be a boolean value. If
omitted, it defaults to False.

By default, any output produced by command is sent to gdb’s standard output (and
to the log output if logging is turned on). If the to string parameter is True, then
output will be collected by gdb.execute and returned as a string. The default is
False, in which case the return value is None. If to string is True, the gdb virtual
terminal will be temporarily set to unlimited width and height, and its pagination
will be disabled; see Section 22.4 [Screen Size], page 352.

384 Debugging with gdb

[Function]gdb.breakpoints ()
Return a sequence holding all of gdb’s breakpoints. See Section 23.3.2.31 [Break-
points In Python], page 459, for more information. In gdb version 7.11 and earlier,
this function returned None if there were no breakpoints. This peculiarity was subse-
quently fixed, and now gdb.breakpoints returns an empty sequence in this case.

[Function]gdb.rbreak (regex [, minsyms [, throttle, [, symtabs]]])
Return a Python list holding a collection of newly set gdb.Breakpoint objects match-
ing function names defined by the regex pattern. If the minsyms keyword is True, all
system functions (those not explicitly defined in the inferior) will also be included in
the match. The throttle keyword takes an integer that defines the maximum number
of pattern matches for functions matched by the regex pattern. If the number of
matches exceeds the integer value of throttle, a RuntimeError will be raised and no
breakpoints will be created. If throttle is not defined then there is no imposed limit on
the maximum number of matches and breakpoints to be created. The symtabs key-
word takes a Python iterable that yields a collection of gdb.Symtab objects and will
restrict the search to those functions only contained within the gdb.Symtab objects.

[Function]gdb.parameter (parameter)
Return the value of a gdb parameter given by its name, a string; the parameter
name string may contain spaces if the parameter has a multi-part name. For example,
‘print object’ is a valid parameter name.

If the named parameter does not exist, this function throws a gdb.error (see
Section 23.3.2.2 [Exception Handling], page 388). Otherwise, the parameter’s value
is converted to a Python value of the appropriate type, and returned.

[Function]gdb.set_parameter (name, value)
Sets the gdb parameter name to value. As with gdb.parameter, the parameter name
string may contain spaces if the parameter has a multi-part name.

[Function]gdb.with_parameter (name, value)
Create a Python context manager (for use with the Python with statement) that
temporarily sets the gdb parameter name to value. On exit from the context, the
previous value will be restored.

This uses gdb.parameter in its implementation, so it can throw the same exceptions
as that function.

For example, it’s sometimes useful to evaluate some Python code with a particular
gdb language:

with gdb.with_parameter(’language’, ’pascal’):

... language-specific operations

[Function]gdb.history (number)
Return a value from gdb’s value history (see Section 10.11 [Value History], page 163).
The number argument indicates which history element to return. If number is nega-
tive, then gdb will take its absolute value and count backward from the last element
(i.e., the most recent element) to find the value to return. If number is zero, then
gdb will return the most recent element. If the element specified by number doesn’t
exist in the value history, a gdb.error exception will be raised.

Chapter 23: Extending gdb 385

If no exception is raised, the return value is always an instance of gdb.Value (see
Section 23.3.2.3 [Values From Inferior], page 389).

[Function]gdb.add_history (value)
Takes value, an instance of gdb.Value (see Section 23.3.2.3 [Values From Inferior],
page 389), and appends the value this object represents to gdb’s value history (see
Section 10.11 [Value History], page 163), and return an integer, its history number.
If value is not a gdb.Value, it is is converted using the gdb.Value constructor. If
value can’t be converted to a gdb.Value then a TypeError is raised.

When a command implemented in Python prints a single gdb.Value as its result,
then placing the value into the history will allow the user convenient access to those
values via CLI history facilities.

[Function]gdb.history_count ()
Return an integer indicating the number of values in gdb’s value history (see
Section 10.11 [Value History], page 163).

[Function]gdb.convenience_variable (name)
Return the value of the convenience variable (see Section 10.12 [Convenience Vars],
page 164) named name. name must be a string. The name should not include the
‘$’ that is used to mark a convenience variable in an expression. If the convenience
variable does not exist, then None is returned.

[Function]gdb.set_convenience_variable (name, value)
Set the value of the convenience variable (see Section 10.12 [Convenience Vars],
page 164) named name. name must be a string. The name should not include
the ‘$’ that is used to mark a convenience variable in an expression. If value is None,
then the convenience variable is removed. Otherwise, if value is not a gdb.Value

(see Section 23.3.2.3 [Values From Inferior], page 389), it is is converted using the
gdb.Value constructor.

[Function]gdb.parse_and_eval (expression)
Parse expression, which must be a string, as an expression in the current language,
evaluate it, and return the result as a gdb.Value.

This function can be useful when implementing a new command (see Section 23.3.2.20
[CLI Commands In Python], page 434, see Section 23.3.2.21 [GDB/MI Commands
In Python], page 437), as it provides a way to parse the command’s argument as an
expression. It is also useful simply to compute values.

[Function]gdb.find_pc_line (pc)
Return the gdb.Symtab_and_line object corresponding to the pc value. See
Section 23.3.2.29 [Symbol Tables In Python], page 456. If an invalid value of pc
is passed as an argument, then the symtab and line attributes of the returned
gdb.Symtab_and_line object will be None and 0 respectively. This is identical
to gdb.current_progspace().find_pc_line(pc) and is included for historical
compatibility.

[Function]gdb.post_event (event)
Put event, a callable object taking no arguments, into gdb’s internal event queue.
This callable will be invoked at some later point, during gdb’s event processing.

386 Debugging with gdb

Events posted using post_event will be run in the order in which they were posted;
however, there is no way to know when they will be processed relative to other events
inside gdb.

gdb is not thread-safe. If your Python program uses multiple threads, you must be
careful to only call gdb-specific functions in the gdb thread. post_event ensures
this. For example:

(gdb) python

>import threading

>

>class Writer():

> def __init__(self, message):

> self.message = message;

> def __call__(self):

> gdb.write(self.message)

>

>class MyThread1 (threading.Thread):

> def run (self):

> gdb.post_event(Writer("Hello "))

>

>class MyThread2 (threading.Thread):

> def run (self):

> gdb.post_event(Writer("World\n"))

>

>MyThread1().start()

>MyThread2().start()

>end

(gdb) Hello World

[Function]gdb.write (string [, stream])
Print a string to gdb’s paginated output stream. The optional stream determines
the stream to print to. The default stream is gdb’s standard output stream. Possible
stream values are:

gdb.STDOUT

gdb’s standard output stream.

gdb.STDERR

gdb’s standard error stream.

gdb.STDLOG

gdb’s log stream (see Section 2.4 [Logging Output], page 20).

Writing to sys.stdout or sys.stderr will automatically call this function and will
automatically direct the output to the relevant stream.

[Function]gdb.flush ()
Flush the buffer of a gdb paginated stream so that the contents are displayed im-
mediately. gdb will flush the contents of a stream automatically when it encounters
a newline in the buffer. The optional stream determines the stream to flush. The
default stream is gdb’s standard output stream. Possible stream values are:

gdb.STDOUT

gdb’s standard output stream.

Chapter 23: Extending gdb 387

gdb.STDERR

gdb’s standard error stream.

gdb.STDLOG

gdb’s log stream (see Section 2.4 [Logging Output], page 20).

Flushing sys.stdout or sys.stderr will automatically call this function for the
relevant stream.

[Function]gdb.target_charset ()
Return the name of the current target character set (see Section 10.21 [Character
Sets], page 179). This differs from gdb.parameter(’target-charset’) in that ‘auto’
is never returned.

[Function]gdb.target_wide_charset ()
Return the name of the current target wide character set (see Section 10.21 [Character
Sets], page 179). This differs from gdb.parameter(’target-wide-charset’) in that
‘auto’ is never returned.

[Function]gdb.host_charset ()
Return a string, the name of the current host character set (see Section 10.21 [Char-
acter Sets], page 179). This differs from gdb.parameter(’host-charset’) in that
‘auto’ is never returned.

[Function]gdb.solib_name (address)
Return the name of the shared library holding the given address as a string, or
None. This is identical to gdb.current_progspace().solib_name(address) and is
included for historical compatibility.

[Function]gdb.decode_line ([expression])
Return locations of the line specified by expression, or of the current line if no argu-
ment was given. This function returns a Python tuple containing two elements. The
first element contains a string holding any unparsed section of expression (or None if
the expression has been fully parsed). The second element contains either None or
another tuple that contains all the locations that match the expression represented
as gdb.Symtab_and_line objects (see Section 23.3.2.29 [Symbol Tables In Python],
page 456). If expression is provided, it is decoded the way that gdb’s inbuilt break
or edit commands do (see Section 9.2 [Specify Location], page 122).

[Function]gdb.prompt_hook (current prompt)
If prompt hook is callable, gdb will call the method assigned to this operation before
a prompt is displayed by gdb.

The parameter current_prompt contains the current gdb prompt. This method must
return a Python string, or None. If a string is returned, the gdb prompt will be set
to that string. If None is returned, gdb will continue to use the current prompt.

Some prompts cannot be substituted in gdb. Secondary prompts such as those used
by readline for command input, and annotation related prompts are prohibited from
being changed.

388 Debugging with gdb

[Function]gdb.architecture_names ()
Return a list containing all of the architecture names that the current build of gdb
supports. Each architecture name is a string. The names returned in this list are the
same names as are returned from gdb.Architecture.name (see [Architecture.name],
page 464).

[Function]gdb.connections
Return a list of gdb.TargetConnection objects, one for each currently active con-
nection (see Section 23.3.2.36 [Connections In Python], page 466). The connection
objects are in no particular order in the returned list.

23.3.2.2 Exception Handling

When executing the python command, Python exceptions uncaught within the Python
code are translated to calls to gdb error-reporting mechanism. If the command that called
python does not handle the error, gdb will terminate it and print an error message contain-
ing the Python exception name, the associated value, and the Python call stack backtrace
at the point where the exception was raised. Example:

(gdb) python print foo

Traceback (most recent call last):

File "<string>", line 1, in <module>

NameError: name ’foo’ is not defined

gdb errors that happen in gdb commands invoked by Python code are converted to
Python exceptions. The type of the Python exception depends on the error.

gdb.error

This is the base class for most exceptions generated by gdb. It is derived from
RuntimeError, for compatibility with earlier versions of gdb.

If an error occurring in gdb does not fit into some more specific category, then
the generated exception will have this type.

gdb.MemoryError

This is a subclass of gdb.error which is thrown when an operation tried to
access invalid memory in the inferior.

KeyboardInterrupt

User interrupt (via C-c or by typing q at a pagination prompt) is translated to
a Python KeyboardInterrupt exception.

In all cases, your exception handler will see the gdb error message as its value and the
Python call stack backtrace at the Python statement closest to where the gdb error occured
as the traceback.

When implementing gdb commands in Python via gdb.Command, or functions via
gdb.Function, it is useful to be able to throw an exception that doesn’t cause a traceback
to be printed. For example, the user may have invoked the command incorrectly. gdb
provides a special exception class that can be used for this purpose.

gdb.GdbError

When thrown from a command or function, this exception will cause the com-
mand or function to fail, but the Python stack will not be displayed. gdb does

Chapter 23: Extending gdb 389

not throw this exception itself, but rather recognizes it when thrown from user
Python code. Example:

(gdb) python

>class HelloWorld (gdb.Command):

> """Greet the whole world."""

> def __init__ (self):

> super (HelloWorld, self).__init__ ("hello-world", gdb.COMMAND_USER)

> def invoke (self, args, from_tty):

> argv = gdb.string_to_argv (args)

> if len (argv) != 0:

> raise gdb.GdbError ("hello-world takes no arguments")

> print ("Hello, World!")

>HelloWorld ()

>end

(gdb) hello-world 42

hello-world takes no arguments

23.3.2.3 Values From Inferior

gdb provides values it obtains from the inferior program in an object of type gdb.Value.
gdb uses this object for its internal bookkeeping of the inferior’s values, and for fetching
values when necessary.

Inferior values that are simple scalars can be used directly in Python expressions that
are valid for the value’s data type. Here’s an example for an integer or floating-point value
some_val:

bar = some_val + 2

As result of this, bar will also be a gdb.Value object whose values are of the same type as
those of some_val. Valid Python operations can also be performed on gdb.Value objects
representing a struct or class object. For such cases, the overloaded operator (if present),
is used to perform the operation. For example, if val1 and val2 are gdb.Value objects
representing instances of a class which overloads the + operator, then one can use the +

operator in their Python script as follows:
val3 = val1 + val2

The result of the operation val3 is also a gdb.Value object corresponding to the value
returned by the overloaded + operator. In general, overloaded operators are invoked for the
following operations: + (binary addition), - (binary subtraction), * (multiplication), /, %,
<<, >>, |, &, ^.

Inferior values that are structures or instances of some class can be accessed using the
Python dictionary syntax. For example, if some_val is a gdb.Value instance holding a
structure, you can access its foo element with:

bar = some_val[’foo’]

Again, bar will also be a gdb.Value object. Structure elements can also be accessed by
using gdb.Field objects as subscripts (see Section 23.3.2.4 [Types In Python], page 395,
for more information on gdb.Field objects). For example, if foo_field is a gdb.Field

object corresponding to element foo of the above structure, then bar can also be accessed
as follows:

bar = some_val[foo_field]

A gdb.Value that represents a function can be executed via inferior function call. Any
arguments provided to the call must match the function’s prototype, and must be provided
in the order specified by that prototype.

390 Debugging with gdb

For example, some_val is a gdb.Value instance representing a function that takes two
integers as arguments. To execute this function, call it like so:

result = some_val (10,20)

Any values returned from a function call will be stored as a gdb.Value.

The following attributes are provided:

[Variable]Value.address
If this object is addressable, this read-only attribute holds a gdb.Value object rep-
resenting the address. Otherwise, this attribute holds None.

[Variable]Value.is_optimized_out
This read-only boolean attribute is true if the compiler optimized out this value, thus
it is not available for fetching from the inferior.

[Variable]Value.type
The type of this gdb.Value. The value of this attribute is a gdb.Type object (see
Section 23.3.2.4 [Types In Python], page 395).

[Variable]Value.dynamic_type
The dynamic type of this gdb.Value. This uses the object’s virtual table and the C++
run-time type information (RTTI) to determine the dynamic type of the value. If this
value is of class type, it will return the class in which the value is embedded, if any. If
this value is of pointer or reference to a class type, it will compute the dynamic type
of the referenced object, and return a pointer or reference to that type, respectively.
In all other cases, it will return the value’s static type.

Note that this feature will only work when debugging a C++ program that includes
RTTI for the object in question. Otherwise, it will just return the static type of the
value as in ptype foo (see Chapter 16 [Symbols], page 253).

[Variable]Value.is_lazy
The value of this read-only boolean attribute is True if this gdb.Value has not yet
been fetched from the inferior. gdb does not fetch values until necessary, for efficiency.
For example:

myval = gdb.parse_and_eval (’somevar’)

The value of somevar is not fetched at this time. It will be fetched when the value is
needed, or when the fetch_lazy method is invoked.

The following methods are provided:

[Function]Value.__init__ (val)
Many Python values can be converted directly to a gdb.Value via this object initial-
izer. Specifically:

Python boolean
A Python boolean is converted to the boolean type from the current
language.

Python integer
A Python integer is converted to the C long type for the current archi-
tecture.

Chapter 23: Extending gdb 391

Python long
A Python long is converted to the C long long type for the current
architecture.

Python float
A Python float is converted to the C double type for the current archi-
tecture.

Python string
A Python string is converted to a target string in the current target
language using the current target encoding. If a character cannot be
represented in the current target encoding, then an exception is thrown.

gdb.Value

If val is a gdb.Value, then a copy of the value is made.

gdb.LazyString

If val is a gdb.LazyString (see Section 23.3.2.33 [Lazy Strings In
Python], page 463), then the lazy string’s value method is called, and
its result is used.

[Function]Value.__init__ (val, type)
This second form of the gdb.Value constructor returns a gdb.Value of type type
where the value contents are taken from the Python buffer object specified by val.
The number of bytes in the Python buffer object must be greater than or equal to
the size of type.

If type is None then this version of __init__ behaves as though type was not passed
at all.

[Function]Value.cast (type)
Return a new instance of gdb.Value that is the result of casting this instance to the
type described by type, which must be a gdb.Type object. If the cast cannot be
performed for some reason, this method throws an exception.

[Function]Value.dereference ()
For pointer data types, this method returns a new gdb.Value object whose contents
is the object pointed to by the pointer. For example, if foo is a C pointer to an int,
declared in your C program as

int *foo;

then you can use the corresponding gdb.Value to access what foo points to like this:
bar = foo.dereference ()

The result bar will be a gdb.Value object holding the value pointed to by foo.

A similar function Value.referenced_value exists which also returns gdb.Value ob-
jects corresponding to the values pointed to by pointer values (and additionally, values
referenced by reference values). However, the behavior of Value.dereference differs
from Value.referenced_value by the fact that the behavior of Value.dereference
is identical to applying the C unary operator * on a given value. For example, consider
a reference to a pointer ptrref, declared in your C++ program as

typedef int *intptr;

392 Debugging with gdb

...

int val = 10;

intptr ptr = &val;

intptr &ptrref = ptr;

Though ptrref is a reference value, one can apply the method Value.dereference to
the gdb.Value object corresponding to it and obtain a gdb.Value which is identical
to that corresponding to val. However, if you apply the method Value.referenced_

value, the result would be a gdb.Value object identical to that corresponding to
ptr.

py_ptrref = gdb.parse_and_eval ("ptrref")

py_val = py_ptrref.dereference ()

py_ptr = py_ptrref.referenced_value ()

The gdb.Value object py_val is identical to that corresponding to val, and py_

ptr is identical to that corresponding to ptr. In general, Value.dereference can be
applied whenever the C unary operator * can be applied to the corresponding C value.
For those cases where applying both Value.dereference and Value.referenced_

value is allowed, the results obtained need not be identical (as we have seen in the
above example). The results are however identical when applied on gdb.Value objects
corresponding to pointers (gdb.Value objects with type code TYPE_CODE_PTR) in a
C/C++ program.

[Function]Value.referenced_value ()
For pointer or reference data types, this method returns a new gdb.Value object
corresponding to the value referenced by the pointer/reference value. For pointer data
types, Value.dereference and Value.referenced_value produce identical results.
The difference between these methods is that Value.dereference cannot get the
values referenced by reference values. For example, consider a reference to an int,
declared in your C++ program as

int val = 10;

int &ref = val;

then applying Value.dereference to the gdb.Value object corresponding to ref will
result in an error, while applying Value.referenced_value will result in a gdb.Value
object identical to that corresponding to val.

py_ref = gdb.parse_and_eval ("ref")

er_ref = py_ref.dereference () # Results in error

py_val = py_ref.referenced_value () # Returns the referenced value

The gdb.Value object py_val is identical to that corresponding to val.

[Function]Value.reference_value ()
Return a gdb.Value object which is a reference to the value encapsulated by this
instance.

[Function]Value.const_value ()
Return a gdb.Value object which is a const version of the value encapsulated by this
instance.

[Function]Value.dynamic_cast (type)
Like Value.cast, but works as if the C++ dynamic_cast operator were used. Consult
a C++ reference for details.

Chapter 23: Extending gdb 393

[Function]Value.reinterpret_cast (type)
Like Value.cast, but works as if the C++ reinterpret_cast operator were used.
Consult a C++ reference for details.

[Function]Value.format_string (...)
Convert a gdb.Value to a string, similarly to what the print command does. Invoked
with no arguments, this is equivalent to calling the str function on the gdb.Value.
The representation of the same value may change across different versions of gdb, so
you shouldn’t, for instance, parse the strings returned by this method.

All the arguments are keyword only. If an argument is not specified, the current
global default setting is used.

raw True if pretty-printers (see Section 10.10 [Pretty Printing], page 161)
should not be used to format the value. False if enabled pretty-printers
matching the type represented by the gdb.Value should be used to format
it.

pretty_arrays

True if arrays should be pretty printed to be more convenient to read,
False if they shouldn’t (see set print array in Section 10.9 [Print Set-
tings], page 151).

pretty_structs

True if structs should be pretty printed to be more convenient to read,
False if they shouldn’t (see set print pretty in Section 10.9 [Print
Settings], page 151).

array_indexes

True if array indexes should be included in the string representation
of arrays, False if they shouldn’t (see set print array-indexes in
Section 10.9 [Print Settings], page 151).

symbols True if the string representation of a pointer should include the cor-
responding symbol name (if one exists), False if it shouldn’t (see set

print symbol in Section 10.9 [Print Settings], page 151).

unions True if unions which are contained in other structures or unions should be
expanded, False if they shouldn’t (see set print union in Section 10.9
[Print Settings], page 151).

address True if the string representation of a pointer should include the address,
False if it shouldn’t (see set print address in Section 10.9 [Print Set-
tings], page 151).

deref_refs

True if C++ references should be resolved to the value they refer to,
False (the default) if they shouldn’t. Note that, unlike for the print

command, references are not automatically expanded when using the
format_string method or the str function. There is no global print
setting to change the default behaviour.

394 Debugging with gdb

actual_objects

True if the representation of a pointer to an object should identify the
actual (derived) type of the object rather than the declared type, using
the virtual function table. False if the declared type should be used.
(See set print object in Section 10.9 [Print Settings], page 151).

static_members

True if static members should be included in the string representation of
a C++ object, False if they shouldn’t (see set print static-members in
Section 10.9 [Print Settings], page 151).

max_elements

Number of array elements to print, or 0 to print an unlimited number
of elements (see set print elements in Section 10.9 [Print Settings],
page 151).

max_depth

The maximum depth to print for nested structs and unions, or -1 to
print an unlimited number of elements (see set print max-depth in
Section 10.9 [Print Settings], page 151).

repeat_threshold

Set the threshold for suppressing display of repeated array elements, or
0 to represent all elements, even if repeated. (See set print repeats in
Section 10.9 [Print Settings], page 151).

format A string containing a single character representing the format to use for
the returned string. For instance, ’x’ is equivalent to using the gdb com-
mand print with the /x option and formats the value as a hexadecimal
number.

styling True if gdb should apply styling to the returned string. When styling
is applied, the returned string might contain ANSI terminal escape se-
quences. Escape sequences will only be included if styling is turned on,
see Section 22.5 [Output Styling], page 353. Additionally, gdb only styles
some value contents, so not every output string will contain escape se-
quences.

When False, which is the default, no output styling is applied.

[Function]Value.string ([encoding[, errors[, length]]])
If this gdb.Value represents a string, then this method converts the contents to a
Python string. Otherwise, this method will throw an exception.

Values are interpreted as strings according to the rules of the current language. If
the optional length argument is given, the string will be converted to that length,
and will include any embedded zeroes that the string may contain. Otherwise, for
languages where the string is zero-terminated, the entire string will be converted.

For example, in C-like languages, a value is a string if it is a pointer to or an array of
characters or ints of type wchar_t, char16_t, or char32_t.

If the optional encoding argument is given, it must be a string naming the encoding
of the string in the gdb.Value, such as "ascii", "iso-8859-6" or "utf-8". It ac-
cepts the same encodings as the corresponding argument to Python’s string.decode

Chapter 23: Extending gdb 395

method, and the Python codec machinery will be used to convert the string. If encod-
ing is not given, or if encoding is the empty string, then either the target-charset
(see Section 10.21 [Character Sets], page 179) will be used, or a language-specific
encoding will be used, if the current language is able to supply one.

The optional errors argument is the same as the corresponding argument to Python’s
string.decode method.

If the optional length argument is given, the string will be fetched and converted to
the given length.

[Function]Value.lazy_string ([encoding [, length]])
If this gdb.Value represents a string, then this method converts the contents to a
gdb.LazyString (see Section 23.3.2.33 [Lazy Strings In Python], page 463). Other-
wise, this method will throw an exception.

If the optional encoding argument is given, it must be a string naming the encoding
of the gdb.LazyString. Some examples are: ‘ascii’, ‘iso-8859-6’ or ‘utf-8’. If the
encoding argument is an encoding that gdb does recognize, gdb will raise an error.

When a lazy string is printed, the gdb encoding machinery is used to convert the
string during printing. If the optional encoding argument is not provided, or is an
empty string, gdb will automatically select the encoding most suitable for the string
type. For further information on encoding in gdb please see Section 10.21 [Character
Sets], page 179.

If the optional length argument is given, the string will be fetched and encoded to
the length of characters specified. If the length argument is not provided, the string
will be fetched and encoded until a null of appropriate width is found.

[Function]Value.fetch_lazy ()
If the gdb.Value object is currently a lazy value (gdb.Value.is_lazy is True), then
the value is fetched from the inferior. Any errors that occur in the process will produce
a Python exception.

If the gdb.Value object is not a lazy value, this method has no effect.

This method does not return a value.

23.3.2.4 Types In Python

gdb represents types from the inferior using the class gdb.Type.

The following type-related functions are available in the gdb module:

[Function]gdb.lookup_type (name [, block])
This function looks up a type by its name, which must be a string.

If block is given, then name is looked up in that scope. Otherwise, it is searched for
globally.

Ordinarily, this function will return an instance of gdb.Type. If the named type
cannot be found, it will throw an exception.

Integer types can be found without looking them up by name. See Section 23.3.2.34
[Architectures In Python], page 464, for the integer_type method.

396 Debugging with gdb

If the type is a structure or class type, or an enum type, the fields of that type can be
accessed using the Python dictionary syntax. For example, if some_type is a gdb.Type

instance holding a structure type, you can access its foo field with:

bar = some_type[’foo’]

bar will be a gdb.Field object; see below under the description of the Type.fields

method for a description of the gdb.Field class.

An instance of Type has the following attributes:

[Variable]Type.alignof
The alignment of this type, in bytes. Type alignment comes from the debugging
information; if it was not specified, then gdb will use the relevant ABI to try to
determine the alignment. In some cases, even this is not possible, and zero will be
returned.

[Variable]Type.code
The type code for this type. The type code will be one of the TYPE_CODE_ constants
defined below.

[Variable]Type.dynamic
A boolean indicating whether this type is dynamic. In some situations, such as Rust
enum types or Ada variant records, the concrete type of a value may vary depending
on its contents. That is, the declared type of a variable, or the type returned by
gdb.lookup_type may be dynamic; while the type of the variable’s value will be a
concrete instance of that dynamic type.

For example, consider this code:

int n;

int array[n];

Here, at least conceptually (whether your compiler actually does this is a separate
issue), examining gdb.lookup_symbol("array", ...).type could yield a gdb.Type

which reports a size of None. This is the dynamic type.

However, examining gdb.parse_and_eval("array").type would yield a concrete
type, whose length would be known.

[Variable]Type.name
The name of this type. If this type has no name, then None is returned.

[Variable]Type.sizeof
The size of this type, in target char units. Usually, a target’s char type will be an
8-bit byte. However, on some unusual platforms, this type may have a different size.
A dynamic type may not have a fixed size; in this case, this attribute’s value will be
None.

[Variable]Type.tag
The tag name for this type. The tag name is the name after struct, union, or enum
in C and C++; not all languages have this concept. If this type has no tag name, then
None is returned.

Chapter 23: Extending gdb 397

[Variable]Type.objfile
The gdb.Objfile that this type was defined in, or None if there is no associated
objfile.

[Variable]Type.is_scalar
This property is True if the type is a scalar type, otherwise, this property is False.
Examples of non-scalar types include structures, unions, and classes.

[Variable]Type.is_signed
For scalar types (those for which Type.is_scalar is True), this property is True if
the type is signed, otherwise this property is False.

Attempting to read this property for a non-scalar type (a type for which Type.is_

scalar is False), will raise a ValueError.

The following methods are provided:

[Function]Type.fields ()
Return the fields of this type. The behavior depends on the type code:

• For structure and union types, this method returns the fields.

• Range types have two fields, the minimum and maximum values.

• Enum types have one field per enum constant.

• Function and method types have one field per parameter. The base types of C++
classes are also represented as fields.

• Array types have one field representing the array’s range.

• If the type does not fit into one of these categories, a TypeError is raised.

Each field is a gdb.Field object, with some pre-defined attributes:

bitpos This attribute is not available for enum or static (as in C++) fields. The
value is the position, counting in bits, from the start of the containing
type. Note that, in a dynamic type, the position of a field may not be
constant. In this case, the value will be None. Also, a dynamic type may
have fields that do not appear in a corresponding concrete type.

enumval This attribute is only available for enum fields, and its value is the enu-
meration member’s integer representation.

name The name of the field, or None for anonymous fields.

artificial

This is True if the field is artificial, usually meaning that it was provided
by the compiler and not the user. This attribute is always provided, and
is False if the field is not artificial.

is_base_class

This is True if the field represents a base class of a C++ structure. This
attribute is always provided, and is False if the field is not a base class
of the type that is the argument of fields, or if that type was not a C++
class.

398 Debugging with gdb

bitsize If the field is packed, or is a bitfield, then this will have a non-zero value,
which is the size of the field in bits. Otherwise, this will be zero; in this
case the field’s size is given by its type.

type The type of the field. This is usually an instance of Type, but it can be
None in some situations.

parent_type

The type which contains this field. This is an instance of gdb.Type.

[Function]Type.array (n1 [, n2])
Return a new gdb.Type object which represents an array of this type. If one argument
is given, it is the inclusive upper bound of the array; in this case the lower bound is
zero. If two arguments are given, the first argument is the lower bound of the array,
and the second argument is the upper bound of the array. An array’s length must
not be negative, but the bounds can be.

[Function]Type.vector (n1 [, n2])
Return a new gdb.Type object which represents a vector of this type. If one argument
is given, it is the inclusive upper bound of the vector; in this case the lower bound is
zero. If two arguments are given, the first argument is the lower bound of the vector,
and the second argument is the upper bound of the vector. A vector’s length must
not be negative, but the bounds can be.

The difference between an array and a vector is that arrays behave like in C: when
used in expressions they decay to a pointer to the first element whereas vectors are
treated as first class values.

[Function]Type.const ()
Return a new gdb.Type object which represents a const-qualified variant of this type.

[Function]Type.volatile ()
Return a new gdb.Type object which represents a volatile-qualified variant of this
type.

[Function]Type.unqualified ()
Return a new gdb.Type object which represents an unqualified variant of this type.
That is, the result is neither const nor volatile.

[Function]Type.range ()
Return a Python Tuple object that contains two elements: the low bound of the
argument type and the high bound of that type. If the type does not have a range,
gdb will raise a gdb.error exception (see Section 23.3.2.2 [Exception Handling],
page 388).

[Function]Type.reference ()
Return a new gdb.Type object which represents a reference to this type.

[Function]Type.pointer ()
Return a new gdb.Type object which represents a pointer to this type.

Chapter 23: Extending gdb 399

[Function]Type.strip_typedefs ()
Return a new gdb.Type that represents the real type, after removing all layers of
typedefs.

[Function]Type.target ()
Return a new gdb.Type object which represents the target type of this type.

For a pointer type, the target type is the type of the pointed-to object. For an array
type (meaning C-like arrays), the target type is the type of the elements of the array.
For a function or method type, the target type is the type of the return value. For a
complex type, the target type is the type of the elements. For a typedef, the target
type is the aliased type.

If the type does not have a target, this method will throw an exception.

[Function]Type.template_argument (n [, block])
If this gdb.Type is an instantiation of a template, this will return a new gdb.Value or
gdb.Type which represents the value of the nth template argument (indexed starting
at 0).

If this gdb.Type is not a template type, or if the type has fewer than n template
arguments, this will throw an exception. Ordinarily, only C++ code will have template
types.

If block is given, then name is looked up in that scope. Otherwise, it is searched for
globally.

[Function]Type.optimized_out ()
Return gdb.Value instance of this type whose value is optimized out. This allows a
frame decorator to indicate that the value of an argument or a local variable is not
known.

Each type has a code, which indicates what category this type falls into. The available
type categories are represented by constants defined in the gdb module:

gdb.TYPE_CODE_PTR

The type is a pointer.

gdb.TYPE_CODE_ARRAY

The type is an array.

gdb.TYPE_CODE_STRUCT

The type is a structure.

gdb.TYPE_CODE_UNION

The type is a union.

gdb.TYPE_CODE_ENUM

The type is an enum.

gdb.TYPE_CODE_FLAGS

A bit flags type, used for things such as status registers.

gdb.TYPE_CODE_FUNC

The type is a function.

400 Debugging with gdb

gdb.TYPE_CODE_INT

The type is an integer type.

gdb.TYPE_CODE_FLT

A floating point type.

gdb.TYPE_CODE_VOID

The special type void.

gdb.TYPE_CODE_SET

A Pascal set type.

gdb.TYPE_CODE_RANGE

A range type, that is, an integer type with bounds.

gdb.TYPE_CODE_STRING

A string type. Note that this is only used for certain languages with language-
defined string types; C strings are not represented this way.

gdb.TYPE_CODE_BITSTRING

A string of bits. It is deprecated.

gdb.TYPE_CODE_ERROR

An unknown or erroneous type.

gdb.TYPE_CODE_METHOD

A method type, as found in C++.

gdb.TYPE_CODE_METHODPTR

A pointer-to-member-function.

gdb.TYPE_CODE_MEMBERPTR

A pointer-to-member.

gdb.TYPE_CODE_REF

A reference type.

gdb.TYPE_CODE_RVALUE_REF

A C++11 rvalue reference type.

gdb.TYPE_CODE_CHAR

A character type.

gdb.TYPE_CODE_BOOL

A boolean type.

gdb.TYPE_CODE_COMPLEX

A complex float type.

gdb.TYPE_CODE_TYPEDEF

A typedef to some other type.

gdb.TYPE_CODE_NAMESPACE

A C++ namespace.

gdb.TYPE_CODE_DECFLOAT

A decimal floating point type.

Chapter 23: Extending gdb 401

gdb.TYPE_CODE_INTERNAL_FUNCTION

A function internal to gdb. This is the type used to represent convenience
functions.

Further support for types is provided in the gdb.types Python module (see
Section 23.3.4.2 [gdb.types], page 471).

23.3.2.5 Pretty Printing API

A pretty-printer is just an object that holds a value and implements a specific interface,
defined here. An example output is provided (see Section 10.10 [Pretty Printing], page 161).

[Function]pretty_printer.children (self)
gdb will call this method on a pretty-printer to compute the children of the pretty-
printer’s value.

This method must return an object conforming to the Python iterator protocol. Each
item returned by the iterator must be a tuple holding two elements. The first element
is the “name” of the child; the second element is the child’s value. The value can be
any Python object which is convertible to a gdb value.

This method is optional. If it does not exist, gdb will act as though the value has no
children.

For efficiency, the children method should lazily compute its results. This will let
gdb read as few elements as necessary, for example when various print settings (see
Section 10.9 [Print Settings], page 151) or -var-list-children (see Section 27.17
[GDB/MI Variable Objects], page 595) limit the number of elements to be displayed.

Children may be hidden from display based on the value of ‘set print max-depth’
(see Section 10.9 [Print Settings], page 151).

[Function]pretty_printer.display_hint (self)
The CLI may call this method and use its result to change the formatting of a value.
The result will also be supplied to an MI consumer as a ‘displayhint’ attribute of
the variable being printed.

This method is optional. If it does exist, this method must return a string or the
special value None.

Some display hints are predefined by gdb:

‘array’ Indicate that the object being printed is “array-like”. The CLI uses this to
respect parameters such as set print elements and set print array.

‘map’ Indicate that the object being printed is “map-like”, and that the children
of this value can be assumed to alternate between keys and values.

‘string’ Indicate that the object being printed is “string-like”. If the printer’s to_
string method returns a Python string of some kind, then gdb will call
its internal language-specific string-printing function to format the string.
For the CLI this means adding quotation marks, possibly escaping some
characters, respecting set print elements, and the like.

The special value None causes gdb to apply the default display rules.

402 Debugging with gdb

[Function]pretty_printer.to_string (self)
gdb will call this method to display the string representation of the value passed to
the object’s constructor.

When printing from the CLI, if the to_string method exists, then gdb will prepend
its result to the values returned by children. Exactly how this formatting is done
is dependent on the display hint, and may change as more hints are added. Also,
depending on the print settings (see Section 10.9 [Print Settings], page 151), the
CLI may print just the result of to_string in a stack trace, omitting the result of
children.

If this method returns a string, it is printed verbatim.

Otherwise, if this method returns an instance of gdb.Value, then gdb prints this
value. This may result in a call to another pretty-printer.

If instead the method returns a Python value which is convertible to a gdb.Value,
then gdb performs the conversion and prints the resulting value. Again, this may re-
sult in a call to another pretty-printer. Python scalars (integers, floats, and booleans)
and strings are convertible to gdb.Value; other types are not.

Finally, if this method returns None then no further operations are peformed in this
method and nothing is printed.

If the result is not one of these types, an exception is raised.

gdb provides a function which can be used to look up the default pretty-printer for a
gdb.Value:

[Function]gdb.default_visualizer (value)
This function takes a gdb.Value object as an argument. If a pretty-printer for this
value exists, then it is returned. If no such printer exists, then this returns None.

23.3.2.6 Selecting Pretty-Printers

gdb provides several ways to register a pretty-printer: globally, per program space, and per
objfile. When choosing how to register your pretty-printer, a good rule is to register it with
the smallest scope possible: that is prefer a specific objfile first, then a program space, and
only register a printer globally as a last resort.

[Variable]gdb.pretty_printers
The Python list gdb.pretty_printers contains an array of functions or callable
objects that have been registered via addition as a pretty-printer. Printers in this list
are called global printers, they’re available when debugging all inferiors.

Each gdb.Progspace contains a pretty_printers attribute. Each gdb.Objfile also
contains a pretty_printers attribute.

Each function on these lists is passed a single gdb.Value argument and should return
a pretty-printer object conforming to the interface definition above (see Section 23.3.2.5
[Pretty Printing API], page 401). If a function cannot create a pretty-printer for the value,
it should return None.

gdb first checks the pretty_printers attribute of each gdb.Objfile in the current pro-
gram space and iteratively calls each enabled lookup routine in the list for that gdb.Objfile

Chapter 23: Extending gdb 403

until it receives a pretty-printer object. If no pretty-printer is found in the objfile lists, gdb
then searches the pretty-printer list of the current program space, calling each enabled func-
tion until an object is returned. After these lists have been exhausted, it tries the global
gdb.pretty_printers list, again calling each enabled function until an object is returned.

The order in which the objfiles are searched is not specified. For a given list, functions
are always invoked from the head of the list, and iterated over sequentially until the end of
the list, or a printer object is returned.

For various reasons a pretty-printer may not work. For example, the underlying data
structure may have changed and the pretty-printer is out of date.

The consequences of a broken pretty-printer are severe enough that gdb provides support
for enabling and disabling individual printers. For example, if print frame-arguments is
on, a backtrace can become highly illegible if any argument is printed with a broken printer.

Pretty-printers are enabled and disabled by attaching an enabled attribute to the reg-
istered function or callable object. If this attribute is present and its value is False, the
printer is disabled, otherwise the printer is enabled.

23.3.2.7 Writing a Pretty-Printer

A pretty-printer consists of two parts: a lookup function to detect if the type is supported,
and the printer itself.

Here is an example showing how a std::string printer might be written. See
Section 23.3.2.5 [Pretty Printing API], page 401, for details on the API this class must
provide.

class StdStringPrinter(object):

"Print a std::string"

def __init__(self, val):

self.val = val

def to_string(self):

return self.val[’_M_dataplus’][’_M_p’]

def display_hint(self):

return ’string’

And here is an example showing how a lookup function for the printer example above
might be written.

def str_lookup_function(val):

lookup_tag = val.type.tag

if lookup_tag is None:

return None

regex = re.compile("^std::basic_string<char,.*>$")

if regex.match(lookup_tag):

return StdStringPrinter(val)

return None

The example lookup function extracts the value’s type, and attempts to match it to a
type that it can pretty-print. If it is a type the printer can pretty-print, it will return a
printer object. If not, it returns None.

We recommend that you put your core pretty-printers into a Python package. If your
pretty-printers are for use with a library, we further recommend embedding a version number

404 Debugging with gdb

into the package name. This practice will enable gdb to load multiple versions of your
pretty-printers at the same time, because they will have different names.

You should write auto-loaded code (see Section 23.3.3 [Python Auto-loading], page 469)
such that it can be evaluated multiple times without changing its meaning. An ideal auto-
load file will consist solely of imports of your printer modules, followed by a call to a register
pretty-printers with the current objfile.

Taken as a whole, this approach will scale nicely to multiple inferiors, each potentially
using a different library version. Embedding a version number in the Python package name
will ensure that gdb is able to load both sets of printers simultaneously. Then, because the
search for pretty-printers is done by objfile, and because your auto-loaded code took care
to register your library’s printers with a specific objfile, gdb will find the correct printers
for the specific version of the library used by each inferior.

To continue the std::string example (see Section 23.3.2.5 [Pretty Printing API],
page 401), this code might appear in gdb.libstdcxx.v6:

def register_printers(objfile):

objfile.pretty_printers.append(str_lookup_function)

And then the corresponding contents of the auto-load file would be:
import gdb.libstdcxx.v6

gdb.libstdcxx.v6.register_printers(gdb.current_objfile())

The previous example illustrates a basic pretty-printer. There are a few things that can
be improved on. The printer doesn’t have a name, making it hard to identify in a list of
installed printers. The lookup function has a name, but lookup functions can have arbitrary,
even identical, names.

Second, the printer only handles one type, whereas a library typically has several types.
One could install a lookup function for each desired type in the library, but one could also
have a single lookup function recognize several types. The latter is the conventional way
this is handled. If a pretty-printer can handle multiple data types, then its subprinters are
the printers for the individual data types.

The gdb.printing module provides a formal way of solving these problems (see
Section 23.3.4.1 [gdb.printing], page 470). Here is another example that handles multiple
types.

These are the types we are going to pretty-print:
struct foo { int a, b; };

struct bar { struct foo x, y; };

Here are the printers:
class fooPrinter:

"""Print a foo object."""

def __init__(self, val):

self.val = val

def to_string(self):

return ("a=<" + str(self.val["a"]) +

"> b=<" + str(self.val["b"]) + ">")

class barPrinter:

"""Print a bar object."""

Chapter 23: Extending gdb 405

def __init__(self, val):

self.val = val

def to_string(self):

return ("x=<" + str(self.val["x"]) +

"> y=<" + str(self.val["y"]) + ">")

This example doesn’t need a lookup function, that is handled by the gdb.printing

module. Instead a function is provided to build up the object that handles the lookup.

import gdb.printing

def build_pretty_printer():

pp = gdb.printing.RegexpCollectionPrettyPrinter(

"my_library")

pp.add_printer(’foo’, ’^foo$’, fooPrinter)

pp.add_printer(’bar’, ’^bar$’, barPrinter)

return pp

And here is the autoload support:

import gdb.printing

import my_library

gdb.printing.register_pretty_printer(

gdb.current_objfile(),

my_library.build_pretty_printer())

Finally, when this printer is loaded into gdb, here is the corresponding output of ‘info
pretty-printer’:

(gdb) info pretty-printer

my_library.so:

my_library

foo

bar

23.3.2.8 Type Printing API

gdb provides a way for Python code to customize type display. This is mainly useful for
substituting canonical typedef names for types.

A type printer is just a Python object conforming to a certain protocol. A simple base
class implementing the protocol is provided; see Section 23.3.4.2 [gdb.types], page 471. A
type printer must supply at least:

[Instance Variable of type_printer]enabled
A boolean which is True if the printer is enabled, and False otherwise. This is ma-
nipulated by the enable type-printer and disable type-printer commands.

[Instance Variable of type_printer]name
The name of the type printer. This must be a string. This is used by the enable

type-printer and disable type-printer commands.

[Method on type_printer]instantiate (self)
This is called by gdb at the start of type-printing. It is only called if the type printer
is enabled. This method must return a new object that supplies a recognize method,
as described below.

406 Debugging with gdb

When displaying a type, say via the ptype command, gdb will compute a list of
type recognizers. This is done by iterating first over the per-objfile type printers (see
Section 23.3.2.25 [Objfiles In Python], page 445), followed by the per-progspace type print-
ers (see Section 23.3.2.24 [Progspaces In Python], page 443), and finally the global type
printers.

gdb will call the instantiate method of each enabled type printer. If this method
returns None, then the result is ignored; otherwise, it is appended to the list of recognizers.

Then, when gdb is going to display a type name, it iterates over the list of recognizers.
For each one, it calls the recognition function, stopping if the function returns a non-None
value. The recognition function is defined as:

[Method on type_recognizer]recognize (self, type)
If type is not recognized, return None. Otherwise, return a string which is to be
printed as the name of type. The type argument will be an instance of gdb.Type (see
Section 23.3.2.4 [Types In Python], page 395).

gdb uses this two-pass approach so that type printers can efficiently cache information
without holding on to it too long. For example, it can be convenient to look up type
information in a type printer and hold it for a recognizer’s lifetime; if a single pass were
done then type printers would have to make use of the event system in order to avoid
holding information that could become stale as the inferior changed.

23.3.2.9 Filtering Frames

Frame filters are Python objects that manipulate the visibility of a frame or frames when a
backtrace (see Section 8.2 [Backtrace], page 110) is printed by gdb.

Only commands that print a backtrace, or, in the case of gdb/mi commands (see
Chapter 27 [GDB/MI], page 543), those that return a collection of frames are affected.
The commands that work with frame filters are:

backtrace (see [The backtrace command], page 110), -stack-list-frames (see [The
-stack-list-frames command], page 591), -stack-list-variables (see [The -stack-list-
variables command], page 594), -stack-list-arguments see [The -stack-list-arguments
command], page 590) and -stack-list-locals (see [The -stack-list-locals command],
page 593).

A frame filter works by taking an iterator as an argument, applying actions to the
contents of that iterator, and returning another iterator (or, possibly, the same iterator it
was provided in the case where the filter does not perform any operations). Typically, frame
filters utilize tools such as the Python’s itertools module to work with and create new
iterators from the source iterator. Regardless of how a filter chooses to apply actions, it
must not alter the underlying gdb frame or frames, or attempt to alter the call-stack within
gdb. This preserves data integrity within gdb. Frame filters are executed on a priority
basis and care should be taken that some frame filters may have been executed before, and
that some frame filters will be executed after.

An important consideration when designing frame filters, and well worth reflecting upon,
is that frame filters should avoid unwinding the call stack if possible. Some stacks can run
very deep, into the tens of thousands in some cases. To search every frame when a frame
filter executes may be too expensive at that step. The frame filter cannot know how many

Chapter 23: Extending gdb 407

frames it has to iterate over, and it may have to iterate through them all. This ends up
duplicating effort as gdb performs this iteration when it prints the frames. If the filter can
defer unwinding frames until frame decorators are executed, after the last filter has executed,
it should. See Section 23.3.2.10 [Frame Decorator API], page 408, for more information on
decorators. Also, there are examples for both frame decorators and filters in later chapters.
See Section 23.3.2.11 [Writing a Frame Filter], page 411, for more information.

The Python dictionary gdb.frame_filters contains key/object pairings that com-
prise a frame filter. Frame filters in this dictionary are called global frame filters, and
they are available when debugging all inferiors. These frame filters must register with
the dictionary directly. In addition to the global dictionary, there are other dictionar-
ies that are loaded with different inferiors via auto-loading (see Section 23.3.3 [Python
Auto-loading], page 469). The two other areas where frame filter dictionaries can be
found are: gdb.Progspace which contains a frame_filters dictionary attribute, and each
gdb.Objfile object which also contains a frame_filters dictionary attribute.

When a command is executed from gdb that is compatible with frame filters, gdb
combines the global, gdb.Progspace and all gdb.Objfile dictionaries currently loaded.
All of the gdb.Objfile dictionaries are combined, as several frames, and thus several object
files, might be in use. gdb then prunes any frame filter whose enabled attribute is False.
This pruned list is then sorted according to the priority attribute in each filter.

Once the dictionaries are combined, pruned and sorted, gdb creates an iterator which
wraps each frame in the call stack in a FrameDecorator object, and calls each filter in order.
The output from the previous filter will always be the input to the next filter, and so on.

Frame filters have a mandatory interface which each frame filter must implement, defined
here:

[Function]FrameFilter.filter (iterator)
gdb will call this method on a frame filter when it has reached the order in the priority
list for that filter.

For example, if there are four frame filters:

Name Priority

Filter1 5

Filter2 10

Filter3 100

Filter4 1

The order that the frame filters will be called is:

Filter3 -> Filter2 -> Filter1 -> Filter4

Note that the output from Filter3 is passed to the input of Filter2, and so on.

This filter method is passed a Python iterator. This iterator contains a sequence of
frame decorators that wrap each gdb.Frame, or a frame decorator that wraps another
frame decorator. The first filter that is executed in the sequence of frame filters will
receive an iterator entirely comprised of default FrameDecorator objects. However,
after each frame filter is executed, the previous frame filter may have wrapped some
or all of the frame decorators with their own frame decorator. As frame decorators
must also conform to a mandatory interface, these decorators can be assumed to act
in a uniform manner (see Section 23.3.2.10 [Frame Decorator API], page 408).

408 Debugging with gdb

This method must return an object conforming to the Python iterator protocol. Each
item in the iterator must be an object conforming to the frame decorator interface.
If a frame filter does not wish to perform any operations on this iterator, it should
return that iterator untouched.

This method is not optional. If it does not exist, gdb will raise and print an error.

[Variable]FrameFilter.name
The name attribute must be Python string which contains the name of the filter dis-
played by gdb (see Section 8.6 [Frame Filter Management], page 118). This attribute
may contain any combination of letters or numbers. Care should be taken to ensure
that it is unique. This attribute is mandatory.

[Variable]FrameFilter.enabled
The enabled attribute must be Python boolean. This attribute indicates to gdb
whether the frame filter is enabled, and should be considered when frame filters are
executed. If enabled is True, then the frame filter will be executed when any of
the backtrace commands detailed earlier in this chapter are executed. If enabled is
False, then the frame filter will not be executed. This attribute is mandatory.

[Variable]FrameFilter.priority
The priority attribute must be Python integer. This attribute controls the order
of execution in relation to other frame filters. There are no imposed limits on the
range of priority other than it must be a valid integer. The higher the priority

attribute, the sooner the frame filter will be executed in relation to other frame filters.
Although priority can be negative, it is recommended practice to assume zero is
the lowest priority that a frame filter can be assigned. Frame filters that have the
same priority are executed in unsorted order in that priority slot. This attribute is
mandatory. 100 is a good default priority.

23.3.2.10 Decorating Frames

Frame decorators are sister objects to frame filters (see Section 23.3.2.9 [Frame Filter API],
page 406). Frame decorators are applied by a frame filter and can only be used in conjunc-
tion with frame filters.

The purpose of a frame decorator is to customize the printed content of each gdb.Frame

in commands where frame filters are executed. This concept is called decorating a frame.
Frame decorators decorate a gdb.Frame with Python code contained within each API call.
This separates the actual data contained in a gdb.Frame from the decorated data pro-
duced by a frame decorator. This abstraction is necessary to maintain integrity of the data
contained in each gdb.Frame.

Frame decorators have a mandatory interface, defined below.

gdb already contains a frame decorator called FrameDecorator. This contains substan-
tial amounts of boilerplate code to decorate the content of a gdb.Frame. It is recommended
that other frame decorators inherit and extend this object, and only to override the methods
needed.

FrameDecorator is defined in the Python module gdb.FrameDecorator, so your code
can import it like:

from gdb.FrameDecorator import FrameDecorator

Chapter 23: Extending gdb 409

[Function]FrameDecorator.elided (self)
The elided method groups frames together in a hierarchical system. An example
would be an interpreter, where multiple low-level frames make up a single call in
the interpreted language. In this example, the frame filter would elide the low-level
frames and present a single high-level frame, representing the call in the interpreted
language, to the user.

The elided function must return an iterable and this iterable must contain the frames
that are being elided wrapped in a suitable frame decorator. If no frames are being
elided this function may return an empty iterable, or None. Elided frames are indented
from normal frames in a CLI backtrace, or in the case of GDB/MI, are placed in the
children field of the eliding frame.

It is the frame filter’s task to also filter out the elided frames from the source iterator.
This will avoid printing the frame twice.

[Function]FrameDecorator.function (self)
This method returns the name of the function in the frame that is to be printed.

This method must return a Python string describing the function, or None.

If this function returns None, gdb will not print any data for this field.

[Function]FrameDecorator.address (self)
This method returns the address of the frame that is to be printed.

This method must return a Python numeric integer type of sufficient size to describe
the address of the frame, or None.

If this function returns a None, gdb will not print any data for this field.

[Function]FrameDecorator.filename (self)
This method returns the filename and path associated with this frame.

This method must return a Python string containing the filename and the path to
the object file backing the frame, or None.

If this function returns a None, gdb will not print any data for this field.

[Function]FrameDecorator.line (self):
This method returns the line number associated with the current position within the
function addressed by this frame.

This method must return a Python integer type, or None.

If this function returns a None, gdb will not print any data for this field.

[Function]FrameDecorator.frame_args (self)
This method must return an iterable, or None. Returning an empty iterable, or None
means frame arguments will not be printed for this frame. This iterable must contain
objects that implement two methods, described here.

This object must implement a symbol method which takes a single self parameter
and must return a gdb.Symbol (see Section 23.3.2.28 [Symbols In Python], page 453),
or a Python string. The object must also implement a value method which takes
a single self parameter and must return a gdb.Value (see Section 23.3.2.3 [Values
From Inferior], page 389), a Python value, or None. If the value method returns

410 Debugging with gdb

None, and the argument method returns a gdb.Symbol, gdb will look-up and print
the value of the gdb.Symbol automatically.

A brief example:
class SymValueWrapper():

def __init__(self, symbol, value):

self.sym = symbol

self.val = value

def value(self):

return self.val

def symbol(self):

return self.sym

class SomeFrameDecorator()

...

...

def frame_args(self):

args = []

try:

block = self.inferior_frame.block()

except:

return None

Iterate over all symbols in a block. Only add

symbols that are arguments.

for sym in block:

if not sym.is_argument:

continue

args.append(SymValueWrapper(sym,None))

Add example synthetic argument.

args.append(SymValueWrapper(‘‘foo’’, 42))

return args

[Function]FrameDecorator.frame_locals (self)
This method must return an iterable or None. Returning an empty iterable, or None
means frame local arguments will not be printed for this frame.

The object interface, the description of the various strategies for reading frame locals,
and the example are largely similar to those described in the frame_args function,
(see [The frame filter frame args function], page 409). Below is a modified example:

class SomeFrameDecorator()

...

...

def frame_locals(self):

vars = []

try:

block = self.inferior_frame.block()

except:

return None

Iterate over all symbols in a block. Add all

symbols, except arguments.

for sym in block:

Chapter 23: Extending gdb 411

if sym.is_argument:

continue

vars.append(SymValueWrapper(sym,None))

Add an example of a synthetic local variable.

vars.append(SymValueWrapper(‘‘bar’’, 99))

return vars

[Function]FrameDecorator.inferior_frame (self):
This method must return the underlying gdb.Frame that this frame decorator is
decorating. gdb requires the underlying frame for internal frame information to
determine how to print certain values when printing a frame.

23.3.2.11 Writing a Frame Filter

There are three basic elements that a frame filter must implement: it must correctly imple-
ment the documented interface (see Section 23.3.2.9 [Frame Filter API], page 406), it must
register itself with gdb, and finally, it must decide if it is to work on the data provided by
gdb. In all cases, whether it works on the iterator or not, each frame filter must return an
iterator. A bare-bones frame filter follows the pattern in the following example.

import gdb

class FrameFilter():

def __init__(self):

Frame filter attribute creation.

#

’name’ is the name of the filter that GDB will display.

#

’priority’ is the priority of the filter relative to other

filters.

#

’enabled’ is a boolean that indicates whether this filter is

enabled and should be executed.

self.name = "Foo"

self.priority = 100

self.enabled = True

Register this frame filter with the global frame_filters

dictionary.

gdb.frame_filters[self.name] = self

def filter(self, frame_iter):

Just return the iterator.

return frame_iter

The frame filter in the example above implements the three requirements for all frame
filters. It implements the API, self registers, and makes a decision on the iterator (in this
case, it just returns the iterator untouched).

The first step is attribute creation and assignment, and as shown in the comments the
filter assigns the following attributes: name, priority and whether the filter should be
enabled with the enabled attribute.

412 Debugging with gdb

The second step is registering the frame filter with the dictionary or dictionaries that
the frame filter has interest in. As shown in the comments, this filter just registers itself
with the global dictionary gdb.frame_filters. As noted earlier, gdb.frame_filters is a
dictionary that is initialized in the gdb module when gdb starts. What dictionary a filter
registers with is an important consideration. Generally, if a filter is specific to a set of code,
it should be registered either in the objfile or progspace dictionaries as they are specific
to the program currently loaded in gdb. The global dictionary is always present in gdb
and is never unloaded. Any filters registered with the global dictionary will exist until gdb
exits. To avoid filters that may conflict, it is generally better to register frame filters against
the dictionaries that more closely align with the usage of the filter currently in question.
See Section 23.3.3 [Python Auto-loading], page 469, for further information on auto-loading
Python scripts.

gdb takes a hands-off approach to frame filter registration, therefore it is the frame
filter’s responsibility to ensure registration has occurred, and that any exceptions are han-
dled appropriately. In particular, you may wish to handle exceptions relating to Python
dictionary key uniqueness. It is mandatory that the dictionary key is the same as frame
filter’s name attribute. When a user manages frame filters (see Section 8.6 [Frame Fil-
ter Management], page 118), the names gdb will display are those contained in the name

attribute.

The final step of this example is the implementation of the filter method. As shown
in the example comments, we define the filter method and note that the method must
take an iterator, and also must return an iterator. In this bare-bones example, the frame
filter is not very useful as it just returns the iterator untouched. However this is a valid
operation for frame filters that have the enabled attribute set, but decide not to operate
on any frames.

In the next example, the frame filter operates on all frames and utilizes a frame decorator
to perform some work on the frames. See Section 23.3.2.10 [Frame Decorator API], page 408,
for further information on the frame decorator interface.

This example works on inlined frames. It highlights frames which are inlined by tag-
ging them with an “[inlined]” tag. By applying a frame decorator to all frames with the
Python itertools imap method, the example defers actions to the frame decorator. Frame
decorators are only processed when gdb prints the backtrace.

This introduces a new decision making topic: whether to perform decision making op-
erations at the filtering step, or at the printing step. In this example’s approach, it does
not perform any filtering decisions at the filtering step beyond mapping a frame decorator
to each frame. This allows the actual decision making to be performed when each frame is
printed. This is an important consideration, and well worth reflecting upon when designing
a frame filter. An issue that frame filters should avoid is unwinding the stack if possible.
Some stacks can run very deep, into the tens of thousands in some cases. To search every
frame to determine if it is inlined ahead of time may be too expensive at the filtering step.
The frame filter cannot know how many frames it has to iterate over, and it would have
to iterate through them all. This ends up duplicating effort as gdb performs this iteration
when it prints the frames.

In this example decision making can be deferred to the printing step. As each frame is
printed, the frame decorator can examine each frame in turn when gdb iterates. From a

Chapter 23: Extending gdb 413

performance viewpoint, this is the most appropriate decision to make as it avoids duplicating
the effort that the printing step would undertake anyway. Also, if there are many frame
filters unwinding the stack during filtering, it can substantially delay the printing of the
backtrace which will result in large memory usage, and a poor user experience.

class InlineFilter():

def __init__(self):

self.name = "InlinedFrameFilter"

self.priority = 100

self.enabled = True

gdb.frame_filters[self.name] = self

def filter(self, frame_iter):

frame_iter = itertools.imap(InlinedFrameDecorator,

frame_iter)

return frame_iter

This frame filter is somewhat similar to the earlier example, except that the filter

method applies a frame decorator object called InlinedFrameDecorator to each element
in the iterator. The imap Python method is light-weight. It does not proactively iterate
over the iterator, but rather creates a new iterator which wraps the existing one.

Below is the frame decorator for this example.
class InlinedFrameDecorator(FrameDecorator):

def __init__(self, fobj):

super(InlinedFrameDecorator, self).__init__(fobj)

def function(self):

frame = self.inferior_frame()

name = str(frame.name())

if frame.type() == gdb.INLINE_FRAME:

name = name + " [inlined]"

return name

This frame decorator only defines and overrides the function method. It lets the sup-
plied FrameDecorator, which is shipped with gdb, perform the other work associated with
printing this frame.

The combination of these two objects create this output from a backtrace:
#0 0x004004e0 in bar () at inline.c:11

#1 0x00400566 in max [inlined] (b=6, a=12) at inline.c:21

#2 0x00400566 in main () at inline.c:31

So in the case of this example, a frame decorator is applied to all frames, regardless of
whether they may be inlined or not. As gdb iterates over the iterator produced by the
frame filters, gdb executes each frame decorator which then makes a decision on what to
print in the function callback. Using a strategy like this is a way to defer decisions on the
frame content to printing time.

Eliding Frames

It might be that the above example is not desirable for representing inlined frames, and a
hierarchical approach may be preferred. If we want to hierarchically represent frames, the
elided frame decorator interface might be preferable.

414 Debugging with gdb

This example approaches the issue with the elided method. This example is quite long,
but very simplistic. It is out-of-scope for this section to write a complete example that
comprehensively covers all approaches of finding and printing inlined frames. However, this
example illustrates the approach an author might use.

This example comprises of three sections.

class InlineFrameFilter():

def __init__(self):

self.name = "InlinedFrameFilter"

self.priority = 100

self.enabled = True

gdb.frame_filters[self.name] = self

def filter(self, frame_iter):

return ElidingInlineIterator(frame_iter)

This frame filter is very similar to the other examples. The only difference is this frame
filter is wrapping the iterator provided to it (frame_iter) with a custom iterator called
ElidingInlineIterator. This again defers actions to when gdb prints the backtrace, as
the iterator is not traversed until printing.

The iterator for this example is as follows. It is in this section of the example where
decisions are made on the content of the backtrace.

class ElidingInlineIterator:

def __init__(self, ii):

self.input_iterator = ii

def __iter__(self):

return self

def next(self):

frame = next(self.input_iterator)

if frame.inferior_frame().type() != gdb.INLINE_FRAME:

return frame

try:

eliding_frame = next(self.input_iterator)

except StopIteration:

return frame

return ElidingFrameDecorator(eliding_frame, [frame])

This iterator implements the Python iterator protocol. When the next function is called
(when gdb prints each frame), the iterator checks if this frame decorator, frame, is wrapping
an inlined frame. If it is not, it returns the existing frame decorator untouched. If it is
wrapping an inlined frame, it assumes that the inlined frame was contained within the
next oldest frame, eliding_frame, which it fetches. It then creates and returns a frame
decorator, ElidingFrameDecorator, which contains both the elided frame, and the eliding
frame.

class ElidingInlineDecorator(FrameDecorator):

def __init__(self, frame, elided_frames):

super(ElidingInlineDecorator, self).__init__(frame)

self.frame = frame

self.elided_frames = elided_frames

Chapter 23: Extending gdb 415

def elided(self):

return iter(self.elided_frames)

This frame decorator overrides one function and returns the inlined frame in the elided
method. As before it lets FrameDecorator do the rest of the work involved in printing this
frame. This produces the following output.

#0 0x004004e0 in bar () at inline.c:11

#2 0x00400529 in main () at inline.c:25

#1 0x00400529 in max (b=6, a=12) at inline.c:15

In that output, max which has been inlined into main is printed hierarchically. Another
approach would be to combine the function method, and the elided method to both print
a marker in the inlined frame, and also show the hierarchical relationship.

23.3.2.12 Unwinding Frames in Python

In gdb terminology “unwinding” is the process of finding the previous frame (that is,
caller’s) from the current one. An unwinder has three methods. The first one checks if it
can handle given frame (“sniff” it). For the frames it can sniff an unwinder provides two
additional methods: it can return frame’s ID, and it can fetch registers from the previous
frame. A running gdb mantains a list of the unwinders and calls each unwinder’s sniffer in
turn until it finds the one that recognizes the current frame. There is an API to register an
unwinder.

The unwinders that come with gdb handle standard frames. However, mixed language
applications (for example, an application running Java Virtual Machine) sometimes use
frame layouts that cannot be handled by the gdb unwinders. You can write Python code
that can handle such custom frames.

You implement a frame unwinder in Python as a class with which has two attributes,
name and enabled, with obvious meanings, and a single method __call__, which examines
a given frame and returns an object (an instance of gdb.UnwindInfo class) describing it.
If an unwinder does not recognize a frame, it should return None. The code in gdb that
enables writing unwinders in Python uses this object to return frame’s ID and previous
frame registers when gdb core asks for them.

An unwinder should do as little work as possible. Some otherwise innocuous operations
can cause problems (even crashes, as this code is not not well-hardened yet). For example,
making an inferior call from an unwinder is unadvisable, as an inferior call will reset gdb’s
stack unwinding process, potentially causing re-entrant unwinding.

Unwinder Input

An object passed to an unwinder (a gdb.PendingFrame instance) provides a method to
read frame’s registers:

[Function]PendingFrame.read_register (reg)
This method returns the contents of the register reg in the frame as a gdb.Value

object. For a description of the acceptable values of reg see [Frame.read register],
page 450. If reg does not name a register for the current architecture, this method
will throw an exception.

Note that this method will always return a gdb.Value for a valid register name. This
does not mean that the value will be valid. For example, you may request a register

416 Debugging with gdb

that an earlier unwinder could not unwind—the value will be unavailable. Instead,
the gdb.Value returned from this method will be lazy; that is, its underlying bits
will not be fetched until it is first used. So, attempting to use such a value will cause
an exception at the point of use.

The type of the returned gdb.Value depends on the register and the architecture. It
is common for registers to have a scalar type, like long long; but many other types
are possible, such as pointer, pointer-to-function, floating point or vector types.

It also provides a factory method to create a gdb.UnwindInfo instance to be returned
to gdb:

[Function]PendingFrame.create_unwind_info (frame id)
Returns a new gdb.UnwindInfo instance identified by given frame id. The argument
is used to build gdb’s frame ID using one of functions provided by gdb. frame id’s
attributes determine which function will be used, as follows:

sp, pc The frame is identified by the given stack address and PC. The stack
address must be chosen so that it is constant throughout the lifetime of
the frame, so a typical choice is the value of the stack pointer at the start
of the function—in the DWARF standard, this would be the “Call Frame
Address”.

This is the most common case by far. The other cases are documented
for completeness but are only useful in specialized situations.

sp, pc, special

The frame is identified by the stack address, the PC, and a “special”
address. The special address is used on architectures that can have frames
that do not change the stack, but which are still distinct, for example the
IA-64, which has a second stack for registers. Both sp and special must
be constant throughout the lifetime of the frame.

sp The frame is identified by the stack address only. Any other stack frame
with a matching sp will be considered to match this frame. Inside gdb,
this is called a “wild frame”. You will never need this.

Each attribute value should be an instance of gdb.Value.

[Function]PendingFrame.architecture ()
Return the gdb.Architecture (see Section 23.3.2.34 [Architectures In Python],
page 464) for this gdb.PendingFrame. This represents the architecture of the
particular frame being unwound.

[Function]PendingFrame.level ()
Return an integer, the stack frame level for this frame. See Section 8.1 [Stack Frames],
page 109.

Unwinder Output: UnwindInfo

Use PendingFrame.create_unwind_info method described above to create a
gdb.UnwindInfo instance. Use the following method to specify caller registers that have
been saved in this frame:

Chapter 23: Extending gdb 417

[Function]gdb.UnwindInfo.add_saved_register (reg, value)
reg identifies the register, for a description of the acceptable values see
[Frame.read register], page 450. value is a register value (a gdb.Value object).

Unwinder Skeleton Code

gdb comes with the module containing the base Unwinder class. Derive your unwinder
class from it and structure the code as follows:

from gdb.unwinders import Unwinder

class FrameId(object):

def __init__(self, sp, pc):

self.sp = sp

self.pc = pc

class MyUnwinder(Unwinder):

def __init__(....):

super(MyUnwinder, self).__init___(<expects unwinder name argument>)

def __call__(pending_frame):

if not <we recognize frame>:

return None

Create UnwindInfo. Usually the frame is identified by the stack

pointer and the program counter.

sp = pending_frame.read_register(<SP number>)

pc = pending_frame.read_register(<PC number>)

unwind_info = pending_frame.create_unwind_info(FrameId(sp, pc))

Find the values of the registers in the caller’s frame and

save them in the result:

unwind_info.add_saved_register(<register>, <value>)

....

Return the result:

return unwind_info

Registering a Unwinder

An object file, a program space, and the gdb proper can have unwinders registered with it.

The gdb.unwinders module provides the function to register a unwinder:

[Function]gdb.unwinder.register_unwinder (locus, unwinder, replace=False)
locus is specifies an object file or a program space to which unwinder is added.
Passing None or gdb adds unwinder to the gdb’s global unwinder list. The newly
added unwinder will be called before any other unwinder from the same locus. Two
unwinders in the same locus cannot have the same name. An attempt to add a
unwinder with already existing name raises an exception unless replace is True, in
which case the old unwinder is deleted.

Unwinder Precedence

gdb first calls the unwinders from all the object files in no particular order, then the
unwinders from the current program space, and finally the unwinders from gdb.

418 Debugging with gdb

23.3.2.13 Xmethods In Python

Xmethods are additional methods or replacements for existing methods of a C++ class.
This feature is useful for those cases where a method defined in C++ source code could be
inlined or optimized out by the compiler, making it unavailable to gdb. For such cases,
one can define an xmethod to serve as a replacement for the method defined in the C++
source code. gdb will then invoke the xmethod, instead of the C++ method, to evaluate
expressions. One can also use xmethods when debugging with core files. Moreover, when
debugging live programs, invoking an xmethod need not involve running the inferior (which
can potentially perturb its state). Hence, even if the C++ method is available, it is better
to use its replacement xmethod if one is defined.

The xmethods feature in Python is available via the concepts of an xmethod matcher
and an xmethod worker. To implement an xmethod, one has to implement a matcher and
a corresponding worker for it (more than one worker can be implemented, each catering to
a different overloaded instance of the method). Internally, gdb invokes the match method
of a matcher to match the class type and method name. On a match, the match method
returns a list of matching worker objects. Each worker object typically corresponds to
an overloaded instance of the xmethod. They implement a get_arg_types method which
returns a sequence of types corresponding to the arguments the xmethod requires. gdb uses
this sequence of types to perform overload resolution and picks a winning xmethod worker.
A winner is also selected from among the methods gdb finds in the C++ source code. Next,
the winning xmethod worker and the winning C++ method are compared to select an overall
winner. In case of a tie between a xmethod worker and a C++ method, the xmethod worker
is selected as the winner. That is, if a winning xmethod worker is found to be equivalent
to the winning C++ method, then the xmethod worker is treated as a replacement for the
C++ method. gdb uses the overall winner to invoke the method. If the winning xmethod
worker is the overall winner, then the corresponding xmethod is invoked via the __call__

method of the worker object.

If one wants to implement an xmethod as a replacement for an existing C++ method,
then they have to implement an equivalent xmethod which has exactly the same name and
takes arguments of exactly the same type as the C++ method. If the user wants to invoke
the C++ method even though a replacement xmethod is available for that method, then
they can disable the xmethod.

See Section 23.3.2.14 [Xmethod API], page 418, for API to implement xmethods in
Python. See Section 23.3.2.15 [Writing an Xmethod], page 420, for implementing xmethods
in Python.

23.3.2.14 Xmethod API

The gdb Python API provides classes, interfaces and functions to implement, register and
manipulate xmethods. See Section 23.3.2.13 [Xmethods In Python], page 418.

An xmethod matcher should be an instance of a class derived from XMethodMatcher

defined in the module gdb.xmethod, or an object with similar interface and attributes. An
instance of XMethodMatcher has the following attributes:

[Variable]name
The name of the matcher.

Chapter 23: Extending gdb 419

[Variable]enabled
A boolean value indicating whether the matcher is enabled or disabled.

[Variable]methods
A list of named methods managed by the matcher. Each object in the list is an
instance of the class XMethod defined in the module gdb.xmethod, or any object with
the following attributes:

name Name of the xmethod which should be unique for each xmethod managed
by the matcher.

enabled A boolean value indicating whether the xmethod is enabled or disabled.

The class XMethod is a convenience class with same attributes as above along with
the following constructor:

[Function]XMethod.__init__ (self, name)
Constructs an enabled xmethod with name name.

The XMethodMatcher class has the following methods:

[Function]XMethodMatcher.__init__ (self, name)
Constructs an enabled xmethod matcher with name name. The methods attribute is
initialized to None.

[Function]XMethodMatcher.match (self, class type, method name)
Derived classes should override this method. It should return a xmethod worker object
(or a sequence of xmethod worker objects) matching the class type andmethod name.
class type is a gdb.Type object, and method name is a string value. If the matcher
manages named methods as listed in its methods attribute, then only those worker
objects whose corresponding entries in the methods list are enabled should be re-
turned.

An xmethod worker should be an instance of a class derived from XMethodWorker defined
in the module gdb.xmethod, or support the following interface:

[Function]XMethodWorker.get_arg_types (self)
This method returns a sequence of gdb.Type objects corresponding to the arguments
that the xmethod takes. It can return an empty sequence or None if the xmethod
does not take any arguments. If the xmethod takes a single argument, then a single
gdb.Type object corresponding to it can be returned.

[Function]XMethodWorker.get_result_type (self, *args)
This method returns a gdb.Type object representing the type of the result of invoking
this xmethod. The args argument is the same tuple of arguments that would be passed
to the __call__ method of this worker.

[Function]XMethodWorker.__call__ (self, *args)
This is the method which does the work of the xmethod. The args arguments is the
tuple of arguments to the xmethod. Each element in this tuple is a gdb.Value object.
The first element is always the this pointer value.

420 Debugging with gdb

For gdb to lookup xmethods, the xmethod matchers should be registered using the
following function defined in the module gdb.xmethod:

[Function]register_xmethod_matcher (locus, matcher, replace=False)
The matcher is registered with locus, replacing an existing matcher with the same
name as matcher if replace is True. locus can be a gdb.Objfile object (see
Section 23.3.2.25 [Objfiles In Python], page 445), or a gdb.Progspace object (see
Section 23.3.2.24 [Progspaces In Python], page 443), or None. If it is None, then
matcher is registered globally.

23.3.2.15 Writing an Xmethod

Implementing xmethods in Python will require implementing xmethod matchers and
xmethod workers (see Section 23.3.2.13 [Xmethods In Python], page 418). Consider the
following C++ class:

class MyClass

{

public:

MyClass (int a) : a_(a) { }

int geta (void) { return a_; }

int operator+ (int b);

private:

int a_;

};

int

MyClass::operator+ (int b)

{

return a_ + b;

}

Let us define two xmethods for the class MyClass, one replacing the method geta, and
another adding an overloaded flavor of operator+ which takes a MyClass argument (the
C++ code above already has an overloaded operator+ which takes an int argument). The
xmethod matcher can be defined as follows:

class MyClass_geta(gdb.xmethod.XMethod):

def __init__(self):

gdb.xmethod.XMethod.__init__(self, ’geta’)

def get_worker(self, method_name):

if method_name == ’geta’:

return MyClassWorker_geta()

class MyClass_sum(gdb.xmethod.XMethod):

def __init__(self):

gdb.xmethod.XMethod.__init__(self, ’sum’)

def get_worker(self, method_name):

if method_name == ’operator+’:

return MyClassWorker_plus()

class MyClassMatcher(gdb.xmethod.XMethodMatcher):

Chapter 23: Extending gdb 421

def __init__(self):

gdb.xmethod.XMethodMatcher.__init__(self, ’MyClassMatcher’)

List of methods ’managed’ by this matcher

self.methods = [MyClass_geta(), MyClass_sum()]

def match(self, class_type, method_name):

if class_type.tag != ’MyClass’:

return None

workers = []

for method in self.methods:

if method.enabled:

worker = method.get_worker(method_name)

if worker:

workers.append(worker)

return workers

Notice that the match method of MyClassMatcher returns a worker object of type
MyClassWorker_geta for the geta method, and a worker object of type MyClassWorker_

plus for the operator+ method. This is done indirectly via helper classes derived from
gdb.xmethod.XMethod. One does not need to use the methods attribute in a matcher
as it is optional. However, if a matcher manages more than one xmethod, it is a good
practice to list the xmethods in the methods attribute of the matcher. This will then
facilitate enabling and disabling individual xmethods via the enable/disable commands.
Notice also that a worker object is returned only if the corresponding entry in the methods
attribute of the matcher is enabled.

The implementation of the worker classes returned by the matcher setup above is as
follows:

class MyClassWorker_geta(gdb.xmethod.XMethodWorker):

def get_arg_types(self):

return None

def get_result_type(self, obj):

return gdb.lookup_type(’int’)

def __call__(self, obj):

return obj[’a_’]

class MyClassWorker_plus(gdb.xmethod.XMethodWorker):

def get_arg_types(self):

return gdb.lookup_type(’MyClass’)

def get_result_type(self, obj):

return gdb.lookup_type(’int’)

def __call__(self, obj, other):

return obj[’a_’] + other[’a_’]

For gdb to actually lookup a xmethod, it has to be registered with it. The matcher
defined above is registered with gdb globally as follows:

gdb.xmethod.register_xmethod_matcher(None, MyClassMatcher())

If an object obj of type MyClass is initialized in C++ code as follows:

MyClass obj(5);

422 Debugging with gdb

then, after loading the Python script defining the xmethod matchers and workers into GDBN,
invoking the method geta or using the operator + on obj will invoke the xmethods defined
above:

(gdb) p obj.geta()

$1 = 5

(gdb) p obj + obj

$2 = 10

Consider another example with a C++ template class:

template <class T>

class MyTemplate

{

public:

MyTemplate () : dsize_(10), data_ (new T [10]) { }

~MyTemplate () { delete [] data_; }

int footprint (void)

{

return sizeof (T) * dsize_ + sizeof (MyTemplate<T>);

}

private:

int dsize_;

T *data_;

};

Let us implement an xmethod for the above class which serves as a replacement for the
footprint method. The full code listing of the xmethod workers and xmethod matchers is
as follows:

class MyTemplateWorker_footprint(gdb.xmethod.XMethodWorker):

def __init__(self, class_type):

self.class_type = class_type

def get_arg_types(self):

return None

def get_result_type(self):

return gdb.lookup_type(’int’)

def __call__(self, obj):

return (self.class_type.sizeof +

obj[’dsize_’] *

self.class_type.template_argument(0).sizeof)

class MyTemplateMatcher_footprint(gdb.xmethod.XMethodMatcher):

def __init__(self):

gdb.xmethod.XMethodMatcher.__init__(self, ’MyTemplateMatcher’)

def match(self, class_type, method_name):

if (re.match(’MyTemplate<[\t\n]*[_a-zA-Z][_a-zA-Z0-9]*>’,

class_type.tag) and

method_name == ’footprint’):

return MyTemplateWorker_footprint(class_type)

Chapter 23: Extending gdb 423

Notice that, in this example, we have not used the methods attribute of the matcher
as the matcher manages only one xmethod. The user can enable/disable this xmethod by
enabling/disabling the matcher itself.

23.3.2.16 Inferiors In Python

Programs which are being run under gdb are called inferiors (see Section 4.9 [Inferiors
Connections and Programs], page 40). Python scripts can access information about and
manipulate inferiors controlled by gdb via objects of the gdb.Inferior class.

The following inferior-related functions are available in the gdb module:

[Function]gdb.inferiors ()
Return a tuple containing all inferior objects.

[Function]gdb.selected_inferior ()
Return an object representing the current inferior.

A gdb.Inferior object has the following attributes:

[Variable]Inferior.num
ID of inferior, as assigned by GDB.

[Variable]Inferior.connection
The gdb.TargetConnection for this inferior (see Section 23.3.2.36 [Connections In
Python], page 466), or None if this inferior has no connection.

[Variable]Inferior.connection_num
ID of inferior’s connection as assigned by gdb, or None if the inferior is not
connected to a target. See Section 4.9 [Inferiors Connections and Programs],
page 40. This is equivalent to gdb.Inferior.connection.num in the case where
gdb.Inferior.connection is not None.

[Variable]Inferior.pid
Process ID of the inferior, as assigned by the underlying operating system.

[Variable]Inferior.was_attached
Boolean signaling whether the inferior was created using ‘attach’, or started by gdb
itself.

[Variable]Inferior.progspace
The inferior’s program space. See Section 23.3.2.24 [Progspaces In Python], page 443.

A gdb.Inferior object has the following methods:

[Function]Inferior.is_valid ()
Returns True if the gdb.Inferior object is valid, False if not. A gdb.Inferior

object will become invalid if the inferior no longer exists within gdb. All other
gdb.Inferior methods will throw an exception if it is invalid at the time the method
is called.

[Function]Inferior.threads ()
This method returns a tuple holding all the threads which are valid when it is called.
If there are no valid threads, the method will return an empty tuple.

424 Debugging with gdb

[Function]Inferior.architecture ()
Return the gdb.Architecture (see Section 23.3.2.34 [Architectures In Python],
page 464) for this inferior. This represents the architecture of the inferior as a whole.
Some platforms can have multiple architectures in a single address space, so this
may not match the architecture of a particular frame (see Section 23.3.2.26 [Frames
In Python], page 447).

[Function]Inferior.read_memory (address, length)
Read length addressable memory units from the inferior, starting at address. Returns
a buffer object, which behaves much like an array or a string. It can be modified and
given to the Inferior.write_memory function. In Python 3, the return value is a
memoryview object.

[Function]Inferior.write_memory (address, buffer [, length])
Write the contents of buffer to the inferior, starting at address. The buffer parameter
must be a Python object which supports the buffer protocol, i.e., a string, an array
or the object returned from Inferior.read_memory. If given, length determines the
number of addressable memory units from buffer to be written.

[Function]Inferior.search_memory (address, length, pattern)
Search a region of the inferior memory starting at address with the given length using
the search pattern supplied in pattern. The pattern parameter must be a Python
object which supports the buffer protocol, i.e., a string, an array or the object returned
from gdb.read_memory. Returns a Python Long containing the address where the
pattern was found, or None if the pattern could not be found.

[Function]Inferior.thread_from_handle (handle)
Return the thread object corresponding to handle, a thread library specific data
structure such as pthread_t for pthreads library implementations.

The function Inferior.thread_from_thread_handle provides the same functional-
ity, but use of Inferior.thread_from_thread_handle is deprecated.

23.3.2.17 Events In Python

gdb provides a general event facility so that Python code can be notified of various state
changes, particularly changes that occur in the inferior.

An event is just an object that describes some state change. The type of the object and
its attributes will vary depending on the details of the change. All the existing events are
described below.

In order to be notified of an event, you must register an event handler with an event reg-
istry. An event registry is an object in the gdb.events module which dispatches particular
events. A registry provides methods to register and unregister event handlers:

[Function]EventRegistry.connect (object)
Add the given callable object to the registry. This object will be called when an event
corresponding to this registry occurs.

[Function]EventRegistry.disconnect (object)
Remove the given object from the registry. Once removed, the object will no longer
receive notifications of events.

Chapter 23: Extending gdb 425

Here is an example:
def exit_handler (event):

print ("event type: exit")

if hasattr (event, ’exit_code’):

print ("exit code: %d" % (event.exit_code))

else:

print ("exit code not available")

gdb.events.exited.connect (exit_handler)

In the above example we connect our handler exit_handler to the registry
events.exited. Once connected, exit_handler gets called when the inferior exits. The
argument event in this example is of type gdb.ExitedEvent. As you can see in the
example the ExitedEvent object has an attribute which indicates the exit code of the
inferior.

The following is a listing of the event registries that are available and details of the events
they emit:

events.cont

Emits gdb.ThreadEvent.

Some events can be thread specific when gdb is running in non-stop mode.
When represented in Python, these events all extend gdb.ThreadEvent. Note,
this event is not emitted directly; instead, events which are emitted by this
or other modules might extend this event. Examples of these events are
gdb.BreakpointEvent and gdb.ContinueEvent.

[Variable]ThreadEvent.inferior_thread
In non-stop mode this attribute will be set to the specific thread which
was involved in the emitted event. Otherwise, it will be set to None.

Emits gdb.ContinueEvent which extends gdb.ThreadEvent.

This event indicates that the inferior has been continued after a stop. For
inherited attribute refer to gdb.ThreadEvent above.

events.exited

Emits events.ExitedEvent which indicates that the inferior has exited.
events.ExitedEvent has two attributes:

[Variable]ExitedEvent.exit_code
An integer representing the exit code, if available, which the inferior has
returned. (The exit code could be unavailable if, for example, gdb de-
taches from the inferior.) If the exit code is unavailable, the attribute
does not exist.

[Variable]ExitedEvent.inferior
A reference to the inferior which triggered the exited event.

events.stop

Emits gdb.StopEvent which extends gdb.ThreadEvent.

Indicates that the inferior has stopped. All events emitted by this registry
extend StopEvent. As a child of gdb.ThreadEvent, gdb.StopEvent will in-

426 Debugging with gdb

dicate the stopped thread when gdb is running in non-stop mode. Refer to
gdb.ThreadEvent above for more details.

Emits gdb.SignalEvent which extends gdb.StopEvent.

This event indicates that the inferior or one of its threads has received as signal.
gdb.SignalEvent has the following attributes:

[Variable]SignalEvent.stop_signal
A string representing the signal received by the inferior. A list of possible
signal values can be obtained by running the command info signals in
the gdb command prompt.

Also emits gdb.BreakpointEvent which extends gdb.StopEvent.

gdb.BreakpointEvent event indicates that one or more breakpoints have been
hit, and has the following attributes:

[Variable]BreakpointEvent.breakpoints
A sequence containing references to all the breakpoints (type
gdb.Breakpoint) that were hit. See Section 23.3.2.31 [Breakpoints In
Python], page 459, for details of the gdb.Breakpoint object.

[Variable]BreakpointEvent.breakpoint
A reference to the first breakpoint that was hit. This function is main-
tained for backward compatibility and is now deprecated in favor of the
gdb.BreakpointEvent.breakpoints attribute.

events.new_objfile

Emits gdb.NewObjFileEvent which indicates that a new object file has been
loaded by gdb. gdb.NewObjFileEvent has one attribute:

[Variable]NewObjFileEvent.new_objfile
A reference to the object file (gdb.Objfile) which has been loaded.
See Section 23.3.2.25 [Objfiles In Python], page 445, for details of the
gdb.Objfile object.

events.clear_objfiles

Emits gdb.ClearObjFilesEvent which indicates that the list of object files for
a program space has been reset. gdb.ClearObjFilesEvent has one attribute:

[Variable]ClearObjFilesEvent.progspace
A reference to the program space (gdb.Progspace) whose objfile list has
been cleared. See Section 23.3.2.24 [Progspaces In Python], page 443.

events.inferior_call

Emits events just before and after a function in the inferior is
called by gdb. Before an inferior call, this emits an event of type
gdb.InferiorCallPreEvent, and after an inferior call, this emits an event of
type gdb.InferiorCallPostEvent.

gdb.InferiorCallPreEvent

Indicates that a function in the inferior is about to be called.

Chapter 23: Extending gdb 427

[Variable]InferiorCallPreEvent.ptid
The thread in which the call will be run.

[Variable]InferiorCallPreEvent.address
The location of the function to be called.

gdb.InferiorCallPostEvent

Indicates that a function in the inferior has just been called.

[Variable]InferiorCallPostEvent.ptid
The thread in which the call was run.

[Variable]InferiorCallPostEvent.address
The location of the function that was called.

events.memory_changed

Emits gdb.MemoryChangedEvent which indicates that the memory of the in-
ferior has been modified by the gdb user, for instance via a command like
set *addr = value. The event has the following attributes:

[Variable]MemoryChangedEvent.address
The start address of the changed region.

[Variable]MemoryChangedEvent.length
Length in bytes of the changed region.

events.register_changed

Emits gdb.RegisterChangedEvent which indicates that a register in the infe-
rior has been modified by the gdb user.

[Variable]RegisterChangedEvent.frame
A gdb.Frame object representing the frame in which the register was
modified.

[Variable]RegisterChangedEvent.regnum
Denotes which register was modified.

events.breakpoint_created

This is emitted when a new breakpoint has been created. The argument that
is passed is the new gdb.Breakpoint object.

events.breakpoint_modified

This is emitted when a breakpoint has been modified in some way. The argu-
ment that is passed is the new gdb.Breakpoint object.

events.breakpoint_deleted

This is emitted when a breakpoint has been deleted. The argument that
is passed is the gdb.Breakpoint object. When this event is emitted, the
gdb.Breakpoint object will already be in its invalid state; that is, the is_

valid method will return False.

428 Debugging with gdb

events.before_prompt

This event carries no payload. It is emitted each time gdb presents a prompt
to the user.

events.new_inferior

This is emitted when a new inferior is created. Note that the inferior is not
necessarily running; in fact, it may not even have an associated executable.

The event is of type gdb.NewInferiorEvent. This has a single attribute:

[Variable]NewInferiorEvent.inferior
The new inferior, a gdb.Inferior object.

events.inferior_deleted

This is emitted when an inferior has been deleted. Note that this is not the
same as process exit; it is notified when the inferior itself is removed, say via
remove-inferiors.

The event is of type gdb.InferiorDeletedEvent. This has a single attribute:

[Variable]NewInferiorEvent.inferior
The inferior that is being removed, a gdb.Inferior object.

events.new_thread

This is emitted when gdb notices a new thread. The event is of type
gdb.NewThreadEvent, which extends gdb.ThreadEvent. This has a single
attribute:

[Variable]NewThreadEvent.inferior_thread
The new thread.

events.gdb_exiting

This is emitted when gdb exits. This event is not emitted if gdb exits as a
result of an internal error, or after an unexpected signal. The event is of type
gdb.GdbExitingEvent, which has a single attribute:

[Variable]GdbExitingEvent.exit_code
An integer, the value of the exit code gdb will return.

events.connection_removed

This is emitted when gdb removes a connection (see Section 23.3.2.36 [Connec-
tions In Python], page 466). The event is of type gdb.ConnectionEvent. This
has a single read-only attribute:

[Variable]ConnectionEvent.connection
The gdb.TargetConnection that is being removed.

23.3.2.18 Threads In Python

Python scripts can access information about, and manipulate inferior threads controlled by
gdb, via objects of the gdb.InferiorThread class.

The following thread-related functions are available in the gdb module:

Chapter 23: Extending gdb 429

[Function]gdb.selected_thread ()
This function returns the thread object for the selected thread. If there is no selected
thread, this will return None.

To get the list of threads for an inferior, use the Inferior.threads() method. See
Section 23.3.2.16 [Inferiors In Python], page 423.

A gdb.InferiorThread object has the following attributes:

[Variable]InferiorThread.name
The name of the thread. If the user specified a name using thread name, then this
returns that name. Otherwise, if an OS-supplied name is available, then it is returned.
Otherwise, this returns None.

This attribute can be assigned to. The new value must be a string object, which sets
the new name, or None, which removes any user-specified thread name.

[Variable]InferiorThread.num
The per-inferior number of the thread, as assigned by GDB.

[Variable]InferiorThread.global_num
The global ID of the thread, as assigned by GDB. You can use this to make Python
breakpoints thread-specific, for example (see [The Breakpoint.thread attribute],
page 461).

[Variable]InferiorThread.ptid
ID of the thread, as assigned by the operating system. This attribute is a tuple con-
taining three integers. The first is the Process ID (PID); the second is the Lightweight
Process ID (LWPID), and the third is the Thread ID (TID). Either the LWPID or
TID may be 0, which indicates that the operating system does not use that identifier.

[Variable]InferiorThread.inferior
The inferior this thread belongs to. This attribute is represented as a gdb.Inferior

object. This attribute is not writable.

[Variable]InferiorThread.details
A string containing target specific thread state information. The format of this string
varies by target. If there is no additional state information for this thread, then this
attribute contains None.

For example, on a gnu/Linux system, a thread that is in the process of exiting
will return the string ‘Exiting’. For remote targets the details string will be ob-
tained with the ‘qThreadExtraInfo’ remote packet, if the target supports it (see
[‘qThreadExtraInfo’], page 755).

gdb displays the details string as part of the ‘Target Id’ column, in the info

threads output (see [‘info threads’], page 48).

A gdb.InferiorThread object has the following methods:

[Function]InferiorThread.is_valid ()
Returns True if the gdb.InferiorThread object is valid, False if not. A
gdb.InferiorThread object will become invalid if the thread exits, or the inferior
that the thread belongs is deleted. All other gdb.InferiorThread methods will
throw an exception if it is invalid at the time the method is called.

430 Debugging with gdb

[Function]InferiorThread.switch ()
This changes gdb’s currently selected thread to the one represented by this object.

[Function]InferiorThread.is_stopped ()
Return a Boolean indicating whether the thread is stopped.

[Function]InferiorThread.is_running ()
Return a Boolean indicating whether the thread is running.

[Function]InferiorThread.is_exited ()
Return a Boolean indicating whether the thread is exited.

[Function]InferiorThread.handle ()
Return the thread object’s handle, represented as a Python bytes object. A
gdb.Value representation of the handle may be constructed via gdb.Value(bufobj,

type) where bufobj is the Python bytes representation of the handle and type is a
gdb.Type for the handle type.

23.3.2.19 Recordings In Python

The following recordings-related functions (see Chapter 7 [Process Record and Replay],
page 101) are available in the gdb module:

[Function]gdb.start_recording ([method], [format])
Start a recording using the given method and format. If no format is given, the
default format for the recording method is used. If no method is given, the default
method will be used. Returns a gdb.Record object on success. Throw an exception
on failure.

The following strings can be passed as method:

• "full"

• "btrace": Possible values for format: "pt", "bts" or leave out for default format.

[Function]gdb.current_recording ()
Access a currently running recording. Return a gdb.Record object on success. Return
None if no recording is currently active.

[Function]gdb.stop_recording ()
Stop the current recording. Throw an exception if no recording is currently active.
All record objects become invalid after this call.

A gdb.Record object has the following attributes:

[Variable]Record.method
A string with the current recording method, e.g. full or btrace.

[Variable]Record.format
A string with the current recording format, e.g. bt, pts or None.

[Variable]Record.begin
A method specific instruction object representing the first instruction in this record-
ing.

Chapter 23: Extending gdb 431

[Variable]Record.end
A method specific instruction object representing the current instruction, that is not
actually part of the recording.

[Variable]Record.replay_position
The instruction representing the current replay position. If there is no replay active,
this will be None.

[Variable]Record.instruction_history
A list with all recorded instructions.

[Variable]Record.function_call_history
A list with all recorded function call segments.

A gdb.Record object has the following methods:

[Function]Record.goto (instruction)
Move the replay position to the given instruction.

[Function]Record.clear_trace ()
Clear the trace data of the current recording. This forces re-decoding of the trace for
successive commands.

The common gdb.Instruction class that recording method specific instruction objects
inherit from, has the following attributes:

[Variable]Instruction.pc
An integer representing this instruction’s address.

[Variable]Instruction.data
A buffer with the raw instruction data. In Python 3, the return value is a memoryview
object.

[Variable]Instruction.decoded
A human readable string with the disassembled instruction.

[Variable]Instruction.size
The size of the instruction in bytes.

Additionally gdb.RecordInstruction has the following attributes:

[Variable]RecordInstruction.number
An integer identifying this instruction. number corresponds to the numbers seen
in record instruction-history (see Chapter 7 [Process Record and Replay],
page 101).

[Variable]RecordInstruction.sal
A gdb.Symtab_and_line object representing the associated symtab and line of this
instruction. May be None if no debug information is available.

[Variable]RecordInstruction.is_speculative
A boolean indicating whether the instruction was executed speculatively.

432 Debugging with gdb

If an error occured during recording or decoding a recording, this error is represented by
a gdb.RecordGap object in the instruction list. It has the following attributes:

[Variable]RecordGap.number
An integer identifying this gap. number corresponds to the numbers seen in record

instruction-history (see Chapter 7 [Process Record and Replay], page 101).

[Variable]RecordGap.error_code
A numerical representation of the reason for the gap. The value is specific to the
current recording method.

[Variable]RecordGap.error_string
A human readable string with the reason for the gap.

Some gdb features write auxiliary information into the execution history. This infor-
mation is represented by a gdb.RecordAuxiliary object in the instruction list. It has the
following attributes:

[Variable]RecordAuxiliary.number
An integer identifying this auxiliary. number corresponds to the numbers seen
in record instruction-history (see Chapter 7 [Process Record and Replay],
page 101).

[Variable]RecordAuxiliary.data
A string representation of the auxiliary data.

A gdb.RecordFunctionSegment object has the following attributes:

[Variable]RecordFunctionSegment.number
An integer identifying this function segment. number corresponds to the numbers
seen in record function-call-history (see Chapter 7 [Process Record and Replay],
page 101).

[Variable]RecordFunctionSegment.symbol
A gdb.Symbol object representing the associated symbol. May be None if no debug
information is available.

[Variable]RecordFunctionSegment.level
An integer representing the function call’s stack level. May be None if the function
call is a gap.

[Variable]RecordFunctionSegment.instructions
A list of gdb.RecordInstruction or gdb.RecordGap objects associated with this
function call.

[Variable]RecordFunctionSegment.up
A gdb.RecordFunctionSegment object representing the caller’s function segment. If
the call has not been recorded, this will be the function segment to which control
returns. If neither the call nor the return have been recorded, this will be None.

Chapter 23: Extending gdb 433

[Variable]RecordFunctionSegment.prev
A gdb.RecordFunctionSegment object representing the previous segment of this
function call. May be None.

[Variable]RecordFunctionSegment.next
A gdb.RecordFunctionSegment object representing the next segment of this function
call. May be None.

The following example demonstrates the usage of these objects and functions to create a
function that will rewind a record to the last time a function in a different file was executed.
This would typically be used to track the execution of user provided callback functions in
a library which typically are not visible in a back trace.

def bringback ():

rec = gdb.current_recording ()

if not rec:

return

insn = rec.instruction_history

if len (insn) == 0:

return

try:

position = insn.index (rec.replay_position)

except:

position = -1

try:

filename = insn[position].sal.symtab.fullname ()

except:

filename = None

for i in reversed (insn[:position]):

try:

current = i.sal.symtab.fullname ()

except:

current = None

if filename == current:

continue

rec.goto (i)

return

Another possible application is to write a function that counts the number of code
executions in a given line range. This line range can contain parts of functions or span
across several functions and is not limited to be contiguous.

def countrange (filename, linerange):

count = 0

def filter_only (file_name):

for call in gdb.current_recording ().function_call_history:

try:

if file_name in call.symbol.symtab.fullname ():

yield call

except:

pass

434 Debugging with gdb

for c in filter_only (filename):

for i in c.instructions:

try:

if i.sal.line in linerange:

count += 1

break;

except:

pass

return count

23.3.2.20 CLI Commands In Python

You can implement new gdb CLI commands in Python. A CLI command is implemented
using an instance of the gdb.Command class, most commonly using a subclass.

[Function]Command.__init__ (name, command_class [, completer_class [,
prefix]])

The object initializer for Command registers the new command with gdb. This initial-
izer is normally invoked from the subclass’ own __init__ method.

name is the name of the command. If name consists of multiple words, then the initial
words are looked for as prefix commands. In this case, if one of the prefix commands
does not exist, an exception is raised.

There is no support for multi-line commands.

command class should be one of the ‘COMMAND_’ constants defined below. This argu-
ment tells gdb how to categorize the new command in the help system.

completer class is an optional argument. If given, it should be one of the ‘COMPLETE_’
constants defined below. This argument tells gdb how to perform completion for this
command. If not given, gdb will attempt to complete using the object’s complete

method (see below); if no such method is found, an error will occur when completion
is attempted.

prefix is an optional argument. If True, then the new command is a prefix command;
sub-commands of this command may be registered.

The help text for the new command is taken from the Python documentation string
for the command’s class, if there is one. If no documentation string is provided, the
default value “This command is not documented.” is used.

[Function]Command.dont_repeat ()
By default, a gdb command is repeated when the user enters a blank line at the
command prompt. A command can suppress this behavior by invoking the dont_

repeat method. This is similar to the user command dont-repeat, see Section 23.1.1
[Define], page 371.

[Function]Command.invoke (argument, from tty)
This method is called by gdb when this command is invoked.

argument is a string. It is the argument to the command, after leading and trailing
whitespace has been stripped.

from tty is a boolean argument. When true, this means that the command was
entered by the user at the terminal; when false it means that the command came
from elsewhere.

Chapter 23: Extending gdb 435

If this method throws an exception, it is turned into a gdb error call. Otherwise,
the return value is ignored.

To break argument up into an argv-like string use gdb.string_to_argv. This func-
tion behaves identically to gdb’s internal argument lexer buildargv. It is recom-
mended to use this for consistency. Arguments are separated by spaces and may be
quoted. Example:

print gdb.string_to_argv ("1 2\ \\\"3 ’4 \"5’ \"6 ’7\"")

[’1’, ’2 "3’, ’4 "5’, "6 ’7"]

[Function]Command.complete (text, word)
This method is called by gdb when the user attempts completion on this command.
All forms of completion are handled by this method, that is, the TAB and M-? key
bindings (see Section 3.3 [Completion], page 24), and the complete command (see
Section 3.5 [Help], page 28).

The arguments text and word are both strings; text holds the complete command
line up to the cursor’s location, while word holds the last word of the command line;
this is computed using a word-breaking heuristic.

The complete method can return several values:

• If the return value is a sequence, the contents of the sequence are used as the
completions. It is up to complete to ensure that the contents actually do com-
plete the word. A zero-length sequence is allowed, it means that there were
no completions available. Only string elements of the sequence are used; other
elements in the sequence are ignored.

• If the return value is one of the ‘COMPLETE_’ constants defined below, then the
corresponding gdb-internal completion function is invoked, and its result is used.

• All other results are treated as though there were no available completions.

When a new command is registered, it must be declared as a member of some general
class of commands. This is used to classify top-level commands in the on-line help system;
note that prefix commands are not listed under their own category but rather that of their
top-level command. The available classifications are represented by constants defined in the
gdb module:

gdb.COMMAND_NONE

The command does not belong to any particular class. A command in this
category will not be displayed in any of the help categories.

gdb.COMMAND_RUNNING

The command is related to running the inferior. For example, start, step,
and continue are in this category. Type help running at the gdb prompt to
see a list of commands in this category.

gdb.COMMAND_DATA

The command is related to data or variables. For example, call, find, and
print are in this category. Type help data at the gdb prompt to see a list of
commands in this category.

436 Debugging with gdb

gdb.COMMAND_STACK

The command has to do with manipulation of the stack. For example,
backtrace, frame, and return are in this category. Type help stack at the
gdb prompt to see a list of commands in this category.

gdb.COMMAND_FILES

This class is used for file-related commands. For example, file, list and
section are in this category. Type help files at the gdb prompt to see a list
of commands in this category.

gdb.COMMAND_SUPPORT

This should be used for “support facilities”, generally meaning things that are
useful to the user when interacting with gdb, but not related to the state of
the inferior. For example, help, make, and shell are in this category. Type
help support at the gdb prompt to see a list of commands in this category.

gdb.COMMAND_STATUS

The command is an ‘info’-related command, that is, related to the state of
gdb itself. For example, info, macro, and show are in this category. Type
help status at the gdb prompt to see a list of commands in this category.

gdb.COMMAND_BREAKPOINTS

The command has to do with breakpoints. For example, break, clear, and
delete are in this category. Type help breakpoints at the gdb prompt to see
a list of commands in this category.

gdb.COMMAND_TRACEPOINTS

The command has to do with tracepoints. For example, trace, actions, and
tfind are in this category. Type help tracepoints at the gdb prompt to see
a list of commands in this category.

gdb.COMMAND_TUI

The command has to do with the text user interface (see Chapter 25 [TUI],
page 533). Type help tui at the gdb prompt to see a list of commands in this
category.

gdb.COMMAND_USER

The command is a general purpose command for the user, and typically does
not fit in one of the other categories. Type help user-defined at the gdb
prompt to see a list of commands in this category, as well as the list of gdb
macros (see Section 23.1 [Sequences], page 371).

gdb.COMMAND_OBSCURE

The command is only used in unusual circumstances, or is not of general interest
to users. For example, checkpoint, fork, and stop are in this category. Type
help obscure at the gdb prompt to see a list of commands in this category.

gdb.COMMAND_MAINTENANCE

The command is only useful to gdb maintainers. The maintenance and
flushregs commands are in this category. Type help internals at the gdb
prompt to see a list of commands in this category.

Chapter 23: Extending gdb 437

A new command can use a predefined completion function, either by specifying it via an
argument at initialization, or by returning it from the complete method. These predefined
completion constants are all defined in the gdb module:

gdb.COMPLETE_NONE

This constant means that no completion should be done.

gdb.COMPLETE_FILENAME

This constant means that filename completion should be performed.

gdb.COMPLETE_LOCATION

This constant means that location completion should be done. See Section 9.2
[Specify Location], page 122.

gdb.COMPLETE_COMMAND

This constant means that completion should examine gdb command names.

gdb.COMPLETE_SYMBOL

This constant means that completion should be done using symbol names as
the source.

gdb.COMPLETE_EXPRESSION

This constant means that completion should be done on expressions. Often
this means completing on symbol names, but some language parsers also have
support for completing on field names.

The following code snippet shows how a trivial CLI command can be implemented in
Python:

class HelloWorld (gdb.Command):

"""Greet the whole world."""

def __init__ (self):

super (HelloWorld, self).__init__ ("hello-world", gdb.COMMAND_USER)

def invoke (self, arg, from_tty):

print ("Hello, World!")

HelloWorld ()

The last line instantiates the class, and is necessary to trigger the registration of the
command with gdb. Depending on how the Python code is read into gdb, you may need
to import the gdb module explicitly.

23.3.2.21 GDB/MI Commands In Python

It is possible to add GDB/MI (see Chapter 27 [GDB/MI], page 543) commands im-
plemented in Python. A GDB/MI command is implemented using an instance of the
gdb.MICommand class, most commonly using a subclass.

[Function]MICommand.__init__ (name)
The object initializer for MICommand registers the new command with gdb. This
initializer is normally invoked from the subclass’ own __init__ method.

name is the name of the command. It must be a valid name of a GDB/MI command,
and in particular must start with a hyphen (-). Reusing the name of a built-in

438 Debugging with gdb

GDB/MI is not allowed, and a RuntimeError will be raised. Using the name of an
GDB/MI command previously defined in Python is allowed, the previous command
will be replaced with the new command.

[Function]MICommand.invoke (arguments)
This method is called by gdb when the new MI command is invoked.

arguments is a list of strings. Note, that --thread and --frame arguments are
handled by gdb itself therefore they do not show up in arguments.

If this method raises an exception, then it is turned into a GDB/MI ^error response.
Only gdb.GdbError exceptions (or its sub-classes) should be used for reporting errors
to users, any other exception type is treated as a failure of the invoke method, and
the exception will be printed to the error stream according to the set python print-

stack setting (see [set python print-stack], page 381).

If this method returns None, then the GDB/MI command will return a ^done re-
sponse with no additional values.

Otherwise, the return value must be a dictionary, which is converted to a GDB/MI
result-record (see Section 27.4.2 [GDB/MI Output Syntax], page 547). The keys of
this dictionary must be strings, and are used as variable names in the result-record,
these strings must comply with the naming rules detailed below. The values of this
dictionary are recursively handled as follows:

• If the value is Python sequence or iterator, it is converted to GDB/MI list with
elements converted recursively.

• If the value is Python dictionary, it is converted to GDB/MI tuple. Keys in that
dictionary must be strings, which comply with the variable naming rules detailed
below. Values are converted recursively.

• Otherwise, value is first converted to a Python string using str () and then
converted to GDB/MI const.

The strings used for variable names in the GDB/MI output must follow the following
rules; the string must be at least one character long, the first character must be in the
set [a-zA-Z], while every subsequent character must be in the set [-_a-zA-Z0-9].

An instance of MICommand has the following attributes:

[Variable]MICommand.name
A string, the name of this GDB/MI command, as was passed to the __init__

method. This attribute is read-only.

[Variable]MICommand.installed
A boolean value indicating if this command is installed ready for a user to call from
the command line. Commands are automatically installed when they are instantiated,
after which this attribute will be True.

If later, a new command is created with the same name, then the original command
will become uninstalled, and this attribute will be False.

This attribute is read-write, setting this attribute to False will uninstall the com-
mand, removing it from the set of available commands. Setting this attribute to
True will install the command for use. If there is already a Python command with

Chapter 23: Extending gdb 439

this name installed, the currently installed command will be uninstalled, and this
command installed in its place.

The following code snippet shows how a two trivial MI command can be implemented
in Python:

class MIEcho(gdb.MICommand):

"""Echo arguments passed to the command."""

def __init__(self, name, mode):

self._mode = mode

super(MIEcho, self).__init__(name)

def invoke(self, argv):

if self._mode == ’dict’:

return { ’dict’: { ’argv’ : argv } }

elif self._mode == ’list’:

return { ’list’: argv }

else:

return { ’string’: ", ".join(argv) }

MIEcho("-echo-dict", "dict")

MIEcho("-echo-list", "list")

MIEcho("-echo-string", "string")

The last three lines instantiate the class three times, creating three new GDB/MI
commands -echo-dict, -echo-list, and -echo-string. Each time a subclass of
gdb.MICommand is instantiated, the new command is automatically registered with gdb.

Depending on how the Python code is read into gdb, you may need to import the gdb

module explicitly.

The following example shows a gdb session in which the above commands have been
added:

(gdb)

-echo-dict abc def ghi

^done,dict={argv=["abc","def","ghi"]}

(gdb)

-echo-list abc def ghi

^done,list=["abc","def","ghi"]

(gdb)

-echo-string abc def ghi

^done,string="abc, def, ghi"

(gdb)

23.3.2.22 Parameters In Python

You can implement new gdb parameters using Python. A new parameter is implemented
as an instance of the gdb.Parameter class.

Parameters are exposed to the user via the set and show commands. See Section 3.5
[Help], page 28.

There are many parameters that already exist and can be set in gdb. Two examples are:
set follow fork and set charset. Setting these parameters influences certain behavior in
gdb. Similarly, you can define parameters that can be used to influence behavior in custom
Python scripts and commands.

440 Debugging with gdb

[Function]Parameter.__init__ (name, command-class, parameter-class [,
enum-sequence])

The object initializer for Parameter registers the new parameter with gdb. This
initializer is normally invoked from the subclass’ own __init__ method.

name is the name of the new parameter. If name consists of multiple words, then
the initial words are looked for as prefix parameters. An example of this can be
illustrated with the set print set of parameters. If name is print foo, then print

will be searched as the prefix parameter. In this case the parameter can subsequently
be accessed in gdb as set print foo.

If name consists of multiple words, and no prefix parameter group can be found, an
exception is raised.

command-class should be one of the ‘COMMAND_’ constants (see Section 23.3.2.20 [CLI
Commands In Python], page 434). This argument tells gdb how to categorize the
new parameter in the help system.

parameter-class should be one of the ‘PARAM_’ constants defined below. This argument
tells gdb the type of the new parameter; this information is used for input validation
and completion.

If parameter-class is PARAM_ENUM, then enum-sequence must be a sequence of strings.
These strings represent the possible values for the parameter.

If parameter-class is not PARAM_ENUM, then the presence of a fourth argument will
cause an exception to be thrown.

The help text for the new parameter includes the Python documentation string from
the parameter’s class, if there is one. If there is no documentation string, a default
value is used. The documentation string is included in the output of the parameters
help set and help show commands, and should be written taking this into account.

[Variable]Parameter.set_doc
If this attribute exists, and is a string, then its value is used as the first part of the
help text for this parameter’s set command. The second part of the help text is
taken from the documentation string for the parameter’s class, if there is one.

The value of set_doc should give a brief summary specific to the set action, this text
is only displayed when the user runs the help set command for this parameter. The
class documentation should be used to give a fuller description of what the parameter
does, this text is displayed for both the help set and help show commands.

The set_doc value is examined when Parameter.__init__ is invoked; subsequent
changes have no effect.

[Variable]Parameter.show_doc
If this attribute exists, and is a string, then its value is used as the first part of the
help text for this parameter’s show command. The second part of the help text is
taken from the documentation string for the parameter’s class, if there is one.

The value of show_doc should give a brief summary specific to the show action, this
text is only displayed when the user runs the help show command for this parameter.
The class documentation should be used to give a fuller description of what the pa-
rameter does, this text is displayed for both the help set and help show commands.

Chapter 23: Extending gdb 441

The show_doc value is examined when Parameter.__init__ is invoked; subsequent
changes have no effect.

[Variable]Parameter.value
The value attribute holds the underlying value of the parameter. It can be read and
assigned to just as any other attribute. gdb does validation when assignments are
made.

There are two methods that may be implemented in any Parameter class. These are:

[Function]Parameter.get_set_string (self)
If this method exists, gdb will call it when a parameter’s value has been changed
via the set API (for example, set foo off). The value attribute has already been
populated with the new value and may be used in output. This method must return
a string. If the returned string is not empty, gdb will present it to the user.

If this method raises the gdb.GdbError exception (see Section 23.3.2.2 [Exception
Handling], page 388), then gdb will print the exception’s string and the set command
will fail. Note, however, that the value attribute will not be reset in this case. So,
if your parameter must validate values, it should store the old value internally and
reset the exposed value, like so:

class ExampleParam (gdb.Parameter):

def __init__ (self, name):

super (ExampleParam, self).__init__ (name,

gdb.COMMAND_DATA,

gdb.PARAM_BOOLEAN)

self.value = True

self.saved_value = True

def validate(self):

return False

def get_set_string (self):

if not self.validate():

self.value = self.saved_value

raise gdb.GdbError(’Failed to validate’)

self.saved_value = self.value

return ""

[Function]Parameter.get_show_string (self, svalue)
gdb will call this method when a parameter’s show API has been invoked (for ex-
ample, show foo). The argument svalue receives the string representation of the
current value. This method must return a string.

When a new parameter is defined, its type must be specified. The available types are
represented by constants defined in the gdb module:

gdb.PARAM_BOOLEAN

The value is a plain boolean. The Python boolean values, True and False are
the only valid values.

gdb.PARAM_AUTO_BOOLEAN

The value has three possible states: true, false, and ‘auto’. In Python, true and
false are represented using boolean constants, and ‘auto’ is represented using
None.

442 Debugging with gdb

gdb.PARAM_UINTEGER

The value is an unsigned integer. The value of 0 should be interpreted to mean
“unlimited”.

gdb.PARAM_INTEGER

The value is a signed integer. The value of 0 should be interpreted to mean
“unlimited”.

gdb.PARAM_STRING

The value is a string. When the user modifies the string, any escape sequences,
such as ‘\t’, ‘\f’, and octal escapes, are translated into corresponding characters
and encoded into the current host charset.

gdb.PARAM_STRING_NOESCAPE

The value is a string. When the user modifies the string, escapes are passed
through untranslated.

gdb.PARAM_OPTIONAL_FILENAME

The value is a either a filename (a string), or None.

gdb.PARAM_FILENAME

The value is a filename. This is just like PARAM_STRING_NOESCAPE, but uses file
names for completion.

gdb.PARAM_ZINTEGER

The value is an integer. This is like PARAM_INTEGER, except 0 is interpreted as
itself.

gdb.PARAM_ZUINTEGER

The value is an unsigned integer. This is like PARAM_INTEGER, except 0 is
interpreted as itself, and the value cannot be negative.

gdb.PARAM_ZUINTEGER_UNLIMITED

The value is a signed integer. This is like PARAM_ZUINTEGER, except the special
value -1 should be interpreted to mean “unlimited”. Other negative values are
not allowed.

gdb.PARAM_ENUM

The value is a string, which must be one of a collection string constants provided
when the parameter is created.

23.3.2.23 Writing new convenience functions

You can implement new convenience functions (see Section 10.12 [Convenience Vars],
page 164) in Python. A convenience function is an instance of a subclass of the class
gdb.Function.

[Function]Function.__init__ (name)
The initializer for Function registers the new function with gdb. The argument
name is the name of the function, a string. The function will be visible to the user
as a convenience variable of type internal function, whose name is the same as the
given name.

The documentation for the new function is taken from the documentation string for
the new class.

Chapter 23: Extending gdb 443

[Function]Function.invoke (*args)
When a convenience function is evaluated, its arguments are converted to instances of
gdb.Value, and then the function’s invoke method is called. Note that gdb does not
predetermine the arity of convenience functions. Instead, all available arguments are
passed to invoke, following the standard Python calling convention. In particular, a
convenience function can have default values for parameters without ill effect.

The return value of this method is used as its value in the enclosing expression. If an
ordinary Python value is returned, it is converted to a gdb.Value following the usual
rules.

The following code snippet shows how a trivial convenience function can be implemented
in Python:

class Greet (gdb.Function):

"""Return string to greet someone.

Takes a name as argument."""

def __init__ (self):

super (Greet, self).__init__ ("greet")

def invoke (self, name):

return "Hello, %s!" % name.string ()

Greet ()

The last line instantiates the class, and is necessary to trigger the registration of the
function with gdb. Depending on how the Python code is read into gdb, you may need to
import the gdb module explicitly.

Now you can use the function in an expression:
(gdb) print $greet("Bob")

$1 = "Hello, Bob!"

23.3.2.24 Program Spaces In Python

A program space, or progspace, represents a symbolic view of an address space. It consists
of all of the objfiles of the program. See Section 23.3.2.25 [Objfiles In Python], page 445. See
Section 4.9 [Inferiors Connections and Programs], page 40, for more details about program
spaces.

The following progspace-related functions are available in the gdb module:

[Function]gdb.current_progspace ()
This function returns the program space of the currently selected inferior. See
Section 4.9 [Inferiors Connections and Programs], page 40. This is identical to
gdb.selected_inferior().progspace (see Section 23.3.2.16 [Inferiors In Python],
page 423) and is included for historical compatibility.

[Function]gdb.progspaces ()
Return a sequence of all the progspaces currently known to gdb.

Each progspace is represented by an instance of the gdb.Progspace class.

[Variable]Progspace.filename
The file name of the progspace as a string.

444 Debugging with gdb

[Variable]Progspace.pretty_printers
The pretty_printers attribute is a list of functions. It is used to look up pretty-
printers. A Value is passed to each function in order; if the function returns None,
then the search continues. Otherwise, the return value should be an object which is
used to format the value. See Section 23.3.2.5 [Pretty Printing API], page 401, for
more information.

[Variable]Progspace.type_printers
The type_printers attribute is a list of type printer objects. See Section 23.3.2.8
[Type Printing API], page 405, for more information.

[Variable]Progspace.frame_filters
The frame_filters attribute is a dictionary of frame filter objects. See
Section 23.3.2.9 [Frame Filter API], page 406, for more information.

A program space has the following methods:

[Function]Progspace.block_for_pc (pc)
Return the innermost gdb.Block containing the given pc value. If the block cannot
be found for the pc value specified, the function will return None.

[Function]Progspace.find_pc_line (pc)
Return the gdb.Symtab_and_line object corresponding to the pc value. See
Section 23.3.2.29 [Symbol Tables In Python], page 456. If an invalid value of pc
is passed as an argument, then the symtab and line attributes of the returned
gdb.Symtab_and_line object will be None and 0 respectively.

[Function]Progspace.is_valid ()
Returns True if the gdb.Progspace object is valid, False if not. A gdb.Progspace

object can become invalid if the program space file it refers to is not referenced by
any inferior. All other gdb.Progspace methods will throw an exception if it is invalid
at the time the method is called.

[Function]Progspace.objfiles ()
Return a sequence of all the objfiles referenced by this program space. See
Section 23.3.2.25 [Objfiles In Python], page 445.

[Function]Progspace.solib_name (address)
Return the name of the shared library holding the given address as a string, or None.

One may add arbitrary attributes to gdb.Progspace objects in the usual Python way.
This is useful if, for example, one needs to do some extra record keeping associated with
the program space.

In this contrived example, we want to perform some processing when an objfile with
a certain symbol is loaded, but we only want to do this once because it is expensive. To
achieve this we record the results with the program space because we can’t predict when
the desired objfile will be loaded.

(gdb) python

def clear_objfiles_handler(event):

event.progspace.expensive_computation = None

Chapter 23: Extending gdb 445

def expensive(symbol):

"""A mock routine to perform an "expensive" computation on symbol."""

print ("Computing the answer to the ultimate question ...")

return 42

def new_objfile_handler(event):

objfile = event.new_objfile

progspace = objfile.progspace

if not hasattr(progspace, ’expensive_computation’) or \

progspace.expensive_computation is None:

We use ’main’ for the symbol to keep the example simple.

Note: There’s no current way to constrain the lookup

to one objfile.

symbol = gdb.lookup_global_symbol(’main’)

if symbol is not None:

progspace.expensive_computation = expensive(symbol)

gdb.events.clear_objfiles.connect(clear_objfiles_handler)

gdb.events.new_objfile.connect(new_objfile_handler)

end

(gdb) file /tmp/hello

Reading symbols from /tmp/hello...

Computing the answer to the ultimate question ...

(gdb) python print gdb.current_progspace().expensive_computation

42

(gdb) run

Starting program: /tmp/hello

Hello.

[Inferior 1 (process 4242) exited normally]

23.3.2.25 Objfiles In Python

gdb loads symbols for an inferior from various symbol-containing files (see Section 18.1
[Files], page 279). These include the primary executable file, any shared libraries used by
the inferior, and any separate debug info files (see Section 18.3 [Separate Debug Files],
page 288). gdb calls these symbol-containing files objfiles.

The following objfile-related functions are available in the gdb module:

[Function]gdb.current_objfile ()
When auto-loading a Python script (see Section 23.3.3 [Python Auto-loading],
page 469), gdb sets the “current objfile” to the corresponding objfile. This function
returns the current objfile. If there is no current objfile, this function returns None.

[Function]gdb.objfiles ()
Return a sequence of objfiles referenced by the current program space.
See Section 23.3.2.25 [Objfiles In Python], page 445, and Section 23.3.2.24
[Progspaces In Python], page 443. This is identical to gdb.selected_

inferior().progspace.objfiles() and is included for historical compatibility.

[Function]gdb.lookup_objfile (name [, by build id])
Look up name, a file name or build ID, in the list of objfiles for the current program
space (see Section 23.3.2.24 [Progspaces In Python], page 443). If the objfile is not
found throw the Python ValueError exception.

If name is a relative file name, then it will match any source file name with the same
trailing components. For example, if name is ‘gcc/expr.c’, then it will match source

446 Debugging with gdb

file name of /build/trunk/gcc/expr.c, but not /build/trunk/libcpp/expr.c or
/build/trunk/gcc/x-expr.c.

If by build id is provided and is True then name is the build ID of the objfile. Other-
wise, name is a file name. This is supported only on some operating systems, notably
those which use the ELF format for binary files and the gnu Binutils. For more de-
tails about this feature, see the description of the --build-id command-line option
in Section “Command Line Options” in The GNU Linker.

Each objfile is represented by an instance of the gdb.Objfile class.

[Variable]Objfile.filename
The file name of the objfile as a string, with symbolic links resolved.

The value is None if the objfile is no longer valid. See the gdb.Objfile.is_valid

method, described below.

[Variable]Objfile.username
The file name of the objfile as specified by the user as a string.

The value is None if the objfile is no longer valid. See the gdb.Objfile.is_valid

method, described below.

[Variable]Objfile.owner
For separate debug info objfiles this is the corresponding gdb.Objfile object that
debug info is being provided for. Otherwise this is None. Separate debug info obj-
files are added with the gdb.Objfile.add_separate_debug_file method, described
below.

[Variable]Objfile.build_id
The build ID of the objfile as a string. If the objfile does not have a build ID then
the value is None.

This is supported only on some operating systems, notably those which use the ELF
format for binary files and the gnu Binutils. For more details about this feature, see
the description of the --build-id command-line option in Section “Command Line
Options” in The GNU Linker.

[Variable]Objfile.progspace
The containing program space of the objfile as a gdb.Progspace object. See
Section 23.3.2.24 [Progspaces In Python], page 443.

[Variable]Objfile.pretty_printers
The pretty_printers attribute is a list of functions. It is used to look up pretty-
printers. A Value is passed to each function in order; if the function returns None,
then the search continues. Otherwise, the return value should be an object which is
used to format the value. See Section 23.3.2.5 [Pretty Printing API], page 401, for
more information.

[Variable]Objfile.type_printers
The type_printers attribute is a list of type printer objects. See Section 23.3.2.8
[Type Printing API], page 405, for more information.

Chapter 23: Extending gdb 447

[Variable]Objfile.frame_filters
The frame_filters attribute is a dictionary of frame filter objects. See
Section 23.3.2.9 [Frame Filter API], page 406, for more information.

One may add arbitrary attributes to gdb.Objfile objects in the usual Python way.
This is useful if, for example, one needs to do some extra record keeping associated with
the objfile.

In this contrived example we record the time when gdb loaded the objfile.
(gdb) python

import datetime

def new_objfile_handler(event):

Set the time_loaded attribute of the new objfile.

event.new_objfile.time_loaded = datetime.datetime.today()

gdb.events.new_objfile.connect(new_objfile_handler)

end

(gdb) file ./hello

Reading symbols from ./hello...

(gdb) python print gdb.objfiles()[0].time_loaded

2014-10-09 11:41:36.770345

A gdb.Objfile object has the following methods:

[Function]Objfile.is_valid ()
Returns True if the gdb.Objfile object is valid, False if not. A gdb.Objfile object
can become invalid if the object file it refers to is not loaded in gdb any longer. All
other gdb.Objfile methods will throw an exception if it is invalid at the time the
method is called.

[Function]Objfile.add_separate_debug_file (file)
Add file to the list of files that gdb will search for debug information for the objfile.
This is useful when the debug info has been removed from the program and stored
in a separate file. gdb has built-in support for finding separate debug info files (see
Section 18.3 [Separate Debug Files], page 288), but if the file doesn’t live in one of
the standard places that gdb searches then this function can be used to add a debug
info file from a different place.

[Function]Objfile.lookup_global_symbol (name [, domain])
Search for a global symbol named name in this objfile. Optionally, the search scope
can be restricted with the domain argument. The domain argument must be a domain
constant defined in the gdb module and described in Section 23.3.2.28 [Symbols In
Python], page 453. This function is similar to gdb.lookup_global_symbol, except
that the search is limited to this objfile.

The result is a gdb.Symbol object or None if the symbol is not found.

[Function]Objfile.lookup_static_symbol (name [, domain])
Like Objfile.lookup_global_symbol, but searches for a global symbol with static
linkage named name in this objfile.

23.3.2.26 Accessing inferior stack frames from Python

When the debugged program stops, gdb is able to analyze its call stack (see Section 8.1
[Stack frames], page 109). The gdb.Frame class represents a frame in the stack. A

448 Debugging with gdb

gdb.Frame object is only valid while its corresponding frame exists in the inferior’s stack.
If you try to use an invalid frame object, gdb will throw a gdb.error exception (see
Section 23.3.2.2 [Exception Handling], page 388).

Two gdb.Frame objects can be compared for equality with the == operator, like:
(gdb) python print gdb.newest_frame() == gdb.selected_frame ()

True

The following frame-related functions are available in the gdb module:

[Function]gdb.selected_frame ()
Return the selected frame object. (see Section 8.3 [Selecting a Frame], page 113).

[Function]gdb.newest_frame ()
Return the newest frame object for the selected thread.

[Function]gdb.frame_stop_reason_string (reason)
Return a string explaining the reason why gdb stopped unwinding frames, as ex-
pressed by the given reason code (an integer, see the unwind_stop_reason method
further down in this section).

[Function]gdb.invalidate_cached_frames
gdb internally keeps a cache of the frames that have been unwound. This function
invalidates this cache.

This function should not generally be called by ordinary Python code. It is docu-
mented for the sake of completeness.

A gdb.Frame object has the following methods:

[Function]Frame.is_valid ()
Returns true if the gdb.Frame object is valid, false if not. A frame object can become
invalid if the frame it refers to doesn’t exist anymore in the inferior. All gdb.Frame
methods will throw an exception if it is invalid at the time the method is called.

[Function]Frame.name ()
Returns the function name of the frame, or None if it can’t be obtained.

[Function]Frame.architecture ()
Returns the gdb.Architecture object corresponding to the frame’s architecture. See
Section 23.3.2.34 [Architectures In Python], page 464.

[Function]Frame.type ()
Returns the type of the frame. The value can be one of:

gdb.NORMAL_FRAME

An ordinary stack frame.

gdb.DUMMY_FRAME

A fake stack frame that was created by gdb when performing an inferior
function call.

gdb.INLINE_FRAME

A frame representing an inlined function. The function was inlined into
a gdb.NORMAL_FRAME that is older than this one.

Chapter 23: Extending gdb 449

gdb.TAILCALL_FRAME

A frame representing a tail call. See Section 11.2 [Tail Call Frames],
page 188.

gdb.SIGTRAMP_FRAME

A signal trampoline frame. This is the frame created by the OS when it
calls into a signal handler.

gdb.ARCH_FRAME

A fake stack frame representing a cross-architecture call.

gdb.SENTINEL_FRAME

This is like gdb.NORMAL_FRAME, but it is only used for the newest frame.

[Function]Frame.unwind_stop_reason ()
Return an integer representing the reason why it’s not possible to find more frames
toward the outermost frame. Use gdb.frame_stop_reason_string to convert the
value returned by this function to a string. The value can be one of:

gdb.FRAME_UNWIND_NO_REASON

No particular reason (older frames should be available).

gdb.FRAME_UNWIND_NULL_ID

The previous frame’s analyzer returns an invalid result. This is no longer
used by gdb, and is kept only for backward compatibility.

gdb.FRAME_UNWIND_OUTERMOST

This frame is the outermost.

gdb.FRAME_UNWIND_UNAVAILABLE

Cannot unwind further, because that would require knowing the values
of registers or memory that have not been collected.

gdb.FRAME_UNWIND_INNER_ID

This frame ID looks like it ought to belong to a NEXT frame, but we
got it for a PREV frame. Normally, this is a sign of unwinder failure. It
could also indicate stack corruption.

gdb.FRAME_UNWIND_SAME_ID

This frame has the same ID as the previous one. That means that unwind-
ing further would almost certainly give us another frame with exactly the
same ID, so break the chain. Normally, this is a sign of unwinder failure.
It could also indicate stack corruption.

gdb.FRAME_UNWIND_NO_SAVED_PC

The frame unwinder did not find any saved PC, but we needed one to
unwind further.

gdb.FRAME_UNWIND_MEMORY_ERROR

The frame unwinder caused an error while trying to access memory.

gdb.FRAME_UNWIND_FIRST_ERROR

Any stop reason greater or equal to this value indicates some kind of
error. This special value facilitates writing code that tests for errors in

450 Debugging with gdb

unwinding in a way that will work correctly even if the list of the other
values is modified in future gdb versions. Using it, you could write:

reason = gdb.selected_frame().unwind_stop_reason ()

reason_str = gdb.frame_stop_reason_string (reason)

if reason >= gdb.FRAME_UNWIND_FIRST_ERROR:

print ("An error occured: %s" % reason_str)

[Function]Frame.pc ()
Returns the frame’s resume address.

[Function]Frame.block ()
Return the frame’s code block. See Section 23.3.2.27 [Blocks In Python], page 451. If
the frame does not have a block – for example, if there is no debugging information
for the code in question – then this will throw an exception.

[Function]Frame.function ()
Return the symbol for the function corresponding to this frame. See Section 23.3.2.28
[Symbols In Python], page 453.

[Function]Frame.older ()
Return the frame that called this frame.

[Function]Frame.newer ()
Return the frame called by this frame.

[Function]Frame.find_sal ()
Return the frame’s symtab and line object. See Section 23.3.2.29 [Symbol Tables In
Python], page 456.

[Function]Frame.read_register (register)
Return the value of register in this frame. Returns a Gdb.Value object. Throws
an exception if register does not exist. The register argument must be one of the
following:

1. A string that is the name of a valid register (e.g., ’sp’ or ’rax’).

2. A gdb.RegisterDescriptor object (see Section 23.3.2.35 [Registers In Python],
page 465).

3. A gdb internal, platform specific number. Using these numbers is supported for
historic reasons, but is not recommended as future changes to gdb could change
the mapping between numbers and the registers they represent, breaking any
Python code that uses the platform-specific numbers. The numbers are usually
found in the corresponding platform-tdep.h file in the gdb source tree.

Using a string to access registers will be slightly slower than the other two methods
as gdb must look up the mapping between name and internal register number. If
performance is critical consider looking up and caching a gdb.RegisterDescriptor

object.

[Function]Frame.read_var (variable [, block])
Return the value of variable in this frame. If the optional argument block is provided,
search for the variable from that block; otherwise start at the frame’s current block
(which is determined by the frame’s current program counter). The variable argument
must be a string or a gdb.Symbol object; block must be a gdb.Block object.

Chapter 23: Extending gdb 451

[Function]Frame.select ()
Set this frame to be the selected frame. See Chapter 8 [Examining the Stack],
page 109.

[Function]Frame.level ()
Return an integer, the stack frame level for this frame. See Section 8.1 [Stack Frames],
page 109.

23.3.2.27 Accessing blocks from Python

In gdb, symbols are stored in blocks. A block corresponds roughly to a scope in the source
code. Blocks are organized hierarchically, and are represented individually in Python as a
gdb.Block. Blocks rely on debugging information being available.

A frame has a block. Please see Section 23.3.2.26 [Frames In Python], page 447, for a
more in-depth discussion of frames.

The outermost block is known as the global block. The global block typically holds
public global variables and functions.

The block nested just inside the global block is the static block. The static block typically
holds file-scoped variables and functions.

gdb provides a method to get a block’s superblock, but there is currently no way to
examine the sub-blocks of a block, or to iterate over all the blocks in a symbol table (see
Section 23.3.2.29 [Symbol Tables In Python], page 456).

Here is a short example that should help explain blocks:

/* This is in the global block. */

int global;

/* This is in the static block. */

static int file_scope;

/* ’function’ is in the global block, and ’argument’ is

in a block nested inside of ’function’. */

int function (int argument)

{

/* ’local’ is in a block inside ’function’. It may or may

not be in the same block as ’argument’. */

int local;

{

/* ’inner’ is in a block whose superblock is the one holding

’local’. */

int inner;

/* If this call is expanded by the compiler, you may see

a nested block here whose function is ’inline_function’

and whose superblock is the one holding ’inner’. */

inline_function ();

}

}

A gdb.Block is iterable. The iterator returns the symbols (see Section 23.3.2.28 [Symbols
In Python], page 453) local to the block. Python programs should not assume that a
specific block object will always contain a given symbol, since changes in gdb features and

452 Debugging with gdb

infrastructure may cause symbols move across blocks in a symbol table. You can also use
Python’s dictionary syntax to access variables in this block, e.g.:

symbol = some_block[’variable’] # symbol is of type gdb.Symbol

The following block-related functions are available in the gdb module:

[Function]gdb.block_for_pc (pc)
Return the innermost gdb.Block containing the given pc value. If the block cannot
be found for the pc value specified, the function will return None. This is identi-
cal to gdb.current_progspace().block_for_pc(pc) and is included for historical
compatibility.

A gdb.Block object has the following methods:

[Function]Block.is_valid ()
Returns True if the gdb.Block object is valid, False if not. A block object can
become invalid if the block it refers to doesn’t exist anymore in the inferior. All other
gdb.Block methods will throw an exception if it is invalid at the time the method is
called. The block’s validity is also checked during iteration over symbols of the block.

A gdb.Block object has the following attributes:

[Variable]Block.start
The start address of the block. This attribute is not writable.

[Variable]Block.end
One past the last address that appears in the block. This attribute is not writable.

[Variable]Block.function
The name of the block represented as a gdb.Symbol. If the block is not named, then
this attribute holds None. This attribute is not writable.

For ordinary function blocks, the superblock is the static block. However, you should
note that it is possible for a function block to have a superblock that is not the static
block – for instance this happens for an inlined function.

[Variable]Block.superblock
The block containing this block. If this parent block does not exist, this attribute
holds None. This attribute is not writable.

[Variable]Block.global_block
The global block associated with this block. This attribute is not writable.

[Variable]Block.static_block
The static block associated with this block. This attribute is not writable.

[Variable]Block.is_global
True if the gdb.Block object is a global block, False if not. This attribute is not
writable.

[Variable]Block.is_static
True if the gdb.Block object is a static block, False if not. This attribute is not
writable.

Chapter 23: Extending gdb 453

23.3.2.28 Python representation of Symbols

gdb represents every variable, function and type as an entry in a symbol table. See
Chapter 16 [Examining the Symbol Table], page 253. Similarly, Python represents these
symbols in gdb with the gdb.Symbol object.

The following symbol-related functions are available in the gdb module:

[Function]gdb.lookup_symbol (name [, block [, domain]])
This function searches for a symbol by name. The search scope can be restricted to
the parameters defined in the optional domain and block arguments.

name is the name of the symbol. It must be a string. The optional block argument
restricts the search to symbols visible in that block. The block argument must be a
gdb.Block object. If omitted, the block for the current frame is used. The optional
domain argument restricts the search to the domain type. The domain argument
must be a domain constant defined in the gdb module and described later in this
chapter.

The result is a tuple of two elements. The first element is a gdb.Symbol object or
None if the symbol is not found. If the symbol is found, the second element is True if
the symbol is a field of a method’s object (e.g., this in C++), otherwise it is False.
If the symbol is not found, the second element is False.

[Function]gdb.lookup_global_symbol (name [, domain])
This function searches for a global symbol by name. The search scope can be restricted
to by the domain argument.

name is the name of the symbol. It must be a string. The optional domain argument
restricts the search to the domain type. The domain argument must be a domain
constant defined in the gdb module and described later in this chapter.

The result is a gdb.Symbol object or None if the symbol is not found.

[Function]gdb.lookup_static_symbol (name [, domain])
This function searches for a global symbol with static linkage by name. The search
scope can be restricted to by the domain argument.

name is the name of the symbol. It must be a string. The optional domain argument
restricts the search to the domain type. The domain argument must be a domain
constant defined in the gdb module and described later in this chapter.

The result is a gdb.Symbol object or None if the symbol is not found.

Note that this function will not find function-scoped static variables. To look up
such variables, iterate over the variables of the function’s gdb.Block and check that
block.addr_class is gdb.SYMBOL_LOC_STATIC.

There can be multiple global symbols with static linkage with the same name. This
function will only return the first matching symbol that it finds. Which symbol
is found depends on where gdb is currently stopped, as gdb will first search for
matching symbols in the current object file, and then search all other object files. If
the application is not yet running then gdb will search all object files in the order
they appear in the debug information.

454 Debugging with gdb

[Function]gdb.lookup_static_symbols (name [, domain])
Similar to gdb.lookup_static_symbol, this function searches for global symbols with
static linkage by name, and optionally restricted by the domain argument. However,
this function returns a list of all matching symbols found, not just the first one.

name is the name of the symbol. It must be a string. The optional domain argument
restricts the search to the domain type. The domain argument must be a domain
constant defined in the gdb module and described later in this chapter.

The result is a list of gdb.Symbol objects which could be empty if no matching
symbols were found.

Note that this function will not find function-scoped static variables. To look up
such variables, iterate over the variables of the function’s gdb.Block and check that
block.addr_class is gdb.SYMBOL_LOC_STATIC.

A gdb.Symbol object has the following attributes:

[Variable]Symbol.type
The type of the symbol or None if no type is recorded. This attribute is represented as
a gdb.Type object. See Section 23.3.2.4 [Types In Python], page 395. This attribute
is not writable.

[Variable]Symbol.symtab
The symbol table in which the symbol appears. This attribute is represented as a
gdb.Symtab object. See Section 23.3.2.29 [Symbol Tables In Python], page 456. This
attribute is not writable.

[Variable]Symbol.line
The line number in the source code at which the symbol was defined. This is an
integer.

[Variable]Symbol.name
The name of the symbol as a string. This attribute is not writable.

[Variable]Symbol.linkage_name
The name of the symbol, as used by the linker (i.e., may be mangled). This attribute
is not writable.

[Variable]Symbol.print_name
The name of the symbol in a form suitable for output. This is either name or linkage_
name, depending on whether the user asked gdb to display demangled or mangled
names.

[Variable]Symbol.addr_class
The address class of the symbol. This classifies how to find the value of a symbol.
Each address class is a constant defined in the gdb module and described later in this
chapter.

[Variable]Symbol.needs_frame
This is True if evaluating this symbol’s value requires a frame (see Section 23.3.2.26
[Frames In Python], page 447) and False otherwise. Typically, local variables will
require a frame, but other symbols will not.

Chapter 23: Extending gdb 455

[Variable]Symbol.is_argument
True if the symbol is an argument of a function.

[Variable]Symbol.is_constant
True if the symbol is a constant.

[Variable]Symbol.is_function
True if the symbol is a function or a method.

[Variable]Symbol.is_variable
True if the symbol is a variable.

A gdb.Symbol object has the following methods:

[Function]Symbol.is_valid ()
Returns True if the gdb.Symbol object is valid, False if not. A gdb.Symbol object
can become invalid if the symbol it refers to does not exist in gdb any longer. All
other gdb.Symbol methods will throw an exception if it is invalid at the time the
method is called.

[Function]Symbol.value ([frame])
Compute the value of the symbol, as a gdb.Value. For functions, this computes the
address of the function, cast to the appropriate type. If the symbol requires a frame
in order to compute its value, then frame must be given. If frame is not given, or if
frame is invalid, then this method will throw an exception.

The available domain categories in gdb.Symbol are represented as constants in the gdb
module:

gdb.SYMBOL_UNDEF_DOMAIN

This is used when a domain has not been discovered or none of the following
domains apply. This usually indicates an error either in the symbol information
or in gdb’s handling of symbols.

gdb.SYMBOL_VAR_DOMAIN

This domain contains variables, function names, typedef names and enum type
values.

gdb.SYMBOL_STRUCT_DOMAIN

This domain holds struct, union and enum type names.

gdb.SYMBOL_LABEL_DOMAIN

This domain contains names of labels (for gotos).

gdb.SYMBOL_MODULE_DOMAIN

This domain contains names of Fortran module types.

gdb.SYMBOL_COMMON_BLOCK_DOMAIN

This domain contains names of Fortran common blocks.

The available address class categories in gdb.Symbol are represented as constants in the
gdb module:

gdb.SYMBOL_LOC_UNDEF

If this is returned by address class, it indicates an error either in the symbol
information or in gdb’s handling of symbols.

456 Debugging with gdb

gdb.SYMBOL_LOC_CONST

Value is constant int.

gdb.SYMBOL_LOC_STATIC

Value is at a fixed address.

gdb.SYMBOL_LOC_REGISTER

Value is in a register.

gdb.SYMBOL_LOC_ARG

Value is an argument. This value is at the offset stored within the symbol inside
the frame’s argument list.

gdb.SYMBOL_LOC_REF_ARG

Value address is stored in the frame’s argument list. Just like LOC_ARG except
that the value’s address is stored at the offset, not the value itself.

gdb.SYMBOL_LOC_REGPARM_ADDR

Value is a specified register. Just like LOC_REGISTER except the register holds
the address of the argument instead of the argument itself.

gdb.SYMBOL_LOC_LOCAL

Value is a local variable.

gdb.SYMBOL_LOC_TYPEDEF

Value not used. Symbols in the domain SYMBOL_STRUCT_DOMAIN all have this
class.

gdb.SYMBOL_LOC_LABEL

Value is a label.

gdb.SYMBOL_LOC_BLOCK

Value is a block.

gdb.SYMBOL_LOC_CONST_BYTES

Value is a byte-sequence.

gdb.SYMBOL_LOC_UNRESOLVED

Value is at a fixed address, but the address of the variable has to be determined
from the minimal symbol table whenever the variable is referenced.

gdb.SYMBOL_LOC_OPTIMIZED_OUT

The value does not actually exist in the program.

gdb.SYMBOL_LOC_COMPUTED

The value’s address is a computed location.

gdb.SYMBOL_LOC_COMMON_BLOCK

The value’s address is a symbol. This is only used for Fortran common blocks.

23.3.2.29 Symbol table representation in Python

Access to symbol table data maintained by gdb on the inferior is exposed to Python via two
objects: gdb.Symtab_and_line and gdb.Symtab. Symbol table and line data for a frame
is returned from the find_sal method in gdb.Frame object. See Section 23.3.2.26 [Frames
In Python], page 447.

Chapter 23: Extending gdb 457

For more information on gdb’s symbol table management, see Chapter 16 [Examining
the Symbol Table], page 253, for more information.

A gdb.Symtab_and_line object has the following attributes:

[Variable]Symtab_and_line.symtab
The symbol table object (gdb.Symtab) for this frame. This attribute is not writable.

[Variable]Symtab_and_line.pc
Indicates the start of the address range occupied by code for the current source line.
This attribute is not writable.

[Variable]Symtab_and_line.last
Indicates the end of the address range occupied by code for the current source line.
This attribute is not writable.

[Variable]Symtab_and_line.line
Indicates the current line number for this object. This attribute is not writable.

A gdb.Symtab_and_line object has the following methods:

[Function]Symtab_and_line.is_valid ()
Returns True if the gdb.Symtab_and_line object is valid, False if not. A
gdb.Symtab_and_line object can become invalid if the Symbol table and line object
it refers to does not exist in gdb any longer. All other gdb.Symtab_and_line

methods will throw an exception if it is invalid at the time the method is called.

A gdb.Symtab object has the following attributes:

[Variable]Symtab.filename
The symbol table’s source filename. This attribute is not writable.

[Variable]Symtab.objfile
The symbol table’s backing object file. See Section 23.3.2.25 [Objfiles In Python],
page 445. This attribute is not writable.

[Variable]Symtab.producer
The name and possibly version number of the program that compiled the code in
the symbol table. The contents of this string is up to the compiler. If no producer
information is available then None is returned. This attribute is not writable.

A gdb.Symtab object has the following methods:

[Function]Symtab.is_valid ()
Returns True if the gdb.Symtab object is valid, False if not. A gdb.Symtab object
can become invalid if the symbol table it refers to does not exist in gdb any longer.
All other gdb.Symtab methods will throw an exception if it is invalid at the time the
method is called.

[Function]Symtab.fullname ()
Return the symbol table’s source absolute file name.

458 Debugging with gdb

[Function]Symtab.global_block ()
Return the global block of the underlying symbol table. See Section 23.3.2.27 [Blocks
In Python], page 451.

[Function]Symtab.static_block ()
Return the static block of the underlying symbol table. See Section 23.3.2.27 [Blocks
In Python], page 451.

[Function]Symtab.linetable ()
Return the line table associated with the symbol table. See Section 23.3.2.30 [Line
Tables In Python], page 458.

23.3.2.30 Manipulating line tables using Python

Python code can request and inspect line table information from a symbol table that is
loaded in gdb. A line table is a mapping of source lines to their executable locations
in memory. To acquire the line table information for a particular symbol table, use the
linetable function (see Section 23.3.2.29 [Symbol Tables In Python], page 456).

A gdb.LineTable is iterable. The iterator returns LineTableEntry objects that cor-
respond to the source line and address for each line table entry. LineTableEntry objects
have the following attributes:

[Variable]LineTableEntry.line
The source line number for this line table entry. This number corresponds to the
actual line of source. This attribute is not writable.

[Variable]LineTableEntry.pc
The address that is associated with the line table entry where the executable code for
that source line resides in memory. This attribute is not writable.

As there can be multiple addresses for a single source line, you may receive multiple
LineTableEntry objects with matching line attributes, but with different pc attributes.
The iterator is sorted in ascending pc order. Here is a small example illustrating iterating
over a line table.

symtab = gdb.selected_frame().find_sal().symtab

linetable = symtab.linetable()

for line in linetable:

print ("Line: "+str(line.line)+" Address: "+hex(line.pc))

This will have the following output:

Line: 33 Address: 0x4005c8L

Line: 37 Address: 0x4005caL

Line: 39 Address: 0x4005d2L

Line: 40 Address: 0x4005f8L

Line: 42 Address: 0x4005ffL

Line: 44 Address: 0x400608L

Line: 42 Address: 0x40060cL

Line: 45 Address: 0x400615L

In addition to being able to iterate over a LineTable, it also has the following direct
access methods:

Chapter 23: Extending gdb 459

[Function]LineTable.line (line)
Return a Python Tuple of LineTableEntry objects for any entries in the line table
for the given line, which specifies the source code line. If there are no entries for that
source code line, the Python None is returned.

[Function]LineTable.has_line (line)
Return a Python Boolean indicating whether there is an entry in the line table for
this source line. Return True if an entry is found, or False if not.

[Function]LineTable.source_lines ()
Return a Python List of the source line numbers in the symbol table. Only lines
with executable code locations are returned. The contents of the List will just be
the source line entries represented as Python Long values.

23.3.2.31 Manipulating breakpoints using Python

Python code can manipulate breakpoints via the gdb.Breakpoint class.

A breakpoint can be created using one of the two forms of the gdb.Breakpoint con-
structor. The first one accepts a string like one would pass to the break (see Section 5.1.1
[Setting Breakpoints], page 58) and watch (see Section 5.1.2 [Setting Watchpoints], page 65)
commands, and can be used to create both breakpoints and watchpoints. The second ac-
cepts separate Python arguments similar to Section 9.2.2 [Explicit Locations], page 123,
and can only be used to create breakpoints.

[Function]Breakpoint.__init__ (spec [, type][, wp class][, internal][,
temporary][, qualified])

Create a new breakpoint according to spec, which is a string naming the location of
a breakpoint, or an expression that defines a watchpoint. The string should describe
a location in a format recognized by the break command (see Section 5.1.1 [Setting
Breakpoints], page 58) or, in the case of a watchpoint, by the watch command (see
Section 5.1.2 [Setting Watchpoints], page 65).

The optional type argument specifies the type of the breakpoint to create, as defined
below.

The optional wp class argument defines the class of watchpoint to create, if type is
gdb.BP_WATCHPOINT. If wp class is omitted, it defaults to gdb.WP_WRITE.

The optional internal argument allows the breakpoint to become invisible to the user.
The breakpoint will neither be reported when created, nor will it be listed in the
output from info breakpoints (but will be listed with the maint info breakpoints

command).

The optional temporary argument makes the breakpoint a temporary breakpoint.
Temporary breakpoints are deleted after they have been hit. Any further access to
the Python breakpoint after it has been hit will result in a runtime error (as that
breakpoint has now been automatically deleted).

The optional qualified argument is a boolean that allows interpreting the function
passed in spec as a fully-qualified name. It is equivalent to break’s -qualified

flag (see Section 9.2.1 [Linespec Locations], page 122, and Section 9.2.2 [Explicit
Locations], page 123).

460 Debugging with gdb

[Function]Breakpoint.__init__ ([source][, function][, label][, line],][
internal][, temporary][, qualified])

This second form of creating a new breakpoint specifies the explicit location (see
Section 9.2.2 [Explicit Locations], page 123) using keywords. The new breakpoint
will be created in the specified source file source, at the specified function, label and
line.

internal, temporary and qualified have the same usage as explained previously.

The available types are represented by constants defined in the gdb module:

gdb.BP_BREAKPOINT

Normal code breakpoint.

gdb.BP_HARDWARE_BREAKPOINT

Hardware assisted code breakpoint.

gdb.BP_WATCHPOINT

Watchpoint breakpoint.

gdb.BP_HARDWARE_WATCHPOINT

Hardware assisted watchpoint.

gdb.BP_READ_WATCHPOINT

Hardware assisted read watchpoint.

gdb.BP_ACCESS_WATCHPOINT

Hardware assisted access watchpoint.

gdb.BP_CATCHPOINT

Catchpoint. Currently, this type can’t be used when creating gdb.Breakpoint

objects, but will be present in gdb.Breakpoint objects reported from
gdb.BreakpointEvents (see Section 23.3.2.17 [Events In Python], page 424).

The available watchpoint types are represented by constants defined in the gdb module:

gdb.WP_READ

Read only watchpoint.

gdb.WP_WRITE

Write only watchpoint.

gdb.WP_ACCESS

Read/Write watchpoint.

[Function]Breakpoint.stop (self)
The gdb.Breakpoint class can be sub-classed and, in particular, you may choose
to implement the stop method. If this method is defined in a sub-class of
gdb.Breakpoint, it will be called when the inferior reaches any location of a
breakpoint which instantiates that sub-class. If the method returns True, the inferior
will be stopped at the location of the breakpoint, otherwise the inferior will continue.

If there are multiple breakpoints at the same location with a stop method, each one
will be called regardless of the return status of the previous. This ensures that all
stop methods have a chance to execute at that location. In this scenario if one of the
methods returns True but the others return False, the inferior will still be stopped.

Chapter 23: Extending gdb 461

You should not alter the execution state of the inferior (i.e., step, next, etc.), alter the
current frame context (i.e., change the current active frame), or alter, add or delete
any breakpoint. As a general rule, you should not alter any data within gdb or the
inferior at this time.

Example stop implementation:
class MyBreakpoint (gdb.Breakpoint):

def stop (self):

inf_val = gdb.parse_and_eval("foo")

if inf_val == 3:

return True

return False

[Function]Breakpoint.is_valid ()
Return True if this Breakpoint object is valid, False otherwise. A Breakpoint

object can become invalid if the user deletes the breakpoint. In this case, the object
still exists, but the underlying breakpoint does not. In the cases of watchpoint scope,
the watchpoint remains valid even if execution of the inferior leaves the scope of that
watchpoint.

[Function]Breakpoint.delete ()
Permanently deletes the gdb breakpoint. This also invalidates the Python
Breakpoint object. Any further access to this object’s attributes or methods will
raise an error.

[Variable]Breakpoint.enabled
This attribute is True if the breakpoint is enabled, and False otherwise. This at-
tribute is writable. You can use it to enable or disable the breakpoint.

[Variable]Breakpoint.silent
This attribute is True if the breakpoint is silent, and False otherwise. This attribute
is writable.

Note that a breakpoint can also be silent if it has commands and the first command
is silent. This is not reported by the silent attribute.

[Variable]Breakpoint.pending
This attribute is True if the breakpoint is pending, and False otherwise. See
Section 5.1.1 [Set Breaks], page 58. This attribute is read-only.

[Variable]Breakpoint.thread
If the breakpoint is thread-specific, this attribute holds the thread’s global id. If the
breakpoint is not thread-specific, this attribute is None. This attribute is writable.

[Variable]Breakpoint.inferior
If the breakpoint is inferior-specific, this attribute holds the inferior number. If the
breakpoint is not inferior-specific, this attribute is None. This attribute is writable.

[Variable]Breakpoint.task
If the breakpoint is Ada task-specific, this attribute holds the Ada task id. If the
breakpoint is not task-specific (or the underlying language is not Ada), this attribute
is None. This attribute is writable.

462 Debugging with gdb

[Variable]Breakpoint.ignore_count
This attribute holds the ignore count for the breakpoint, an integer. This attribute
is writable.

[Variable]Breakpoint.number
This attribute holds the breakpoint’s number — the identifier used by the user to
manipulate the breakpoint. This attribute is not writable.

[Variable]Breakpoint.type
This attribute holds the breakpoint’s type — the identifier used to determine the
actual breakpoint type or use-case. This attribute is not writable.

[Variable]Breakpoint.visible
This attribute tells whether the breakpoint is visible to the user when set, or when
the ‘info breakpoints’ command is run. This attribute is not writable.

[Variable]Breakpoint.temporary
This attribute indicates whether the breakpoint was created as a temporary break-
point. Temporary breakpoints are automatically deleted after that breakpoint has
been hit. Access to this attribute, and all other attributes and functions other than
the is_valid function, will result in an error after the breakpoint has been hit (as it
has been automatically deleted). This attribute is not writable.

[Variable]Breakpoint.hit_count
This attribute holds the hit count for the breakpoint, an integer. This attribute is
writable, but currently it can only be set to zero.

[Variable]Breakpoint.location
This attribute holds the location of the breakpoint, as specified by the user. It is a
string. If the breakpoint does not have a location (that is, it is a watchpoint) the
attribute’s value is None. This attribute is not writable.

[Variable]Breakpoint.expression
This attribute holds a breakpoint expression, as specified by the user. It is a string.
If the breakpoint does not have an expression (the breakpoint is not a watchpoint)
the attribute’s value is None. This attribute is not writable.

[Variable]Breakpoint.condition
This attribute holds the condition of the breakpoint, as specified by the user. It is
a string. If there is no condition, this attribute’s value is None. This attribute is
writable.

[Variable]Breakpoint.commands
This attribute holds the commands attached to the breakpoint. If there are com-
mands, this attribute’s value is a string holding all the commands, separated by
newlines. If there are no commands, this attribute is None. This attribute is writable.

Chapter 23: Extending gdb 463

23.3.2.32 Finish Breakpoints

A finish breakpoint is a temporary breakpoint set at the return address of a frame, based
on the finish command. gdb.FinishBreakpoint extends gdb.Breakpoint. The underly-
ing breakpoint will be disabled and deleted when the execution will run out of the break-
point scope (i.e. Breakpoint.stop or FinishBreakpoint.out_of_scope triggered). Finish
breakpoints are thread specific and must be create with the right thread selected.

[Function]FinishBreakpoint.__init__ ([frame] [, internal])
Create a finish breakpoint at the return address of the gdb.Frame object frame.
If frame is not provided, this defaults to the newest frame. The optional internal
argument allows the breakpoint to become invisible to the user. See Section 23.3.2.31
[Breakpoints In Python], page 459, for further details about this argument.

[Function]FinishBreakpoint.out_of_scope (self)
In some circumstances (e.g. longjmp, C++ exceptions, gdb return command, . . .), a
function may not properly terminate, and thus never hit the finish breakpoint. When
gdb notices such a situation, the out_of_scope callback will be triggered.

You may want to sub-class gdb.FinishBreakpoint and override this method:

class MyFinishBreakpoint (gdb.FinishBreakpoint)

def stop (self):

print ("normal finish")

return True

def out_of_scope ():

print ("abnormal finish")

[Variable]FinishBreakpoint.return_value
When gdb is stopped at a finish breakpoint and the frame used to build the
gdb.FinishBreakpoint object had debug symbols, this attribute will contain a
gdb.Value object corresponding to the return value of the function. The value will
be None if the function return type is void or if the return value was not computable.
This attribute is not writable.

23.3.2.33 Python representation of lazy strings

A lazy string is a string whose contents is not retrieved or encoded until it is needed.

A gdb.LazyString is represented in gdb as an address that points to a region of mem-
ory, an encoding that will be used to encode that region of memory, and a length to delimit
the region of memory that represents the string. The difference between a gdb.LazyString

and a string wrapped within a gdb.Value is that a gdb.LazyString will be treated differ-
ently by gdb when printing. A gdb.LazyString is retrieved and encoded during printing,
while a gdb.Value wrapping a string is immediately retrieved and encoded on creation.

A gdb.LazyString object has the following functions:

[Function]LazyString.value ()
Convert the gdb.LazyString to a gdb.Value. This value will point to the string
in memory, but will lose all the delayed retrieval, encoding and handling that gdb
applies to a gdb.LazyString.

464 Debugging with gdb

[Variable]LazyString.address
This attribute holds the address of the string. This attribute is not writable.

[Variable]LazyString.length
This attribute holds the length of the string in characters. If the length is -1, then
the string will be fetched and encoded up to the first null of appropriate width. This
attribute is not writable.

[Variable]LazyString.encoding
This attribute holds the encoding that will be applied to the string when the string
is printed by gdb. If the encoding is not set, or contains an empty string, then gdb
will select the most appropriate encoding when the string is printed. This attribute
is not writable.

[Variable]LazyString.type
This attribute holds the type that is represented by the lazy string’s type. For a lazy
string this is a pointer or array type. To resolve this to the lazy string’s character
type, use the type’s targetmethod. See Section 23.3.2.4 [Types In Python], page 395.
This attribute is not writable.

23.3.2.34 Python representation of architectures

gdb uses architecture specific parameters and artifacts in a number of its various compu-
tations. An architecture is represented by an instance of the gdb.Architecture class.

A gdb.Architecture class has the following methods:

[Function]Architecture.name ()
Return the name (string value) of the architecture.

[Function]Architecture.disassemble (start_pc [, end_pc [, count]])
Return a list of disassembled instructions starting from the memory address start pc.
The optional arguments end pc and count determine the number of instructions in
the returned list. If both the optional arguments end pc and count are specified,
then a list of at most count disassembled instructions whose start address falls in the
closed memory address interval from start pc to end pc are returned. If end pc is
not specified, but count is specified, then count number of instructions starting from
the address start pc are returned. If count is not specified but end pc is specified,
then all instructions whose start address falls in the closed memory address interval
from start pc to end pc are returned. If neither end pc nor count are specified, then
a single instruction at start pc is returned. For all of these cases, each element of the
returned list is a Python dict with the following string keys:

addr The value corresponding to this key is a Python long integer capturing
the memory address of the instruction.

asm The value corresponding to this key is a string value which represents the
instruction with assembly language mnemonics. The assembly language
flavor used is the same as that specified by the current CLI variable
disassembly-flavor. See Section 9.6 [Machine Code], page 130.

length The value corresponding to this key is the length (integer value) of the
instruction in bytes.

Chapter 23: Extending gdb 465

[Function]Architecture.integer_type (size [, signed])
This function looks up an integer type by its size, and optionally whether or not it is
signed.

size is the size, in bits, of the desired integer type. Only certain sizes are currently
supported: 0, 8, 16, 24, 32, 64, and 128.

If signed is not specified, it defaults to True. If signed is False, the returned type
will be unsigned.

If the indicated type cannot be found, this function will throw a ValueError excep-
tion.

[Function]Architecture.registers ([reggroup])
Return a gdb.RegisterDescriptorIterator (see Section 23.3.2.35 [Registers In
Python], page 465) for all of the registers in reggroup, a string that is the name
of a register group. If reggroup is omitted, or is the empty string, then the register
group ‘all’ is assumed.

[Function]Architecture.register_groups ()
Return a gdb.RegisterGroupsIterator (see Section 23.3.2.35 [Registers In Python],
page 465) for all of the register groups available for the gdb.Architecture.

23.3.2.35 Registers In Python

Python code can request from a gdb.Architecture information about the set of regis-
ters available (see [Architecture.registers], page 465). The register information is re-
turned as a gdb.RegisterDescriptorIterator, which is an iterator that in turn returns
gdb.RegisterDescriptor objects.

A gdb.RegisterDescriptor does not provide the value of a register (see [Frame.read_
register], page 450, for reading a register’s value), instead the RegisterDescriptor is a
way to discover which registers are available for a particular architecture.

A gdb.RegisterDescriptor has the following read-only properties:

[Variable]RegisterDescriptor.name
The name of this register.

It is also possible to lookup a register descriptor based on its name using the following
gdb.RegisterDescriptorIterator function:

[Function]RegisterDescriptorIterator.find (name)
Takes name as an argument, which must be a string, and returns a
gdb.RegisterDescriptor for the register with that name, or None if there is no
register with that name.

Python code can also request from a gdb.Architecture information about the set of
register groups available on a given architecture (see [Architecture.register_groups],
page 465).

Every register can be a member of zero or more register groups. Some register groups are
used internally within gdb to control things like which registers must be saved when calling
into the program being debugged (see Section 17.5 [Calling Program Functions], page 271).

466 Debugging with gdb

Other register groups exist to allow users to easily see related sets of registers in commands
like info registers (see [info registers reggroup], page 171).

The register groups information is returned as a gdb.RegisterGroupsIterator, which
is an iterator that in turn returns gdb.RegisterGroup objects.

A gdb.RegisterGroup object has the following read-only properties:

[Variable]RegisterGroup.name
A string that is the name of this register group.

23.3.2.36 Connections In Python

gdb lets you run and debug multiple programs in a single session. Each program being
debugged has a connection, the connection describes how gdb controls the program being
debugged. Examples of different connection types are ‘native’ and ‘remote’. See Section 4.9
[Inferiors Connections and Programs], page 40.

Connections in gdb are represented as instances of gdb.TargetConnection, or as one of
its sub-classes. To get a list of all connections use gdb.connections (see [gdb.connections],
page 388).

To get the connection for a single gdb.Inferior read its gdb.Inferior.connection

attribute (see [gdb.Inferior.connection], page 423).

Currently there is only a single sub-class of gdb.TargetConnection,
gdb.RemoteTargetConnection, however, additional sub-classes may be added in
future releases of gdb. As a result you should avoid writing code like:

conn = gdb.selected_inferior().connection

if type(conn) is gdb.RemoteTargetConnection:

print("This is a remote target connection")

as this may fail when more connection types are added. Instead, you should write:

conn = gdb.selected_inferior().connection

if isinstance(conn, gdb.RemoteTargetConnection):

print("This is a remote target connection")

A gdb.TargetConnection has the following method:

[Function]TargetConnection.is_valid ()
Return True if the gdb.TargetConnection object is valid, False if not. A
gdb.TargetConnection will become invalid if the connection no longer exists within
gdb, this might happen when no inferiors are using the connection, but could be
delayed until the user replaces the current target.

Reading any of the gdb.TargetConnection properties will throw an exception if the
connection is invalid.

A gdb.TargetConnection has the following read-only properties:

[Variable]TargetConnection.num
An integer assigned by gdb to uniquely identify this connection. This is the same
value as displayed in the ‘Num’ column of the info connections command output
(see Section 4.9 [info connections], page 40).

Chapter 23: Extending gdb 467

[Variable]TargetConnection.type
A string that describes what type of connection this is. This string will be one of
the valid names that can be passed to the target command (see Section 19.2 [target
command], page 297).

[Variable]TargetConnection.description
A string that gives a short description of this target type. This is the same string that
is displayed in the ‘Description’ column of the info connection command output
(see Section 4.9 [info connections], page 40).

[Variable]TargetConnection.details
An optional string that gives additional information about this connection. This
attribute can be None if there are no additional details for this connection.

An example of a connection type that might have additional details is the ‘remote’
connection, in this case the details string can contain the ‘hostname:port’ that was
used to connect to the remote target.

The gdb.RemoteTargetConnection class is a sub-class of gdb.TargetConnection,
and is used to represent ‘remote’ and ‘extended-remote’ connections. In addition to
the attributes and methods available from the gdb.TargetConnection base class, a
gdb.RemoteTargetConnection has the following method:

[Function]RemoteTargetConnection.send_packet (packet)
This method sends packet to the remote target and returns the response. The packet
should either be a bytes object, or a Unicode string.

If packet is a Unicode string, then the string is encoded to a bytes object using the
ascii codec. If the string can’t be encoded then an UnicodeError is raised.

If packet is not a bytes object, or a Unicode string, then a TypeError is raised. If
packet is empty then a ValueError is raised.

The response is returned as a bytes object. For Python 3 if it is known that the
response can be represented as a string then this can be decoded from the buffer. For
example, if it is known that the response is an ascii string:

remote_connection.send_packet("some_packet").decode("ascii")

In Python 2 bytes and str are aliases, so the result is already a string, if the response
includes non-printable characters, or null characters, then these will be present in the
result, care should be taken when processing the result to handle this case.

The prefix, suffix, and checksum (as required by the remote serial protocol) are au-
tomatically added to the outgoing packet, and removed from the incoming packet
before the contents of the reply are returned.

This is equivalent to the maintenance packet command (see [maint packet],
page 710).

23.3.2.37 Implementing new TUI windows

New TUI (see Chapter 25 [TUI], page 533) windows can be implemented in Python.

468 Debugging with gdb

[Function]gdb.register_window_type (name, factory)
Because TUI windows are created and destroyed depending on the layout the user
chooses, new window types are implemented by registering a factory function with
gdb.

name is the name of the new window. It’s an error to try to replace one of the built-in
windows, but other window types can be replaced.

function is a factory function that is called to create the TUI window. This is called
with a single argument of type gdb.TuiWindow, described below. It should return an
object that implements the TUI window protocol, also described below.

As mentioned above, when a factory function is called, it is passed an object of type
gdb.TuiWindow. This object has these methods and attributes:

[Function]TuiWindow.is_valid ()
This method returns True when this window is valid. When the user changes the TUI
layout, windows no longer visible in the new layout will be destroyed. At this point,
the gdb.TuiWindow will no longer be valid, and methods (and attributes) other than
is_valid will throw an exception.

When the TUI is disabled using tui disable (see Section 25.5 [tui disable], page 536)
the window is hidden rather than destroyed, but is_valid will still return False and
other methods (and attributes) will still throw an exception.

[Variable]TuiWindow.width
This attribute holds the width of the window. It is not writable.

[Variable]TuiWindow.height
This attribute holds the height of the window. It is not writable.

[Variable]TuiWindow.title
This attribute holds the window’s title, a string. This is normally displayed above
the window. This attribute can be modified.

[Function]TuiWindow.erase ()
Remove all the contents of the window.

[Function]TuiWindow.write (string [, full_window])
Write string to the window. string can contain ANSI terminal escape styling se-
quences; gdb will translate these as appropriate for the terminal.

If the full window parameter is True, then string contains the full contents of the
window. This is similar to calling erase before write, but avoids the flickering.

The factory function that you supply should return an object conforming to the TUI
window protocol. These are the method that can be called on this object, which is referred
to below as the “window object”. The methods documented below are optional; if the object
does not implement one of these methods, gdb will not attempt to call it. Additional new
methods may be added to the window protocol in the future. gdb guarantees that they will
begin with a lower-case letter, so you can start implementation methods with upper-case
letters or underscore to avoid any future conflicts.

Chapter 23: Extending gdb 469

[Function]Window.close ()
When the TUI window is closed, the gdb.TuiWindow object will be put into an invalid
state. At this time, gdb will call close method on the window object.

After this method is called, gdb will discard any references it holds on this window
object, and will no longer call methods on this object.

[Function]Window.render ()
In some situations, a TUI window can change size. For example, this can happen if
the user resizes the terminal, or changes the layout. When this happens, gdb will
call the render method on the window object.

If your window is intended to update in response to changes in the inferior, you will
probably also want to register event listeners and send output to the gdb.TuiWindow.

[Function]Window.hscroll (num)
This is a request to scroll the window horizontally. num is the amount by which
to scroll, with negative numbers meaning to scroll right. In the TUI model, it is
the viewport that moves, not the contents. A positive argument should cause the
viewport to move right, and so the content should appear to move to the left.

[Function]Window.vscroll (num)
This is a request to scroll the window vertically. num is the amount by which to
scroll, with negative numbers meaning to scroll backward. In the TUI model, it is
the viewport that moves, not the contents. A positive argument should cause the
viewport to move down, and so the content should appear to move up.

[Function]Window.click (x, y, button)
This is called on a mouse click in this window. x and y are the mouse coordinates
inside the window (0-based, from the top left corner), and button specifies which
mouse button was used, whose values can be 1 (left), 2 (middle), or 3 (right).

23.3.3 Python Auto-loading

When a new object file is read (for example, due to the file command, or because the
inferior has loaded a shared library), gdb will look for Python support scripts in several
ways: objfile-gdb.py and .debug_gdb_scripts section. See Section 23.5 [Auto-loading
extensions], page 526.

The auto-loading feature is useful for supplying application-specific debugging commands
and scripts.

Auto-loading can be enabled or disabled, and the list of auto-loaded scripts can be
printed.

set auto-load python-scripts [on|off]

Enable or disable the auto-loading of Python scripts.

show auto-load python-scripts

Show whether auto-loading of Python scripts is enabled or disabled.

info auto-load python-scripts [regexp]

Print the list of all Python scripts that gdb auto-loaded.

470 Debugging with gdb

Also printed is the list of Python scripts that were mentioned in the .debug_

gdb_scripts section and were either not found (see Section 23.5.2 [dotde-
bug gdb scripts section], page 528) or were not auto-loaded due to auto-load

safe-path rejection (see Section 22.8 [Auto-loading], page 357). This is useful
because their names are not printed when gdb tries to load them and fails.
There may be many of them, and printing an error message for each one is
problematic.

If regexp is supplied only Python scripts with matching names are printed.

Example:

(gdb) info auto-load python-scripts

Loaded Script

Yes py-section-script.py

full name: /tmp/py-section-script.py

No my-foo-pretty-printers.py

When reading an auto-loaded file or script, gdb sets the current objfile. This is avail-
able via the gdb.current_objfile function (see Section 23.3.2.25 [Objfiles In Python],
page 445). This can be useful for registering objfile-specific pretty-printers and frame-filters.

23.3.4 Python modules

gdb comes with several modules to assist writing Python code.

23.3.4.1 gdb.printing

This module provides a collection of utilities for working with pretty-printers.

PrettyPrinter (name, subprinters=None)

This class specifies the API that makes ‘info pretty-printer’, ‘enable
pretty-printer’ and ‘disable pretty-printer’ work. Pretty-printers
should generally inherit from this class.

SubPrettyPrinter (name)

For printers that handle multiple types, this class specifies the corresponding
API for the subprinters.

RegexpCollectionPrettyPrinter (name)

Utility class for handling multiple printers, all recognized via regular expres-
sions. See Section 23.3.2.7 [Writing a Pretty-Printer], page 403, for an example.

FlagEnumerationPrinter (name)

A pretty-printer which handles printing of enum values. Unlike gdb’s built-
in enum printing, this printer attempts to work properly when there is some
overlap between the enumeration constants. The argument name is the name
of the printer and also the name of the enum type to look up.

register_pretty_printer (obj, printer, replace=False)

Register printer with the pretty-printer list of obj. If replace is True then any
existing copy of the printer is replaced. Otherwise a RuntimeError exception
is raised if a printer with the same name already exists.

Chapter 23: Extending gdb 471

23.3.4.2 gdb.types

This module provides a collection of utilities for working with gdb.Type objects.

get_basic_type (type)

Return type with const and volatile qualifiers stripped, and with typedefs and
C++ references converted to the underlying type.

C++ example:
typedef const int const_int;

const_int foo (3);

const_int& foo_ref (foo);

int main () { return 0; }

Then in gdb:
(gdb) start

(gdb) python import gdb.types

(gdb) python foo_ref = gdb.parse_and_eval("foo_ref")

(gdb) python print gdb.types.get_basic_type(foo_ref.type)

int

has_field (type, field)

Return True if type, assumed to be a type with fields (e.g., a structure or
union), has field field.

make_enum_dict (enum_type)

Return a Python dictionary type produced from enum type.

deep_items (type)

Returns a Python iterator similar to the standard gdb.Type.iteritems

method, except that the iterator returned by deep_items will recursively
traverse anonymous struct or union fields. For example:

struct A

{

int a;

union {

int b0;

int b1;

};

};

Then in gdb:
(gdb) python import gdb.types

(gdb) python struct_a = gdb.lookup_type("struct A")

(gdb) python print struct_a.keys ()

{[’a’, ’’]}

(gdb) python print [k for k,v in gdb.types.deep_items(struct_a)]

{[’a’, ’b0’, ’b1’]}

get_type_recognizers ()

Return a list of the enabled type recognizers for the current context. This
is called by gdb during the type-printing process (see Section 23.3.2.8 [Type
Printing API], page 405).

apply_type_recognizers (recognizers, type_obj)

Apply the type recognizers, recognizers, to the type object type obj. If any
recognizer returns a string, return that string. Otherwise, return None. This

472 Debugging with gdb

is called by gdb during the type-printing process (see Section 23.3.2.8 [Type
Printing API], page 405).

register_type_printer (locus, printer)

This is a convenience function to register a type printer printer. The printer
must implement the type printer protocol. The locus argument is either
a gdb.Objfile, in which case the printer is registered with that objfile; a
gdb.Progspace, in which case the printer is registered with that progspace; or
None, in which case the printer is registered globally.

TypePrinter

This is a base class that implements the type printer protocol. Type printers are
encouraged, but not required, to derive from this class. It defines a constructor:

[Method on TypePrinter]__init__ (self, name)
Initialize the type printer with the given name. The new printer starts
in the enabled state.

23.3.4.3 gdb.prompt

This module provides a method for prompt value-substitution.

substitute_prompt (string)

Return string with escape sequences substituted by values. Some escape se-
quences take arguments. You can specify arguments inside “{}” immediately
following the escape sequence.

The escape sequences you can pass to this function are:

\\ Substitute a backslash.

\e Substitute an ESC character.

\f Substitute the selected frame; an argument names a frame param-
eter.

\n Substitute a newline.

\p Substitute a parameter’s value; the argument names the parameter.

\r Substitute a carriage return.

\t Substitute the selected thread; an argument names a thread pa-
rameter.

\v Substitute the version of GDB.

\w Substitute the current working directory.

\[Begin a sequence of non-printing characters. These sequences are
typically used with the ESC character, and are not counted in the
string length. Example: “\[\e[0;34m\](gdb)\[\e[0m\]” will return
a blue-colored “(gdb)” prompt where the length is five.

\] End a sequence of non-printing characters.

Chapter 23: Extending gdb 473

For example:

substitute_prompt ("frame: \f, args: \p{print frame-arguments}")

will return the string:

"frame: main, args: scalars"

23.3.4.4 gdb.ptwrite

This module provides additional functionality for recording programs that make use of the
PTWRITE instruction. PTWRITE is a x86 instruction that allows to write values into the
Intel Processor Trace (see Chapter 7 [Process Record and Replay], page 101). The gcc
built-in functions for it are:

void __builtin_ia32_ptwrite32 (unsigned)

void __builtin_ia32_ptwrite64 (unsigned long long)

If an inferior uses the instruction, gdb inserts the raw payload value as auxiliary in-
formation into the execution history. Auxiliary information is by default printed during
’record instruction-history’, ’record function-call-history’ and all stepping commands and is
accessible in Python as a RecordAuxiliary object.

Sample program:

void

ptwrite64 (unsigned long long value)

{

__builtin_ia32_ptwrite64 (value);

}

int

main (void)

{

ptwrite64 (0x42);

return 0; /* break here. */

}

gdb output after recording the sample program in pt format:

(gdb) record instruction-history 12,14

12 0x000000000040074c <ptwrite64+16>: ptwrite %rbx

13 [payload: 0x42]

14 0x0000000000400751 <ptwrite64+21>: mov -0x8(%rbp),%rbx

(gdb) record function-call-history

1 main

2 ptwrite64

[payload: 0x42]

3 main

The gdb.ptwrite module allows customizing the default output of ptwrite auxiliary
information. A custom Python function can be registered via gdb.ptwrite.register_

listener() as the ptwrite listener function. This function will be called with the ptwrite
payload and IP as arguments during trace decoding.

474 Debugging with gdb

register_listener (listener)

Used to register the ptwrite listener. The listener can be any callable object
that accepts two arguments. It can return a string, which will be printed by
gdb during the aforementioned commands, or None, resulting in no output.
None can also be registered to deactivate printing.

get_listener ()

Returns the currently active ptwrite listener function.

default_listener (payload, ip)

The listener function active by default.

When recording multithreaded programs, gdb creates a new copy of the listener function
for each thread to allow for independent internal states. There is currently no support
for registering different listeners for different threads. The listener can however distinguish
between multiple threads with the help of gdb.selected_thread().global_num or similar.

For example:

(gdb) python-interactive

>>> def my_listener(payload, ip):

... if gdb.selected_thread().global_num == 1:

... return "payload: {0}, ip: {:#x}".format(payload, ip)

... else:

... return None

...

>>> import gdb.ptwrite

>>> gdb.ptwrite.register_listener(my_listener)

>>>

(gdb) record instruction-history 127,129

127 0x000000000040116c <ptwrite32(unsigned int)+13>: ptwrite %ebx

128 [payload: 4919, ip: 0x40074c]

129 0x0000000000401170 <ptwrite32(unsigned int)+17>: nop

(gdb) info threads

* 1 Thread 0x7ffff7fd8740 (LWP 25796) "ptwrite_threads" task (arg=0x0)

at bin/ptwrite/ptwrite_threads.c:45

2 Thread 0x7ffff6eb8700 (LWP 25797) "ptwrite_threads" task (arg=0x0)

at bin/ptwrite/ptwrite_threads.c:45

(gdb) thread 2

[Switching to thread 2 (Thread 0x7ffff6eb8700 (LWP 25797))]

#0 task (arg=0x0) at ptwrite_threads.c:45

45 return NULL;

(gdb) record instruction-history 1753,1755

1753 0x000000000040116c <ptwrite32(unsigned int)+13>: ptwrite %ebx

1754 0x0000000000401170 <ptwrite32(unsigned int)+17>: nop

1755 0x0000000000401171 <ptwrite32(unsigned int)+18>: pop %rbx

This GDB feature is dependent on hardware and operating system support and requires
the Intel Processor Trace decoder library in version 2.0.0 or newer.

23.4 Extending gdb using Guile

You can extend gdb using the Guile implementation of the Scheme programming language
(http://www.gnu.org/software/guile/). This feature is available only if gdb was
configured using --with-guile.

http://www.gnu.org/software/guile/
http://www.gnu.org/software/guile/

Chapter 23: Extending gdb 475

23.4.1 Guile Introduction

Guile is an implementation of the Scheme programming language and is the GNU project’s
official extension language.

Guile support in gdb follows the Python support in gdb reasonably closely, so concepts
there should carry over. However, some things are done differently where it makes sense.

gdb requires Guile version 3.0, 2.2, or 2.0.

Guile scripts used by gdb should be installed in data-directory/guile, where data-
directory is the data directory as determined at gdb startup (see Section 18.7 [Data Files],
page 295). This directory, known as the guile directory, is automatically added to the Guile
Search Path in order to allow the Guile interpreter to locate all scripts installed at this
location.

23.4.2 Guile Commands

gdb provides two commands for accessing the Guile interpreter:

guile-repl

gr The guile-repl command can be used to start an interactive Guile prompt or
repl. To return to gdb, type ,q or the EOF character (e.g., Ctrl-D on an empty
prompt). These commands do not take any arguments.

guile [scheme-expression]
gu [scheme-expression]

The guile command can be used to evaluate a Scheme expression.

If given an argument, gdb will pass the argument to the Guile interpreter for
evaluation.

(gdb) guile (display (+ 20 3)) (newline)

23

The result of the Scheme expression is displayed using normal Guile rules.

(gdb) guile (+ 20 3)

23

If you do not provide an argument to guile, it will act as a multi-line command,
like define. In this case, the Guile script is made up of subsequent command
lines, given after the guile command. This command list is terminated using
a line containing end. For example:

(gdb) guile

>(display 23)

>(newline)

>end

23

It is also possible to execute a Guile script from the gdb interpreter:

source script-name

The script name must end with ‘.scm’ and gdb must be configured to recognize
the script language based on filename extension using the script-extension

setting. See Chapter 23 [Extending GDB], page 371.

476 Debugging with gdb

guile (load "script-name")

This method uses the load Guile function. It takes a string argument that is
the name of the script to load. See the Guile documentation for a description
of this function. (see Section “Loading” in GNU Guile Reference Manual).

23.4.3 Guile API

You can get quick online help for gdb’s Guile API by issuing the command help guile,
or by issuing the command ,help from an interactive Guile session. Furthermore, most
Guile procedures provided by gdb have doc strings which can be obtained with ,describe

procedure-name or ,d procedure-name from the Guile interactive prompt.

23.4.3.1 Basic Guile

At startup, gdb overrides Guile’s current-output-port and current-error-port to print
using gdb’s output-paging streams. A Guile program which outputs to one of these streams
may have its output interrupted by the user (see Section 22.4 [Screen Size], page 352). In
this situation, a Guile signal exception is thrown with value SIGINT.

Guile’s history mechanism uses the same naming as gdb’s, namely the user of dollar-
variables (e.g., $1, $2, etc.). The results of evaluations in Guile and in GDB are counted
separately, $1 in Guile is not the same value as $1 in gdb.

gdb is not thread-safe. If your Guile program uses multiple threads, you must be careful
to only call gdb-specific functions in the gdb thread.

Some care must be taken when writing Guile code to run in gdb. Two things are worth
noting in particular:

• gdb installs handlers for SIGCHLD and SIGINT. Guile code must not override these, or
even change the options using sigaction. If your program changes the handling of
these signals, gdb will most likely stop working correctly. Note that it is unfortunately
common for GUI toolkits to install a SIGCHLD handler.

• gdb takes care to mark its internal file descriptors as close-on-exec. However, this
cannot be done in a thread-safe way on all platforms. Your Guile programs should be
aware of this and should both create new file descriptors with the close-on-exec flag set
and arrange to close unneeded file descriptors before starting a child process.

gdb introduces a new Guile module, named gdb. All methods and classes added by gdb
are placed in this module. gdb does not automatically import the gdb module, scripts
must do this themselves. There are various options for how to import a module, so gdb
leaves the choice of how the gdb module is imported to the user. To simplify interactive
use, it is recommended to add one of the following to your ~/.gdbinit.

guile (use-modules (gdb))

guile (use-modules ((gdb) #:renamer (symbol-prefix-proc ’gdb:)))

Which one to choose depends on your preference. The second one adds gdb: as a prefix
to all module functions and variables.

The rest of this manual assumes the gdb module has been imported without any prefix.
See the Guile documentation for use-modules for more information (see Section “Using
Guile Modules” in GNU Guile Reference Manual).

Example:
(gdb) guile (value-type (make-value 1))

Chapter 23: Extending gdb 477

ERROR: Unbound variable: value-type

Error while executing Scheme code.

(gdb) guile (use-modules (gdb))

(gdb) guile (value-type (make-value 1))

int

(gdb)

The (gdb) module provides these basic Guile functions.

[Scheme Procedure]execute command [#:from-tty boolean]
[#:to-string boolean]

Evaluate command, a string, as a gdb CLI command. If a gdb exception happens
while command runs, it is translated as described in Section 23.4.3.4 [Guile Exception
Handling], page 480.

from-tty specifies whether gdb ought to consider this command as having originated
from the user invoking it interactively. It must be a boolean value. If omitted, it
defaults to #f.

By default, any output produced by command is sent to gdb’s standard output (and
to the log output if logging is turned on). If the to-string parameter is #t, then output
will be collected by execute and returned as a string. The default is #f, in which
case the return value is unspecified. If to-string is #t, the gdb virtual terminal will
be temporarily set to unlimited width and height, and its pagination will be disabled;
see Section 22.4 [Screen Size], page 352.

[Scheme Procedure]history-ref number
Return a value from gdb’s value history (see Section 10.11 [Value History], page 163).
The number argument indicates which history element to return. If number is nega-
tive, then gdb will take its absolute value and count backward from the last element
(i.e., the most recent element) to find the value to return. If number is zero, then
gdb will return the most recent element. If the element specified by number doesn’t
exist in the value history, a gdb:error exception will be raised.

If no exception is raised, the return value is always an instance of <gdb:value> (see
Section 23.4.3.5 [Values From Inferior In Guile], page 481).

Note: gdb’s value history is independent of Guile’s. $1 in gdb’s value history contains
the result of evaluating an expression from gdb’s command line and $1 from Guile’s
history contains the result of evaluating an expression from Guile’s command line.

[Scheme Procedure]history-append! value
Append value, an instance of <gdb:value>, to gdb’s value history. Return its index
in the history.

Putting into history values returned by Guile extensions will allow the user convenient
access to those values via CLI history facilities.

[Scheme Procedure]parse-and-eval expression
Parse expression as an expression in the current language, evaluate it, and return the
result as a <gdb:value>. The expression must be a string.

This function can be useful when implementing a new command (see Section 23.4.3.11
[Commands In Guile], page 497), as it provides a way to parse the command’s argu-
ments as an expression. It is also is useful when computing values. For example, it is

478 Debugging with gdb

the only way to get the value of a convenience variable (see Section 10.12 [Convenience
Vars], page 164) as a <gdb:value>.

23.4.3.2 Guile Configuration

gdb provides these Scheme functions to access various configuration parameters.

[Scheme Procedure]data-directory
Return a string containing gdb’s data directory. This directory contains gdb’s an-
cillary files.

[Scheme Procedure]guile-data-directory
Return a string containing gdb’s Guile data directory. This directory contains the
Guile modules provided by gdb.

[Scheme Procedure]gdb-version
Return a string containing the gdb version.

[Scheme Procedure]host-config
Return a string containing the host configuration. This is the string passed to --host
when gdb was configured.

[Scheme Procedure]target-config
Return a string containing the target configuration. This is the string passed to
--target when gdb was configured.

23.4.3.3 GDB Scheme Data Types

The values exposed by gdb to Guile are known as gdb objects. There are several kinds of
gdb object, and each is disjoint from all other types known to Guile.

[Scheme Procedure]gdb-object-kind object
Return the kind of the gdb object, e.g., <gdb:breakpoint>, as a symbol.

gdb defines the following object types:

<gdb:arch>

See Section 23.4.3.21 [Architectures In Guile], page 519.

<gdb:block>

See Section 23.4.3.16 [Blocks In Guile], page 508.

<gdb:block-symbols-iterator>

See Section 23.4.3.16 [Blocks In Guile], page 508.

<gdb:breakpoint>

See Section 23.4.3.19 [Breakpoints In Guile], page 514.

<gdb:command>

See Section 23.4.3.11 [Commands In Guile], page 497.

<gdb:exception>

See Section 23.4.3.4 [Guile Exception Handling], page 480.

Chapter 23: Extending gdb 479

<gdb:frame>

See Section 23.4.3.15 [Frames In Guile], page 505.

<gdb:iterator>

See Section 23.4.3.25 [Iterators In Guile], page 523.

<gdb:lazy-string>

See Section 23.4.3.20 [Lazy Strings In Guile], page 518.

<gdb:objfile>

See Section 23.4.3.14 [Objfiles In Guile], page 504.

<gdb:parameter>

See Section 23.4.3.12 [Parameters In Guile], page 501.

<gdb:pretty-printer>

See Section 23.4.3.8 [Guile Pretty Printing API], page 492.

<gdb:pretty-printer-worker>

See Section 23.4.3.8 [Guile Pretty Printing API], page 492.

<gdb:progspace>

See Section 23.4.3.13 [Progspaces In Guile], page 503.

<gdb:symbol>

See Section 23.4.3.17 [Symbols In Guile], page 510.

<gdb:symtab>

See Section 23.4.3.18 [Symbol Tables In Guile], page 513.

<gdb:sal>

See Section 23.4.3.18 [Symbol Tables In Guile], page 513.

<gdb:type>

See Section 23.4.3.7 [Types In Guile], page 488.

<gdb:field>

See Section 23.4.3.7 [Types In Guile], page 488.

<gdb:value>

See Section 23.4.3.5 [Values From Inferior In Guile], page 481.

The following gdb objects are managed internally so that the Scheme function eq? may
be applied to them.

<gdb:arch>

<gdb:block>

<gdb:breakpoint>

<gdb:frame>

<gdb:objfile>

<gdb:progspace>

<gdb:symbol>

<gdb:symtab>

<gdb:type>

480 Debugging with gdb

23.4.3.4 Guile Exception Handling

When executing the guile command, Guile exceptions uncaught within the Guile code
are translated to calls to the gdb error-reporting mechanism. If the command that called
guile does not handle the error, gdb will terminate it and report the error according to
the setting of the guile print-stack parameter.

The guile print-stack parameter has three settings:

none Nothing is printed.

message An error message is printed containing the Guile exception name, the associated
value, and the Guile call stack backtrace at the point where the exception was
raised. Example:

(gdb) guile (display foo)

ERROR: In procedure memoize-variable-access!:

ERROR: Unbound variable: foo

Error while executing Scheme code.

full In addition to an error message a full backtrace is printed.
(gdb) set guile print-stack full

(gdb) guile (display foo)

Guile Backtrace:

In ice-9/boot-9.scm:

157: 10 [catch #t #<catch-closure 2c76e20> ...]

In unknown file:

?: 9 [apply-smob/1 #<catch-closure 2c76e20>]

In ice-9/boot-9.scm:

157: 8 [catch #t #<catch-closure 2c76d20> ...]

In unknown file:

?: 7 [apply-smob/1 #<catch-closure 2c76d20>]

?: 6 [call-with-input-string "(display foo)" ...]

In ice-9/boot-9.scm:

2320: 5 [save-module-excursion #<procedure 2c2dc30 ... ()>]

In ice-9/eval-string.scm:

44: 4 [read-and-eval #<input: string 27cb410> #:lang ...]

37: 3 [lp (display foo)]

In ice-9/eval.scm:

387: 2 [eval # ()]

393: 1 [eval #<memoized foo> ()]

In unknown file:

?: 0 [memoize-variable-access! #<memoized foo> ...]

ERROR: In procedure memoize-variable-access!:

ERROR: Unbound variable: foo

Error while executing Scheme code.

gdb errors that happen in gdb commands invoked by Guile code are converted to Guile
exceptions. The type of the Guile exception depends on the error.

Guile procedures provided by gdb can throw the standard Guile exceptions like
wrong-type-arg and out-of-range.

User interrupt (via C-c or by typing q at a pagination prompt) is translated to a Guile
signal exception with value SIGINT.

gdb Guile procedures can also throw these exceptions:

gdb:error

This exception is a catch-all for errors generated from within gdb.

Chapter 23: Extending gdb 481

gdb:invalid-object

This exception is thrown when accessing Guile objects that wrap underlying
gdb objects have become invalid. For example, a <gdb:breakpoint> object
becomes invalid if the user deletes it from the command line. The object still
exists in Guile, but the object it represents is gone. Further operations on this
breakpoint will throw this exception.

gdb:memory-error

This exception is thrown when an operation tried to access invalid memory in
the inferior.

gdb:pp-type-error

This exception is thrown when a Guile pretty-printer passes a bad object to
gdb.

The following exception-related procedures are provided by the (gdb) module.

[Scheme Procedure]make-exception key args
Return a <gdb:exception> object given by its key and args, which are the standard
Guile parameters of an exception. See the Guile documentation for more information
(see Section “Exceptions” in GNU Guile Reference Manual).

[Scheme Procedure]exception? object
Return #t if object is a <gdb:exception> object. Otherwise return #f.

[Scheme Procedure]exception-key exception
Return the args field of a <gdb:exception> object.

[Scheme Procedure]exception-args exception
Return the args field of a <gdb:exception> object.

23.4.3.5 Values From Inferior In Guile

gdb provides values it obtains from the inferior program in an object of type <gdb:value>.
gdb uses this object for its internal bookkeeping of the inferior’s values, and for fetching
values when necessary.

gdb does not memoize <gdb:value> objects. make-value always returns a fresh object.
(gdb) guile (eq? (make-value 1) (make-value 1))

$1 = #f

(gdb) guile (equal? (make-value 1) (make-value 1))

$1 = #t

A <gdb:value> that represents a function can be executed via inferior function call with
value-call. Any arguments provided to the call must match the function’s prototype, and
must be provided in the order specified by that prototype.

For example, some-val is a <gdb:value> instance representing a function that takes
two integers as arguments. To execute this function, call it like so:

(define result (value-call some-val 10 20))

Any values returned from a function call are <gdb:value> objects.

Note: Unlike Python scripting in gdb, inferior values that are simple scalars cannot be
used directly in Scheme expressions that are valid for the value’s data type. For example,

482 Debugging with gdb

(+ (parse-and-eval "int_variable") 2) does not work. And inferior values that are
structures or instances of some class cannot be accessed using any special syntax, instead
value-field must be used.

The following value-related procedures are provided by the (gdb) module.

[Scheme Procedure]value? object
Return #t if object is a <gdb:value> object. Otherwise return #f.

[Scheme Procedure]make-value value [#:type type]
Many Scheme values can be converted directly to a <gdb:value> with this procedure.
If type is specified, the result is a value of this type, and if value can’t be represented
with this type an exception is thrown. Otherwise the type of the result is determined
from value as described below.

See Section 23.4.3.21 [Architectures In Guile], page 519, for a list of the builtin types
for an architecture.

Here’s how Scheme values are converted when type argument to make-value is not
specified:

Scheme boolean
A Scheme boolean is converted the boolean type for the current language.

Scheme integer
A Scheme integer is converted to the first of a C int, unsigned int, long,
unsigned long, long long or unsigned long long type for the current
architecture that can represent the value.

If the Scheme integer cannot be represented as a target integer an out-of-

range exception is thrown.

Scheme real
A Scheme real is converted to the C double type for the current archi-
tecture.

Scheme string
A Scheme string is converted to a string in the current target language us-
ing the current target encoding. Characters that cannot be represented in
the current target encoding are replaced with the corresponding escape se-
quence. This is Guile’s SCM_FAILED_CONVERSION_ESCAPE_SEQUENCE con-
version strategy (see Section “Strings” in GNU Guile Reference Manual).

Passing type is not supported in this case, if it is provided a wrong-type-
arg exception is thrown.

<gdb:lazy-string>

If value is a <gdb:lazy-string> object (see Section 23.4.3.20 [Lazy
Strings In Guile], page 518), then the lazy-string->value procedure
is called, and its result is used.

Passing type is not supported in this case, if it is provided a wrong-type-
arg exception is thrown.

Chapter 23: Extending gdb 483

Scheme bytevector
If value is a Scheme bytevector and type is provided, value must be the
same size, in bytes, of values of type type, and the result is essentially
created by using memcpy.

If value is a Scheme bytevector and type is not provided, the result is an
array of type uint8 of the same length.

[Scheme Procedure]value-optimized-out? value
Return #t if the compiler optimized out value, thus it is not available for fetching
from the inferior. Otherwise return #f.

[Scheme Procedure]value-address value
If value is addressable, returns a <gdb:value> object representing the address. Oth-
erwise, #f is returned.

[Scheme Procedure]value-type value
Return the type of value as a <gdb:type> object (see Section 23.4.3.7 [Types In
Guile], page 488).

[Scheme Procedure]value-dynamic-type value
Return the dynamic type of value. This uses C++ run-time type information (RTTI)
to determine the dynamic type of the value. If the value is of class type, it will return
the class in which the value is embedded, if any. If the value is of pointer or reference
to a class type, it will compute the dynamic type of the referenced object, and return
a pointer or reference to that type, respectively. In all other cases, it will return the
value’s static type.

Note that this feature will only work when debugging a C++ program that includes
RTTI for the object in question. Otherwise, it will just return the static type of the
value as in ptype foo. See Chapter 16 [Symbols], page 253.

[Scheme Procedure]value-cast value type
Return a new instance of <gdb:value> that is the result of casting value to the
type described by type, which must be a <gdb:type> object. If the cast cannot be
performed for some reason, this method throws an exception.

[Scheme Procedure]value-dynamic-cast value type
Like value-cast, but works as if the C++ dynamic_cast operator were used. Consult
a C++ reference for details.

[Scheme Procedure]value-reinterpret-cast value type
Like value-cast, but works as if the C++ reinterpret_cast operator were used.
Consult a C++ reference for details.

[Scheme Procedure]value-dereference value
For pointer data types, this method returns a new <gdb:value> object whose contents
is the object pointed to by value. For example, if foo is a C pointer to an int, declared
in your C program as

int *foo;

484 Debugging with gdb

then you can use the corresponding <gdb:value> to access what foo points to like
this:

(define bar (value-dereference foo))

The result bar will be a <gdb:value> object holding the value pointed to by foo.

A similar function value-referenced-value exists which also returns <gdb:value>
objects corresponding to the values pointed to by pointer values (and additionally,
values referenced by reference values). However, the behavior of value-dereference
differs from value-referenced-value by the fact that the behavior of
value-dereference is identical to applying the C unary operator * on a given
value. For example, consider a reference to a pointer ptrref, declared in your C++
program as

typedef int *intptr;

...

int val = 10;

intptr ptr = &val;

intptr &ptrref = ptr;

Though ptrref is a reference value, one can apply the method value-dereference

to the <gdb:value> object corresponding to it and obtain a <gdb:value> which
is identical to that corresponding to val. However, if you apply the method
value-referenced-value, the result would be a <gdb:value> object identical to
that corresponding to ptr.

(define scm-ptrref (parse-and-eval "ptrref"))

(define scm-val (value-dereference scm-ptrref))

(define scm-ptr (value-referenced-value scm-ptrref))

The <gdb:value> object scm-val is identical to that corresponding to val, and
scm-ptr is identical to that corresponding to ptr. In general, value-dereference
can be applied whenever the C unary operator * can be applied to the
corresponding C value. For those cases where applying both value-dereference

and value-referenced-value is allowed, the results obtained need not be identical
(as we have seen in the above example). The results are however identical when
applied on <gdb:value> objects corresponding to pointers (<gdb:value> objects
with type code TYPE_CODE_PTR) in a C/C++ program.

[Scheme Procedure]value-referenced-value value
For pointer or reference data types, this method returns a new <gdb:value> object
corresponding to the value referenced by the pointer/reference value. For pointer data
types, value-dereference and value-referenced-value produce identical results.
The difference between these methods is that value-dereference cannot get the
values referenced by reference values. For example, consider a reference to an int,
declared in your C++ program as

int val = 10;

int &ref = val;

then applying value-dereference to the <gdb:value> object corresponding to ref

will result in an error, while applying value-referenced-value will result in a
<gdb:value> object identical to that corresponding to val.

(define scm-ref (parse-and-eval "ref"))

(define err-ref (value-dereference scm-ref)) ;; error

(define scm-val (value-referenced-value scm-ref)) ;; ok

Chapter 23: Extending gdb 485

The <gdb:value> object scm-val is identical to that corresponding to val.

[Scheme Procedure]value-reference-value value
Return a new <gdb:value> object which is a reference to the value encapsulated by
<gdb:value> object value.

[Scheme Procedure]value-rvalue-reference-value value
Return a new <gdb:value> object which is an rvalue reference to the value encapsu-
lated by <gdb:value> object value.

[Scheme Procedure]value-const-value value
Return a new <gdb:value> object which is a ‘const’ version of <gdb:value> object
value.

[Scheme Procedure]value-field value field-name
Return field field-name from <gdb:value> object value.

[Scheme Procedure]value-subscript value index
Return the value of array value at index index. The value argument must be a
subscriptable <gdb:value> object.

[Scheme Procedure]value-call value arg-list
Perform an inferior function call, taking value as a pointer to the function to call.
Each element of list arg-list must be a <gdb:value> object or an object that can be
converted to a value. The result is the value returned by the function.

[Scheme Procedure]value->bool value
Return the Scheme boolean representing <gdb:value> value. The value must be
“integer like”. Pointers are ok.

[Scheme Procedure]value->integer
Return the Scheme integer representing <gdb:value> value. The value must be “in-
teger like”. Pointers are ok.

[Scheme Procedure]value->real
Return the Scheme real number representing <gdb:value> value. The value must be
a number.

[Scheme Procedure]value->bytevector
Return a Scheme bytevector with the raw contents of <gdb:value> value. No trans-
formation, endian or otherwise, is performed.

[Scheme Procedure]value->string value [#:encoding encoding]
[#:errors errors] [#:length length]

If value> represents a string, then this method converts the contents to a Guile string.
Otherwise, this method will throw an exception.

Values are interpreted as strings according to the rules of the current language. If
the optional length argument is given, the string will be converted to that length,
and will include any embedded zeroes that the string may contain. Otherwise, for
languages where the string is zero-terminated, the entire string will be converted.

486 Debugging with gdb

For example, in C-like languages, a value is a string if it is a pointer to or an array of
characters or ints of type wchar_t, char16_t, or char32_t.

If the optional encoding argument is given, it must be a string naming the encoding of
the string in the <gdb:value>, such as "ascii", "iso-8859-6" or "utf-8". It accepts
the same encodings as the corresponding argument to Guile’s scm_from_stringn

function, and the Guile codec machinery will be used to convert the string. If encoding
is not given, or if encoding is the empty string, then either the target-charset (see
Section 10.21 [Character Sets], page 179) will be used, or a language-specific encoding
will be used, if the current language is able to supply one.

The optional errors argument is one of #f, error or substitute. error and
substitute must be symbols. If errors is not specified, or if its value is #f, then
the default conversion strategy is used, which is set with the Scheme function
set-port-conversion-strategy!. If the value is ’error then an exception is
thrown if there is any conversion error. If the value is ’substitute then any
conversion error is replaced with question marks. See Section “Strings” in GNU
Guile Reference Manual.

If the optional length argument is given, the string will be fetched and converted
to the given length. The length must be a Scheme integer and not a <gdb:value>

integer.

[Scheme Procedure]value->lazy-string value [#:encoding encoding]
[#:length length]

If this <gdb:value> represents a string, then this method converts value to a
<gdb:lazy-string (see Section 23.4.3.20 [Lazy Strings In Guile], page 518).
Otherwise, this method will throw an exception.

If the optional encoding argument is given, it must be a string naming the encoding
of the <gdb:lazy-string. Some examples are: "ascii", "iso-8859-6" or "utf-8".
If the encoding argument is an encoding that gdb does not recognize, gdb will raise
an error.

When a lazy string is printed, the gdb encoding machinery is used to convert the
string during printing. If the optional encoding argument is not provided, or is an
empty string, gdb will automatically select the encoding most suitable for the string
type. For further information on encoding in gdb please see Section 10.21 [Character
Sets], page 179.

If the optional length argument is given, the string will be fetched and encoded to the
length of characters specified. If the length argument is not provided, the string will
be fetched and encoded until a null of appropriate width is found. The length must
be a Scheme integer and not a <gdb:value> integer.

[Scheme Procedure]value-lazy? value
Return #t if value has not yet been fetched from the inferior. Otherwise return #f.
gdb does not fetch values until necessary, for efficiency. For example:

(define myval (parse-and-eval "somevar"))

The value of somevar is not fetched at this time. It will be fetched when the value is
needed, or when the fetch-lazy procedure is invoked.

Chapter 23: Extending gdb 487

[Scheme Procedure]make-lazy-value type address
Return a <gdb:value> that will be lazily fetched from the target. The object of
type <gdb:type> whose value to fetch is specified by its type and its target memory
address, which is a Scheme integer.

[Scheme Procedure]value-fetch-lazy! value
If value is a lazy value ((value-lazy? value) is #t), then the value is fetched from
the inferior. Any errors that occur in the process will produce a Guile exception.

If value is not a lazy value, this method has no effect.

The result of this function is unspecified.

[Scheme Procedure]value-print value
Return the string representation (print form) of <gdb:value> value.

23.4.3.6 Arithmetic In Guile

The (gdb) module provides several functions for performing arithmetic on <gdb:value>

objects. The arithmetic is performed as if it were done by the target, and therefore has
target semantics which are not necessarily those of Scheme. For example operations work
with a fixed precision, not the arbitrary precision of Scheme.

Wherever a function takes an integer or pointer as an operand, gdb will convert appro-
priate Scheme values to perform the operation.

[Scheme Procedure]value-add a b

[Scheme Procedure]value-sub a b

[Scheme Procedure]value-mul a b

[Scheme Procedure]value-div a b

[Scheme Procedure]value-rem a b

[Scheme Procedure]value-mod a b

[Scheme Procedure]value-pow a b

[Scheme Procedure]value-not a

[Scheme Procedure]value-neg a

[Scheme Procedure]value-pos a

[Scheme Procedure]value-abs a

[Scheme Procedure]value-lsh a b

[Scheme Procedure]value-rsh a b

[Scheme Procedure]value-min a b

[Scheme Procedure]value-max a b

[Scheme Procedure]value-lognot a

[Scheme Procedure]value-logand a b

[Scheme Procedure]value-logior a b

488 Debugging with gdb

[Scheme Procedure]value-logxor a b

[Scheme Procedure]value=? a b

[Scheme Procedure]value<? a b

[Scheme Procedure]value<=? a b

[Scheme Procedure]value>? a b

[Scheme Procedure]value>=? a b

Scheme does not provide a not-equal function, and thus Guile support in gdb does not
either.

23.4.3.7 Types In Guile

gdb represents types from the inferior in objects of type <gdb:type>.

The following type-related procedures are provided by the (gdb) module.

[Scheme Procedure]type? object
Return #t if object is an object of type <gdb:type>. Otherwise return #f.

[Scheme Procedure]lookup-type name [#:block block]
This function looks up a type by its name, which must be a string.

If block is given, it is an object of type <gdb:block>, and name is looked up in that
scope. Otherwise, it is searched for globally.

Ordinarily, this function will return an instance of <gdb:type>. If the named type
cannot be found, it will throw an exception.

[Scheme Procedure]type-code type
Return the type code of type. The type code will be one of the TYPE_CODE_ constants
defined below.

[Scheme Procedure]type-tag type
Return the tag name of type. The tag name is the name after struct, union, or enum
in C and C++; not all languages have this concept. If this type has no tag name, then
#f is returned.

[Scheme Procedure]type-name type
Return the name of type. If this type has no name, then #f is returned.

[Scheme Procedure]type-print-name type
Return the print name of type. This returns something even for anonymous types.
For example, for an anonymous C struct "struct {...}" is returned.

[Scheme Procedure]type-sizeof type
Return the size of this type, in target char units. Usually, a target’s char type will
be an 8-bit byte. However, on some unusual platforms, this type may have a different
size.

[Scheme Procedure]type-strip-typedefs type
Return a new <gdb:type> that represents the real type of type, after removing all
layers of typedefs.

Chapter 23: Extending gdb 489

[Scheme Procedure]type-array type n1 [n2]
Return a new <gdb:type> object which represents an array of this type. If one
argument is given, it is the inclusive upper bound of the array; in this case the lower
bound is zero. If two arguments are given, the first argument is the lower bound
of the array, and the second argument is the upper bound of the array. An array’s
length must not be negative, but the bounds can be.

[Scheme Procedure]type-vector type n1 [n2]
Return a new <gdb:type> object which represents a vector of this type. If one
argument is given, it is the inclusive upper bound of the vector; in this case the lower
bound is zero. If two arguments are given, the first argument is the lower bound of
the vector, and the second argument is the upper bound of the vector. A vector’s
length must not be negative, but the bounds can be.

The difference between an array and a vector is that arrays behave like in C: when
used in expressions they decay to a pointer to the first element whereas vectors are
treated as first class values.

[Scheme Procedure]type-pointer type
Return a new <gdb:type> object which represents a pointer to type.

[Scheme Procedure]type-range type
Return a list of two elements: the low bound and high bound of type. If type does
not have a range, an exception is thrown.

[Scheme Procedure]type-reference type
Return a new <gdb:type> object which represents a reference to type.

[Scheme Procedure]type-target type
Return a new <gdb:type> object which represents the target type of type.

For a pointer type, the target type is the type of the pointed-to object. For an array
type (meaning C-like arrays), the target type is the type of the elements of the array.
For a function or method type, the target type is the type of the return value. For a
complex type, the target type is the type of the elements. For a typedef, the target
type is the aliased type.

If the type does not have a target, this method will throw an exception.

[Scheme Procedure]type-const type
Return a new <gdb:type> object which represents a const-qualified variant of type.

[Scheme Procedure]type-volatile type
Return a new <gdb:type> object which represents a volatile-qualified variant of
type.

[Scheme Procedure]type-unqualified type
Return a new <gdb:type> object which represents an unqualified variant of type.
That is, the result is neither const nor volatile.

[Scheme Procedure]type-num-fields
Return the number of fields of <gdb:type> type.

490 Debugging with gdb

[Scheme Procedure]type-fields type
Return the fields of type as a list. For structure and union types, fields has the
usual meaning. Range types have two fields, the minimum and maximum values.
Enum types have one field per enum constant. Function and method types have one
field per parameter. The base types of C++ classes are also represented as fields. If
the type has no fields, or does not fit into one of these categories, an empty list will
be returned. See [Fields of a type in Guile], page 492.

[Scheme Procedure]make-field-iterator type
Return the fields of type as a <gdb:iterator> object. See Section 23.4.3.25 [Iterators
In Guile], page 523.

[Scheme Procedure]type-field type field-name
Return field named field-name in type. The result is an object of type <gdb:field>.
See [Fields of a type in Guile], page 492. If the type does not have fields, or field-name
is not a field of type, an exception is thrown.

For example, if some-type is a <gdb:type> instance holding a structure type, you
can access its foo field with:

(define bar (type-field some-type "foo"))

bar will be a <gdb:field> object.

[Scheme Procedure]type-has-field? type name
Return #t if <gdb:type> type has field named name. Otherwise return #f.

Each type has a code, which indicates what category this type falls into. The available
type categories are represented by constants defined in the (gdb) module:

TYPE_CODE_PTR

The type is a pointer.

TYPE_CODE_ARRAY

The type is an array.

TYPE_CODE_STRUCT

The type is a structure.

TYPE_CODE_UNION

The type is a union.

TYPE_CODE_ENUM

The type is an enum.

TYPE_CODE_FLAGS

A bit flags type, used for things such as status registers.

TYPE_CODE_FUNC

The type is a function.

TYPE_CODE_INT

The type is an integer type.

TYPE_CODE_FLT

A floating point type.

Chapter 23: Extending gdb 491

TYPE_CODE_VOID

The special type void.

TYPE_CODE_SET

A Pascal set type.

TYPE_CODE_RANGE

A range type, that is, an integer type with bounds.

TYPE_CODE_STRING

A string type. Note that this is only used for certain languages with language-
defined string types; C strings are not represented this way.

TYPE_CODE_BITSTRING

A string of bits. It is deprecated.

TYPE_CODE_ERROR

An unknown or erroneous type.

TYPE_CODE_METHOD

A method type, as found in C++.

TYPE_CODE_METHODPTR

A pointer-to-member-function.

TYPE_CODE_MEMBERPTR

A pointer-to-member.

TYPE_CODE_REF

A reference type.

TYPE_CODE_RVALUE_REF

A C++11 rvalue reference type.

TYPE_CODE_CHAR

A character type.

TYPE_CODE_BOOL

A boolean type.

TYPE_CODE_COMPLEX

A complex float type.

TYPE_CODE_TYPEDEF

A typedef to some other type.

TYPE_CODE_NAMESPACE

A C++ namespace.

TYPE_CODE_DECFLOAT

A decimal floating point type.

TYPE_CODE_INTERNAL_FUNCTION

A function internal to gdb. This is the type used to represent convenience
functions (see Section 10.13 [Convenience Funs], page 167).

492 Debugging with gdb

Further support for types is provided in the (gdb types) Guile module (see
Section 23.4.5.2 [Guile Types Module], page 526).

Each field is represented as an object of type <gdb:field>.

The following field-related procedures are provided by the (gdb) module:

[Scheme Procedure]field? object
Return #t if object is an object of type <gdb:field>. Otherwise return #f.

[Scheme Procedure]field-name field
Return the name of the field, or #f for anonymous fields.

[Scheme Procedure]field-type field
Return the type of the field. This is usually an instance of <gdb:type>, but it can
be #f in some situations.

[Scheme Procedure]field-enumval field
Return the enum value represented by <gdb:field> field.

[Scheme Procedure]field-bitpos field
Return the bit position of <gdb:field> field. This attribute is not available for
static fields (as in C++).

[Scheme Procedure]field-bitsize field
If the field is packed, or is a bitfield, return the size of <gdb:field> field in bits.
Otherwise, zero is returned; in which case the field’s size is given by its type.

[Scheme Procedure]field-artificial? field
Return #t if the field is artificial, usually meaning that it was provided by the compiler
and not the user. Otherwise return #f.

[Scheme Procedure]field-base-class? field
Return #t if the field represents a base class of a C++ structure. Otherwise return #f.

23.4.3.8 Guile Pretty Printing API

An example output is provided (see Section 10.10 [Pretty Printing], page 161).

A pretty-printer is represented by an object of type <gdb:pretty-printer>. Pretty-printer
objects are created with make-pretty-printer.

The following pretty-printer-related procedures are provided by the (gdb) module:

[Scheme Procedure]make-pretty-printer name lookup-function
Return a <gdb:pretty-printer> object named name.

lookup-function is a function of one parameter: the value to be printed. If the value
is handled by this pretty-printer, then lookup-function returns an object of type
<gdb:pretty-printer-worker> to perform the actual pretty-printing. Otherwise lookup-
function returns #f.

[Scheme Procedure]pretty-printer? object
Return #t if object is a <gdb:pretty-printer> object. Otherwise return #f.

Chapter 23: Extending gdb 493

[Scheme Procedure]pretty-printer-enabled? pretty-printer
Return #t if pretty-printer is enabled. Otherwise return #f.

[Scheme Procedure]set-pretty-printer-enabled! pretty-printer flag
Set the enabled flag of pretty-printer to flag. The value returned is unspecified.

[Scheme Procedure]pretty-printers
Return the list of global pretty-printers.

[Scheme Procedure]set-pretty-printers! pretty-printers
Set the list of global pretty-printers to pretty-printers. The value returned is unspec-
ified.

[Scheme Procedure]make-pretty-printer-worker display-hint to-string
children

Return an object of type <gdb:pretty-printer-worker>.

This function takes three parameters:

‘display-hint’
display-hint provides a hint to gdb or gdb front end via MI to change the
formatting of the value being printed. The value must be a string or #f
(meaning there is no hint). Several values for display-hint are predefined
by gdb:

‘array’ Indicate that the object being printed is “array-like”. The
CLI uses this to respect parameters such as set print

elements and set print array.

‘map’ Indicate that the object being printed is “map-like”, and that
the children of this value can be assumed to alternate between
keys and values.

‘string’ Indicate that the object being printed is “string-like”. If the
printer’s to-string function returns a Guile string of some
kind, then gdb will call its internal language-specific string-
printing function to format the string. For the CLI this means
adding quotation marks, possibly escaping some characters,
respecting set print elements, and the like.

‘to-string’
to-string is either a function of one parameter, the <gdb:pretty-printer-
worker> object, or #f.

When printing from the CLI, if the to-string method exists, then gdb
will prepend its result to the values returned by children. Exactly how
this formatting is done is dependent on the display hint, and may change
as more hints are added. Also, depending on the print settings (see
Section 10.9 [Print Settings], page 151), the CLI may print just the result
of to-string in a stack trace, omitting the result of children.

If this method returns a string, it is printed verbatim.

Otherwise, if this method returns an instance of <gdb:value>, then gdb
prints this value. This may result in a call to another pretty-printer.

494 Debugging with gdb

If instead the method returns a Guile value which is convertible to a
<gdb:value>, then gdb performs the conversion and prints the result-
ing value. Again, this may result in a call to another pretty-printer.
Guile scalars (integers, floats, and booleans) and strings are convertible
to <gdb:value>; other types are not.

Finally, if this method returns #f then no further operations are peformed
in this method and nothing is printed.

If the result is not one of these types, an exception is raised.

to-string may also be #f in which case it is left to children to print the
value.

‘children’
children is either a function of one parameter, the <gdb:pretty-printer-
worker> object, or #f.

gdb will call this function on a pretty-printer to compute the children of
the pretty-printer’s value.

This function must return a <gdb:iterator> object. Each item returned
by the iterator must be a tuple holding two elements. The first element
is the “name” of the child; the second element is the child’s value. The
value can be any Guile object which is convertible to a gdb value.

If children is #f, gdb will act as though the value has no children.

Children may be hidden from display based on the value of ‘set print

max-depth’ (see Section 10.9 [Print Settings], page 151).

gdb provides a function which can be used to look up the default pretty-printer for a
<gdb:value>:

[Scheme Procedure]default-visualizer value
This function takes a <gdb:value> object as an argument. If a pretty-printer for this
value exists, then it is returned. If no such printer exists, then this returns #f.

23.4.3.9 Selecting Guile Pretty-Printers

There are three sets of pretty-printers that gdb searches:

• Per-objfile list of pretty-printers (see Section 23.4.3.14 [Objfiles In Guile], page 504).

• Per-progspace list of pretty-printers (see Section 23.4.3.13 [Progspaces In Guile],
page 503).

• The global list of pretty-printers (see Section 23.4.3.8 [Guile Pretty Printing API],
page 492). These printers are available when debugging any inferior.

Pretty-printer lookup is done by passing the value to be printed to the lookup function of
each enabled object in turn. Lookup stops when a lookup function returns a non-#f value or
when the list is exhausted. Lookup functions must return either a <gdb:pretty-printer-

worker> object or #f. Otherwise an exception is thrown.

gdb first checks the result of objfile-pretty-printers of each <gdb:objfile> in the
current program space and iteratively calls each enabled lookup function in the list for that
<gdb:objfile> until a non-#f object is returned. If no pretty-printer is found in the objfile

Chapter 23: Extending gdb 495

lists, gdb then searches the result of progspace-pretty-printers of the current program
space, calling each enabled function until a non-#f object is returned. After these lists have
been exhausted, it tries the global pretty-printers list, obtained with pretty-printers,
again calling each enabled function until a non-#f object is returned.

The order in which the objfiles are searched is not specified. For a given list, functions
are always invoked from the head of the list, and iterated over sequentially until the end of
the list, or a <gdb:pretty-printer-worker> object is returned.

For various reasons a pretty-printer may not work. For example, the underlying data
structure may have changed and the pretty-printer is out of date.

The consequences of a broken pretty-printer are severe enough that gdb provides support
for enabling and disabling individual printers. For example, if print frame-arguments is
on, a backtrace can become highly illegible if any argument is printed with a broken printer.

Pretty-printers are enabled and disabled from Scheme by calling set-pretty-printer-

enabled!. See Section 23.4.3.8 [Guile Pretty Printing API], page 492.

23.4.3.10 Writing a Guile Pretty-Printer

A pretty-printer consists of two basic parts: a lookup function to determine if the type is
supported, and the printer itself.

Here is an example showing how a std::string printer might be written. See
Section 23.4.3.8 [Guile Pretty Printing API], page 492, for details.

(define (make-my-string-printer value)

"Print a my::string string"

(make-pretty-printer-worker

"string"

(lambda (printer)

(value-field value "_data"))

#f))

And here is an example showing how a lookup function for the printer example above
might be written.

(define (str-lookup-function pretty-printer value)

(let ((tag (type-tag (value-type value))))

(and tag

(string-prefix? "std::string<" tag)

(make-my-string-printer value))))

Then to register this printer in the global printer list:

(append-pretty-printer!

(make-pretty-printer "my-string" str-lookup-function))

The example lookup function extracts the value’s type, and attempts to match it to a
type that it can pretty-print. If it is a type the printer can pretty-print, it will return a
<gdb:pretty-printer-worker> object. If not, it returns #f.

We recommend that you put your core pretty-printers into a Guile package. If your
pretty-printers are for use with a library, we further recommend embedding a version number
into the package name. This practice will enable gdb to load multiple versions of your
pretty-printers at the same time, because they will have different names.

You should write auto-loaded code (see Section 23.4.4 [Guile Auto-loading], page 525)
such that it can be evaluated multiple times without changing its meaning. An ideal auto-

496 Debugging with gdb

load file will consist solely of imports of your printer modules, followed by a call to a register
pretty-printers with the current objfile.

Taken as a whole, this approach will scale nicely to multiple inferiors, each potentially
using a different library version. Embedding a version number in the Guile package name
will ensure that gdb is able to load both sets of printers simultaneously. Then, because the
search for pretty-printers is done by objfile, and because your auto-loaded code took care
to register your library’s printers with a specific objfile, gdb will find the correct printers
for the specific version of the library used by each inferior.

To continue the my::string example, this code might appear in (my-project my-

library v1):
(use-modules (gdb))

(define (register-printers objfile)

(append-objfile-pretty-printer!

(make-pretty-printer "my-string" str-lookup-function)))

And then the corresponding contents of the auto-load file would be:
(use-modules (gdb) (my-project my-library v1))

(register-printers (current-objfile))

The previous example illustrates a basic pretty-printer. There are a few things that can
be improved on. The printer only handles one type, whereas a library typically has several
types. One could install a lookup function for each desired type in the library, but one could
also have a single lookup function recognize several types. The latter is the conventional
way this is handled. If a pretty-printer can handle multiple data types, then its subprinters
are the printers for the individual data types.

The (gdb printing) module provides a formal way of solving this problem (see
Section 23.4.5.1 [Guile Printing Module], page 525). Here is another example that handles
multiple types.

These are the types we are going to pretty-print:
struct foo { int a, b; };

struct bar { struct foo x, y; };

Here are the printers:
(define (make-foo-printer value)

"Print a foo object"

(make-pretty-printer-worker

"foo"

(lambda (printer)

(format #f "a=<~a> b=<~a>"

(value-field value "a") (value-field value "a")))

#f))

(define (make-bar-printer value)

"Print a bar object"

(make-pretty-printer-worker

"foo"

(lambda (printer)

(format #f "x=<~a> y=<~a>"

(value-field value "x") (value-field value "y")))

#f))

This example doesn’t need a lookup function, that is handled by the (gdb printing)

module. Instead a function is provided to build up the object that handles the lookup.
(use-modules (gdb printing))

Chapter 23: Extending gdb 497

(define (build-pretty-printer)

(let ((pp (make-pretty-printer-collection "my-library")))

(pp-collection-add-tag-printer "foo" make-foo-printer)

(pp-collection-add-tag-printer "bar" make-bar-printer)

pp))

And here is the autoload support:
(use-modules (gdb) (my-library))

(append-objfile-pretty-printer! (current-objfile) (build-pretty-printer))

Finally, when this printer is loaded into gdb, here is the corresponding output of ‘info
pretty-printer’:

(gdb) info pretty-printer

my_library.so:

my-library

foo

bar

23.4.3.11 Commands In Guile

You can implement new gdb CLI commands in Guile. A CLI command object is created
with the make-command Guile function, and added to gdb with the register-command!

Guile function. This two-step approach is taken to separate out the side-effect of adding
the command to gdb from make-command.

There is no support for multi-line commands, that is commands that consist of multiple
lines and are terminated with end.

[Scheme Procedure]make-command name [#:invoke invoke]
[#:command-class command-class] [#:completer-class completer]
[#:prefix? prefix] [#:doc doc-string]

The argument name is the name of the command. If name consists of multiple words,
then the initial words are looked for as prefix commands. In this case, if one of the
prefix commands does not exist, an exception is raised.

The result is the <gdb:command> object representing the command. The command
is not usable until it has been registered with gdb with register-command!.

The rest of the arguments are optional.

The argument invoke is a procedure of three arguments: self, args and from-tty. The
argument self is the <gdb:command> object representing the command. The argument
args is a string representing the arguments passed to the command, after leading and
trailing whitespace has been stripped. The argument from-tty is a boolean flag and
specifies whether the command should consider itself to have been originated from
the user invoking it interactively. If this function throws an exception, it is turned
into a gdb error call. Otherwise, the return value is ignored.

The argument command-class is one of the ‘COMMAND_’ constants defined below. This
argument tells gdb how to categorize the new command in the help system. The
default is COMMAND_NONE.

The argument completer is either #f, one of the ‘COMPLETE_’ constants defined below,
or a procedure, also defined below. This argument tells gdb how to perform comple-
tion for this command. If not provided or if the value is #f, then no completion is
performed on the command.

498 Debugging with gdb

The argument prefix is a boolean flag indicating whether the new command is a prefix
command; sub-commands of this command may be registered.

The argument doc-string is help text for the new command. If no documentation
string is provided, the default value “This command is not documented.” is used.

[Scheme Procedure]register-command! command
Add command, a <gdb:command> object, to gdb’s list of commands. It is an error to
register a command more than once. The result is unspecified.

[Scheme Procedure]command? object
Return #t if object is a <gdb:command> object. Otherwise return #f.

[Scheme Procedure]dont-repeat
By default, a gdb command is repeated when the user enters a blank line at the com-
mand prompt. A command can suppress this behavior by invoking the dont-repeat
function. This is similar to the user command dont-repeat, see Section 23.1.1 [De-
fine], page 371.

[Scheme Procedure]string->argv string
Convert a string to a list of strings split up according to gdb’s argv parsing rules. It
is recommended to use this for consistency. Arguments are separated by spaces and
may be quoted. Example:

scheme@(guile-user)> (string->argv "1 2\\ \\\"3 ’4 \"5’ \"6 ’7\"")

$1 = ("1" "2 \"3" "4 \"5" "6 ’7")

[Scheme Procedure]throw-user-error message . args
Throw a gdb:user-error exception. The argument message is the error message as
a format string, like the fmt argument to the format Scheme function. See Section
“Formatted Output” in GNU Guile Reference Manual. The argument args is a list
of the optional arguments of message.

This is used when the command detects a user error of some kind, say a bad command
argument.

(gdb) guile (use-modules (gdb))

(gdb) guile

(register-command! (make-command "test-user-error"

#:command-class COMMAND_OBSCURE

#:invoke (lambda (self arg from-tty)

(throw-user-error "Bad argument ~a" arg))))

end

(gdb) test-user-error ugh

ERROR: Bad argument ugh

[completer]self text word
If the completer option to make-command is a procedure, it takes three arguments:
self which is the <gdb:command> object, and text and word which are both strings.
The argument text holds the complete command line up to the cursor’s location. The
argument word holds the last word of the command line; this is computed using a
word-breaking heuristic.

All forms of completion are handled by this function, that is, the TAB and M-? key
bindings (see Section 3.3 [Completion], page 24), and the complete command (see
Section 3.5 [Help], page 28).

Chapter 23: Extending gdb 499

This procedure can return several kinds of values:

• If the return value is a list, the contents of the list are used as the completions.
It is up to completer to ensure that the contents actually do complete the word.
An empty list is allowed, it means that there were no completions available. Only
string elements of the list are used; other elements in the list are ignored.

• If the return value is a <gdb:iterator> object, it is iterated over to obtain the
completions. It is up to completer-procedure to ensure that the results actually
do complete the word. Only string elements of the result are used; other elements
in the sequence are ignored.

• All other results are treated as though there were no available completions.

When a new command is registered, it will have been declared as a member of some
general class of commands. This is used to classify top-level commands in the on-line help
system; note that prefix commands are not listed under their own category but rather
that of their top-level command. The available classifications are represented by constants
defined in the gdb module:

COMMAND_NONE

The command does not belong to any particular class. A command in this
category will not be displayed in any of the help categories. This is the default.

COMMAND_RUNNING

The command is related to running the inferior. For example, start, step,
and continue are in this category. Type help running at the gdb prompt to
see a list of commands in this category.

COMMAND_DATA

The command is related to data or variables. For example, call, find, and
print are in this category. Type help data at the gdb prompt to see a list of
commands in this category.

COMMAND_STACK

The command has to do with manipulation of the stack. For example,
backtrace, frame, and return are in this category. Type help stack at the
gdb prompt to see a list of commands in this category.

COMMAND_FILES

This class is used for file-related commands. For example, file, list and
section are in this category. Type help files at the gdb prompt to see a list
of commands in this category.

COMMAND_SUPPORT

This should be used for “support facilities”, generally meaning things that are
useful to the user when interacting with gdb, but not related to the state of
the inferior. For example, help, make, and shell are in this category. Type
help support at the gdb prompt to see a list of commands in this category.

COMMAND_STATUS

The command is an ‘info’-related command, that is, related to the state of
gdb itself. For example, info, macro, and show are in this category. Type
help status at the gdb prompt to see a list of commands in this category.

500 Debugging with gdb

COMMAND_BREAKPOINTS

The command has to do with breakpoints. For example, break, clear, and
delete are in this category. Type help breakpoints at the gdb prompt to see
a list of commands in this category.

COMMAND_TRACEPOINTS

The command has to do with tracepoints. For example, trace, actions, and
tfind are in this category. Type help tracepoints at the gdb prompt to see
a list of commands in this category.

COMMAND_USER

The command is a general purpose command for the user, and typically does
not fit in one of the other categories. Type help user-defined at the gdb
prompt to see a list of commands in this category, as well as the list of gdb
macros (see Section 23.1 [Sequences], page 371).

COMMAND_OBSCURE

The command is only used in unusual circumstances, or is not of general interest
to users. For example, checkpoint, fork, and stop are in this category. Type
help obscure at the gdb prompt to see a list of commands in this category.

COMMAND_MAINTENANCE

The command is only useful to gdb maintainers. The maintenance and
flushregs commands are in this category. Type help internals at the gdb
prompt to see a list of commands in this category.

A new command can use a predefined completion function, either by specifying it via
an argument at initialization, or by returning it from the completer procedure. These
predefined completion constants are all defined in the gdb module:

COMPLETE_NONE

This constant means that no completion should be done.

COMPLETE_FILENAME

This constant means that filename completion should be performed.

COMPLETE_LOCATION

This constant means that location completion should be done. See Section 9.2
[Specify Location], page 122.

COMPLETE_COMMAND

This constant means that completion should examine gdb command names.

COMPLETE_SYMBOL

This constant means that completion should be done using symbol names as
the source.

COMPLETE_EXPRESSION

This constant means that completion should be done on expressions. Often
this means completing on symbol names, but some language parsers also have
support for completing on field names.

The following code snippet shows how a trivial CLI command can be implemented in
Guile:

(gdb) guile

Chapter 23: Extending gdb 501

(register-command! (make-command "hello-world"

#:command-class COMMAND_USER

#:doc "Greet the whole world."

#:invoke (lambda (self args from-tty) (display "Hello, World!\n"))))

end

(gdb) hello-world

Hello, World!

23.4.3.12 Parameters In Guile

You can implement new gdb parameters using Guile3.

There are many parameters that already exist and can be set in gdb. Two examples are:
set follow-fork and set charset. Setting these parameters influences certain behavior
in gdb. Similarly, you can define parameters that can be used to influence behavior in
custom Guile scripts and commands.

A new parameter is defined with the make-parameter Guile function, and added to gdb
with the register-parameter! Guile function. This two-step approach is taken to separate
out the side-effect of adding the parameter to gdb from make-parameter.

Parameters are exposed to the user via the set and show commands. See Section 3.5
[Help], page 28.

[Scheme Procedure]make-parameter name [#:command-class command-class]
[#:parameter-type parameter-type] [#:enum-list enum-list]
[#:set-func set-func] [#:show-func show-func] [#:doc doc]
[#:set-doc set-doc] [#:show-doc show-doc] [#:initial-value initial-value]

The argument name is the name of the new parameter. If name consists of multiple
words, then the initial words are looked for as prefix parameters. An example of
this can be illustrated with the set print set of parameters. If name is print foo,
then print will be searched as the prefix parameter. In this case the parameter
can subsequently be accessed in gdb as set print foo. If name consists of multiple
words, and no prefix parameter group can be found, an exception is raised.

The result is the <gdb:parameter> object representing the parameter. The parameter
is not usable until it has been registered with gdb with register-parameter!.

The rest of the arguments are optional.

The argument command-class should be one of the ‘COMMAND_’ constants (see
Section 23.4.3.11 [Commands In Guile], page 497). This argument tells gdb how to
categorize the new parameter in the help system. The default is COMMAND_NONE.

The argument parameter-type should be one of the ‘PARAM_’ constants defined below.
This argument tells gdb the type of the new parameter; this information is used for
input validation and completion. The default is PARAM_BOOLEAN.

If parameter-type is PARAM_ENUM, then enum-list must be a list of strings. These
strings represent the possible values for the parameter.

If parameter-type is not PARAM_ENUM, then the presence of enum-list will cause an
exception to be thrown.

3 Note that gdb parameters must not be confused with Guile’s parameter objects (see Section “Parame-
ters” in GNU Guile Reference Manual).

502 Debugging with gdb

The argument set-func is a function of one argument: self which is the
<gdb:parameter> object representing the parameter. gdb will call this function
when a parameter’s value has been changed via the set API (for example, set

foo off). The value of the parameter has already been set to the new value. This
function must return a string to be displayed to the user. gdb will add a trailing
newline if the string is non-empty. gdb generally doesn’t print anything when a
parameter is set, thus typically this function should return ‘""’. A non-empty string
result should typically be used for displaying warnings and errors.

The argument show-func is a function of two arguments: self which is the
<gdb:parameter> object representing the parameter, and svalue which is the string
representation of the current value. gdb will call this function when a parameter’s
show API has been invoked (for example, show foo). This function must return a
string, and will be displayed to the user. gdb will add a trailing newline.

The argument doc is the help text for the new parameter. If there is no documentation
string, a default value is used.

The argument set-doc is the help text for this parameter’s set command.

The argument show-doc is the help text for this parameter’s show command.

The argument initial-value specifies the initial value of the parameter. If it is a
function, it takes one parameter, the <gdb:parameter> object and its result is used
as the initial value of the parameter. The initial value must be valid for the parameter
type, otherwise an exception is thrown.

[Scheme Procedure]register-parameter! parameter
Add parameter, a <gdb:parameter> object, to gdb’s list of parameters. It is an error
to register a parameter more than once. The result is unspecified.

[Scheme Procedure]parameter? object
Return #t if object is a <gdb:parameter> object. Otherwise return #f.

[Scheme Procedure]parameter-value parameter
Return the value of parameter which may either be a <gdb:parameter> object or a
string naming the parameter.

[Scheme Procedure]set-parameter-value! parameter new-value
Assign parameter the value of new-value. The argument parameter must be an object
of type <gdb:parameter>. gdb does validation when assignments are made.

When a new parameter is defined, its type must be specified. The available types are
represented by constants defined in the gdb module:

PARAM_BOOLEAN

The value is a plain boolean. The Guile boolean values, #t and #f are the only
valid values.

PARAM_AUTO_BOOLEAN

The value has three possible states: true, false, and ‘auto’. In Guile, true and
false are represented using boolean constants, and ‘auto’ is represented using
#:auto.

Chapter 23: Extending gdb 503

PARAM_UINTEGER

The value is an unsigned integer. The value of 0 should be interpreted to mean
“unlimited”.

PARAM_ZINTEGER

The value is an integer.

PARAM_ZUINTEGER

The value is an unsigned integer.

PARAM_ZUINTEGER_UNLIMITED

The value is an integer in the range ‘[0, INT_MAX]’. A value of ‘-1’ means
“unlimited”, and other negative numbers are not allowed.

PARAM_STRING

The value is a string. When the user modifies the string, any escape sequences,
such as ‘\t’, ‘\f’, and octal escapes, are translated into corresponding characters
and encoded into the current host charset.

PARAM_STRING_NOESCAPE

The value is a string. When the user modifies the string, escapes are passed
through untranslated.

PARAM_OPTIONAL_FILENAME

The value is a either a filename (a string), or #f.

PARAM_FILENAME

The value is a filename. This is just like PARAM_STRING_NOESCAPE, but uses file
names for completion.

PARAM_ENUM

The value is a string, which must be one of a collection of string constants
provided when the parameter is created.

23.4.3.13 Program Spaces In Guile

A program space, or progspace, represents a symbolic view of an address space. It consists
of all of the objfiles of the program. See Section 23.4.3.14 [Objfiles In Guile], page 504. See
Section 4.9 [Inferiors Connections and Programs], page 40, for more details about program
spaces.

Each progspace is represented by an instance of the <gdb:progspace> smob. See
Section 23.4.3.3 [GDB Scheme Data Types], page 478.

The following progspace-related functions are available in the (gdb) module:

[Scheme Procedure]progspace? object
Return #t if object is a <gdb:progspace> object. Otherwise return #f.

[Scheme Procedure]progspace-valid? progspace
Return #t if progspace is valid, #f if not. A <gdb:progspace> object can become
invalid if the program it refers to is not loaded in gdb any longer.

504 Debugging with gdb

[Scheme Procedure]current-progspace
This function returns the program space of the currently selected inferior. There is al-
ways a current progspace, this never returns #f. See Section 4.9 [Inferiors Connections
and Programs], page 40.

[Scheme Procedure]progspaces
Return a list of all the progspaces currently known to gdb.

[Scheme Procedure]progspace-filename progspace
Return the absolute file name of progspace as a string. This is the name of the file
passed as the argument to the file or symbol-file commands. If the program space
does not have an associated file name, then #f is returned. This occurs, for example,
when gdb is started without a program to debug.

A gdb:invalid-object-error exception is thrown if progspace is invalid.

[Scheme Procedure]progspace-objfiles progspace
Return the list of objfiles of progspace. The order of objfiles in the result is arbitrary.
Each element is an object of type <gdb:objfile>. See Section 23.4.3.14 [Objfiles In
Guile], page 504.

A gdb:invalid-object-error exception is thrown if progspace is invalid.

[Scheme Procedure]progspace-pretty-printers progspace
Return the list of pretty-printers of progspace. Each element is an object of type
<gdb:pretty-printer>. See Section 23.4.3.8 [Guile Pretty Printing API], page 492,
for more information.

[Scheme Procedure]set-progspace-pretty-printers! progspace printer-list
Set the list of registered <gdb:pretty-printer> objects for progspace to printer-list.
See Section 23.4.3.8 [Guile Pretty Printing API], page 492, for more information.

23.4.3.14 Objfiles In Guile

gdb loads symbols for an inferior from various symbol-containing files (see Section 18.1
[Files], page 279). These include the primary executable file, any shared libraries used by
the inferior, and any separate debug info files (see Section 18.3 [Separate Debug Files],
page 288). gdb calls these symbol-containing files objfiles.

Each objfile is represented as an object of type <gdb:objfile>.

The following objfile-related procedures are provided by the (gdb) module:

[Scheme Procedure]objfile? object
Return #t if object is a <gdb:objfile> object. Otherwise return #f.

[Scheme Procedure]objfile-valid? objfile
Return #t if objfile is valid, #f if not. A <gdb:objfile> object can become invalid if
the object file it refers to is not loaded in gdb any longer. All other <gdb:objfile>
procedures will throw an exception if it is invalid at the time the procedure is called.

[Scheme Procedure]objfile-filename objfile
Return the file name of objfile as a string, with symbolic links resolved.

Chapter 23: Extending gdb 505

[Scheme Procedure]objfile-progspace objfile
Return the <gdb:progspace> that this object file lives in. See Section 23.4.3.13
[Progspaces In Guile], page 503, for more on progspaces.

[Scheme Procedure]objfile-pretty-printers objfile
Return the list of registered <gdb:pretty-printer> objects for objfile. See
Section 23.4.3.8 [Guile Pretty Printing API], page 492, for more information.

[Scheme Procedure]set-objfile-pretty-printers! objfile printer-list
Set the list of registered <gdb:pretty-printer> objects for objfile to printer-list.
The printer-list must be a list of <gdb:pretty-printer> objects. See Section 23.4.3.8
[Guile Pretty Printing API], page 492, for more information.

[Scheme Procedure]current-objfile
When auto-loading a Guile script (see Section 23.4.4 [Guile Auto-loading], page 525),
gdb sets the “current objfile” to the corresponding objfile. This function returns the
current objfile. If there is no current objfile, this function returns #f.

[Scheme Procedure]objfiles
Return a list of all the objfiles in the current program space.

23.4.3.15 Accessing inferior stack frames from Guile.

When the debugged program stops, gdb is able to analyze its call stack (see Section 8.1
[Stack frames], page 109). The <gdb:frame> class represents a frame in the stack. A
<gdb:frame> object is only valid while its corresponding frame exists in the inferior’s stack.
If you try to use an invalid frame object, gdb will throw a gdb:invalid-object exception
(see Section 23.4.3.4 [Guile Exception Handling], page 480).

Two <gdb:frame> objects can be compared for equality with the equal? function, like:
(gdb) guile (equal? (newest-frame) (selected-frame))

#t

The following frame-related procedures are provided by the (gdb) module:

[Scheme Procedure]frame? object
Return #t if object is a <gdb:frame> object. Otherwise return #f.

[Scheme Procedure]frame-valid? frame
Returns #t if frame is valid, #f if not. A frame object can become invalid if the frame
it refers to doesn’t exist anymore in the inferior. All <gdb:frame> procedures will
throw an exception if the frame is invalid at the time the procedure is called.

[Scheme Procedure]frame-name frame
Return the function name of frame, or #f if it can’t be obtained.

[Scheme Procedure]frame-arch frame
Return the <gdb:architecture> object corresponding to frame’s architecture. See
Section 23.4.3.21 [Architectures In Guile], page 519.

[Scheme Procedure]frame-type frame
Return the type of frame. The value can be one of:

NORMAL_FRAME

An ordinary stack frame.

506 Debugging with gdb

DUMMY_FRAME

A fake stack frame that was created by gdb when performing an inferior
function call.

INLINE_FRAME

A frame representing an inlined function. The function was inlined into
a NORMAL_FRAME that is older than this one.

TAILCALL_FRAME

A frame representing a tail call. See Section 11.2 [Tail Call Frames],
page 188.

SIGTRAMP_FRAME

A signal trampoline frame. This is the frame created by the OS when it
calls into a signal handler.

ARCH_FRAME

A fake stack frame representing a cross-architecture call.

SENTINEL_FRAME

This is like NORMAL_FRAME, but it is only used for the newest frame.

[Scheme Procedure]frame-unwind-stop-reason frame
Return an integer representing the reason why it’s not possible to find more frames
toward the outermost frame. Use unwind-stop-reason-string to convert the value
returned by this function to a string. The value can be one of:

FRAME_UNWIND_NO_REASON

No particular reason (older frames should be available).

FRAME_UNWIND_NULL_ID

The previous frame’s analyzer returns an invalid result.

FRAME_UNWIND_OUTERMOST

This frame is the outermost.

FRAME_UNWIND_UNAVAILABLE

Cannot unwind further, because that would require knowing the values
of registers or memory that have not been collected.

FRAME_UNWIND_INNER_ID

This frame ID looks like it ought to belong to a NEXT frame, but we
got it for a PREV frame. Normally, this is a sign of unwinder failure. It
could also indicate stack corruption.

FRAME_UNWIND_SAME_ID

This frame has the same ID as the previous one. That means that unwind-
ing further would almost certainly give us another frame with exactly the
same ID, so break the chain. Normally, this is a sign of unwinder failure.
It could also indicate stack corruption.

FRAME_UNWIND_NO_SAVED_PC

The frame unwinder did not find any saved PC, but we needed one to
unwind further.

Chapter 23: Extending gdb 507

FRAME_UNWIND_MEMORY_ERROR

The frame unwinder caused an error while trying to access memory.

FRAME_UNWIND_FIRST_ERROR

Any stop reason greater or equal to this value indicates some kind of
error. This special value facilitates writing code that tests for errors in
unwinding in a way that will work correctly even if the list of the other
values is modified in future gdb versions. Using it, you could write:

(define reason (frame-unwind-stop-readon (selected-frame)))

(define reason-str (unwind-stop-reason-string reason))

(if (>= reason FRAME_UNWIND_FIRST_ERROR)

(format #t "An error occured: ~s\n" reason-str))

[Scheme Procedure]frame-pc frame
Return the frame’s resume address.

[Scheme Procedure]frame-block frame
Return the frame’s code block as a <gdb:block> object. See Section 23.4.3.16 [Blocks
In Guile], page 508.

[Scheme Procedure]frame-function frame
Return the symbol for the function corresponding to this frame as a <gdb:symbol>

object, or #f if there isn’t one. See Section 23.4.3.17 [Symbols In Guile], page 510.

[Scheme Procedure]frame-older frame
Return the frame that called frame.

[Scheme Procedure]frame-newer frame
Return the frame called by frame.

[Scheme Procedure]frame-sal frame
Return the frame’s <gdb:sal> (symtab and line) object. See Section 23.4.3.18 [Sym-
bol Tables In Guile], page 513.

[Scheme Procedure]frame-read-register frame register
Return the value of register in frame. register should be a string, like ‘pc’.

[Scheme Procedure]frame-read-var frame variable [#:block block]
Return the value of variable in frame. If the optional argument block is provided,
search for the variable from that block; otherwise start at the frame’s current block
(which is determined by the frame’s current program counter). The variable must
be given as a string or a <gdb:symbol> object, and block must be a <gdb:block>

object.

[Scheme Procedure]frame-select frame
Set frame to be the selected frame. See Chapter 8 [Examining the Stack], page 109.

[Scheme Procedure]selected-frame
Return the selected frame object. See Section 8.3 [Selecting a Frame], page 113.

[Scheme Procedure]newest-frame
Return the newest frame object for the selected thread.

508 Debugging with gdb

[Scheme Procedure]unwind-stop-reason-string reason
Return a string explaining the reason why gdb stopped unwinding frames, as ex-
pressed by the given reason code (an integer, see the frame-unwind-stop-reason

procedure above in this section).

23.4.3.16 Accessing blocks from Guile.

In gdb, symbols are stored in blocks. A block corresponds roughly to a scope in the source
code. Blocks are organized hierarchically, and are represented individually in Guile as an
object of type <gdb:block>. Blocks rely on debugging information being available.

A frame has a block. Please see Section 23.4.3.15 [Frames In Guile], page 505, for a more
in-depth discussion of frames.

The outermost block is known as the global block. The global block typically holds
public global variables and functions.

The block nested just inside the global block is the static block. The static block typically
holds file-scoped variables and functions.

gdb provides a method to get a block’s superblock, but there is currently no way to
examine the sub-blocks of a block, or to iterate over all the blocks in a symbol table (see
Section 23.4.3.18 [Symbol Tables In Guile], page 513).

Here is a short example that should help explain blocks:
/* This is in the global block. */

int global;

/* This is in the static block. */

static int file_scope;

/* ’function’ is in the global block, and ’argument’ is

in a block nested inside of ’function’. */

int function (int argument)

{

/* ’local’ is in a block inside ’function’. It may or may

not be in the same block as ’argument’. */

int local;

{

/* ’inner’ is in a block whose superblock is the one holding

’local’. */

int inner;

/* If this call is expanded by the compiler, you may see

a nested block here whose function is ’inline_function’

and whose superblock is the one holding ’inner’. */

inline_function ();

}

}

The following block-related procedures are provided by the (gdb) module:

[Scheme Procedure]block? object
Return #t if object is a <gdb:block> object. Otherwise return #f.

[Scheme Procedure]block-valid? block
Returns #t if <gdb:block> block is valid, #f if not. A block object can become invalid
if the block it refers to doesn’t exist anymore in the inferior. All other <gdb:block>

Chapter 23: Extending gdb 509

methods will throw an exception if it is invalid at the time the procedure is called.
The block’s validity is also checked during iteration over symbols of the block.

[Scheme Procedure]block-start block
Return the start address of <gdb:block> block.

[Scheme Procedure]block-end block
Return the end address of <gdb:block> block.

[Scheme Procedure]block-function block
Return the name of <gdb:block> block represented as a <gdb:symbol> object. If the
block is not named, then #f is returned.

For ordinary function blocks, the superblock is the static block. However, you should
note that it is possible for a function block to have a superblock that is not the static
block – for instance this happens for an inlined function.

[Scheme Procedure]block-superblock block
Return the block containing <gdb:block> block. If the parent block does not exist,
then #f is returned.

[Scheme Procedure]block-global-block block
Return the global block associated with <gdb:block> block.

[Scheme Procedure]block-static-block block
Return the static block associated with <gdb:block> block.

[Scheme Procedure]block-global? block
Return #t if <gdb:block> block is a global block. Otherwise return #f.

[Scheme Procedure]block-static? block
Return #t if <gdb:block> block is a static block. Otherwise return #f.

[Scheme Procedure]block-symbols
Return a list of all symbols (as <gdb:symbol> objects) in <gdb:block> block.

[Scheme Procedure]make-block-symbols-iterator block
Return an object of type <gdb:iterator> that will iterate over all symbols of the
block. Guile programs should not assume that a specific block object will always
contain a given symbol, since changes in gdb features and infrastructure may cause
symbols move across blocks in a symbol table. See Section 23.4.3.25 [Iterators In
Guile], page 523.

[Scheme Procedure]block-symbols-progress?
Return #t if the object is a <gdb:block-symbols-progress> object. This object would
be obtained from the progress element of the <gdb:iterator> object returned by
make-block-symbols-iterator.

[Scheme Procedure]lookup-block pc
Return the innermost <gdb:block> containing the given pc value. If the block cannot
be found for the pc value specified, the function will return #f.

510 Debugging with gdb

23.4.3.17 Guile representation of Symbols.

gdb represents every variable, function and type as an entry in a symbol table. See
Chapter 16 [Examining the Symbol Table], page 253. Guile represents these symbols in
gdb with the <gdb:symbol> object.

The following symbol-related procedures are provided by the (gdb) module:

[Scheme Procedure]symbol? object
Return #t if object is an object of type <gdb:symbol>. Otherwise return #f.

[Scheme Procedure]symbol-valid? symbol
Return #t if the <gdb:symbol> object is valid, #f if not. A <gdb:symbol> object
can become invalid if the symbol it refers to does not exist in gdb any longer. All
other <gdb:symbol> procedures will throw an exception if it is invalid at the time the
procedure is called.

[Scheme Procedure]symbol-type symbol
Return the type of symbol or #f if no type is recorded. The result is an object of
type <gdb:type>. See Section 23.4.3.7 [Types In Guile], page 488.

[Scheme Procedure]symbol-symtab symbol
Return the symbol table in which symbol appears. The result is an object of type
<gdb:symtab>. See Section 23.4.3.18 [Symbol Tables In Guile], page 513.

[Scheme Procedure]symbol-line symbol
Return the line number in the source code at which symbol was defined. This is an
integer.

[Scheme Procedure]symbol-name symbol
Return the name of symbol as a string.

[Scheme Procedure]symbol-linkage-name symbol
Return the name of symbol, as used by the linker (i.e., may be mangled).

[Scheme Procedure]symbol-print-name symbol
Return the name of symbol in a form suitable for output. This is either name or
linkage_name, depending on whether the user asked gdb to display demangled or
mangled names.

[Scheme Procedure]symbol-addr-class symbol
Return the address class of the symbol. This classifies how to find the value of a
symbol. Each address class is a constant defined in the (gdb) module and described
later in this chapter.

[Scheme Procedure]symbol-needs-frame? symbol
Return #t if evaluating symbol’s value requires a frame (see Section 23.4.3.15 [Frames
In Guile], page 505) and #f otherwise. Typically, local variables will require a frame,
but other symbols will not.

[Scheme Procedure]symbol-argument? symbol
Return #t if symbol is an argument of a function. Otherwise return #f.

Chapter 23: Extending gdb 511

[Scheme Procedure]symbol-constant? symbol
Return #t if symbol is a constant. Otherwise return #f.

[Scheme Procedure]symbol-function? symbol
Return #t if symbol is a function or a method. Otherwise return #f.

[Scheme Procedure]symbol-variable? symbol
Return #t if symbol is a variable. Otherwise return #f.

[Scheme Procedure]symbol-value symbol [#:frame frame]
Compute the value of symbol, as a <gdb:value>. For functions, this computes the
address of the function, cast to the appropriate type. If the symbol requires a frame
in order to compute its value, then frame must be given. If frame is not given, or if
frame is invalid, then an exception is thrown.

[Scheme Procedure]lookup-symbol name [#:block block] [#:domain domain]
This function searches for a symbol by name. The search scope can be restricted to
the parameters defined in the optional domain and block arguments.

name is the name of the symbol. It must be a string. The optional block argument
restricts the search to symbols visible in that block. The block argument must be a
<gdb:block> object. If omitted, the block for the current frame is used. The optional
domain argument restricts the search to the domain type. The domain argument must
be a domain constant defined in the (gdb) module and described later in this chapter.

The result is a list of two elements. The first element is a <gdb:symbol> object or
#f if the symbol is not found. If the symbol is found, the second element is #t if the
symbol is a field of a method’s object (e.g., this in C++), otherwise it is #f. If the
symbol is not found, the second element is #f.

[Scheme Procedure]lookup-global-symbol name [#:domain domain]
This function searches for a global symbol by name. The search scope can be restricted
by the domain argument.

name is the name of the symbol. It must be a string. The optional domain argument
restricts the search to the domain type. The domain argument must be a domain
constant defined in the (gdb) module and described later in this chapter.

The result is a <gdb:symbol> object or #f if the symbol is not found.

The available domain categories in <gdb:symbol> are represented as constants in the
(gdb) module:

SYMBOL_UNDEF_DOMAIN

This is used when a domain has not been discovered or none of the following
domains apply. This usually indicates an error either in the symbol information
or in gdb’s handling of symbols.

SYMBOL_VAR_DOMAIN

This domain contains variables, function names, typedef names and enum type
values.

SYMBOL_STRUCT_DOMAIN

This domain holds struct, union and enum type names.

512 Debugging with gdb

SYMBOL_LABEL_DOMAIN

This domain contains names of labels (for gotos).

SYMBOL_VARIABLES_DOMAIN

This domain holds a subset of the SYMBOLS_VAR_DOMAIN; it contains everything
minus functions and types.

SYMBOL_FUNCTIONS_DOMAIN

This domain contains all functions.

SYMBOL_TYPES_DOMAIN

This domain contains all types.

The available address class categories in <gdb:symbol> are represented as constants in
the gdb module:

SYMBOL_LOC_UNDEF

If this is returned by address class, it indicates an error either in the symbol
information or in gdb’s handling of symbols.

SYMBOL_LOC_CONST

Value is constant int.

SYMBOL_LOC_STATIC

Value is at a fixed address.

SYMBOL_LOC_REGISTER

Value is in a register.

SYMBOL_LOC_ARG

Value is an argument. This value is at the offset stored within the symbol inside
the frame’s argument list.

SYMBOL_LOC_REF_ARG

Value address is stored in the frame’s argument list. Just like LOC_ARG except
that the value’s address is stored at the offset, not the value itself.

SYMBOL_LOC_REGPARM_ADDR

Value is a specified register. Just like LOC_REGISTER except the register holds
the address of the argument instead of the argument itself.

SYMBOL_LOC_LOCAL

Value is a local variable.

SYMBOL_LOC_TYPEDEF

Value not used. Symbols in the domain SYMBOL_STRUCT_DOMAIN all have this
class.

SYMBOL_LOC_BLOCK

Value is a block.

SYMBOL_LOC_CONST_BYTES

Value is a byte-sequence.

SYMBOL_LOC_UNRESOLVED

Value is at a fixed address, but the address of the variable has to be determined
from the minimal symbol table whenever the variable is referenced.

Chapter 23: Extending gdb 513

SYMBOL_LOC_OPTIMIZED_OUT

The value does not actually exist in the program.

SYMBOL_LOC_COMPUTED

The value’s address is a computed location.

23.4.3.18 Symbol table representation in Guile.

Access to symbol table data maintained by gdb on the inferior is exposed to Guile via two
objects: <gdb:sal> (symtab-and-line) and <gdb:symtab>. Symbol table and line data for a
frame is returned from the frame-find-sal <gdb:frame> procedure. See Section 23.4.3.15
[Frames In Guile], page 505.

For more information on gdb’s symbol table management, see Chapter 16 [Examining
the Symbol Table], page 253.

The following symtab-related procedures are provided by the (gdb) module:

[Scheme Procedure]symtab? object
Return #t if object is an object of type <gdb:symtab>. Otherwise return #f.

[Scheme Procedure]symtab-valid? symtab
Return #t if the <gdb:symtab> object is valid, #f if not. A <gdb:symtab> object
becomes invalid when the symbol table it refers to no longer exists in gdb. All other
<gdb:symtab> procedures will throw an exception if it is invalid at the time the
procedure is called.

[Scheme Procedure]symtab-filename symtab
Return the symbol table’s source filename.

[Scheme Procedure]symtab-fullname symtab
Return the symbol table’s source absolute file name.

[Scheme Procedure]symtab-objfile symtab
Return the symbol table’s backing object file. See Section 23.4.3.14 [Objfiles In Guile],
page 504.

[Scheme Procedure]symtab-global-block symtab
Return the global block of the underlying symbol table. See Section 23.4.3.16 [Blocks
In Guile], page 508.

[Scheme Procedure]symtab-static-block symtab
Return the static block of the underlying symbol table. See Section 23.4.3.16 [Blocks
In Guile], page 508.

The following symtab-and-line-related procedures are provided by the (gdb) module:

[Scheme Procedure]sal? object
Return #t if object is an object of type <gdb:sal>. Otherwise return #f.

[Scheme Procedure]sal-valid? sal
Return #t if sal is valid, #f if not. A <gdb:sal> object becomes invalid when the Sym-
bol table object it refers to no longer exists in gdb. All other <gdb:sal> procedures
will throw an exception if it is invalid at the time the procedure is called.

514 Debugging with gdb

[Scheme Procedure]sal-symtab sal
Return the symbol table object (<gdb:symtab>) for sal.

[Scheme Procedure]sal-line sal
Return the line number for sal.

[Scheme Procedure]sal-pc sal
Return the start of the address range occupied by code for sal.

[Scheme Procedure]sal-last sal
Return the end of the address range occupied by code for sal.

[Scheme Procedure]find-pc-line pc
Return the <gdb:sal> object corresponding to the pc value. If an invalid value of
pc is passed as an argument, then the symtab and line attributes of the returned
<gdb:sal> object will be #f and 0 respectively.

23.4.3.19 Manipulating breakpoints using Guile

Breakpoints in Guile are represented by objects of type <gdb:breakpoint>. New break-
points can be created with the make-breakpoint Guile function, and then added to gdb
with the register-breakpoint! Guile function. This two-step approach is taken to sepa-
rate out the side-effect of adding the breakpoint to gdb from make-breakpoint.

Support is also provided to view and manipulate breakpoints created outside of Guile.

The following breakpoint-related procedures are provided by the (gdb) module:

[Scheme Procedure]make-breakpoint location [#:type type]
[#:wp-class wp-class] [#:internal internal] [#:temporary temporary]

Create a new breakpoint at location, a string naming the location of the breakpoint, or
an expression that defines a watchpoint. The contents can be any location recognized
by the break command, or in the case of a watchpoint, by the watch command.

The breakpoint is initially marked as ‘invalid’. The breakpoint is not usable until it
has been registered with gdb with register-breakpoint!, at which point it becomes
‘valid’. The result is the <gdb:breakpoint> object representing the breakpoint.

The optional type denotes the breakpoint to create. This argument can be either
BP_BREAKPOINT or BP_WATCHPOINT, and defaults to BP_BREAKPOINT.

The optional wp-class argument defines the class of watchpoint to create, if type is
BP_WATCHPOINT. If a watchpoint class is not provided, it is assumed to be a WP_WRITE
class.

The optional internal argument allows the breakpoint to become invisible to the user.
The breakpoint will neither be reported when registered, nor will it be listed in the
output from info breakpoints (but will be listed with the maint info breakpoints

command). If an internal flag is not provided, the breakpoint is visible (non-internal).

The optional temporary argument makes the breakpoint a temporary breakpoint.
Temporary breakpoints are deleted after they have been hit, after which the
Guile breakpoint is no longer usable (although it may be re-registered with
register-breakpoint!).

Chapter 23: Extending gdb 515

When a watchpoint is created, gdb will try to create a hardware assisted watchpoint.
If successful, the type of the watchpoint is changed from BP_WATCHPOINT to BP_

HARDWARE_WATCHPOINT for WP_WRITE, BP_READ_WATCHPOINT for WP_READ, and BP_

ACCESS_WATCHPOINT for WP_ACCESS. If not successful, the type of the watchpoint is
left as WP_WATCHPOINT.

The available types are represented by constants defined in the gdb module:

BP_BREAKPOINT

Normal code breakpoint.

BP_WATCHPOINT

Watchpoint breakpoint.

BP_HARDWARE_WATCHPOINT

Hardware assisted watchpoint. This value cannot be specified when cre-
ating the breakpoint.

BP_READ_WATCHPOINT

Hardware assisted read watchpoint. This value cannot be specified when
creating the breakpoint.

BP_ACCESS_WATCHPOINT

Hardware assisted access watchpoint. This value cannot be specified when
creating the breakpoint.

BP_CATCHPOINT

Catchpoint. This value cannot be specified when creating the breakpoint.

The available watchpoint types are represented by constants defined in the (gdb)

module:

WP_READ Read only watchpoint.

WP_WRITE Write only watchpoint.

WP_ACCESS

Read/Write watchpoint.

[Scheme Procedure]register-breakpoint! breakpoint
Add breakpoint, a <gdb:breakpoint> object, to gdb’s list of breakpoints. The break-
point must have been created with make-breakpoint. One cannot register break-
points that have been created outside of Guile. Once a breakpoint is registered it
becomes ‘valid’. It is an error to register an already registered breakpoint. The
result is unspecified.

[Scheme Procedure]delete-breakpoint! breakpoint
Remove breakpoint from gdb’s list of breakpoints. This also invalidates the Guile
breakpoint object. Any further attempt to access the object will throw an exception.

If breakpoint was created from Guile with make-breakpoint it may be re-registered
with gdb, in which case the breakpoint becomes valid again.

[Scheme Procedure]breakpoints
Return a list of all breakpoints. Each element of the list is a <gdb:breakpoint>

object.

516 Debugging with gdb

[Scheme Procedure]breakpoint? object
Return #t if object is a <gdb:breakpoint> object, and #f otherwise.

[Scheme Procedure]breakpoint-valid? breakpoint
Return #t if breakpoint is valid, #f otherwise. Breakpoints created with
make-breakpoint are marked as invalid until they are registered with gdb with
register-breakpoint!. A <gdb:breakpoint> object can become invalid if the
user deletes the breakpoint. In this case, the object still exists, but the underlying
breakpoint does not. In the cases of watchpoint scope, the watchpoint remains valid
even if execution of the inferior leaves the scope of that watchpoint.

[Scheme Procedure]breakpoint-number breakpoint
Return the breakpoint’s number — the identifier used by the user to manipulate the
breakpoint.

[Scheme Procedure]breakpoint-temporary? breakpoint
Return #t if the breakpoint was created as a temporary breakpoint. Temporary break-
points are automatically deleted after they’ve been hit. Calling this procedure, and all
other procedures other than breakpoint-valid? and register-breakpoint!, will
result in an error after the breakpoint has been hit (since it has been automatically
deleted).

[Scheme Procedure]breakpoint-type breakpoint
Return the breakpoint’s type — the identifier used to determine the actual breakpoint
type or use-case.

[Scheme Procedure]breakpoint-visible? breakpoint
Return #t if the breakpoint is visible to the user when hit, or when the ‘info
breakpoints’ command is run. Otherwise return #f.

[Scheme Procedure]breakpoint-location breakpoint
Return the location of the breakpoint, as specified by the user. It is a string. If the
breakpoint does not have a location (that is, it is a watchpoint) return #f.

[Scheme Procedure]breakpoint-expression breakpoint
Return the breakpoint expression, as specified by the user. It is a string. If the
breakpoint does not have an expression (the breakpoint is not a watchpoint) return
#f.

[Scheme Procedure]breakpoint-enabled? breakpoint
Return #t if the breakpoint is enabled, and #f otherwise.

[Scheme Procedure]set-breakpoint-enabled! breakpoint flag
Set the enabled state of breakpoint to flag. If flag is #f it is disabled, otherwise it is
enabled.

[Scheme Procedure]breakpoint-silent? breakpoint
Return #t if the breakpoint is silent, and #f otherwise.

Note that a breakpoint can also be silent if it has commands and the first command
is silent. This is not reported by the silent attribute.

Chapter 23: Extending gdb 517

[Scheme Procedure]set-breakpoint-silent! breakpoint flag
Set the silent state of breakpoint to flag. If flag is #f the breakpoint is made silent,
otherwise it is made non-silent (or noisy).

[Scheme Procedure]breakpoint-ignore-count breakpoint
Return the ignore count for breakpoint.

[Scheme Procedure]set-breakpoint-ignore-count! breakpoint count
Set the ignore count for breakpoint to count.

[Scheme Procedure]breakpoint-hit-count breakpoint
Return hit count of breakpoint.

[Scheme Procedure]set-breakpoint-hit-count! breakpoint count
Set the hit count of breakpoint to count. At present, count must be zero.

[Scheme Procedure]breakpoint-thread breakpoint
Return the global-thread-id for thread-specific breakpoint breakpoint. Return #f if
breakpoint is not thread-specific.

[Scheme Procedure]set-breakpoint-thread! breakpoint global-thread-id|#f
Set the thread-id for breakpoint to global-thread-id If set to #f, the breakpoint is no
longer thread-specific.

[Scheme Procedure]breakpoint-task breakpoint
If the breakpoint is Ada task-specific, return the Ada task id. If the breakpoint is not
task-specific (or the underlying language is not Ada), return #f.

[Scheme Procedure]set-breakpoint-task! breakpoint task
Set the Ada task of breakpoint to task. If set to #f, the breakpoint is no longer
task-specific.

[Scheme Procedure]breakpoint-condition breakpoint
Return the condition of breakpoint, as specified by the user. It is a string. If there is
no condition, return #f.

[Scheme Procedure]set-breakpoint-condition! breakpoint condition
Set the condition of breakpoint to condition, which must be a string. If set to #f then
the breakpoint becomes unconditional.

[Scheme Procedure]breakpoint-stop breakpoint
Return the stop predicate of breakpoint. See set-breakpoint-stop! below in this
section.

[Scheme Procedure]set-breakpoint-stop! breakpoint procedure|#f
Set the stop predicate of breakpoint. The predicate procedure takes one argument:
the <gdb:breakpoint> object. If this predicate is set to a procedure then it is invoked
whenever the inferior reaches this breakpoint. If it returns #t, or any non-#f value,
then the inferior is stopped, otherwise the inferior will continue.

If there are multiple breakpoints at the same location with a stop predicate, each
one will be called regardless of the return status of the previous. This ensures that

518 Debugging with gdb

all stop predicates have a chance to execute at that location. In this scenario if one
of the methods returns #t but the others return #f, the inferior will still be stopped.

You should not alter the execution state of the inferior (i.e., step, next, etc.), alter the
current frame context (i.e., change the current active frame), or alter, add or delete
any breakpoint. As a general rule, you should not alter any data within gdb or the
inferior at this time.

Example stop implementation:

(define (my-stop? bkpt)

(let ((int-val (parse-and-eval "foo")))

(value=? int-val 3)))

(define bkpt (make-breakpoint "main.c:42"))

(register-breakpoint! bkpt)

(set-breakpoint-stop! bkpt my-stop?)

[Scheme Procedure]breakpoint-commands breakpoint
Return the commands attached to breakpoint as a string, or #f if there are none.

23.4.3.20 Guile representation of lazy strings.

A lazy string is a string whose contents is not retrieved or encoded until it is needed.

A <gdb:lazy-string> is represented in gdb as an address that points to a
region of memory, an encoding that will be used to encode that region of memory,
and a length to delimit the region of memory that represents the string. The
difference between a <gdb:lazy-string> and a string wrapped within a <gdb:value>

is that a <gdb:lazy-string> will be treated differently by gdb when printing. A
<gdb:lazy-string> is retrieved and encoded during printing, while a <gdb:value>

wrapping a string is immediately retrieved and encoded on creation.

The following lazy-string-related procedures are provided by the (gdb) module:

[Scheme Procedure]lazy-string? object
Return #t if object is an object of type <gdb:lazy-string>. Otherwise return #f.

[Scheme Procedure]lazy-string-address lazy-sring
Return the address of lazy-string.

[Scheme Procedure]lazy-string-length lazy-string
Return the length of lazy-string in characters. If the length is -1, then the string will
be fetched and encoded up to the first null of appropriate width.

[Scheme Procedure]lazy-string-encoding lazy-string
Return the encoding that will be applied to lazy-string when the string is printed by
gdb. If the encoding is not set, or contains an empty string, then gdb will select the
most appropriate encoding when the string is printed.

[Scheme Procedure]lazy-string-type lazy-string
Return the type that is represented by lazy-string ’s type. For a lazy string this
is a pointer or array type. To resolve this to the lazy string’s character type, use
type-target-type. See Section 23.4.3.7 [Types In Guile], page 488.

Chapter 23: Extending gdb 519

[Scheme Procedure]lazy-string->value lazy-string
Convert the <gdb:lazy-string> to a <gdb:value>. This value will point to the
string in memory, but will lose all the delayed retrieval, encoding and handling that
gdb applies to a <gdb:lazy-string>.

23.4.3.21 Guile representation of architectures

gdb uses architecture specific parameters and artifacts in a number of its various compu-
tations. An architecture is represented by an instance of the <gdb:arch> class.

The following architecture-related procedures are provided by the (gdb) module:

[Scheme Procedure]arch? object
Return #t if object is an object of type <gdb:arch>. Otherwise return #f.

[Scheme Procedure]current-arch
Return the current architecture as a <gdb:arch> object.

[Scheme Procedure]arch-name arch
Return the name (string value) of <gdb:arch> arch.

[Scheme Procedure]arch-charset arch
Return name of target character set of <gdb:arch> arch.

[Scheme Procedure]arch-wide-charset
Return name of target wide character set of <gdb:arch> arch.

Each architecture provides a set of predefined types, obtained by the following functions.

[Scheme Procedure]arch-void-type arch
Return the <gdb:type> object for a void type of architecture arch.

[Scheme Procedure]arch-char-type arch
Return the <gdb:type> object for a char type of architecture arch.

[Scheme Procedure]arch-short-type arch
Return the <gdb:type> object for a short type of architecture arch.

[Scheme Procedure]arch-int-type arch
Return the <gdb:type> object for an int type of architecture arch.

[Scheme Procedure]arch-long-type arch
Return the <gdb:type> object for a long type of architecture arch.

[Scheme Procedure]arch-schar-type arch
Return the <gdb:type> object for a signed char type of architecture arch.

[Scheme Procedure]arch-uchar-type arch
Return the <gdb:type> object for an unsigned char type of architecture arch.

[Scheme Procedure]arch-ushort-type arch
Return the <gdb:type> object for an unsigned short type of architecture arch.

520 Debugging with gdb

[Scheme Procedure]arch-uint-type arch
Return the <gdb:type> object for an unsigned int type of architecture arch.

[Scheme Procedure]arch-ulong-type arch
Return the <gdb:type> object for an unsigned long type of architecture arch.

[Scheme Procedure]arch-float-type arch
Return the <gdb:type> object for a float type of architecture arch.

[Scheme Procedure]arch-double-type arch
Return the <gdb:type> object for a double type of architecture arch.

[Scheme Procedure]arch-longdouble-type arch
Return the <gdb:type> object for a long double type of architecture arch.

[Scheme Procedure]arch-bool-type arch
Return the <gdb:type> object for a bool type of architecture arch.

[Scheme Procedure]arch-longlong-type arch
Return the <gdb:type> object for a long long type of architecture arch.

[Scheme Procedure]arch-ulonglong-type arch
Return the <gdb:type> object for an unsigned long long type of architecture arch.

[Scheme Procedure]arch-int8-type arch
Return the <gdb:type> object for an int8 type of architecture arch.

[Scheme Procedure]arch-uint8-type arch
Return the <gdb:type> object for a uint8 type of architecture arch.

[Scheme Procedure]arch-int16-type arch
Return the <gdb:type> object for an int16 type of architecture arch.

[Scheme Procedure]arch-uint16-type arch
Return the <gdb:type> object for a uint16 type of architecture arch.

[Scheme Procedure]arch-int32-type arch
Return the <gdb:type> object for an int32 type of architecture arch.

[Scheme Procedure]arch-uint32-type arch
Return the <gdb:type> object for a uint32 type of architecture arch.

[Scheme Procedure]arch-int64-type arch
Return the <gdb:type> object for an int64 type of architecture arch.

[Scheme Procedure]arch-uint64-type arch
Return the <gdb:type> object for a uint64 type of architecture arch.

Example:

(gdb) guile (type-name (arch-uchar-type (current-arch)))

"unsigned char"

Chapter 23: Extending gdb 521

23.4.3.22 Disassembly In Guile

The disassembler can be invoked from Scheme code. Furthermore, the disassembler can
take a Guile port as input, allowing one to disassemble from any source, and not just target
memory.

[Scheme Procedure]arch-disassemble arch start-pc [#:port port]
[#:offset offset] [#:size size] [#:count count]

Return a list of disassembled instructions starting from the memory address start-pc.

The optional argument port specifies the input port to read bytes from. If port is #f
then bytes are read from target memory.

The optional argument offset specifies the address offset of the first byte in port.
This is useful, for example, when port specifies a ‘bytevector’ and you want the
bytevector to be disassembled as if it came from that address. The start-pc passed
to the reader for port is offset by the same amount.

Example:
(gdb) guile (use-modules (rnrs io ports))

(gdb) guile (define pc (value->integer (parse-and-eval "$pc")))

(gdb) guile (define mem (open-memory #:start pc))

(gdb) guile (define bv (get-bytevector-n mem 10))

(gdb) guile (define bv-port (open-bytevector-input-port bv))

(gdb) guile (define arch (current-arch))

(gdb) guile (arch-disassemble arch pc #:port bv-port #:offset pc)

(((address . 4195516) (asm . "mov $0x4005c8,%edi") (length . 5)))

The optional arguments size and count determine the number of instructions in the
returned list. If either size or count is specified as zero, then no instructions are
disassembled and an empty list is returned. If both the optional arguments size
and count are specified, then a list of at most count disassembled instructions whose
start address falls in the closed memory address interval from start-pc to (start-pc
+ size - 1) are returned. If size is not specified, but count is specified, then count
number of instructions starting from the address start-pc are returned. If count is
not specified but size is specified, then all instructions whose start address falls in the
closed memory address interval from start-pc to (start-pc + size - 1) are returned. If
neither size nor count are specified, then a single instruction at start-pc is returned.

Each element of the returned list is an alist (associative list) with the following keys:

address The value corresponding to this key is a Guile integer of the memory
address of the instruction.

asm The value corresponding to this key is a string value which represents the
instruction with assembly language mnemonics. The assembly language
flavor used is the same as that specified by the current CLI variable
disassembly-flavor. See Section 9.6 [Machine Code], page 130.

length The value corresponding to this key is the length of the instruction in
bytes.

23.4.3.23 I/O Ports in Guile

[Scheme Procedure]input-port
Return gdb’s input port as a Guile port object.

522 Debugging with gdb

[Scheme Procedure]output-port
Return gdb’s output port as a Guile port object.

[Scheme Procedure]error-port
Return gdb’s error port as a Guile port object.

[Scheme Procedure]stdio-port? object
Return #t if object is a gdb stdio port. Otherwise return #f.

23.4.3.24 Memory Ports in Guile

gdb provides a port interface to target memory. This allows Guile code to read/write target
memory using Guile’s port and bytevector functionality. The main routine is open-memory
which returns a port object. One can then read/write memory using that object.

[Scheme Procedure]open-memory [#:mode mode] [#:start address] [#:size size]
Return a port object that can be used for reading and writing memory. The port
will be open according to mode, which is the standard mode argument to Guile port
open routines, except that the ‘"a"’ and ‘"l"’ modes are not supported. See Section
“File Ports” in GNU Guile Reference Manual. The ‘"b"’ (binary) character may be
present, but is ignored: memory ports are binary only. If ‘"0"’ is appended then the
port is marked as unbuffered. The default is ‘"r"’, read-only and buffered.

The chunk of memory that can be accessed can be bounded. If both start and size are
unspecified, all of memory can be accessed. If only start is specified, all of memory
from that point on can be accessed. If only size if specified, all memory in the range
[0,size) can be accessed. If both are specified, all memory in the rane [start,start+size)
can be accessed.

[Scheme Procedure]memory-port?
Return #t if object is an object of type <gdb:memory-port>. Otherwise return #f.

[Scheme Procedure]memory-port-range memory-port
Return the range of <gdb:memory-port> memory-port as a list of two elements:
(start end). The range is start to end inclusive.

[Scheme Procedure]memory-port-read-buffer-size memory-port
Return the size of the read buffer of <gdb:memory-port> memory-port.

This procedure is deprecated and will be removed in gdb 11. It returns 0 when using
Guile 2.2 or later.

[Scheme Procedure]set-memory-port-read-buffer-size! memory-port size
Set the size of the read buffer of <gdb:memory-port> memory-port to size. The result
is unspecified.

This procedure is deprecated and will be removed in gdb 11. When gdb is built
with Guile 2.2 or later, you can call setvbuf instead (see Section “Buffering” in GNU
Guile Reference Manual).

[Scheme Procedure]memory-port-write-buffer-size memory-port
Return the size of the write buffer of <gdb:memory-port> memory-port.

This procedure is deprecated and will be removed in gdb 11. It returns 0 when gdb
is built with Guile 2.2 or later.

Chapter 23: Extending gdb 523

[Scheme Procedure]set-memory-port-write-buffer-size! memory-port size
Set the size of the write buffer of <gdb:memory-port> memory-port to size. The
result is unspecified.

This procedure is deprecated and will be removed in gdb 11. When gdb is built with
Guile 2.2 or later, you can call setvbuf instead.

A memory port is closed like any other port, with close-port.

Combined with Guile’s bytevectors, memory ports provide a lot of utility. For example,
to fill a buffer of 10 integers in memory, one can do something like the following.

;; In the program: int buffer[10];

(use-modules (rnrs bytevectors))

(use-modules (rnrs io ports))

(define addr (parse-and-eval "buffer"))

(define n 10)

(define byte-size (* n 4))

(define mem-port (open-memory #:mode "r+" #:start

(value->integer addr) #:size byte-size))

(define byte-vec (make-bytevector byte-size))

(do ((i 0 (+ i 1)))

((>= i n))

(bytevector-s32-native-set! byte-vec (* i 4) (* i 42)))

(put-bytevector mem-port byte-vec)

(close-port mem-port)

23.4.3.25 Iterators In Guile

A simple iterator facility is provided to allow, for example, iterating over the set of program
symbols without having to first construct a list of all of them. A useful contribution would
be to add support for SRFI 41 and SRFI 45.

[Scheme Procedure]make-iterator object progress next!
A <gdb:iterator> object is constructed with the make-iterator procedure. It takes
three arguments: the object to be iterated over, an object to record the progress of
the iteration, and a procedure to return the next element in the iteration, or an
implementation chosen value to denote the end of iteration.

By convention, end of iteration is marked with (end-of-iteration), and may be
tested with the end-of-iteration? predicate. The result of (end-of-iteration)
is chosen so that it is not otherwise used by the (gdb) module. If you are using
<gdb:iterator> in your own code it is your responsibility to maintain this invariant.

A trivial example for illustration’s sake:

(use-modules (gdb iterator))

(define my-list (list 1 2 3))

(define iter

(make-iterator my-list my-list

(lambda (iter)

(let ((l (iterator-progress iter)))

(if (eq? l ’())

(end-of-iteration)

(begin

(set-iterator-progress! iter (cdr l))

(car l)))))))

524 Debugging with gdb

Here is a slightly more realistic example, which computes a list of all the functions in
my-global-block.

(use-modules (gdb iterator))

(define this-sal (find-pc-line (frame-pc (selected-frame))))

(define this-symtab (sal-symtab this-sal))

(define this-global-block (symtab-global-block this-symtab))

(define syms-iter (make-block-symbols-iterator this-global-block))

(define functions (iterator-filter symbol-function? syms-iter))

[Scheme Procedure]iterator? object
Return #t if object is a <gdb:iterator> object. Otherwise return #f.

[Scheme Procedure]iterator-object iterator
Return the first argument that was passed to make-iterator. This is the object
being iterated over.

[Scheme Procedure]iterator-progress iterator
Return the object tracking iteration progress.

[Scheme Procedure]set-iterator-progress! iterator new-value
Set the object tracking iteration progress.

[Scheme Procedure]iterator-next! iterator
Invoke the procedure that was the third argument to make-iterator, passing it one
argument, the <gdb:iterator> object. The result is either the next element in the
iteration, or an end marker as implemented by the next! procedure. By convention
the end marker is the result of (end-of-iteration).

[Scheme Procedure]end-of-iteration
Return the Scheme object that denotes end of iteration.

[Scheme Procedure]end-of-iteration? object
Return #t if object is the end of iteration marker. Otherwise return #f.

These functions are provided by the (gdb iterator) module to assist in using iterators.

[Scheme Procedure]make-list-iterator list
Return a <gdb:iterator> object that will iterate over list.

[Scheme Procedure]iterator->list iterator
Return the elements pointed to by iterator as a list.

[Scheme Procedure]iterator-map proc iterator
Return the list of objects obtained by applying proc to the object pointed to by
iterator and to each subsequent object.

[Scheme Procedure]iterator-for-each proc iterator
Apply proc to each element pointed to by iterator. The result is unspecified.

[Scheme Procedure]iterator-filter pred iterator
Return the list of elements pointed to by iterator that satisfy pred.

[Scheme Procedure]iterator-until pred iterator
Run iterator until the result of (pred element) is true and return that as the result.
Otherwise return #f.

Chapter 23: Extending gdb 525

23.4.4 Guile Auto-loading

When a new object file is read (for example, due to the file command, or because the
inferior has loaded a shared library), gdb will look for Guile support scripts in two ways:
objfile-gdb.scm and the .debug_gdb_scripts section. See Section 23.5 [Auto-loading
extensions], page 526.

The auto-loading feature is useful for supplying application-specific debugging commands
and scripts.

Auto-loading can be enabled or disabled, and the list of auto-loaded scripts can be
printed.

set auto-load guile-scripts [on|off]

Enable or disable the auto-loading of Guile scripts.

show auto-load guile-scripts

Show whether auto-loading of Guile scripts is enabled or disabled.

info auto-load guile-scripts [regexp]

Print the list of all Guile scripts that gdb auto-loaded.

Also printed is the list of Guile scripts that were mentioned in the .debug_

gdb_scripts section and were not found. This is useful because their names
are not printed when gdb tries to load them and fails. There may be many of
them, and printing an error message for each one is problematic.

If regexp is supplied only Guile scripts with matching names are printed.

Example:

(gdb) info auto-load guile-scripts

Loaded Script

Yes scm-section-script.scm

full name: /tmp/scm-section-script.scm

No my-foo-pretty-printers.scm

When reading an auto-loaded file, gdb sets the current objfile. This is available via the
current-objfile procedure (see Section 23.4.3.14 [Objfiles In Guile], page 504). This can
be useful for registering objfile-specific pretty-printers.

23.4.5 Guile Modules

gdb comes with several modules to assist writing Guile code.

23.4.5.1 Guile Printing Module

This module provides a collection of utilities for working with pretty-printers.

Usage:

(use-modules (gdb printing))

[Scheme Procedure]prepend-pretty-printer! object printer
Add printer to the front of the list of pretty-printers for object. The object must
either be a <gdb:objfile> object, or #f in which case printer is added to the global
list of printers.

526 Debugging with gdb

[Scheme Procecure]append-pretty-printer! object printer
Add printer to the end of the list of pretty-printers for object. The object must either
be a <gdb:objfile> object, or #f in which case printer is added to the global list of
printers.

23.4.5.2 Guile Types Module

This module provides a collection of utilities for working with <gdb:type> objects.

Usage:

(use-modules (gdb types))

[Scheme Procedure]get-basic-type type
Return type with const and volatile qualifiers stripped, and with typedefs and C++
references converted to the underlying type.

C++ example:

typedef const int const_int;

const_int foo (3);

const_int& foo_ref (foo);

int main () { return 0; }

Then in gdb:

(gdb) start

(gdb) guile (use-modules (gdb) (gdb types))

(gdb) guile (define foo-ref (parse-and-eval "foo_ref"))

(gdb) guile (get-basic-type (value-type foo-ref))

int

[Scheme Procedure]type-has-field-deep? type field
Return #t if type, assumed to be a type with fields (e.g., a structure or union), has
field field. Otherwise return #f. This searches baseclasses, whereas type-has-field?
does not.

[Scheme Procedure]make-enum-hashtable enum-type
Return a Guile hash table produced from enum-type. Elements in the hash table are
referenced with hashq-ref.

23.5 Auto-loading extensions

gdb provides two mechanisms for automatically loading extensions when a new object file
is read (for example, due to the file command, or because the inferior has loaded a shared
library): objfile-gdb.ext (see Section 23.5.1 [The objfile-gdb.ext file], page 527) and
the .debug_gdb_scripts section of modern file formats like ELF (see Section 23.5.2 [The
.debug_gdb_scripts section], page 528). For a discussion of the differences between these
two approaches see Section 23.5.3 [Which flavor to choose?], page 529.

The auto-loading feature is useful for supplying application-specific debugging commands
and features.

Auto-loading can be enabled or disabled, and the list of auto-loaded scripts can be
printed. See the ‘auto-loading’ section of each extension language for more information.
For gdb command files see Section 23.1.5 [Auto-loading sequences], page 378. For Python
files see Section 23.3.3 [Python Auto-loading], page 469.

Chapter 23: Extending gdb 527

Note that loading of this script file also requires accordingly configured auto-load safe-

path (see Section 22.8.3 [Auto-loading safe path], page 359).

23.5.1 The objfile-gdb.ext file

When a new object file is read, gdb looks for a file named objfile-gdb.ext (we call it
script-name below), where objfile is the object file’s name and where ext is the file extension
for the extension language:

objfile-gdb.gdb

GDB’s own command language

objfile-gdb.py

Python

objfile-gdb.scm

Guile

script-name is formed by ensuring that the file name of objfile is absolute, following
all symlinks, and resolving . and .. components, and appending the -gdb.ext suffix. If
this file exists and is readable, gdb will evaluate it as a script in the specified extension
language.

If this file does not exist, then gdb will look for script-name file in all of the directories
as specified below. (On MS-Windows/MS-DOS, the drive letter of the executable’s lead-
ing directories is converted to a one-letter subdirectory, i.e. d:/usr/bin/ is converted to
/d/usr/bin/, because Windows filesystems disallow colons in file names.)

Note that loading of these files requires an accordingly configured auto-load safe-path

(see Section 22.8.3 [Auto-loading safe path], page 359).

For object files using .exe suffix gdb tries to load first the scripts normally according
to its .exe filename. But if no scripts are found gdb also tries script filenames matching
the object file without its .exe suffix. This .exe stripping is case insensitive and it is
attempted on any platform. This makes the script filenames compatible between Unix and
MS-Windows hosts.

set auto-load scripts-directory [directories]
Control gdb auto-loaded scripts location. Multiple directory entries may be
delimited by the host platform path separator in use (‘:’ on Unix, ‘;’ on MS-
Windows and MS-DOS).

Each entry here needs to be covered also by the security setting set auto-load

safe-path (see [set auto-load safe-path], page 360).

This variable defaults to $debugdir:$datadir/auto-load. The default set

auto-load safe-path value can be also overriden by gdb configuration option
--with-auto-load-dir.

Any reference to $debugdir will get replaced by debug-file-directory value (see
Section 18.3 [Separate Debug Files], page 288) and any reference to $datadir

will get replaced by data-directory which is determined at gdb startup (see
Section 18.7 [Data Files], page 295). $debugdir and $datadir must be placed
as a directory component — either alone or delimited by / or \ directory sep-
arators, depending on the host platform.

528 Debugging with gdb

The list of directories uses path separator (‘:’ on GNU and Unix systems, ‘;’
on MS-Windows and MS-DOS) to separate directories, similarly to the PATH

environment variable.

show auto-load scripts-directory

Show gdb auto-loaded scripts location.

add-auto-load-scripts-directory [directories...]
Add an entry (or list of entries) to the list of auto-loaded scripts locations.
Multiple entries may be delimited by the host platform path separator in use.

gdb does not track which files it has already auto-loaded this way. gdb will load the
associated script every time the corresponding objfile is opened. So your -gdb.ext file
should be careful to avoid errors if it is evaluated more than once.

23.5.2 The .debug_gdb_scripts section

For systems using file formats like ELF and COFF, when gdb loads a new object file it will
look for a special section named .debug_gdb_scripts. If this section exists, its contents is
a list of null-terminated entries specifying scripts to load. Each entry begins with a non-null
prefix byte that specifies the kind of entry, typically the extension language and whether
the script is in a file or inlined in .debug_gdb_scripts.

The following entries are supported:

SECTION_SCRIPT_ID_PYTHON_FILE = 1

SECTION_SCRIPT_ID_SCHEME_FILE = 3

SECTION_SCRIPT_ID_PYTHON_TEXT = 4

SECTION_SCRIPT_ID_SCHEME_TEXT = 6

23.5.2.1 Script File Entries

If the entry specifies a file, gdb will look for the file first in the current directory and then
along the source search path (see Section 9.5 [Specifying Source Directories], page 126),
except that $cdir is not searched, since the compilation directory is not relevant to scripts.

File entries can be placed in section .debug_gdb_scripts with, for example, this GCC
macro for Python scripts.

/* Note: The "MS" section flags are to remove duplicates. */

#define DEFINE_GDB_PY_SCRIPT(script_name) \

asm("\

.pushsection \".debug_gdb_scripts\", \"MS\",@progbits,1\n\

.byte 1 /* Python */\n\

.asciz \"" script_name "\"\n\

.popsection \n\

");

For Guile scripts, replace .byte 1 with .byte 3. Then one can reference the macro in a
header or source file like this:

DEFINE_GDB_PY_SCRIPT ("my-app-scripts.py")

The script name may include directories if desired.

Note that loading of this script file also requires accordingly configured auto-load safe-

path (see Section 22.8.3 [Auto-loading safe path], page 359).

Chapter 23: Extending gdb 529

If the macro invocation is put in a header, any application or library using this header
will get a reference to the specified script, and with the use of "MS" attributes on the section,
the linker will remove duplicates.

23.5.2.2 Script Text Entries

Script text entries allow to put the executable script in the entry itself instead of loading
it from a file. The first line of the entry, everything after the prefix byte and up to the
first newline (0xa) character, is the script name, and must not contain any kind of space
character, e.g., spaces or tabs. The rest of the entry, up to the trailing null byte, is the
script to execute in the specified language. The name needs to be unique among all script
names, as gdb executes each script only once based on its name.

Here is an example from file py-section-script.c in the gdb testsuite.

#include "symcat.h"

#include "gdb/section-scripts.h"

asm(

".pushsection \".debug_gdb_scripts\", \"MS\",@progbits,1\n"

".byte " XSTRING (SECTION_SCRIPT_ID_PYTHON_TEXT) "\n"

".ascii \"gdb.inlined-script\\n\"\n"

".ascii \"class test_cmd (gdb.Command):\\n\"\n"

".ascii \" def __init__ (self):\\n\"\n"

".ascii \" super (test_cmd, self).__init__ ("

"\\\"test-cmd\\\", gdb.COMMAND_OBSCURE)\\n\"\n"

".ascii \" def invoke (self, arg, from_tty):\\n\"\n"

".ascii \" print (\\\"test-cmd output, arg = %s\\\" % arg)\\n\"\n"

".ascii \"test_cmd ()\\n\"\n"

".byte 0\n"

".popsection\n"

);

Loading of inlined scripts requires a properly configured auto-load safe-path (see
Section 22.8.3 [Auto-loading safe path], page 359). The path to specify in auto-load

safe-path is the path of the file containing the .debug_gdb_scripts section.

23.5.3 Which flavor to choose?

Given the multiple ways of auto-loading extensions, it might not always be clear which one
to choose. This section provides some guidance.

Benefits of the -gdb.ext way:

• Can be used with file formats that don’t support multiple sections.

• Ease of finding scripts for public libraries.

Scripts specified in the .debug_gdb_scripts section are searched for in the source
search path. For publicly installed libraries, e.g., libstdc++, there typically isn’t a
source directory in which to find the script.

• Doesn’t require source code additions.

Benefits of the .debug_gdb_scripts way:

530 Debugging with gdb

• Works with static linking.

Scripts for libraries done the -gdb.ext way require an objfile to trigger their loading.
When an application is statically linked the only objfile available is the executable, and
it is cumbersome to attach all the scripts from all the input libraries to the executable’s
-gdb.ext script.

• Works with classes that are entirely inlined.

Some classes can be entirely inlined, and thus there may not be an associated shared
library to attach a -gdb.ext script to.

• Scripts needn’t be copied out of the source tree.

In some circumstances, apps can be built out of large collections of internal libraries,
and the build infrastructure necessary to install the -gdb.ext scripts in a place where
gdb can find them is cumbersome. It may be easier to specify the scripts in the
.debug_gdb_scripts section as relative paths, and add a path to the top of the source
tree to the source search path.

23.6 Multiple Extension Languages

The Guile and Python extension languages do not share any state, and generally do not
interfere with each other. There are some things to be aware of, however.

23.6.1 Python comes first

Python was gdb’s first extension language, and to avoid breaking existing behaviour Python
comes first. This is generally solved by the “first one wins” principle. gdb maintains a list
of enabled extension languages, and when it makes a call to an extension language, (say
to pretty-print a value), it tries each in turn until an extension language indicates it has
performed the request (e.g., has returned the pretty-printed form of a value). This extends
to errors while performing such requests: If an error happens while, for example, trying to
pretty-print an object then the error is reported and any following extension languages are
not tried.

531

24 Command Interpreters

gdb supports multiple command interpreters, and some command infrastructure to allow
users or user interface writers to switch between interpreters or run commands in other
interpreters.

gdb currently supports two command interpreters, the console interpreter (sometimes
called the command-line interpreter or cli) and the machine interface interpreter (or
gdb/mi). This manual describes both of these interfaces in great detail.

By default, gdb will start with the console interpreter. However, the user may choose to
start gdb with another interpreter by specifying the -i or --interpreter startup options.
Defined interpreters include:

console The traditional console or command-line interpreter. This is the most often
used interpreter with gdb. With no interpreter specified at runtime, gdb will
use this interpreter.

mi The newest gdb/mi interface (currently mi3). Used primarily by programs
wishing to use gdb as a backend for a debugger GUI or an IDE. For more
information, see Chapter 27 [The gdb/mi Interface], page 543.

mi3 The gdb/mi interface introduced in gdb 9.1.

mi2 The gdb/mi interface introduced in gdb 6.0.

mi1 The gdb/mi interface introduced in gdb 5.1.

You may execute commands in any interpreter from the current interpreter using
the appropriate command. If you are running the console interpreter, simply use the
interpreter-exec command:

interpreter-exec mi "-data-list-register-names"

gdb/mi has a similar command, although it is only available in versions of gdb which
support gdb/mi version 2 (or greater).

Note that interpreter-exec only changes the interpreter for the duration of the spec-
ified command. It does not change the interpreter permanently.

Although you may only choose a single interpreter at startup, it is possible to run an
independent interpreter on a specified input/output device (usually a tty).

For example, consider a debugger GUI or IDE that wants to provide a gdb console view.
It may do so by embedding a terminal emulator widget in its GUI, starting gdb in the
traditional command-line mode with stdin/stdout/stderr redirected to that terminal, and
then creating an MI interpreter running on a specified input/output device. The console
interpreter created by gdb at startup handles commands the user types in the terminal
widget, while the GUI controls and synchronizes state with gdb using the separate MI
interpreter.

To start a new secondary user interface running MI, use the new-ui command:

new-ui interpreter tty

The interpreter parameter specifies the interpreter to run. This accepts the same values
as the interpreter-exec command. For example, ‘console’, ‘mi’, ‘mi2’, etc. The tty

532 Debugging with gdb

parameter specifies the name of the bidirectional file the interpreter uses for input/output,
usually the name of a pseudoterminal slave on Unix systems. For example:

(gdb) new-ui mi /dev/pts/9

runs an MI interpreter on /dev/pts/9.

533

25 gdb Text User Interface

The gdb Text User Interface (TUI) is a terminal interface which uses the curses library
to show the source file, the assembly output, the program registers and gdb commands in
separate text windows. The TUI mode is supported only on platforms where a suitable
version of the curses library is available.

The TUI mode is enabled by default when you invoke gdb as ‘gdb -tui’. You can also
switch in and out of TUI mode while gdb runs by using various TUI commands and key
bindings, such as tui enable or C-x C-a. See Section 25.5 [TUI Commands], page 536, and
Section 25.2 [TUI Key Bindings], page 534.

25.1 TUI Overview

In TUI mode, gdb can display several text windows:

command This window is the gdb command window with the gdb prompt and the gdb
output. The gdb input is still managed using readline.

source The source window shows the source file of the program. The current line and
active breakpoints are displayed in this window.

assembly The assembly window shows the disassembly output of the program.

register This window shows the processor registers. Registers are highlighted when their
values change.

The source and assembly windows show the current program position by highlighting the
current line and marking it with a ‘>’ marker. Breakpoints are indicated with two markers.
The first marker indicates the breakpoint type:

B Breakpoint which was hit at least once.

b Breakpoint which was never hit.

H Hardware breakpoint which was hit at least once.

h Hardware breakpoint which was never hit.

The second marker indicates whether the breakpoint is enabled or not:

+ Breakpoint is enabled.

- Breakpoint is disabled.

The source, assembly and register windows are updated when the current thread changes,
when the frame changes, or when the program counter changes.

These windows are not all visible at the same time. The command window is always
visible. The others can be arranged in several layouts:

• source only,

• assembly only,

• source and assembly,

• source and registers, or

• assembly and registers.

534 Debugging with gdb

These are the standard layouts, but other layouts can be defined.

A status line above the command window shows the following information:

target Indicates the current gdb target. (see Chapter 19 [Specifying a Debugging
Target], page 297).

process Gives the current process or thread number. When no process is being de-
bugged, this field is set to No process.

function Gives the current function name for the selected frame. The name is demangled
if demangling is turned on (see Section 10.9 [Print Settings], page 151). When
there is no symbol corresponding to the current program counter, the string ??

is displayed.

line Indicates the current line number for the selected frame. When the current line
number is not known, the string ?? is displayed.

pc Indicates the current program counter address.

25.2 TUI Key Bindings

The TUI installs several key bindings in the readline keymaps (see Chapter 32 [Command
Line Editing], page 665). The following key bindings are installed for both TUI mode and
the gdb standard mode.

C-x C-a

C-x a

C-x A Enter or leave the TUI mode. When leaving the TUI mode, the curses window
management stops and gdb operates using its standard mode, writing on the
terminal directly. When reentering the TUI mode, control is given back to the
curses windows. The screen is then refreshed.

This key binding uses the bindable Readline function tui-switch-mode.

C-x 1 Use a TUI layout with only one window. The layout will either be ‘source’ or
‘assembly’. When the TUI mode is not active, it will switch to the TUI mode.

Think of this key binding as the Emacs C-x 1 binding.

This key binding uses the bindable Readline function tui-delete-other-

windows.

C-x 2 Use a TUI layout with at least two windows. When the current layout already
has two windows, the next layout with two windows is used. When a new layout
is chosen, one window will always be common to the previous layout and the
new one.

Think of it as the Emacs C-x 2 binding.

This key binding uses the bindable Readline function tui-change-windows.

C-x o Change the active window. The TUI associates several key bindings (like
scrolling and arrow keys) with the active window. This command gives the
focus to the next TUI window.

Think of it as the Emacs C-x o binding.

This key binding uses the bindable Readline function tui-other-window.

Chapter 25: gdb Text User Interface 535

C-x s Switch in and out of the TUI SingleKey mode that binds single keys to gdb
commands (see Section 25.3 [TUI Single Key Mode], page 535).

This key binding uses the bindable Readline function next-keymap.

The following key bindings only work in the TUI mode:

PgUp Scroll the active window one page up.

PgDn Scroll the active window one page down.

Up Scroll the active window one line up.

Down Scroll the active window one line down.

Left Scroll the active window one column left.

Right Scroll the active window one column right.

C-L Refresh the screen.

Because the arrow keys scroll the active window in the TUI mode, they are not available
for their normal use by readline unless the command window has the focus. When another
window is active, you must use other readline key bindings such as C-p, C-n, C-b and C-f

to control the command window.

25.3 TUI Single Key Mode

The TUI also provides a SingleKey mode, which binds several frequently used gdb com-
mands to single keys. Type C-x s to switch into this mode, where the following key bindings
are used:

c continue

d down

f finish

n next

o nexti. The shortcut letter ‘o’ stands for “step Over”.

q exit the SingleKey mode.

r run

s step

i stepi. The shortcut letter ‘i’ stands for “step Into”.

u up

v info locals

w where

Other keys temporarily switch to the gdb command prompt. The key that was pressed
is inserted in the editing buffer so that it is possible to type most gdb commands without
interaction with the TUI SingleKey mode. Once the command is entered the TUI SingleKey
mode is restored. The only way to permanently leave this mode is by typing q or C-x s.

If gdb was built with Readline 8.0 or later, the TUI SingleKey keymap will be named
‘SingleKey’. This can be used in .inputrc to add additional bindings to this keymap.

536 Debugging with gdb

25.4 TUI Mouse Support

If the curses library supports the mouse, the TUI supports mouse actions.

The mouse wheel scrolls the appropriate window under the mouse cursor.

The TUI itself does not directly support copying/pasting with the mouse. However, on
Unix terminals, you can typically press and hold the SHIFT key on your keyboard to tem-
porarily bypass gdb’s TUI and access the terminal’s native mouse copy/paste functionality
(commonly, click-drag-release or double-click to select text, middle-click to paste). This
copy/paste works with the terminal’s selection buffer, as opposed to the TUI’s buffer.

25.5 TUI-specific Commands

The TUI has specific commands to control the text windows. These commands are always
available, even when gdb is not in the TUI mode. When gdb is in the standard mode,
most of these commands will automatically switch to the TUI mode.

Note that if gdb’s stdout is not connected to a terminal, or gdb has been started with
the machine interface interpreter (see Chapter 27 [The gdb/mi Interface], page 543), most
of these commands will fail with an error, because it would not be possible or desirable to
enable curses window management.

tui enable

Activate TUI mode. The last active TUI window layout will be used if TUI
mode has previously been used in the current debugging session, otherwise a
default layout is used.

tui disable

Disable TUI mode, returning to the console interpreter.

info win List the names and sizes of all currently displayed windows.

tui new-layout name window weight [window weight...]
Create a new TUI layout. The new layout will be named name, and can be
accessed using the layout command (see below).

Each window parameter is either the name of a window to display, or a window
description. The windows will be displayed from top to bottom in the order
listed.

The names of the windows are the same as the ones given to the focus com-
mand (see below); additional, the status window can be specified. Note that,
because it is of fixed height, the weight assigned to the status window is of no
importance. It is conventional to use ‘0’ here.

A window description looks a bit like an invocation of tui new-layout, and is
of the form {[-horizontal]window weight [window weight. . .]}.

This specifies a sub-layout. If -horizontal is given, the windows in this de-
scription will be arranged side-by-side, rather than top-to-bottom.

Each weight is an integer. It is the weight of this window relative to all the
other windows in the layout. These numbers are used to calculate how much
of the screen is given to each window.

Chapter 25: gdb Text User Interface 537

For example:

(gdb) tui new-layout example src 1 regs 1 status 0 cmd 1

Here, the new layout is called ‘example’. It shows the source and register
windows, followed by the status window, and then finally the command window.
The non-status windows all have the same weight, so the terminal will be split
into three roughly equal sections.

Here is a more complex example, showing a horizontal layout:

(gdb) tui new-layout example {-horizontal src 1 asm 1} 2 status 0 cmd 1

This will result in side-by-side source and assembly windows; with the status
and command window being beneath these, filling the entire width of the ter-
minal. Because they have weight 2, the source and assembly windows will be
twice the height of the command window.

layout name

Changes which TUI windows are displayed. The name parameter controls which
layout is shown. It can be either one of the built-in layout names, or the name
of a layout defined by the user using tui new-layout.

The built-in layouts are as follows:

next Display the next layout.

prev Display the previous layout.

src Display the source and command windows.

asm Display the assembly and command windows.

split Display the source, assembly, and command windows.

regs When in src layout display the register, source, and command win-
dows. When in asm or split layout display the register, assembler,
and command windows.

focus name

Changes which TUI window is currently active for scrolling. The name param-
eter can be any of the following:

next Make the next window active for scrolling.

prev Make the previous window active for scrolling.

src Make the source window active for scrolling.

asm Make the assembly window active for scrolling.

regs Make the register window active for scrolling.

cmd Make the command window active for scrolling.

refresh Refresh the screen. This is similar to typing C-L.

tui reg group

Changes the register group displayed in the tui register window to group. If the
register window is not currently displayed this command will cause the register

538 Debugging with gdb

window to be displayed. The list of register groups, as well as their order is
target specific. The following groups are available on most targets:

next Repeatedly selecting this group will cause the display to cycle
through all of the available register groups.

prev Repeatedly selecting this group will cause the display to cycle
through all of the available register groups in the reverse order to
next.

general Display the general registers.

float Display the floating point registers.

system Display the system registers.

vector Display the vector registers.

all Display all registers.

update Update the source window and the current execution point.

winheight name +count

winheight name -count

Change the height of the window name by count lines. Positive counts increase
the height, while negative counts decrease it. The name parameter can be
the name of any currently visible window. The names of the currently visible
windows can be discovered using info win (see [info win], page 536).

25.6 TUI Configuration Variables

Several configuration variables control the appearance of TUI windows.

set tui border-kind kind

Select the border appearance for the source, assembly and register windows.
The possible values are the following:

space Use a space character to draw the border.

ascii Use ascii characters ‘+’, ‘-’ and ‘|’ to draw the border.

acs Use the Alternate Character Set to draw the border. The border is
drawn using character line graphics if the terminal supports them.

set tui border-mode mode

set tui active-border-mode mode

Select the display attributes for the borders of the inactive windows or the
active window. The mode can be one of the following:

normal Use normal attributes to display the border.

standout Use standout mode.

reverse Use reverse video mode.

half Use half bright mode.

Chapter 25: gdb Text User Interface 539

half-standout

Use half bright and standout mode.

bold Use extra bright or bold mode.

bold-standout

Use extra bright or bold and standout mode.

set tui tab-width nchars

Set the width of tab stops to be nchars characters. This setting affects the
display of TAB characters in the source and assembly windows.

set tui compact-source [on|off]
Set whether the TUI source window is displayed in “compact” form. The default
display uses more space for line numbers and starts the source text at the next
tab stop; the compact display uses only as much space as is needed for the line
numbers in the current file, and only a single space to separate the line numbers
from the source.

Note that the colors of the TUI borders can be controlled using the appropriate set

style commands. See Section 22.5 [Output Styling], page 353.

541

26 Using gdb under gnu Emacs

A special interface allows you to use gnu Emacs to view (and edit) the source files for the
program you are debugging with gdb.

To use this interface, use the command M-x gdb in Emacs. Give the executable file you
want to debug as an argument. This command starts gdb as a subprocess of Emacs, with
input and output through a newly created Emacs buffer.

Running gdb under Emacs can be just like running gdb normally except for two things:

• All “terminal” input and output goes through an Emacs buffer, called the GUD buffer.

This applies both to gdb commands and their output, and to the input and output
done by the program you are debugging.

This is useful because it means that you can copy the text of previous commands and
input them again; you can even use parts of the output in this way.

All the facilities of Emacs’ Shell mode are available for interacting with your program.
In particular, you can send signals the usual way—for example, C-c C-c for an inter-
rupt, C-c C-z for a stop.

• gdb displays source code through Emacs.

Each time gdb displays a stack frame, Emacs automatically finds the source file for
that frame and puts an arrow (‘=>’) at the left margin of the current line. Emacs uses a
separate buffer for source display, and splits the screen to show both your gdb session
and the source.

Explicit gdb list or search commands still produce output as usual, but you probably
have no reason to use them from Emacs.

We call this text command mode. Emacs 22.1, and later, also uses a graphical mode, en-
abled by default, which provides further buffers that can control the execution and describe
the state of your program. See Section “GDB Graphical Interface” in The gnu Emacs
Manual.

If you specify an absolute file name when prompted for the M-x gdb argument, then
Emacs sets your current working directory to where your program resides. If you only
specify the file name, then Emacs sets your current working directory to the directory
associated with the previous buffer. In this case, gdb may find your program by searching
your environment’s PATH variable, but on some operating systems it might not find the
source. So, although the gdb input and output session proceeds normally, the auxiliary
buffer does not display the current source and line of execution.

The initial working directory of gdb is printed on the top line of the GUD buffer and
this serves as a default for the commands that specify files for gdb to operate on. See
Section 18.1 [Commands to Specify Files], page 279.

By default, M-x gdb calls the program called gdb. If you need to call gdb by a different
name (for example, if you keep several configurations around, with different names) you can
customize the Emacs variable gud-gdb-command-name to run the one you want.

In the GUD buffer, you can use these special Emacs commands in addition to the
standard Shell mode commands:

C-h m Describe the features of Emacs’ GUD Mode.

542 Debugging with gdb

C-c C-s Execute to another source line, like the gdb step command; also update the
display window to show the current file and location.

C-c C-n Execute to next source line in this function, skipping all function calls, like the
gdb next command. Then update the display window to show the current file
and location.

C-c C-i Execute one instruction, like the gdb stepi command; update display window
accordingly.

C-c C-f Execute until exit from the selected stack frame, like the gdb finish command.

C-c C-r Continue execution of your program, like the gdb continue command.

C-c < Go up the number of frames indicated by the numeric argument (see Section
“Numeric Arguments” in The gnu Emacs Manual), like the gdb up command.

C-c > Go down the number of frames indicated by the numeric argument, like the
gdb down command.

In any source file, the Emacs command C-x SPC (gud-break) tells gdb to set a break-
point on the source line point is on.

In text command mode, if you type M-x speedbar, Emacs displays a separate frame
which shows a backtrace when the GUD buffer is current. Move point to any frame in the
stack and type RET to make it become the current frame and display the associated source
in the source buffer. Alternatively, click Mouse-2 to make the selected frame become the
current one. In graphical mode, the speedbar displays watch expressions.

If you accidentally delete the source-display buffer, an easy way to get it back is to type
the command f in the gdb buffer, to request a frame display; when you run under Emacs,
this recreates the source buffer if necessary to show you the context of the current frame.

The source files displayed in Emacs are in ordinary Emacs buffers which are visiting the
source files in the usual way. You can edit the files with these buffers if you wish; but keep
in mind that gdb communicates with Emacs in terms of line numbers. If you add or delete
lines from the text, the line numbers that gdb knows cease to correspond properly with the
code.

A more detailed description of Emacs’ interaction with gdb is given in the Emacs manual
(see Section “Debuggers” in The gnu Emacs Manual).

543

27 The gdb/mi Interface

Function and Purpose

gdb/mi is a line based machine oriented text interface to gdb and is activated by specifying
using the --interpreter command line option (see Section 2.1.2 [Mode Options], page 13).
It is specifically intended to support the development of systems which use the debugger as
just one small component of a larger system.

This chapter is a specification of the gdb/mi interface. It is written in the form of a
reference manual.

Note that gdb/mi is still under construction, so some of the features described below
are incomplete and subject to change (see Section 27.6 [gdb/mi Development and Front
Ends], page 549).

Notation and Terminology

This chapter uses the following notation:

• | separates two alternatives.

• [something] indicates that something is optional: it may or may not be given.

• (group)* means that group inside the parentheses may repeat zero or more times.

• (group)+ means that group inside the parentheses may repeat one or more times.

• "string" means a literal string.

27.3 gdb/mi General Design

Interaction of a GDB/MI frontend with gdb involves three parts—commands sent to gdb,
responses to those commands and notifications. Each command results in exactly one
response, indicating either successful completion of the command, or an error. For the
commands that do not resume the target, the response contains the requested information.
For the commands that resume the target, the response only indicates whether the target
was successfully resumed. Notifications is the mechanism for reporting changes in the state
of the target, or in gdb state, that cannot conveniently be associated with a command and
reported as part of that command response.

The important examples of notifications are:

• Exec notifications. These are used to report changes in target state—when a target is
resumed, or stopped. It would not be feasible to include this information in response
of resuming commands, because one resume commands can result in multiple events
in different threads. Also, quite some time may pass before any event happens in
the target, while a frontend needs to know whether the resuming command itself was
successfully executed.

• Console output, and status notifications. Console output notifications are used to
report output of CLI commands, as well as diagnostics for other commands. Status
notifications are used to report the progress of a long-running operation. Naturally,
including this information in command response would mean no output is produced
until the command is finished, which is undesirable.

544 Debugging with gdb

• General notifications. Commands may have various side effects on the gdb or target
state beyond their official purpose. For example, a command may change the selected
thread. Although such changes can be included in command response, using notification
allows for more orthogonal frontend design.

There’s no guarantee that whenever an MI command reports an error, gdb or the target
are in any specific state, and especially, the state is not reverted to the state before the
MI command was processed. Therefore, whenever an MI command results in an error, we
recommend that the frontend refreshes all the information shown in the user interface.

27.3.1 Context management

27.3.1.1 Threads and Frames

In most cases when gdb accesses the target, this access is done in context of a specific thread
and frame (see Section 8.1 [Frames], page 109). Often, even when accessing global data, the
target requires that a thread be specified. The CLI interface maintains the selected thread
and frame, and supplies them to target on each command. This is convenient, because a
command line user would not want to specify that information explicitly on each command,
and because user interacts with gdb via a single terminal, so no confusion is possible as to
what thread and frame are the current ones.

In the case of MI, the concept of selected thread and frame is less useful. First, a
frontend can easily remember this information itself. Second, a graphical frontend can have
more than one window, each one used for debugging a different thread, and the frontend
might want to access additional threads for internal purposes. This increases the risk that
by relying on implicitly selected thread, the frontend may be operating on a wrong one.
Therefore, each MI command should explicitly specify which thread and frame to operate
on. To make it possible, each MI command accepts the ‘--thread’ and ‘--frame’ options,
the value to each is gdb global identifier for thread and frame to operate on.

Usually, each top-level window in a frontend allows the user to select a thread and a
frame, and remembers the user selection for further operations. However, in some cases
gdb may suggest that the current thread or frame be changed. For example, when stop-
ping on a breakpoint it is reasonable to switch to the thread where breakpoint is hit. For
another example, if the user issues the CLI ‘thread’ or ‘frame’ commands via the frontend,
it is desirable to change the frontend’s selection to the one specified by user. gdb commu-
nicates the suggestion to change current thread and frame using the ‘=thread-selected’
notification.

Note that historically, MI shares the selected thread with CLI, so frontends used the
-thread-select to execute commands in the right context. However, getting this to work
right is cumbersome. The simplest way is for frontend to emit -thread-select command
before every command. This doubles the number of commands that need to be sent. The
alternative approach is to suppress -thread-select if the selected thread in gdb is sup-
posed to be identical to the thread the frontend wants to operate on. However, getting this
optimization right can be tricky. In particular, if the frontend sends several commands to
gdb, and one of the commands changes the selected thread, then the behaviour of sub-
sequent commands will change. So, a frontend should either wait for response from such
problematic commands, or explicitly add -thread-select for all subsequent commands.

Chapter 27: The gdb/mi Interface 545

No frontend is known to do this exactly right, so it is suggested to just always pass the
‘--thread’ and ‘--frame’ options.

27.3.1.2 Language

The execution of several commands depends on which language is selected. By default, the
current language (see [show language], page 221) is used. But for commands known to be
language-sensitive, it is recommended to use the ‘--language’ option. This option takes
one argument, which is the name of the language to use while executing the command. For
instance:

-data-evaluate-expression --language c "sizeof (void*)"

^done,value="4"

(gdb)

The valid language names are the same names accepted by the ‘set language’ command
(see Section 15.1.2 [Manually], page 220), excluding ‘auto’, ‘local’ or ‘unknown’.

27.3.2 Asynchronous command execution and non-stop mode

On some targets, gdb is capable of processing MI commands even while the target is
running. This is called asynchronous command execution (see Section 5.5.3 [Background
Execution], page 94). The frontend may specify a preference for asynchronous execution
using the -gdb-set mi-async 1 command, which should be emitted before either running
the executable or attaching to the target. After the frontend has started the executable or
attached to the target, it can find if asynchronous execution is enabled using the -list-

target-features command.

-gdb-set mi-async [on|off]
Set whether MI is in asynchronous mode.

When off, which is the default, MI execution commands (e.g., -exec-

continue) are foreground commands, and gdb waits for the program to stop
before processing further commands.

When on, MI execution commands are background execution commands (e.g.,
-exec-continue becomes the equivalent of the c& CLI command), and so gdb
is capable of processing MI commands even while the target is running.

-gdb-show mi-async

Show whether MI asynchronous mode is enabled.

Note: In gdb version 7.7 and earlier, this option was called target-async instead of
mi-async, and it had the effect of both putting MI in asynchronous mode and making CLI
background commands possible. CLI background commands are now always possible “out
of the box” if the target supports them. The old spelling is kept as a deprecated alias for
backwards compatibility.

Even if gdb can accept a command while target is running, many commands that access
the target do not work when the target is running. Therefore, asynchronous command
execution is most useful when combined with non-stop mode (see Section 5.5.2 [Non-Stop
Mode], page 93). Then, it is possible to examine the state of one thread, while other threads
are running.

When a given thread is running, MI commands that try to access the target in the
context of that thread may not work, or may work only on some targets. In particular,

546 Debugging with gdb

commands that try to operate on thread’s stack will not work, on any target. Commands
that read memory, or modify breakpoints, may work or not work, depending on the target.
Note that even commands that operate on global state, such as print, set, and breakpoint
commands, still access the target in the context of a specific thread, so frontend should try
to find a stopped thread and perform the operation on that thread (using the ‘--thread’
option).

Which commands will work in the context of a running thread is highly target dependent.
However, the two commands -exec-interrupt, to stop a thread, and -thread-info, to
find the state of a thread, will always work.

27.3.3 Thread groups

gdb may be used to debug several processes at the same time. On some platforms, gdb
may support debugging of several hardware systems, each one having several cores with
several different processes running on each core. This section describes the MI mechanism
to support such debugging scenarios.

The key observation is that regardless of the structure of the target, MI can have a global
list of threads, because most commands that accept the ‘--thread’ option do not need to
know what process that thread belongs to. Therefore, it is not necessary to introduce neither
additional ‘--process’ option, nor an notion of the current process in the MI interface. The
only strictly new feature that is required is the ability to find how the threads are grouped
into processes.

To allow the user to discover such grouping, and to support arbitrary hierarchy of ma-
chines/cores/processes, MI introduces the concept of a thread group. Thread group is a
collection of threads and other thread groups. A thread group always has a string identifier,
a type, and may have additional attributes specific to the type. A new command, -list-
thread-groups, returns the list of top-level thread groups, which correspond to processes
that gdb is debugging at the moment. By passing an identifier of a thread group to the
-list-thread-groups command, it is possible to obtain the members of specific thread
group.

To allow the user to easily discover processes, and other objects, he wishes to de-
bug, a concept of available thread group is introduced. Available thread group is an
thread group that gdb is not debugging, but that can be attached to, using the -target-

attach command. The list of available top-level thread groups can be obtained using
‘-list-thread-groups --available’. In general, the content of a thread group may be
only retrieved only after attaching to that thread group.

Thread groups are related to inferiors (see Section 4.9 [Inferiors Connections and Pro-
grams], page 40). Each inferior corresponds to a thread group of a special type ‘process’,
and some additional operations are permitted on such thread groups.

27.4 gdb/mi Command Syntax

27.4.1 gdb/mi Input Syntax

command 7→
cli-command | mi-command

Chapter 27: The gdb/mi Interface 547

cli-command 7→
[token] cli-command nl, where cli-command is any existing gdb CLI com-
mand.

mi-command 7→
[token] "-" operation (" " option)* [" --"] (" " parameter)* nl

token 7→ "any sequence of digits"

option 7→ "-" parameter [" " parameter]

parameter 7→
non-blank-sequence | c-string

operation 7→
any of the operations described in this chapter

non-blank-sequence 7→
anything, provided it doesn’t contain special characters such as "-", nl, """ and
of course " "

c-string 7→
""" seven-bit-iso-c-string-content """

nl 7→ CR | CR-LF

Notes:

• The CLI commands are still handled by the mi interpreter; their output is described
below.

• The token, when present, is passed back when the command finishes.

• Some mi commands accept optional arguments as part of the parameter list. Each
option is identified by a leading ‘-’ (dash) and may be followed by an optional argument
parameter. Options occur first in the parameter list and can be delimited from normal
parameters using ‘--’ (this is useful when some parameters begin with a dash).

Pragmatics:

• We want easy access to the existing CLI syntax (for debugging).

• We want it to be easy to spot a mi operation.

27.4.2 gdb/mi Output Syntax

The output from gdb/mi consists of zero or more out-of-band records followed, optionally,
by a single result record. This result record is for the most recent command. The sequence
of output records is terminated by ‘(gdb)’.

If an input command was prefixed with a token then the corresponding output for that
command will also be prefixed by that same token.

output 7→ (out-of-band-record)* [result-record] "(gdb)" nl

result-record 7→
[token] "^" result-class ("," result)* nl

out-of-band-record 7→
async-record | stream-record

548 Debugging with gdb

async-record 7→
exec-async-output | status-async-output | notify-async-output

exec-async-output 7→
[token] "*" async-output nl

status-async-output 7→
[token] "+" async-output nl

notify-async-output 7→
[token] "=" async-output nl

async-output 7→
async-class ("," result)*

result-class 7→
"done" | "running" | "connected" | "error" | "exit"

async-class 7→
"stopped" | others (where others will be added depending on the needs—this
is still in development).

result 7→ variable "=" value

variable 7→
string

value 7→ const | tuple | list

const 7→ c-string

tuple 7→ "{}" | "{" result ("," result)* "}"

list 7→ "[]" | "[" value ("," value)* "]" | "[" result ("," result)* "]"

stream-record 7→
console-stream-output | target-stream-output | log-stream-output

console-stream-output 7→
"~" c-string nl

target-stream-output 7→
"@" c-string nl

log-stream-output 7→
"&" c-string nl

nl 7→ CR | CR-LF

token 7→ any sequence of digits.

Notes:

• All output sequences end in a single line containing a period.

• The token is from the corresponding request. Note that for all async output, while
the token is allowed by the grammar and may be output by future versions of gdb for
select async output messages, it is generally omitted. Frontends should treat all async
output as reporting general changes in the state of the target and there should be no
need to associate async output to any prior command.

Chapter 27: The gdb/mi Interface 549

• status-async-output contains on-going status information about the progress of a slow
operation. It can be discarded. All status output is prefixed by ‘+’.

• exec-async-output contains asynchronous state change on the target (stopped, started,
disappeared). All async output is prefixed by ‘*’.

• notify-async-output contains supplementary information that the client should handle
(e.g., a new breakpoint information). All notify output is prefixed by ‘=’.

• console-stream-output is output that should be displayed as is in the console. It is the
textual response to a CLI command. All the console output is prefixed by ‘~’.

• target-stream-output is the output produced by the target program. All the target
output is prefixed by ‘@’.

• log-stream-output is output text coming from gdb’s internals, for instance messages
that should be displayed as part of an error log. All the log output is prefixed by ‘&’.

• New gdb/mi commands should only output lists containing values.

See Section 27.7.2 [gdb/mi Stream Records], page 551, for more details about the various
output records.

27.5 gdb/mi Compatibility with CLI

For the developers convenience CLI commands can be entered directly, but there may be
some unexpected behaviour. For example, commands that query the user will behave as if
the user replied yes, breakpoint command lists are not executed and some CLI commands,
such as if, when and define, prompt for further input with ‘>’, which is not valid MI
output.

This feature may be removed at some stage in the future and it is recommended that
front ends use the -interpreter-exec command (see [-interpreter-exec], page 644).

27.6 gdb/mi Development and Front Ends

The application which takes the MI output and presents the state of the program being
debugged to the user is called a front end.

Since gdb/mi is used by a variety of front ends to gdb, changes to the MI interface may
break existing usage. This section describes how the protocol changes and how to request
previous version of the protocol when it does.

Some changes in MI need not break a carefully designed front end, and for these the MI
version will remain unchanged. The following is a list of changes that may occur within one
level, so front ends should parse MI output in a way that can handle them:

• New MI commands may be added.

• New fields may be added to the output of any MI command.

• The range of values for fields with specified values, e.g., in_scope (see [-var-update],
page 602) may be extended.

If the changes are likely to break front ends, the MI version level will be increased by one.
The new versions of the MI protocol are not compatible with the old versions. Old versions
of MI remain available, allowing front ends to keep using them until they are modified to
use the latest MI version.

550 Debugging with gdb

Since --interpreter=mi always points to the latest MI version, it is recommended that
front ends request a specific version of MI when launching gdb (e.g. --interpreter=mi2)
to make sure they get an interpreter with the MI version they expect.

The following table gives a summary of the released versions of the MI interface: the
version number, the version of GDB in which it first appeared and the breaking changes
compared to the previous version.

MI
version

GDB
version

Breaking changes

1 5.1
None

2 6.0 • The -environment-pwd, -environment-directory and -environment-

path commands now returns values using the MI output syntax, rather
than CLI output syntax.

• -var-list-children’s children result field is now a list, rather than a
tuple.

• -var-update’s changelist result field is now a list, rather than a tuple.

3 9.1 • The output of information about multi-location breakpoints has changed in
the responses to the -break-insert and -break-info commands, as well
as in the =breakpoint-created and =breakpoint-modified events. The
multiple locations are now placed in a locations field, whose value is a
list.

If your front end cannot yet migrate to a more recent version of the MI protocol, you
can nevertheless selectively enable specific features available in those recent MI versions,
using the following commands:

-fix-multi-location-breakpoint-output

Use the output for multi-location breakpoints which was introduced by MI 3,
even when using MI versions 2 or 1. This command has no effect when using
MI version 3 or later.

The best way to avoid unexpected changes in MI that might break your front
end is to make your project known to gdb developers and follow development on
gdb@sourceware.org and gdb-patches@sourceware.org.

27.7 gdb/mi Output Records

27.7.1 gdb/mi Result Records

In addition to a number of out-of-band notifications, the response to a gdb/mi command
includes one of the following result indications:

"^done" ["," results]

The synchronous operation was successful, results are the return values.

mailto:gdb@sourceware.org
mailto:gdb-patches@sourceware.org

Chapter 27: The gdb/mi Interface 551

"^running"

This result record is equivalent to ‘^done’. Historically, it was output instead
of ‘^done’ if the command has resumed the target. This behaviour is main-
tained for backward compatibility, but all frontends should treat ‘^done’ and
‘^running’ identically and rely on the ‘*running’ output record to determine
which threads are resumed.

"^connected"

gdb has connected to a remote target.

"^error" "," "msg=" c-string ["," "code=" c-string]

The operation failed. The msg=c-string variable contains the corresponding
error message.

If present, the code=c-string variable provides an error code on which con-
sumers can rely on to detect the corresponding error condition. At present,
only one error code is defined:

‘"undefined-command"’
Indicates that the command causing the error does not exist.

"^exit" gdb has terminated.

27.7.2 gdb/mi Stream Records

gdb internally maintains a number of output streams: the console, the target, and the log.
The output intended for each of these streams is funneled through the gdb/mi interface
using stream records.

Each stream record begins with a unique prefix character which identifies its stream (see
Section 27.4.2 [gdb/mi Output Syntax], page 547). In addition to the prefix, each stream
record contains a string-output. This is either raw text (with an implicit new line) or a
quoted C string (which does not contain an implicit newline).

"~" string-output

The console output stream contains text that should be displayed in the CLI
console window. It contains the textual responses to CLI commands.

"@" string-output

The target output stream contains any textual output from the running target.
This is only present when GDB’s event loop is truly asynchronous, which is
currently only the case for remote targets.

"&" string-output

The log stream contains debugging messages being produced by gdb’s internals.

27.7.3 gdb/mi Async Records

Async records are used to notify the gdb/mi client of additional changes that have occurred.
Those changes can either be a consequence of gdb/mi commands (e.g., a breakpoint mod-
ified) or a result of target activity (e.g., target stopped).

The following is the list of possible async records:

*running,thread-id="thread"

The target is now running. The thread field can be the global thread ID of the
thread that is now running, and it can be ‘all’ if all threads are running. The

552 Debugging with gdb

frontend should assume that no interaction with a running thread is possible
after this notification is produced. The frontend should not assume that this
notification is output only once for any command. gdb may emit this notifi-
cation several times, either for different threads, because it cannot resume all
threads together, or even for a single thread, if the thread must be stepped
though some code before letting it run freely.

*stopped,reason="reason",thread-id="id",stopped-

threads="stopped",core="core"

The target has stopped. The reason field can have one of the following values:

breakpoint-hit

A breakpoint was reached.

watchpoint-trigger

A watchpoint was triggered.

read-watchpoint-trigger

A read watchpoint was triggered.

access-watchpoint-trigger

An access watchpoint was triggered.

function-finished

An -exec-finish or similar CLI command was accomplished.

location-reached

An -exec-until or similar CLI command was accomplished.

watchpoint-scope

A watchpoint has gone out of scope.

end-stepping-range

An -exec-next, -exec-next-instruction, -exec-step, -exec-step-
instruction or similar CLI command was accomplished.

exited-signalled

The inferior exited because of a signal.

exited The inferior exited.

exited-normally

The inferior exited normally.

signal-received

A signal was received by the inferior.

solib-event

The inferior has stopped due to a library being loaded or unloaded.
This can happen when stop-on-solib-events (see Section 18.1
[Files], page 279) is set or when a catch load or catch unload

catchpoint is in use (see Section 5.1.3 [Set Catchpoints], page 68).

fork The inferior has forked. This is reported when catch fork (see
Section 5.1.3 [Set Catchpoints], page 68) has been used.

Chapter 27: The gdb/mi Interface 553

vfork The inferior has vforked. This is reported in when catch vfork

(see Section 5.1.3 [Set Catchpoints], page 68) has been used.

syscall-entry

The inferior entered a system call. This is reported when catch

syscall (see Section 5.1.3 [Set Catchpoints], page 68) has been
used.

syscall-return

The inferior returned from a system call. This is reported when
catch syscall (see Section 5.1.3 [Set Catchpoints], page 68) has
been used.

exec The inferior called exec. This is reported when catch exec (see
Section 5.1.3 [Set Catchpoints], page 68) has been used.

The id field identifies the global thread ID of the thread that directly caused
the stop – for example by hitting a breakpoint. Depending on whether all-
stop mode is in effect (see Section 5.5.1 [All-Stop Mode], page 92), gdb may
either stop all threads, or only the thread that directly triggered the stop. If all
threads are stopped, the stopped field will have the value of "all". Otherwise,
the value of the stopped field will be a list of thread identifiers. Presently, this
list will always include a single thread, but frontend should be prepared to see
several threads in the list. The core field reports the processor core on which
the stop event has happened. This field may be absent if such information is
not available.

=thread-group-added,id="id"

=thread-group-removed,id="id"

A thread group was either added or removed. The id field contains the gdb
identifier of the thread group. When a thread group is added, it generally might
not be associated with a running process. When a thread group is removed, its
id becomes invalid and cannot be used in any way.

=thread-group-started,id="id",pid="pid"

A thread group became associated with a running program, either because the
program was just started or the thread group was attached to a program. The
id field contains the gdb identifier of the thread group. The pid field contains
process identifier, specific to the operating system.

=thread-group-exited,id="id"[,exit-code="code"]

A thread group is no longer associated with a running program, either because
the program has exited, or because it was detached from. The id field contains
the gdb identifier of the thread group. The code field is the exit code of the
inferior; it exists only when the inferior exited with some code.

=thread-created,id="id",group-id="gid"

=thread-exited,id="id",group-id="gid"

A thread either was created, or has exited. The id field contains the global gdb
identifier of the thread. The gid field identifies the thread group this thread
belongs to.

554 Debugging with gdb

=thread-selected,id="id"[,frame="frame"]

Informs that the selected thread or frame were changed. This notification is not
emitted as result of the -thread-select or -stack-select-frame commands,
but is emitted whenever an MI command that is not documented to change
the selected thread and frame actually changes them. In particular, invoking,
directly or indirectly (via user-defined command), the CLI thread or frame

commands, will generate this notification. Changing the thread or frame from
another user interface (see Chapter 24 [Interpreters], page 531) will also generate
this notification.

The frame field is only present if the newly selected thread is stopped. See
Section 27.7.5 [GDB/MI Frame Information], page 558, for the format of its
value.

We suggest that in response to this notification, front ends highlight the selected
thread and cause subsequent commands to apply to that thread.

=library-loaded,...

Reports that a new library file was loaded by the program. This notification has
5 fields—id, target-name, host-name, symbols-loaded and ranges. The id field
is an opaque identifier of the library. For remote debugging case, target-name
and host-name fields give the name of the library file on the target, and on the
host respectively. For native debugging, both those fields have the same value.
The symbols-loaded field is emitted only for backward compatibility and should
not be relied on to convey any useful information. The thread-group field, if
present, specifies the id of the thread group in whose context the library was
loaded. If the field is absent, it means the library was loaded in the context
of all present thread groups. The ranges field specifies the ranges of addresses
belonging to this library.

=library-unloaded,...

Reports that a library was unloaded by the program. This notification has
3 fields—id, target-name and host-name with the same meaning as for the
=library-loaded notification. The thread-group field, if present, specifies the
id of the thread group in whose context the library was unloaded. If the field is
absent, it means the library was unloaded in the context of all present thread
groups.

=traceframe-changed,num=tfnum,tracepoint=tpnum

=traceframe-changed,end

Reports that the trace frame was changed and its new number is tfnum. The
number of the tracepoint associated with this trace frame is tpnum.

=tsv-created,name=name,initial=initial

Reports that the new trace state variable name is created with initial value
initial.

=tsv-deleted,name=name

=tsv-deleted

Reports that the trace state variable name is deleted or all trace state variables
are deleted.

Chapter 27: The gdb/mi Interface 555

=tsv-modified,name=name,initial=initial[,current=current]

Reports that the trace state variable name is modified with the initial value
initial. The current value current of trace state variable is optional and is
reported if the current value of trace state variable is known.

=breakpoint-created,bkpt={...}

=breakpoint-modified,bkpt={...}

=breakpoint-deleted,id=number

Reports that a breakpoint was created, modified, or deleted, respectively. Only
user-visible breakpoints are reported to the MI user.

The bkpt argument is of the same form as returned by the various breakpoint
commands; See Section 27.10 [GDB/MI Breakpoint Commands], page 561. The
number is the ordinal number of the breakpoint.

Note that if a breakpoint is emitted in the result record of a command, then it
will not also be emitted in an async record.

=record-started,thread-group="id",method="method"[,format="format"]

=record-stopped,thread-group="id"

Execution log recording was either started or stopped on an inferior. The id is
the gdb identifier of the thread group corresponding to the affected inferior.

The method field indicates the method used to record execution. If the method
in use supports multiple recording formats, format will be present and con-
tain the currently used format. See Chapter 7 [Process Record and Replay],
page 101, for existing method and format values.

=cmd-param-changed,param=param,value=value

Reports that a parameter of the command set param is changed to value. In
the multi-word set command, the param is the whole parameter list to set

command. For example, In command set check type on, param is check type

and value is on.

=memory-changed,thread-group=id,addr=addr,len=len[,type="code"]

Reports that bytes from addr to data + len were written in an inferior. The
id is the identifier of the thread group corresponding to the affected inferior.
The optional type="code" part is reported if the memory written to holds
executable code.

27.7.4 gdb/mi Breakpoint Information

When gdb reports information about a breakpoint, a tracepoint, a watchpoint, or a catch-
point, it uses a tuple with the following fields:

number The breakpoint number.

type The type of the breakpoint. For ordinary breakpoints this will be ‘breakpoint’,
but many values are possible.

catch-type

If the type of the breakpoint is ‘catchpoint’, then this indicates the exact type
of catchpoint.

556 Debugging with gdb

disp This is the breakpoint disposition—either ‘del’, meaning that the breakpoint
will be deleted at the next stop, or ‘keep’, meaning that the breakpoint will
not be deleted.

enabled This indicates whether the breakpoint is enabled, in which case the value is ‘y’,
or disabled, in which case the value is ‘n’. Note that this is not the same as the
field enable.

addr The address of the breakpoint. This may be a hexidecimal number, giving
the address; or the string ‘<PENDING>’, for a pending breakpoint; or the string
‘<MULTIPLE>’, for a breakpoint with multiple locations. This field will not be
present if no address can be determined. For example, a watchpoint does not
have an address.

addr_flags

Optional field containing any flags related to the address. These flags are
architecture-dependent; see Section 21.4 [Architectures], page 340, for their
meaning for a particular CPU.

func If known, the function in which the breakpoint appears. If not known, this field
is not present.

filename The name of the source file which contains this function, if known. If not known,
this field is not present.

fullname The full file name of the source file which contains this function, if known. If
not known, this field is not present.

line The line number at which this breakpoint appears, if known. If not known, this
field is not present.

at If the source file is not known, this field may be provided. If provided, this
holds the address of the breakpoint, possibly followed by a symbol name.

pending If this breakpoint is pending, this field is present and holds the text used to set
the breakpoint, as entered by the user.

evaluated-by

Where this breakpoint’s condition is evaluated, either ‘host’ or ‘target’.

thread If this is a thread-specific breakpoint, then this identifies the thread in which
the breakpoint can trigger.

lane If this is a thread and SIMD lane specific breakpoint, then this identifies the
thread’s SIMD lane in which the breakpoint can trigger.

task If this breakpoint is restricted to a particular Ada task, then this field will hold
the task identifier.

cond If the breakpoint is conditional, this is the condition expression.

ignore The ignore count of the breakpoint.

enable The enable count of the breakpoint.

traceframe-usage

FIXME.

Chapter 27: The gdb/mi Interface 557

static-tracepoint-marker-string-id

For a static tracepoint, the name of the static tracepoint marker.

mask For a masked watchpoint, this is the mask.

pass A tracepoint’s pass count.

original-location

The location of the breakpoint as originally specified by the user. This field is
optional.

times The number of times the breakpoint has been hit.

installed

This field is only given for tracepoints. This is either ‘y’, meaning that the
tracepoint is installed, or ‘n’, meaning that it is not.

what Some extra data, the exact contents of which are type-dependent.

execution-mask

SIMD lanes execution mask of the thread. Value is in hexadecimal format. This
field is only present if the thread has SIMD lanes.

simd-width

SIMD lanes width of the thread. This field is only present if the thread has
SIMD lanes.

hit-lanes-mask

Mask of the SIMD lanes which were hit by the breakpoint. Value is in hexadec-
imal format. This field is only present if the thread has SIMD lanes.

locations

This field is present if the breakpoint has multiple locations. It is also excep-
tionally present if the breakpoint is enabled and has a single, disabled location.

The value is a list of locations. The format of a location is described below.

A location in a multi-location breakpoint is represented as a tuple with the following
fields:

number The location number as a dotted pair, like ‘1.2’. The first digit is the number
of the parent breakpoint. The second digit is the number of the location within
that breakpoint.

enabled There are three possible values, with the following meanings:

y The location is enabled.

n The location is disabled by the user.

N The location is disabled because the breakpoint condition is invalid
at this location.

addr The address of this location as an hexidecimal number.

addr_flags

Optional field containing any flags related to the address. These flags are
architecture-dependent; see Section 21.4 [Architectures], page 340, for their
meaning for a particular CPU.

558 Debugging with gdb

func If known, the function in which the location appears. If not known, this field
is not present.

file The name of the source file which contains this location, if known. If not known,
this field is not present.

fullname The full file name of the source file which contains this location, if known. If
not known, this field is not present.

line The line number at which this location appears, if known. If not known, this
field is not present.

thread-groups

The thread groups this location is in.

For example, here is what the output of -break-insert (see Section 27.10 [GDB/MI
Breakpoint Commands], page 561) might be:

-> -break-insert main

<- ^done,bkpt={number="1",type="breakpoint",disp="keep",

enabled="y",addr="0x08048564",func="main",file="myprog.c",

fullname="/home/nickrob/myprog.c",line="68",thread-groups=["i1"],

times="0"}

<- (gdb)

27.7.5 gdb/mi Frame Information

Response from many MI commands includes an information about stack frame. This infor-
mation is a tuple that may have the following fields:

level The level of the stack frame. The innermost frame has the level of zero. This
field is always present.

func The name of the function corresponding to the frame. This field may be absent
if gdb is unable to determine the function name.

addr The code address for the frame. This field is always present.

addr_flags

Optional field containing any flags related to the address. These flags are
architecture-dependent; see Section 21.4 [Architectures], page 340, for their
meaning for a particular CPU.

file The name of the source files that correspond to the frame’s code address. This
field may be absent.

line The source line corresponding to the frames’ code address. This field may be
absent.

from The name of the binary file (either executable or shared library) the corresponds
to the frame’s code address. This field may be absent.

27.7.6 gdb/mi Thread Information

Whenever gdb has to report an information about a thread, it uses a tuple with the following
fields. The fields are always present unless stated otherwise.

id The global numeric id assigned to the thread by gdb.

Chapter 27: The gdb/mi Interface 559

target-id

The target-specific string identifying the thread.

details Additional information about the thread provided by the target. It is supposed
to be human-readable and not interpreted by the frontend. This field is optional.

name The name of the thread. If the user specified a name using the thread name

command, then this name is given. Otherwise, if gdb can extract the thread
name from the target, then that name is given. If gdb cannot find the thread
name, then this field is omitted.

state The execution state of the thread, either ‘stopped’ or ‘running’, depending on
whether the thread is presently running.

frame The stack frame currently executing in the thread. This field is only present
if the thread is stopped. Its format is documented in Section 27.7.5 [GDB/MI
Frame Information], page 558.

core The value of this field is an integer number of the processor core the thread was
last seen on. This field is optional.

execution-mask

SIMD lanes execution mask of the thread. Value is in hexadecimal format. This
field is only present if the thread has SIMD lanes.

simd-width

SIMD lanes width of the thread. This field is only present if the thread has
SIMD lanes.

hit-lanes-mask

If the thread is stopped at a breakpoint, this field contains a hexadecimal mask
of the SIMD lanes which were hit by the breakpoint. This field is only present
if the thread has SIMD lanes.

27.7.7 gdb/mi Ada Exception Information

Whenever a *stopped record is emitted because the program stopped after hitting an
exception catchpoint (see Section 5.1.3 [Set Catchpoints], page 68), gdb provides the name
of the exception that was raised via the exception-name field. Also, for exceptions that were
raised with an exception message, gdb provides that message via the exception-message
field.

27.8 Simple Examples of gdb/mi Interaction

This subsection presents several simple examples of interaction using the gdb/mi interface.
In these examples, ‘->’ means that the following line is passed to gdb/mi as input, while
‘<-’ means the output received from gdb/mi.

Note the line breaks shown in the examples are here only for readability, they don’t
appear in the real output.

Setting a Breakpoint

Setting a breakpoint generates synchronous output which contains detailed information of
the breakpoint.

560 Debugging with gdb

-> -break-insert main

<- ^done,bkpt={number="1",type="breakpoint",disp="keep",

enabled="y",addr="0x08048564",func="main",file="myprog.c",

fullname="/home/nickrob/myprog.c",line="68",thread-groups=["i1"],

times="0"}

<- (gdb)

Program Execution

Program execution generates asynchronous records and MI gives the reason that execution
stopped.

-> -exec-run

<- ^running

<- (gdb)

<- *stopped,reason="breakpoint-hit",disp="keep",bkptno="1",thread-id="0",

frame={addr="0x08048564",func="main",

args=[{name="argc",value="1"},{name="argv",value="0xbfc4d4d4"}],

file="myprog.c",fullname="/home/nickrob/myprog.c",line="68",

arch="i386:x86_64"}

<- (gdb)

-> -exec-continue

<- ^running

<- (gdb)

<- *stopped,reason="exited-normally"

<- (gdb)

Quitting gdb

Quitting gdb just prints the result class ‘^exit’.
-> (gdb)

<- -gdb-exit

<- ^exit

Please note that ‘^exit’ is printed immediately, but it might take some time for gdb
to actually exit. During that time, gdb performs necessary cleanups, including killing
programs being debugged or disconnecting from debug hardware, so the frontend should
wait till gdb exits and should only forcibly kill gdb if it fails to exit in reasonable time.

A Bad Command

Here’s what happens if you pass a non-existent command:
-> -rubbish

<- ^error,msg="Undefined MI command: rubbish"

<- (gdb)

27.9 gdb/mi Command Description Format

The remaining sections describe blocks of commands. Each block of commands is laid out
in a fashion similar to this section.

Motivation

The motivation for this collection of commands.

Introduction

A brief introduction to this collection of commands as a whole.

Chapter 27: The gdb/mi Interface 561

Commands

For each command in the block, the following is described:

Synopsis
-command args...

Result

gdb Command

The corresponding gdb CLI command(s), if any.

Example

Example(s) formatted for readability. Some of the described commands have not been
implemented yet and these are labeled N.A. (not available).

27.10 gdb/mi Breakpoint Commands

This section documents gdb/mi commands for manipulating breakpoints.

The -break-after Command

Synopsis
-break-after number count

The breakpoint number number is not in effect until it has been hit count times. To see
how this is reflected in the output of the ‘-break-list’ command, see the description of
the ‘-break-list’ command below.

gdb Command

The corresponding gdb command is ‘ignore’.

Example
(gdb)

-break-insert main

^done,bkpt={number="1",type="breakpoint",disp="keep",

enabled="y",addr="0x000100d0",func="main",file="hello.c",

fullname="/home/foo/hello.c",line="5",thread-groups=["i1"],

times="0"}

(gdb)

-break-after 1 3

~

^done

(gdb)

-break-list

^done,BreakpointTable={nr_rows="1",nr_cols="6",

hdr=[{width="3",alignment="-1",col_name="number",colhdr="Num"},

{width="14",alignment="-1",col_name="type",colhdr="Type"},

{width="4",alignment="-1",col_name="disp",colhdr="Disp"},

{width="3",alignment="-1",col_name="enabled",colhdr="Enb"},

{width="10",alignment="-1",col_name="addr",colhdr="Address"},

{width="40",alignment="2",col_name="what",colhdr="What"}],

562 Debugging with gdb

body=[bkpt={number="1",type="breakpoint",disp="keep",enabled="y",

addr="0x000100d0",func="main",file="hello.c",fullname="/home/foo/hello.c",

line="5",thread-groups=["i1"],times="0",ignore="3"}]}

(gdb)

The -break-commands Command

Synopsis
-break-commands number [command1 ... commandN]

Specifies the CLI commands that should be executed when breakpoint number is hit.
The parameters command1 to commandN are the commands. If no command is specified,
any previously-set commands are cleared. See Section 5.1.7 [Break Commands], page 76.
Typical use of this functionality is tracing a program, that is, printing of values of some
variables whenever breakpoint is hit and then continuing.

gdb Command

The corresponding gdb command is ‘commands’.

Example
(gdb)

-break-insert main

^done,bkpt={number="1",type="breakpoint",disp="keep",

enabled="y",addr="0x000100d0",func="main",file="hello.c",

fullname="/home/foo/hello.c",line="5",thread-groups=["i1"],

times="0"}

(gdb)

-break-commands 1 "print v" "continue"

^done

(gdb)

The -break-condition Command

Synopsis
-break-condition [--force] number [expr]

Breakpoint number will stop the program only if the condition in expr is true. The con-
dition becomes part of the ‘-break-list’ output (see the description of the ‘-break-list’
command below). If the ‘--force’ flag is passed, the condition is forcibly defined even
when it is invalid for all locations of breakpoint number. If the expr argument is omitted,
breakpoint number becomes unconditional.

gdb Command

The corresponding gdb command is ‘condition’.

Example
(gdb)

-break-condition 1 1

^done

(gdb)

-break-list

^done,BreakpointTable={nr_rows="1",nr_cols="6",

Chapter 27: The gdb/mi Interface 563

hdr=[{width="3",alignment="-1",col_name="number",colhdr="Num"},

{width="14",alignment="-1",col_name="type",colhdr="Type"},

{width="4",alignment="-1",col_name="disp",colhdr="Disp"},

{width="3",alignment="-1",col_name="enabled",colhdr="Enb"},

{width="10",alignment="-1",col_name="addr",colhdr="Address"},

{width="40",alignment="2",col_name="what",colhdr="What"}],

body=[bkpt={number="1",type="breakpoint",disp="keep",enabled="y",

addr="0x000100d0",func="main",file="hello.c",fullname="/home/foo/hello.c",

line="5",cond="1",thread-groups=["i1"],times="0",ignore="3"}]}

(gdb)

The -break-delete Command

Synopsis
-break-delete (breakpoint)+

Delete the breakpoint(s) whose number(s) are specified in the argument list. This is
obviously reflected in the breakpoint list.

gdb Command

The corresponding gdb command is ‘delete’.

Example
(gdb)

-break-delete 1

^done

(gdb)

-break-list

^done,BreakpointTable={nr_rows="0",nr_cols="6",

hdr=[{width="3",alignment="-1",col_name="number",colhdr="Num"},

{width="14",alignment="-1",col_name="type",colhdr="Type"},

{width="4",alignment="-1",col_name="disp",colhdr="Disp"},

{width="3",alignment="-1",col_name="enabled",colhdr="Enb"},

{width="10",alignment="-1",col_name="addr",colhdr="Address"},

{width="40",alignment="2",col_name="what",colhdr="What"}],

body=[]}

(gdb)

The -break-disable Command

Synopsis
-break-disable (breakpoint)+

Disable the named breakpoint(s). The field ‘enabled’ in the break list is now set to ‘n’
for the named breakpoint(s).

gdb Command

The corresponding gdb command is ‘disable’.

Example
(gdb)

-break-disable 2

^done

(gdb)

564 Debugging with gdb

-break-list

^done,BreakpointTable={nr_rows="1",nr_cols="6",

hdr=[{width="3",alignment="-1",col_name="number",colhdr="Num"},

{width="14",alignment="-1",col_name="type",colhdr="Type"},

{width="4",alignment="-1",col_name="disp",colhdr="Disp"},

{width="3",alignment="-1",col_name="enabled",colhdr="Enb"},

{width="10",alignment="-1",col_name="addr",colhdr="Address"},

{width="40",alignment="2",col_name="what",colhdr="What"}],

body=[bkpt={number="2",type="breakpoint",disp="keep",enabled="n",

addr="0x000100d0",func="main",file="hello.c",fullname="/home/foo/hello.c",

line="5",thread-groups=["i1"],times="0"}]}

(gdb)

The -break-enable Command

Synopsis
-break-enable (breakpoint)+

Enable (previously disabled) breakpoint(s).

gdb Command

The corresponding gdb command is ‘enable’.

Example
(gdb)

-break-enable 2

^done

(gdb)

-break-list

^done,BreakpointTable={nr_rows="1",nr_cols="6",

hdr=[{width="3",alignment="-1",col_name="number",colhdr="Num"},

{width="14",alignment="-1",col_name="type",colhdr="Type"},

{width="4",alignment="-1",col_name="disp",colhdr="Disp"},

{width="3",alignment="-1",col_name="enabled",colhdr="Enb"},

{width="10",alignment="-1",col_name="addr",colhdr="Address"},

{width="40",alignment="2",col_name="what",colhdr="What"}],

body=[bkpt={number="2",type="breakpoint",disp="keep",enabled="y",

addr="0x000100d0",func="main",file="hello.c",fullname="/home/foo/hello.c",

line="5",thread-groups=["i1"],times="0"}]}

(gdb)

The -break-info Command

Synopsis
-break-info breakpoint

Get information about a single breakpoint.

The result is a table of breakpoints. See Section 27.7.4 [GDB/MI Breakpoint Informa-
tion], page 555, for details on the format of each breakpoint in the table.

gdb Command

The corresponding gdb command is ‘info break breakpoint’.

Chapter 27: The gdb/mi Interface 565

Example

N.A.

The -break-insert Command

Synopsis
-break-insert [-t] [-h] [-f] [-d] [-a] [--qualified]

[-c condition] [--force-condition] [-i ignore-count]

[-p thread-id] [-l simd-lane-id] [location]

If specified, location, can be one of:

linespec location
A linespec location. See Section 9.2.1 [Linespec Locations], page 122.

explicit location
An explicit location. gdb/mi explicit locations are analogous to the CLI’s ex-
plicit locations using the option names listed below. See Section 9.2.2 [Explicit
Locations], page 123.

‘--source filename’
The source file name of the location. This option requires the use
of either ‘--function’ or ‘--line’.

‘--function function’
The name of a function or method.

‘--label label’
The name of a label.

‘--line lineoffset’
An absolute or relative line offset from the start of the location.

address location
An address location, *address. See Section 9.2.3 [Address Locations], page 124.

The possible optional parameters of this command are:

‘-t’ Insert a temporary breakpoint.

‘-h’ Insert a hardware breakpoint.

‘-f’ If location cannot be parsed (for example if it refers to unknown files or func-
tions), create a pending breakpoint. Without this flag, gdb will report an error,
and won’t create a breakpoint, if location cannot be parsed.

‘-d’ Create a disabled breakpoint.

‘-a’ Create a tracepoint. See Chapter 13 [Tracepoints], page 195. When this pa-
rameter is used together with ‘-h’, a fast tracepoint is created.

‘-c condition’
Make the breakpoint conditional on condition.

‘--force-condition’
Forcibly define the breakpoint even if the condition is invalid at all of the
breakpoint locations.

566 Debugging with gdb

‘-i ignore-count’
Initialize the ignore-count.

‘-p thread-id’
Restrict the breakpoint to the thread with the specified global thread-id.

‘-l simd-lane-id’
Restrict the breakpoint to the thread’s SIMD lane with the specified simd-lane-
id.

‘--qualified’
This option makes gdb interpret a function name specified as a complete fully-
qualified name.

Result

See Section 27.7.4 [GDB/MI Breakpoint Information], page 555, for details on the format
of the resulting breakpoint.

Note: this format is open to change.

gdb Command

The corresponding gdb commands are ‘break’, ‘tbreak’, ‘hbreak’, and ‘thbreak’.

Example
(gdb)

-break-insert main

^done,bkpt={number="1",addr="0x0001072c",file="recursive2.c",

fullname="/home/foo/recursive2.c,line="4",thread-groups=["i1"],

times="0"}

(gdb)

-break-insert -t foo

^done,bkpt={number="2",addr="0x00010774",file="recursive2.c",

fullname="/home/foo/recursive2.c,line="11",thread-groups=["i1"],

times="0"}

(gdb)

-break-list

^done,BreakpointTable={nr_rows="2",nr_cols="6",

hdr=[{width="3",alignment="-1",col_name="number",colhdr="Num"},

{width="14",alignment="-1",col_name="type",colhdr="Type"},

{width="4",alignment="-1",col_name="disp",colhdr="Disp"},

{width="3",alignment="-1",col_name="enabled",colhdr="Enb"},

{width="10",alignment="-1",col_name="addr",colhdr="Address"},

{width="40",alignment="2",col_name="what",colhdr="What"}],

body=[bkpt={number="1",type="breakpoint",disp="keep",enabled="y",

addr="0x0001072c", func="main",file="recursive2.c",

fullname="/home/foo/recursive2.c,"line="4",thread-groups=["i1"],

times="0"},

bkpt={number="2",type="breakpoint",disp="del",enabled="y",

addr="0x00010774",func="foo",file="recursive2.c",

fullname="/home/foo/recursive2.c",line="11",thread-groups=["i1"],

times="0"}]}

(gdb)

The -dprintf-insert Command

Chapter 27: The gdb/mi Interface 567

Synopsis
-dprintf-insert [-t] [-f] [-d] [--qualified]

[-c condition] [--force-condition] [-i ignore-count]

[-p thread-id] [location] [format]

[argument]

If supplied, location and --qualified may be specified the same way as for the -break-

insert command. See [-break-insert], page 565.

The possible optional parameters of this command are:

‘-t’ Insert a temporary breakpoint.

‘-f’ If location cannot be parsed (for example, if it refers to unknown files or func-
tions), create a pending breakpoint. Without this flag, gdb will report an error,
and won’t create a breakpoint, if location cannot be parsed.

‘-d’ Create a disabled breakpoint.

‘-c condition’
Make the breakpoint conditional on condition.

‘--force-condition’
Forcibly define the breakpoint even if the condition is invalid at all of the
breakpoint locations.

‘-i ignore-count’
Set the ignore count of the breakpoint (see Section 5.1.6 [Conditions], page 74)
to ignore-count.

‘-p thread-id’
Restrict the breakpoint to the thread with the specified global thread-id.

Result

See Section 27.7.4 [GDB/MI Breakpoint Information], page 555, for details on the format
of the resulting breakpoint.

gdb Command

The corresponding gdb command is ‘dprintf’.

Example
(gdb)

4-dprintf-insert foo "At foo entry\n"

4^done,bkpt={number="1",type="dprintf",disp="keep",enabled="y",

addr="0x000000000040061b",func="foo",file="mi-dprintf.c",

fullname="mi-dprintf.c",line="25",thread-groups=["i1"],

times="0",script={"printf \"At foo entry\\n\"","continue"},

original-location="foo"}

(gdb)

5-dprintf-insert 26 "arg=%d, g=%d\n" arg g

5^done,bkpt={number="2",type="dprintf",disp="keep",enabled="y",

addr="0x000000000040062a",func="foo",file="mi-dprintf.c",

fullname="mi-dprintf.c",line="26",thread-groups=["i1"],

times="0",script={"printf \"arg=%d, g=%d\\n\", arg, g","continue"},

original-location="mi-dprintf.c:26"}

(gdb)

568 Debugging with gdb

The -break-list Command

Synopsis
-break-list

Displays the list of inserted breakpoints, showing the following fields:

‘Number’ number of the breakpoint

‘Type’ type of the breakpoint: ‘breakpoint’ or ‘watchpoint’

‘Disposition’
should the breakpoint be deleted or disabled when it is hit: ‘keep’ or ‘nokeep’

‘Enabled’ is the breakpoint enabled or no: ‘y’ or ‘n’

‘Address’ memory location at which the breakpoint is set

‘What’ logical location of the breakpoint, expressed by function name, file name, line
number

‘Thread-groups’
list of thread groups to which this breakpoint applies

‘Times’ number of times the breakpoint has been hit

If there are no breakpoints or watchpoints, the BreakpointTable body field is an empty
list.

gdb Command

The corresponding gdb command is ‘info break’.

Example
(gdb)

-break-list

^done,BreakpointTable={nr_rows="2",nr_cols="6",

hdr=[{width="3",alignment="-1",col_name="number",colhdr="Num"},

{width="14",alignment="-1",col_name="type",colhdr="Type"},

{width="4",alignment="-1",col_name="disp",colhdr="Disp"},

{width="3",alignment="-1",col_name="enabled",colhdr="Enb"},

{width="10",alignment="-1",col_name="addr",colhdr="Address"},

{width="40",alignment="2",col_name="what",colhdr="What"}],

body=[bkpt={number="1",type="breakpoint",disp="keep",enabled="y",

addr="0x000100d0",func="main",file="hello.c",line="5",thread-groups=["i1"],

times="0"},

bkpt={number="2",type="breakpoint",disp="keep",enabled="y",

addr="0x00010114",func="foo",file="hello.c",fullname="/home/foo/hello.c",

line="13",thread-groups=["i1"],times="0"}]}

(gdb)

Here’s an example of the result when there are no breakpoints:

(gdb)

-break-list

^done,BreakpointTable={nr_rows="0",nr_cols="6",

hdr=[{width="3",alignment="-1",col_name="number",colhdr="Num"},

{width="14",alignment="-1",col_name="type",colhdr="Type"},

{width="4",alignment="-1",col_name="disp",colhdr="Disp"},

Chapter 27: The gdb/mi Interface 569

{width="3",alignment="-1",col_name="enabled",colhdr="Enb"},

{width="10",alignment="-1",col_name="addr",colhdr="Address"},

{width="40",alignment="2",col_name="what",colhdr="What"}],

body=[]}

(gdb)

The -break-passcount Command

Synopsis
-break-passcount tracepoint-number passcount

Set the passcount for tracepoint tracepoint-number to passcount. If the breakpoint
referred to by tracepoint-number is not a tracepoint, error is emitted. This corresponds to
CLI command ‘passcount’.

The -break-watch Command

Synopsis
-break-watch [-a | -r]

Create a watchpoint. With the ‘-a’ option it will create an access watchpoint, i.e., a
watchpoint that triggers either on a read from or on a write to the memory location. With
the ‘-r’ option, the watchpoint created is a read watchpoint, i.e., it will trigger only when
the memory location is accessed for reading. Without either of the options, the watchpoint
created is a regular watchpoint, i.e., it will trigger when the memory location is accessed
for writing. See Section 5.1.2 [Setting Watchpoints], page 65.

Note that ‘-break-list’ will report a single list of watchpoints and breakpoints inserted.

gdb Command

The corresponding gdb commands are ‘watch’, ‘awatch’, and ‘rwatch’.

Example

Setting a watchpoint on a variable in the main function:

(gdb)

-break-watch x

^done,wpt={number="2",exp="x"}

(gdb)

-exec-continue

^running

(gdb)

*stopped,reason="watchpoint-trigger",wpt={number="2",exp="x"},

value={old="-268439212",new="55"},

frame={func="main",args=[],file="recursive2.c",

fullname="/home/foo/bar/recursive2.c",line="5",arch="i386:x86_64"}

(gdb)

Setting a watchpoint on a variable local to a function. gdb will stop the program
execution twice: first for the variable changing value, then for the watchpoint going out of
scope.

(gdb)

-break-watch C

^done,wpt={number="5",exp="C"}

570 Debugging with gdb

(gdb)

-exec-continue

^running

(gdb)

*stopped,reason="watchpoint-trigger",

wpt={number="5",exp="C"},value={old="-276895068",new="3"},

frame={func="callee4",args=[],

file="../../../devo/gdb/testsuite/gdb.mi/basics.c",

fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="13",

arch="i386:x86_64"}

(gdb)

-exec-continue

^running

(gdb)

*stopped,reason="watchpoint-scope",wpnum="5",

frame={func="callee3",args=[{name="strarg",

value="0x11940 \"A string argument.\""}],

file="../../../devo/gdb/testsuite/gdb.mi/basics.c",

fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="18",

arch="i386:x86_64"}

(gdb)

Listing breakpoints and watchpoints, at different points in the program execution. Note
that once the watchpoint goes out of scope, it is deleted.

(gdb)

-break-watch C

^done,wpt={number="2",exp="C"}

(gdb)

-break-list

^done,BreakpointTable={nr_rows="2",nr_cols="6",

hdr=[{width="3",alignment="-1",col_name="number",colhdr="Num"},

{width="14",alignment="-1",col_name="type",colhdr="Type"},

{width="4",alignment="-1",col_name="disp",colhdr="Disp"},

{width="3",alignment="-1",col_name="enabled",colhdr="Enb"},

{width="10",alignment="-1",col_name="addr",colhdr="Address"},

{width="40",alignment="2",col_name="what",colhdr="What"}],

body=[bkpt={number="1",type="breakpoint",disp="keep",enabled="y",

addr="0x00010734",func="callee4",

file="../../../devo/gdb/testsuite/gdb.mi/basics.c",

fullname="/home/foo/devo/gdb/testsuite/gdb.mi/basics.c"line="8",thread-groups=["i1"],

times="1"},

bkpt={number="2",type="watchpoint",disp="keep",

enabled="y",addr="",what="C",thread-groups=["i1"],times="0"}]}

(gdb)

-exec-continue

^running

(gdb)

*stopped,reason="watchpoint-trigger",wpt={number="2",exp="C"},

value={old="-276895068",new="3"},

frame={func="callee4",args=[],

file="../../../devo/gdb/testsuite/gdb.mi/basics.c",

fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="13",

arch="i386:x86_64"}

(gdb)

-break-list

^done,BreakpointTable={nr_rows="2",nr_cols="6",

hdr=[{width="3",alignment="-1",col_name="number",colhdr="Num"},

{width="14",alignment="-1",col_name="type",colhdr="Type"},

Chapter 27: The gdb/mi Interface 571

{width="4",alignment="-1",col_name="disp",colhdr="Disp"},

{width="3",alignment="-1",col_name="enabled",colhdr="Enb"},

{width="10",alignment="-1",col_name="addr",colhdr="Address"},

{width="40",alignment="2",col_name="what",colhdr="What"}],

body=[bkpt={number="1",type="breakpoint",disp="keep",enabled="y",

addr="0x00010734",func="callee4",

file="../../../devo/gdb/testsuite/gdb.mi/basics.c",

fullname="/home/foo/devo/gdb/testsuite/gdb.mi/basics.c",line="8",thread-groups=["i1"],

times="1"},

bkpt={number="2",type="watchpoint",disp="keep",

enabled="y",addr="",what="C",thread-groups=["i1"],times="-5"}]}

(gdb)

-exec-continue

^running

^done,reason="watchpoint-scope",wpnum="2",

frame={func="callee3",args=[{name="strarg",

value="0x11940 \"A string argument.\""}],

file="../../../devo/gdb/testsuite/gdb.mi/basics.c",

fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="18",

arch="i386:x86_64"}

(gdb)

-break-list

^done,BreakpointTable={nr_rows="1",nr_cols="6",

hdr=[{width="3",alignment="-1",col_name="number",colhdr="Num"},

{width="14",alignment="-1",col_name="type",colhdr="Type"},

{width="4",alignment="-1",col_name="disp",colhdr="Disp"},

{width="3",alignment="-1",col_name="enabled",colhdr="Enb"},

{width="10",alignment="-1",col_name="addr",colhdr="Address"},

{width="40",alignment="2",col_name="what",colhdr="What"}],

body=[bkpt={number="1",type="breakpoint",disp="keep",enabled="y",

addr="0x00010734",func="callee4",

file="../../../devo/gdb/testsuite/gdb.mi/basics.c",

fullname="/home/foo/devo/gdb/testsuite/gdb.mi/basics.c",line="8",

thread-groups=["i1"],times="1"}]}

(gdb)

27.11 gdb/mi Catchpoint Commands

This section documents gdb/mi commands for manipulating catchpoints.

27.11.1 Shared Library gdb/mi Catchpoints

The -catch-load Command

Synopsis
-catch-load [-t] [-d] regexp

Add a catchpoint for library load events. If the ‘-t’ option is used, the catchpoint is a
temporary one (see Section 5.1.1 [Setting Breakpoints], page 58). If the ‘-d’ option is used,
the catchpoint is created in a disabled state. The ‘regexp’ argument is a regular expression
used to match the name of the loaded library.

gdb Command

The corresponding gdb command is ‘catch load’.

572 Debugging with gdb

Example
-catch-load -t foo.so

^done,bkpt={number="1",type="catchpoint",disp="del",enabled="y",

what="load of library matching foo.so",catch-type="load",times="0"}

(gdb)

The -catch-unload Command

Synopsis
-catch-unload [-t] [-d] regexp

Add a catchpoint for library unload events. If the ‘-t’ option is used, the catchpoint is a
temporary one (see Section 5.1.1 [Setting Breakpoints], page 58). If the ‘-d’ option is used,
the catchpoint is created in a disabled state. The ‘regexp’ argument is a regular expression
used to match the name of the unloaded library.

gdb Command

The corresponding gdb command is ‘catch unload’.

Example
-catch-unload -d bar.so

^done,bkpt={number="2",type="catchpoint",disp="keep",enabled="n",

what="load of library matching bar.so",catch-type="unload",times="0"}

(gdb)

27.11.2 Ada Exception gdb/mi Catchpoints

The following gdb/mi commands can be used to create catchpoints that stop the execution
when Ada exceptions are being raised.

The -catch-assert Command

Synopsis
-catch-assert [-c condition] [-d] [-t]

Add a catchpoint for failed Ada assertions.

The possible optional parameters for this command are:

‘-c condition’
Make the catchpoint conditional on condition.

‘-d’ Create a disabled catchpoint.

‘-t’ Create a temporary catchpoint.

gdb Command

The corresponding gdb command is ‘catch assert’.

Example
-catch-assert

^done,bkptno="5",bkpt={number="5",type="breakpoint",disp="keep",

enabled="y",addr="0x0000000000404888",what="failed Ada assertions",

Chapter 27: The gdb/mi Interface 573

thread-groups=["i1"],times="0",

original-location="__gnat_debug_raise_assert_failure"}

(gdb)

The -catch-exception Command

Synopsis
-catch-exception [-c condition] [-d] [-e exception-name]

[-t] [-u]

Add a catchpoint stopping when Ada exceptions are raised. By default, the command
stops the program when any Ada exception gets raised. But it is also possible, by using
some of the optional parameters described below, to create more selective catchpoints.

The possible optional parameters for this command are:

‘-c condition’
Make the catchpoint conditional on condition.

‘-d’ Create a disabled catchpoint.

‘-e exception-name’
Only stop when exception-name is raised. This option cannot be used combined
with ‘-u’.

‘-t’ Create a temporary catchpoint.

‘-u’ Stop only when an unhandled exception gets raised. This option cannot be
used combined with ‘-e’.

gdb Command

The corresponding gdb commands are ‘catch exception’ and ‘catch exception

unhandled’.

Example
-catch-exception -e Program_Error

^done,bkptno="4",bkpt={number="4",type="breakpoint",disp="keep",

enabled="y",addr="0x0000000000404874",

what="‘Program_Error’ Ada exception", thread-groups=["i1"],

times="0",original-location="__gnat_debug_raise_exception"}

(gdb)

The -catch-handlers Command

Synopsis
-catch-handlers [-c condition] [-d] [-e exception-name]

[-t]

Add a catchpoint stopping when Ada exceptions are handled. By default, the command
stops the program when any Ada exception gets handled. But it is also possible, by using
some of the optional parameters described below, to create more selective catchpoints.

The possible optional parameters for this command are:

‘-c condition’
Make the catchpoint conditional on condition.

574 Debugging with gdb

‘-d’ Create a disabled catchpoint.

‘-e exception-name’
Only stop when exception-name is handled.

‘-t’ Create a temporary catchpoint.

gdb Command

The corresponding gdb command is ‘catch handlers’.

Example
-catch-handlers -e Constraint_Error

^done,bkptno="4",bkpt={number="4",type="breakpoint",disp="keep",

enabled="y",addr="0x0000000000402f68",

what="‘Constraint_Error’ Ada exception handlers",thread-groups=["i1"],

times="0",original-location="__gnat_begin_handler"}

(gdb)

27.11.3 C++ Exception gdb/mi Catchpoints

The following gdb/mi commands can be used to create catchpoints that stop the execution
when C++ exceptions are being throw, rethrown, or caught.

The -catch-throw Command

Synopsis
-catch-throw [-t] [-r regexp]

Stop when the debuggee throws a C++ exception. If regexp is given, then only exceptions
whose type matches the regular expression will be caught.

If ‘-t’ is given, then the catchpoint is enabled only for one stop, the catchpoint is
automatically deleted after stopping once for the event.

gdb Command

The corresponding gdb commands are ‘catch throw’ and ‘tcatch throw’ (see Section 5.1.3
[Set Catchpoints], page 68).

Example
-catch-throw -r exception_type

^done,bkpt={number="1",type="catchpoint",disp="keep",enabled="y",

what="exception throw",catch-type="throw",

thread-groups=["i1"],

regexp="exception_type",times="0"}

(gdb)

-exec-run

^running

(gdb)

~"\n"

~"Catchpoint 1 (exception thrown), 0x00007ffff7ae00ed

in __cxa_throw () from /lib64/libstdc++.so.6\n"

*stopped,bkptno="1",reason="breakpoint-hit",disp="keep",

frame={addr="0x00007ffff7ae00ed",func="__cxa_throw",

args=[],from="/lib64/libstdc++.so.6",arch="i386:x86-64"},

thread-id="1",stopped-threads="all",core="6"

(gdb)

Chapter 27: The gdb/mi Interface 575

The -catch-rethrow Command

Synopsis
-catch-rethrow [-t] [-r regexp]

Stop when a C++ exception is re-thrown. If regexp is given, then only exceptions whose
type matches the regular expression will be caught.

If ‘-t’ is given, then the catchpoint is enabled only for one stop, the catchpoint is
automatically deleted after the first event is caught.

gdb Command

The corresponding gdb commands are ‘catch rethrow’ and ‘tcatch rethrow’ (see
Section 5.1.3 [Set Catchpoints], page 68).

Example
-catch-rethrow -r exception_type

^done,bkpt={number="1",type="catchpoint",disp="keep",enabled="y",

what="exception rethrow",catch-type="rethrow",

thread-groups=["i1"],

regexp="exception_type",times="0"}

(gdb)

-exec-run

^running

(gdb)

~"\n"

~"Catchpoint 1 (exception rethrown), 0x00007ffff7ae00ed

in __cxa_rethrow () from /lib64/libstdc++.so.6\n"

*stopped,bkptno="1",reason="breakpoint-hit",disp="keep",

frame={addr="0x00007ffff7ae00ed",func="__cxa_rethrow",

args=[],from="/lib64/libstdc++.so.6",arch="i386:x86-64"},

thread-id="1",stopped-threads="all",core="6"

(gdb)

The -catch-catch Command

Synopsis
-catch-catch [-t] [-r regexp]

Stop when the debuggee catches a C++ exception. If regexp is given, then only exceptions
whose type matches the regular expression will be caught.

If ‘-t’ is given, then the catchpoint is enabled only for one stop, the catchpoint is
automatically deleted after the first event is caught.

gdb Command

The corresponding gdb commands are ‘catch catch’ and ‘tcatch catch’ (see Section 5.1.3
[Set Catchpoints], page 68).

Example
-catch-catch -r exception_type

^done,bkpt={number="1",type="catchpoint",disp="keep",enabled="y",

what="exception catch",catch-type="catch",

thread-groups=["i1"],

576 Debugging with gdb

regexp="exception_type",times="0"}

(gdb)

-exec-run

^running

(gdb)

~"\n"

~"Catchpoint 1 (exception caught), 0x00007ffff7ae00ed

in __cxa_begin_catch () from /lib64/libstdc++.so.6\n"

*stopped,bkptno="1",reason="breakpoint-hit",disp="keep",

frame={addr="0x00007ffff7ae00ed",func="__cxa_begin_catch",

args=[],from="/lib64/libstdc++.so.6",arch="i386:x86-64"},

thread-id="1",stopped-threads="all",core="6"

(gdb)

27.12 gdb/mi Program Context

The -exec-arguments Command

Synopsis
-exec-arguments args

Set the inferior program arguments, to be used in the next ‘-exec-run’.

gdb Command

The corresponding gdb command is ‘set args’.

Example
(gdb)

-exec-arguments -v word

^done

(gdb)

The -environment-cd Command

Synopsis
-environment-cd pathdir

Set gdb’s working directory.

gdb Command

The corresponding gdb command is ‘cd’.

Example
(gdb)

-environment-cd /kwikemart/marge/ezannoni/flathead-dev/devo/gdb

^done

(gdb)

The -environment-directory Command

Synopsis
-environment-directory [-r] [pathdir]+

Chapter 27: The gdb/mi Interface 577

Add directories pathdir to beginning of search path for source files. If the ‘-r’ option is
used, the search path is reset to the default search path. If directories pathdir are supplied
in addition to the ‘-r’ option, the search path is first reset and then addition occurs as
normal. Multiple directories may be specified, separated by blanks. Specifying multiple
directories in a single command results in the directories added to the beginning of the
search path in the same order they were presented in the command. If blanks are needed as
part of a directory name, double-quotes should be used around the name. In the command
output, the path will show up separated by the system directory-separator character. The
directory-separator character must not be used in any directory name. If no directories are
specified, the current search path is displayed.

gdb Command

The corresponding gdb command is ‘dir’.

Example
(gdb)

-environment-directory /kwikemart/marge/ezannoni/flathead-dev/devo/gdb

^done,source-path="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb:$cdir:$cwd"

(gdb)

-environment-directory ""

^done,source-path="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb:$cdir:$cwd"

(gdb)

-environment-directory -r /home/jjohnstn/src/gdb /usr/src

^done,source-path="/home/jjohnstn/src/gdb:/usr/src:$cdir:$cwd"

(gdb)

-environment-directory -r

^done,source-path="$cdir:$cwd"

(gdb)

The -environment-path Command

Synopsis
-environment-path [-r] [pathdir]+

Add directories pathdir to beginning of search path for object files. If the ‘-r’ option
is used, the search path is reset to the original search path that existed at gdb start-up.
If directories pathdir are supplied in addition to the ‘-r’ option, the search path is first
reset and then addition occurs as normal. Multiple directories may be specified, separated
by blanks. Specifying multiple directories in a single command results in the directories
added to the beginning of the search path in the same order they were presented in the
command. If blanks are needed as part of a directory name, double-quotes should be used
around the name. In the command output, the path will show up separated by the system
directory-separator character. The directory-separator character must not be used in any
directory name. If no directories are specified, the current path is displayed.

gdb Command

The corresponding gdb command is ‘path’.

Example
(gdb)

578 Debugging with gdb

-environment-path

^done,path="/usr/bin"

(gdb)

-environment-path /kwikemart/marge/ezannoni/flathead-dev/ppc-eabi/gdb /bin

^done,path="/kwikemart/marge/ezannoni/flathead-dev/ppc-eabi/gdb:/bin:/usr/bin"

(gdb)

-environment-path -r /usr/local/bin

^done,path="/usr/local/bin:/usr/bin"

(gdb)

The -environment-pwd Command

Synopsis
-environment-pwd

Show the current working directory.

gdb Command

The corresponding gdb command is ‘pwd’.

Example
(gdb)

-environment-pwd

^done,cwd="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb"

(gdb)

27.13 gdb/mi Thread Commands

The -thread-info Command

Synopsis
-thread-info [thread-id]

Reports information about either a specific thread, if the thread-id parameter is present,
or about all threads. thread-id is the thread’s global thread ID. When printing information
about all threads, also reports the global ID of the current thread.

gdb Command

The ‘info thread’ command prints the same information about all threads.

Result

The result contains the following attributes:

‘threads’ A list of threads. The format of the elements of the list is described in
Section 27.7.6 [GDB/MI Thread Information], page 558.

‘current-thread-id’
The global id of the currently selected thread. This field is omitted if there
is no selected thread (for example, when the selected inferior is not running,
and therefore has no threads) or if a thread-id argument was passed to the
command.

Chapter 27: The gdb/mi Interface 579

Example
-thread-info

^done,threads=[

{id="2",target-id="Thread 0xb7e14b90 (LWP 21257)",

frame={level="0",addr="0xffffe410",func="__kernel_vsyscall",

args=[]},state="running"},

{id="1",target-id="Thread 0xb7e156b0 (LWP 21254)",

frame={level="0",addr="0x0804891f",func="foo",

args=[{name="i",value="10"}],

file="/tmp/a.c",fullname="/tmp/a.c",line="158",arch="i386:x86_64"},

state="running"}],

current-thread-id="1"

(gdb)

The -thread-list-ids Command

Synopsis
-thread-list-ids

Produces a list of the currently known global gdb thread ids. At the end of the list it
also prints the total number of such threads.

This command is retained for historical reasons, the -thread-info command should be
used instead.

gdb Command

Part of ‘info threads’ supplies the same information.

Example
(gdb)

-thread-list-ids

^done,thread-ids={thread-id="3",thread-id="2",thread-id="1"},

current-thread-id="1",number-of-threads="3"

(gdb)

The -thread-select Command

Synopsis
-thread-select thread-id

Make thread with global thread number thread-id the current thread. It prints the
number of the new current thread, and the topmost frame for that thread.

This command is deprecated in favor of explicitly using the ‘--thread’ option to each
command.

gdb Command

The corresponding gdb command is ‘thread’.

Example
(gdb)

-exec-next

^running

(gdb)

580 Debugging with gdb

*stopped,reason="end-stepping-range",thread-id="2",line="187",

file="../../../devo/gdb/testsuite/gdb.threads/linux-dp.c"

(gdb)

-thread-list-ids

^done,

thread-ids={thread-id="3",thread-id="2",thread-id="1"},

number-of-threads="3"

(gdb)

-thread-select 3

^done,new-thread-id="3",

frame={level="0",func="vprintf",

args=[{name="format",value="0x8048e9c \"%*s%c %d %c\\n\""},

{name="arg",value="0x2"}],file="vprintf.c",line="31",arch="i386:x86_64"}

(gdb)

The -thread-simd-width Command

Synopsis
-thread-simd-width --thread thread-id

Get the SIMD width of the thread.

gdb Command

The corresponding gdb command is ‘print $_simd_width’.

Example
-thread-simd-width --thread 5

^done,simd-width="8"

(gdb)

The -thread-execution-mask Command
-thread-execution-mask [--thread thread-id]

Get the execution mask of the thread.

gdb Command

There’s no corresponding gdb command.

Example
-thread-execution-mask

^done,execution-mask="0xaa"

(gdb)

The -thread-hit-lanes-mask Command
-thread-hit-lanes-mask [--thread thread-id]

The command returns a valid value only if the specified thread is stopped due to the
breakpoint hit and has SIMD lanes. Non-zero bits encode active SIMD lanes which have
hit the BP. For non-conditional breakpoints that would be all active lanes of the stopped
thread, for conditional breakpoints active lanes for which the condition is true.

gdb Command

There’s no corresponding gdb command.

Chapter 27: The gdb/mi Interface 581

Example
-thread-hit-lanes-mask

^done,hit-lanes-mask="0x8"

(gdb)

In this example, the value of hit-lanes-mask field is 0x8, meaning only SIMD lane 3 was
hit by the breakpoint.

27.14 gdb/mi Ada Tasking Commands

The -ada-task-info Command

Synopsis
-ada-task-info [task-id]

Reports information about either a specific Ada task, if the task-id parameter is present,
or about all Ada tasks.

gdb Command

The ‘info tasks’ command prints the same information about all Ada tasks (see
Section 15.4.10.7 [Ada Tasks], page 247).

Result

The result is a table of Ada tasks. The following columns are defined for each Ada task:

‘current’ This field exists only for the current thread. It has the value ‘*’.

‘id’ The identifier that gdb uses to refer to the Ada task.

‘task-id’ The identifier that the target uses to refer to the Ada task.

‘thread-id’
The global thread identifier of the thread corresponding to the Ada task.

This field should always exist, as Ada tasks are always implemented on top of
a thread. But if gdb cannot find this corresponding thread for any reason, the
field is omitted.

‘parent-id’
This field exists only when the task was created by another task. In this case,
it provides the ID of the parent task.

‘priority’
The base priority of the task.

‘state’ The current state of the task. For a detailed description of the possible states,
see Section 15.4.10.7 [Ada Tasks], page 247.

‘name’ The name of the task.

Example
-ada-task-info

^done,tasks={nr_rows="3",nr_cols="8",

hdr=[{width="1",alignment="-1",col_name="current",colhdr=""},

582 Debugging with gdb

{width="3",alignment="1",col_name="id",colhdr="ID"},

{width="9",alignment="1",col_name="task-id",colhdr="TID"},

{width="4",alignment="1",col_name="thread-id",colhdr=""},

{width="4",alignment="1",col_name="parent-id",colhdr="P-ID"},

{width="3",alignment="1",col_name="priority",colhdr="Pri"},

{width="22",alignment="-1",col_name="state",colhdr="State"},

{width="1",alignment="2",col_name="name",colhdr="Name"}],

body=[{current="*",id="1",task-id=" 644010",thread-id="1",priority="48",

state="Child Termination Wait",name="main_task"}]}

(gdb)

27.15 gdb/mi Program Execution

These are the asynchronous commands which generate the out-of-band record ‘*stopped’.
Currently gdb only really executes asynchronously with remote targets and this interaction
is mimicked in other cases.

The -exec-continue Command

Synopsis
-exec-continue [--reverse] [--all|--thread-group N]

Resumes the execution of the inferior program, which will continue to execute until it
reaches a debugger stop event. If the ‘--reverse’ option is specified, execution resumes in
reverse until it reaches a stop event. Stop events may include

• breakpoints or watchpoints

• signals or exceptions

• the end of the process (or its beginning under ‘--reverse’)

• the end or beginning of a replay log if one is being used.

In all-stop mode (see Section 5.5.1 [All-Stop Mode], page 92), may resume only one
thread, or all threads, depending on the value of the ‘scheduler-locking’ variable. If
‘--all’ is specified, all threads (in all inferiors) will be resumed. The ‘--all’ option is
ignored in all-stop mode. If the ‘--thread-group’ options is specified, then all threads in
that thread group are resumed.

gdb Command

The corresponding gdb corresponding is ‘continue’.

Example
-exec-continue

^running

(gdb)

@Hello world

*stopped,reason="breakpoint-hit",disp="keep",bkptno="2",frame={

func="foo",args=[],file="hello.c",fullname="/home/foo/bar/hello.c",

line="13",arch="i386:x86_64"}

(gdb)

The -exec-finish Command

Chapter 27: The gdb/mi Interface 583

Synopsis
-exec-finish [--reverse]

Resumes the execution of the inferior program until the current function is exited. Dis-
plays the results returned by the function. If the ‘--reverse’ option is specified, resumes
the reverse execution of the inferior program until the point where current function was
called.

gdb Command

The corresponding gdb command is ‘finish’.

Example

Function returning void.

-exec-finish

^running

(gdb)

@hello from foo

*stopped,reason="function-finished",frame={func="main",args=[],

file="hello.c",fullname="/home/foo/bar/hello.c",line="7",arch="i386:x86_64"}

(gdb)

Function returning other than void. The name of the internal gdb variable storing the
result is printed, together with the value itself.

-exec-finish

^running

(gdb)

*stopped,reason="function-finished",frame={addr="0x000107b0",func="foo",

args=[{name="a",value="1"],{name="b",value="9"}},

file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14",

arch="i386:x86_64"},

gdb-result-var="$1",return-value="0"

(gdb)

The -exec-interrupt Command

Synopsis
-exec-interrupt [--all|--thread-group N]

Interrupts the background execution of the target. Note how the token associated with
the stop message is the one for the execution command that has been interrupted. The
token for the interrupt itself only appears in the ‘^done’ output. If the user is trying to
interrupt a non-running program, an error message will be printed.

Note that when asynchronous execution is enabled, this command is asynchronous just
like other execution commands. That is, first the ‘^done’ response will be printed, and the
target stop will be reported after that using the ‘*stopped’ notification.

In non-stop mode, only the context thread is interrupted by default. All threads (in
all inferiors) will be interrupted if the ‘--all’ option is specified. If the ‘--thread-group’
option is specified, all threads in that group will be interrupted.

gdb Command

The corresponding gdb command is ‘interrupt’.

584 Debugging with gdb

Example
(gdb)

111-exec-continue

111^running

(gdb)

222-exec-interrupt

222^done

(gdb)

111*stopped,signal-name="SIGINT",signal-meaning="Interrupt",

frame={addr="0x00010140",func="foo",args=[],file="try.c",

fullname="/home/foo/bar/try.c",line="13",arch="i386:x86_64"}

(gdb)

(gdb)

-exec-interrupt

^error,msg="mi_cmd_exec_interrupt: Inferior not executing."

(gdb)

The -exec-jump Command

Synopsis
-exec-jump location

Resumes execution of the inferior program at the location specified by parameter. See
Section 9.2 [Specify Location], page 122, for a description of the different forms of location.

gdb Command

The corresponding gdb command is ‘jump’.

Example
-exec-jump foo.c:10

*running,thread-id="all"

^running

The -exec-next Command

Synopsis
-exec-next [--reverse]

Resumes execution of the inferior program, stopping when the beginning of the next
source line is reached.

If the ‘--reverse’ option is specified, resumes reverse execution of the inferior program,
stopping at the beginning of the previous source line. If you issue this command on the
first line of a function, it will take you back to the caller of that function, to the source line
where the function was called.

gdb Command

The corresponding gdb command is ‘next’.

Example
-exec-next

Chapter 27: The gdb/mi Interface 585

^running

(gdb)

*stopped,reason="end-stepping-range",line="8",file="hello.c"

(gdb)

The -exec-next-instruction Command

Synopsis
-exec-next-instruction [--reverse]

Executes one machine instruction. If the instruction is a function call, continues until
the function returns. If the program stops at an instruction in the middle of a source line,
the address will be printed as well.

If the ‘--reverse’ option is specified, resumes reverse execution of the inferior program,
stopping at the previous instruction. If the previously executed instruction was a return
from another function, it will continue to execute in reverse until the call to that function
(from the current stack frame) is reached.

gdb Command

The corresponding gdb command is ‘nexti’.

Example
(gdb)

-exec-next-instruction

^running

(gdb)

*stopped,reason="end-stepping-range",

addr="0x000100d4",line="5",file="hello.c"

(gdb)

The -exec-return Command

Synopsis
-exec-return

Makes current function return immediately. Doesn’t execute the inferior. Displays the
new current frame.

gdb Command

The corresponding gdb command is ‘return’.

Example
(gdb)

200-break-insert callee4

200^done,bkpt={number="1",addr="0x00010734",

file="../../../devo/gdb/testsuite/gdb.mi/basics.c",line="8"}

(gdb)

000-exec-run

000^running

(gdb)

000*stopped,reason="breakpoint-hit",disp="keep",bkptno="1",

586 Debugging with gdb

frame={func="callee4",args=[],

file="../../../devo/gdb/testsuite/gdb.mi/basics.c",

fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="8",

arch="i386:x86_64"}

(gdb)

205-break-delete

205^done

(gdb)

111-exec-return

111^done,frame={level="0",func="callee3",

args=[{name="strarg",

value="0x11940 \"A string argument.\""}],

file="../../../devo/gdb/testsuite/gdb.mi/basics.c",

fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="18",

arch="i386:x86_64"}

(gdb)

The -exec-run Command

Synopsis
-exec-run [--all | --thread-group N] [--start]

Starts execution of the inferior from the beginning. The inferior executes until either a
breakpoint is encountered or the program exits. In the latter case the output will include
an exit code, if the program has exited exceptionally.

When neither the ‘--all’ nor the ‘--thread-group’ option is specified, the current
inferior is started. If the ‘--thread-group’ option is specified, it should refer to a thread
group of type ‘process’, and that thread group will be started. If the ‘--all’ option is
specified, then all inferiors will be started.

Using the ‘--start’ option instructs the debugger to stop the execution at the start of
the inferior’s main subprogram, following the same behavior as the start command (see
Section 4.2 [Starting], page 32).

gdb Command

The corresponding gdb command is ‘run’.

Examples
(gdb)

-break-insert main

^done,bkpt={number="1",addr="0x0001072c",file="recursive2.c",line="4"}

(gdb)

-exec-run

^running

(gdb)

*stopped,reason="breakpoint-hit",disp="keep",bkptno="1",

frame={func="main",args=[],file="recursive2.c",

fullname="/home/foo/bar/recursive2.c",line="4",arch="i386:x86_64"}

(gdb)

Program exited normally:
(gdb)

-exec-run

^running

(gdb)

Chapter 27: The gdb/mi Interface 587

x = 55

*stopped,reason="exited-normally"

(gdb)

Program exited exceptionally:

(gdb)

-exec-run

^running

(gdb)

x = 55

*stopped,reason="exited",exit-code="01"

(gdb)

Another way the program can terminate is if it receives a signal such as SIGINT. In this
case, gdb/mi displays this:

(gdb)

*stopped,reason="exited-signalled",signal-name="SIGINT",

signal-meaning="Interrupt"

The -exec-step Command

Synopsis
-exec-step [--reverse]

Resumes execution of the inferior program, stopping when the beginning of the next
source line is reached, if the next source line is not a function call. If it is, stop at the first
instruction of the called function. If the ‘--reverse’ option is specified, resumes reverse
execution of the inferior program, stopping at the beginning of the previously executed
source line.

gdb Command

The corresponding gdb command is ‘step’.

Example

Stepping into a function:

-exec-step

^running

(gdb)

*stopped,reason="end-stepping-range",

frame={func="foo",args=[{name="a",value="10"},

{name="b",value="0"}],file="recursive2.c",

fullname="/home/foo/bar/recursive2.c",line="11",arch="i386:x86_64"}

(gdb)

Regular stepping:

-exec-step

^running

(gdb)

*stopped,reason="end-stepping-range",line="14",file="recursive2.c"

(gdb)

The -exec-step-instruction Command

588 Debugging with gdb

Synopsis
-exec-step-instruction [--reverse]

Resumes the inferior which executes one machine instruction. If the ‘--reverse’ option
is specified, resumes reverse execution of the inferior program, stopping at the previously
executed instruction. The output, once gdb has stopped, will vary depending on whether
we have stopped in the middle of a source line or not. In the former case, the address at
which the program stopped will be printed as well.

gdb Command

The corresponding gdb command is ‘stepi’.

Example
(gdb)

-exec-step-instruction

^running

(gdb)

*stopped,reason="end-stepping-range",

frame={func="foo",args=[],file="try.c",

fullname="/home/foo/bar/try.c",line="10",arch="i386:x86_64"}

(gdb)

-exec-step-instruction

^running

(gdb)

*stopped,reason="end-stepping-range",

frame={addr="0x000100f4",func="foo",args=[],file="try.c",

fullname="/home/foo/bar/try.c",line="10",arch="i386:x86_64"}

(gdb)

The -exec-until Command

Synopsis
-exec-until [location]

Executes the inferior until the location specified in the argument is reached. If there
is no argument, the inferior executes until a source line greater than the current one is
reached. The reason for stopping in this case will be ‘location-reached’.

gdb Command

The corresponding gdb command is ‘until’.

Example
(gdb)

-exec-until recursive2.c:6

^running

(gdb)

x = 55

*stopped,reason="location-reached",frame={func="main",args=[],

file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="6",

arch="i386:x86_64"}

(gdb)

Chapter 27: The gdb/mi Interface 589

27.16 gdb/mi Stack Manipulation Commands

The -enable-frame-filters Command
-enable-frame-filters

gdb allows Python-based frame filters to affect the output of the MI commands relating
to stack traces. As there is no way to implement this in a fully backward-compatible way,
a front end must request that this functionality be enabled.

Once enabled, this feature cannot be disabled.

Note that if Python support has not been compiled into gdb, this command will still
succeed (and do nothing).

The -stack-info-frame Command

Synopsis
-stack-info-frame

Get info on the selected frame.

gdb Command

The corresponding gdb command is ‘info frame’ or ‘frame’ (without arguments).

Example
(gdb)

-stack-info-frame

^done,frame={level="1",addr="0x0001076c",func="callee3",

file="../../../devo/gdb/testsuite/gdb.mi/basics.c",

fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="17",

arch="i386:x86_64"}

(gdb)

The -stack-info-depth Command

Synopsis
-stack-info-depth [max-depth]

Return the depth of the stack. If the integer argument max-depth is specified, do not
count beyond max-depth frames.

gdb Command

There’s no equivalent gdb command.

Example

For a stack with frame levels 0 through 11:
(gdb)

-stack-info-depth

^done,depth="12"

(gdb)

-stack-info-depth 4

^done,depth="4"

(gdb)

590 Debugging with gdb

-stack-info-depth 12

^done,depth="12"

(gdb)

-stack-info-depth 11

^done,depth="11"

(gdb)

-stack-info-depth 13

^done,depth="12"

(gdb)

The -stack-list-arguments Command

Synopsis
-stack-list-arguments [--no-frame-filters] [--skip-unavailable] print-values

[low-frame high-frame]

Display a list of the arguments for the frames between low-frame and high-frame (inclu-
sive). If low-frame and high-frame are not provided, list the arguments for the whole call
stack. If the two arguments are equal, show the single frame at the corresponding level.
It is an error if low-frame is larger than the actual number of frames. On the other hand,
high-frame may be larger than the actual number of frames, in which case only existing
frames will be returned.

If print-values is 0 or --no-values, print only the names of the variables; if it is 1 or
--all-values, print also their values; and if it is 2 or --simple-values, print the name,
type and value for simple data types, and the name and type for arrays, structures and
unions. If the option --no-frame-filters is supplied, then Python frame filters will not
be executed.

If the --skip-unavailable option is specified, arguments that are not available are not
listed. Partially available arguments are still displayed, however.

Use of this command to obtain arguments in a single frame is deprecated in favor of the
‘-stack-list-variables’ command.

gdb Command

gdb does not have an equivalent command. gdbtk has a ‘gdb_get_args’ command which
partially overlaps with the functionality of ‘-stack-list-arguments’.

Example
(gdb)

-stack-list-frames

^done,

stack=[

frame={level="0",addr="0x00010734",func="callee4",

file="../../../devo/gdb/testsuite/gdb.mi/basics.c",

fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="8",

arch="i386:x86_64"},

frame={level="1",addr="0x0001076c",func="callee3",

file="../../../devo/gdb/testsuite/gdb.mi/basics.c",

fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="17",

arch="i386:x86_64"},

frame={level="2",addr="0x0001078c",func="callee2",

file="../../../devo/gdb/testsuite/gdb.mi/basics.c",

fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="22",

Chapter 27: The gdb/mi Interface 591

arch="i386:x86_64"},

frame={level="3",addr="0x000107b4",func="callee1",

file="../../../devo/gdb/testsuite/gdb.mi/basics.c",

fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="27",

arch="i386:x86_64"},

frame={level="4",addr="0x000107e0",func="main",

file="../../../devo/gdb/testsuite/gdb.mi/basics.c",

fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="32",

arch="i386:x86_64"}]

(gdb)

-stack-list-arguments 0

^done,

stack-args=[

frame={level="0",args=[]},

frame={level="1",args=[name="strarg"]},

frame={level="2",args=[name="intarg",name="strarg"]},

frame={level="3",args=[name="intarg",name="strarg",name="fltarg"]},

frame={level="4",args=[]}]

(gdb)

-stack-list-arguments 1

^done,

stack-args=[

frame={level="0",args=[]},

frame={level="1",

args=[{name="strarg",value="0x11940 \"A string argument.\""}]},

frame={level="2",args=[

{name="intarg",value="2"},

{name="strarg",value="0x11940 \"A string argument.\""}]},

{frame={level="3",args=[

{name="intarg",value="2"},

{name="strarg",value="0x11940 \"A string argument.\""},

{name="fltarg",value="3.5"}]},

frame={level="4",args=[]}]

(gdb)

-stack-list-arguments 0 2 2

^done,stack-args=[frame={level="2",args=[name="intarg",name="strarg"]}]

(gdb)

-stack-list-arguments 1 2 2

^done,stack-args=[frame={level="2",

args=[{name="intarg",value="2"},

{name="strarg",value="0x11940 \"A string argument.\""}]}]

(gdb)

The -stack-list-frames Command

Synopsis
-stack-list-frames [--no-frame-filters low-frame high-frame]

List the frames currently on the stack. For each frame it displays the following info:

‘level’ The frame number, 0 being the topmost frame, i.e., the innermost function.

‘addr’ The $pc value for that frame.

‘func’ Function name.

‘file’ File name of the source file where the function lives.

‘fullname’
The full file name of the source file where the function lives.

592 Debugging with gdb

‘line’ Line number corresponding to the $pc.

‘from’ The shared library where this function is defined. This is only given if the
frame’s function is not known.

‘arch’ Frame’s architecture.

If invoked without arguments, this command prints a backtrace for the whole stack. If
given two integer arguments, it shows the frames whose levels are between the two arguments
(inclusive). If the two arguments are equal, it shows the single frame at the corresponding
level. It is an error if low-frame is larger than the actual number of frames. On the
other hand, high-frame may be larger than the actual number of frames, in which case
only existing frames will be returned. If the option --no-frame-filters is supplied, then
Python frame filters will not be executed.

gdb Command

The corresponding gdb commands are ‘backtrace’ and ‘where’.

Example

Full stack backtrace:

(gdb)

-stack-list-frames

^done,stack=

[frame={level="0",addr="0x0001076c",func="foo",

file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="11",

arch="i386:x86_64"},

frame={level="1",addr="0x000107a4",func="foo",

file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14",

arch="i386:x86_64"},

frame={level="2",addr="0x000107a4",func="foo",

file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14",

arch="i386:x86_64"},

frame={level="3",addr="0x000107a4",func="foo",

file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14",

arch="i386:x86_64"},

frame={level="4",addr="0x000107a4",func="foo",

file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14",

arch="i386:x86_64"},

frame={level="5",addr="0x000107a4",func="foo",

file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14",

arch="i386:x86_64"},

frame={level="6",addr="0x000107a4",func="foo",

file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14",

arch="i386:x86_64"},

frame={level="7",addr="0x000107a4",func="foo",

file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14",

arch="i386:x86_64"},

frame={level="8",addr="0x000107a4",func="foo",

file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14",

arch="i386:x86_64"},

frame={level="9",addr="0x000107a4",func="foo",

file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14",

arch="i386:x86_64"},

frame={level="10",addr="0x000107a4",func="foo",

file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14",

Chapter 27: The gdb/mi Interface 593

arch="i386:x86_64"},

frame={level="11",addr="0x00010738",func="main",

file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="4",

arch="i386:x86_64"}]

(gdb)

Show frames between low frame and high frame:
(gdb)

-stack-list-frames 3 5

^done,stack=

[frame={level="3",addr="0x000107a4",func="foo",

file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14",

arch="i386:x86_64"},

frame={level="4",addr="0x000107a4",func="foo",

file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14",

arch="i386:x86_64"},

frame={level="5",addr="0x000107a4",func="foo",

file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14",

arch="i386:x86_64"}]

(gdb)

Show a single frame:
(gdb)

-stack-list-frames 3 3

^done,stack=

[frame={level="3",addr="0x000107a4",func="foo",

file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14",

arch="i386:x86_64"}]

(gdb)

The -stack-list-locals Command

Synopsis
-stack-list-locals [--no-frame-filters] [--skip-unavailable] print-values

Display the local variable names for the selected frame. If print-values is 0 or --no-

values, print only the names of the variables; if it is 1 or --all-values, print also their
values; and if it is 2 or --simple-values, print the name, type and value for simple data
types, and the name and type for arrays, structures and unions. In this last case, a frontend
can immediately display the value of simple data types and create variable objects for other
data types when the user wishes to explore their values in more detail. If the option --no-

frame-filters is supplied, then Python frame filters will not be executed.

If the --skip-unavailable option is specified, local variables that are not available are
not listed. Partially available local variables are still displayed, however.

This command is deprecated in favor of the ‘-stack-list-variables’ command.

gdb Command

‘info locals’ in gdb, ‘gdb_get_locals’ in gdbtk.

Example
(gdb)

-stack-list-locals 0

^done,locals=[name="A",name="B",name="C"]

(gdb)

594 Debugging with gdb

-stack-list-locals --all-values

^done,locals=[{name="A",value="1"},{name="B",value="2"},

{name="C",value="{1, 2, 3}"}]

-stack-list-locals --simple-values

^done,locals=[{name="A",type="int",value="1"},

{name="B",type="int",value="2"},{name="C",type="int [3]"}]

(gdb)

The -stack-list-variables Command

Synopsis
-stack-list-variables [--no-frame-filters] [--skip-unavailable] print-values

Display the names of local variables and function arguments for the selected frame. If
print-values is 0 or --no-values, print only the names of the variables; if it is 1 or --all-
values, print also their values; and if it is 2 or --simple-values, print the name, type and
value for simple data types, and the name and type for arrays, structures and unions. If the
option --no-frame-filters is supplied, then Python frame filters will not be executed.

If the --skip-unavailable option is specified, local variables and arguments that are not
available are not listed. Partially available arguments and local variables are still displayed,
however.

1: int x = 3;

2: {

3: int x = 4; // breakpt

4: }

(gdb) -stack-list-variables 2

^done,variables=[{name="x",type="int",value="4"},{name="x",shadowed_loc="1",type="int",value="3"}]

If a variable is shadowed, the shadowed_loc attribute is added and the line of declaration
is displayed.

Example
(gdb)

-stack-list-variables --thread 1 --frame 0 --all-values

^done,variables=[{name="x",value="11"},{name="s",value="{a = 1, b = 2}"}]

(gdb)

The -stack-select-frame Command

Synopsis
-stack-select-frame framenum

Change the selected frame. Select a different frame framenum on the stack.

This command in deprecated in favor of passing the ‘--frame’ option to every command.

gdb Command

The corresponding gdb commands are ‘frame’, ‘up’, ‘down’, ‘select-frame’, ‘up-silent’,
and ‘down-silent’.

Example
(gdb)

-stack-select-frame 2

Chapter 27: The gdb/mi Interface 595

^done

(gdb)

27.17 gdb/mi Variable Objects

Introduction to Variable Objects

Variable objects are "object-oriented" MI interface for examining and changing values of
expressions. Unlike some other MI interfaces that work with expressions, variable objects
are specifically designed for simple and efficient presentation in the frontend. A variable
object is identified by string name. When a variable object is created, the frontend specifies
the expression for that variable object. The expression can be a simple variable, or it can
be an arbitrary complex expression, and can even involve CPU registers. After creating a
variable object, the frontend can invoke other variable object operations—for example to
obtain or change the value of a variable object, or to change display format.

Variable objects have hierarchical tree structure. Any variable object that corresponds to
a composite type, such as structure in C, has a number of child variable objects, for example
corresponding to each element of a structure. A child variable object can itself have children,
recursively. Recursion ends when we reach leaf variable objects, which always have built-in
types. Child variable objects are created only by explicit request, so if a frontend is not
interested in the children of a particular variable object, no child will be created.

For a leaf variable object it is possible to obtain its value as a string, or set the value
from a string. String value can be also obtained for a non-leaf variable object, but it’s
generally a string that only indicates the type of the object, and does not list its contents.
Assignment to a non-leaf variable object is not allowed.

A frontend does not need to read the values of all variable objects each time the program
stops. Instead, MI provides an update command that lists all variable objects whose values
has changed since the last update operation. This considerably reduces the amount of data
that must be transferred to the frontend. As noted above, children variable objects are
created on demand, and only leaf variable objects have a real value. As result, gdb will
read target memory only for leaf variables that frontend has created.

The automatic update is not always desirable. For example, a frontend might want
to keep a value of some expression for future reference, and never update it. For another
example, fetching memory is relatively slow for embedded targets, so a frontend might want
to disable automatic update for the variables that are either not visible on the screen, or
“closed”. This is possible using so called “frozen variable objects”. Such variable objects
are never implicitly updated.

Variable objects can be either fixed or floating. For the fixed variable object, the ex-
pression is parsed when the variable object is created, including associating identifiers to
specific variables. The meaning of expression never changes. For a floating variable object
the values of variables whose names appear in the expressions are re-evaluated every time
in the context of the current frame. Consider this example:

void do_work(...)

{

struct work_state state;

if (...)

596 Debugging with gdb

do_work(...);

}

If a fixed variable object for the state variable is created in this function, and we enter
the recursive call, the variable object will report the value of state in the top-level do_work
invocation. On the other hand, a floating variable object will report the value of state in
the current frame.

If an expression specified when creating a fixed variable object refers to a local variable,
the variable object becomes bound to the thread and frame in which the variable object
is created. When such variable object is updated, gdb makes sure that the thread/frame
combination the variable object is bound to still exists, and re-evaluates the variable object
in context of that thread/frame.

The following is the complete set of gdb/mi operations defined to access this function-
ality:

Operation Description

-enable-pretty-printing enable Python-based pretty-printing
-var-create create a variable object
-var-delete delete the variable object and/or its children
-var-set-format set the display format of this variable
-var-show-format show the display format of this variable
-var-info-num-children tells how many children this object has
-var-list-children return a list of the object’s children
-var-info-type show the type of this variable object
-var-info-expression print parent-relative expression that this variable ob-

ject represents

-var-info-path-expression print full expression that this variable object
represents

-var-show-attributes is this variable editable? does it exist here?
-var-evaluate-expression get the value of this variable
-var-assign set the value of this variable
-var-update update the variable and its children
-var-set-frozen set frozenness attribute
-var-set-update-range set range of children to display on update

In the next subsection we describe each operation in detail and suggest how it can be
used.

Description And Use of Operations on Variable Objects

The -enable-pretty-printing Command
-enable-pretty-printing

gdb allows Python-based visualizers to affect the output of the MI variable object
commands. However, because there was no way to implement this in a fully backward-
compatible way, a front end must request that this functionality be enabled.

Once enabled, this feature cannot be disabled.

Note that if Python support has not been compiled into gdb, this command will still
succeed (and do nothing).

Chapter 27: The gdb/mi Interface 597

This feature is currently (as of gdb 7.0) experimental, and may work differently in future
versions of gdb.

The -var-create Command

Synopsis
-var-create {name | "-"}

{frame-addr | "*" | "@"} expression

This operation creates a variable object, which allows the monitoring of a variable, the
result of an expression, a memory cell or a CPU register.

The name parameter is the string by which the object can be referenced. It must
be unique. If ‘-’ is specified, the varobj system will generate a string “varNNNNNN”
automatically. It will be unique provided that one does not specify name of that format.
The command fails if a duplicate name is found.

The frame under which the expression should be evaluated can be specified by frame-
addr. A ‘*’ indicates that the current frame should be used. A ‘@’ indicates that a floating
variable object must be created.

expression is any expression valid on the current language set (must not begin with a
‘*’), or one of the following:

• ‘*addr’, where addr is the address of a memory cell

• ‘*addr-addr’ — a memory address range (TBD)

• ‘$regname’ — a CPU register name

A varobj’s contents may be provided by a Python-based pretty-printer. In this case the
varobj is known as a dynamic varobj. Dynamic varobjs have slightly different semantics in
some cases. If the -enable-pretty-printing command is not sent, then gdb will never
create a dynamic varobj. This ensures backward compatibility for existing clients.

Result

This operation returns attributes of the newly-created varobj. These are:

‘name’ The name of the varobj.

‘numchild’
The number of children of the varobj. This number is not necessarily reliable
for a dynamic varobj. Instead, you must examine the ‘has_more’ attribute.

‘value’ The varobj’s scalar value. For a varobj whose type is some sort of aggregate
(e.g., a struct), or for a dynamic varobj, this value will not be interesting.

‘type’ The varobj’s type. This is a string representation of the type, as would be
printed by the gdb CLI. If ‘print object’ (see Section 10.9 [Print Settings],
page 151) is set to on, the actual (derived) type of the object is shown rather
than the declared one.

‘thread-id’
If a variable object is bound to a specific thread, then this is the thread’s global
identifier.

598 Debugging with gdb

‘has_more’
For a dynamic varobj, this indicates whether there appear to be any children
available. For a non-dynamic varobj, this will be 0.

‘dynamic’ This attribute will be present and have the value ‘1’ if the varobj is a dynamic
varobj. If the varobj is not a dynamic varobj, then this attribute will not be
present.

‘displayhint’
A dynamic varobj can supply a display hint to the front end. The value comes
directly from the Python pretty-printer object’s display_hint method. See
Section 23.3.2.5 [Pretty Printing API], page 401.

Typical output will look like this:
name="name",numchild="N",type="type",thread-id="M",

has_more="has_more"

The -var-delete Command

Synopsis
-var-delete [-c] name

Deletes a previously created variable object and all of its children. With the ‘-c’ option,
just deletes the children.

Returns an error if the object name is not found.

The -var-set-format Command

Synopsis
-var-set-format name format-spec

Sets the output format for the value of the object name to be format-spec.

The syntax for the format-spec is as follows:
format-spec 7→
{binary | decimal | hexadecimal | octal | natural | zero-hexadecimal}

The natural format is the default format choosen automatically based on the variable
type (like decimal for an int, hex for pointers, etc.).

The zero-hexadecimal format has a representation similar to hexadecimal but with
padding zeroes to the left of the value. For example, a 32-bit hexadecimal value of 0x1234
would be represented as 0x00001234 in the zero-hexadecimal format.

For a variable with children, the format is set only on the variable itself, and the children
are not affected.

The -var-show-format Command

Synopsis
-var-show-format name

Returns the format used to display the value of the object name.
format 7→
format-spec

Chapter 27: The gdb/mi Interface 599

The -var-info-num-children Command

Synopsis
-var-info-num-children name

Returns the number of children of a variable object name:
numchild=n

Note that this number is not completely reliable for a dynamic varobj. It will return the
current number of children, but more children may be available.

The -var-list-children Command

Synopsis
-var-list-children [print-values] name [from to]

Return a list of the children of the specified variable object and create variable objects
for them, if they do not already exist. With a single argument or if print-values has a
value of 0 or --no-values, print only the names of the variables; if print-values is 1 or
--all-values, also print their values; and if it is 2 or --simple-values print the name
and value for simple data types and just the name for arrays, structures and unions.

from and to, if specified, indicate the range of children to report. If from or to is less
than zero, the range is reset and all children will be reported. Otherwise, children starting
at from (zero-based) and up to and excluding to will be reported.

If a child range is requested, it will only affect the current call to -var-list-children,
but not future calls to -var-update. For this, you must instead use -var-set-update-

range. The intent of this approach is to enable a front end to implement any update
approach it likes; for example, scrolling a view may cause the front end to request more
children with -var-list-children, and then the front end could call -var-set-update-
range with a different range to ensure that future updates are restricted to just the visible
items.

For each child the following results are returned:

name Name of the variable object created for this child.

exp The expression to be shown to the user by the front end to designate this child.
For example this may be the name of a structure member.

For a dynamic varobj, this value cannot be used to form an expression. There
is no way to do this at all with a dynamic varobj.

For C/C++ structures there are several pseudo children returned to designate
access qualifiers. For these pseudo children exp is ‘public’, ‘private’, or
‘protected’. In this case the type and value are not present.

A dynamic varobj will not report the access qualifying pseudo-children, regard-
less of the language. This information is not available at all with a dynamic
varobj.

numchild Number of children this child has. For a dynamic varobj, this will be 0.

type The type of the child. If ‘print object’ (see Section 10.9 [Print Settings],
page 151) is set to on, the actual (derived) type of the object is shown rather
than the declared one.

600 Debugging with gdb

value If values were requested, this is the value.

thread-id If this variable object is associated with a thread, this is the thread’s global
thread id. Otherwise this result is not present.

frozen If the variable object is frozen, this variable will be present with a value of 1.

displayhint
A dynamic varobj can supply a display hint to the front end. The value comes
directly from the Python pretty-printer object’s display_hint method. See
Section 23.3.2.5 [Pretty Printing API], page 401.

dynamic This attribute will be present and have the value ‘1’ if the varobj is a dynamic
varobj. If the varobj is not a dynamic varobj, then this attribute will not be
present.

The result may have its own attributes:

‘displayhint’
A dynamic varobj can supply a display hint to the front end. The value comes
directly from the Python pretty-printer object’s display_hint method. See
Section 23.3.2.5 [Pretty Printing API], page 401.

‘has_more’
This is an integer attribute which is nonzero if there are children remaining
after the end of the selected range.

Example
(gdb)

-var-list-children n

^done,numchild=n,children=[child={name=name,exp=exp,

numchild=n,type=type},(repeats N times)]
(gdb)

-var-list-children --all-values n

^done,numchild=n,children=[child={name=name,exp=exp,

numchild=n,value=value,type=type},(repeats N times)]

The -var-info-type Command

Synopsis
-var-info-type name

Returns the type of the specified variable name. The type is returned as a string in the
same format as it is output by the gdb CLI:

type=typename

The -var-info-expression Command

Synopsis
-var-info-expression name

Returns a string that is suitable for presenting this variable object in user interface. The
string is generally not valid expression in the current language, and cannot be evaluated.

Chapter 27: The gdb/mi Interface 601

For example, if a is an array, and variable object A was created for a, then we’ll get this
output:

(gdb) -var-info-expression A.1

^done,lang="C",exp="1"

Here, the value of lang is the language name, which can be found in Section 15.4 [Supported
Languages], page 223.

Note that the output of the -var-list-children command also includes those expres-
sions, so the -var-info-expression command is of limited use.

The -var-info-path-expression Command

Synopsis
-var-info-path-expression name

Returns an expression that can be evaluated in the current context and will yield the
same value that a variable object has. Compare this with the -var-info-expression

command, which result can be used only for UI presentation. Typical use of the -var-

info-path-expression command is creating a watchpoint from a variable object.

This command is currently not valid for children of a dynamic varobj, and will give an
error when invoked on one.

For example, suppose C is a C++ class, derived from class Base, and that the Base class
has a member called m_size. Assume a variable c is has the type of C and a variable object
C was created for variable c. Then, we’ll get this output:

(gdb) -var-info-path-expression C.Base.public.m_size

^done,path_expr=((Base)c).m_size)

The -var-show-attributes Command

Synopsis
-var-show-attributes name

List attributes of the specified variable object name:

status=attr [(,attr)*]

where attr is { { editable | noneditable } | TBD }.

The -var-evaluate-expression Command

Synopsis
-var-evaluate-expression [-f format-spec] name

Evaluates the expression that is represented by the specified variable object and returns
its value as a string. The format of the string can be specified with the ‘-f’ option. The
possible values of this option are the same as for -var-set-format (see [-var-set-format],
page 598). If the ‘-f’ option is not specified, the current display format will be used. The
current display format can be changed using the -var-set-format command.

value=value

Note that one must invoke -var-list-children for a variable before the value of a child
variable can be evaluated.

602 Debugging with gdb

The -var-assign Command

Synopsis
-var-assign name expression

Assigns the value of expression to the variable object specified by name. The object
must be ‘editable’. If the variable’s value is altered by the assign, the variable will show
up in any subsequent -var-update list.

Example
(gdb)

-var-assign var1 3

^done,value="3"

(gdb)

-var-update *

^done,changelist=[{name="var1",in_scope="true",type_changed="false"}]

(gdb)

The -var-update Command

Synopsis
-var-update [print-values] {name | "*"}

Reevaluate the expressions corresponding to the variable object name and all its direct
and indirect children, and return the list of variable objects whose values have changed;
name must be a root variable object. Here, “changed” means that the result of -var-
evaluate-expression before and after the -var-update is different. If ‘*’ is used as the
variable object names, all existing variable objects are updated, except for frozen ones (see
[-var-set-frozen], page 604). The option print-values determines whether both names and
values, or just names are printed. The possible values of this option are the same as for
-var-list-children (see [-var-list-children], page 599). It is recommended to use the
‘--all-values’ option, to reduce the number of MI commands needed on each program
stop.

With the ‘*’ parameter, if a variable object is bound to a currently running thread, it
will not be updated, without any diagnostic.

If -var-set-update-range was previously used on a varobj, then only the selected range
of children will be reported.

-var-update reports all the changed varobjs in a tuple named ‘changelist’.

Each item in the change list is itself a tuple holding:

‘name’ The name of the varobj.

‘value’ If values were requested for this update, then this field will be present and will
hold the value of the varobj.

‘in_scope’
This field is a string which may take one of three values:

"true" The variable object’s current value is valid.

"false" The variable object does not currently hold a valid value but it may
hold one in the future if its associated expression comes back into
scope.

Chapter 27: The gdb/mi Interface 603

"invalid"

The variable object no longer holds a valid value. This can oc-
cur when the executable file being debugged has changed, either
through recompilation or by using the gdb file command. The
front end should normally choose to delete these variable objects.

In the future new values may be added to this list so the front should be prepared
for this possibility. See Section 27.6 [GDB/MI Development and Front Ends],
page 549.

‘type_changed’
This is only present if the varobj is still valid. If the type changed, then this
will be the string ‘true’; otherwise it will be ‘false’.

When a varobj’s type changes, its children are also likely to have become in-
correct. Therefore, the varobj’s children are automatically deleted when this
attribute is ‘true’. Also, the varobj’s update range, when set using the -var-

set-update-range command, is unset.

‘new_type’
If the varobj’s type changed, then this field will be present and will hold the
new type.

‘new_num_children’
For a dynamic varobj, if the number of children changed, or if the type changed,
this will be the new number of children.

The ‘numchild’ field in other varobj responses is generally not valid for a dy-
namic varobj – it will show the number of children that gdb knows about, but
because dynamic varobjs lazily instantiate their children, this will not reflect
the number of children which may be available.

The ‘new_num_children’ attribute only reports changes to the number of chil-
dren known by gdb. This is the only way to detect whether an update has
removed children (which necessarily can only happen at the end of the update
range).

‘displayhint’
The display hint, if any.

‘has_more’
This is an integer value, which will be 1 if there are more children available
outside the varobj’s update range.

‘dynamic’ This attribute will be present and have the value ‘1’ if the varobj is a dynamic
varobj. If the varobj is not a dynamic varobj, then this attribute will not be
present.

‘new_children’
If new children were added to a dynamic varobj within the selected update range
(as set by -var-set-update-range), then they will be listed in this attribute.

Example
(gdb)

604 Debugging with gdb

-var-assign var1 3

^done,value="3"

(gdb)

-var-update --all-values var1

^done,changelist=[{name="var1",value="3",in_scope="true",

type_changed="false"}]

(gdb)

The -var-set-frozen Command

Synopsis
-var-set-frozen name flag

Set the frozenness flag on the variable object name. The flag parameter should be either
‘1’ to make the variable frozen or ‘0’ to make it unfrozen. If a variable object is frozen, then
neither itself, nor any of its children, are implicitly updated by -var-update of a parent
variable or by -var-update *. Only -var-update of the variable itself will update its value
and values of its children. After a variable object is unfrozen, it is implicitly updated by
all subsequent -var-update operations. Unfreezing a variable does not update it, only
subsequent -var-update does.

Example
(gdb)

-var-set-frozen V 1

^done

(gdb)

The -var-set-update-range command

Synopsis
-var-set-update-range name from to

Set the range of children to be returned by future invocations of -var-update.

from and to indicate the range of children to report. If from or to is less than zero,
the range is reset and all children will be reported. Otherwise, children starting at from
(zero-based) and up to and excluding to will be reported.

Example
(gdb)

-var-set-update-range V 1 2

^done

The -var-set-visualizer command

Synopsis
-var-set-visualizer name visualizer

Set a visualizer for the variable object name.

visualizer is the visualizer to use. The special value ‘None’ means to disable any visualizer
in use.

If not ‘None’, visualizer must be a Python expression. This expression must evaluate to
a callable object which accepts a single argument. gdb will call this object with the value

Chapter 27: The gdb/mi Interface 605

of the varobj name as an argument (this is done so that the same Python pretty-printing
code can be used for both the CLI and MI). When called, this object must return an object
which conforms to the pretty-printing interface (see Section 23.3.2.5 [Pretty Printing API],
page 401).

The pre-defined function gdb.default_visualizer may be used to select a visualizer
by following the built-in process (see Section 23.3.2.6 [Selecting Pretty-Printers], page 402).
This is done automatically when a varobj is created, and so ordinarily is not needed.

This feature is only available if Python support is enabled. The MI command -list-

features (see Section 27.25 [GDB/MI Support Commands], page 637) can be used to check
this.

Example

Resetting the visualizer:

(gdb)

-var-set-visualizer V None

^done

Reselecting the default (type-based) visualizer:

(gdb)

-var-set-visualizer V gdb.default_visualizer

^done

Suppose SomeClass is a visualizer class. A lambda expression can be used to instantiate
this class for a varobj:

(gdb)

-var-set-visualizer V "lambda val: SomeClass()"

^done

27.18 gdb/mi Data Manipulation

This section describes the gdb/mi commands that manipulate data: examine memory and
registers, evaluate expressions, etc.

For details about what an addressable memory unit is, see [addressable memory unit],
page 148.

The -data-disassemble Command

Synopsis
-data-disassemble

[-s start-addr -e end-addr]

| [-a addr]

| [-f filename -l linenum [-n lines]]

-- mode

Where:

‘start-addr’
is the beginning address (or $pc)

‘end-addr’
is the end address

606 Debugging with gdb

‘addr’ is an address anywhere within (or the name of) the function to disassemble.
If an address is specified, the whole function surrounding that address will be
disassembled. If a name is specified, the whole function with that name will be
disassembled.

‘filename’
is the name of the file to disassemble

‘linenum’ is the line number to disassemble around

‘lines’ is the number of disassembly lines to be produced. If it is -1, the whole function
will be disassembled, in case no end-addr is specified. If end-addr is specified
as a non-zero value, and lines is lower than the number of disassembly lines
between start-addr and end-addr, only lines lines are displayed; if lines is higher
than the number of lines between start-addr and end-addr, only the lines up to
end-addr are displayed.

‘mode’ is one of:

• 0 disassembly only

• 1 mixed source and disassembly (deprecated)

• 2 disassembly with raw opcodes

• 3 mixed source and disassembly with raw opcodes (deprecated)

• 4 mixed source and disassembly

• 5 mixed source and disassembly with raw opcodes

Modes 1 and 3 are deprecated. The output is “source centric” which hasn’t
proved useful in practice. See Section 9.6 [Machine Code], page 130, for a
discussion of the difference between /m and /s output of the disassemble

command.

Result

The result of the -data-disassemble command will be a list named ‘asm_insns’, the
contents of this list depend on the mode used with the -data-disassemble command.

For modes 0 and 2 the ‘asm_insns’ list contains tuples with the following fields:

address The address at which this instruction was disassembled.

func-name

The name of the function this instruction is within.

offset The decimal offset in bytes from the start of ‘func-name’.

inst The text disassembly for this ‘address’.

opcodes This field is only present for modes 2, 3 and 5. This contains the raw opcode
bytes for the ‘inst’ field.

For modes 1, 3, 4 and 5 the ‘asm_insns’ list contains tuples named ‘src_and_asm_line’,
each of which has the following fields:

line The line number within ‘file’.

Chapter 27: The gdb/mi Interface 607

file The file name from the compilation unit. This might be an absolute file name
or a relative file name depending on the compile command used.

fullname Absolute file name of ‘file’. It is converted to a canonical form using the source
file search path (see Section 9.5 [Specifying Source Directories], page 126) and
after resolving all the symbolic links.

If the source file is not found this field will contain the path as present in the
debug information.

line_asm_insn

This is a list of tuples containing the disassembly for ‘line’ in ‘file’. The
fields of each tuple are the same as for -data-disassemble in mode 0 and 2,
so ‘address’, ‘func-name’, ‘offset’, ‘inst’, and optionally ‘opcodes’.

Note that whatever included in the ‘inst’ field, is not manipulated directly by gdb/mi,
i.e., it is not possible to adjust its format.

gdb Command

The corresponding gdb command is ‘disassemble’.

Example

Disassemble from the current value of $pc to $pc + 20:
(gdb)

-data-disassemble -s $pc -e "$pc + 20" -- 0

^done,

asm_insns=[

{address="0x000107c0",func-name="main",offset="4",

inst="mov 2, %o0"},

{address="0x000107c4",func-name="main",offset="8",

inst="sethi %hi(0x11800), %o2"},

{address="0x000107c8",func-name="main",offset="12",

inst="or %o2, 0x140, %o1\t! 0x11940 <_lib_version+8>"},

{address="0x000107cc",func-name="main",offset="16",

inst="sethi %hi(0x11800), %o2"},

{address="0x000107d0",func-name="main",offset="20",

inst="or %o2, 0x168, %o4\t! 0x11968 <_lib_version+48>"}]

(gdb)

Disassemble the whole main function. Line 32 is part of main.
-data-disassemble -f basics.c -l 32 -- 0

^done,asm_insns=[

{address="0x000107bc",func-name="main",offset="0",

inst="save %sp, -112, %sp"},

{address="0x000107c0",func-name="main",offset="4",

inst="mov 2, %o0"},

{address="0x000107c4",func-name="main",offset="8",

inst="sethi %hi(0x11800), %o2"},

[...]

{address="0x0001081c",func-name="main",offset="96",inst="ret "},

{address="0x00010820",func-name="main",offset="100",inst="restore "}]

(gdb)

Disassemble 3 instructions from the start of main:
(gdb)

-data-disassemble -f basics.c -l 32 -n 3 -- 0

608 Debugging with gdb

^done,asm_insns=[

{address="0x000107bc",func-name="main",offset="0",

inst="save %sp, -112, %sp"},

{address="0x000107c0",func-name="main",offset="4",

inst="mov 2, %o0"},

{address="0x000107c4",func-name="main",offset="8",

inst="sethi %hi(0x11800), %o2"}]

(gdb)

Disassemble 3 instructions from the start of main in mixed mode:
(gdb)

-data-disassemble -f basics.c -l 32 -n 3 -- 1

^done,asm_insns=[

src_and_asm_line={line="31",

file="../../../src/gdb/testsuite/gdb.mi/basics.c",

fullname="/absolute/path/to/src/gdb/testsuite/gdb.mi/basics.c",

line_asm_insn=[{address="0x000107bc",

func-name="main",offset="0",inst="save %sp, -112, %sp"}]},

src_and_asm_line={line="32",

file="../../../src/gdb/testsuite/gdb.mi/basics.c",

fullname="/absolute/path/to/src/gdb/testsuite/gdb.mi/basics.c",

line_asm_insn=[{address="0x000107c0",

func-name="main",offset="4",inst="mov 2, %o0"},

{address="0x000107c4",func-name="main",offset="8",

inst="sethi %hi(0x11800), %o2"}]}]

(gdb)

The -data-evaluate-expression Command

Synopsis
-data-evaluate-expression expr

Evaluate expr as an expression. The expression could contain an inferior function call.
The function call will execute synchronously. If the expression contains spaces, it must be
enclosed in double quotes.

gdb Command

The corresponding gdb commands are ‘print’, ‘output’, and ‘call’. In gdbtk only, there’s
a corresponding ‘gdb_eval’ command.

Example

In the following example, the numbers that precede the commands are the tokens described
in Section 27.4 [gdb/mi Command Syntax], page 546. Notice how gdb/mi returns the same
tokens in its output.

211-data-evaluate-expression A

211^done,value="1"

(gdb)

311-data-evaluate-expression &A

311^done,value="0xefffeb7c"

(gdb)

411-data-evaluate-expression A+3

411^done,value="4"

(gdb)

511-data-evaluate-expression "A + 3"

511^done,value="4"

Chapter 27: The gdb/mi Interface 609

(gdb)

The -data-list-changed-registers Command

Synopsis
-data-list-changed-registers

Display a list of the registers that have changed.

gdb Command

gdb doesn’t have a direct analog for this command; gdbtk has the corresponding command
‘gdb_changed_register_list’.

Example

On a PPC MBX board:
(gdb)

-exec-continue

^running

(gdb)

*stopped,reason="breakpoint-hit",disp="keep",bkptno="1",frame={

func="main",args=[],file="try.c",fullname="/home/foo/bar/try.c",

line="5",arch="powerpc"}

(gdb)

-data-list-changed-registers

^done,changed-registers=["0","1","2","4","5","6","7","8","9",

"10","11","13","14","15","16","17","18","19","20","21","22","23",

"24","25","26","27","28","30","31","64","65","66","67","69"]

(gdb)

The -data-list-register-names Command

Synopsis
-data-list-register-names [(regno)+]

Show a list of register names for the current target. If no arguments are given, it shows a
list of the names of all the registers. If integer numbers are given as arguments, it will print
a list of the names of the registers corresponding to the arguments. To ensure consistency
between a register name and its number, the output list may include empty register names.

gdb Command

gdb does not have a command which corresponds to ‘-data-list-register-names’. In
gdbtk there is a corresponding command ‘gdb_regnames’.

Example

For the PPC MBX board:
(gdb)

-data-list-register-names

^done,register-names=["r0","r1","r2","r3","r4","r5","r6","r7",

"r8","r9","r10","r11","r12","r13","r14","r15","r16","r17","r18",

"r19","r20","r21","r22","r23","r24","r25","r26","r27","r28","r29",

"r30","r31","f0","f1","f2","f3","f4","f5","f6","f7","f8","f9",

610 Debugging with gdb

"f10","f11","f12","f13","f14","f15","f16","f17","f18","f19","f20",

"f21","f22","f23","f24","f25","f26","f27","f28","f29","f30","f31",

"", "pc","ps","cr","lr","ctr","xer"]

(gdb)

-data-list-register-names 1 2 3

^done,register-names=["r1","r2","r3"]

(gdb)

The -data-list-register-values Command

Synopsis
-data-list-register-values

[--skip-unavailable] fmt [(regno)*]

Display the registers’ contents. The format according to which the registers’ contents are
to be returned is given by fmt, followed by an optional list of numbers specifying the registers
to display. A missing list of numbers indicates that the contents of all the registers must be
returned. The --skip-unavailable option indicates that only the available registers are
to be returned.

Allowed formats for fmt are:

x Hexadecimal

o Octal

t Binary

d Decimal

r Raw

N Natural

gdb Command

The corresponding gdb commands are ‘info reg’, ‘info all-reg’, and (in gdbtk)
‘gdb_fetch_registers’.

Example

For a PPC MBX board (note: line breaks are for readability only, they don’t appear in the
actual output):

(gdb)

-data-list-register-values r 64 65

^done,register-values=[{number="64",value="0xfe00a300"},

{number="65",value="0x00029002"}]

(gdb)

-data-list-register-values x

^done,register-values=[{number="0",value="0xfe0043c8"},

{number="1",value="0x3fff88"},{number="2",value="0xfffffffe"},

{number="3",value="0x0"},{number="4",value="0xa"},

{number="5",value="0x3fff68"},{number="6",value="0x3fff58"},

{number="7",value="0xfe011e98"},{number="8",value="0x2"},

{number="9",value="0xfa202820"},{number="10",value="0xfa202808"},

{number="11",value="0x1"},{number="12",value="0x0"},

{number="13",value="0x4544"},{number="14",value="0xffdfffff"},

{number="15",value="0xffffffff"},{number="16",value="0xfffffeff"},

Chapter 27: The gdb/mi Interface 611

{number="17",value="0xefffffed"},{number="18",value="0xfffffffe"},

{number="19",value="0xffffffff"},{number="20",value="0xffffffff"},

{number="21",value="0xffffffff"},{number="22",value="0xfffffff7"},

{number="23",value="0xffffffff"},{number="24",value="0xffffffff"},

{number="25",value="0xffffffff"},{number="26",value="0xfffffffb"},

{number="27",value="0xffffffff"},{number="28",value="0xf7bfffff"},

{number="29",value="0x0"},{number="30",value="0xfe010000"},

{number="31",value="0x0"},{number="32",value="0x0"},

{number="33",value="0x0"},{number="34",value="0x0"},

{number="35",value="0x0"},{number="36",value="0x0"},

{number="37",value="0x0"},{number="38",value="0x0"},

{number="39",value="0x0"},{number="40",value="0x0"},

{number="41",value="0x0"},{number="42",value="0x0"},

{number="43",value="0x0"},{number="44",value="0x0"},

{number="45",value="0x0"},{number="46",value="0x0"},

{number="47",value="0x0"},{number="48",value="0x0"},

{number="49",value="0x0"},{number="50",value="0x0"},

{number="51",value="0x0"},{number="52",value="0x0"},

{number="53",value="0x0"},{number="54",value="0x0"},

{number="55",value="0x0"},{number="56",value="0x0"},

{number="57",value="0x0"},{number="58",value="0x0"},

{number="59",value="0x0"},{number="60",value="0x0"},

{number="61",value="0x0"},{number="62",value="0x0"},

{number="63",value="0x0"},{number="64",value="0xfe00a300"},

{number="65",value="0x29002"},{number="66",value="0x202f04b5"},

{number="67",value="0xfe0043b0"},{number="68",value="0xfe00b3e4"},

{number="69",value="0x20002b03"}]

(gdb)

The -data-read-memory Command

This command is deprecated, use -data-read-memory-bytes instead.

Synopsis
-data-read-memory [-o byte-offset]

address word-format word-size

nr-rows nr-cols [aschar]

where:

‘address’ An expression specifying the address of the first memory word to be read.
Complex expressions containing embedded white space should be quoted using
the C convention.

‘word-format’
The format to be used to print the memory words. The notation is the same
as for gdb’s print command (see Section 10.5 [Output Formats], page 144).

‘word-size’
The size of each memory word in bytes.

‘nr-rows’ The number of rows in the output table.

‘nr-cols’ The number of columns in the output table.

‘aschar’ If present, indicates that each row should include an ascii dump. The value
of aschar is used as a padding character when a byte is not a member of the
printable ascii character set (printable ascii characters are those whose code
is between 32 and 126, inclusively).

612 Debugging with gdb

‘byte-offset’
An offset to add to the address before fetching memory.

This command displays memory contents as a table of nr-rows by nr-cols words, each
word being word-size bytes. In total, nr-rows * nr-cols * word-size bytes are read (re-
turned as ‘total-bytes’). Should less than the requested number of bytes be returned by
the target, the missing words are identified using ‘N/A’. The number of bytes read from the
target is returned in ‘nr-bytes’ and the starting address used to read memory in ‘addr’.

The address of the next/previous row or page is available in ‘next-row’ and ‘prev-row’,
‘next-page’ and ‘prev-page’.

gdb Command

The corresponding gdb command is ‘x’. gdbtk has ‘gdb_get_mem’ memory read command.

Example

Read six bytes of memory starting at bytes+6 but then offset by -6 bytes. Format as three
rows of two columns. One byte per word. Display each word in hex.

(gdb)

9-data-read-memory -o -6 -- bytes+6 x 1 3 2

9^done,addr="0x00001390",nr-bytes="6",total-bytes="6",

next-row="0x00001396",prev-row="0x0000138e",next-page="0x00001396",

prev-page="0x0000138a",memory=[

{addr="0x00001390",data=["0x00","0x01"]},

{addr="0x00001392",data=["0x02","0x03"]},

{addr="0x00001394",data=["0x04","0x05"]}]

(gdb)

Read two bytes of memory starting at address shorts + 64 and display as a single word
formatted in decimal.

(gdb)

5-data-read-memory shorts+64 d 2 1 1

5^done,addr="0x00001510",nr-bytes="2",total-bytes="2",

next-row="0x00001512",prev-row="0x0000150e",

next-page="0x00001512",prev-page="0x0000150e",memory=[

{addr="0x00001510",data=["128"]}]

(gdb)

Read thirty two bytes of memory starting at bytes+16 and format as eight rows of four
columns. Include a string encoding with ‘x’ used as the non-printable character.

(gdb)

4-data-read-memory bytes+16 x 1 8 4 x

4^done,addr="0x000013a0",nr-bytes="32",total-bytes="32",

next-row="0x000013c0",prev-row="0x0000139c",

next-page="0x000013c0",prev-page="0x00001380",memory=[

{addr="0x000013a0",data=["0x10","0x11","0x12","0x13"],ascii="xxxx"},

{addr="0x000013a4",data=["0x14","0x15","0x16","0x17"],ascii="xxxx"},

{addr="0x000013a8",data=["0x18","0x19","0x1a","0x1b"],ascii="xxxx"},

{addr="0x000013ac",data=["0x1c","0x1d","0x1e","0x1f"],ascii="xxxx"},

{addr="0x000013b0",data=["0x20","0x21","0x22","0x23"],ascii=" !\"#"},

{addr="0x000013b4",data=["0x24","0x25","0x26","0x27"],ascii="$%&’"},

{addr="0x000013b8",data=["0x28","0x29","0x2a","0x2b"],ascii="()*+"},

{addr="0x000013bc",data=["0x2c","0x2d","0x2e","0x2f"],ascii=",-./"}]

(gdb)

Chapter 27: The gdb/mi Interface 613

The -data-read-memory-bytes Command

Synopsis
-data-read-memory-bytes [-o offset]

address count

where:

‘address’ An expression specifying the address of the first addressable memory unit to be
read. Complex expressions containing embedded white space should be quoted
using the C convention.

‘count’ The number of addressable memory units to read. This should be an integer
literal.

‘offset’ The offset relative to address at which to start reading. This should be an
integer literal. This option is provided so that a frontend is not required to first
evaluate address and then perform address arithmetics itself.

This command attempts to read all accessible memory regions in the specified range.
First, all regions marked as unreadable in the memory map (if one is defined) will be skipped.
See Section 10.18 [Memory Region Attributes], page 175. Second, gdb will attempt to read
the remaining regions. For each one, if reading full region results in an errors, gdb will try
to read a subset of the region.

In general, every single memory unit in the region may be readable or not, and the only
way to read every readable unit is to try a read at every address, which is not practical.
Therefore, gdb will attempt to read all accessible memory units at either beginning or the
end of the region, using a binary division scheme. This heuristic works well for reading
across a memory map boundary. Note that if a region has a readable range that is neither
at the beginning or the end, gdb will not read it.

The result record (see Section 27.7.1 [GDB/MI Result Records], page 550) that is output
of the command includes a field named ‘memory’ whose content is a list of tuples. Each tuple
represent a successfully read memory block and has the following fields:

begin The start address of the memory block, as hexadecimal literal.

end The end address of the memory block, as hexadecimal literal.

offset The offset of the memory block, as hexadecimal literal, relative to the start
address passed to -data-read-memory-bytes.

contents The contents of the memory block, in hex.

gdb Command

The corresponding gdb command is ‘x’.

Example
(gdb)

-data-read-memory-bytes &a 10

^done,memory=[{begin="0xbffff154",offset="0x00000000",

end="0xbffff15e",

contents="01000000020000000300"}]

(gdb)

614 Debugging with gdb

The -data-write-memory-bytes Command

Synopsis
-data-write-memory-bytes address contents

-data-write-memory-bytes address contents [count]

where:

‘address’ An expression specifying the address of the first addressable memory unit to
be written. Complex expressions containing embedded white space should be
quoted using the C convention.

‘contents’
The hex-encoded data to write. It is an error if contents does not represent an
integral number of addressable memory units.

‘count’ Optional argument indicating the number of addressable memory units to be
written. If count is greater than contents’ length, gdb will repeatedly write
contents until it fills count memory units.

gdb Command

There’s no corresponding gdb command.

Example
(gdb)

-data-write-memory-bytes &a "aabbccdd"

^done

(gdb)

(gdb)

-data-write-memory-bytes &a "aabbccdd" 16e

^done

(gdb)

27.19 gdb/mi Tracepoint Commands

The commands defined in this section implement MI support for tracepoints. For detailed
introduction, see Chapter 13 [Tracepoints], page 195.

The -trace-find Command

Synopsis
-trace-find mode [parameters...]

Find a trace frame using criteria defined by mode and parameters. The following table
lists permissible modes and their parameters. For details of operation, see Section 13.2.1
[tfind], page 207.

‘none’ No parameters are required. Stops examining trace frames.

‘frame-number’
An integer is required as parameter. Selects tracepoint frame with that index.

‘tracepoint-number’
An integer is required as parameter. Finds next trace frame that corresponds
to tracepoint with the specified number.

Chapter 27: The gdb/mi Interface 615

‘pc’ An address is required as parameter. Finds next trace frame that corresponds
to any tracepoint at the specified address.

‘pc-inside-range’
Two addresses are required as parameters. Finds next trace frame that corre-
sponds to a tracepoint at an address inside the specified range. Both bounds
are considered to be inside the range.

‘pc-outside-range’
Two addresses are required as parameters. Finds next trace frame that corre-
sponds to a tracepoint at an address outside the specified range. Both bounds
are considered to be inside the range.

‘line’ Line specification is required as parameter. See Section 9.2 [Specify Location],
page 122. Finds next trace frame that corresponds to a tracepoint at the
specified location.

If ‘none’ was passed as mode, the response does not have fields. Otherwise, the response
may have the following fields:

‘found’ This field has either ‘0’ or ‘1’ as the value, depending on whether a matching
tracepoint was found.

‘traceframe’
The index of the found traceframe. This field is present iff the ‘found’ field has
value of ‘1’.

‘tracepoint’
The index of the found tracepoint. This field is present iff the ‘found’ field has
value of ‘1’.

‘frame’ The information about the frame corresponding to the found trace frame. This
field is present only if a trace frame was found. See Section 27.7.5 [GDB/MI
Frame Information], page 558, for description of this field.

gdb Command

The corresponding gdb command is ‘tfind’.

-trace-define-variable

Synopsis
-trace-define-variable name [value]

Create trace variable name if it does not exist. If value is specified, sets the initial value
of the specified trace variable to that value. Note that the name should start with the ‘$’
character.

gdb Command

The corresponding gdb command is ‘tvariable’.

The -trace-frame-collected Command

616 Debugging with gdb

Synopsis
-trace-frame-collected

[--var-print-values var_pval]

[--comp-print-values comp_pval]

[--registers-format regformat]

[--memory-contents]

This command returns the set of collected objects, register names, trace state variable
names, memory ranges and computed expressions that have been collected at a particular
trace frame. The optional parameters to the command affect the output format in different
ways. See the output description table below for more details.

The reported names can be used in the normal manner to create varobjs and inspect the
objects themselves. The items returned by this command are categorized so that it is clear
which is a variable, which is a register, which is a trace state variable, which is a memory
range and which is a computed expression.

For instance, if the actions were

collect myVar, myArray[myIndex], myObj.field, myPtr->field, myCount + 2

collect *(int*)0xaf02bef0@40

the object collected in its entirety would be myVar. The object myArray would be partially
collected, because only the element at index myIndex would be collected. The remaining
objects would be computed expressions.

An example output would be:

(gdb)

-trace-frame-collected

^done,

explicit-variables=[{name="myVar",value="1"}],

computed-expressions=[{name="myArray[myIndex]",value="0"},

{name="myObj.field",value="0"},

{name="myPtr->field",value="1"},

{name="myCount + 2",value="3"},

{name="$tvar1 + 1",value="43970027"}],

registers=[{number="0",value="0x7fe2c6e79ec8"},

{number="1",value="0x0"},

{number="2",value="0x4"},

...

{number="125",value="0x0"}],

tvars=[{name="$tvar1",current="43970026"}],

memory=[{address="0x0000000000602264",length="4"},

{address="0x0000000000615bc0",length="4"}]

(gdb)

Where:

explicit-variables

The set of objects that have been collected in their entirety (as opposed to
collecting just a few elements of an array or a few struct members). For each
object, its name and value are printed. The --var-print-values option affects
how or whether the value field is output. If var pval is 0, then print only the
names; if it is 1, print also their values; and if it is 2, print the name, type and
value for simple data types, and the name and type for arrays, structures and
unions.

Chapter 27: The gdb/mi Interface 617

computed-expressions

The set of computed expressions that have been collected at the current trace
frame. The --comp-print-values option affects this set like the --var-print-
values option affects the explicit-variables set. See above.

registers

The registers that have been collected at the current trace frame. For each reg-
ister collected, the name and current value are returned. The value is formatted
according to the --registers-format option. See the -data-list-register-
values command for a list of the allowed formats. The default is ‘x’.

tvars The trace state variables that have been collected at the current trace frame.
For each trace state variable collected, the name and current value are returned.

memory The set of memory ranges that have been collected at the current trace frame.
Its content is a list of tuples. Each tuple represents a collected memory range
and has the following fields:

address The start address of the memory range, as hexadecimal literal.

length The length of the memory range, as decimal literal.

contents The contents of the memory block, in hex. This field is only present
if the --memory-contents option is specified.

gdb Command

There is no corresponding gdb command.

Example

-trace-list-variables

Synopsis
-trace-list-variables

Return a table of all defined trace variables. Each element of the table has the following
fields:

‘name’ The name of the trace variable. This field is always present.

‘initial’ The initial value. This is a 64-bit signed integer. This field is always present.

‘current’ The value the trace variable has at the moment. This is a 64-bit signed integer.
This field is absent iff current value is not defined, for example if the trace was
never run, or is presently running.

gdb Command

The corresponding gdb command is ‘tvariables’.

Example
(gdb)

-trace-list-variables

^done,trace-variables={nr_rows="1",nr_cols="3",

618 Debugging with gdb

hdr=[{width="15",alignment="-1",col_name="name",colhdr="Name"},

{width="11",alignment="-1",col_name="initial",colhdr="Initial"},

{width="11",alignment="-1",col_name="current",colhdr="Current"}],

body=[variable={name="$trace_timestamp",initial="0"}

variable={name="$foo",initial="10",current="15"}]}

(gdb)

-trace-save

Synopsis
-trace-save [-r] [-ctf] filename

Saves the collected trace data to filename. Without the ‘-r’ option, the data is down-
loaded from the target and saved in a local file. With the ‘-r’ option the target is asked to
perform the save.

By default, this command will save the trace in the tfile format. You can supply the
optional ‘-ctf’ argument to save it the CTF format. See Section 13.4 [Trace Files], page 211,
for more information about CTF.

gdb Command

The corresponding gdb command is ‘tsave’.

-trace-start

Synopsis
-trace-start

Starts a tracing experiment. The result of this command does not have any fields.

gdb Command

The corresponding gdb command is ‘tstart’.

-trace-status

Synopsis
-trace-status

Obtains the status of a tracing experiment. The result may include the following fields:

‘supported’
May have a value of either ‘0’, when no tracing operations are supported, ‘1’,
when all tracing operations are supported, or ‘file’ when examining trace
file. In the latter case, examining of trace frame is possible but new tracing
experiement cannot be started. This field is always present.

‘running’ May have a value of either ‘0’ or ‘1’ depending on whether tracing experiement
is in progress on target. This field is present if ‘supported’ field is not ‘0’.

‘stop-reason’
Report the reason why the tracing was stopped last time. This field may be
absent iff tracing was never stopped on target yet. The value of ‘request’ means
the tracing was stopped as result of the -trace-stop command. The value of

Chapter 27: The gdb/mi Interface 619

‘overflow’ means the tracing buffer is full. The value of ‘disconnection’
means tracing was automatically stopped when gdb has disconnected. The
value of ‘passcount’ means tracing was stopped when a tracepoint was passed a
maximal number of times for that tracepoint. This field is present if ‘supported’
field is not ‘0’.

‘stopping-tracepoint’
The number of tracepoint whose passcount as exceeded. This field is present
iff the ‘stop-reason’ field has the value of ‘passcount’.

‘frames’
‘frames-created’

The ‘frames’ field is a count of the total number of trace frames in the trace
buffer, while ‘frames-created’ is the total created during the run, including
ones that were discarded, such as when a circular trace buffer filled up. Both
fields are optional.

‘buffer-size’
‘buffer-free’

These fields tell the current size of the tracing buffer and the remaining space.
These fields are optional.

‘circular’
The value of the circular trace buffer flag. 1 means that the trace buffer is
circular and old trace frames will be discarded if necessary to make room, 0
means that the trace buffer is linear and may fill up.

‘disconnected’
The value of the disconnected tracing flag. 1 means that tracing will continue
after gdb disconnects, 0 means that the trace run will stop.

‘trace-file’
The filename of the trace file being examined. This field is optional, and only
present when examining a trace file.

gdb Command

The corresponding gdb command is ‘tstatus’.

-trace-stop

Synopsis
-trace-stop

Stops a tracing experiment. The result of this command has the same fields as -trace-
status, except that the ‘supported’ and ‘running’ fields are not output.

gdb Command

The corresponding gdb command is ‘tstop’.

27.20 gdb/mi Symbol Query Commands

620 Debugging with gdb

The -symbol-info-functions Command

Synopsis
-symbol-info-functions [--include-nondebug]

[--type type_regexp]

[--name name_regexp]

[--max-results limit]

Return a list containing the names and types for all global functions taken from the debug
information. The functions are grouped by source file, and shown with the line number on
which each function is defined.

The --include-nondebug option causes the output to include code symbols from the
symbol table.

The options --type and --name allow the symbols returned to be filtered based on either
the name of the function, or the type signature of the function.

The option --max-results restricts the command to return no more than limit results.
If exactly limit results are returned then there might be additional results available if a
higher limit is used.

gdb Command

The corresponding gdb command is ‘info functions’.

Example
(gdb)

-symbol-info-functions

^done,symbols=

{debug=

[{filename="/project/gdb/testsuite/gdb.mi/mi-sym-info-1.c",

fullname="/project/gdb/testsuite/gdb.mi/mi-sym-info-1.c",

symbols=[{line="36", name="f4", type="void (int *)",

description="void f4(int *);"},

{line="42", name="main", type="int ()",

description="int main();"},

{line="30", name="f1", type="my_int_t (int, int)",

description="static my_int_t f1(int, int);"}]},

{filename="/project/gdb/testsuite/gdb.mi/mi-sym-info-2.c",

fullname="/project/gdb/testsuite/gdb.mi/mi-sym-info-2.c",

symbols=[{line="33", name="f2", type="float (another_float_t)",

description="float f2(another_float_t);"},

{line="39", name="f3", type="int (another_int_t)",

description="int f3(another_int_t);"},

{line="27", name="f1", type="another_float_t (int)",

description="static another_float_t f1(int);"}]}]}

Chapter 27: The gdb/mi Interface 621

(gdb)

-symbol-info-functions --name f1

^done,symbols=

{debug=

[{filename="/project/gdb/testsuite/gdb.mi/mi-sym-info-1.c",

fullname="/project/gdb/testsuite/gdb.mi/mi-sym-info-1.c",

symbols=[{line="30", name="f1", type="my_int_t (int, int)",

description="static my_int_t f1(int, int);"}]},

{filename="/project/gdb/testsuite/gdb.mi/mi-sym-info-2.c",

fullname="/project/gdb/testsuite/gdb.mi/mi-sym-info-2.c",

symbols=[{line="27", name="f1", type="another_float_t (int)",

description="static another_float_t f1(int);"}]}]}

(gdb)

-symbol-info-functions --type void

^done,symbols=

{debug=

[{filename="/project/gdb/testsuite/gdb.mi/mi-sym-info-1.c",

fullname="/project/gdb/testsuite/gdb.mi/mi-sym-info-1.c",

symbols=[{line="36", name="f4", type="void (int *)",

description="void f4(int *);"}]}]}

(gdb)

-symbol-info-functions --include-nondebug

^done,symbols=

{debug=

[{filename="/project/gdb/testsuite/gdb.mi/mi-sym-info-1.c",

fullname="/project/gdb/testsuite/gdb.mi/mi-sym-info-1.c",

symbols=[{line="36", name="f4", type="void (int *)",

description="void f4(int *);"},

{line="42", name="main", type="int ()",

description="int main();"},

{line="30", name="f1", type="my_int_t (int, int)",

description="static my_int_t f1(int, int);"}]},

{filename="/project/gdb/testsuite/gdb.mi/mi-sym-info-2.c",

fullname="/project/gdb/testsuite/gdb.mi/mi-sym-info-2.c",

symbols=[{line="33", name="f2", type="float (another_float_t)",

description="float f2(another_float_t);"},

{line="39", name="f3", type="int (another_int_t)",

description="int f3(another_int_t);"},

{line="27", name="f1", type="another_float_t (int)",

description="static another_float_t f1(int);"}]}],

nondebug=

[{address="0x0000000000400398",name="_init"},

{address="0x00000000004003b0",name="_start"},

...

]}

The -symbol-info-module-functions Command

Synopsis
-symbol-info-module-functions [--module module_regexp]

[--name name_regexp]

[--type type_regexp]

Return a list containing the names of all known functions within all know Fortran modules.
The functions are grouped by source file and containing module, and shown with the line
number on which each function is defined.

622 Debugging with gdb

The option --module only returns results for modules matching module regexp. The
option --name only returns functions whose name matches name regexp, and --type only
returns functions whose type matches type regexp.

gdb Command

The corresponding gdb command is ‘info module functions’.

Example
(gdb)

-symbol-info-module-functions

^done,symbols=

[{module="mod1",

files=[{filename="/project/gdb/testsuite/gdb.mi/mi-fortran-modules-2.f90",

fullname="/project/gdb/testsuite/gdb.mi/mi-fortran-modules-2.f90",

symbols=[{line="21",name="mod1::check_all",type="void (void)",

description="void mod1::check_all(void);"}]}]},

{module="mod2",

files=[{filename="/project/gdb/testsuite/gdb.mi/mi-fortran-modules-2.f90",

fullname="/project/gdb/testsuite/gdb.mi/mi-fortran-modules-2.f90",

symbols=[{line="30",name="mod2::check_var_i",type="void (void)",

description="void mod2::check_var_i(void);"}]}]},

{module="mod3",

files=[{filename="/projec/gdb/testsuite/gdb.mi/mi-fortran-modules.f90",

fullname="/projec/gdb/testsuite/gdb.mi/mi-fortran-modules.f90",

symbols=[{line="21",name="mod3::check_all",type="void (void)",

description="void mod3::check_all(void);"},

{line="27",name="mod3::check_mod2",type="void (void)",

description="void mod3::check_mod2(void);"}]}]},

{module="modmany",

files=[{filename="/project/gdb/testsuite/gdb.mi/mi-fortran-modules.f90",

fullname="/project/gdb/testsuite/gdb.mi/mi-fortran-modules.f90",

symbols=[{line="35",name="modmany::check_some",type="void (void)",

description="void modmany::check_some(void);"}]}]},

{module="moduse",

files=[{filename="/project/gdb/testsuite/gdb.mi/mi-fortran-modules.f90",

fullname="/project/gdb/testsuite/gdb.mi/mi-fortran-modules.f90",

symbols=[{line="44",name="moduse::check_all",type="void (void)",

description="void moduse::check_all(void);"},

{line="49",name="moduse::check_var_x",type="void (void)",

description="void moduse::check_var_x(void);"}]}]}]

The -symbol-info-module-variables Command

Synopsis
-symbol-info-module-variables [--module module_regexp]

[--name name_regexp]

[--type type_regexp]

Return a list containing the names of all known variables within all know Fortran modules.
The variables are grouped by source file and containing module, and shown with the line
number on which each variable is defined.

The option --module only returns results for modules matching module regexp. The
option --name only returns variables whose name matches name regexp, and --type only
returns variables whose type matches type regexp.

Chapter 27: The gdb/mi Interface 623

gdb Command

The corresponding gdb command is ‘info module variables’.

Example
(gdb)

-symbol-info-module-variables

^done,symbols=

[{module="mod1",

files=[{filename="/project/gdb/testsuite/gdb.mi/mi-fortran-modules-2.f90",

fullname="/project/gdb/testsuite/gdb.mi/mi-fortran-modules-2.f90",

symbols=[{line="18",name="mod1::var_const",type="integer(kind=4)",

description="integer(kind=4) mod1::var_const;"},

{line="17",name="mod1::var_i",type="integer(kind=4)",

description="integer(kind=4) mod1::var_i;"}]}]},

{module="mod2",

files=[{filename="/project/gdb/testsuite/gdb.mi/mi-fortran-modules-2.f90",

fullname="/project/gdb/testsuite/gdb.mi/mi-fortran-modules-2.f90",

symbols=[{line="28",name="mod2::var_i",type="integer(kind=4)",

description="integer(kind=4) mod2::var_i;"}]}]},

{module="mod3",

files=[{filename="/project/gdb/testsuite/gdb.mi/mi-fortran-modules.f90",

fullname="/project/gdb/testsuite/gdb.mi/mi-fortran-modules.f90",

symbols=[{line="18",name="mod3::mod1",type="integer(kind=4)",

description="integer(kind=4) mod3::mod1;"},

{line="17",name="mod3::mod2",type="integer(kind=4)",

description="integer(kind=4) mod3::mod2;"},

{line="19",name="mod3::var_i",type="integer(kind=4)",

description="integer(kind=4) mod3::var_i;"}]}]},

{module="modmany",

files=[{filename="/project/gdb/testsuite/gdb.mi/mi-fortran-modules.f90",

fullname="/project/gdb/testsuite/gdb.mi/mi-fortran-modules.f90",

symbols=[{line="33",name="modmany::var_a",type="integer(kind=4)",

description="integer(kind=4) modmany::var_a;"},

{line="33",name="modmany::var_b",type="integer(kind=4)",

description="integer(kind=4) modmany::var_b;"},

{line="33",name="modmany::var_c",type="integer(kind=4)",

description="integer(kind=4) modmany::var_c;"},

{line="33",name="modmany::var_i",type="integer(kind=4)",

description="integer(kind=4) modmany::var_i;"}]}]},

{module="moduse",

files=[{filename="/project/gdb/testsuite/gdb.mi/mi-fortran-modules.f90",

fullname="/project/gdb/testsuite/gdb.mi/mi-fortran-modules.f90",

symbols=[{line="42",name="moduse::var_x",type="integer(kind=4)",

description="integer(kind=4) moduse::var_x;"},

{line="42",name="moduse::var_y",type="integer(kind=4)",

description="integer(kind=4) moduse::var_y;"}]}]}]

The -symbol-info-modules Command

Synopsis
-symbol-info-modules [--name name_regexp]

[--max-results limit]

Return a list containing the names of all known Fortran modules. The modules are grouped
by source file, and shown with the line number on which each modules is defined.

624 Debugging with gdb

The option --name allows the modules returned to be filtered based the name of the
module.

The option --max-results restricts the command to return no more than limit results.
If exactly limit results are returned then there might be additional results available if a
higher limit is used.

gdb Command

The corresponding gdb command is ‘info modules’.

Example
(gdb)

-symbol-info-modules

^done,symbols=

{debug=

[{filename="/project/gdb/testsuite/gdb.mi/mi-fortran-modules-2.f90",

fullname="/project/gdb/testsuite/gdb.mi/mi-fortran-modules-2.f90",

symbols=[{line="16",name="mod1"},

{line="22",name="mod2"}]},

{filename="/project/gdb/testsuite/gdb.mi/mi-fortran-modules.f90",

fullname="/project/gdb/testsuite/gdb.mi/mi-fortran-modules.f90",

symbols=[{line="16",name="mod3"},

{line="22",name="modmany"},

{line="26",name="moduse"}]}]}

(gdb)

-symbol-info-modules --name mod[123]

^done,symbols=

{debug=

[{filename="/project/gdb/testsuite/gdb.mi/mi-fortran-modules-2.f90",

fullname="/project/gdb/testsuite/gdb.mi/mi-fortran-modules-2.f90",

symbols=[{line="16",name="mod1"},

{line="22",name="mod2"}]},

{filename="/project/gdb/testsuite/gdb.mi/mi-fortran-modules.f90",

fullname="/project/gdb/testsuite/gdb.mi/mi-fortran-modules.f90",

symbols=[{line="16",name="mod3"}]}]}

The -symbol-info-types Command

Synopsis
-symbol-info-types [--name name_regexp]

[--max-results limit]

Return a list of all defined types. The types are grouped by source file, and shown with the
line number on which each user defined type is defined. Some base types are not defined in
the source code but are added to the debug information by the compiler, for example int,
float, etc.; these types do not have an associated line number.

The option --name allows the list of types returned to be filtered by name.

The option --max-results restricts the command to return no more than limit results.
If exactly limit results are returned then there might be additional results available if a
higher limit is used.

gdb Command

The corresponding gdb command is ‘info types’.

Chapter 27: The gdb/mi Interface 625

Example
(gdb)

-symbol-info-types

^done,symbols=

{debug=

[{filename="gdb.mi/mi-sym-info-1.c",

fullname="/project/gdb/testsuite/gdb.mi/mi-sym-info-1.c",

symbols=[{name="float"},

{name="int"},

{line="27",name="typedef int my_int_t;"}]},

{filename="gdb.mi/mi-sym-info-2.c",

fullname="/project/gdb.mi/mi-sym-info-2.c",

symbols=[{line="24",name="typedef float another_float_t;"},

{line="23",name="typedef int another_int_t;"},

{name="float"},

{name="int"}]}]}

(gdb)

-symbol-info-types --name _int_

^done,symbols=

{debug=

[{filename="gdb.mi/mi-sym-info-1.c",

fullname="/project/gdb/testsuite/gdb.mi/mi-sym-info-1.c",

symbols=[{line="27",name="typedef int my_int_t;"}]},

{filename="gdb.mi/mi-sym-info-2.c",

fullname="/project/gdb.mi/mi-sym-info-2.c",

symbols=[{line="23",name="typedef int another_int_t;"}]}]}

The -symbol-info-variables Command

Synopsis
-symbol-info-variables [--include-nondebug]

[--type type_regexp]

[--name name_regexp]

[--max-results limit]

Return a list containing the names and types for all global variables taken from the debug
information. The variables are grouped by source file, and shown with the line number on
which each variable is defined.

The --include-nondebug option causes the output to include data symbols from the
symbol table.

The options --type and --name allow the symbols returned to be filtered based on either
the name of the variable, or the type of the variable.

The option --max-results restricts the command to return no more than limit results.
If exactly limit results are returned then there might be additional results available if a
higher limit is used.

gdb Command

The corresponding gdb command is ‘info variables’.

626 Debugging with gdb

Example
(gdb)

-symbol-info-variables

^done,symbols=

{debug=

[{filename="/project/gdb/testsuite/gdb.mi/mi-sym-info-1.c",

fullname="/project/gdb/testsuite/gdb.mi/mi-sym-info-1.c",

symbols=[{line="25",name="global_f1",type="float",

description="static float global_f1;"},

{line="24",name="global_i1",type="int",

description="static int global_i1;"}]},

{filename="/project/gdb/testsuite/gdb.mi/mi-sym-info-2.c",

fullname="/project/gdb/testsuite/gdb.mi/mi-sym-info-2.c",

symbols=[{line="21",name="global_f2",type="int",

description="int global_f2;"},

{line="20",name="global_i2",type="int",

description="int global_i2;"},

{line="19",name="global_f1",type="float",

description="static float global_f1;"},

{line="18",name="global_i1",type="int",

description="static int global_i1;"}]}]}

(gdb)

-symbol-info-variables --name f1

^done,symbols=

{debug=

[{filename="/project/gdb/testsuite/gdb.mi/mi-sym-info-1.c",

fullname="/project/gdb/testsuite/gdb.mi/mi-sym-info-1.c",

symbols=[{line="25",name="global_f1",type="float",

description="static float global_f1;"}]},

{filename="/project/gdb/testsuite/gdb.mi/mi-sym-info-2.c",

fullname="/project/gdb/testsuite/gdb.mi/mi-sym-info-2.c",

symbols=[{line="19",name="global_f1",type="float",

description="static float global_f1;"}]}]}

(gdb)

-symbol-info-variables --type float

^done,symbols=

{debug=

[{filename="/project/gdb/testsuite/gdb.mi/mi-sym-info-1.c",

fullname="/project/gdb/testsuite/gdb.mi/mi-sym-info-1.c",

symbols=[{line="25",name="global_f1",type="float",

description="static float global_f1;"}]},

{filename="/project/gdb/testsuite/gdb.mi/mi-sym-info-2.c",

fullname="/project/gdb/testsuite/gdb.mi/mi-sym-info-2.c",

symbols=[{line="19",name="global_f1",type="float",

description="static float global_f1;"}]}]}

Chapter 27: The gdb/mi Interface 627

(gdb)

-symbol-info-variables --include-nondebug

^done,symbols=

{debug=

[{filename="/project/gdb/testsuite/gdb.mi/mi-sym-info-1.c",

fullname="/project/gdb/testsuite/gdb.mi/mi-sym-info-1.c",

symbols=[{line="25",name="global_f1",type="float",

description="static float global_f1;"},

{line="24",name="global_i1",type="int",

description="static int global_i1;"}]},

{filename="/project/gdb/testsuite/gdb.mi/mi-sym-info-2.c",

fullname="/project/gdb/testsuite/gdb.mi/mi-sym-info-2.c",

symbols=[{line="21",name="global_f2",type="int",

description="int global_f2;"},

{line="20",name="global_i2",type="int",

description="int global_i2;"},

{line="19",name="global_f1",type="float",

description="static float global_f1;"},

{line="18",name="global_i1",type="int",

description="static int global_i1;"}]}],

nondebug=

[{address="0x00000000004005d0",name="_IO_stdin_used"},

{address="0x00000000004005d8",name="__dso_handle"}

...

]}

The -symbol-list-lines Command

Synopsis
-symbol-list-lines filename

Print the list of lines that contain code and their associated program addresses for the
given source filename. The entries are sorted in ascending PC order.

gdb Command

There is no corresponding gdb command.

Example
(gdb)

-symbol-list-lines basics.c

^done,lines=[{pc="0x08048554",line="7"},{pc="0x0804855a",line="8"}]

(gdb)

27.21 gdb/mi File Commands

This section describes the GDB/MI commands to specify executable file names and to read
in and obtain symbol table information.

The -file-exec-and-symbols Command

Synopsis
-file-exec-and-symbols file

Specify the executable file to be debugged. This file is the one from which the symbol
table is also read. If no file is specified, the command clears the executable and symbol

628 Debugging with gdb

information. If breakpoints are set when using this command with no arguments, gdb will
produce error messages. Otherwise, no output is produced, except a completion notification.

gdb Command

The corresponding gdb command is ‘file’.

Example
(gdb)

-file-exec-and-symbols /kwikemart/marge/ezannoni/TRUNK/mbx/hello.mbx

^done

(gdb)

The -file-exec-file Command

Synopsis
-file-exec-file file

Specify the executable file to be debugged. Unlike ‘-file-exec-and-symbols’, the
symbol table is not read from this file. If used without argument, gdb clears the information
about the executable file. No output is produced, except a completion notification.

gdb Command

The corresponding gdb command is ‘exec-file’.

Example
(gdb)

-file-exec-file /kwikemart/marge/ezannoni/TRUNK/mbx/hello.mbx

^done

(gdb)

The -file-list-exec-source-file Command

Synopsis
-file-list-exec-source-file

List the line number, the current source file, and the absolute path to the current source
file for the current executable. The macro information field has a value of ‘1’ or ‘0’ depending
on whether or not the file includes preprocessor macro information.

gdb Command

The gdb equivalent is ‘info source’

Example
(gdb)

123-file-list-exec-source-file

123^done,line="1",file="foo.c",fullname="/home/bar/foo.c,macro-info="1"

(gdb)

The -file-list-exec-source-files Command

Chapter 27: The gdb/mi Interface 629

Synopsis
-file-list-exec-source-files [--group-by-objfile]

[--dirname | --basename]
[--]
[regexp]

This command returns information about the source files gdb knows about, it will output
both the filename and fullname (absolute file name) of a source file, though the fullname
can be elided if this information is not known to gdb.

With no arguments this command returns a list of source files. Each source file is
represented by a tuple with the fields; file, fullname, and debug-fully-read. The file is the
display name for the file, while fullname is the absolute name of the file. The fullname
field can be elided if the absolute name of the source file can’t be computed. The field
debug-fully-read will be a string, either true or false. When true, this indicates the full
debug information for the compilation unit describing this file has been read in. When
false, the full debug information has not yet been read in. While reading in the full debug
information it is possible that gdb could become aware of additional source files.

The optional regexp can be used to filter the list of source files returned. The regexp
will be matched against the full source file name. The matching is case-sensitive, except
on operating systems that have case-insensitive filesystem (e.g., MS-Windows). ‘--’ can be
used before regexp to prevent gdb interpreting regexp as a command option (e.g. if regexp
starts with ‘-’).

If --dirname is provided, then regexp is matched only against the directory name of
each source file. If --basename is provided, then regexp is matched against the basename
of each source file. Only one of --dirname or --basename may be given, and if either is
given then regexp is required.

If --group-by-objfile is used then the format of the results is changed. The results
will now be a list of tuples, with each tuple representing an object file (executable or shared
library) loaded into gdb. The fields of these tuples are; filename, debug-info, and sources.
The filename is the absolute name of the object file, debug-info is a string with one of the
following values:

none This object file has no debug information.

partially-read

This object file has debug information, but it is not fully read in yet. When it
is read in later, GDB might become aware of additional source files.

fully-read

This object file has debug information, and this information is fully read into
GDB. The list of source files is complete.

The sources is a list or tuples, with each tuple describing a single source file with the
same fields as described previously. The sources list can be empty for object files that have
no debug information.

gdb Command

The gdb equivalent is ‘info sources’. gdbtk has an analogous command ‘gdb_listfiles’.

630 Debugging with gdb

Example
(gdb)

-file-list-exec-source-files

^done,files=[{file="foo.c",fullname="/home/foo.c",debug-fully-read="true"},

{file="/home/bar.c",fullname="/home/bar.c",debug-fully-read="true"},

{file="gdb_could_not_find_fullpath.c",debug-fully-read="true"}]

(gdb)

-file-list-exec-source-files

^done,files=[{file="test.c",

fullname="/tmp/info-sources/test.c",

debug-fully-read="true"},

{file="/usr/include/stdc-predef.h",

fullname="/usr/include/stdc-predef.h",

debug-fully-read="true"},

{file="header.h",

fullname="/tmp/info-sources/header.h",

debug-fully-read="true"},

{file="helper.c",

fullname="/tmp/info-sources/helper.c",

debug-fully-read="true"}]

(gdb)

-file-list-exec-source-files -- \\.c

^done,files=[{file="test.c",

fullname="/tmp/info-sources/test.c",

debug-fully-read="true"},

{file="helper.c",

fullname="/tmp/info-sources/helper.c",

debug-fully-read="true"}]

(gdb)

-file-list-exec-source-files --group-by-objfile

^done,files=[{filename="/tmp/info-sources/test.x",

debug-info="fully-read",

sources=[{file="test.c",

fullname="/tmp/info-sources/test.c",

debug-fully-read="true"},

{file="/usr/include/stdc-predef.h",

fullname="/usr/include/stdc-predef.h",

debug-fully-read="true"},

{file="header.h",

fullname="/tmp/info-sources/header.h",

debug-fully-read="true"}]},

{filename="/lib64/ld-linux-x86-64.so.2",

debug-info="none",

sources=[]},

{filename="system-supplied DSO at 0x7ffff7fcf000",

debug-info="none",

sources=[]},

{filename="/tmp/info-sources/libhelper.so",

debug-info="fully-read",

sources=[{file="helper.c",

fullname="/tmp/info-sources/helper.c",

debug-fully-read="true"},

{file="/usr/include/stdc-predef.h",

fullname="/usr/include/stdc-predef.h",

debug-fully-read="true"},

{file="header.h",

fullname="/tmp/info-sources/header.h",

debug-fully-read="true"}]},

Chapter 27: The gdb/mi Interface 631

{filename="/lib64/libc.so.6",

debug-info="none",

sources=[]}]

The -file-list-shared-libraries Command

Synopsis
-file-list-shared-libraries [regexp]

List the shared libraries in the program. With a regular expression regexp, only those
libraries whose names match regexp are listed.

gdb Command

The corresponding gdb command is ‘info shared’. The fields have a similar meaning to the
=library-loaded notification. The ranges field specifies the multiple segments belonging
to this library. Each range has the following fields:

‘from’ The address defining the inclusive lower bound of the segment.

‘to’ The address defining the exclusive upper bound of the segment.

Example
(gdb)

-file-list-exec-source-files

^done,shared-libraries=[

{id="/lib/libfoo.so",target-name="/lib/libfoo.so",host-name="/lib/libfoo.so",symbols-loaded="1",thread-

group="i1",ranges=[{from="0x72815989",to="0x728162c0"}]},

{id="/lib/libbar.so",target-name="/lib/libbar.so",host-name="/lib/libbar.so",symbols-loaded="1",thread-

group="i1",ranges=[{from="0x76ee48c0",to="0x76ee9160"}]}]

(gdb)

The -file-symbol-file Command

Synopsis
-file-symbol-file file

Read symbol table info from the specified file argument. When used without arguments,
clears gdb’s symbol table info. No output is produced, except for a completion notification.

gdb Command

The corresponding gdb command is ‘symbol-file’.

Example
(gdb)

-file-symbol-file /kwikemart/marge/ezannoni/TRUNK/mbx/hello.mbx

^done

(gdb)

27.22 gdb/mi Target Manipulation Commands

The -target-attach Command

632 Debugging with gdb

Synopsis
-target-attach pid | gid | file

Attach to a process pid or a file file outside of gdb, or a thread group gid. If attaching to
a thread group, the id previously returned by ‘-list-thread-groups --available’ must
be used.

gdb Command

The corresponding gdb command is ‘attach’.

Example
(gdb)

-target-attach 34

=thread-created,id="1"

*stopped,thread-id="1",frame={addr="0xb7f7e410",func="bar",args=[]}

^done

(gdb)

The -target-detach Command

Synopsis
-target-detach [pid | gid]

Detach from the remote target which normally resumes its execution. If either pid or gid
is specified, detaches from either the specified process, or specified thread group. There’s
no output.

gdb Command

The corresponding gdb command is ‘detach’.

Example
(gdb)

-target-detach

^done

(gdb)

The -target-disconnect Command

Synopsis
-target-disconnect

Disconnect from the remote target. There’s no output and the target is generally not
resumed.

gdb Command

The corresponding gdb command is ‘disconnect’.

Example
(gdb)

-target-disconnect

^done

(gdb)

Chapter 27: The gdb/mi Interface 633

The -target-download Command

Synopsis
-target-download

Loads the executable onto the remote target. It prints out an update message every half
second, which includes the fields:

‘section’ The name of the section.

‘section-sent’
The size of what has been sent so far for that section.

‘section-size’
The size of the section.

‘total-sent’
The total size of what was sent so far (the current and the previous sections).

‘total-size’
The size of the overall executable to download.

Each message is sent as status record (see Section 27.4.2 [gdb/miOutput Syntax], page 547).

In addition, it prints the name and size of the sections, as they are downloaded. These
messages include the following fields:

‘section’ The name of the section.

‘section-size’
The size of the section.

‘total-size’
The size of the overall executable to download.

At the end, a summary is printed.

gdb Command

The corresponding gdb command is ‘load’.

Example

Note: each status message appears on a single line. Here the messages have been broken
down so that they can fit onto a page.

(gdb)

-target-download

+download,{section=".text",section-size="6668",total-size="9880"}

+download,{section=".text",section-sent="512",section-size="6668",

total-sent="512",total-size="9880"}

+download,{section=".text",section-sent="1024",section-size="6668",

total-sent="1024",total-size="9880"}

+download,{section=".text",section-sent="1536",section-size="6668",

total-sent="1536",total-size="9880"}

+download,{section=".text",section-sent="2048",section-size="6668",

total-sent="2048",total-size="9880"}

+download,{section=".text",section-sent="2560",section-size="6668",

total-sent="2560",total-size="9880"}

634 Debugging with gdb

+download,{section=".text",section-sent="3072",section-size="6668",

total-sent="3072",total-size="9880"}

+download,{section=".text",section-sent="3584",section-size="6668",

total-sent="3584",total-size="9880"}

+download,{section=".text",section-sent="4096",section-size="6668",

total-sent="4096",total-size="9880"}

+download,{section=".text",section-sent="4608",section-size="6668",

total-sent="4608",total-size="9880"}

+download,{section=".text",section-sent="5120",section-size="6668",

total-sent="5120",total-size="9880"}

+download,{section=".text",section-sent="5632",section-size="6668",

total-sent="5632",total-size="9880"}

+download,{section=".text",section-sent="6144",section-size="6668",

total-sent="6144",total-size="9880"}

+download,{section=".text",section-sent="6656",section-size="6668",

total-sent="6656",total-size="9880"}

+download,{section=".init",section-size="28",total-size="9880"}

+download,{section=".fini",section-size="28",total-size="9880"}

+download,{section=".data",section-size="3156",total-size="9880"}

+download,{section=".data",section-sent="512",section-size="3156",

total-sent="7236",total-size="9880"}

+download,{section=".data",section-sent="1024",section-size="3156",

total-sent="7748",total-size="9880"}

+download,{section=".data",section-sent="1536",section-size="3156",

total-sent="8260",total-size="9880"}

+download,{section=".data",section-sent="2048",section-size="3156",

total-sent="8772",total-size="9880"}

+download,{section=".data",section-sent="2560",section-size="3156",

total-sent="9284",total-size="9880"}

+download,{section=".data",section-sent="3072",section-size="3156",

total-sent="9796",total-size="9880"}

^done,address="0x10004",load-size="9880",transfer-rate="6586",

write-rate="429"

(gdb)

gdb Command

No equivalent.

Example

N.A.

The -target-flash-erase Command

Synopsis
-target-flash-erase

Erases all known flash memory regions on the target.

The corresponding gdb command is ‘flash-erase’.

The output is a list of flash regions that have been erased, with starting addresses and
memory region sizes.

(gdb)

-target-flash-erase

^done,erased-regions={address="0x0",size="0x40000"}

(gdb)

Chapter 27: The gdb/mi Interface 635

The -target-select Command

Synopsis
-target-select type parameters ...

Connect gdb to the remote target. This command takes two args:

‘type’ The type of target, for instance ‘remote’, etc.

‘parameters’
Device names, host names and the like. See Section 19.2 [Commands for Man-
aging Targets], page 297, for more details.

The output is a connection notification, followed by the address at which the target
program is, in the following form:

^connected,addr="address",func="function name",

args=[arg list]

gdb Command

The corresponding gdb command is ‘target’.

Example
(gdb)

-target-select remote /dev/ttya

^connected,addr="0xfe00a300",func="??",args=[]

(gdb)

27.23 gdb/mi File Transfer Commands

The -target-file-put Command

Synopsis
-target-file-put hostfile targetfile

Copy file hostfile from the host system (the machine running gdb) to targetfile on the
target system.

gdb Command

The corresponding gdb command is ‘remote put’.

Example
(gdb)

-target-file-put localfile remotefile

^done

(gdb)

The -target-file-get Command

Synopsis
-target-file-get targetfile hostfile

Copy file targetfile from the target system to hostfile on the host system.

636 Debugging with gdb

gdb Command

The corresponding gdb command is ‘remote get’.

Example
(gdb)

-target-file-get remotefile localfile

^done

(gdb)

The -target-file-delete Command

Synopsis
-target-file-delete targetfile

Delete targetfile from the target system.

gdb Command

The corresponding gdb command is ‘remote delete’.

Example
(gdb)

-target-file-delete remotefile

^done

(gdb)

27.24 Ada Exceptions gdb/mi Commands

The -info-ada-exceptions Command

Synopsis
-info-ada-exceptions [regexp]

List all Ada exceptions defined within the program being debugged. With a regular
expression regexp, only those exceptions whose names match regexp are listed.

gdb Command

The corresponding gdb command is ‘info exceptions’.

Result

The result is a table of Ada exceptions. The following columns are defined for each excep-
tion:

‘name’ The name of the exception.

‘address’ The address of the exception.

Example
-info-ada-exceptions aint

^done,ada-exceptions={nr_rows="2",nr_cols="2",

hdr=[{width="1",alignment="-1",col_name="name",colhdr="Name"},

{width="1",alignment="-1",col_name="address",colhdr="Address"}],

Chapter 27: The gdb/mi Interface 637

body=[{name="constraint_error",address="0x0000000000613da0"},

{name="const.aint_global_e",address="0x0000000000613b00"}]}

Catching Ada Exceptions

The commands describing how to ask gdb to stop when a program raises an exception are
described at Section 27.11.2 [Ada Exception GDB/MI Catchpoint Commands], page 572.

27.25 gdb/mi Support Commands

Since new commands and features get regularly added to gdb/mi, some commands are avail-
able to help front-ends query the debugger about support for these capabilities. Similarly,
it is also possible to query gdb about target support of certain features.

The -info-gdb-mi-command Command

Synopsis
-info-gdb-mi-command cmd_name

Query support for the gdb/mi command named cmd name.

Note that the dash (-) starting all gdb/mi commands is technically not part of the
command name (see Section 27.4.1 [GDB/MI Input Syntax], page 546), and thus should be
omitted in cmd name. However, for ease of use, this command also accepts the form with
the leading dash.

gdb Command

There is no corresponding gdb command.

Result

The result is a tuple. There is currently only one field:

‘exists’ This field is equal to "true" if the gdb/mi command exists, "false" otherwise.

Example

Here is an example where the gdb/mi command does not exist:
-info-gdb-mi-command unsupported-command

^done,command={exists="false"}

And here is an example where the gdb/mi command is known to the debugger:
-info-gdb-mi-command symbol-list-lines

^done,command={exists="true"}

The -list-features Command

Returns a list of particular features of the MI protocol that this version of gdb implements.
A feature can be a command, or a new field in an output of some command, or even an
important bugfix. While a frontend can sometimes detect presence of a feature at runtime,
it is easier to perform detection at debugger startup.

The command returns a list of strings, with each string naming an available feature.
Each returned string is just a name, it does not have any internal structure. The list of
possible feature names is given below.

638 Debugging with gdb

Example output:

(gdb) -list-features

^done,result=["feature1","feature2"]

The current list of features is:

‘frozen-varobjs’
Indicates support for the -var-set-frozen command, as well as possible pres-
ence of the frozen field in the output of -varobj-create.

‘pending-breakpoints’
Indicates support for the -f option to the -break-insert command.

‘python’ Indicates Python scripting support, Python-based pretty-printing commands,
and possible presence of the ‘display_hint’ field in the output of -var-list-
children

‘thread-info’
Indicates support for the -thread-info command.

‘data-read-memory-bytes’
Indicates support for the -data-read-memory-bytes and the -data-write-

memory-bytes commands.

‘breakpoint-notifications’
Indicates that changes to breakpoints and breakpoints created via the CLI will
be announced via async records.

‘ada-task-info’
Indicates support for the -ada-task-info command.

‘language-option’
Indicates that all gdb/mi commands accept the --language option (see
Section 27.3.1 [Context management], page 544).

‘info-gdb-mi-command’
Indicates support for the -info-gdb-mi-command command.

‘undefined-command-error-code’
Indicates support for the "undefined-command" error code in error result
records, produced when trying to execute an undefined gdb/mi command (see
Section 27.7.1 [GDB/MI Result Records], page 550).

‘exec-run-start-option’
Indicates that the -exec-run command supports the --start option (see
Section 27.15 [GDB/MI Program Execution], page 582).

‘data-disassemble-a-option’
Indicates that the -data-disassemble command supports the -a option (see
Section 27.18 [GDB/MI Data Manipulation], page 605).

The -list-target-features Command

Returns a list of particular features that are supported by the target. Those features affect
the permitted MI commands, but unlike the features reported by the -list-features

Chapter 27: The gdb/mi Interface 639

command, the features depend on which target GDB is using at the moment. Whenever a
target can change, due to commands such as -target-select, -target-attach or -exec-
run, the list of target features may change, and the frontend should obtain it again. Example
output:

(gdb) -list-target-features

^done,result=["async"]

The current list of features is:

‘async’ Indicates that the target is capable of asynchronous command execution, which
means that gdb will accept further commands while the target is running.

‘reverse’ Indicates that the target is capable of reverse execution. See Chapter 6 [Reverse
Execution], page 99, for more information.

27.26 Miscellaneous gdb/mi Commands

The -gdb-exit Command

Synopsis
-gdb-exit

Exit gdb immediately.

gdb Command

Approximately corresponds to ‘quit’.

Example
(gdb)

-gdb-exit

^exit

The -gdb-set Command

Synopsis
-gdb-set

Set an internal gdb variable.

gdb Command

The corresponding gdb command is ‘set’.

Example
(gdb)

-gdb-set $foo=3

^done

(gdb)

The -gdb-show Command

Synopsis
-gdb-show

Show the current value of a gdb variable.

640 Debugging with gdb

gdb Command

The corresponding gdb command is ‘show’.

Example
(gdb)

-gdb-show annotate

^done,value="0"

(gdb)

The -gdb-version Command

Synopsis
-gdb-version

Show version information for gdb. Used mostly in testing.

gdb Command

The gdb equivalent is ‘show version’. gdb by default shows this information when you
start an interactive session.

Example
(gdb)

-gdb-version

~GNU gdb 5.2.1

~Copyright 2000 Free Software Foundation, Inc.

~GDB is free software, covered by the GNU General Public License, and

~you are welcome to change it and/or distribute copies of it under

~ certain conditions.

~Type "show copying" to see the conditions.

~There is absolutely no warranty for GDB. Type "show warranty" for

~ details.

~This GDB was configured as

"--host=sparc-sun-solaris2.5.1 --target=ppc-eabi".

^done

(gdb)

The -list-thread-groups Command

Synopsis
-list-thread-groups [--available] [--recurse 1] [group ...]

Lists thread groups (see Section 27.3.3 [Thread groups], page 546). When a single thread
group is passed as the argument, lists the children of that group. When several thread
group are passed, lists information about those thread groups. Without any parameters,
lists information about all top-level thread groups.

Normally, thread groups that are being debugged are reported. With the ‘--available’
option, gdb reports thread groups available on the target.

The output of this command may have either a ‘threads’ result or a ‘groups’ result.
The ‘thread’ result has a list of tuples as value, with each tuple describing a thread (see
Section 27.7.6 [GDB/MI Thread Information], page 558). The ‘groups’ result has a list
of tuples as value, each tuple describing a thread group. If top-level groups are requested

Chapter 27: The gdb/mi Interface 641

(that is, no parameter is passed), or when several groups are passed, the output always has
a ‘groups’ result. The format of the ‘group’ result is described below.

To reduce the number of roundtrips it’s possible to list thread groups together with
their children, by passing the ‘--recurse’ option and the recursion depth. Presently, only
recursion depth of 1 is permitted. If this option is present, then every reported thread group
will also include its children, either as ‘group’ or ‘threads’ field.

In general, any combination of option and parameters is permitted, with the following
caveats:

• When a single thread group is passed, the output will typically be the ‘threads’ result.
Because threads may not contain anything, the ‘recurse’ option will be ignored.

• When the ‘--available’ option is passed, limited information may be available. In
particular, the list of threads of a process might be inaccessible. Further, specifying
specific thread groups might not give any performance advantage over listing all thread
groups. The frontend should assume that ‘-list-thread-groups --available’ is
always an expensive operation and cache the results.

The ‘groups’ result is a list of tuples, where each tuple may have the following fields:

id Identifier of the thread group. This field is always present. The identifier is an
opaque string; frontends should not try to convert it to an integer, even though
it might look like one.

type The type of the thread group. At present, only ‘process’ is a valid type.

pid The target-specific process identifier. This field is only present for thread groups
of type ‘process’ and only if the process exists.

exit-code

The exit code of this group’s last exited thread, formatted in octal. This field
is only present for thread groups of type ‘process’ and only if the process is
not running.

num_children

The number of children this thread group has. This field may be absent for an
available thread group.

threads This field has a list of tuples as value, each tuple describing a thread. It may
be present if the ‘--recurse’ option is specified, and it’s actually possible to
obtain the threads.

cores This field is a list of integers, each identifying a core that one thread of the group
is running on. This field may be absent if such information is not available.

executable

The name of the executable file that corresponds to this thread group. The
field is only present for thread groups of type ‘process’, and only if there is a
corresponding executable file.

Example
(gdb)

-list-thread-groups

642 Debugging with gdb

^done,groups=[{id="17",type="process",pid="yyy",num_children="2"}]

-list-thread-groups 17

^done,threads=[{id="2",target-id="Thread 0xb7e14b90 (LWP 21257)",

frame={level="0",addr="0xffffe410",func="__kernel_vsyscall",args=[]},state="running"},

{id="1",target-id="Thread 0xb7e156b0 (LWP 21254)",

frame={level="0",addr="0x0804891f",func="foo",args=[{name="i",value="10"}],

file="/tmp/a.c",fullname="/tmp/a.c",line="158",arch="i386:x86_64"},state="running"}]]

-list-thread-groups --available

^done,groups=[{id="17",type="process",pid="yyy",num_children="2",cores=[1,2]}]

-list-thread-groups --available --recurse 1

^done,groups=[{id="17", types="process",pid="yyy",num_children="2",cores=[1,2],

threads=[{id="1",target-id="Thread 0xb7e14b90",cores=[1]},

{id="2",target-id="Thread 0xb7e14b90",cores=[2]}]},..]

-list-thread-groups --available --recurse 1 17 18

^done,groups=[{id="17", types="process",pid="yyy",num_children="2",cores=[1,2],

threads=[{id="1",target-id="Thread 0xb7e14b90",cores=[1]},

{id="2",target-id="Thread 0xb7e14b90",cores=[2]}]},...]

The -info-os Command

Synopsis
-info-os [type]

If no argument is supplied, the command returns a table of available operating-system-
specific information types. If one of these types is supplied as an argument type, then the
command returns a table of data of that type.

The types of information available depend on the target operating system.

gdb Command

The corresponding gdb command is ‘info os’.

Example

When run on a gnu/Linux system, the output will look something like this:
(gdb)

-info-os

^done,OSDataTable={nr_rows="10",nr_cols="3",

hdr=[{width="10",alignment="-1",col_name="col0",colhdr="Type"},

{width="10",alignment="-1",col_name="col1",colhdr="Description"},

{width="10",alignment="-1",col_name="col2",colhdr="Title"}],

body=[item={col0="cpus",col1="Listing of all cpus/cores on the system",

col2="CPUs"},

item={col0="files",col1="Listing of all file descriptors",

col2="File descriptors"},

item={col0="modules",col1="Listing of all loaded kernel modules",

col2="Kernel modules"},

item={col0="msg",col1="Listing of all message queues",

col2="Message queues"},

item={col0="processes",col1="Listing of all processes",

col2="Processes"},

item={col0="procgroups",col1="Listing of all process groups",

col2="Process groups"},

item={col0="semaphores",col1="Listing of all semaphores",

col2="Semaphores"},

item={col0="shm",col1="Listing of all shared-memory regions",

col2="Shared-memory regions"},

Chapter 27: The gdb/mi Interface 643

item={col0="sockets",col1="Listing of all internet-domain sockets",

col2="Sockets"},

item={col0="threads",col1="Listing of all threads",

col2="Threads"}]

(gdb)

-info-os processes

^done,OSDataTable={nr_rows="190",nr_cols="4",

hdr=[{width="10",alignment="-1",col_name="col0",colhdr="pid"},

{width="10",alignment="-1",col_name="col1",colhdr="user"},

{width="10",alignment="-1",col_name="col2",colhdr="command"},

{width="10",alignment="-1",col_name="col3",colhdr="cores"}],

body=[item={col0="1",col1="root",col2="/sbin/init",col3="0"},

item={col0="2",col1="root",col2="[kthreadd]",col3="1"},

item={col0="3",col1="root",col2="[ksoftirqd/0]",col3="0"},

...

item={col0="26446",col1="stan",col2="bash",col3="0"},

item={col0="28152",col1="stan",col2="bash",col3="1"}]}

(gdb)

(Note that the MI output here includes a "Title" column that does not appear in
command-line info os; this column is useful for MI clients that want to enumerate the
types of data, such as in a popup menu, but is needless clutter on the command line, and
info os omits it.)

The -add-inferior Command

Synopsis
-add-inferior [--no-connection]

Creates a new inferior (see Section 4.9 [Inferiors Connections and Programs], page 40).
The created inferior is not associated with any executable. Such association may be es-
tablished with the ‘-file-exec-and-symbols’ command (see Section 27.21 [GDB/MI File
Commands], page 627).

By default, the new inferior begins connected to the same target connection as the
current inferior. For example, if the current inferior was connected to gdbserver with
target remote, then the new inferior will be connected to the same gdbserver instance.
The ‘--no-connection’ option starts the new inferior with no connection yet. You can then
for example use the -target-select remote command to connect to some other gdbserver
instance, use -exec-run to spawn a local program, etc.

The command response always has a field, inferior, whose value is the identifier of the
thread group corresponding to the new inferior.

An additional section field, connection, is optional. This field will only exist if the new
inferior has a target connection. If this field exists, then its value will be a tuple containing
the following fields:

‘number’ The number of the connection used for the new inferior.

‘name’ The name of the connection type used for the new inferior.

gdb Command

The corresponding gdb command is ‘add-inferior’ (see [‘add-inferior’], page 43).

644 Debugging with gdb

Example
(gdb)

-add-inferior

^done,inferior="i3"

The -interpreter-exec Command

Synopsis
-interpreter-exec interpreter command

Execute the specified command in the given interpreter.

gdb Command

The corresponding gdb command is ‘interpreter-exec’.

Example
(gdb)

-interpreter-exec console "break main"

&"During symbol reading, couldn’t parse type; debugger out of date?.\n"

&"During symbol reading, bad structure-type format.\n"

~"Breakpoint 1 at 0x8074fc6: file ../../src/gdb/main.c, line 743.\n"

^done

(gdb)

The -inferior-tty-set Command

Synopsis
-inferior-tty-set /dev/pts/1

Set terminal for future runs of the program being debugged.

gdb Command

The corresponding gdb command is ‘set inferior-tty’ /dev/pts/1.

Example
(gdb)

-inferior-tty-set /dev/pts/1

^done

(gdb)

The -inferior-tty-show Command

Synopsis
-inferior-tty-show

Show terminal for future runs of program being debugged.

gdb Command

The corresponding gdb command is ‘show inferior-tty’.

Chapter 27: The gdb/mi Interface 645

Example
(gdb)

-inferior-tty-set /dev/pts/1

^done

(gdb)

-inferior-tty-show

^done,inferior_tty_terminal="/dev/pts/1"

(gdb)

The -enable-timings Command

Synopsis
-enable-timings [yes | no]

Toggle the printing of the wallclock, user and system times for an MI command as a
field in its output. This command is to help frontend developers optimize the performance
of their code. No argument is equivalent to ‘yes’.

gdb Command

No equivalent.

Example
(gdb)

-enable-timings

^done

(gdb)

-break-insert main

^done,bkpt={number="1",type="breakpoint",disp="keep",enabled="y",

addr="0x080484ed",func="main",file="myprog.c",

fullname="/home/nickrob/myprog.c",line="73",thread-groups=["i1"],

times="0"},

time={wallclock="0.05185",user="0.00800",system="0.00000"}

(gdb)

-enable-timings no

^done

(gdb)

-exec-run

^running

(gdb)

*stopped,reason="breakpoint-hit",disp="keep",bkptno="1",thread-id="0",

frame={addr="0x080484ed",func="main",args=[{name="argc",value="1"},

{name="argv",value="0xbfb60364"}],file="myprog.c",

fullname="/home/nickrob/myprog.c",line="73",arch="i386:x86_64"}

(gdb)

The -complete Command

Synopsis
-complete command

Show a list of completions for partially typed CLI command.

This command is intended for gdb/mi frontends that cannot use two separate CLI and
MI channels — for example: because of lack of PTYs like on Windows or because gdb is
used remotely via a SSH connection.

646 Debugging with gdb

Result

The result consists of two or three fields:

‘completion’
This field contains the completed command. If command has no known com-
pletions, this field is omitted.

‘matches’ This field contains a (possibly empty) array of matches. It is always present.

‘max_completions_reached’
This field contains 1 if number of known completions is above max-completions
limit (see Section 3.3 [Completion], page 24), otherwise it contains 0. It is always
present.

gdb Command

The corresponding gdb command is ‘complete’.

Example
(gdb)

-complete br

^done,completion="break",

matches=["break","break-range"],

max_completions_reached="0"

(gdb)

-complete "b ma"

^done,completion="b ma",

matches=["b madvise","b main"],max_completions_reached="0"

(gdb)

-complete "b push_b"

^done,completion="b push_back(",

matches=[

"b A::push_back(void*)",

"b std::string::push_back(char)",

"b std::vector<int, std::allocator<int> >::push_back(int&&)"],

max_completions_reached="0"

(gdb)

-complete "nonexist"

^done,matches=[],max_completions_reached="0"

(gdb)

The -device-info Command

Synopsis
-device-info

Lists all devices that are exposed to gdb.

Result

The result contains a list of ‘devices’ and a ‘current-device’ which points to the currently
selected device ‘number’.

The ‘devices’ list contains tuples with the following fields:

‘number’ The number of the device.

Chapter 27: The gdb/mi Interface 647

‘location’
The device location as a PCI address.

‘sub-device’
The sub-device ID. Some devices might be composites of multiple sub-devices
gdb can connect to. If no information about sub-devices was given by the
target, the value is a ‘-’ instead of an ID. This may be the case if the target
has no notion for sub-devices.

‘vendor-id’
The device’s PCI vendor ID.

‘target-id’
The device’s PCI target ID identifying the device type.

‘cores’ The amount of available compute cores on the device.

‘device-name’
The name of the device.

‘thread-groups’
The list of thread groups in which the device is used.

gdb Command

The corresponding gdb command is ‘info devices’.

Example
-device-info

^done,devices=[

{number="1",location="00:02.0",sub-device="0",vendor-id="0x8086",

target-id="0x3ea5",cores="48",device-name="Intel(R) Iris(R) Plus Graphics 655",

thread-groups=["i2"]}],current-device="1"

(gdb)

649

28 gdb Annotations

This chapter describes annotations in gdb. Annotations were designed to interface gdb to
graphical user interfaces or other similar programs which want to interact with gdb at a
relatively high level.

The annotation mechanism has largely been superseded by gdb/mi (see Chapter 27
[GDB/MI], page 543).

28.1 What is an Annotation?

Annotations start with a newline character, two ‘control-z’ characters, and the name
of the annotation. If there is no additional information associated with this annotation,
the name of the annotation is followed immediately by a newline. If there is additional
information, the name of the annotation is followed by a space, the additional information,
and a newline. The additional information cannot contain newline characters.

Any output not beginning with a newline and two ‘control-z’ characters denotes literal
output from gdb. Currently there is no need for gdb to output a newline followed by two
‘control-z’ characters, but if there was such a need, the annotations could be extended
with an ‘escape’ annotation which means those three characters as output.

The annotation level, which is specified using the --annotate command line option (see
Section 2.1.2 [Mode Options], page 13), controls how much information gdb prints together
with its prompt, values of expressions, source lines, and other types of output. Level 0 is for
no annotations, level 1 is for use when gdb is run as a subprocess of gnu Emacs, level 3 is
the maximum annotation suitable for programs that control gdb, and level 2 annotations
have been made obsolete (see Section “Limitations of the Annotation Interface” in GDB’s
Obsolete Annotations).

set annotate level

The gdb command set annotate sets the level of annotations to the specified
level.

show annotate

Show the current annotation level.

This chapter describes level 3 annotations.

A simple example of starting up gdb with annotations is:
$ gdb --annotate=3

GNU gdb 6.0

Copyright 2003 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License,

and you are welcome to change it and/or distribute copies of it

under certain conditions.

Type "show copying" to see the conditions.

There is absolutely no warranty for GDB. Type "show warranty"

for details.

This GDB was configured as "i386-pc-linux-gnu"

^Z^Zpre-prompt

(gdb)

^Z^Zprompt

quit

650 Debugging with gdb

^Z^Zpost-prompt

$

Here ‘quit’ is input to gdb; the rest is output from gdb. The three lines beginning
‘^Z^Z’ (where ‘^Z’ denotes a ‘control-z’ character) are annotations; the rest is output
from gdb.

28.2 The Server Prefix

If you prefix a command with ‘server ’ then it will not affect the command history, nor
will it affect gdb’s notion of which command to repeat if RET is pressed on a line by itself.
This means that commands can be run behind a user’s back by a front-end in a transparent
manner.

The server prefix does not affect the recording of values into the value history; to print
a value without recording it into the value history, use the output command instead of the
print command.

Using this prefix also disables confirmation requests (see [confirmation requests],
page 362).

28.3 Annotation for gdb Input

When gdb prompts for input, it annotates this fact so it is possible to know when to send
output, when the output from a given command is over, etc.

Different kinds of input each have a different input type. Each input type has three
annotations: a pre- annotation, which denotes the beginning of any prompt which is being
output, a plain annotation, which denotes the end of the prompt, and then a post- anno-
tation which denotes the end of any echo which may (or may not) be associated with the
input. For example, the prompt input type features the following annotations:

^Z^Zpre-prompt

^Z^Zprompt

^Z^Zpost-prompt

The input types are

prompt When gdb is prompting for a command (the main gdb prompt).

commands When gdb prompts for a set of commands, like in the commands command.
The annotations are repeated for each command which is input.

overload-choice

When gdb wants the user to select between various overloaded functions.

query When gdb wants the user to confirm a potentially dangerous operation.

prompt-for-continue

When gdb is asking the user to press return to continue. Note: Don’t expect
this to work well; instead use set height 0 to disable prompting. This is
because the counting of lines is buggy in the presence of annotations.

Chapter 28: gdb Annotations 651

28.4 Errors
^Z^Zquit

This annotation occurs right before gdb responds to an interrupt.
^Z^Zerror

This annotation occurs right before gdb responds to an error.

Quit and error annotations indicate that any annotations which gdb was in the middle
of may end abruptly. For example, if a value-history-begin annotation is followed by a
error, one cannot expect to receive the matching value-history-end. One cannot expect
not to receive it either, however; an error annotation does not necessarily mean that gdb
is immediately returning all the way to the top level.

A quit or error annotation may be preceded by
^Z^Zerror-begin

Any output between that and the quit or error annotation is the error message.

Warning messages are not yet annotated.

28.5 Invalidation Notices

The following annotations say that certain pieces of state may have changed.

^Z^Zframes-invalid

The frames (for example, output from the backtrace command) may have
changed.

^Z^Zbreakpoints-invalid

The breakpoints may have changed. For example, the user just added or deleted
a breakpoint.

28.6 Running the Program

When the program starts executing due to a gdb command such as step or continue,
^Z^Zstarting

is output. When the program stops,
^Z^Zstopped

is output. Before the stopped annotation, a variety of annotations describe how the
program stopped.

^Z^Zexited exit-status

The program exited, and exit-status is the exit status (zero for successful exit,
otherwise nonzero).

^Z^Zsignalled

The program exited with a signal. After the ^Z^Zsignalled, the annotation
continues:

intro-text

^Z^Zsignal-name

name

^Z^Zsignal-name-end

middle-text

^Z^Zsignal-string

652 Debugging with gdb

string

^Z^Zsignal-string-end

end-text

where name is the name of the signal, such as SIGILL or SIGSEGV, and string is
the explanation of the signal, such as Illegal Instruction or Segmentation
fault. The arguments intro-text, middle-text, and end-text are for the user’s
benefit and have no particular format.

^Z^Zsignal

The syntax of this annotation is just like signalled, but gdb is just saying
that the program received the signal, not that it was terminated with it.

^Z^Zbreakpoint number

The program hit breakpoint number number.

^Z^Zwatchpoint number

The program hit watchpoint number number.

28.7 Displaying Source

The following annotation is used instead of displaying source code:
^Z^Zsource filename:line:character:middle:addr

where filename is an absolute file name indicating which source file, line is the line
number within that file (where 1 is the first line in the file), character is the character
position within the file (where 0 is the first character in the file) (for most debug formats
this will necessarily point to the beginning of a line), middle is ‘middle’ if addr is in the
middle of the line, or ‘beg’ if addr is at the beginning of the line, and addr is the address
in the target program associated with the source which is being displayed. The addr is in
the form ‘0x’ followed by one or more lowercase hex digits (note that this does not depend
on the language).

653

29 JIT Compilation Interface

This chapter documents gdb’s just-in-time (JIT) compilation interface. A JIT compiler
is a program or library that generates native executable code at runtime and executes it,
usually in order to achieve good performance while maintaining platform independence.

Programs that use JIT compilation are normally difficult to debug because portions of
their code are generated at runtime, instead of being loaded from object files, which is
where gdb normally finds the program’s symbols and debug information. In order to debug
programs that use JIT compilation, gdb has an interface that allows the program to register
in-memory symbol files with gdb at runtime.

If you are using gdb to debug a program that uses this interface, then it should work
transparently so long as you have not stripped the binary. If you are developing a JIT
compiler, then the interface is documented in the rest of this chapter. At this time, the
only known client of this interface is the LLVM JIT.

Broadly speaking, the JIT interface mirrors the dynamic loader interface. The JIT com-
piler communicates with gdb by writing data into a global variable and calling a function
at a well-known symbol. When gdb attaches, it reads a linked list of symbol files from the
global variable to find existing code, and puts a breakpoint in the function so that it can
find out about additional code.

29.1 JIT Declarations

These are the relevant struct declarations that a C program should include to implement
the interface:

typedef enum

{

JIT_NOACTION = 0,

JIT_REGISTER_FN,

JIT_UNREGISTER_FN

} jit_actions_t;

struct jit_code_entry

{

struct jit_code_entry *next_entry;

struct jit_code_entry *prev_entry;

const char *symfile_addr;

uint64_t symfile_size;

};

struct jit_descriptor

{

uint32_t version;

/* This type should be jit_actions_t, but we use uint32_t

to be explicit about the bitwidth. */

uint32_t action_flag;

struct jit_code_entry *relevant_entry;

struct jit_code_entry *first_entry;

};

/* GDB puts a breakpoint in this function. */

void __attribute__((noinline)) __jit_debug_register_code() { };

654 Debugging with gdb

/* Make sure to specify the version statically, because the

debugger may check the version before we can set it. */

struct jit_descriptor __jit_debug_descriptor = { 1, 0, 0, 0 };

If the JIT is multi-threaded, then it is important that the JIT synchronize any modi-
fications to this global data properly, which can easily be done by putting a global mutex
around modifications to these structures.

29.2 Registering Code

To register code with gdb, the JIT should follow this protocol:

• Generate an object file in memory with symbols and other desired debug information.
The file must include the virtual addresses of the sections.

• Create a code entry for the file, which gives the start and size of the symbol file.

• Add it to the linked list in the JIT descriptor.

• Point the relevant entry field of the descriptor at the entry.

• Set action_flag to JIT_REGISTER and call __jit_debug_register_code.

When gdb is attached and the breakpoint fires, gdb uses the relevant_entry pointer
so it doesn’t have to walk the list looking for new code. However, the linked list must still
be maintained in order to allow gdb to attach to a running process and still find the symbol
files.

29.3 Unregistering Code

If code is freed, then the JIT should use the following protocol:

• Remove the code entry corresponding to the code from the linked list.

• Point the relevant_entry field of the descriptor at the code entry.

• Set action_flag to JIT_UNREGISTER and call __jit_debug_register_code.

If the JIT frees or recompiles code without unregistering it, then gdb and the JIT will
leak the memory used for the associated symbol files.

29.4 Custom Debug Info

Generating debug information in platform-native file formats (like ELF or COFF) may
be an overkill for JIT compilers; especially if all the debug info is used for is displaying
a meaningful backtrace. The issue can be resolved by having the JIT writers decide on a
debug info format and also provide a reader that parses the debug info generated by the JIT
compiler. This section gives a brief overview on writing such a parser. More specific details
can be found in the source file gdb/jit-reader.in, which is also installed as a header at
includedir/gdb/jit-reader.h for easy inclusion.

The reader is implemented as a shared object (so this functionality is not available
on platforms which don’t allow loading shared objects at runtime). Two gdb commands,
jit-reader-load and jit-reader-unload are provided, to be used to load and unload the
readers from a preconfigured directory. Once loaded, the shared object is used the parse
the debug information emitted by the JIT compiler.

Chapter 29: JIT Compilation Interface 655

29.4.1 Using JIT Debug Info Readers

Readers can be loaded and unloaded using the jit-reader-load and jit-reader-unload

commands.

jit-reader-load reader

Load the JIT reader named reader, which is a shared object specified as either
an absolute or a relative file name. In the latter case, gdb will try to load the
reader from a pre-configured directory, usually libdir/gdb/ on a UNIX system
(here libdir is the system library directory, often /usr/local/lib).

Only one reader can be active at a time; trying to load a second reader when
one is already loaded will result in gdb reporting an error. A new JIT reader
can be loaded by first unloading the current one using jit-reader-unload and
then invoking jit-reader-load.

jit-reader-unload

Unload the currently loaded JIT reader.

29.4.2 Writing JIT Debug Info Readers

As mentioned, a reader is essentially a shared object conforming to a certain ABI. This ABI
is described in jit-reader.h.

jit-reader.h defines the structures, macros and functions required to write a reader.
It is installed (along with gdb), in includedir/gdb where includedir is the system include
directory.

Readers need to be released under a GPL compatible license. A reader can be declared as
released under such a license by placing the macro GDB_DECLARE_GPL_COMPATIBLE_READER

in a source file.

The entry point for readers is the symbol gdb_init_reader, which is expected to be a
function with the prototype

extern struct gdb_reader_funcs *gdb_init_reader (void);

struct gdb_reader_funcs contains a set of pointers to callback functions. These func-
tions are executed to read the debug info generated by the JIT compiler (read), to unwind
stack frames (unwind) and to create canonical frame IDs (get_frame_id). It also has a
callback that is called when the reader is being unloaded (destroy). The struct looks like
this

struct gdb_reader_funcs

{

/* Must be set to GDB_READER_INTERFACE_VERSION. */

int reader_version;

/* For use by the reader. */

void *priv_data;

gdb_read_debug_info *read;

gdb_unwind_frame *unwind;

gdb_get_frame_id *get_frame_id;

gdb_destroy_reader *destroy;

};

The callbacks are provided with another set of callbacks by gdb to do their job. For
read, these callbacks are passed in a struct gdb_symbol_callbacks and for unwind and

656 Debugging with gdb

get_frame_id, in a struct gdb_unwind_callbacks. struct gdb_symbol_callbacks has
callbacks to create new object files and new symbol tables inside those object files. struct
gdb_unwind_callbacks has callbacks to read registers off the current frame and to write
out the values of the registers in the previous frame. Both have a callback (target_read)
to read bytes off the target’s address space.

657

30 In-Process Agent

The traditional debugging model is conceptually low-speed, but works fine, because most
bugs can be reproduced in debugging-mode execution. However, as multi-core or many-core
processors are becoming mainstream, and multi-threaded programs become more and more
popular, there should be more and more bugs that only manifest themselves at normal-mode
execution, for example, thread races, because debugger’s interference with the program’s
timing may conceal the bugs. On the other hand, in some applications, it is not feasible for
the debugger to interrupt the program’s execution long enough for the developer to learn
anything helpful about its behavior. If the program’s correctness depends on its real-time
behavior, delays introduced by a debugger might cause the program to fail, even when the
code itself is correct. It is useful to be able to observe the program’s behavior without
interrupting it.

Therefore, traditional debugging model is too intrusive to reproduce some bugs. In
order to reduce the interference with the program, we can reduce the number of operations
performed by debugger. The In-Process Agent, a shared library, is running within the same
process with inferior, and is able to perform some debugging operations itself. As a result,
debugger is only involved when necessary, and performance of debugging can be improved
accordingly. Note that interference with program can be reduced but can’t be removed
completely, because the in-process agent will still stop or slow down the program.

The in-process agent can interpret and execute Agent Expressions (see Appendix F
[Agent Expressions], page 795) during performing debugging operations. The agent expres-
sions can be used for different purposes, such as collecting data in tracepoints, and condition
evaluation in breakpoints.

You can control whether the in-process agent is used as an aid for debugging with the
following commands:

set agent on

Causes the in-process agent to perform some operations on behalf of the debug-
ger. Just which operations requested by the user will be done by the in-process
agent depends on the its capabilities. For example, if you request to evaluate
breakpoint conditions in the in-process agent, and the in-process agent has such
capability as well, then breakpoint conditions will be evaluated in the in-process
agent.

set agent off

Disables execution of debugging operations by the in-process agent. All of the
operations will be performed by gdb.

show agent

Display the current setting of execution of debugging operations by the in-
process agent.

30.1 In-Process Agent Protocol

The in-process agent is able to communicate with both gdb and GDBserver (see Chapter 30
[In-Process Agent], page 657). This section documents the protocol used for communications
between gdb or GDBserver and the IPA. In general, gdb or GDBserver sends commands

658 Debugging with gdb

(see Section 30.1.2 [IPA Protocol Commands], page 659) and data to in-process agent, and
then in-process agent replies back with the return result of the command, or some other
information. The data sent to in-process agent is composed of primitive data types, such
as 4-byte or 8-byte type, and composite types, which are called objects (see Section 30.1.1
[IPA Protocol Objects], page 658).

30.1.1 IPA Protocol Objects

The commands sent to and results received from agent may contain some complex data
types called objects.

The in-process agent is running on the same machine with gdb or GDBserver, so it
doesn’t have to handle as much differences between two ends as remote protocol (see
Appendix E [Remote Protocol], page 719) tries to handle. However, there are still some
differences of two ends in two processes:

1. word size. On some 64-bit machines, gdb or GDBserver can be compiled as a 64-bit
executable, while in-process agent is a 32-bit one.

2. ABI. Some machines may have multiple types of ABI, gdb or GDBserver is compiled
with one, and in-process agent is compiled with the other one.

Here are the IPA Protocol Objects:

1. agent expression object. It represents an agent expression (see Appendix F [Agent
Expressions], page 795).

2. tracepoint action object. It represents a tracepoint action (see Section 13.1.6 [Trace-
point Action Lists], page 200) to collect registers, memory, static trace data and to
evaluate expression.

3. tracepoint object. It represents a tracepoint (see Chapter 13 [Tracepoints], page 195).

The following table describes important attributes of each IPA protocol object:

Name Size Description
agent expression object
length 4 length of bytes code
byte code length contents of byte code
tracepoint action for col-
lecting memory

’M’ 1 type of tracepoint action
addr 8 if basereg is ‘-1’, addr is the address of the

lowest byte to collect, otherwise addr is the
offset of basereg for memory collecting.

len 8 length of memory for collecting
basereg 4 the register number containing the starting

memory address for collecting.

tracepoint action for col-
lecting registers

’R’ 1 type of tracepoint action

Chapter 30: In-Process Agent 659

tracepoint action for col-
lecting static trace data

’L’ 1 type of tracepoint action
tracepoint action for ex-
pression evaluation

’X’ 1 type of tracepoint action
agent expression length of [agent expression object], page 658,
tracepoint object
number 4 number of tracepoint
address 8 address of tracepoint inserted on
type 4 type of tracepoint
enabled 1 enable or disable of tracepoint
step count 8 step
pass count 8 pass
numactions 4 number of tracepoint actions
hit count 8 hit count
trace frame usage 8 trace frame usage
compiled cond 8 compiled condition
orig size 8 orig size
condition 4 if condition

is NULL
otherwise
length of [agent
expression
object],
page 658,

zero if condition is NULL, otherwise is
[agent expression object], page 658,

actions variable numactions number of [tracepoint action
object], page 658,

30.1.2 IPA Protocol Commands

The spaces in each command are delimiters to ease reading this commands specification.
They don’t exist in real commands.

‘FastTrace:tracepoint_object gdb_jump_pad_head’
Installs a new fast tracepoint described by tracepoint object (see [tracepoint
object], page 658). The gdb jump pad head, 8-byte long, is the head of jump-
pad, which is used to jump to data collection routine in IPA finally.

Replies:

‘OK target_address gdb_jump_pad_head fjump_size fjump’
target address is address of tracepoint in the inferior. The
gdb jump pad head is updated head of jumppad. Both of
target address and gdb jump pad head are 8-byte long. The
fjump contains a sequence of instructions jump to jumppad entry.
The fjump size, 4-byte long, is the size of fjump.

‘E NN’ for an error

660 Debugging with gdb

‘close’ Closes the in-process agent. This command is sent when gdb or GDBserver is
about to kill inferiors.

‘qTfSTM’ See [qTfSTM], page 768.

‘qTsSTM’ See [qTsSTM], page 768.

‘qTSTMat’ See [qTSTMat], page 769.

‘probe_marker_at:address’
Asks in-process agent to probe the marker at address.

Replies:

‘E NN’ for an error

‘unprobe_marker_at:address’
Asks in-process agent to unprobe the marker at address.

661

31 Reporting Bugs in gdb

Your bug reports play an essential role in making gdb reliable.

Reporting a bug may help you by bringing a solution to your problem, or it may not.
But in any case the principal function of a bug report is to help the entire community by
making the next version of gdb work better. Bug reports are your contribution to the
maintenance of gdb.

In order for a bug report to serve its purpose, you must include the information that
enables us to fix the bug.

31.1 Have You Found a Bug?

If you are not sure whether you have found a bug, here are some guidelines:

• If the debugger gets a fatal signal, for any input whatever, that is a gdb bug. Reliable
debuggers never crash.

• If gdb produces an error message for valid input, that is a bug. (Note that if you’re
cross debugging, the problem may also be somewhere in the connection to the target.)

• If gdb does not produce an error message for invalid input, that is a bug. However,
you should note that your idea of “invalid input” might be our idea of “an extension”
or “support for traditional practice”.

• If you are an experienced user of debugging tools, your suggestions for improvement of
gdb are welcome in any case.

31.2 How to Report Bugs

A number of companies and individuals offer support for gnu products. If you obtained
gdb from a support organization, we recommend you contact that organization first.

You can find contact information for many support companies and individuals in the file
etc/SERVICE in the gnu Emacs distribution.

In any event, we also recommend that you submit bug reports for gdb to
http://www.intel.com/software/products/support/.

The fundamental principle of reporting bugs usefully is this: report all the facts. If you
are not sure whether to state a fact or leave it out, state it!

Often people omit facts because they think they know what causes the problem and
assume that some details do not matter. Thus, you might assume that the name of the
variable you use in an example does not matter. Well, probably it does not, but one cannot
be sure. Perhaps the bug is a stray memory reference which happens to fetch from the
location where that name is stored in memory; perhaps, if the name were different, the
contents of that location would fool the debugger into doing the right thing despite the bug.
Play it safe and give a specific, complete example. That is the easiest thing for you to do,
and the most helpful.

Keep in mind that the purpose of a bug report is to enable us to fix the bug. It may
be that the bug has been reported previously, but neither you nor we can know that unless
your bug report is complete and self-contained.

http://www.intel.com/software/products/support/

662 Debugging with gdb

Sometimes people give a few sketchy facts and ask, “Does this ring a bell?” Those bug
reports are useless, and we urge everyone to refuse to respond to them except to chide the
sender to report bugs properly.

To enable us to fix the bug, you should include all these things:

• The version of gdb. gdb announces it if you start with no arguments; you can also
print it at any time using show version.

Without this, we will not know whether there is any point in looking for the bug in the
current version of gdb.

• The type of machine you are using, and the operating system name and version number.

• The details of the gdb build-time configuration. gdb shows these details if you invoke it
with the --configuration command-line option, or if you type show configuration

at gdb’s prompt.

• What compiler (and its version) was used to compile gdb—e.g. “gcc–2.8.1”.

• What compiler (and its version) was used to compile the program you are debugging—
e.g. “gcc–2.8.1”, or “HP92453-01 A.10.32.03 HP C Compiler”. For gcc, you can say
gcc --version to get this information; for other compilers, see the documentation for
those compilers.

• The command arguments you gave the compiler to compile your example and observe
the bug. For example, did you use ‘-O’? To guarantee you will not omit something
important, list them all. A copy of the Makefile (or the output from make) is sufficient.

If we were to try to guess the arguments, we would probably guess wrong and then we
might not encounter the bug.

• A complete input script, and all necessary source files, that will reproduce the bug.

• A description of what behavior you observe that you believe is incorrect. For example,
“It gets a fatal signal.”

Of course, if the bug is that gdb gets a fatal signal, then we will certainly notice it.
But if the bug is incorrect output, we might not notice unless it is glaringly wrong.
You might as well not give us a chance to make a mistake.

Even if the problem you experience is a fatal signal, you should still say so explicitly.
Suppose something strange is going on, such as, your copy of gdb is out of synch, or
you have encountered a bug in the C library on your system. (This has happened!)
Your copy might crash and ours would not. If you told us to expect a crash, then when
ours fails to crash, we would know that the bug was not happening for us. If you had
not told us to expect a crash, then we would not be able to draw any conclusion from
our observations.

To collect all this information, you can use a session recording program such as script,
which is available on many Unix systems. Just run your gdb session inside script and
then include the typescript file with your bug report.

Another way to record a gdb session is to run gdb inside Emacs and then save the
entire buffer to a file.

• If you wish to suggest changes to the gdb source, send us context diffs. If you even
discuss something in the gdb source, refer to it by context, not by line number.

The line numbers in our development sources will not match those in your sources.
Your line numbers would convey no useful information to us.

663

Here are some things that are not necessary:

• A description of the envelope of the bug.

Often people who encounter a bug spend a lot of time investigating which changes to
the input file will make the bug go away and which changes will not affect it.

This is often time consuming and not very useful, because the way we will find the
bug is by running a single example under the debugger with breakpoints, not by pure
deduction from a series of examples. We recommend that you save your time for
something else.

Of course, if you can find a simpler example to report instead of the original one, that
is a convenience for us. Errors in the output will be easier to spot, running under the
debugger will take less time, and so on.

However, simplification is not vital; if you do not want to do this, report the bug
anyway and send us the entire test case you used.

• A patch for the bug.

A patch for the bug does help us if it is a good one. But do not omit the necessary
information, such as the test case, on the assumption that a patch is all we need. We
might see problems with your patch and decide to fix the problem another way, or we
might not understand it at all.

Sometimes with a program as complicated as gdb it is very hard to construct an
example that will make the program follow a certain path through the code. If you do
not send us the example, we will not be able to construct one, so we will not be able
to verify that the bug is fixed.

And if we cannot understand what bug you are trying to fix, or why your patch should
be an improvement, we will not install it. A test case will help us to understand.

• A guess about what the bug is or what it depends on.

Such guesses are usually wrong. Even we cannot guess right about such things without
first using the debugger to find the facts.

665

32 Command Line Editing

This chapter describes the basic features of the gnu command line editing interface.

32.1 Introduction to Line Editing

The following paragraphs describe the notation used to represent keystrokes.

The text C-k is read as ‘Control-K’ and describes the character produced when the k

key is pressed while the Control key is depressed.

The text M-k is read as ‘Meta-K’ and describes the character produced when the Meta
key (if you have one) is depressed, and the k key is pressed. The Meta key is labeled ALT

on many keyboards. On keyboards with two keys labeled ALT (usually to either side of the
space bar), the ALT on the left side is generally set to work as a Meta key. The ALT key on
the right may also be configured to work as a Meta key or may be configured as some other
modifier, such as a Compose key for typing accented characters.

If you do not have a Meta or ALT key, or another key working as a Meta key, the identical
keystroke can be generated by typing ESC first, and then typing k. Either process is known
as metafying the k key.

The text M-C-k is read as ‘Meta-Control-k’ and describes the character produced by
metafying C-k.

In addition, several keys have their own names. Specifically, DEL, ESC, LFD, SPC, RET,
and TAB all stand for themselves when seen in this text, or in an init file (see Section 32.3
[Readline Init File], page 668). If your keyboard lacks a LFD key, typing C-j will produce
the desired character. The RET key may be labeled Return or Enter on some keyboards.

32.2 Readline Interaction

Often during an interactive session you type in a long line of text, only to notice that the
first word on the line is misspelled. The Readline library gives you a set of commands for
manipulating the text as you type it in, allowing you to just fix your typo, and not forcing
you to retype the majority of the line. Using these editing commands, you move the cursor
to the place that needs correction, and delete or insert the text of the corrections. Then,
when you are satisfied with the line, you simply press RET. You do not have to be at the end
of the line to press RET; the entire line is accepted regardless of the location of the cursor
within the line.

32.2.1 Readline Bare Essentials

In order to enter characters into the line, simply type them. The typed character appears
where the cursor was, and then the cursor moves one space to the right. If you mistype a
character, you can use your erase character to back up and delete the mistyped character.

Sometimes you may mistype a character, and not notice the error until you have typed
several other characters. In that case, you can type C-b to move the cursor to the left, and
then correct your mistake. Afterwards, you can move the cursor to the right with C-f.

When you add text in the middle of a line, you will notice that characters to the right
of the cursor are ‘pushed over’ to make room for the text that you have inserted. Likewise,
when you delete text behind the cursor, characters to the right of the cursor are ‘pulled

666 Debugging with gdb

back’ to fill in the blank space created by the removal of the text. A list of the bare essentials
for editing the text of an input line follows.

C-b Move back one character.

C-f Move forward one character.

DEL or Backspace
Delete the character to the left of the cursor.

C-d Delete the character underneath the cursor.

Printing characters
Insert the character into the line at the cursor.

C-_ or C-x C-u

Undo the last editing command. You can undo all the way back to an empty
line.

(Depending on your configuration, the Backspace key be set to delete the character to the
left of the cursor and the DEL key set to delete the character underneath the cursor, like
C-d, rather than the character to the left of the cursor.)

32.2.2 Readline Movement Commands

The above table describes the most basic keystrokes that you need in order to do editing of
the input line. For your convenience, many other commands have been added in addition
to C-b, C-f, C-d, and DEL. Here are some commands for moving more rapidly about the
line.

C-a Move to the start of the line.

C-e Move to the end of the line.

M-f Move forward a word, where a word is composed of letters and digits.

M-b Move backward a word.

C-l Clear the screen, reprinting the current line at the top.

Notice how C-f moves forward a character, while M-f moves forward a word. It is a loose
convention that control keystrokes operate on characters while meta keystrokes operate on
words.

32.2.3 Readline Killing Commands

Killing text means to delete the text from the line, but to save it away for later use, usually
by yanking (re-inserting) it back into the line. (‘Cut’ and ‘paste’ are more recent jargon for
‘kill’ and ‘yank’.)

If the description for a command says that it ‘kills’ text, then you can be sure that you
can get the text back in a different (or the same) place later.

When you use a kill command, the text is saved in a kill-ring. Any number of consecutive
kills save all of the killed text together, so that when you yank it back, you get it all. The
kill ring is not line specific; the text that you killed on a previously typed line is available
to be yanked back later, when you are typing another line.

Chapter 32: Command Line Editing 667

Here is the list of commands for killing text.

C-k Kill the text from the current cursor position to the end of the line.

M-d Kill from the cursor to the end of the current word, or, if between words, to the
end of the next word. Word boundaries are the same as those used by M-f.

M-DEL Kill from the cursor the start of the current word, or, if between words, to the
start of the previous word. Word boundaries are the same as those used by
M-b.

C-w Kill from the cursor to the previous whitespace. This is different than M-DEL

because the word boundaries differ.

Here is how to yank the text back into the line. Yanking means to copy the most-
recently-killed text from the kill buffer.

C-y Yank the most recently killed text back into the buffer at the cursor.

M-y Rotate the kill-ring, and yank the new top. You can only do this if the prior
command is C-y or M-y.

32.2.4 Readline Arguments

You can pass numeric arguments to Readline commands. Sometimes the argument acts
as a repeat count, other times it is the sign of the argument that is significant. If you
pass a negative argument to a command which normally acts in a forward direction, that
command will act in a backward direction. For example, to kill text back to the start of
the line, you might type ‘M-- C-k’.

The general way to pass numeric arguments to a command is to type meta digits before
the command. If the first ‘digit’ typed is a minus sign (‘-’), then the sign of the argument
will be negative. Once you have typed one meta digit to get the argument started, you
can type the remainder of the digits, and then the command. For example, to give the C-d
command an argument of 10, you could type ‘M-1 0 C-d’, which will delete the next ten
characters on the input line.

32.2.5 Searching for Commands in the History

Readline provides commands for searching through the command history for lines containing
a specified string. There are two search modes: incremental and non-incremental.

Incremental searches begin before the user has finished typing the search string. As each
character of the search string is typed, Readline displays the next entry from the history
matching the string typed so far. An incremental search requires only as many characters as
needed to find the desired history entry. To search backward in the history for a particular
string, type C-r. Typing C-s searches forward through the history. The characters present
in the value of the isearch-terminators variable are used to terminate an incremental
search. If that variable has not been assigned a value, the ESC and C-J characters will
terminate an incremental search. C-g will abort an incremental search and restore the
original line. When the search is terminated, the history entry containing the search string
becomes the current line.

To find other matching entries in the history list, type C-r or C-s as appropriate. This
will search backward or forward in the history for the next entry matching the search string

668 Debugging with gdb

typed so far. Any other key sequence bound to a Readline command will terminate the
search and execute that command. For instance, a RET will terminate the search and accept
the line, thereby executing the command from the history list. A movement command will
terminate the search, make the last line found the current line, and begin editing.

Readline remembers the last incremental search string. If two C-rs are typed without
any intervening characters defining a new search string, any remembered search string is
used.

Non-incremental searches read the entire search string before starting to search for
matching history lines. The search string may be typed by the user or be part of the
contents of the current line.

32.3 Readline Init File

Although the Readline library comes with a set of Emacs-like keybindings installed by
default, it is possible to use a different set of keybindings. Any user can customize programs
that use Readline by putting commands in an inputrc file, conventionally in his home
directory. The name of this file is taken from the value of the environment variable INPUTRC.
If that variable is unset, the default is ~/.inputrc. If that file does not exist or cannot be
read, the ultimate default is /etc/inputrc.

When a program which uses the Readline library starts up, the init file is read, and the
key bindings are set.

In addition, the C-x C-r command re-reads this init file, thus incorporating any changes
that you might have made to it.

32.3.1 Readline Init File Syntax

There are only a few basic constructs allowed in the Readline init file. Blank lines are
ignored. Lines beginning with a ‘#’ are comments. Lines beginning with a ‘$’ indicate
conditional constructs (see Section 32.3.2 [Conditional Init Constructs], page 676). Other
lines denote variable settings and key bindings.

Variable Settings
You can modify the run-time behavior of Readline by altering the values of
variables in Readline using the set command within the init file. The syntax
is simple:

set variable value

Here, for example, is how to change from the default Emacs-like key binding to
use vi line editing commands:

set editing-mode vi

Variable names and values, where appropriate, are recognized without regard
to case. Unrecognized variable names are ignored.

Boolean variables (those that can be set to on or off) are set to on if the value is
null or empty, on (case-insensitive), or 1. Any other value results in the variable
being set to off.

A great deal of run-time behavior is changeable with the following variables.

Chapter 32: Command Line Editing 669

bell-style

Controls what happens when Readline wants to ring the termi-
nal bell. If set to ‘none’, Readline never rings the bell. If set to
‘visible’, Readline uses a visible bell if one is available. If set to
‘audible’ (the default), Readline attempts to ring the terminal’s
bell.

bind-tty-special-chars

If set to ‘on’ (the default), Readline attempts to bind the control
characters treated specially by the kernel’s terminal driver to their
Readline equivalents.

blink-matching-paren

If set to ‘on’, Readline attempts to briefly move the cursor to an
opening parenthesis when a closing parenthesis is inserted. The
default is ‘off’.

colored-completion-prefix

If set to ‘on’, when listing completions, Readline displays the com-
mon prefix of the set of possible completions using a different color.
The color definitions are taken from the value of the LS_COLORS

environment variable. The default is ‘off’.

colored-stats

If set to ‘on’, Readline displays possible completions using different
colors to indicate their file type. The color definitions are taken
from the value of the LS_COLORS environment variable. The default
is ‘off’.

comment-begin

The string to insert at the beginning of the line when the
insert-comment command is executed. The default value is "#".

completion-display-width

The number of screen columns used to display possible matches
when performing completion. The value is ignored if it is less than
0 or greater than the terminal screen width. A value of 0 will cause
matches to be displayed one per line. The default value is -1.

completion-ignore-case

If set to ‘on’, Readline performs filename matching and completion
in a case-insensitive fashion. The default value is ‘off’.

completion-map-case

If set to ‘on’, and completion-ignore-case is enabled, Readline treats
hyphens (‘-’) and underscores (‘_’) as equivalent when performing
case-insensitive filename matching and completion. The default
value is ‘off’.

completion-prefix-display-length

The length in characters of the common prefix of a list of possible
completions that is displayed without modification. When set to a

670 Debugging with gdb

value greater than zero, common prefixes longer than this value are
replaced with an ellipsis when displaying possible completions.

completion-query-items

The number of possible completions that determines when the user
is asked whether the list of possibilities should be displayed. If
the number of possible completions is greater than or equal to this
value, Readline will ask whether or not the user wishes to view
them; otherwise, they are simply listed. This variable must be set
to an integer value greater than or equal to 0. A negative value
means Readline should never ask. The default limit is 100.

convert-meta

If set to ‘on’, Readline will convert characters with the eighth bit set
to an ascii key sequence by stripping the eighth bit and prefixing
an ESC character, converting them to a meta-prefixed key sequence.
The default value is ‘on’, but will be set to ‘off’ if the locale is one
that contains eight-bit characters.

disable-completion

If set to ‘On’, Readline will inhibit word completion. Completion
characters will be inserted into the line as if they had been mapped
to self-insert. The default is ‘off’.

echo-control-characters

When set to ‘on’, on operating systems that indicate they support
it, readline echoes a character corresponding to a signal generated
from the keyboard. The default is ‘on’.

editing-mode

The editing-mode variable controls which default set of key bind-
ings is used. By default, Readline starts up in Emacs editing mode,
where the keystrokes are most similar to Emacs. This variable can
be set to either ‘emacs’ or ‘vi’.

emacs-mode-string

If the show-mode-in-prompt variable is enabled, this string is dis-
played immediately before the last line of the primary prompt when
emacs editing mode is active. The value is expanded like a key bind-
ing, so the standard set of meta- and control prefixes and backslash
escape sequences is available. Use the ‘\1’ and ‘\2’ escapes to begin
and end sequences of non-printing characters, which can be used
to embed a terminal control sequence into the mode string. The
default is ‘@’.

enable-bracketed-paste

When set to ‘On’, Readline will configure the terminal in a way that
will enable it to insert each paste into the editing buffer as a single
string of characters, instead of treating each character as if it had
been read from the keyboard. This can prevent pasted characters
from being interpreted as editing commands. The default is ‘On’.

Chapter 32: Command Line Editing 671

enable-keypad

When set to ‘on’, Readline will try to enable the application keypad
when it is called. Some systems need this to enable the arrow keys.
The default is ‘off’.

enable-meta-key

When set to ‘on’, Readline will try to enable any meta modifier
key the terminal claims to support when it is called. On many
terminals, the meta key is used to send eight-bit characters. The
default is ‘on’.

expand-tilde

If set to ‘on’, tilde expansion is performed when Readline attempts
word completion. The default is ‘off’.

history-preserve-point

If set to ‘on’, the history code attempts to place the point (the
current cursor position) at the same location on each history line
retrieved with previous-history or next-history. The default
is ‘off’.

history-size

Set the maximum number of history entries saved in the history
list. If set to zero, any existing history entries are deleted and no
new entries are saved. If set to a value less than zero, the number
of history entries is not limited. By default, the number of history
entries is not limited. If an attempt is made to set history-size to
a non-numeric value, the maximum number of history entries will
be set to 500.

horizontal-scroll-mode

This variable can be set to either ‘on’ or ‘off’. Setting it to ‘on’
means that the text of the lines being edited will scroll horizontally
on a single screen line when they are longer than the width of the
screen, instead of wrapping onto a new screen line. This variable is
automatically set to ‘on’ for terminals of height 1. By default, this
variable is set to ‘off’.

input-meta

If set to ‘on’, Readline will enable eight-bit input (it will not clear
the eighth bit in the characters it reads), regardless of what the
terminal claims it can support. The default value is ‘off’, but
Readline will set it to ‘on’ if the locale contains eight-bit characters.
The name meta-flag is a synonym for this variable.

isearch-terminators

The string of characters that should terminate an incremental
search without subsequently executing the character as a command
(see Section 32.2.5 [Searching], page 667). If this variable has not
been given a value, the characters ESC and C-J will terminate an
incremental search.

672 Debugging with gdb

keymap Sets Readline’s idea of the current keymap for key binding
commands. Built-in keymap names are emacs, emacs-standard,
emacs-meta, emacs-ctlx, vi, vi-move, vi-command, and
vi-insert. vi is equivalent to vi-command (vi-move is also a
synonym); emacs is equivalent to emacs-standard. Applications
may add additional names. The default value is emacs. The value
of the editing-mode variable also affects the default keymap.

keyseq-timeout

Specifies the duration Readline will wait for a character when read-
ing an ambiguous key sequence (one that can form a complete key
sequence using the input read so far, or can take additional input
to complete a longer key sequence). If no input is received within
the timeout, Readline will use the shorter but complete key se-
quence. Readline uses this value to determine whether or not input
is available on the current input source (rl_instream by default).
The value is specified in milliseconds, so a value of 1000 means that
Readline will wait one second for additional input. If this variable is
set to a value less than or equal to zero, or to a non-numeric value,
Readline will wait until another key is pressed to decide which key
sequence to complete. The default value is 500.

mark-directories

If set to ‘on’, completed directory names have a slash appended.
The default is ‘on’.

mark-modified-lines

This variable, when set to ‘on’, causes Readline to display an as-
terisk (‘*’) at the start of history lines which have been modified.
This variable is ‘off’ by default.

mark-symlinked-directories

If set to ‘on’, completed names which are symbolic links to
directories have a slash appended (subject to the value of
mark-directories). The default is ‘off’.

match-hidden-files

This variable, when set to ‘on’, causes Readline to match files whose
names begin with a ‘.’ (hidden files) when performing filename
completion. If set to ‘off’, the leading ‘.’ must be supplied by
the user in the filename to be completed. This variable is ‘on’ by
default.

menu-complete-display-prefix

If set to ‘on’, menu completion displays the common prefix of the
list of possible completions (which may be empty) before cycling
through the list. The default is ‘off’.

output-meta

If set to ‘on’, Readline will display characters with the eighth bit
set directly rather than as a meta-prefixed escape sequence. The

Chapter 32: Command Line Editing 673

default is ‘off’, but Readline will set it to ‘on’ if the locale contains
eight-bit characters.

page-completions

If set to ‘on’, Readline uses an internal more-like pager to display
a screenful of possible completions at a time. This variable is ‘on’
by default.

print-completions-horizontally

If set to ‘on’, Readline will display completions with matches sorted
horizontally in alphabetical order, rather than down the screen.
The default is ‘off’.

revert-all-at-newline

If set to ‘on’, Readline will undo all changes to history lines before
returning when accept-line is executed. By default, history lines
may be modified and retain individual undo lists across calls to
readline. The default is ‘off’.

show-all-if-ambiguous

This alters the default behavior of the completion functions. If set
to ‘on’, words which have more than one possible completion cause
the matches to be listed immediately instead of ringing the bell.
The default value is ‘off’.

show-all-if-unmodified

This alters the default behavior of the completion functions in a
fashion similar to show-all-if-ambiguous. If set to ‘on’, words which
have more than one possible completion without any possible par-
tial completion (the possible completions don’t share a common
prefix) cause the matches to be listed immediately instead of ring-
ing the bell. The default value is ‘off’.

show-mode-in-prompt

If set to ‘on’, add a string to the beginning of the prompt indicating
the editing mode: emacs, vi command, or vi insertion. The mode
strings are user-settable (e.g., emacs-mode-string). The default
value is ‘off’.

skip-completed-text

If set to ‘on’, this alters the default completion behavior when in-
serting a single match into the line. It’s only active when perform-
ing completion in the middle of a word. If enabled, readline does
not insert characters from the completion that match characters
after point in the word being completed, so portions of the word
following the cursor are not duplicated. For instance, if this is en-
abled, attempting completion when the cursor is after the ‘e’ in
‘Makefile’ will result in ‘Makefile’ rather than ‘Makefilefile’,
assuming there is a single possible completion. The default value
is ‘off’.

674 Debugging with gdb

vi-cmd-mode-string

If the show-mode-in-prompt variable is enabled, this string is dis-
played immediately before the last line of the primary prompt when
vi editing mode is active and in command mode. The value is ex-
panded like a key binding, so the standard set of meta- and control
prefixes and backslash escape sequences is available. Use the ‘\1’
and ‘\2’ escapes to begin and end sequences of non-printing charac-
ters, which can be used to embed a terminal control sequence into
the mode string. The default is ‘(cmd)’.

vi-ins-mode-string

If the show-mode-in-prompt variable is enabled, this string is dis-
played immediately before the last line of the primary prompt when
vi editing mode is active and in insertion mode. The value is ex-
panded like a key binding, so the standard set of meta- and control
prefixes and backslash escape sequences is available. Use the ‘\1’
and ‘\2’ escapes to begin and end sequences of non-printing charac-
ters, which can be used to embed a terminal control sequence into
the mode string. The default is ‘(ins)’.

visible-stats

If set to ‘on’, a character denoting a file’s type is appended to the
filename when listing possible completions. The default is ‘off’.

Key Bindings
The syntax for controlling key bindings in the init file is simple. First you
need to find the name of the command that you want to change. The following
sections contain tables of the command name, the default keybinding, if any,
and a short description of what the command does.

Once you know the name of the command, simply place on a line in the init
file the name of the key you wish to bind the command to, a colon, and then
the name of the command. There can be no space between the key name and
the colon – that will be interpreted as part of the key name. The name of
the key can be expressed in different ways, depending on what you find most
comfortable.

In addition to command names, readline allows keys to be bound to a string
that is inserted when the key is pressed (a macro).

keyname: function-name or macro
keyname is the name of a key spelled out in English. For example:

Control-u: universal-argument

Meta-Rubout: backward-kill-word

Control-o: "> output"

In the example above, C-u is bound to the function
universal-argument, M-DEL is bound to the function
backward-kill-word, and C-o is bound to run the macro
expressed on the right hand side (that is, to insert the text ‘>
output’ into the line).

Chapter 32: Command Line Editing 675

A number of symbolic character names are recognized while
processing this key binding syntax: DEL, ESC, ESCAPE, LFD,
NEWLINE, RET, RETURN, RUBOUT, SPACE, SPC, and TAB.

"keyseq": function-name or macro
keyseq differs from keyname above in that strings denoting an en-
tire key sequence can be specified, by placing the key sequence in
double quotes. Some gnu Emacs style key escapes can be used, as
in the following example, but the special character names are not
recognized.

"\C-u": universal-argument

"\C-x\C-r": re-read-init-file

"\e[11~": "Function Key 1"

In the above example, C-u is again bound to the function
universal-argument (just as it was in the first example), ‘C-x
C-r’ is bound to the function re-read-init-file, and ‘ESC [1 1

~’ is bound to insert the text ‘Function Key 1’.

The following gnu Emacs style escape sequences are available when specifying
key sequences:

\C- control prefix

\M- meta prefix

\e an escape character

\\ backslash

\" ", a double quotation mark

\’ ’, a single quote or apostrophe

In addition to the gnu Emacs style escape sequences, a second set of backslash
escapes is available:

\a alert (bell)

\b backspace

\d delete

\f form feed

\n newline

\r carriage return

\t horizontal tab

\v vertical tab

\nnn the eight-bit character whose value is the octal value nnn (one to
three digits)

\xHH the eight-bit character whose value is the hexadecimal value HH
(one or two hex digits)

676 Debugging with gdb

When entering the text of a macro, single or double quotes must be used to
indicate a macro definition. Unquoted text is assumed to be a function name. In
the macro body, the backslash escapes described above are expanded. Backslash
will quote any other character in the macro text, including ‘"’ and ‘’’. For
example, the following binding will make ‘C-x \’ insert a single ‘\’ into the line:

"\C-x\\": "\\"

32.3.2 Conditional Init Constructs

Readline implements a facility similar in spirit to the conditional compilation features of
the C preprocessor which allows key bindings and variable settings to be performed as the
result of tests. There are four parser directives used.

$if The $if construct allows bindings to be made based on the editing mode, the
terminal being used, or the application using Readline. The text of the test,
after any comparison operator, extends to the end of the line; unless otherwise
noted, no characters are required to isolate it.

mode The mode= form of the $if directive is used to test whether Read-
line is in emacs or vi mode. This may be used in conjunction
with the ‘set keymap’ command, for instance, to set bindings in
the emacs-standard and emacs-ctlx keymaps only if Readline is
starting out in emacs mode.

term The term= form may be used to include terminal-specific key bind-
ings, perhaps to bind the key sequences output by the terminal’s
function keys. The word on the right side of the ‘=’ is tested against
both the full name of the terminal and the portion of the terminal
name before the first ‘-’. This allows sun to match both sun and
sun-cmd, for instance.

version The version test may be used to perform comparisons against
specific Readline versions. The version expands to the current
Readline version. The set of comparison operators includes ‘=’ (and
‘==’), ‘!=’, ‘<=’, ‘>=’, ‘<’, and ‘>’. The version number supplied on
the right side of the operator consists of a major version number,
an optional decimal point, and an optional minor version (e.g.,
‘7.1’). If the minor version is omitted, it is assumed to be ‘0’. The
operator may be separated from the string version and from the
version number argument by whitespace. The following example
sets a variable if the Readline version being used is 7.0 or newer:

$if version >= 7.0

set show-mode-in-prompt on

$endif

application

The application construct is used to include application-specific set-
tings. Each program using the Readline library sets the application
name, and you can test for a particular value. This could be used to
bind key sequences to functions useful for a specific program. For

Chapter 32: Command Line Editing 677

instance, the following command adds a key sequence that quotes
the current or previous word in Bash:

$if Bash

Quote the current or previous word

"\C-xq": "\eb\"\ef\""

$endif

variable The variable construct provides simple equality tests for Readline
variables and values. The permitted comparison operators are ‘=’,
‘==’, and ‘!=’. The variable name must be separated from the
comparison operator by whitespace; the operator may be separated
from the value on the right hand side by whitespace. Both string
and boolean variables may be tested. Boolean variables must be
tested against the values on and off. The following example is
equivalent to the mode=emacs test described above:

$if editing-mode == emacs

set show-mode-in-prompt on

$endif

$endif This command, as seen in the previous example, terminates an $if command.

$else Commands in this branch of the $if directive are executed if the test fails.

$include This directive takes a single filename as an argument and reads commands
and bindings from that file. For example, the following directive reads from
/etc/inputrc:

$include /etc/inputrc

32.3.3 Sample Init File

Here is an example of an inputrc file. This illustrates key binding, variable assignment, and
conditional syntax.

678 Debugging with gdb

This file controls the behaviour of line input editing for

programs that use the GNU Readline library. Existing

programs include FTP, Bash, and GDB.

#

You can re-read the inputrc file with C-x C-r.

Lines beginning with ’#’ are comments.

#

First, include any system-wide bindings and variable

assignments from /etc/Inputrc

$include /etc/Inputrc

#

Set various bindings for emacs mode.

set editing-mode emacs

$if mode=emacs

Meta-Control-h: backward-kill-word Text after the function name is ignored

#

Arrow keys in keypad mode

#

#"\M-OD": backward-char

#"\M-OC": forward-char

#"\M-OA": previous-history

#"\M-OB": next-history

#

Arrow keys in ANSI mode

#

"\M-[D": backward-char

"\M-[C": forward-char

"\M-[A": previous-history

"\M-[B": next-history

#

Arrow keys in 8 bit keypad mode

#

#"\M-\C-OD": backward-char

#"\M-\C-OC": forward-char

#"\M-\C-OA": previous-history

#"\M-\C-OB": next-history

#

Arrow keys in 8 bit ANSI mode

#

#"\M-\C-[D": backward-char

#"\M-\C-[C": forward-char

Chapter 32: Command Line Editing 679

#"\M-\C-[A": previous-history

#"\M-\C-[B": next-history

C-q: quoted-insert

$endif

An old-style binding. This happens to be the default.

TAB: complete

Macros that are convenient for shell interaction

$if Bash

edit the path

"\C-xp": "PATH=${PATH}\e\C-e\C-a\ef\C-f"

prepare to type a quoted word --

insert open and close double quotes

and move to just after the open quote

"\C-x\"": "\"\"\C-b"

insert a backslash (testing backslash escapes

in sequences and macros)

"\C-x\\": "\\"

Quote the current or previous word

"\C-xq": "\eb\"\ef\""

Add a binding to refresh the line, which is unbound

"\C-xr": redraw-current-line

Edit variable on current line.

"\M-\C-v": "\C-a\C-k$\C-y\M-\C-e\C-a\C-y="

$endif

use a visible bell if one is available

set bell-style visible

don’t strip characters to 7 bits when reading

set input-meta on

allow iso-latin1 characters to be inserted rather

than converted to prefix-meta sequences

set convert-meta off

display characters with the eighth bit set directly

rather than as meta-prefixed characters

set output-meta on

if there are 150 or more possible completions for a word,

ask whether or not the user wants to see all of them

set completion-query-items 150

680 Debugging with gdb

For FTP

$if Ftp

"\C-xg": "get \M-?"

"\C-xt": "put \M-?"

"\M-.": yank-last-arg

$endif

32.4 Bindable Readline Commands

This section describes Readline commands that may be bound to key sequences. Command
names without an accompanying key sequence are unbound by default.

In the following descriptions, point refers to the current cursor position, and mark refers
to a cursor position saved by the set-mark command. The text between the point and
mark is referred to as the region.

32.4.1 Commands For Moving

beginning-of-line (C-a)

Move to the start of the current line.

end-of-line (C-e)

Move to the end of the line.

forward-char (C-f)

Move forward a character.

backward-char (C-b)

Move back a character.

forward-word (M-f)

Move forward to the end of the next word. Words are composed of letters and
digits.

backward-word (M-b)

Move back to the start of the current or previous word. Words are composed
of letters and digits.

previous-screen-line ()

Attempt to move point to the same physical screen column on the previous
physical screen line. This will not have the desired effect if the current Readline
line does not take up more than one physical line or if point is not greater than
the length of the prompt plus the screen width.

next-screen-line ()

Attempt to move point to the same physical screen column on the next physical
screen line. This will not have the desired effect if the current Readline line does
not take up more than one physical line or if the length of the current Readline
line is not greater than the length of the prompt plus the screen width.

clear-display (M-C-l)

Clear the screen and, if possible, the terminal’s scrollback buffer, then redraw
the current line, leaving the current line at the top of the screen.

Chapter 32: Command Line Editing 681

clear-screen (C-l)

Clear the screen, then redraw the current line, leaving the current line at the
top of the screen.

redraw-current-line ()

Refresh the current line. By default, this is unbound.

32.4.2 Commands For Manipulating The History

accept-line (Newline or Return)

Accept the line regardless of where the cursor is. If this line is non-empty, it
may be added to the history list for future recall with add_history(). If this
line is a modified history line, the history line is restored to its original state.

previous-history (C-p)

Move ‘back’ through the history list, fetching the previous command.

next-history (C-n)

Move ‘forward’ through the history list, fetching the next command.

beginning-of-history (M-<)

Move to the first line in the history.

end-of-history (M->)

Move to the end of the input history, i.e., the line currently being entered.

reverse-search-history (C-r)

Search backward starting at the current line and moving ‘up’ through the his-
tory as necessary. This is an incremental search. This command sets the region
to the matched text and activates the mark.

forward-search-history (C-s)

Search forward starting at the current line and moving ‘down’ through the
history as necessary. This is an incremental search. This command sets the
region to the matched text and activates the mark.

non-incremental-reverse-search-history (M-p)

Search backward starting at the current line and moving ‘up’ through the his-
tory as necessary using a non-incremental search for a string supplied by the
user. The search string may match anywhere in a history line.

non-incremental-forward-search-history (M-n)

Search forward starting at the current line and moving ‘down’ through the
history as necessary using a non-incremental search for a string supplied by the
user. The search string may match anywhere in a history line.

history-search-forward ()

Search forward through the history for the string of characters between the
start of the current line and the point. The search string must match at the
beginning of a history line. This is a non-incremental search. By default, this
command is unbound.

history-search-backward ()

Search backward through the history for the string of characters between the
start of the current line and the point. The search string must match at the

682 Debugging with gdb

beginning of a history line. This is a non-incremental search. By default, this
command is unbound.

history-substring-search-forward ()

Search forward through the history for the string of characters between the
start of the current line and the point. The search string may match anywhere
in a history line. This is a non-incremental search. By default, this command
is unbound.

history-substring-search-backward ()

Search backward through the history for the string of characters between the
start of the current line and the point. The search string may match anywhere
in a history line. This is a non-incremental search. By default, this command
is unbound.

yank-nth-arg (M-C-y)

Insert the first argument to the previous command (usually the second word
on the previous line) at point. With an argument n, insert the nth word from
the previous command (the words in the previous command begin with word
0). A negative argument inserts the nth word from the end of the previous
command. Once the argument n is computed, the argument is extracted as if
the ‘!n’ history expansion had been specified.

yank-last-arg (M-. or M-_)

Insert last argument to the previous command (the last word of the previous
history entry). With a numeric argument, behave exactly like yank-nth-arg.
Successive calls to yank-last-arg move back through the history list, inserting
the last word (or the word specified by the argument to the first call) of each line
in turn. Any numeric argument supplied to these successive calls determines
the direction to move through the history. A negative argument switches the
direction through the history (back or forward). The history expansion facilities
are used to extract the last argument, as if the ‘!$’ history expansion had been
specified.

operate-and-get-next (C-o)

Accept the current line for return to the calling application as if a newline had
been entered, and fetch the next line relative to the current line from the history
for editing. A numeric argument, if supplied, specifies the history entry to use
instead of the current line.

32.4.3 Commands For Changing Text

end-of-file (usually C-d)

The character indicating end-of-file as set, for example, by stty. If this charac-
ter is read when there are no characters on the line, and point is at the beginning
of the line, Readline interprets it as the end of input and returns eof.

delete-char (C-d)

Delete the character at point. If this function is bound to the same character
as the tty eof character, as C-d commonly is, see above for the effects.

Chapter 32: Command Line Editing 683

backward-delete-char (Rubout)

Delete the character behind the cursor. A numeric argument means to kill the
characters instead of deleting them.

forward-backward-delete-char ()

Delete the character under the cursor, unless the cursor is at the end of the
line, in which case the character behind the cursor is deleted. By default, this
is not bound to a key.

quoted-insert (C-q or C-v)

Add the next character typed to the line verbatim. This is how to insert key
sequences like C-q, for example.

tab-insert (M-TAB)

Insert a tab character.

self-insert (a, b, A, 1, !, ...)

Insert yourself.

bracketed-paste-begin ()

This function is intended to be bound to the "bracketed paste" escape sequence
sent by some terminals, and such a binding is assigned by default. It allows
Readline to insert the pasted text as a single unit without treating each char-
acter as if it had been read from the keyboard. The characters are inserted
as if each one was bound to self-insert instead of executing any editing
commands.

Bracketed paste sets the region (the characters between point and the mark)
to the inserted text. It uses the concept of an active mark : when the mark
is active, Readline redisplay uses the terminal’s standout mode to denote the
region.

transpose-chars (C-t)

Drag the character before the cursor forward over the character at the cursor,
moving the cursor forward as well. If the insertion point is at the end of the
line, then this transposes the last two characters of the line. Negative arguments
have no effect.

transpose-words (M-t)

Drag the word before point past the word after point, moving point past that
word as well. If the insertion point is at the end of the line, this transposes the
last two words on the line.

upcase-word (M-u)

Uppercase the current (or following) word. With a negative argument, upper-
case the previous word, but do not move the cursor.

downcase-word (M-l)

Lowercase the current (or following) word. With a negative argument, lowercase
the previous word, but do not move the cursor.

capitalize-word (M-c)

Capitalize the current (or following) word. With a negative argument, capitalize
the previous word, but do not move the cursor.

684 Debugging with gdb

overwrite-mode ()

Toggle overwrite mode. With an explicit positive numeric argument, switches
to overwrite mode. With an explicit non-positive numeric argument, switches to
insert mode. This command affects only emacs mode; vi mode does overwrite
differently. Each call to readline() starts in insert mode.

In overwrite mode, characters bound to self-insert replace the text at
point rather than pushing the text to the right. Characters bound to
backward-delete-char replace the character before point with a space.

By default, this command is unbound.

32.4.4 Killing And Yanking

kill-line (C-k)

Kill the text from point to the end of the line. With a negative numeric argu-
ment, kill backward from the cursor to the beginning of the current line.

backward-kill-line (C-x Rubout)

Kill backward from the cursor to the beginning of the current line. With a
negative numeric argument, kill forward from the cursor to the end of the
current line.

unix-line-discard (C-u)

Kill backward from the cursor to the beginning of the current line.

kill-whole-line ()

Kill all characters on the current line, no matter where point is. By default,
this is unbound.

kill-word (M-d)

Kill from point to the end of the current word, or if between words, to the end
of the next word. Word boundaries are the same as forward-word.

backward-kill-word (M-DEL)

Kill the word behind point. Word boundaries are the same as backward-word.

shell-transpose-words (M-C-t)

Drag the word before point past the word after point, moving point past that
word as well. If the insertion point is at the end of the line, this transposes the
last two words on the line. Word boundaries are the same as shell-forward-
word and shell-backward-word.

unix-word-rubout (C-w)

Kill the word behind point, using white space as a word boundary. The killed
text is saved on the kill-ring.

unix-filename-rubout ()

Kill the word behind point, using white space and the slash character as the
word boundaries. The killed text is saved on the kill-ring.

delete-horizontal-space ()

Delete all spaces and tabs around point. By default, this is unbound.

Chapter 32: Command Line Editing 685

kill-region ()

Kill the text in the current region. By default, this command is unbound.

copy-region-as-kill ()

Copy the text in the region to the kill buffer, so it can be yanked right away.
By default, this command is unbound.

copy-backward-word ()

Copy the word before point to the kill buffer. The word boundaries are the
same as backward-word. By default, this command is unbound.

copy-forward-word ()

Copy the word following point to the kill buffer. The word boundaries are the
same as forward-word. By default, this command is unbound.

yank (C-y)

Yank the top of the kill ring into the buffer at point.

yank-pop (M-y)

Rotate the kill-ring, and yank the new top. You can only do this if the prior
command is yank or yank-pop.

32.4.5 Specifying Numeric Arguments

digit-argument (M-0, M-1, ... M--)

Add this digit to the argument already accumulating, or start a new argument.
M-- starts a negative argument.

universal-argument ()

This is another way to specify an argument. If this command is followed by one
or more digits, optionally with a leading minus sign, those digits define the ar-
gument. If the command is followed by digits, executing universal-argument

again ends the numeric argument, but is otherwise ignored. As a special case,
if this command is immediately followed by a character that is neither a digit
nor minus sign, the argument count for the next command is multiplied by
four. The argument count is initially one, so executing this function the first
time makes the argument count four, a second time makes the argument count
sixteen, and so on. By default, this is not bound to a key.

32.4.6 Letting Readline Type For You

complete (TAB)

Attempt to perform completion on the text before point. The actual completion
performed is application-specific. The default is filename completion.

possible-completions (M-?)

List the possible completions of the text before point. When displaying com-
pletions, Readline sets the number of columns used for display to the value of
completion-display-width, the value of the environment variable COLUMNS,
or the screen width, in that order.

insert-completions (M-*)

Insert all completions of the text before point that would have been generated
by possible-completions.

686 Debugging with gdb

menu-complete ()

Similar to complete, but replaces the word to be completed with a single match
from the list of possible completions. Repeated execution of menu-complete
steps through the list of possible completions, inserting each match in turn.
At the end of the list of completions, the bell is rung (subject to the setting
of bell-style) and the original text is restored. An argument of n moves n
positions forward in the list of matches; a negative argument may be used to
move backward through the list. This command is intended to be bound to
TAB, but is unbound by default.

menu-complete-backward ()

Identical to menu-complete, but moves backward through the list of possible
completions, as if menu-complete had been given a negative argument.

delete-char-or-list ()

Deletes the character under the cursor if not at the beginning or end of the
line (like delete-char). If at the end of the line, behaves identically to
possible-completions. This command is unbound by default.

32.4.7 Keyboard Macros

start-kbd-macro (C-x ()

Begin saving the characters typed into the current keyboard macro.

end-kbd-macro (C-x))

Stop saving the characters typed into the current keyboard macro and save the
definition.

call-last-kbd-macro (C-x e)

Re-execute the last keyboard macro defined, by making the characters in the
macro appear as if typed at the keyboard.

print-last-kbd-macro ()

Print the last keboard macro defined in a format suitable for the inputrc file.

32.4.8 Some Miscellaneous Commands

re-read-init-file (C-x C-r)

Read in the contents of the inputrc file, and incorporate any bindings or variable
assignments found there.

abort (C-g)

Abort the current editing command and ring the terminal’s bell (subject to the
setting of bell-style).

do-lowercase-version (M-A, M-B, M-x, ...)

If the metafied character x is upper case, run the command that is bound to
the corresponding metafied lower case character. The behavior is undefined if
x is already lower case.

prefix-meta (ESC)

Metafy the next character typed. This is for keyboards without a meta key.
Typing ‘ESC f’ is equivalent to typing M-f.

Chapter 32: Command Line Editing 687

undo (C-_ or C-x C-u)

Incremental undo, separately remembered for each line.

revert-line (M-r)

Undo all changes made to this line. This is like executing the undo command
enough times to get back to the beginning.

tilde-expand (M-~)

Perform tilde expansion on the current word.

set-mark (C-@)

Set the mark to the point. If a numeric argument is supplied, the mark is set
to that position.

exchange-point-and-mark (C-x C-x)

Swap the point with the mark. The current cursor position is set to the saved
position, and the old cursor position is saved as the mark.

character-search (C-])

A character is read and point is moved to the next occurrence of that character.
A negative count searches for previous occurrences.

character-search-backward (M-C-])

A character is read and point is moved to the previous occurrence of that
character. A negative count searches for subsequent occurrences.

skip-csi-sequence ()

Read enough characters to consume a multi-key sequence such as those defined
for keys like Home and End. Such sequences begin with a Control Sequence
Indicator (CSI), usually ESC-[. If this sequence is bound to "\e[", keys pro-
ducing such sequences will have no effect unless explicitly bound to a readline
command, instead of inserting stray characters into the editing buffer. This is
unbound by default, but usually bound to ESC-[.

insert-comment (M-#)

Without a numeric argument, the value of the comment-begin variable is in-
serted at the beginning of the current line. If a numeric argument is supplied,
this command acts as a toggle: if the characters at the beginning of the line
do not match the value of comment-begin, the value is inserted, otherwise the
characters in comment-begin are deleted from the beginning of the line. In
either case, the line is accepted as if a newline had been typed.

dump-functions ()

Print all of the functions and their key bindings to the Readline output stream.
If a numeric argument is supplied, the output is formatted in such a way that
it can be made part of an inputrc file. This command is unbound by default.

dump-variables ()

Print all of the settable variables and their values to the Readline output stream.
If a numeric argument is supplied, the output is formatted in such a way that
it can be made part of an inputrc file. This command is unbound by default.

688 Debugging with gdb

dump-macros ()

Print all of the Readline key sequences bound to macros and the strings they
output. If a numeric argument is supplied, the output is formatted in such a
way that it can be made part of an inputrc file. This command is unbound by
default.

emacs-editing-mode (C-e)

When in vi command mode, this causes a switch to emacs editing mode.

vi-editing-mode (M-C-j)

When in emacs editing mode, this causes a switch to vi editing mode.

32.5 Readline vi Mode

While the Readline library does not have a full set of vi editing functions, it does contain
enough to allow simple editing of the line. The Readline vi mode behaves as specified in
the posix standard.

In order to switch interactively between emacs and vi editing modes, use the command
M-C-j (bound to emacs-editing-mode when in vi mode and to vi-editing-mode in emacs

mode). The Readline default is emacs mode.

When you enter a line in vi mode, you are already placed in ‘insertion’ mode, as if you
had typed an ‘i’. Pressing ESC switches you into ‘command’ mode, where you can edit the
text of the line with the standard vi movement keys, move to previous history lines with
‘k’ and subsequent lines with ‘j’, and so forth.

689

33 Using History Interactively

This chapter describes how to use the gnu History Library interactively, from a user’s
standpoint. It should be considered a user’s guide. For information on using the gnu
History Library in your own programs, see Section “Programming with GNU History” in
GNU History Library .

33.1 History Expansion

The History library provides a history expansion feature that is similar to the history
expansion provided by csh. This section describes the syntax used to manipulate the
history information.

History expansions introduce words from the history list into the input stream, making
it easy to repeat commands, insert the arguments to a previous command into the current
input line, or fix errors in previous commands quickly.

History expansion takes place in two parts. The first is to determine which line from
the history list should be used during substitution. The second is to select portions of
that line for inclusion into the current one. The line selected from the history is called the
event, and the portions of that line that are acted upon are called words. Various modifiers
are available to manipulate the selected words. The line is broken into words in the same
fashion that Bash does, so that several words surrounded by quotes are considered one word.
History expansions are introduced by the appearance of the history expansion character,
which is ‘!’ by default.

History expansion implements shell-like quoting conventions: a backslash can be used to
remove the special handling for the next character; single quotes enclose verbatim sequences
of characters, and can be used to inhibit history expansion; and characters enclosed within
double quotes may be subject to history expansion, since backslash can escape the history
expansion character, but single quotes may not, since they are not treated specially within
double quotes.

33.1.1 Event Designators

An event designator is a reference to a command line entry in the history list. Unless the
reference is absolute, events are relative to the current position in the history list.

! Start a history substitution, except when followed by a space, tab, the end of
the line, or ‘=’.

!n Refer to command line n.

!-n Refer to the command n lines back.

!! Refer to the previous command. This is a synonym for ‘!-1’.

!string Refer to the most recent command preceding the current position in the history
list starting with string.

!?string[?]

Refer to the most recent command preceding the current position in the history
list containing string. The trailing ‘?’ may be omitted if the string is followed
immediately by a newline. If string is missing, the string from the most recent
search is used; it is an error if there is no previous search string.

690 Debugging with gdb

^string1^string2^

Quick Substitution. Repeat the last command, replacing string1 with string2.
Equivalent to !!:s^string1^string2^.

!# The entire command line typed so far.

33.1.2 Word Designators

Word designators are used to select desired words from the event. A ‘:’ separates the event
specification from the word designator. It may be omitted if the word designator begins
with a ‘^’, ‘$’, ‘*’, ‘-’, or ‘%’. Words are numbered from the beginning of the line, with the
first word being denoted by 0 (zero). Words are inserted into the current line separated by
single spaces.

For example,

!! designates the preceding command. When you type this, the preceding com-
mand is repeated in toto.

!!:$ designates the last argument of the preceding command. This may be shortened
to !$.

!fi:2 designates the second argument of the most recent command starting with the
letters fi.

Here are the word designators:

0 (zero) The 0th word. For many applications, this is the command word.

n The nth word.

^ The first argument; that is, word 1.

$ The last argument.

% The first word matched by the most recent ‘?string?’ search, if the search
string begins with a character that is part of a word.

x-y A range of words; ‘-y’ abbreviates ‘0-y’.

* All of the words, except the 0th. This is a synonym for ‘1-$’. It is not an error
to use ‘*’ if there is just one word in the event; the empty string is returned in
that case.

x* Abbreviates ‘x-$’

x- Abbreviates ‘x-$’ like ‘x*’, but omits the last word. If ‘x’ is missing, it defaults
to 0.

If a word designator is supplied without an event specification, the previous command
is used as the event.

33.1.3 Modifiers

After the optional word designator, you can add a sequence of one or more of the following
modifiers, each preceded by a ‘:’. These modify, or edit, the word or words selected from
the history event.

h Remove a trailing pathname component, leaving only the head.

691

t Remove all leading pathname components, leaving the tail.

r Remove a trailing suffix of the form ‘.suffix’, leaving the basename.

e Remove all but the trailing suffix.

p Print the new command but do not execute it.

s/old/new/

Substitute new for the first occurrence of old in the event line. Any character
may be used as the delimiter in place of ‘/’. The delimiter may be quoted in
old and new with a single backslash. If ‘&’ appears in new, it is replaced by
old. A single backslash will quote the ‘&’. If old is null, it is set to the last old
substituted, or, if no previous history substitutions took place, the last string
in a !?string[?] search. If new is is null, each matching old is deleted. The
final delimiter is optional if it is the last character on the input line.

& Repeat the previous substitution.

g

a Cause changes to be applied over the entire event line. Used in conjunction
with ‘s’, as in gs/old/new/, or with ‘&’.

G Apply the following ‘s’ or ‘&’ modifier once to each word in the event.

693

Appendix A In Memoriam

The gdb project mourns the loss of the following long-time contributors:

Fred Fish Fred was a long-standing contributor to gdb (1991-2006), and to Free Software
in general. Outside of gdb, he was known in the Amiga world for his series of
Fish Disks, and the GeekGadget project.

Michael Snyder

Michael was one of the Global Maintainers of the gdb project, with contri-
butions recorded as early as 1996, until 2011. In addition to his day to day
participation, he was a large driving force behind adding Reverse Debugging to
gdb.

Beyond their technical contributions to the project, they were also enjoyable members
of the Free Software Community. We will miss them.

695

Appendix B Formatting Documentation

The gdb 4 release includes an already-formatted reference card, ready for printing with
PostScript or Ghostscript, in the gdb subdirectory of the main source directory1. If you can
use PostScript or Ghostscript with your printer, you can print the reference card immedi-
ately with refcard.ps.

The release also includes the source for the reference card. You can format it, using
TEX, by typing:

make refcard.dvi

The gdb reference card is designed to print in landscape mode on US “letter” size paper;
that is, on a sheet 11 inches wide by 8.5 inches high. You will need to specify this form of
printing as an option to your dvi output program.

All the documentation for gdb comes as part of the machine-readable distribution. The
documentation is written in Texinfo format, which is a documentation system that uses a
single source file to produce both on-line information and a printed manual. You can use
one of the Info formatting commands to create the on-line version of the documentation
and TEX (or texi2roff) to typeset the printed version.

gdb includes an already formatted copy of the on-line Info version of this manual in the
gdb subdirectory. The main Info file is gdb-12.1.2023.68ecdebfa+/gdb/gdb.info, and
it refers to subordinate files matching ‘gdb.info*’ in the same directory. If necessary, you
can print out these files, or read them with any editor; but they are easier to read using
the info subsystem in gnu Emacs or the standalone info program, available as part of the
gnu Texinfo distribution.

If you want to format these Info files yourself, you need one of the Info formatting
programs, such as texinfo-format-buffer or makeinfo.

If you have makeinfo installed, and are in the top level gdb source directory
(gdb-12.1.2023.68ecdebfa+, in the case of version 12.1.2023.68ecdebfa+), you can make
the Info file by typing:

cd gdb

make gdb.info

If you want to typeset and print copies of this manual, you need TEX, a program to print
its dvi output files, and texinfo.tex, the Texinfo definitions file.

TEX is a typesetting program; it does not print files directly, but produces output files
called dvi files. To print a typeset document, you need a program to print dvi files. If your
system has TEX installed, chances are it has such a program. The precise command to use
depends on your system; lpr -d is common; another (for PostScript devices) is dvips. The
dvi print command may require a file name without any extension or a ‘.dvi’ extension.

TEX also requires a macro definitions file called texinfo.tex. This file tells TEX how
to typeset a document written in Texinfo format. On its own, TEX cannot either read
or typeset a Texinfo file. texinfo.tex is distributed with GDB and is located in the
gdb-version-number/texinfo directory.

1 In gdb-12.1.2023.68ecdebfa+/gdb/refcard.ps of the version 12.1.2023.68ecdebfa+ release.

696 Debugging with gdb

If you have TEX and a dvi printer program installed, you can typeset and print this
manual. First switch to the gdb subdirectory of the main source directory (for example, to
gdb-12.1.2023.68ecdebfa+/gdb) and type:

make gdb.dvi

Then give gdb.dvi to your dvi printing program.

697

Appendix C Installing gdb

C.1 Requirements for Building gdb

Building gdb requires various tools and packages to be available. Other packages will be
used only if they are found.

Tools/Packages Necessary for Building gdb

C++11 compiler
gdb is written in C++11. It should be buildable with any recent C++11 compiler,
e.g. GCC.

GNU make
gdb’s build system relies on features only found in the GNU make program.
Other variants of make will not work.

GMP (The GNU Multiple Precision Arithmetic Library)
gdb now uses GMP to perform some of its arithmetics. This library may be
included with your operating system distribution; if it is not, you can get the
latest version from https://gmplib.org/. If GMP is installed at an unusual
path, you can use the --with-libgmp-prefix option to specify its location.

Tools/Packages Optional for Building gdb

Expat gdb can use the Expat XML parsing library. This library may be included with
your operating system distribution; if it is not, you can get the latest version
from http://expat.sourceforge.net. The configure script will search for
this library in several standard locations; if it is installed in an unusual path,
you can use the --with-libexpat-prefix option to specify its location.

Expat is used for:

• Remote protocol memory maps (see Section E.16 [Memory Map Format],
page 790)

• Target descriptions (see Appendix G [Target Descriptions], page 807)

• Remote shared library lists (See Section E.14 [Library List Format],
page 788, or alternatively see Section E.15 [Library List Format for SVR4
Targets], page 789)

• MS-Windows shared libraries (see [Shared Libraries], page 283)

• Traceframe info (see Section E.18 [Traceframe Info Format], page 791)

• Branch trace (see Section E.19 [Branch Trace Format], page 792, see
Section E.20 [Branch Trace Configuration Format], page 792)

Guile gdb can be scripted using GNU Guile. See Section 23.4 [Guile], page 474. By
default, gdb will be compiled if the Guile libraries are installed and are found by
configure. You can use the --with-guile option to request Guile, and pass
either the Guile version number or the file name of the relevant pkg-config

program to choose a particular version of Guile.

https://gmplib.org/
http://expat.sourceforge.net

698 Debugging with gdb

iconv gdb’s features related to character sets (see Section 10.21 [Character Sets],
page 179) require a functioning iconv implementation. If you are on a GNU
system, then this is provided by the GNU C Library. Some other systems also
provide a working iconv.

If gdb is using the iconv program which is installed in a non-standard place,
you will need to tell gdb where to find it. This is done with --with-iconv-bin

which specifies the directory that contains the iconv program. This program
is run in order to make a list of the available character sets.

On systems without iconv, you can install GNU Libiconv. If Libiconv is in-
stalled in a standard place, gdb will automatically use it if it is needed. If
you have previously installed Libiconv in a non-standard place, you can use the
--with-libiconv-prefix option to configure.

gdb’s top-level configure and Makefile will arrange to build Libiconv if a
directory named libiconv appears in the top-most source directory. If Libiconv
is built this way, and if the operating system does not provide a suitable iconv
implementation, then the just-built library will automatically be used by gdb.
One easy way to set this up is to download GNU Libiconv, unpack it inside
the top-level directory of the gdb source tree, and then rename the directory
holding the Libiconv source code to ‘libiconv’.

lzma gdb can support debugging sections that are compressed with the LZMA li-
brary. See Section 18.4 [MiniDebugInfo], page 292. If this library is not included
with your operating system, you can find it in the xz package at http://

tukaani.org/xz/. If the LZMA library is available in the usual place, then
the configure script will use it automatically. If it is installed in an unusual
path, you can use the --with-liblzma-prefix option to specify its location.

MPFR gdb can use the GNU MPFR multiple-precision floating-point library. This
library may be included with your operating system distribution; if it is not,
you can get the latest version from http://www.mpfr.org. The configure

script will search for this library in several standard locations; if it is installed
in an unusual path, you can use the --with-libmpfr-prefix option to specify
its location.

GNU MPFR is used to emulate target floating-point arithmetic during expres-
sion evaluation when the target uses different floating-point formats than the
host. If GNU MPFR it is not available, gdb will fall back to using host floating-
point arithmetic.

Python gdb can be scripted using Python language. See Section 23.3 [Python],
page 381. By default, gdb will be compiled if the Python libraries are
installed and are found by configure. You can use the --with-python

option to request Python, and pass either the file name of the relevant python
executable, or the name of the directory in which Python is installed, to
choose a particular installation of Python.

zlib gdb will use the ‘zlib’ library, if available, to read compressed debug sections.
Some linkers, such as GNU gold, are capable of producing binaries with com-
pressed debug sections. If gdb is compiled with ‘zlib’, it will be able to read
the debug information in such binaries.

http://tukaani.org/xz/
http://tukaani.org/xz/
http://www.mpfr.org

Appendix C: Installing gdb 699

The ‘zlib’ library is likely included with your operating system distribution; if
it is not, you can get the latest version from http://zlib.net.

C.2 Invoking the gdb configure Script

gdb comes with a configure script that automates the process of preparing gdb for in-
stallation; you can then use make to build the gdb program.1

The gdb distribution includes all the source code you need for gdb in a single directory,
whose name is usually composed by appending the version number to ‘gdb’.

For example, the gdb version 12.1.2023.68ecdebfa+ distribution is in the
gdb-12.1.2023.68ecdebfa+ directory. That directory contains:

gdb-12.1.2023.68ecdebfa+/configure (and supporting files)
script for configuring gdb and all its supporting libraries

gdb-12.1.2023.68ecdebfa+/gdb

the source specific to gdb itself

gdb-12.1.2023.68ecdebfa+/bfd

source for the Binary File Descriptor library

gdb-12.1.2023.68ecdebfa+/include

gnu include files

gdb-12.1.2023.68ecdebfa+/libiberty

source for the ‘-liberty’ free software library

gdb-12.1.2023.68ecdebfa+/opcodes

source for the library of opcode tables and disassemblers

gdb-12.1.2023.68ecdebfa+/readline

source for the gnu command-line interface

There may be other subdirectories as well.

The simplest way to configure and build gdb is to run configure from the gdb-version-
number source directory, which in this example is the gdb-12.1.2023.68ecdebfa+ directory.

First switch to the gdb-version-number source directory if you are not already in it;
then run configure. Pass the identifier for the platform on which gdb will run as an
argument.

For example:
cd gdb-12.1.2023.68ecdebfa+

./configure

make

Running ‘configure’ and then running make builds the included supporting libraries,
then gdb itself. The configured source files, and the binaries, are left in the corresponding
source directories.

configure is a Bourne-shell (/bin/sh) script; if your system does not recognize this
automatically when you run a different shell, you may need to run sh on it explicitly:

sh configure

1 If you have a more recent version of gdb than 12.1.2023.68ecdebfa+, look at the README file in the sources;
we may have improved the installation procedures since publishing this manual.

http://zlib.net

700 Debugging with gdb

You should run the configure script from the top directory in the source tree, the
gdb-version-number directory. If you run configure from one of the subdirectories, you
will configure only that subdirectory. That is usually not what you want. In particular, if
you run the first configure from the gdb subdirectory of the gdb-version-number direc-
tory, you will omit the configuration of bfd, readline, and other sibling directories of the
gdb subdirectory. This leads to build errors about missing include files such as bfd/bfd.h.

You can install gdb anywhere. The best way to do this is to pass the --prefix option
to configure, and then install it with make install.

C.3 Compiling gdb in Another Directory

If you want to run gdb versions for several host or target machines, you need a different
gdb compiled for each combination of host and target. configure is designed to make this
easy by allowing you to generate each configuration in a separate subdirectory, rather than
in the source directory. If your make program handles the ‘VPATH’ feature (gnu make does),
running make in each of these directories builds the gdb program specified there.

To build gdb in a separate directory, run configure with the ‘--srcdir’ option to
specify where to find the source. (You also need to specify a path to find configure itself
from your working directory. If the path to configure would be the same as the argument
to ‘--srcdir’, you can leave out the ‘--srcdir’ option; it is assumed.)

For example, with version 12.1.2023.68ecdebfa+, you can build gdb in a separate direc-
tory for a Sun 4 like this:

cd gdb-12.1.2023.68ecdebfa+

mkdir ../gdb-sun4

cd ../gdb-sun4

../gdb-12.1.2023.68ecdebfa+/configure

make

When configure builds a configuration using a remote source directory, it creates a tree
for the binaries with the same structure (and using the same names) as the tree under the
source directory. In the example, you’d find the Sun 4 library libiberty.a in the directory
gdb-sun4/libiberty, and gdb itself in gdb-sun4/gdb.

Make sure that your path to the configure script has just one instance of gdb in it. If
your path to configure looks like ../gdb-12.1.2023.68ecdebfa+/gdb/configure, you
are configuring only one subdirectory of gdb, not the whole package. This leads to build
errors about missing include files such as bfd/bfd.h.

One popular reason to build several gdb configurations in separate directories is to con-
figure gdb for cross-compiling (where gdb runs on one machine—the host—while debugging
programs that run on another machine—the target). You specify a cross-debugging target
by giving the ‘--target=target’ option to configure.

When you run make to build a program or library, you must run it in a configured
directory—whatever directory you were in when you called configure (or one of its subdi-
rectories).

The Makefile that configure generates in each source directory also runs recursively. If
you type make in a source directory such as gdb-12.1.2023.68ecdebfa+ (or in a separate
configured directory configured with ‘--srcdir=dirname/gdb-12.1.2023.68ecdebfa+’),
you will build all the required libraries, and then build GDB.

Appendix C: Installing gdb 701

When you have multiple hosts or targets configured in separate directories, you can run
make on them in parallel (for example, if they are NFS-mounted on each of the hosts); they
will not interfere with each other.

C.4 Specifying Names for Hosts and Targets

The specifications used for hosts and targets in the configure script are based on a three-
part naming scheme, but some short predefined aliases are also supported. The full naming
scheme encodes three pieces of information in the following pattern:

architecture-vendor-os

For example, you can use the alias sun4 as a host argument, or as the value for target
in a --target=target option. The equivalent full name is ‘sparc-sun-sunos4’.

The configure script accompanying gdb does not provide any query facility to list
all supported host and target names or aliases. configure calls the Bourne shell script
config.sub to map abbreviations to full names; you can read the script, if you wish, or
you can use it to test your guesses on abbreviations—for example:

% sh config.sub i386-linux

i386-pc-linux-gnu

% sh config.sub alpha-linux

alpha-unknown-linux-gnu

% sh config.sub hp9k700

hppa1.1-hp-hpux

% sh config.sub sun4

sparc-sun-sunos4.1.1

% sh config.sub sun3

m68k-sun-sunos4.1.1

% sh config.sub i986v

Invalid configuration ‘i986v’: machine ‘i986v’ not recognized

config.sub is also distributed in the gdb source directory (gdb-12.1.2023.68ecdebfa+,
for version 12.1.2023.68ecdebfa+).

C.5 configure Options

Here is a summary of the configure options and arguments that are most often useful
for building gdb. configure also has several other options not listed here. See Section
“Running configure Scripts” in autoconf, for a full explanation of configure.

configure [--help]
[--prefix=dir]
[--exec-prefix=dir]
[--srcdir=dirname]
[--target=target]

You may introduce options with a single ‘-’ rather than ‘--’ if you prefer; but you may
abbreviate option names if you use ‘--’.

--help Display a quick summary of how to invoke configure.

--prefix=dir

Configure the source to install programs and files under directory dir.

--exec-prefix=dir

Configure the source to install programs under directory dir.

702 Debugging with gdb

--srcdir=dirname

Use this option to make configurations in directories separate from the gdb
source directories. Among other things, you can use this to build (or maintain)
several configurations simultaneously, in separate directories. configure writes
configuration-specific files in the current directory, but arranges for them to use
the source in the directory dirname. configure creates directories under the
working directory in parallel to the source directories below dirname.

--target=target

Configure gdb for cross-debugging programs running on the specified target.
Without this option, gdb is configured to debug programs that run on the same
machine (host) as gdb itself.

There is no convenient way to generate a list of all available targets. Also see
the --enable-targets option, below.

There are many other options that are specific to gdb. This lists just the most common
ones; there are some very specialized options not described here.

--enable-targets=[target]...
--enable-targets=all

Configure gdb for cross-debugging programs running on the specified list of
targets. The special value ‘all’ configures gdb for debugging programs running
on any target it supports.

--with-gdb-datadir=path

Set the gdb-specific data directory. gdb will look here for certain supporting
files or scripts. This defaults to the gdb subdirectory of ‘datadir’ (which can
be set using --datadir).

--with-relocated-sources=dir

Sets up the default source path substitution rule so that directory names
recorded in debug information will be automatically adjusted for any directory
under dir. dir should be a subdirectory of gdb’s configured prefix, the one
mentioned in the --prefix or --exec-prefix options to configure. This
option is useful if GDB is supposed to be moved to a different place after it is
built.

--enable-64-bit-bfd

Enable 64-bit support in BFD on 32-bit hosts.

--disable-gdbmi

Build gdb without the GDB/MI machine interface (see Chapter 27 [GDB/MI],
page 543).

--enable-tui

Build gdb with the text-mode full-screen user interface (TUI). Requires a curses
library (ncurses and cursesX are also supported).

--with-curses

Use the curses library instead of the termcap library, for text-mode terminal
operations.

Appendix C: Installing gdb 703

--with-debuginfod

Build gdb with libdebuginfod, the debuginfod client library. Used to
automatically fetch ELF, DWARF and source files from debuginfod servers
using build IDs associated with any missing files. Enabled by default if
libdebuginfod is installed and found at configure time. For more information
regarding debuginfod see Appendix K [Debuginfod], page 829.

--with-libunwind-ia64

Use the libunwind library for unwinding function call stack on ia64 target plat-
forms. See http://www.nongnu.org/libunwind/index.html for details.

--with-system-readline

Use the readline library installed on the host, rather than the library supplied
as part of gdb. Readline 7 or newer is required; this is enforced by the build
system.

--with-system-zlib

Use the zlib library installed on the host, rather than the library supplied as
part of gdb.

--with-expat

Build gdb with Expat, a library for XML parsing. (Done by default if libexpat
is installed and found at configure time.) This library is used to read XML files
supplied with gdb. If it is unavailable, some features, such as remote protocol
memory maps, target descriptions, and shared library lists, that are based on
XML files, will not be available in gdb. If your host does not have libexpat
installed, you can get the latest version from ‘http://expat.sourceforge.net’.

--with-libiconv-prefix[=dir]
Build gdb with GNU libiconv, a character set encoding conversion library. This
is not done by default, as on GNU systems the iconv that is built in to the C
library is sufficient. If your host does not have a working iconv, you can get the
latest version of GNU iconv from ‘https://www.gnu.org/software/libiconv/’.

gdb’s build system also supports building GNU libiconv as part of the overall
build. See Section C.1 [Requirements], page 697.

--with-lzma

Build gdb with LZMA, a compression library. (Done by default if liblzma is in-
stalled and found at configure time.) LZMA is used by gdb’s "mini debuginfo"
feature, which is only useful on platforms using the ELF object file format. If
your host does not have liblzma installed, you can get the latest version from
‘https://tukaani.org/xz/’.

--with-mpfr

Build gdb with GNU MPFR, a library for multiple-precision floating-point
computation with correct rounding. (Done by default if GNUMPFR is installed
and found at configure time.) This library is used to emulate target floating-
point arithmetic during expression evaluation when the target uses different
floating-point formats than the host. If GNU MPFR is not available, gdb will
fall back to using host floating-point arithmetic. If your host does not have GNU
MPFR installed, you can get the latest version from ‘http://www.mpfr.org’.

704 Debugging with gdb

--with-python[=python]
Build gdb with Python scripting support. (Done by default if libpython is
present and found at configure time.) Python makes gdb scripting much more
powerful than the restricted CLI scripting language. If your host does not have
Python installed, you can find it on ‘http://www.python.org/download/’. The
oldest version of Python supported by GDB is 2.6. The optional argument
python is used to find the Python headers and libraries. It can be either the
name of a Python executable, or the name of the directory in which Python is
installed.

--with-guile[=GUILE]’

Build gdb with GNU Guile scripting support. (Done by default if libguile is
present and found at configure time.) If your host does not have Guile installed,
you can find it at ‘https://www.gnu.org/software/guile/’. The optional argu-
ment GUILE can be a version number, which will cause configure to try to use
that version of Guile; or the file name of a pkg-config executable, which will
be queried to find the information needed to compile and link against Guile.

--without-included-regex

Don’t use the regex library included with gdb (as part of the libiberty library).
This is the default on hosts with version 2 of the GNU C library.

--with-sysroot=dir

Use dir as the default system root directory for libraries whose file names begin
with /lib’ or /usr/lib’. (The value of dir can be modified at run time by
using the set sysroot command.) If dir is under the gdb configured prefix
(set with --prefix or --exec-prefix options, the default system root will
be automatically adjusted if and when gdb is moved to a different location.

--with-system-gdbinit=file

Configure gdb to automatically load a system-wide init file. file should be an
absolute file name. If file is in a directory under the configured prefix, and gdb
is moved to another location after being built, the location of the system-wide
init file will be adjusted accordingly.

--with-system-gdbinit-dir=directory

Configure gdb to automatically load init files from a system-wide directory.
directory should be an absolute directory name. If directory is in a directory
under the configured prefix, and gdb is moved to another location after being
built, the location of the system-wide init directory will be adjusted accordingly.

--enable-build-warnings

When building the gdb sources, ask the compiler to warn about any code which
looks even vaguely suspicious. It passes many different warning flags, depending
on the exact version of the compiler you are using.

--enable-werror

Treat compiler warnings as errors. It adds the -Werror flag to the compiler,
which will fail the compilation if the compiler outputs any warning messages.

Appendix C: Installing gdb 705

--enable-ubsan

Enable the GCC undefined behavior sanitizer. This is disabled by default,
but passing --enable-ubsan=yes or --enable-ubsan=auto to configure will
enable it. The undefined behavior sanitizer checks for C++ undefined behavior.
It has a performance cost, so if you are looking at gdb’s performance, you should
disable it. The undefined behavior sanitizer was first introduced in GCC 4.9.

C.6 System-wide configuration and settings

gdb can be configured to have a system-wide init file and a system-wide init file directory;
this file and files in that directory (if they have a recognized file extension) will be read and
executed at startup (see Section 2.1.3 [What gdb does during startup], page 16).

Here are the corresponding configure options:

--with-system-gdbinit=file

Specify that the default location of the system-wide init file is file.

--with-system-gdbinit-dir=directory

Specify that the default location of the system-wide init file directory is
directory.

If gdb has been configured with the option --prefix=$prefix, they may be subject to
relocation. Two possible cases:

• If the default location of this init file/directory contains $prefix, it will be subject to re-
location. Suppose that the configure options are --prefix=$prefix --with-system-

gdbinit=$prefix/etc/gdbinit; if gdb is moved from $prefix to $install, the sys-
tem init file is looked for as $install/etc/gdbinit instead of $prefix/etc/gdbinit.

• By contrast, if the default location does not contain the prefix, it will not
be relocated. E.g. if gdb has been configured with --prefix=/usr/local

--with-system-gdbinit=/usr/share/gdb/gdbinit, then gdb will always look for
/usr/share/gdb/gdbinit, wherever gdb is installed.

If the configured location of the system-wide init file (as given by the --with-system-

gdbinit option at configure time) is in the data-directory (as specified by --with-gdb-

datadir at configure time) or in one of its subdirectories, then gdb will look for the system-
wide init file in the directory specified by the --data-directory command-line option.
Note that the system-wide init file is only read once, during gdb initialization. If the data-
directory is changed after gdb has started with the set data-directory command, the
file will not be reread.

This applies similarly to the system-wide directory specified in --with-system-

gdbinit-dir.

Any supported scripting language can be used for these init files, as long as the file
extension matches the scripting language. To be interpreted as regular gdb commands, the
files needs to have a .gdb extension.

C.6.1 Installed System-wide Configuration Scripts

The system-gdbinit directory, located inside the data-directory (as specified by --with-

gdb-datadir at configure time) contains a number of scripts which can be used as system-
wide init files. To automatically source those scripts at startup, gdb should be configured

706 Debugging with gdb

with --with-system-gdbinit. Otherwise, any user should be able to source them by hand
as needed.

The following scripts are currently available:

• elinos.py This script is useful when debugging a program on an ELinOS target. It
takes advantage of the environment variables defined in a standard ELinOS environ-
ment in order to determine the location of the system shared libraries, and then sets
the ‘solib-absolute-prefix’ and ‘solib-search-path’ variables appropriately.

• wrs-linux.py This script is useful when debugging a program on a target running
Wind River Linux. It expects the ENV_PREFIX to be set to the host-side sysroot used
by the target system.

707

Appendix D Maintenance Commands

In addition to commands intended for gdb users, gdb includes a number of commands
intended for gdb developers, that are not documented elsewhere in this manual. These
commands are provided here for reference. (For commands that turn on debugging mes-
sages, see Section 22.10 [Debugging Output], page 363.)

maint agent [-at location,] expression
maint agent-eval [-at location,] expression

Translate the given expression into remote agent bytecodes. This command is
useful for debugging the Agent Expression mechanism (see Appendix F [Agent
Expressions], page 795). The ‘agent’ version produces an expression useful
for data collection, such as by tracepoints, while ‘maint agent-eval’ produces
an expression that evaluates directly to a result. For instance, a collection
expression for globa + globb will include bytecodes to record four bytes of
memory at each of the addresses of globa and globb, while discarding the
result of the addition, while an evaluation expression will do the addition and
return the sum. If -at is given, generate remote agent bytecode for location. If
not, generate remote agent bytecode for current frame PC address.

maint agent-printf format,expr,...

Translate the given format string and list of argument expressions into remote
agent bytecodes and display them as a disassembled list. This command is
useful for debugging the agent version of dynamic printf (see Section 5.1.8
[Dynamic Printf], page 77).

maint info breakpoints

Using the same format as ‘info breakpoints’, display both the breakpoints
you’ve set explicitly, and those gdb is using for internal purposes. Internal
breakpoints are shown with negative breakpoint numbers. The type column
identifies what kind of breakpoint is shown:

breakpoint

Normal, explicitly set breakpoint.

watchpoint

Normal, explicitly set watchpoint.

longjmp Internal breakpoint, used to handle correctly stepping through
longjmp calls.

longjmp resume

Internal breakpoint at the target of a longjmp.

until Temporary internal breakpoint used by the gdb until command.

finish Temporary internal breakpoint used by the gdb finish command.

shlib events

Shared library events.

maint info btrace

Pint information about raw branch tracing data.

708 Debugging with gdb

maint btrace packet-history

Print the raw branch trace packets that are used to compute the execution
history for the ‘record btrace’ command. Both the information and the format
in which it is printed depend on the btrace recording format.

bts For the BTS recording format, print a list of blocks of sequential
code. For each block, the following information is printed:

Block number
Newer blocks have higher numbers. The oldest block
has number zero.

Lowest ‘PC’
Highest ‘PC’

pt For the Intel Processor Trace recording format, print a list of Intel
Processor Trace packets. For each packet, the following information
is printed:

Packet number
Newer packets have higher numbers. The oldest packet
has number zero.

Trace offset
The packet’s offset in the trace stream.

Packet opcode and payload

maint btrace clear-packet-history

Discards the cached packet history printed by the ‘maint btrace

packet-history’ command. The history will be computed again when
needed.

maint btrace clear

Discard the branch trace data. The data will be fetched anew and the branch
trace will be recomputed when needed.

This implicitly truncates the branch trace to a single branch trace buffer. When
updating branch trace incrementally, the branch trace available to gdb may be
bigger than a single branch trace buffer.

maint set btrace pt skip-pad

maint show btrace pt skip-pad

Control whether gdb will skip PAD packets when computing the packet history.

maint info jit

Print information about JIT code objects loaded in the current inferior.

set displaced-stepping

show displaced-stepping

Control whether or not gdb will do displaced stepping if the target supports it.
Displaced stepping is a way to single-step over breakpoints without removing
them from the inferior, by executing an out-of-line copy of the instruction that
was originally at the breakpoint location. It is also known as out-of-line single-
stepping.

Appendix D: Maintenance Commands 709

set displaced-stepping on

If the target architecture supports it, gdb will use displaced step-
ping to step over breakpoints.

set displaced-stepping off

gdb will not use displaced stepping to step over breakpoints, even
if such is supported by the target architecture.

set displaced-stepping auto

This is the default mode. gdb will use displaced stepping only
if non-stop mode is active (see Section 5.5.2 [Non-Stop Mode],
page 93) and the target architecture supports displaced stepping.

maint check-psymtabs

Check the consistency of currently expanded psymtabs versus symtabs. Use
this to check, for example, whether a symbol is in one but not the other.

maint check-symtabs

Check the consistency of currently expanded symtabs.

maint expand-symtabs [regexp]

Expand symbol tables. If regexp is specified, only expand symbol tables for file
names matching regexp.

maint set catch-demangler-crashes [on|off]

maint show catch-demangler-crashes

Control whether gdb should attempt to catch crashes in the symbol name
demangler. The default is to attempt to catch crashes. If enabled, the first
time a crash is caught, a core file is created, the offending symbol is displayed
and the user is presented with the option to terminate the current session.

maint cplus first_component name

Print the first C++ class/namespace component of name.

maint cplus namespace

Print the list of possible C++ namespaces.

maint deprecate command [replacement]
maint undeprecate command

Deprecate or undeprecate the named command. Deprecated commands cause
gdb to issue a warning when you use them. The optional argument replacement
says which newer command should be used in favor of the deprecated one; if it
is given, gdb will mention the replacement as part of the warning.

maint dump-me

Cause a fatal signal in the debugger and force it to dump its core. This is
supported only on systems which support aborting a program with the SIGQUIT
signal.

maint internal-error [message-text]
maint internal-warning [message-text]
maint demangler-warning [message-text]

Cause gdb to call the internal function internal_error, internal_warning
or demangler_warning and hence behave as though an internal problem has

710 Debugging with gdb

been detected. In addition to reporting the internal problem, these functions
give the user the opportunity to either quit gdb or (for internal_error and
internal_warning) create a core file of the current gdb session.

These commands take an optional parameter message-text that is used as the
text of the error or warning message.

Here’s an example of using internal-error:
(gdb) maint internal-error testing, 1, 2

.../maint.c:121: internal-error: testing, 1, 2

A problem internal to GDB has been detected. Further

debugging may prove unreliable.

Quit this debugging session? (y or n) n

Create a core file? (y or n) n

(gdb)

maint set internal-error action [ask|yes|no]

maint show internal-error action

maint set internal-warning action [ask|yes|no]

maint show internal-warning action

maint set demangler-warning action [ask|yes|no]

maint show demangler-warning action

When gdb reports an internal problem (error or warning) it gives the user the
opportunity to both quit gdb and create a core file of the current gdb session.
These commands let you override the default behaviour for each particular
action, described in the table below.

‘quit’ You can specify that gdb should always (yes) or never (no) quit.
The default is to ask the user what to do.

‘corefile’
You can specify that gdb should always (yes) or never (no) create
a core file. The default is to ask the user what to do. Note that
there is no corefile option for demangler-warning: demangler
warnings always create a core file and this cannot be disabled.

maint set internal-error backtrace [on|off]
maint show internal-error backtrace

maint set internal-warning backtrace [on|off]
maint show internal-warning backtrace

When gdb reports an internal problem (error or warning) it is possible to have
a backtrace of gdb printed to the standard error stream. This is ‘on’ by default
for internal-error and ‘off’ by default for internal-warning.

maint packet text

If gdb is talking to an inferior via the serial protocol, then this command sends
the string text to the inferior, and displays the response packet. gdb supplies
the initial ‘$’ character, the terminating ‘#’ character, and the checksum.

Any non-printable characters in the reply are printed as escaped hex, e.g.
‘\x00’, ‘\x01’, etc.

maint print architecture [file]
Print the entire architecture configuration. The optional argument file names
the file where the output goes.

Appendix D: Maintenance Commands 711

maint print c-tdesc [-single-feature] [file]
Print the target description (see Appendix G [Target Descriptions], page 807)
as a C source file. By default, the target description is for the current target,
but if the optional argument file is provided, that file is used to produce the
description. The file should be an XML document, of the form described in
Section G.2 [Target Description Format], page 807. The created source file is
built into gdb when gdb is built again. This command is used by developers
after they add or modify XML target descriptions.

When the optional flag ‘-single-feature’ is provided then the target descrip-
tion being processed (either the default, or from file) must only contain a single
feature. The source file produced is different in this case.

maint print xml-tdesc [file]
Print the target description (see Appendix G [Target Descriptions], page 807) as
an XML file. By default print the target description for the current target, but
if the optional argument file is provided, then that file is read in by GDB and
then used to produce the description. The file should be an XML document,
of the form described in Section G.2 [Target Description Format], page 807.

maint check xml-descriptions dir

Check that the target descriptions dynamically created by gdb equal the de-
scriptions created from XML files found in dir.

maint check libthread-db

Run integrity checks on the current inferior’s thread debugging library. This
exercises all libthread_db functionality used by gdb on GNU/Linux systems,
and by extension also exercises the proc_service functions provided by gdb
that libthread_db uses. Note that parts of the test may be skipped on some
platforms when debugging core files.

maint print core-file-backed-mappings

Print the file-backed mappings which were loaded from a core file note. This
output represents state internal to gdb and should be similar to the mappings
displayed by the info proc mappings command.

maint print dummy-frames

Prints the contents of gdb’s internal dummy-frame stack.

(gdb) b add

...

(gdb) print add(2,3)

Breakpoint 2, add (a=2, b=3) at ...

58 return (a + b);

The program being debugged stopped while in a function called from GDB.

...

(gdb) maint print dummy-frames

0xa8206d8: id={stack=0xbfffe734,code=0xbfffe73f,!special}, ptid=process 9353

(gdb)

Takes an optional file parameter.

712 Debugging with gdb

maint print registers [file]
maint print raw-registers [file]
maint print cooked-registers [file]
maint print register-groups [file]
maint print remote-registers [file]

Print gdb’s internal register data structures.

The command maint print raw-registers includes the contents of the raw
register cache; the command maint print cooked-registers includes the
(cooked) value of all registers, including registers which aren’t available on
the target nor visible to user; the command maint print register-groups

includes the groups that each register is a member of; and the command maint

print remote-registers includes the remote target’s register numbers and
offsets in the ‘G’ packets.

These commands take an optional parameter, a file name to which to write the
information.

maint print reggroups [file]
Print gdb’s internal register group data structures. The optional argument file
tells to what file to write the information.

The register groups info looks like this:
(gdb) maint print reggroups

Group Type

general user

float user

all user

vector user

system user

save internal

restore internal

maint flush register-cache

flushregs

Flush the contents of the register cache and as a consequence the frame cache.
This command is useful when debugging issues related to register fetching, or
frame unwinding. The command flushregs is deprecated in favor of maint
flush register-cache.

maint flush source-cache

Flush gdb’s cache of source code file contents. After gdb reads a source file,
and optionally applies styling (see Section 22.5 [Output Styling], page 353), the
file contents are cached. This command clears that cache. The next time gdb
wants to show lines from a source file, the content will be re-read.

This command is useful when debugging issues related to source code styling.
After flushing the cache any source code displayed by gdb will be re-read and
re-styled.

maint print objfiles [regexp]
Print a dump of all known object files. If regexp is specified, only print object
files whose names match regexp. For each object file, this command prints its
name, address in memory, and all of its psymtabs and symtabs.

Appendix D: Maintenance Commands 713

maint print user-registers

List all currently available user registers. User registers typically provide al-
ternate names for actual hardware registers. They include the four “standard”
registers $fp, $pc, $sp, and $ps. See [standard registers], page 171. User
registers can be used in expressions in the same way as the canonical register
names, but only the latter are listed by the info registers and maint print

registers commands.

maint print section-scripts [regexp]

Print a dump of scripts specified in the .debug_gdb_section section. If regexp
is specified, only print scripts loaded by object files matching regexp. For each
script, this command prints its name as specified in the objfile, and the full
path if known. See Section 23.5.2 [dotdebug gdb scripts section], page 528.

maint print statistics

This command prints, for each object file in the program, various data about
that object file followed by the byte cache (bcache) statistics for the object
file. The objfile data includes the number of minimal, partial, full, and stabs
symbols, the number of types defined by the objfile, the number of as yet
unexpanded psym tables, the number of line tables and string tables, and the
amount of memory used by the various tables. The bcache statistics include the
counts, sizes, and counts of duplicates of all and unique objects, max, average,
and median entry size, total memory used and its overhead and savings, and
various measures of the hash table size and chain lengths.

maint print target-stack

A target is an interface between the debugger and a particular kind of file or
process. Targets can be stacked in strata, so that more than one target can
potentially respond to a request. In particular, memory accesses will walk down
the stack of targets until they find a target that is interested in handling that
particular address.

This command prints a short description of each layer that was pushed on the
target stack, starting from the top layer down to the bottom one.

maint print type expr

Print the type chain for a type specified by expr. The argument can be either a
type name or a symbol. If it is a symbol, the type of that symbol is described.
The type chain produced by this command is a recursive definition of the data
type as stored in gdb’s data structures, including its flags and contained types.

maint selftest [-verbose] [filter]
Run any self tests that were compiled in to gdb. This will print a message
showing how many tests were run, and how many failed. If a filter is passed,
only the tests with filter in their name will be ran. If -verbose is passed, the
self tests can be more verbose.

maint set selftest verbose

maint show selftest verbose

Control whether self tests are run verbosely or not.

714 Debugging with gdb

maint info selftests

List the selftests compiled in to gdb.

maint set dwarf always-disassemble

maint show dwarf always-disassemble

Control the behavior of info address when using DWARF debugging informa-
tion.

The default is off, which means that gdb should try to describe a variable’s
location in an easily readable format. When on, gdb will instead display the
DWARF location expression in an assembly-like format. Note that some loca-
tions are too complex for gdb to describe simply; in this case you will always
see the disassembly form.

Here is an example of the resulting disassembly:
(gdb) info addr argc

Symbol "argc" is a complex DWARF expression:

1: DW_OP_fbreg 0

For more information on these expressions, see the DWARF standard (http://
www.dwarfstd.org/).

maint set dwarf max-cache-age

maint show dwarf max-cache-age

Control the DWARF compilation unit cache.

In object files with inter-compilation-unit references, such as those produced
by the GCC option ‘-feliminate-dwarf2-dups’, the DWARF reader needs to
frequently refer to previously read compilation units. This setting controls how
long a compilation unit will remain in the cache if it is not referenced. A higher
limit means that cached compilation units will be stored in memory longer, and
more total memory will be used. Setting it to zero disables caching, which will
slow down gdb startup, but reduce memory consumption.

maint set dwarf unwinders

maint show dwarf unwinders

Control use of the DWARF frame unwinders.

Many targets that support DWARF debugging use gdb’s DWARF frame un-
winders to build the backtrace. Many of these targets will also have a second
mechanism for building the backtrace for use in cases where DWARF informa-
tion is not available, this second mechanism is often an analysis of a function’s
prologue.

In order to extend testing coverage of the second level stack unwinding mecha-
nisms it is helpful to be able to disable the DWARF stack unwinders, this can
be done with this switch.

In normal use of gdb disabling the DWARF unwinders is not advisable, there
are cases that are better handled through DWARF than prologue analysis, and
the debug experience is likely to be better with the DWARF frame unwinders
enabled.

If DWARF frame unwinders are not supported for a particular target architec-
ture, then enabling this flag does not cause them to be used.

http://www.dwarfstd.org/
http://www.dwarfstd.org/

Appendix D: Maintenance Commands 715

maint set worker-threads

maint show worker-threads

Control the number of worker threads that may be used by gdb. On capable
hosts, gdb may use multiple threads to speed up certain CPU-intensive oper-
ations, such as demangling symbol names. While the number of threads used
by gdb may vary, this command can be used to set an upper bound on this
number. The default is unlimited, which lets gdb choose a reasonable num-
ber. Note that this only controls worker threads started by gdb itself; libraries
used by gdb may start threads of their own.

maint set profile

maint show profile

Control profiling of gdb.

Profiling will be disabled until you use the ‘maint set profile’ command to
enable it. When you enable profiling, the system will begin collecting timing
and execution count data; when you disable profiling or exit gdb, the results
will be written to a log file. Remember that if you use profiling, gdb will
overwrite the profiling log file (often called gmon.out). If you have a record of
important profiling data in a gmon.out file, be sure to move it to a safe location.

Configuring with ‘--enable-profiling’ arranges for gdb to be compiled with
the ‘-pg’ compiler option.

maint set show-debug-regs

maint show show-debug-regs

Control whether to show variables that mirror the hardware debug registers.
Use on to enable, off to disable. If enabled, the debug registers values are
shown when gdb inserts or removes a hardware breakpoint or watchpoint, and
when the inferior triggers a hardware-assisted breakpoint or watchpoint.

maint set show-all-tib

maint show show-all-tib

Control whether to show all non zero areas within a 1k block starting at thread
local base, when using the ‘info w32 thread-information-block’ command.

maint set target-async

maint show target-async

This controls whether gdb targets operate in synchronous or asynchronous
mode (see Section 5.5.3 [Background Execution], page 94). Normally the default
is asynchronous, if it is available; but this can be changed to more easily debug
problems occurring only in synchronous mode.

maint set target-non-stop

maint show target-non-stop

This controls whether gdb targets always operate in non-stop mode even if set
non-stop is off (see Section 5.5.2 [Non-Stop Mode], page 93). The default is
auto, meaning non-stop mode is enabled if supported by the target.

maint set target-non-stop auto

This is the default mode. gdb controls the target in non-stop mode
if the target supports it.

716 Debugging with gdb

maint set target-non-stop on

gdb controls the target in non-stop mode even if the target does
not indicate support.

maint set target-non-stop off

gdb does not control the target in non-stop mode even if the target
supports it.

maint set tui-resize-message

maint show tui-resize-message

Control whether gdb displays a message each time the terminal is resized when
in TUI mode. The default is off, which means that gdb is silent during resizes.
When on, gdb will display a message after a resize is completed; the message
will include a number indicating how many times the terminal has been resized.
This setting is intended for use by the test suite, where it would otherwise be
difficult to determine when a resize and refresh has been completed.

maint set per-command

maint show per-command

gdb can display the resources used by each command. This is useful in debug-
ging performance problems.

maint set per-command space [on|off]

maint show per-command space

Enable or disable the printing of the memory used by GDB for
each command. If enabled, gdb will display how much memory
each command took, following the command’s own output. This
can also be requested by invoking gdb with the --statistics

command-line switch (see Section 2.1.2 [Mode Options], page 13).

maint set per-command time [on|off]

maint show per-command time

Enable or disable the printing of the execution time of gdb for
each command. If enabled, gdb will display how much time it took
to execute each command, following the command’s own output.
Both CPU time and wallclock time are printed. Printing both
is useful when trying to determine whether the cost is CPU or,
e.g., disk/network latency. Note that the CPU time printed is
for gdb only, it does not include the execution time of the inferior
because there’s no mechanism currently to compute how much time
was spent by gdb and how much time was spent by the program
been debugged. This can also be requested by invoking gdb with
the --statistics command-line switch (see Section 2.1.2 [Mode
Options], page 13).

maint set per-command symtab [on|off]

maint show per-command symtab

Enable or disable the printing of basic symbol table statistics for
each command. If enabled, gdb will display the following informa-
tion:

a. number of symbol tables

Appendix D: Maintenance Commands 717

b. number of primary symbol tables

c. number of blocks in the blockvector

maint set check-libthread-db [on|off]

maint show check-libthread-db

Control whether gdb should run integrity checks on inferior specific thread
debugging libraries as they are loaded. The default is not to perform such
checks. If any check fails gdb will unload the library and continue searching
for a suitable candidate as described in [set libthread-db-search-path], page 51.
For more information about the tests, see [maint check libthread-db], page 711.

maint set gnu-source-highlight enabled [on|off]
maint show gnu-source-highlight enabled

Control whether gdb should use the GNU Source Highlight library for applying
styling to source code (see Section 22.5 [Output Styling], page 353). This will
be ‘on’ by default if the GNU Source Highlight library is available. If the GNU
Source Highlight library is not available, then this will be ‘off’ by default, and
attempting to change this value to ‘on’ will give an error.

If the GNU Source Highlight library is not being used, then gdb will use the
Python Pygments package for source code styling, if it is available.

This option is useful for debugging gdb’s use of the Pygments library when
gdb is linked against the GNU Source Highlight library.

maint space value

An alias for maint set per-command space. A non-zero value enables it, zero
disables it.

maint time value

An alias for maint set per-command time. A non-zero value enables it, zero
disables it.

maint translate-address [section] addr
Find the symbol stored at the location specified by the address addr and an
optional section name section. If found, gdb prints the name of the closest
symbol and an offset from the symbol’s location to the specified address. This
is similar to the info address command (see Chapter 16 [Symbols], page 253),
except that this command also allows to find symbols in other sections.

If section was not specified, the section in which the symbol was found is also
printed. For dynamically linked executables, the name of executable or shared
library containing the symbol is printed as well.

maint test-options require-delimiter

maint test-options unknown-is-error

maint test-options unknown-is-operand

These commands are used by the testsuite to validate the command options
framework. The require-delimiter variant requires a double-dash delimiter
to indicate end of options. The unknown-is-error and unknown-is-operand

do not. The unknown-is-error variant throws an error on unknown option,
while unknown-is-operand treats unknown options as the start of the com-
mand’s operands. When run, the commands output the result of the processed

718 Debugging with gdb

options. When completed, the commands store the internal result of completion
in a variable exposed by the maint show test-options-completion-result

command.

maint show test-options-completion-result

Shows the result of completing the maint test-options subcommands. This
is used by the testsuite to validate completion support in the command options
framework.

maint set test-settings kind

maint show test-settings kind

These are representative commands for each kind of setting type gdb supports.
They are used by the testsuite for exercising the settings infrastructure.

maint set backtrace-on-fatal-signal [on|off]

maint show backtrace-on-fatal-signal

When this setting is on, if gdb itself terminates with a fatal signal (e.g.
SIGSEGV), then a limited backtrace will be printed to the standard error
stream. This backtrace can be used to help diagnose crashes within gdb in
situations where a user is unable to share a corefile with the gdb developers.

If the functionality to provide this backtrace is not available for the platform on
which GDB is running then this feature will be off by default, and attempting
to turn this feature on will give an error.

For platforms that do support creating the backtrace this feature is on by
default.

maint with setting [value] [-- command]

Like the with command, but works with maintenance set variables. This is
used by the testsuite to exercise the with command’s infrastructure.

maint jit dump addr filename

Dump the in-memory JIT object containing addr into filename.

The following command is useful for non-interactive invocations of gdb, such as in the
test suite.

set watchdog nsec

Set the maximum number of seconds gdb will wait for the target operation to
finish. If this time expires, gdb reports and error and the command is aborted.

show watchdog

Show the current setting of the target wait timeout.

719

Appendix E gdb Remote Serial Protocol

E.1 Overview

There may be occasions when you need to know something about the protocol—for example,
if there is only one serial port to your target machine, you might want your program to do
something special if it recognizes a packet meant for gdb.

In the examples below, ‘->’ and ‘<-’ are used to indicate transmitted and received data,
respectively.

All gdb commands and responses (other than acknowledgments and notifications, see
Section E.9 [Notification Packets], page 772) are sent as a packet. A packet is introduced
with the character ‘$’, the actual packet-data, and the terminating character ‘#’ followed
by a two-digit checksum:

$packet-data#checksum

The two-digit checksum is computed as the modulo 256 sum of all characters between the
leading ‘$’ and the trailing ‘#’ (an eight bit unsigned checksum).

Implementors should note that prior to gdb 5.0 the protocol specification also included
an optional two-digit sequence-id:

$sequence-id:packet-data#checksum

That sequence-id was appended to the acknowledgment. gdb has never output sequence-
ids. Stubs that handle packets added since gdb 5.0 must not accept sequence-id.

When either the host or the target machine receives a packet, the first response expected
is an acknowledgment: either ‘+’ (to indicate the package was received correctly) or ‘-’ (to
request retransmission):

-> $packet-data#checksum

<- +

The ‘+’/‘-’ acknowledgments can be disabled once a connection is established. See
Section E.11 [Packet Acknowledgment], page 775, for details.

The host (gdb) sends commands, and the target (the debugging stub incorporated in
your program) sends a response. In the case of step and continue commands, the response
is only sent when the operation has completed, and the target has again stopped all threads
in all attached processes. This is the default all-stop mode behavior, but the remote pro-
tocol also supports gdb’s non-stop execution mode; see Section E.10 [Remote Non-Stop],
page 774, for details.

packet-data consists of a sequence of characters with the exception of ‘#’ and ‘$’ (see ‘X’
packet for additional exceptions).

Fields within the packet should be separated using ‘,’ ‘;’ or ‘:’. Except where otherwise
noted all numbers are represented in hex with leading zeros suppressed.

Implementors should note that prior to gdb 5.0, the character ‘:’ could not appear as
the third character in a packet (as it would potentially conflict with the sequence-id).

Binary data in most packets is encoded either as two hexadecimal digits per byte of
binary data. This allowed the traditional remote protocol to work over connections which
were only seven-bit clean. Some packets designed more recently assume an eight-bit clean
connection, and use a more efficient encoding to send and receive binary data.

720 Debugging with gdb

The binary data representation uses 7d (ascii ‘}’) as an escape character. Any escaped
byte is transmitted as the escape character followed by the original character XORed with
0x20. For example, the byte 0x7d would be transmitted as the two bytes 0x7d 0x5d. The
bytes 0x23 (ascii ‘#’), 0x24 (ascii ‘$’), and 0x7d (ascii ‘}’) must always be escaped.
Responses sent by the stub must also escape 0x2a (ascii ‘*’), so that it is not interpreted
as the start of a run-length encoded sequence (described next).

Response data can be run-length encoded to save space. Run-length encoding replaces
runs of identical characters with one instance of the repeated character, followed by a ‘*’
and a repeat count. The repeat count is itself sent encoded, to avoid binary characters in
data: a value of n is sent as n+29. For a repeat count greater or equal to 3, this produces
a printable ascii character, e.g. a space (ascii code 32) for a repeat count of 3. (This is
because run-length encoding starts to win for counts 3 or more.) Thus, for example, ‘0* ’
is a run-length encoding of “0000”: the space character after ‘*’ means repeat the leading
0 32 - 29 = 3 more times.

The printable characters ‘#’ and ‘$’ or with a numeric value greater than 126 must not
be used. Runs of six repeats (‘#’) or seven repeats (‘$’) can be expanded using a repeat
count of only five (‘"’). For example, ‘00000000’ can be encoded as ‘0*"00’.

The error response returned for some packets includes a two character error number.
That number is not well defined.

For any command not supported by the stub, an empty response (‘$#00’) should be
returned. That way it is possible to extend the protocol. A newer gdb can tell if a packet
is supported based on that response.

At a minimum, a stub is required to support the ‘?’ command to tell gdb the reason
for halting, ‘g’ and ‘G’ commands for register access, and the ‘m’ and ‘M’ commands for
memory access. Stubs that only control single-threaded targets can implement run control
with the ‘c’ (continue) command, and if the target architecture supports hardware-assisted
single-stepping, the ‘s’ (step) command. Stubs that support multi-threading targets should
support the ‘vCont’ command. All other commands are optional.

E.2 Packets

The following table provides a complete list of all currently defined commands and their cor-
responding response data. See Section E.13 [File-I/O Remote Protocol Extension], page 776,
for details about the File I/O extension of the remote protocol.

Each packet’s description has a template showing the packet’s overall syntax, followed
by an explanation of the packet’s meaning. We include spaces in some of the templates for
clarity; these are not part of the packet’s syntax. No gdb packet uses spaces to separate its
components. For example, a template like ‘foo bar baz’ describes a packet beginning with
the three ASCII bytes ‘foo’, followed by a bar, followed directly by a baz. gdb does not
transmit a space character between the ‘foo’ and the bar, or between the bar and the baz.

Several packets and replies include a thread-id field to identify a thread. Normally
these are positive numbers with a target-specific interpretation, formatted as big-endian
hex strings. A thread-id can also be a literal ‘-1’ to indicate all threads, or ‘0’ to pick any
thread.

In addition, the remote protocol supports a multiprocess feature in which the thread-id
syntax is extended to optionally include both process and thread ID fields, as ‘ppid.tid’.

Appendix E: gdb Remote Serial Protocol 721

The pid (process) and tid (thread) components each have the format described above: a
positive number with target-specific interpretation formatted as a big-endian hex string,
literal ‘-1’ to indicate all processes or threads (respectively), or ‘0’ to indicate an arbitrary
process or thread. Specifying just a process, as ‘ppid’, is equivalent to ‘ppid.-1’. It is an
error to specify all processes but a specific thread, such as ‘p-1.tid’. Note that the ‘p’
prefix is not used for those packets and replies explicitly documented to include a process
ID, rather than a thread-id.

The multiprocess thread-id syntax extensions are only used if both gdb and the stub
report support for the ‘multiprocess’ feature using ‘qSupported’. See [multiprocess ex-
tensions], page 752, for more information.

Note that all packet forms beginning with an upper- or lower-case letter, other than
those described here, are reserved for future use.

Here are the packet descriptions.

‘!’ Enable extended mode. In extended mode, the remote server is made persistent.
The ‘R’ packet is used to restart the program being debugged.

Reply:

‘OK’ The remote target both supports and has enabled extended mode.

‘?’ This is sent when connection is first established to query the reason the target
halted. The reply is the same as for step and continue. This packet has a special
interpretation when the target is in non-stop mode; see Section E.10 [Remote
Non-Stop], page 774.

Reply: See Section E.3 [Stop Reply Packets], page 731, for the reply specifica-
tions.

‘A arglen,argnum,arg,...’
Initialized argv[] array passed into program. arglen specifies the number of
bytes in the hex encoded byte stream arg. See gdbserver for more details.

Reply:

‘OK’ The arguments were set.

‘E NN’ An error occurred.

‘b baud’ (Don’t use this packet; its behavior is not well-defined.) Change the serial line
speed to baud.

JTC: When does the transport layer state change? When it’s received, or after
the ACK is transmitted. In either case, there are problems if the command or
the acknowledgment packet is dropped.

Stan: If people really wanted to add something like this, and get it working
for the first time, they ought to modify ser-unix.c to send some kind of out-of-
band message to a specially-setup stub and have the switch happen "in between"
packets, so that from remote protocol’s point of view, nothing actually happened.

‘B addr,mode’
Set (mode is ‘S’) or clear (mode is ‘C’) a breakpoint at addr.

Don’t use this packet. Use the ‘Z’ and ‘z’ packets instead (see [insert breakpoint
or watchpoint packet], page 729).

722 Debugging with gdb

‘bc’ Backward continue. Execute the target system in reverse. No parameter. See
Chapter 6 [Reverse Execution], page 99, for more information.

Reply: See Section E.3 [Stop Reply Packets], page 731, for the reply specifica-
tions.

‘bs’ Backward single step. Execute one instruction in reverse. No parameter. See
Chapter 6 [Reverse Execution], page 99, for more information.

Reply: See Section E.3 [Stop Reply Packets], page 731, for the reply specifica-
tions.

‘c [addr]’ Continue at addr, which is the address to resume. If addr is omitted, resume
at current address.

This packet is deprecated for multi-threading support. See [vCont packet],
page 726.

Reply: See Section E.3 [Stop Reply Packets], page 731, for the reply specifica-
tions.

‘C sig[;addr]’
Continue with signal sig (hex signal number). If ‘;addr’ is omitted, resume at
same address.

This packet is deprecated for multi-threading support. See [vCont packet],
page 726.

Reply: See Section E.3 [Stop Reply Packets], page 731, for the reply specifica-
tions.

‘d’ Toggle debug flag.

Don’t use this packet; instead, define a general set packet (see Section E.4
[General Query Packets], page 735).

‘D’
‘D;pid’ The first form of the packet is used to detach gdb from the remote system. It

is sent to the remote target before gdb disconnects via the detach command.

The second form, including a process ID, is used when multiprocess protocol
extensions are enabled (see [multiprocess extensions], page 752), to detach only
a specific process. The pid is specified as a big-endian hex string.

Reply:

‘OK’ for success

‘E NN’ for an error

‘F RC,EE,CF;XX’
A reply from gdb to an ‘F’ packet sent by the target. This is part of the File-
I/O protocol extension. See Section E.13 [File-I/O Remote Protocol Extension],
page 776, for the specification.

‘g’ Read general registers.

Reply:

‘XX...’ Each byte of register data is described by two hex digits. The
bytes with the register are transmitted in target byte order. The

Appendix E: gdb Remote Serial Protocol 723

size of each register and their position within the ‘g’ packet are
determined by the gdb internal gdbarch functions DEPRECATED_

REGISTER_RAW_SIZE and gdbarch_register_name.

When reading registers from a trace frame (see Section 13.2 [Using
the Collected Data], page 207), the stub may also return a string
of literal ‘x’’s in place of the register data digits, to indicate that
the corresponding register has not been collected, thus its value is
unavailable. For example, for an architecture with 4 registers of
4 bytes each, the following reply indicates to gdb that registers 0
and 2 have not been collected, while registers 1 and 3 have been
collected, and both have zero value:

-> g

<- xxxxxxxx00000000xxxxxxxx00000000

‘E NN’ for an error.

‘G XX...’ Write general registers. See [read registers packet], page 722, for a description
of the XX. . . data.

Reply:

‘OK’ for success

‘E NN’ for an error

‘H op thread-id’
Set thread for subsequent operations (‘m’, ‘M’, ‘g’, ‘G’, et.al.). Depending on the
operation to be performed, op should be ‘c’ for step and continue operations
(note that this is deprecated, supporting the ‘vCont’ command is a better op-
tion), and ‘g’ for other operations. The thread designator thread-id has the
format and interpretation described in [thread-id syntax], page 720.

Reply:

‘OK’ for success

‘E NN’ for an error

‘i [addr[,nnn]]’
Step the remote target by a single clock cycle. If ‘,nnn’ is present, cycle step
nnn cycles. If addr is present, cycle step starting at that address.

‘I’ Signal, then cycle step. See [step with signal packet], page 725. See [cycle step
packet], page 723.

‘k’ Kill request.

The exact effect of this packet is not specified.

For a bare-metal target, it may power cycle or reset the target system. For that
reason, the ‘k’ packet has no reply.

For a single-process target, it may kill that process if possible.

A multiple-process target may choose to kill just one process, or all that are
under gdb’s control. For more precise control, use the vKill packet (see [vKill
packet], page 728).

724 Debugging with gdb

If the target system immediately closes the connection in response to ‘k’, gdb
does not consider the lack of packet acknowledgment to be an error, and assumes
the kill was successful.

If connected using target extended-remote, and the target does not close the
connection in response to a kill request, gdb probes the target state as if a new
connection was opened (see [? packet], page 721).

‘m addr[@addr_space],length’
Read length addressable memory units starting at address addr (see
[addressable memory unit], page 148) in address space addr space. Note that
addr may not be aligned to any particular boundary. If addr space is omitted,
the default address space (zero) is used.

The stub need not use any particular size or alignment when gathering data
from memory for the response; even if addr is word-aligned and length is a
multiple of the word size, the stub is free to use byte accesses, or not. For
this reason, this packet may not be suitable for accessing memory-mapped I/O
devices.

Reply:

‘XX...’ Memory contents; each byte is transmitted as a two-digit hexadec-
imal number. The reply may contain fewer addressable memory
units than requested if the server was able to read only part of the
region of memory.

‘E NN’ NN is errno

‘M addr[@addr_space],length:XX...’
Write length addressable memory units starting at address addr (see
[addressable memory unit], page 148) in address space addr space. The data is
given by XX. . . ; each byte is transmitted as a two-digit hexadecimal number.
If addr space is omitted, the default address space is used.

Reply:

‘OK’ for success

‘E NN’ for an error (this includes the case where only part of the data was
written).

‘p n’ Read the value of register n; n is in hex. See [read registers packet], page 722,
for a description of how the returned register value is encoded.

Reply:

‘XX...’ the register’s value

‘E NN’ for an error

‘’ Indicating an unrecognized query.

‘P n...=r...’
Write register n. . . with value r. . . . The register number n is in hexadecimal,
and r. . . contains two hex digits for each byte in the register (target byte order).

Reply:

‘OK’ for success

Appendix E: gdb Remote Serial Protocol 725

‘E NN’ for an error

‘q name params...’
‘Q name params...’

General query (‘q’) and set (‘Q’). These packets are described fully in
Section E.4 [General Query Packets], page 735.

‘r’ Reset the entire system.

Don’t use this packet; use the ‘R’ packet instead.

‘R XX’ Restart the program being debugged. The XX, while needed, is ignored. This
packet is only available in extended mode (see [extended mode], page 721).

The ‘R’ packet has no reply.

‘s [addr]’ Single step, resuming at addr. If addr is omitted, resume at same address.

This packet is deprecated for multi-threading support. See [vCont packet],
page 726.

Reply: See Section E.3 [Stop Reply Packets], page 731, for the reply specifica-
tions.

‘S sig[;addr]’
Step with signal. This is analogous to the ‘C’ packet, but requests a single-step,
rather than a normal resumption of execution.

This packet is deprecated for multi-threading support. See [vCont packet],
page 726.

Reply: See Section E.3 [Stop Reply Packets], page 731, for the reply specifica-
tions.

‘t addr:PP,MM’
Search backwards starting at address addr for a match with pattern PP and
mask MM, both of which are are 4 byte long. There must be at least 3 digits
in addr.

‘T thread-id’
Find out if the thread thread-id is alive. See [thread-id syntax], page 720.

Reply:

‘OK’ thread is still alive

‘E NN’ thread is dead

‘v’ Packets starting with ‘v’ are identified by a multi-letter name, up to the first
‘;’ or ‘?’ (or the end of the packet).

‘vAttach;pid’
Attach to a new process with the specified process ID pid. The process ID is a
hexadecimal integer identifying the process. In all-stop mode, all threads in the
attached process are stopped; in non-stop mode, it may be attached without
being stopped if that is supported by the target.

This packet is only available in extended mode (see [extended mode], page 721).

Reply:

‘E nn’ for an error

726 Debugging with gdb

‘Any stop packet’
for success in all-stop mode (see Section E.3 [Stop Reply Packets],
page 731)

‘OK’ for success in non-stop mode (see Section E.10 [Remote Non-Stop],
page 774)

‘vCont[;action[:thread-id]]...’
Resume the inferior, specifying different actions for each thread.

For each inferior thread, the leftmost action with a matching thread-id is ap-
plied. Threads that don’t match any action remain in their current state.
Thread IDs are specified using the syntax described in [thread-id syntax],
page 720. If multiprocess extensions (see [multiprocess extensions], page 752)
are supported, actions can be specified to match all threads in a process by us-
ing the ‘ppid.-1’ form of the thread-id. An action with no thread-id matches
all threads. Specifying no actions is an error.

Currently supported actions are:

‘c’ Continue.

‘C sig’ Continue with signal sig. The signal sig should be two hex digits.

‘s’ Step.

‘S sig’ Step with signal sig. The signal sig should be two hex digits.

‘t’ Stop.

‘r start,end’
Step once, and then keep stepping as long as the thread stops at
addresses between start (inclusive) and end (exclusive). The remote
stub reports a stop reply when either the thread goes out of the
range or is stopped due to an unrelated reason, such as hitting a
breakpoint. See [range stepping], page 86.

If the range is empty (start == end), then the action becomes
equivalent to the ‘s’ action. In other words, single-step once, and
report the stop (even if the stepped instruction jumps to start).

(A stop reply may be sent at any point even if the PC is still within
the stepping range; for example, it is valid to implement this packet
in a degenerate way as a single instruction step operation.)

The optional argument addr normally associated with the ‘c’, ‘C’, ‘s’, and ‘S’
packets is not supported in ‘vCont’.

The ‘t’ action is only relevant in non-stop mode (see Section E.10 [Remote Non-
Stop], page 774) and may be ignored by the stub otherwise. A stop reply should
be generated for any affected thread not already stopped. When a thread is
stopped by means of a ‘t’ action, the corresponding stop reply should indicate
that the thread has stopped with signal ‘0’, regardless of whether the target
uses some other signal as an implementation detail.

The server must ignore ‘c’, ‘C’, ‘s’, ‘S’, and ‘r’ actions for threads that are
already running. Conversely, the server must ignore ‘t’ actions for threads that
are already stopped.

Appendix E: gdb Remote Serial Protocol 727

Note: In non-stop mode, a thread is considered running until gdb acknowl-
edges an asynchronous stop notification for it with the ‘vStopped’ packet (see
Section E.10 [Remote Non-Stop], page 774).

The stub must support ‘vCont’ if it reports support for multiprocess extensions
(see [multiprocess extensions], page 752).

Reply: See Section E.3 [Stop Reply Packets], page 731, for the reply specifica-
tions.

‘vCont?’ Request a list of actions supported by the ‘vCont’ packet.

Reply:

‘vCont[;action...]’
The ‘vCont’ packet is supported. Each action is a supported com-
mand in the ‘vCont’ packet.

‘’ The ‘vCont’ packet is not supported.

‘vCtrlC’ Interrupt remote target as if a control-C was pressed on the remote terminal.
This is the equivalent to reacting to the ^C (‘\003’, the control-C character)
character in all-stop mode while the target is running, except this works in
non-stop mode. See [interrupting remote targets], page 772, for more info on
the all-stop variant.

Reply:

‘E nn’ for an error

‘OK’ for success

‘vFile:operation:parameter...’
Perform a file operation on the target system. For details, see Section E.7 [Host
I/O Packets], page 770.

‘vFlashErase:addr,length’
Direct the stub to erase length bytes of flash starting at addr. The region may
enclose any number of flash blocks, but its start and end must fall on block
boundaries, as indicated by the flash block size appearing in the memory map
(see Section E.16 [Memory Map Format], page 790). gdb groups flash memory
programming operations together, and sends a ‘vFlashDone’ request after each
group; the stub is allowed to delay erase operation until the ‘vFlashDone’ packet
is received.

Reply:

‘OK’ for success

‘E NN’ for an error

‘vFlashWrite:addr:XX...’
Direct the stub to write data to flash address addr. The data is passed in
binary form using the same encoding as for the ‘X’ packet (see [Binary Data],
page 719). The memory ranges specified by ‘vFlashWrite’ packets preceding a
‘vFlashDone’ packet must not overlap, and must appear in order of increasing
addresses (although ‘vFlashErase’ packets for higher addresses may already

728 Debugging with gdb

have been received; the ordering is guaranteed only between ‘vFlashWrite’
packets). If a packet writes to an address that was neither erased by a preceding
‘vFlashErase’ packet nor by some other target-specific method, the results are
unpredictable.

Reply:

‘OK’ for success

‘E.memtype’
for vFlashWrite addressing non-flash memory

‘E NN’ for an error

‘vFlashDone’
Indicate to the stub that flash programming operation is finished. The stub
is permitted to delay or batch the effects of a group of ‘vFlashErase’ and
‘vFlashWrite’ packets until a ‘vFlashDone’ packet is received. The contents of
the affected regions of flash memory are unpredictable until the ‘vFlashDone’
request is completed.

‘vKill;pid’
Kill the process with the specified process ID pid, which is a hexadecimal in-
teger identifying the process. This packet is used in preference to ‘k’ when
multiprocess protocol extensions are supported; see [multiprocess extensions],
page 752.

Reply:

‘E nn’ for an error

‘OK’ for success

‘vMustReplyEmpty’
The correct reply to an unknown ‘v’ packet is to return the empty string,
however, some older versions of gdbserver would incorrectly return ‘OK’ for
unknown ‘v’ packets.

The ‘vMustReplyEmpty’ is used as a feature test to check how gdbserver han-
dles unknown packets, it is important that this packet be handled in the same
way as other unknown ‘v’ packets. If this packet is handled differently to other
unknown ‘v’ packets then it is possible that gdb may run into problems in other
areas, specifically around use of ‘vFile:setfs:’.

‘vRun;filename[;argument]...’
Run the program filename, passing it each argument on its command line. The
file and arguments are hex-encoded strings. If filename is an empty string, the
stub may use a default program (e.g. the last program run). The program is
created in the stopped state.

This packet is only available in extended mode (see [extended mode], page 721).

Reply:

‘E nn’ for an error

‘Any stop packet’
for success (see Section E.3 [Stop Reply Packets], page 731)

Appendix E: gdb Remote Serial Protocol 729

‘vStopped’
See Section E.9 [Notification Packets], page 772.

‘vAck:type:arg[,arg...][;type:arg[,arg...]]...’
Acknowledge a ;-separated list of remote stub responses, each with a ,-separated
list of arguments defined by its type. The following types with their respective
arguments are supported:

‘library:name’
Acknowledge the shared library that had been reported as
‘<library name="name" ack="yes">’ in the remote stub’s
‘qXfer:libraries:read’ response. gdb acknowledges libraries
after initial processing like loading symbols and placing
breakpoints.

‘in-memory-library:begin,end’
Acknowledge the shared library that had been reported as
‘<in-memory-library begin="begin" end="end" ack="yes">’
in the remote stub’s ‘qXfer:libraries:read’ response. gdb
acknowledges libraries after initial processing like loading symbols
and placing breakpoints.

gdb indicates support for acknowledging individual types of responses by sup-
plying an appropriate ‘qSupported’ feature (see [qSupported], page 745) for
each type that it supports.

‘X addr[@addr_space],length:XX...’
Write data to memory, where the data is transmitted in binary. Memory is
specified by its address addr, address space addr space and number of address-
able memory units length (see [addressable memory unit], page 148); ‘XX...’ is
binary data (see [Binary Data], page 719). If addr space is omitted, the default
address space is used.

Reply:

‘OK’ for success

‘E NN’ for an error

‘z type,addr,kind’
‘Z type,addr,kind’

Insert (‘Z’) or remove (‘z’) a type breakpoint or watchpoint starting at address
address of kind kind.

Each breakpoint and watchpoint packet type is documented separately.

Implementation notes: A remote target shall return an empty string for an un-
recognized breakpoint or watchpoint packet type. A remote target shall support
either both or neither of a given ‘Ztype...’ and ‘ztype...’ packet pair. To
avoid potential problems with duplicate packets, the operations should be imple-
mented in an idempotent way.

730 Debugging with gdb

‘z0,addr,kind’
‘Z0,addr,kind[;cond_list...][;cmds:persist,cmd_list...]’

Insert (‘Z0’) or remove (‘z0’) a software breakpoint at address addr of type
kind.

A software breakpoint is implemented by replacing the instruction at addr with
a software breakpoint or trap instruction. The kind is target-specific and typi-
cally indicates the size of the breakpoint in bytes that should be inserted. E.g.,
the arm and mips can insert either a 2 or 4 byte breakpoint. Some architec-
tures have additional meanings for kind (see Section E.5 [Architecture-Specific
Protocol Details], page 762); if no architecture-specific value is being used, it
should be ‘0’. kind is hex-encoded. cond list is an optional list of conditional
expressions in bytecode form that should be evaluated on the target’s side.
These are the conditions that should be taken into consideration when deciding
if the breakpoint trigger should be reported back to gdb.

See also the ‘swbreak’ stop reason (see [swbreak stop reason], page 733) for
how to best report a software breakpoint event to gdb.

The cond list parameter is comprised of a series of expressions, concatenated
without separators. Each expression has the following form:

‘X len,expr’
len is the length of the bytecode expression and expr is the actual
conditional expression in bytecode form.

The optional cmd list parameter introduces commands that may be run on the
target, rather than being reported back to gdb. The parameter starts with
a numeric flag persist; if the flag is nonzero, then the breakpoint may remain
active and the commands continue to be run even when gdb disconnects from
the target. Following this flag is a series of expressions concatenated with no
separators. Each expression has the following form:

‘X len,expr’
len is the length of the bytecode expression and expr is the actual
commands expression in bytecode form.

Implementation note: It is possible for a target to copy or move code that con-
tains software breakpoints (e.g., when implementing overlays). The behavior of
this packet, in the presence of such a target, is not defined.

Reply:

‘OK’ success

‘’ not supported

‘E NN’ for an error

‘z1,addr,kind’
‘Z1,addr,kind[;cond_list...][;cmds:persist,cmd_list...]’

Insert (‘Z1’) or remove (‘z1’) a hardware breakpoint at address addr.

A hardware breakpoint is implemented using a mechanism that is not dependent
on being able to modify the target’s memory. The kind, cond list, and cmd list
arguments have the same meaning as in ‘Z0’ packets.

Appendix E: gdb Remote Serial Protocol 731

Implementation note: A hardware breakpoint is not affected by code movement.

Reply:

‘OK’ success

‘’ not supported

‘E NN’ for an error

‘z2,addr,kind’
‘Z2,addr,kind’

Insert (‘Z2’) or remove (‘z2’) a write watchpoint at addr. The number of bytes
to watch is specified by kind.

Reply:

‘OK’ success

‘’ not supported

‘E NN’ for an error

‘z3,addr,kind’
‘Z3,addr,kind’

Insert (‘Z3’) or remove (‘z3’) a read watchpoint at addr. The number of bytes
to watch is specified by kind.

Reply:

‘OK’ success

‘’ not supported

‘E NN’ for an error

‘z4,addr,kind’
‘Z4,addr,kind’

Insert (‘Z4’) or remove (‘z4’) an access watchpoint at addr. The number of
bytes to watch is specified by kind.

Reply:

‘OK’ success

‘’ not supported

‘E NN’ for an error

E.3 Stop Reply Packets

The ‘C’, ‘c’, ‘S’, ‘s’, ‘vCont’, ‘vAttach’, ‘vRun’, ‘vStopped’, and ‘?’ packets can receive any
of the below as a reply. Except for ‘?’ and ‘vStopped’, that reply is only returned when
the target halts. In the below the exact meaning of signal number is defined by the header
include/gdb/signals.h in the gdb source code.

In non-stop mode, the server will simply reply ‘OK’ to commands such as ‘vCont’; any
stop will be the subject of a future notification. See Section E.10 [Remote Non-Stop],
page 774.

732 Debugging with gdb

As in the description of request packets, we include spaces in the reply templates for
clarity; these are not part of the reply packet’s syntax. No gdb stop reply packet uses
spaces to separate its components.

‘S AA’ The program received signal number AA (a two-digit hexadecimal number).
This is equivalent to a ‘T’ response with no n:r pairs.

‘T AA n1:r1;n2:r2;...’
The program received signal number AA (a two-digit hexadecimal number).
This is equivalent to an ‘S’ response, except that the ‘n:r’ pairs can carry values
of important registers and other information directly in the stop reply packet,
reducing round-trip latency. Single-step and breakpoint traps are reported this
way. Each ‘n:r’ pair is interpreted as follows:

• If n is a hexadecimal number, it is a register number, and the corresponding
r gives that register’s value. The data r is a series of bytes in target byte
order, with each byte given by a two-digit hex number.

• If n is ‘thread’, then r is the thread-id of the stopped thread, as specified
in [thread-id syntax], page 720.

• If n is ‘core’, then r is the hexadecimal number of the core on which the
stop event was detected.

• If n is a recognized stop reason, it describes a more specific event that
stopped the target. The currently defined stop reasons are listed below.
The aa should be ‘05’, the trap signal. At most one stop reason should be
present.

• Otherwise, gdb should ignore this ‘n:r’ pair and go on to the next; this
allows us to extend the protocol in the future.

The currently defined stop reasons are:

‘watch’
‘rwatch’
‘awatch’ The packet indicates a watchpoint hit, and r is the data address,

in hex.

‘syscall_entry’
‘syscall_return’

The packet indicates a syscall entry or return, and r is the syscall
number, in hex.

‘library’ The packet indicates that the loaded libraries have changed. gdb
should use ‘qXfer:libraries:read’ to fetch a new list of loaded
libraries. The r part is ignored.

‘replaylog’
The packet indicates that the target cannot continue replaying
logged execution events, because it has reached the end (or the
beginning when executing backward) of the log. The value of r
will be either ‘begin’ or ‘end’. See Chapter 6 [Reverse Execution],
page 99, for more information.

Appendix E: gdb Remote Serial Protocol 733

‘swbreak’ The packet indicates a software breakpoint instruction was exe-
cuted, irrespective of whether it was gdb that planted the break-
point or the breakpoint is hardcoded in the program. The r part
must be left empty.

On some architectures, such as x86, at the architecture level, when
a breakpoint instruction executes the program counter points at
the breakpoint address plus an offset. On such targets, the stub is
responsible for adjusting the PC to point back at the breakpoint
address.

This packet should not be sent by default; older gdb versions
did not support it. gdb requests it, by supplying an appropri-
ate ‘qSupported’ feature (see [qSupported], page 745). The remote
stub must also supply the appropriate ‘qSupported’ feature indi-
cating support.

This packet is required for correct non-stop mode operation.

‘hwbreak’ The packet indicates the target stopped for a hardware breakpoint.
The r part must be left empty.

The same remarks about ‘qSupported’ and non-stop mode above
apply.

‘fork’ The packet indicates that fork was called, and r is the thread ID
of the new child process. Refer to [thread-id syntax], page 720, for
the format of the thread-id field. This packet is only applicable to
targets that support fork events.

This packet should not be sent by default; older gdb versions
did not support it. gdb requests it, by supplying an appropri-
ate ‘qSupported’ feature (see [qSupported], page 745). The remote
stub must also supply the appropriate ‘qSupported’ feature indi-
cating support.

‘vfork’ The packet indicates that vfork was called, and r is the thread ID
of the new child process. Refer to [thread-id syntax], page 720, for
the format of the thread-id field. This packet is only applicable to
targets that support vfork events.

This packet should not be sent by default; older gdb versions
did not support it. gdb requests it, by supplying an appropri-
ate ‘qSupported’ feature (see [qSupported], page 745). The remote
stub must also supply the appropriate ‘qSupported’ feature indi-
cating support.

‘vforkdone’
The packet indicates that a child process created by a vfork has
either called exec or terminated, so that the address spaces of the
parent and child process are no longer shared. The r part is ignored.
This packet is only applicable to targets that support vforkdone
events.

734 Debugging with gdb

This packet should not be sent by default; older gdb versions
did not support it. gdb requests it, by supplying an appropri-
ate ‘qSupported’ feature (see [qSupported], page 745). The remote
stub must also supply the appropriate ‘qSupported’ feature indi-
cating support.

‘exec’ The packet indicates that execve was called, and r is the absolute
pathname of the file that was executed, in hex. This packet is only
applicable to targets that support exec events.

This packet should not be sent by default; older gdb versions
did not support it. gdb requests it, by supplying an appropri-
ate ‘qSupported’ feature (see [qSupported], page 745). The remote
stub must also supply the appropriate ‘qSupported’ feature indi-
cating support.

‘create’ The packet indicates that the thread was just created. The new
thread is stopped until gdb sets it running with a resumption
packet (see [vCont packet], page 726). This packet should not
be sent by default; gdb requests it with the [QThreadEvents],
page 744, packet. See also the ‘w’ (see [thread exit event], page 734)
remote reply below. The r part is ignored.

‘W AA’
‘W AA ; process:pid’

The process exited, and AA is the exit status. This is only applicable to certain
targets.

The second form of the response, including the process ID of the exited pro-
cess, can be used only when gdb has reported support for multiprocess protocol
extensions; see [multiprocess extensions], page 752. Both AA and pid are for-
matted as big-endian hex strings.

‘X AA’
‘X AA ; process:pid’

The process terminated with signal AA.

The second form of the response, including the process ID of the terminated
process, can be used only when gdb has reported support for multiprocess
protocol extensions; see [multiprocess extensions], page 752. Both AA and pid
are formatted as big-endian hex strings.

‘w AA ; tid’
The thread exited, and AA is the exit status. This response should not be sent
by default; gdb requests it with the [QThreadEvents], page 744, packet. See
also [thread create event], page 734, above. AA is formatted as a big-endian
hex string.

‘N’ There are no resumed threads left in the target. In other words, even though
the process is alive, the last resumed thread has exited. For example, say the
target process has two threads: thread 1 and thread 2. The client leaves thread
1 stopped, and resumes thread 2, which subsequently exits. At this point, even
though the process is still alive, and thus no ‘W’ stop reply is sent, no thread is

Appendix E: gdb Remote Serial Protocol 735

actually executing either. The ‘N’ stop reply thus informs the client that it can
stop waiting for stop replies. This packet should not be sent by default; older
gdb versions did not support it. gdb requests it, by supplying an appropriate
‘qSupported’ feature (see [qSupported], page 745). The remote stub must also
supply the appropriate ‘qSupported’ feature indicating support.

‘O XX...’ ‘XX...’ is hex encoding of ascii data, to be written as the program’s console
output. This can happen at any time while the program is running and the
debugger should continue to wait for ‘W’, ‘T’, etc. This reply is not permitted
in non-stop mode.

‘F call-id,parameter...’
call-id is the identifier which says which host system call should be called. This
is just the name of the function. Translation into the correct system call is only
applicable as it’s defined in gdb. See Section E.13 [File-I/O Remote Protocol
Extension], page 776, for a list of implemented system calls.

‘parameter...’ is a list of parameters as defined for this very system call.

The target replies with this packet when it expects gdb to call a host system
call on behalf of the target. gdb replies with an appropriate ‘F’ packet and
keeps up waiting for the next reply packet from the target. The latest ‘C’, ‘c’,
‘S’ or ‘s’ action is expected to be continued. See Section E.13 [File-I/O Remote
Protocol Extension], page 776, for more details.

‘U thread-id’
‘U thread-id;library’

The program is currently unavailable. The remote target tried to stop it but
it would not respond. The thread designator thread-id has the format and
interpretation described in [thread-id syntax], page 720.

If ‘;library’ is appended, the loaded libraries have changed. gdb should use
‘qXfer:libraries:read’ to fetch a new list of loaded libraries.

This packet should not be sent by default; older gdb versions did not support
it. gdb requests it, by supplying an appropriate ‘qSupported’ feature (see
[qSupported], page 745). The remote stub must also supply the appropriate
‘qSupported’ feature indicating support.

E.4 General Query Packets

Packets starting with ‘q’ are general query packets; packets starting with ‘Q’ are general set
packets. General query and set packets are a semi-unified form for retrieving and sending
information to and from the stub.

The initial letter of a query or set packet is followed by a name indicating what sort
of thing the packet applies to. For example, gdb may use a ‘qSymbol’ packet to exchange
symbol definitions with the stub. These packet names follow some conventions:

• The name must not contain commas, colons or semicolons.

• Most gdb query and set packets have a leading upper case letter.

• The names of custom vendor packets should use a company prefix, in lower case, fol-
lowed by a period. For example, packets designed at the Acme Corporation might
begin with ‘qacme.foo’ (for querying foos) or ‘Qacme.bar’ (for setting bars).

736 Debugging with gdb

The name of a query or set packet should be separated from any parameters by a ‘:’; the
parameters themselves should be separated by ‘,’ or ‘;’. Stubs must be careful to match
the full packet name, and check for a separator or the end of the packet, in case two packet
names share a common prefix. New packets should not begin with ‘qC’, ‘qP’, or ‘qL’1.

Like the descriptions of the other packets, each description here has a template showing
the packet’s overall syntax, followed by an explanation of the packet’s meaning. We include
spaces in some of the templates for clarity; these are not part of the packet’s syntax. No
gdb packet uses spaces to separate its components.

Here are the currently defined query and set packets:

‘QAgent:1’
‘QAgent:0’

Turn on or off the agent as a helper to perform some debugging operations
delegated from gdb (see [Control Agent], page 657).

‘QAllow:op:val...’
Specify which operations gdb expects to request of the target, as a semicolon-
separated list of operation name and value pairs. Possible values for op include
‘WriteReg’, ‘WriteMem’, ‘InsertBreak’, ‘InsertTrace’, ‘InsertFastTrace’,
and ‘Stop’. val is either 0, indicating that gdb will not request the opera-
tion, or 1, indicating that it may. (The target can then use this to set up its
own internals optimally, for instance if the debugger never expects to insert
breakpoints, it may not need to install its own trap handler.)

‘qC’ Return the current thread ID.

Reply:

‘QC thread-id’
Where thread-id is a thread ID as documented in [thread-id syntax],
page 720.

‘(anything else)’
Any other reply implies the old thread ID.

‘qCRC:addr,length’
Compute the CRC checksum of a block of memory using CRC-32 defined in
IEEE 802.3. The CRC is computed byte at a time, taking the most significant
bit of each byte first. The initial pattern code 0xffffffff is used to ensure
leading zeros affect the CRC.

Note: This is the same CRC used in validating separate debug files (see
Section 18.3 [Debugging Information in Separate Files], page 288). However
the algorithm is slightly different. When validating separate debug files, the
CRC is computed taking the least significant bit of each byte first, and the
final result is inverted to detect trailing zeros.

Reply:

‘E NN’ An error (such as memory fault)

1 The ‘qP’ and ‘qL’ packets predate these conventions, and have arguments without any terminator for
the packet name; we suspect they are in widespread use in places that are difficult to upgrade. The ‘qC’
packet has no arguments, but some existing stubs (e.g. RedBoot) are known to not check for the end of
the packet.

Appendix E: gdb Remote Serial Protocol 737

‘C crc32’ The specified memory region’s checksum is crc32.

‘QDisableRandomization:value’
Some target operating systems will randomize the virtual address space of the
inferior process as a security feature, but provide a feature to disable such
randomization, e.g. to allow for a more deterministic debugging experience. On
such systems, this packet with a value of 1 directs the target to disable address
space randomization for processes subsequently started via ‘vRun’ packets, while
a packet with a value of 0 tells the target to enable address space randomization.

This packet is only available in extended mode (see [extended mode], page 721).

Reply:

‘OK’ The request succeeded.

‘E nn’ An error occurred. The error number nn is given as hex digits.

‘’ An empty reply indicates that ‘QDisableRandomization’ is not
supported by the stub.

This packet is not probed by default; the remote stub must request it, by
supplying an appropriate ‘qSupported’ response (see [qSupported], page 745).
This should only be done on targets that actually support disabling address
space randomization.

‘QStartupWithShell:value’
On UNIX-like targets, it is possible to start the inferior using a shell program.
This is the default behavior on both gdb and gdbserver (see [set startup-with-
shell], page 34). This packet is used to inform gdbserver whether it should
start the inferior using a shell or not.

If value is ‘0’, gdbserver will not use a shell to start the inferior. If value is ‘1’,
gdbserver will use a shell to start the inferior. All other values are considered
an error.

This packet is only available in extended mode (see [extended mode], page 721).

Reply:

‘OK’ The request succeeded.

‘E nn’ An error occurred. The error number nn is given as hex digits.

This packet is not probed by default; the remote stub must request it, by
supplying an appropriate ‘qSupported’ response (see [qSupported], page 745).
This should only be done on targets that actually support starting the inferior
using a shell.

Use of this packet is controlled by the set startup-with-shell command; see
[set startup-with-shell], page 34.

‘QEnvironmentHexEncoded:hex-value’
On UNIX-like targets, it is possible to set environment variables that will be
passed to the inferior during the startup process. This packet is used to inform
gdbserver of an environment variable that has been defined by the user on
gdb (see [set environment], page 37).

738 Debugging with gdb

The packet is composed by hex-value, an hex encoded representation of the
name=value format representing an environment variable. The name of the
environment variable is represented by name, and the value to be assigned to
the environment variable is represented by value. If the variable has no value
(i.e., the value is null), then value will not be present.

This packet is only available in extended mode (see [extended mode], page 721).

Reply:

‘OK’ The request succeeded.

This packet is not probed by default; the remote stub must request it, by
supplying an appropriate ‘qSupported’ response (see [qSupported], page 745).
This should only be done on targets that actually support passing environment
variables to the starting inferior.

This packet is related to the set environment command; see [set environment],
page 37.

‘QEnvironmentUnset:hex-value’
On UNIX-like targets, it is possible to unset environment variables before start-
ing the inferior in the remote target. This packet is used to inform gdbserver

of an environment variable that has been unset by the user on gdb (see [unset
environment], page 37).

The packet is composed by hex-value, an hex encoded representation of the
name of the environment variable to be unset.

This packet is only available in extended mode (see [extended mode], page 721).

Reply:

‘OK’ The request succeeded.

This packet is not probed by default; the remote stub must request it, by
supplying an appropriate ‘qSupported’ response (see [qSupported], page 745).
This should only be done on targets that actually support passing environment
variables to the starting inferior.

This packet is related to the unset environment command; see [unset environ-
ment], page 37.

‘QEnvironmentReset’
On UNIX-like targets, this packet is used to reset the state of environment
variables in the remote target before starting the inferior. In this context, reset
means unsetting all environment variables that were previously set by the user
(i.e., were not initially present in the environment). It is sent to gdbserver

before the ‘QEnvironmentHexEncoded’ (see [QEnvironmentHexEncoded],
page 737) and the ‘QEnvironmentUnset’ (see [QEnvironmentUnset], page 738)
packets.

This packet is only available in extended mode (see [extended mode], page 721).

Reply:

‘OK’ The request succeeded.

Appendix E: gdb Remote Serial Protocol 739

This packet is not probed by default; the remote stub must request it, by
supplying an appropriate ‘qSupported’ response (see [qSupported], page 745).
This should only be done on targets that actually support passing environment
variables to the starting inferior.

‘QSetWorkingDir:[directory]’
This packet is used to inform the remote server of the intended current working
directory for programs that are going to be executed.

The packet is composed by directory, an hex encoded representation of the
directory that the remote inferior will use as its current working directory. If
directory is an empty string, the remote server should reset the inferior’s current
working directory to its original, empty value.

This packet is only available in extended mode (see [extended mode], page 721).

Reply:

‘OK’ The request succeeded.

‘qfThreadInfo’
‘qsThreadInfo’

Obtain a list of all active thread IDs from the target (OS). Since there may be
too many active threads to fit into one reply packet, this query works iteratively:
it may require more than one query/reply sequence to obtain the entire list of
threads. The first query of the sequence will be the ‘qfThreadInfo’ query;
subsequent queries in the sequence will be the ‘qsThreadInfo’ query.

NOTE: This packet replaces the ‘qL’ query (see below).

Reply:

‘m thread-id’
A single thread ID

‘m thread-id,thread-id...’
a comma-separated list of thread IDs

‘l’ (lower case letter ‘L’) denotes end of list.

In response to each query, the target will reply with a list of one or more thread
IDs, separated by commas. gdb will respond to each reply with a request for
more thread ids (using the ‘qs’ form of the query), until the target responds
with ‘l’ (lower-case ell, for last). Refer to [thread-id syntax], page 720, for the
format of the thread-id fields.

Note: gdb will send the qfThreadInfo query during the initial connection with
the remote target, and the very first thread ID mentioned in the reply will be
stopped by gdb in a subsequent message. Therefore, the stub should ensure that
the first thread ID in the qfThreadInfo reply is suitable for being stopped by
gdb.

‘qGetTLSAddr:thread-id,offset,lm’
Fetch the address associated with thread local storage specified by thread-id,
offset, and lm.

740 Debugging with gdb

thread-id is the thread ID associated with the thread for which to fetch the
TLS address. See [thread-id syntax], page 720.

offset is the (big endian, hex encoded) offset associated with the thread local
variable. (This offset is obtained from the debug information associated with
the variable.)

lm is the (big endian, hex encoded) OS/ABI-specific encoding of the load mod-
ule associated with the thread local storage. For example, a gnu/Linux system
will pass the link map address of the shared object associated with the thread
local storage under consideration. Other operating environments may choose to
represent the load module differently, so the precise meaning of this parameter
will vary.

Reply:

‘XX...’ Hex encoded (big endian) bytes representing the address of the
thread local storage requested.

‘E nn’ An error occurred. The error number nn is given as hex digits.

‘’ An empty reply indicates that ‘qGetTLSAddr’ is not supported by
the stub.

‘qGetTIBAddr:thread-id’
Fetch address of the Windows OS specific Thread Information Block.

thread-id is the thread ID associated with the thread.

Reply:

‘XX...’ Hex encoded (big endian) bytes representing the linear address of
the thread information block.

‘E nn’ An error occured. This means that either the thread was not found,
or the address could not be retrieved.

‘’ An empty reply indicates that ‘qGetTIBAddr’ is not supported by
the stub.

‘qL startflag threadcount nextthread’
Obtain thread information from RTOS. Where: startflag (one hex digit) is one
to indicate the first query and zero to indicate a subsequent query; threadcount
(two hex digits) is the maximum number of threads the response packet can
contain; and nextthread (eight hex digits), for subsequent queries (startflag is
zero), is returned in the response as argthread.

Don’t use this packet; use the ‘qfThreadInfo’ query instead (see above).

Reply:

‘qM count done argthread thread...’
Where: count (two hex digits) is the number of threads being
returned; done (one hex digit) is zero to indicate more threads
and one indicates no further threads; argthreadid (eight hex dig-
its) is nextthread from the request packet; thread . . . is a sequence
of thread IDs, threadid (eight hex digits), from the target. See
remote.c:parse_threadlist_response().

Appendix E: gdb Remote Serial Protocol 741

‘qMemTags:start address,length:type’
Fetch memory tags of type type from the address range [start address, start address + length).
The target is responsible for calculating how many tags will be returned, as
this is architecture-specific.

start address is the starting address of the memory range.

length is the length, in bytes, of the memory range.

type is the type of tag the request wants to fetch. The type is a signed integer.

Reply:

‘mxx...’ Hex encoded sequence of uninterpreted bytes, xx . . . , representing
the tags found in the requested memory range.

‘E nn’ An error occured. This means that fetching of memory tags failed
for some reason.

‘’ An empty reply indicates that ‘qMemTags’ is not supported by the
stub, although this should not happen given gdb will only send
this packet if the stub has advertised support for memory tagging
via ‘qSupported’.

‘QMemTags:start address,length:type:tag bytes’
Store memory tags of type type to the address range [start address, start address + length).
The target is responsible for interpreting the type, the tag bytes and modifying
the memory tag granules accordingly, given this is architecture-specific.

The interpretation of how many tags (nt) should be written to how many
memory tag granules (ng) is also architecture-specific. The behavior is
implementation-specific, but the following is suggested.

If the number of memory tags, nt, is greater than or equal to the number of
memory tag granules, ng, only ng tags will be stored.

If nt is less than ng, the behavior is that of a fill operation, and the tag bytes
will be used as a pattern that will get repeated until ng tags are stored.

start address is the starting address of the memory range. The address does
not have any restriction on alignment or size.

length is the length, in bytes, of the memory range.

type is the type of tag the request wants to fetch. The type is a signed integer.

tag bytes is a sequence of hex encoded uninterpreted bytes which will be inter-
preted by the target. Each pair of hex digits is interpreted as a single byte.

Reply:

‘OK’ The request was successful and the memory tag granules were mod-
ified accordingly.

‘E nn’ An error occured. This means that modifying the memory tag
granules failed for some reason.

‘’ An empty reply indicates that ‘QMemTags’ is not supported by the
stub, although this should not happen given gdb will only send
this packet if the stub has advertised support for memory tagging
via ‘qSupported’.

742 Debugging with gdb

‘qOffsets’
Get section offsets that the target used when relocating the downloaded image.

Reply:

‘Text=xxx;Data=yyy[;Bss=zzz]’
Relocate the Text section by xxx from its original address. Relocate
the Data section by yyy from its original address. If the object file
format provides segment information (e.g. elf ‘PT_LOAD’ program
headers), gdb will relocate entire segments by the supplied offsets.

Note: while a Bss offset may be included in the response, gdb
ignores this and instead applies the Data offset to the Bss section.

‘TextSeg=xxx[;DataSeg=yyy]’
Relocate the first segment of the object file, which conventionally
contains program code, to a starting address of xxx. If ‘DataSeg’
is specified, relocate the second segment, which conventionally con-
tains modifiable data, to a starting address of yyy. gdb will report
an error if the object file does not contain segment information, or
does not contain at least as many segments as mentioned in the
reply. Extra segments are kept at fixed offsets relative to the last
relocated segment.

‘qP mode thread-id’
Returns information on thread-id. Where: mode is a hex encoded 32 bit mode;
thread-id is a thread ID (see [thread-id syntax], page 720).

Don’t use this packet; use the ‘qThreadExtraInfo’ query instead (see below).

Reply: see remote.c:remote_unpack_thread_info_response().

‘QNonStop:1’
‘QNonStop:0’

Enter non-stop (‘QNonStop:1’) or all-stop (‘QNonStop:0’) mode. See
Section E.10 [Remote Non-Stop], page 774, for more information.

Reply:

‘OK’ The request succeeded.

‘E nn’ An error occurred. The error number nn is given as hex digits.

‘’ An empty reply indicates that ‘QNonStop’ is not supported by the
stub.

This packet is not probed by default; the remote stub must request it, by
supplying an appropriate ‘qSupported’ response (see [qSupported], page 745).
Use of this packet is controlled by the set non-stop command; see Section 5.5.2
[Non-Stop Mode], page 93.

‘QCatchSyscalls:1 [;sysno]...’
‘QCatchSyscalls:0’

Enable (‘QCatchSyscalls:1’) or disable (‘QCatchSyscalls:0’) catching
syscalls from the inferior process.

Appendix E: gdb Remote Serial Protocol 743

For ‘QCatchSyscalls:1’, each listed syscall sysno (encoded in hex) should be
reported to gdb. If no syscall sysno is listed, every system call should be
reported.

Note that if a syscall not in the list is reported, gdb will still filter the event
according to its own list from all corresponding catch syscall commands.
However, it is more efficient to only report the requested syscalls.

Multiple ‘QCatchSyscalls:1’ packets do not combine; any earlier
‘QCatchSyscalls:1’ list is completely replaced by the new list.

If the inferior process execs, the state of ‘QCatchSyscalls’ is kept for the new
process too. On targets where exec may affect syscall numbers, for example
with exec between 32 and 64-bit processes, the client should send a new packet
with the new syscall list.

Reply:

‘OK’ The request succeeded.

‘E nn’ An error occurred. nn are hex digits.

‘’ An empty reply indicates that ‘QCatchSyscalls’ is not supported
by the stub.

Use of this packet is controlled by the set remote catch-syscalls command
(see Section 20.4 [Remote Configuration], page 311). This packet is not probed
by default; the remote stub must request it, by supplying an appropriate
‘qSupported’ response (see [qSupported], page 745).

‘QPassSignals: signal [;signal]...’
Each listed signal should be passed directly to the inferior process. Signals are
numbered identically to continue packets and stop replies (see Section E.3 [Stop
Reply Packets], page 731). Each signal list item should be strictly greater than
the previous item. These signals do not need to stop the inferior, or be reported
to gdb. All other signals should be reported to gdb. Multiple ‘QPassSignals’
packets do not combine; any earlier ‘QPassSignals’ list is completely replaced
by the new list. This packet improves performance when using ‘handle signal

nostop noprint pass’.

Reply:

‘OK’ The request succeeded.

‘E nn’ An error occurred. The error number nn is given as hex digits.

‘’ An empty reply indicates that ‘QPassSignals’ is not supported by
the stub.

Use of this packet is controlled by the set remote pass-signals command
(see Section 20.4 [Remote Configuration], page 311). This packet is not probed
by default; the remote stub must request it, by supplying an appropriate
‘qSupported’ response (see [qSupported], page 745).

‘QProgramSignals: signal [;signal]...’
Each listed signal may be delivered to the inferior process. Others should be
silently discarded.

744 Debugging with gdb

In some cases, the remote stub may need to decide whether to deliver a signal
to the program or not without gdb involvement. One example of that is while
detaching — the program’s threads may have stopped for signals that haven’t
yet had a chance of being reported to gdb, and so the remote stub can use the
signal list specified by this packet to know whether to deliver or ignore those
pending signals.

This does not influence whether to deliver a signal as requested by a resumption
packet (see [vCont packet], page 726).

Signals are numbered identically to continue packets and stop replies (see
Section E.3 [Stop Reply Packets], page 731). Each signal list item should be
strictly greater than the previous item. Multiple ‘QProgramSignals’ packets
do not combine; any earlier ‘QProgramSignals’ list is completely replaced by
the new list.

Reply:

‘OK’ The request succeeded.

‘E nn’ An error occurred. The error number nn is given as hex digits.

‘’ An empty reply indicates that ‘QProgramSignals’ is not supported
by the stub.

Use of this packet is controlled by the set remote program-signals com-
mand (see Section 20.4 [Remote Configuration], page 311). This packet is not
probed by default; the remote stub must request it, by supplying an appropriate
‘qSupported’ response (see [qSupported], page 745).

‘QThreadEvents:1’
‘QThreadEvents:0’

Enable (‘QThreadEvents:1’) or disable (‘QThreadEvents:0’) reporting of
thread create and exit events. See [thread create event], page 734, for the reply
specifications. For example, this is used in non-stop mode when gdb stops a
set of threads and synchronously waits for the their corresponding stop replies.
Without exit events, if one of the threads exits, gdb would hang forever not
knowing that it should no longer expect a stop for that same thread. gdb does
not enable this feature unless the stub reports that it supports it by including
‘QThreadEvents+’ in its ‘qSupported’ reply.

Reply:

‘OK’ The request succeeded.

‘E nn’ An error occurred. The error number nn is given as hex digits.

‘’ An empty reply indicates that ‘QThreadEvents’ is not supported
by the stub.

Use of this packet is controlled by the set remote thread-events command
(see Section 20.4 [Remote Configuration], page 311).

‘qRcmd,command’
command (hex encoded) is passed to the local interpreter for execution. Invalid
commands should be reported using the output string. Before the final result

Appendix E: gdb Remote Serial Protocol 745

packet, the target may also respond with a number of intermediate ‘Ooutput’
console output packets. Implementors should note that providing access to a
stubs’s interpreter may have security implications.

Reply:

‘OK’ A command response with no output.

‘OUTPUT’ A command response with the hex encoded output string
OUTPUT.

‘E NN’ Indicate a badly formed request.

‘’ An empty reply indicates that ‘qRcmd’ is not recognized.

(Note that the qRcmd packet’s name is separated from the command by a ‘,’,
not a ‘:’, contrary to the naming conventions above. Please don’t use this
packet as a model for new packets.)

‘qSearch:memory:address[@addr_space];length;search-pattern’
Search length bytes at address in addr space for search-pattern. Both address
and length are encoded in hex; search-pattern is a sequence of bytes, also hex
encoded. addr space is target dependent. If omitted, the default address space
is used.

Reply:

‘0’ The pattern was not found.

‘1,address’
The pattern was found at address.

‘E NN’ A badly formed request or an error was encountered while searching
memory.

‘’ An empty reply indicates that ‘qSearch:memory’ is not recognized.

‘QStartNoAckMode’
Request that the remote stub disable the normal ‘+’/‘-’ protocol acknowledg-
ments (see Section E.11 [Packet Acknowledgment], page 775).

Reply:

‘OK’ The stub has switched to no-acknowledgment mode. gdb acknowl-
edges this response, but neither the stub nor gdb shall send or
expect further ‘+’/‘-’ acknowledgments in the current connection.

‘’ An empty reply indicates that the stub does not support
no-acknowledgment mode.

‘qSupported [:gdbfeature [;gdbfeature]...]’
Tell the remote stub about features supported by gdb, and query the stub for
features it supports. This packet allows gdb and the remote stub to take advan-
tage of each others’ features. ‘qSupported’ also consolidates multiple feature
probes at startup, to improve gdb performance—a single larger packet per-
forms better than multiple smaller probe packets on high-latency links. Some
features may enable behavior which must not be on by default, e.g. because

746 Debugging with gdb

it would confuse older clients or stubs. Other features may describe packets
which could be automatically probed for, but are not. These features must be
reported before gdb will use them. This “default unsupported” behavior is
not appropriate for all packets, but it helps to keep the initial connection time
under control with new versions of gdb which support increasing numbers of
packets.

Reply:

‘stubfeature [;stubfeature]...’
The stub supports or does not support each returned stubfeature,
depending on the form of each stubfeature (see below for the pos-
sible forms).

‘’ An empty reply indicates that ‘qSupported’ is not recognized, or
that no features needed to be reported to gdb.

The allowed forms for each feature (either a gdbfeature in the ‘qSupported’
packet, or a stubfeature in the response) are:

‘name=value’
The remote protocol feature name is supported, and associated
with the specified value. The format of value depends on the fea-
ture, but it must not include a semicolon.

‘name+’ The remote protocol feature name is supported, and does not need
an associated value.

‘name-’ The remote protocol feature name is not supported.

‘name?’ The remote protocol feature name may be supported, and gdb
should auto-detect support in some other way when it is needed.
This form will not be used for gdbfeature notifications, but may be
used for stubfeature responses.

Whenever the stub receives a ‘qSupported’ request, the supplied set of gdb
features should override any previous request. This allows gdb to put the stub
in a known state, even if the stub had previously been communicating with a
different version of gdb.

The following values of gdbfeature (for the packet sent by gdb) are defined:

‘multiprocess’
This feature indicates whether gdb supports multiprocess exten-
sions to the remote protocol. gdb does not use such extensions
unless the stub also reports that it supports them by including
‘multiprocess+’ in its ‘qSupported’ reply. See [multiprocess ex-
tensions], page 752, for details.

‘multi-address-space’
This feature indicates whether gdb supports multi-address-space
extensions to the remote protocol. gdb does not use such exten-
sions unless the stub also reports that it supports them by includ-
ing ‘multi-address-space+’ in its ‘qSupported’ reply. See [multi-
address-space extensions], page 752, for details.

Appendix E: gdb Remote Serial Protocol 747

‘xmlRegisters’
This feature indicates that gdb supports the XML target descrip-
tion. If the stub sees ‘xmlRegisters=’ with target specific strings
separated by a comma, it will report register description.

‘qRelocInsn’
This feature indicates whether gdb supports the ‘qRelocInsn’
packet (see Section E.6 [Relocate instruction reply packet],
page 763).

‘swbreak’ This feature indicates whether gdb supports the swbreak stop rea-
son in stop replies. See [swbreak stop reason], page 733, for details.

‘hwbreak’ This feature indicates whether gdb supports the hwbreak stop rea-
son in stop replies. See [swbreak stop reason], page 733, for details.

‘fork-events’
This feature indicates whether gdb supports fork event extensions
to the remote protocol. gdb does not use such extensions
unless the stub also reports that it supports them by including
‘fork-events+’ in its ‘qSupported’ reply.

‘vfork-events’
This feature indicates whether gdb supports vfork event exten-
sions to the remote protocol. gdb does not use such extensions
unless the stub also reports that it supports them by including
‘vfork-events+’ in its ‘qSupported’ reply.

‘exec-events’
This feature indicates whether gdb supports exec event exten-
sions to the remote protocol. gdb does not use such extensions
unless the stub also reports that it supports them by including
‘exec-events+’ in its ‘qSupported’ reply.

‘vContSupported’
This feature indicates whether gdb wants to know the supported
actions in the reply to ‘vCont?’ packet.

‘vAck:library’
This feature indicates whether gdb supports acknowledging
libraries reported by name.

‘vAck:in-memory-library’
This feature indicates whether gdb supports acknowledging in-
memory libraries reported by begin and end target address.

Stubs should ignore any unknown values for gdbfeature. Any gdb which sends
a ‘qSupported’ packet supports receiving packets of unlimited length (ear-
lier versions of gdb may reject overly long responses). Additional values for
gdbfeature may be defined in the future to let the stub take advantage of new
features in gdb, e.g. incompatible improvements in the remote protocol—the
‘multiprocess’ feature is an example of such a feature. The stub’s reply should

748 Debugging with gdb

be independent of the gdbfeature entries sent by gdb; first gdb describes all the
features it supports, and then the stub replies with all the features it supports.

Similarly, gdb will silently ignore unrecognized stub feature responses, as long
as each response uses one of the standard forms.

Some features are flags. A stub which supports a flag feature should respond
with a ‘+’ form response. Other features require values, and the stub should
respond with an ‘=’ form response.

Each feature has a default value, which gdb will use if ‘qSupported’ is not
available or if the feature is not mentioned in the ‘qSupported’ response. The
default values are fixed; a stub is free to omit any feature responses that match
the defaults.

Not all features can be probed, but for those which can, the probing mechanism
is useful: in some cases, a stub’s internal architecture may not allow the protocol
layer to know some information about the underlying target in advance. This
is especially common in stubs which may be configured for multiple targets.

These are the currently defined stub features and their properties:

Feature Name Value Required Default Probe Allowed

‘PacketSize’ Yes ‘-’ No

‘qXfer:auxv:read’ No ‘-’ Yes

‘qXfer:btrace:read’ No ‘-’ Yes

‘qXfer:btrace-conf:read’ No ‘-’ Yes

‘qXfer:exec-file:read’ No ‘-’ Yes

‘qXfer:features:read’ No ‘-’ Yes

‘qXfer:libraries:read’ No ‘-’ Yes

‘qXfer:libraries-svr4:read’ No ‘-’ Yes

‘augmented-libraries-svr4-read’No ‘-’ No

‘qXfer:memory-map:read’ No ‘-’ Yes

‘qXfer:sdata:read’ No ‘-’ Yes

‘qXfer:siginfo:read’ No ‘-’ Yes

‘qXfer:siginfo:write’ No ‘-’ Yes

Appendix E: gdb Remote Serial Protocol 749

‘qXfer:threads:read’ No ‘-’ Yes

‘qXfer:traceframe-info:read’ No ‘-’ Yes

‘qXfer:uib:read’ No ‘-’ Yes

‘qXfer:fdpic:read’ No ‘-’ Yes

‘Qbtrace:off’ Yes ‘-’ Yes

‘Qbtrace:bts’ Yes ‘-’ Yes

‘Qbtrace:pt’ Yes ‘-’ Yes

‘Qbtrace-conf:bts:size’ Yes ‘-’ Yes

‘Qbtrace-conf:pt:size’ Yes ‘-’ Yes

‘QNonStop’ No ‘-’ Yes

‘QCatchSyscalls’ No ‘-’ Yes

‘QPassSignals’ No ‘-’ Yes

‘QStartNoAckMode’ No ‘-’ Yes

‘multiprocess’ No ‘-’ No

‘multi-address-space’ No ‘-’ No

‘ConditionalBreakpoints’ No ‘-’ No

‘ConditionalTracepoints’ No ‘-’ No

‘ReverseContinue’ No ‘-’ No

‘ReverseStep’ No ‘-’ No

‘TracepointSource’ No ‘-’ No

‘QAgent’ No ‘-’ No

‘QAllow’ No ‘-’ No

‘QDisableRandomization’ No ‘-’ No

750 Debugging with gdb

‘EnableDisableTracepoints’ No ‘-’ No

‘QTBuffer:size’ No ‘-’ No

‘tracenz’ No ‘-’ No

‘BreakpointCommands’ No ‘-’ No

‘swbreak’ No ‘-’ No

‘hwbreak’ No ‘-’ No

‘fork-events’ No ‘-’ No

‘vfork-events’ No ‘-’ No

‘exec-events’ No ‘-’ No

‘QThreadEvents’ No ‘-’ No

‘no-resumed’ No ‘-’ No

‘memory-tagging’ No ‘-’ No

‘unavailable’ No ‘-’ No

These are the currently defined stub features, in more detail:

‘PacketSize=bytes’
The remote stub can accept packets up to at least bytes in length.
gdb will send packets up to this size for bulk transfers, and will
never send larger packets. This is a limit on the data characters in
the packet, including the frame and checksum. There is no trailing
NUL byte in a remote protocol packet; if the stub stores packets in a
NUL-terminated format, it should allow an extra byte in its buffer
for the NUL. If this stub feature is not supported, gdb guesses
based on the size of the ‘g’ packet response.

‘qXfer:auxv:read’
The remote stub understands the ‘qXfer:auxv:read’ packet (see
[qXfer auxiliary vector read], page 756).

‘qXfer:btrace:read’
The remote stub understands the ‘qXfer:btrace:read’ packet (see
[qXfer btrace read], page 757).

‘qXfer:btrace-conf:read’
The remote stub understands the ‘qXfer:btrace-conf:read’
packet (see [qXfer btrace-conf read], page 757).

Appendix E: gdb Remote Serial Protocol 751

‘qXfer:exec-file:read’
The remote stub understands the ‘qXfer:exec-file:read’ packet
(see [qXfer executable filename read], page 757).

‘qXfer:features:read’
The remote stub understands the ‘qXfer:features:read’ packet
(see [qXfer target description read], page 757).

‘qXfer:libraries:read’
The remote stub understands the ‘qXfer:libraries:read’ packet
(see [qXfer library list read], page 758).

‘qXfer:libraries-svr4:read’
The remote stub understands the ‘qXfer:libraries-svr4:read’
packet (see [qXfer svr4 library list read], page 758).

‘augmented-libraries-svr4-read’
The remote stub understands the augmented form of the
‘qXfer:libraries-svr4:read’ packet (see [qXfer svr4 library list
read], page 758).

‘qXfer:memory-map:read’
The remote stub understands the ‘qXfer:memory-map:read’ packet
(see [qXfer memory map read], page 759).

‘qXfer:sdata:read’
The remote stub understands the ‘qXfer:sdata:read’ packet (see
[qXfer sdata read], page 759).

‘qXfer:siginfo:read’
The remote stub understands the ‘qXfer:siginfo:read’ packet
(see [qXfer siginfo read], page 759).

‘qXfer:siginfo:write’
The remote stub understands the ‘qXfer:siginfo:write’ packet
(see [qXfer siginfo write], page 760).

‘qXfer:threads:read’
The remote stub understands the ‘qXfer:threads:read’ packet
(see [qXfer threads read], page 759).

‘qXfer:traceframe-info:read’
The remote stub understands the ‘qXfer:traceframe-info:read’
packet (see [qXfer traceframe info read], page 759).

‘qXfer:uib:read’
The remote stub understands the ‘qXfer:uib:read’ packet (see
[qXfer unwind info block], page 759).

‘qXfer:fdpic:read’
The remote stub understands the ‘qXfer:fdpic:read’ packet (see
[qXfer fdpic loadmap read], page 760).

752 Debugging with gdb

‘QNonStop’
The remote stub understands the ‘QNonStop’ packet (see
[QNonStop], page 742).

‘QCatchSyscalls’
The remote stub understands the ‘QCatchSyscalls’ packet (see
[QCatchSyscalls], page 742).

‘QPassSignals’
The remote stub understands the ‘QPassSignals’ packet (see
[QPassSignals], page 743).

‘QStartNoAckMode’
The remote stub understands the ‘QStartNoAckMode’ packet and
prefers to operate in no-acknowledgment mode. See Section E.11
[Packet Acknowledgment], page 775.

‘multiprocess’
The remote stub understands the multiprocess extensions to the
remote protocol syntax. The multiprocess extensions affect the
syntax of thread IDs in both packets and replies (see [thread-id
syntax], page 720), and add process IDs to the ‘D’ packet and ‘W’ and
‘X’ replies. Note that reporting this feature indicates support for
the syntactic extensions only, not that the stub necessarily supports
debugging of more than one process at a time. The stub must not
use multiprocess extensions in packet replies unless gdb has also
indicated it supports them in its ‘qSupported’ request.

‘multi-address-space’
The remote stub understands the multi-address-space extensions
to the remote protocol syntax. The multi-address-space extensions
affect the syntax of the ‘X’, ‘M’, ‘m’ and ‘qSearch:memory’ packets.
Note that reporting this feature indicates support for the syntac-
tic extensions only, not that the stub necessarily supports multi-
address-space accesses.

‘qXfer:osdata:read’
The remote stub understands the ‘qXfer:osdata:read’ packet
((see [qXfer osdata read], page 760).

‘ConditionalBreakpoints’
The target accepts and implements evaluation of conditional ex-
pressions defined for breakpoints. The target will only report break-
point triggers when such conditions are true (see Section 5.1.6
[Break Conditions], page 74).

‘ConditionalTracepoints’
The remote stub accepts and implements conditional expressions
defined for tracepoints (see Section 13.1.4 [Tracepoint Conditions],
page 199).

Appendix E: gdb Remote Serial Protocol 753

‘ReverseContinue’
The remote stub accepts and implements the reverse continue
packet (see [bc], page 721).

‘ReverseStep’
The remote stub accepts and implements the reverse step packet
(see [bs], page 722).

‘TracepointSource’
The remote stub understands the ‘QTDPsrc’ packet that supplies
the source form of tracepoint definitions.

‘QAgent’ The remote stub understands the ‘QAgent’ packet.

‘QAllow’ The remote stub understands the ‘QAllow’ packet.

‘QDisableRandomization’
The remote stub understands the ‘QDisableRandomization’
packet.

‘StaticTracepoint’
The remote stub supports static tracepoints.

‘InstallInTrace’
The remote stub supports installing tracepoint in tracing.

‘EnableDisableTracepoints’
The remote stub supports the ‘QTEnable’ (see [QTEnable],
page 766) and ‘QTDisable’ (see [QTDisable], page 766) packets
that allow tracepoints to be enabled and disabled while a trace
experiment is running.

‘QTBuffer:size’
The remote stub supports the ‘QTBuffer:size’ (see [QTBuffer-
size], page 769) packet that allows to change the size of the trace
buffer.

‘tracenz’ The remote stub supports the ‘tracenz’ bytecode for collecting
strings. See Section F.2 [Bytecode Descriptions], page 797, for de-
tails about the bytecode.

‘BreakpointCommands’
The remote stub supports running a breakpoint’s command list
itself, rather than reporting the hit to gdb.

‘Qbtrace:off’
The remote stub understands the ‘Qbtrace:off’ packet.

‘Qbtrace:bts’
The remote stub understands the ‘Qbtrace:bts’ packet.

‘Qbtrace:pt’
The remote stub understands the ‘Qbtrace:pt’ packet.

754 Debugging with gdb

‘Qbtrace-conf:bts:size’
The remote stub understands the ‘Qbtrace-conf:bts:size’
packet.

‘Qbtrace-conf:pt:size’
The remote stub understands the ‘Qbtrace-conf:pt:size’ packet.

‘swbreak’ The remote stub reports the ‘swbreak’ stop reason for memory
breakpoints.

‘hwbreak’ The remote stub reports the ‘hwbreak’ stop reason for hardware
breakpoints.

‘fork-events’
The remote stub reports the ‘fork’ stop reason for fork events.

‘vfork-events’
The remote stub reports the ‘vfork’ stop reason for vfork events
and vforkdone events.

‘exec-events’
The remote stub reports the ‘exec’ stop reason for exec events.

‘vContSupported’
The remote stub reports the supported actions in the reply to
‘vCont?’ packet.

‘QThreadEvents’
The remote stub understands the ‘QThreadEvents’ packet.

‘no-resumed’
The remote stub reports the ‘N’ stop reply.

‘memory-tagging’
The remote stub supports and implements the required memory
tagging functionality and understands the ‘qMemTags’ (see
[qMemTags], page 741) and ‘QMemTags’ (see [QMemTags],
page 741) packets.

For AArch64 GNU/Linux systems, this feature also requires access
to the /proc/pid/smaps file so memory mapping page flags can be
inspected. This is done via the ‘vFile’ requests.

‘unavailable’
The remote stub reports the ‘U’ stop reply.

‘qSymbol::’
Notify the target that gdb is prepared to serve symbol lookup requests. Accept
requests from the target for the values of symbols.

Reply:

‘OK’ The target does not need to look up any (more) symbols.

‘qSymbol:sym_name’
The target requests the value of symbol sym name (hex
encoded). gdb may provide the value by using the
‘qSymbol:sym_value:sym_name’ message, described below.

Appendix E: gdb Remote Serial Protocol 755

‘qSymbol:sym_value:sym_name’
Set the value of sym name to sym value.

sym name (hex encoded) is the name of a symbol whose value the target has
previously requested.

sym value (hex) is the value for symbol sym name. If gdb cannot supply a
value for sym name, then this field will be empty.

Reply:

‘OK’ The target does not need to look up any (more) symbols.

‘qSymbol:sym_name’
The target requests the value of a new symbol sym name (hex
encoded). gdb will continue to supply the values of symbols (if
available), until the target ceases to request them.

‘qTBuffer’
‘QTBuffer’
‘QTDisconnected’
‘QTDP’
‘QTDPsrc’
‘QTDV’
‘qTfP’
‘qTfV’
‘QTFrame’
‘qTMinFTPILen’

See Section E.6 [Tracepoint Packets], page 763.

‘qThreadExtraInfo,thread-id’
Obtain from the target OS a printable string description of thread attributes for
the thread thread-id; see [thread-id syntax], page 720, for the forms of thread-
id. This string may contain anything that the target OS thinks is interesting
for gdb to tell the user about the thread. The string is displayed in gdb’s
info threads display. Some examples of possible thread extra info strings are
‘Runnable’, or ‘Blocked on Mutex’.

Reply:

‘XX...’ Where ‘XX...’ is a hex encoding of ascii data, comprising the
printable string containing the extra information about the thread’s
attributes.

(Note that the qThreadExtraInfo packet’s name is separated from the com-
mand by a ‘,’, not a ‘:’, contrary to the naming conventions above. Please
don’t use this packet as a model for new packets.)

756 Debugging with gdb

‘QTNotes’
‘qTP’
‘QTSave’
‘qTsP’
‘qTsV’
‘QTStart’
‘QTStop’
‘QTEnable’
‘QTDisable’
‘QTinit’
‘QTro’
‘qTStatus’
‘qTV’
‘qTfSTM’
‘qTsSTM’
‘qTSTMat’ See Section E.6 [Tracepoint Packets], page 763.

‘qXfer:object:read:annex:offset,length’
Read uninterpreted bytes from the target’s special data area identified by the
keyword object. Request length bytes starting at offset bytes into the data.
The content and encoding of annex is specific to object; it can supply additional
details about what data to access.

Reply:

‘m data’ Data data (see [Binary Data], page 719) has been read from the
target. There may be more data at a higher address (although it
is permitted to return ‘m’ even for the last valid block of data, as
long as at least one byte of data was read). It is possible for data
to have fewer bytes than the length in the request.

‘l data’ Data data (see [Binary Data], page 719) has been read from the
target. There is no more data to be read. It is possible for data to
have fewer bytes than the length in the request.

‘l’ The offset in the request is at the end of the data. There is no more
data to be read.

‘E00’ The request was malformed, or annex was invalid.

‘E nn’ The offset was invalid, or there was an error encountered reading
the data. The nn part is a hex-encoded errno value.

‘’ An empty reply indicates the object string was not recognized by
the stub, or that the object does not support reading.

Here are the specific requests of this form defined so far. All the
‘qXfer:object:read:...’ requests use the same reply formats, listed above.

‘qXfer:auxv:read::offset,length’
Access the target’s auxiliary vector. See Section 10.17 [OS Infor-
mation], page 173. Note annex must be empty.

Appendix E: gdb Remote Serial Protocol 757

This packet is not probed by default; the remote stub must re-
quest it, by supplying an appropriate ‘qSupported’ response (see
[qSupported], page 745).

‘qXfer:btrace:read:annex:offset,length’
Return a description of the current branch trace. See Section E.19
[Branch Trace Format], page 792. The annex part of the generic
‘qXfer’ packet may have one of the following values:

all Returns all available branch trace.

new Returns all available branch trace if the branch trace
changed since the last read request.

delta Returns the new branch trace since the last read re-
quest. Adds a new block to the end of the trace that
begins at zero and ends at the source location of the
first branch in the trace buffer. This extra block is used
to stitch traces together.

If the trace buffer overflowed, returns an error indicat-
ing the overflow.

This packet is not probed by default; the remote stub must re-
quest it by supplying an appropriate ‘qSupported’ response (see
[qSupported], page 745).

‘qXfer:btrace-conf:read::offset,length’
Return a description of the current branch trace configuration. See
Section E.20 [Branch Trace Configuration Format], page 792.

This packet is not probed by default; the remote stub must re-
quest it by supplying an appropriate ‘qSupported’ response (see
[qSupported], page 745).

‘qXfer:exec-file:read:annex:offset,length’
Return the full absolute name of the file that was executed to create
a process running on the remote system. The annex specifies the
numeric process ID of the process to query, encoded as a hexadec-
imal number. If the annex part is empty the remote stub should
return the filename corresponding to the currently executing pro-
cess.

This packet is not probed by default; the remote stub must re-
quest it, by supplying an appropriate ‘qSupported’ response (see
[qSupported], page 745).

‘qXfer:features:read:annex:offset,length’
Access the target description. See Appendix G [Target Descrip-
tions], page 807. The annex specifies which XML document to ac-
cess. The main description is always loaded from the ‘target.xml’
annex.

758 Debugging with gdb

This packet is not probed by default; the remote stub must re-
quest it, by supplying an appropriate ‘qSupported’ response (see
[qSupported], page 745).

‘qXfer:libraries:read:annex:offset,length’
Access the target’s list of loaded libraries. See Section E.14 [Library
List Format], page 788. The annex part of the generic ‘qXfer’
packet must be empty (see [qXfer read], page 756).

Targets which maintain a list of libraries in the program’s memory
do not need to implement this packet; it is designed for platforms
where the operating system manages the list of loaded libraries.

This packet is not probed by default; the remote stub must re-
quest it, by supplying an appropriate ‘qSupported’ response (see
[qSupported], page 745).

‘qXfer:libraries-svr4:read:annex:offset,length’
Access the target’s list of loaded libraries when the target is an
SVR4 platform. See Section E.15 [Library List Format for SVR4
Targets], page 789. The annex part of the generic ‘qXfer’ packet
must be empty unless the remote stub indicated it supports
the augmented form of this packet by supplying an appropriate
‘qSupported’ response (see [qXfer read], page 756, [qSupported],
page 745).

This packet is optional for better performance on SVR4 targets.
gdb uses memory read packets to read the SVR4 library list oth-
erwise.

This packet is not probed by default; the remote stub must re-
quest it, by supplying an appropriate ‘qSupported’ response (see
[qSupported], page 745).

If the remote stub indicates it supports the augmented form of
this packet then the annex part of the generic ‘qXfer’ packet may
contain a semicolon-separated list of ‘name=value’ arguments. The
currently supported arguments are:

start=address

A hexadecimal number specifying the address of the
‘struct link_map’ to start reading the library list
from. If unset or zero then the first ‘struct link_map’
in the library list will be chosen as the starting point.

prev=address

A hexadecimal number specifying the address of the
‘struct link_map’ immediately preceding the ‘struct
link_map’ specified by the ‘start’ argument. If un-
set or zero then the remote stub will expect that no
‘struct link_map’ exists prior to the starting point.

Arguments that are not understood by the remote stub will be
silently ignored.

Appendix E: gdb Remote Serial Protocol 759

‘qXfer:memory-map:read::offset,length’
Access the target’s memory-map. See Section E.16 [Memory Map
Format], page 790. The annex part of the generic ‘qXfer’ packet
must be empty (see [qXfer read], page 756).

This packet is not probed by default; the remote stub must re-
quest it, by supplying an appropriate ‘qSupported’ response (see
[qSupported], page 745).

‘qXfer:sdata:read::offset,length’
Read contents of the extra collected static tracepoint marker in-
formation. The annex part of the generic ‘qXfer’ packet must be
empty (see [qXfer read], page 756). See Section 13.1.6 [Tracepoint
Action Lists], page 200.

This packet is not probed by default; the remote stub must re-
quest it, by supplying an appropriate ‘qSupported’ response (see
[qSupported], page 745).

‘qXfer:siginfo:read::offset,length’
Read contents of the extra signal information on the target system.
The annex part of the generic ‘qXfer’ packet must be empty (see
[qXfer read], page 756).

This packet is not probed by default; the remote stub must re-
quest it, by supplying an appropriate ‘qSupported’ response (see
[qSupported], page 745).

‘qXfer:threads:read::offset,length’
Access the list of threads on target. See Section E.17 [Thread List
Format], page 791. The annex part of the generic ‘qXfer’ packet
must be empty (see [qXfer read], page 756).

This packet is not probed by default; the remote stub must re-
quest it, by supplying an appropriate ‘qSupported’ response (see
[qSupported], page 745).

‘qXfer:traceframe-info:read::offset,length’
Return a description of the current traceframe’s contents. See
Section E.18 [Traceframe Info Format], page 791. The annex part
of the generic ‘qXfer’ packet must be empty (see [qXfer read],
page 756).

This packet is not probed by default; the remote stub must re-
quest it, by supplying an appropriate ‘qSupported’ response (see
[qSupported], page 745).

‘qXfer:uib:read:pc:offset,length’
Return the unwind information block for pc. This packet is used
on OpenVMS/ia64 to ask the kernel unwind information.

This packet is not probed by default.

760 Debugging with gdb

‘qXfer:fdpic:read:annex:offset,length’
Read contents of loadmaps on the target system. The annex, either
‘exec’ or ‘interp’, specifies which loadmap, executable loadmap or
interpreter loadmap to read.

This packet is not probed by default; the remote stub must re-
quest it, by supplying an appropriate ‘qSupported’ response (see
[qSupported], page 745).

‘qXfer:osdata:read::offset,length’
Access the target’s operating system information. See Appendix H
[Operating System Information], page 821.

‘qXfer:object:write:annex:offset:data...’
Write uninterpreted bytes into the target’s special data area identified by the
keyword object, starting at offset bytes into the data. The binary-encoded data
(see [Binary Data], page 719) to be written is given by data. . . . The content
and encoding of annex is specific to object; it can supply additional details
about what data to access.

Reply:

‘nn’ nn (hex encoded) is the number of bytes written. This may be
fewer bytes than supplied in the request.

‘E00’ The request was malformed, or annex was invalid.

‘E nn’ The offset was invalid, or there was an error encountered writing
the data. The nn part is a hex-encoded errno value.

‘’ An empty reply indicates the object string was not recognized by
the stub, or that the object does not support writing.

Here are the specific requests of this form defined so far. All the
‘qXfer:object:write:...’ requests use the same reply formats, listed above.

‘qXfer:siginfo:write::offset:data...’
Write data to the extra signal information on the target system.
The annex part of the generic ‘qXfer’ packet must be empty (see
[qXfer write], page 760).

This packet is not probed by default; the remote stub must re-
quest it, by supplying an appropriate ‘qSupported’ response (see
[qSupported], page 745).

‘qXfer:object:operation:...’
Requests of this form may be added in the future. When a stub does not
recognize the object keyword, or its support for object does not recognize the
operation keyword, the stub must respond with an empty packet.

‘qAttached:pid’
Return an indication of whether the remote server attached to an existing pro-
cess or created a new process. When the multiprocess protocol extensions are
supported (see [multiprocess extensions], page 752), pid is an integer in hex-
adecimal format identifying the target process. Otherwise, gdb will omit the
pid field and the query packet will be simplified as ‘qAttached’.

Appendix E: gdb Remote Serial Protocol 761

This query is used, for example, to know whether the remote process should be
detached or killed when a gdb session is ended with the quit command.

Reply:

‘1’ The remote server attached to an existing process.

‘0’ The remote server created a new process.

‘E NN’ A badly formed request or an error was encountered.

‘qFixedThreadList’
Return an indication of whether the remote target’s thread list is fixed. This
can be the case, for instance, if the target models hardware threads.

This query is used for optimization purposes, for example, to omit updating
the target’s thread list.

Reply:

‘1’ The remote target has a fixed list of threads.

‘0’ The remote target does not have a fixed list of threads.

‘E NN’ A badly formed request or an error was encountered.

‘Qbtrace:bts’
Enable branch tracing for the current thread using Branch Trace Store.

Reply:

‘OK’ Branch tracing has been enabled.

‘E.errtext’
A badly formed request or an error was encountered.

‘Qbtrace:pt’
Enable branch tracing for the current thread using Intel Processor Trace.

Reply:

‘OK’ Branch tracing has been enabled.

‘E.errtext’
A badly formed request or an error was encountered.

‘Qbtrace:off’
Disable branch tracing for the current thread.

Reply:

‘OK’ Branch tracing has been disabled.

‘E.errtext’
A badly formed request or an error was encountered.

‘Qbtrace-conf:bts:size=value’
Set the requested ring buffer size for new threads that use the btrace recording
method in bts format.

Reply:

‘OK’ The ring buffer size has been set.

762 Debugging with gdb

‘E.errtext’
A badly formed request or an error was encountered.

‘Qbtrace-conf:pt:size=value’
Set the requested ring buffer size for new threads that use the btrace recording
method in pt format.

Reply:

‘OK’ The ring buffer size has been set.

‘E.errtext’
A badly formed request or an error was encountered.

E.5 Architecture-Specific Protocol Details

This section describes how the remote protocol is applied to specific target architectures.
Also see Section G.5 [Standard Target Features], page 813, for details of XML target de-
scriptions for each architecture.

E.5.1 ARM-specific Protocol Details

E.5.1.1 ARM Breakpoint Kinds

These breakpoint kinds are defined for the ‘Z0’ and ‘Z1’ packets.

2 16-bit Thumb mode breakpoint.

3 32-bit Thumb mode (Thumb-2) breakpoint.

4 32-bit ARM mode breakpoint.

E.5.1.2 ARM Memory Tag Types

These memory tag types are defined for the ‘qMemTag’ and ‘QMemTag’ packets.

0 MTE logical tag

1 MTE allocation tag

E.5.2 MIPS-specific Protocol Details

E.5.2.1 MIPS Register Packet Format

The following g/G packets have previously been defined. In the below, some thirty-two bit
registers are transferred as sixty-four bits. Those registers should be zero/sign extended
(which?) to fill the space allocated. Register bytes are transferred in target byte order.
The two nibbles within a register byte are transferred most-significant – least-significant.

MIPS32 All registers are transferred as thirty-two bit quantities in the order: 32 general-
purpose; sr; lo; hi; bad; cause; pc; 32 floating-point registers; fsr; fir; fp.

MIPS64 All registers are transferred as sixty-four bit quantities (including thirty-two bit
registers such as sr). The ordering is the same as MIPS32.

Appendix E: gdb Remote Serial Protocol 763

E.5.2.2 MIPS Breakpoint Kinds

These breakpoint kinds are defined for the ‘Z0’ and ‘Z1’ packets.

2 16-bit MIPS16 mode breakpoint.

3 16-bit microMIPS mode breakpoint.

4 32-bit standard MIPS mode breakpoint.

5 32-bit microMIPS mode breakpoint.

E.6 Tracepoint Packets

Here we describe the packets gdb uses to implement tracepoints (see Chapter 13 [Trace-
points], page 195).

‘QTDP:n:addr:ena:step:pass[:Fflen][:Xlen,bytes][-]’
Create a new tracepoint, number n, at addr. If ena is ‘E’, then the tracepoint
is enabled; if it is ‘D’, then the tracepoint is disabled. The step gives the
tracepoint’s step count, and pass gives its pass count. If an ‘F’ is present, then
the tracepoint is to be a fast tracepoint, and the flen is the number of bytes
that the target should copy elsewhere to make room for the tracepoint. If an ‘X’
is present, it introduces a tracepoint condition, which consists of a hexadecimal
length, followed by a comma and hex-encoded bytes, in a manner similar to
action encodings as described below. If the trailing ‘-’ is present, further ‘QTDP’
packets will follow to specify this tracepoint’s actions.

Replies:

‘OK’ The packet was understood and carried out.

‘qRelocInsn’
See Section E.6 [Relocate instruction reply packet], page 763.

‘’ The packet was not recognized.

‘QTDP:-n:addr:[S]action...[-]’
Define actions to be taken when a tracepoint is hit. The n and addr must be
the same as in the initial ‘QTDP’ packet for this tracepoint. This packet may
only be sent immediately after another ‘QTDP’ packet that ended with a ‘-’. If
the trailing ‘-’ is present, further ‘QTDP’ packets will follow, specifying more
actions for this tracepoint.

In the series of action packets for a given tracepoint, at most one can have an
‘S’ before its first action. If such a packet is sent, it and the following packets
define “while-stepping” actions. Any prior packets define ordinary actions —
that is, those taken when the tracepoint is first hit. If no action packet has an
‘S’, then all the packets in the series specify ordinary tracepoint actions.

The ‘action...’ portion of the packet is a series of actions, concatenated with-
out separators. Each action has one of the following forms:

‘R mask’ Collect the registers whose bits are set in mask, a hexadecimal
number whose i’th bit is set if register number i should be collected.
(The least significant bit is numbered zero.) Note that mask may
be any number of digits long; it may not fit in a 32-bit word.

764 Debugging with gdb

‘M basereg,offset,len’
Collect len bytes of memory starting at the address in register num-
ber basereg, plus offset. If basereg is ‘-1’, then the range has a fixed
address: offset is the address of the lowest byte to collect. The
basereg, offset, and len parameters are all unsigned hexadecimal
values (the ‘-1’ value for basereg is a special case).

‘X len,expr’
Evaluate expr, whose length is len, and collect memory as it directs.
The agent expression expr is as described in Appendix F [Agent
Expressions], page 795. Each byte of the expression is encoded as
a two-digit hex number in the packet; len is the number of bytes in
the expression (and thus one-half the number of hex digits in the
packet).

Any number of actions may be packed together in a single ‘QTDP’ packet, as long
as the packet does not exceed the maximum packet length (400 bytes, for many
stubs). There may be only one ‘R’ action per tracepoint, and it must precede
any ‘M’ or ‘X’ actions. Any registers referred to by ‘M’ and ‘X’ actions must be
collected by a preceding ‘R’ action. (The “while-stepping” actions are treated
as if they were attached to a separate tracepoint, as far as these restrictions are
concerned.)

Replies:

‘OK’ The packet was understood and carried out.

‘qRelocInsn’
See Section E.6 [Relocate instruction reply packet], page 763.

‘’ The packet was not recognized.

‘QTDPsrc:n:addr:type:start:slen:bytes’
Specify a source string of tracepoint n at address addr. This is useful to get
accurate reproduction of the tracepoints originally downloaded at the beginning
of the trace run. The type is the name of the tracepoint part, such as ‘cond’
for the tracepoint’s conditional expression (see below for a list of types), while
bytes is the string, encoded in hexadecimal.

start is the offset of the bytes within the overall source string, while slen is the
total length of the source string. This is intended for handling source strings
that are longer than will fit in a single packet.

The available string types are ‘at’ for the location, ‘cond’ for the conditional,
and ‘cmd’ for an action command. gdb sends a separate packet for each com-
mand in the action list, in the same order in which the commands are stored
in the list.

The target does not need to do anything with source strings except report them
back as part of the replies to the ‘qTfP’/‘qTsP’ query packets.

Although this packet is optional, and gdb will only send it if the target replies
with ‘TracepointSource’ See Section E.4 [General Query Packets], page 735, it
makes both disconnected tracing and trace files much easier to use. Otherwise

Appendix E: gdb Remote Serial Protocol 765

the user must be careful that the tracepoints in effect while looking at trace
frames are identical to the ones in effect during the trace run; even a small
discrepancy could cause ‘tdump’ not to work, or a particular trace frame not be
found.

‘QTDV:n:value:builtin:name’
Create a new trace state variable, number n, with an initial value of value,
which is a 64-bit signed integer. Both n and value are encoded as hexadecimal
values. gdb has the option of not using this packet for initial values of zero;
the target should simply create the trace state variables as they are mentioned
in expressions. The value builtin should be 1 (one) if the trace state variable is
builtin and 0 (zero) if it is not builtin. gdb only sets builtin to 1 if a previous
‘qTfV’ or ‘qTsV’ packet had it set. The contents of name is the hex-encoded
name (without the leading ‘$’) of the trace state variable.

‘QTFrame:n’
Select the n’th tracepoint frame from the buffer, and use the register and mem-
ory contents recorded there to answer subsequent request packets from gdb.

A successful reply from the stub indicates that the stub has found the requested
frame. The response is a series of parts, concatenated without separators,
describing the frame we selected. Each part has one of the following forms:

‘F f’ The selected frame is number n in the trace frame buffer; f is a
hexadecimal number. If f is ‘-1’, then there was no frame matching
the criteria in the request packet.

‘T t’ The selected trace frame records a hit of tracepoint number t; t is
a hexadecimal number.

‘QTFrame:pc:addr’
Like ‘QTFrame:n’, but select the first tracepoint frame after the currently se-
lected frame whose PC is addr; addr is a hexadecimal number.

‘QTFrame:tdp:t’
Like ‘QTFrame:n’, but select the first tracepoint frame after the currently se-
lected frame that is a hit of tracepoint t; t is a hexadecimal number.

‘QTFrame:range:start:end’
Like ‘QTFrame:n’, but select the first tracepoint frame after the currently se-
lected frame whose PC is between start (inclusive) and end (inclusive); start
and end are hexadecimal numbers.

‘QTFrame:outside:start:end’
Like ‘QTFrame:range:start:end’, but select the first frame outside the given
range of addresses (exclusive).

‘qTMinFTPILen’
This packet requests the minimum length of instruction at which a fast trace-
point (see Section 13.1 [Set Tracepoints], page 195) may be placed. For instance,
on the 32-bit x86 architecture, it is possible to use a 4-byte jump, but it de-
pends on the target system being able to create trampolines in the first 64K of

766 Debugging with gdb

memory, which might or might not be possible for that system. So the reply to
this packet will be 4 if it is able to arrange for that.

Replies:

‘0’ The minimum instruction length is currently unknown.

‘length’ The minimum instruction length is length, where length is a hex-
adecimal number greater or equal to 1. A reply of 1 means that a
fast tracepoint may be placed on any instruction regardless of size.

‘E’ An error has occurred.

‘’ An empty reply indicates that the request is not supported by the
stub.

‘QTStart’ Begin the tracepoint experiment. Begin collecting data from tracepoint hits
in the trace frame buffer. This packet supports the ‘qRelocInsn’ reply (see
Section E.6 [Relocate instruction reply packet], page 763).

‘QTStop’ End the tracepoint experiment. Stop collecting trace frames.

‘QTEnable:n:addr’
Enable tracepoint n at address addr in a started tracepoint experiment. If the
tracepoint was previously disabled, then collection of data from it will resume.

‘QTDisable:n:addr’
Disable tracepoint n at address addr in a started tracepoint experiment. No
more data will be collected from the tracepoint unless ‘QTEnable:n:addr’ is
subsequently issued.

‘QTinit’ Clear the table of tracepoints, and empty the trace frame buffer.

‘QTro:start1,end1:start2,end2:...’
Establish the given ranges of memory as “transparent”. The stub will answer
requests for these ranges from memory’s current contents, if they were not
collected as part of the tracepoint hit.

gdb uses this to mark read-only regions of memory, like those containing pro-
gram code. Since these areas never change, they should still have the same
contents they did when the tracepoint was hit, so there’s no reason for the stub
to refuse to provide their contents.

‘QTDisconnected:value’
Set the choice to what to do with the tracing run when gdb disconnects from
the target. A value of 1 directs the target to continue the tracing run, while 0
tells the target to stop tracing if gdb is no longer in the picture.

‘qTStatus’
Ask the stub if there is a trace experiment running right now.

The reply has the form:

‘Trunning[;field]...’
running is a single digit 1 if the trace is presently running, or 0 if
not. It is followed by semicolon-separated optional fields that an
agent may use to report additional status.

Appendix E: gdb Remote Serial Protocol 767

If the trace is not running, the agent may report any of several explanations as
one of the optional fields:

‘tnotrun:0’
No trace has been run yet.

‘tstop[:text]:0’
The trace was stopped by a user-originated stop command. The
optional text field is a user-supplied string supplied as part of the
stop command (for instance, an explanation of why the trace was
stopped manually). It is hex-encoded.

‘tfull:0’ The trace stopped because the trace buffer filled up.

‘tdisconnected:0’
The trace stopped because gdb disconnected from the target.

‘tpasscount:tpnum’
The trace stopped because tracepoint tpnum exceeded its pass
count.

‘terror:text:tpnum’
The trace stopped because tracepoint tpnum had an error. The
string text is available to describe the nature of the error (for in-
stance, a divide by zero in the condition expression); it is hex en-
coded.

‘tunknown:0’
The trace stopped for some other reason.

Additional optional fields supply statistical and other information. Although
not required, they are extremely useful for users monitoring the progress of a
trace run. If a trace has stopped, and these numbers are reported, they must
reflect the state of the just-stopped trace.

‘tframes:n’
The number of trace frames in the buffer.

‘tcreated:n’
The total number of trace frames created during the run. This may
be larger than the trace frame count, if the buffer is circular.

‘tsize:n’ The total size of the trace buffer, in bytes.

‘tfree:n’ The number of bytes still unused in the buffer.

‘circular:n’
The value of the circular trace buffer flag. 1 means that the trace
buffer is circular and old trace frames will be discarded if necessary
to make room, 0 means that the trace buffer is linear and may fill
up.

‘disconn:n’
The value of the disconnected tracing flag. 1 means that tracing
will continue after gdb disconnects, 0 means that the trace run will
stop.

768 Debugging with gdb

‘qTP:tp:addr’
Ask the stub for the current state of tracepoint number tp at address addr.

Replies:

‘Vhits:usage’
The tracepoint has been hit hits times so far during the trace
run, and accounts for usage in the trace buffer. Note that
while-stepping steps are not counted as separate hits, but the
steps’ space consumption is added into the usage number.

‘qTV:var’ Ask the stub for the value of the trace state variable number var.

Replies:

‘Vvalue’ The value of the variable is value. This will be the current value
of the variable if the user is examining a running target, or a saved
value if the variable was collected in the trace frame that the user
is looking at. Note that multiple requests may result in different
reply values, such as when requesting values while the program is
running.

‘U’ The value of the variable is unknown. This would occur, for exam-
ple, if the user is examining a trace frame in which the requested
variable was not collected.

‘qTfP’
‘qTsP’ These packets request data about tracepoints that are being used by the target.

gdb sends qTfP to get the first piece of data, and multiple qTsP to get additional
pieces. Replies to these packets generally take the form of the QTDP packets that
define tracepoints. (FIXME add detailed syntax)

‘qTfV’
‘qTsV’ These packets request data about trace state variables that are on the target.

gdb sends qTfV to get the first vari of data, and multiple qTsV to get additional
variables. Replies to these packets follow the syntax of the QTDV packets that
define trace state variables.

‘qTfSTM’
‘qTsSTM’ These packets request data about static tracepoint markers that exist in the

target program. gdb sends qTfSTM to get the first piece of data, and multiple
qTsSTM to get additional pieces. Replies to these packets take the following
form:

Reply:

‘m address:id:extra’
A single marker

‘m address:id:extra,address:id:extra...’
a comma-separated list of markers

‘l’ (lower case letter ‘L’) denotes end of list.

‘E nn’ An error occurred. The error number nn is given as hex digits.

Appendix E: gdb Remote Serial Protocol 769

‘’ An empty reply indicates that the request is not supported by the
stub.

The address is encoded in hex; id and extra are strings encoded in hex.

In response to each query, the target will reply with a list of one or more
markers, separated by commas. gdb will respond to each reply with a request
for more markers (using the ‘qs’ form of the query), until the target responds
with ‘l’ (lower-case ell, for last).

‘qTSTMat:address’
This packets requests data about static tracepoint markers in the target pro-
gram at address. Replies to this packet follow the syntax of the ‘qTfSTM’ and
qTsSTM packets that list static tracepoint markers.

‘QTSave:filename’
This packet directs the target to save trace data to the file name filename in the
target’s filesystem. The filename is encoded as a hex string; the interpretation
of the file name (relative vs absolute, wild cards, etc) is up to the target.

‘qTBuffer:offset,len’
Return up to len bytes of the current contents of trace buffer, starting at offset.
The trace buffer is treated as if it were a contiguous collection of traceframes,
as per the trace file format. The reply consists as many hex-encoded bytes as
the target can deliver in a packet; it is not an error to return fewer than were
asked for. A reply consisting of just l indicates that no bytes are available.

‘QTBuffer:circular:value’
This packet directs the target to use a circular trace buffer if value is 1, or a
linear buffer if the value is 0.

‘QTBuffer:size:size’
This packet directs the target to make the trace buffer be of size size if possible.
A value of -1 tells the target to use whatever size it prefers.

‘QTNotes:[type:text][;type:text]...’
This packet adds optional textual notes to the trace run. Allowable types in-
clude user, notes, and tstop, the text fields are arbitrary strings, hex-encoded.

E.6.1 Relocate instruction reply packet

When installing fast tracepoints in memory, the target may need to relocate the instruction
currently at the tracepoint address to a different address in memory. For most instructions,
a simple copy is enough, but, for example, call instructions that implicitly push the return
address on the stack, and relative branches or other PC-relative instructions require offset
adjustment, so that the effect of executing the instruction at a different address is the same
as if it had executed in the original location.

In response to several of the tracepoint packets, the target may also respond with a num-
ber of intermediate ‘qRelocInsn’ request packets before the final result packet, to have gdb
handle this relocation operation. If a packet supports this mechanism, its documentation
will explicitly say so. See for example the above descriptions for the ‘QTStart’ and ‘QTDP’
packets. The format of the request is:

770 Debugging with gdb

‘qRelocInsn:from;to’
This requests gdb to copy instruction at address from to address to, possibly
adjusted so that executing the instruction at to has the same effect as executing
it at from. gdb writes the adjusted instruction to target memory starting at
to.

Replies:

‘qRelocInsn:adjusted_size’
Informs the stub the relocation is complete. The adjusted size is the length in
bytes of resulting relocated instruction sequence.

‘E NN’ A badly formed request was detected, or an error was encountered while relo-
cating the instruction.

E.7 Host I/O Packets

The Host I/O packets allow gdb to perform I/O operations on the far side of a remote link.
For example, Host I/O is used to upload and download files to a remote target with its own
filesystem. Host I/O uses the same constant values and data structure layout as the target-
initiated File-I/O protocol. However, the Host I/O packets are structured differently. The
target-initiated protocol relies on target memory to store parameters and buffers. Host I/O
requests are initiated by gdb, and the target’s memory is not involved. See Section E.13
[File-I/O Remote Protocol Extension], page 776, for more details on the target-initiated
protocol.

The Host I/O request packets all encode a single operation along with its arguments.
They have this format:

‘vFile:operation: parameter...’
operation is the name of the particular request; the target should compare
the entire packet name up to the second colon when checking for a supported
operation. The format of parameter depends on the operation. Numbers are
always passed in hexadecimal. Negative numbers have an explicit minus sign
(i.e. two’s complement is not used). Strings (e.g. filenames) are encoded as a
series of hexadecimal bytes. The last argument to a system call may be a buffer
of escaped binary data (see [Binary Data], page 719).

The valid responses to Host I/O packets are:

‘F result [, errno] [; attachment]’
result is the integer value returned by this operation, usually non-negative for
success and -1 for errors. If an error has occured, errno will be included in the
result specifying a value defined by the File-I/O protocol (see [Errno Values],
page 786). For operations which return data, attachment supplies the data as
a binary buffer. Binary buffers in response packets are escaped in the normal
way (see [Binary Data], page 719). See the individual packet documentation
for the interpretation of result and attachment.

‘’ An empty response indicates that this operation is not recognized.

Appendix E: gdb Remote Serial Protocol 771

These are the supported Host I/O operations:

‘vFile:open: filename, flags, mode’
Open a file at filename and return a file descriptor for it, or return -1 if an error
occurs. The filename is a string, flags is an integer indicating a mask of open
flags (see [Open Flags], page 786), and mode is an integer indicating a mask
of mode bits to use if the file is created (see [mode t Values], page 786). See
[open], page 779, for details of the open flags and mode values.

‘vFile:close: fd’
Close the open file corresponding to fd and return 0, or -1 if an error occurs.

‘vFile:pread: fd, count, offset’
Read data from the open file corresponding to fd. Up to count bytes will be
read from the file, starting at offset relative to the start of the file. The target
may read fewer bytes; common reasons include packet size limits and an end-
of-file condition. The number of bytes read is returned. Zero should only be
returned for a successful read at the end of the file, or if count was zero.

The data read should be returned as a binary attachment on success. If zero
bytes were read, the response should include an empty binary attachment (i.e.
a trailing semicolon). The return value is the number of target bytes read; the
binary attachment may be longer if some characters were escaped.

‘vFile:pwrite: fd, offset, data’
Write data (a binary buffer) to the open file corresponding to fd. Start the
write at offset from the start of the file. Unlike many write system calls,
there is no separate count argument; the length of data in the packet is used.
‘vFile:pwrite’ returns the number of bytes written, which may be shorter
than the length of data, or -1 if an error occurred.

‘vFile:fstat: fd’
Get information about the open file corresponding to fd. On success the infor-
mation is returned as a binary attachment and the return value is the size of
this attachment in bytes. If an error occurs the return value is -1. The format
of the returned binary attachment is as described in [struct stat], page 785.

‘vFile:unlink: filename’
Delete the file at filename on the target. Return 0, or -1 if an error occurs. The
filename is a string.

‘vFile:readlink: filename’
Read value of symbolic link filename on the target. Return the number of bytes
read, or -1 if an error occurs.

The data read should be returned as a binary attachment on success. If zero
bytes were read, the response should include an empty binary attachment (i.e.
a trailing semicolon). The return value is the number of target bytes read; the
binary attachment may be longer if some characters were escaped.

‘vFile:setfs: pid’
Select the filesystem on which vFile operations with filename arguments will
operate. This is required for gdb to be able to access files on remote targets
where the remote stub does not share a common filesystem with the inferior(s).

772 Debugging with gdb

If pid is nonzero, select the filesystem as seen by process pid. If pid is zero,
select the filesystem as seen by the remote stub. Return 0 on success, or -1
if an error occurs. If vFile:setfs: indicates success, the selected filesystem
remains selected until the next successful vFile:setfs: operation.

E.8 Interrupts

In all-stop mode, when a program on the remote target is running, gdb may attempt to
interrupt it by sending a ‘Ctrl-C’, BREAK or a BREAK followed by g, control of which is
specified via gdb’s ‘interrupt-sequence’.

The precise meaning of BREAK is defined by the transport mechanism and may, in fact,
be undefined. gdb does not currently define a BREAK mechanism for any of the network
interfaces except for TCP, in which case gdb sends the telnet BREAK sequence.

‘Ctrl-C’, on the other hand, is defined and implemented for all transport mechanisms.
It is represented by sending the single byte 0x03 without any of the usual packet overhead
described in the Overview section (see Section E.1 [Overview], page 719). When a 0x03 byte
is transmitted as part of a packet, it is considered to be packet data and does not represent
an interrupt. E.g., an ‘X’ packet (see [X packet], page 729), used for binary downloads, may
include an unescaped 0x03 as part of its packet.

BREAK followed by g is also known as Magic SysRq g. When Linux kernel receives this
sequence from serial port, it stops execution and connects to gdb.

In non-stop mode, because packet resumptions are asynchronous (see [vCont packet],
page 726), gdb is always free to send a remote command to the remote stub, even when the
target is running. For that reason, gdb instead sends a regular packet (see [vCtrlC packet],
page 727) with the usual packet framing instead of the single byte 0x03.

Stubs are not required to recognize these interrupt mechanisms and the precise meaning
associated with receipt of the interrupt is implementation defined. If the target supports
debugging of multiple threads and/or processes, it should attempt to interrupt all currently-
executing threads and processes. If the stub is successful at interrupting the running pro-
gram, it should send one of the stop reply packets (see Section E.3 [Stop Reply Packets],
page 731) to gdb as a result of successfully stopping the program in all-stop mode, and a
stop reply for each stopped thread in non-stop mode. Interrupts received while the program
is stopped are queued and the program will be interrupted when it is resumed next time.

E.9 Notification Packets

The gdb remote serial protocol includes notifications, packets that require no acknowledg-
ment. Both the GDB and the stub may send notifications (although the only notifications
defined at present are sent by the stub). Notifications carry information without incurring
the round-trip latency of an acknowledgment, and so are useful for low-impact communica-
tions where occasional packet loss is not a problem.

A notification packet has the form ‘% data # checksum’, where data is the content of the
notification, and checksum is a checksum of data, computed and formatted as for ordinary
gdb packets. A notification’s data never contains ‘$’, ‘%’ or ‘#’ characters. Upon receiving
a notification, the recipient sends no ‘+’ or ‘-’ to acknowledge the notification’s receipt or
to report its corruption.

Appendix E: gdb Remote Serial Protocol 773

Every notification’s data begins with a name, which contains no colon characters, fol-
lowed by a colon character.

Recipients should silently ignore corrupted notifications and notifications they do not un-
derstand. Recipients should restart timeout periods on receipt of a well-formed notification,
whether or not they understand it.

Senders should only send the notifications described here when this protocol description
specifies that they are permitted. In the future, we may extend the protocol to permit
existing notifications in new contexts; this rule helps older senders avoid confusing newer
recipients.

(Older versions of gdb ignore bytes received until they see the ‘$’ byte that begins an
ordinary packet, so new stubs may transmit notifications without fear of confusing older
clients. There are no notifications defined for gdb to send at the moment, but we assume
that most older stubs would ignore them, as well.)

Each notification is comprised of three parts:

‘name:event’
The notification packet is sent by the side that initiates the exchange (currently,
only the stub does that), with event carrying the specific information about the
notification, and name specifying the name of the notification.

‘ack’ The acknowledge sent by the other side, usually gdb, to acknowledge the ex-
change and request the event.

The purpose of an asynchronous notification mechanism is to report to gdb that some-
thing interesting happened in the remote stub.

The remote stub may send notification name:event at any time, but gdb acknowledges
the notification when appropriate. The notification event is pending before gdb acknowl-
edges. Only one notification at a time may be pending; if additional events occur before
gdb has acknowledged the previous notification, they must be queued by the stub for later
synchronous transmission in response to ack packets from gdb. Because the notification
mechanism is unreliable, the stub is permitted to resend a notification if it believes gdb
may not have received it.

Specifically, notifications may appear when gdb is not otherwise reading input from
the stub, or when gdb is expecting to read a normal synchronous response or a ‘+’/‘-’
acknowledgment to a packet it has sent. Notification packets are distinct from any other
communication from the stub so there is no ambiguity.

After receiving a notification, gdb shall acknowledge it by sending a ack packet as a
regular, synchronous request to the stub. Such acknowledgment is not required to happen
immediately, as gdb is permitted to send other, unrelated packets to the stub first, which
the stub should process normally.

Upon receiving a ack packet, if the stub has other queued events to report to gdb, it
shall respond by sending a normal event. gdb shall then send another ack packet to solicit
further responses; again, it is permitted to send other, unrelated packets as well which the
stub should process normally.

If the stub receives a ack packet and there are no additional event to report, the stub
shall return an ‘OK’ response. At this point, gdb has finished processing a notification and

774 Debugging with gdb

the stub has completed sending any queued events. gdb won’t accept any new notifications
until the final ‘OK’ is received . If further notification events occur, the stub shall send a
new notification, gdb shall accept the notification, and the process shall be repeated.

The process of asynchronous notification can be illustrated by the following example:

<- %Stop:T0505:98e7ffbf;04:4ce6ffbf;08:b1b6e54c;thread:p7526.7526;core:0;

...

-> vStopped

<- T0505:68f37db7;04:40f37db7;08:63850408;thread:p7526.7528;core:0;

-> vStopped

<- T0505:68e3fdb6;04:40e3fdb6;08:63850408;thread:p7526.7529;core:0;

-> vStopped

<- OK

The following notifications are defined:

Notification Ack Event Description

Stop vStopped reply. The reply has the
form of a stop reply, as de-
scribed in Section E.3 [Stop Re-
ply Packets], page 731. Refer
to Section E.10 [Remote Non-
Stop], page 774, for information
on how these notifications are
acknowledged by gdb.

Report an asynchronous stop
event in non-stop mode.

E.10 Remote Protocol Support for Non-Stop Mode

gdb’s remote protocol supports non-stop debugging of multi-threaded programs, as de-
scribed in Section 5.5.2 [Non-Stop Mode], page 93. If the stub supports non-stop mode,
it should report that to gdb by including ‘QNonStop+’ in its ‘qSupported’ response (see
[qSupported], page 745).

gdb typically sends a ‘QNonStop’ packet only when establishing a new connection with
the stub. Entering non-stop mode does not alter the state of any currently-running threads,
but targets must stop all threads in any already-attached processes when entering all-stop
mode. gdb uses the ‘?’ packet as necessary to probe the target state after a mode change.

In non-stop mode, when an attached process encounters an event that would otherwise be
reported with a stop reply, it uses the asynchronous notification mechanism (see Section E.9
[Notification Packets], page 772) to inform gdb. In contrast to all-stop mode, where all
threads in all processes are stopped when a stop reply is sent, in non-stop mode only the
thread reporting the stop event is stopped. That is, when reporting a ‘S’ or ‘T’ response to
indicate completion of a step operation, hitting a breakpoint, or a fault, only the affected
thread is stopped; any other still-running threads continue to run. When reporting a ‘W’ or
‘X’ response, all running threads belonging to other attached processes continue to run.

In non-stop mode, the target shall respond to the ‘?’ packet as follows. First, any
incomplete stop reply notification/‘vStopped’ sequence in progress is abandoned. The target
must begin a new sequence reporting stop events for all stopped threads, whether or not it
has previously reported those events to gdb. The first stop reply is sent as a synchronous

Appendix E: gdb Remote Serial Protocol 775

reply to the ‘?’ packet, and subsequent stop replies are sent as responses to ‘vStopped’
packets using the mechanism described above. The target must not send asynchronous stop
reply notifications until the sequence is complete. If all threads are running when the target
receives the ‘?’ packet, or if the target is not attached to any process, it shall respond ‘OK’.

If the stub supports non-stop mode, it should also support the ‘swbreak’ stop reason if
software breakpoints are supported, and the ‘hwbreak’ stop reason if hardware breakpoints
are supported (see [swbreak stop reason], page 733). This is because given the asynchronous
nature of non-stop mode, between the time a thread hits a breakpoint and the time the
event is finally processed by gdb, the breakpoint may have already been removed from the
target. Due to this, gdb needs to be able to tell whether a trap stop was caused by a
delayed breakpoint event, which should be ignored, as opposed to a random trap signal,
which should be reported to the user. Note the ‘swbreak’ feature implies that the target is
responsible for adjusting the PC when a software breakpoint triggers, if necessary, such as
on the x86 architecture.

E.11 Packet Acknowledgment

By default, when either the host or the target machine receives a packet, the first response
expected is an acknowledgment: either ‘+’ (to indicate the package was received correctly) or
‘-’ (to request retransmission). This mechanism allows the gdb remote protocol to operate
over unreliable transport mechanisms, such as a serial line.

In cases where the transport mechanism is itself reliable (such as a pipe or TCP connec-
tion), the ‘+’/‘-’ acknowledgments are redundant. It may be desirable to disable them in
that case to reduce communication overhead, or for other reasons. This can be accomplished
by means of the ‘QStartNoAckMode’ packet; see [QStartNoAckMode], page 745.

When in no-acknowledgment mode, neither the stub nor gdb shall send or expect ‘+’/‘-’
protocol acknowledgments. The packet and response format still includes the normal check-
sum, as described in Section E.1 [Overview], page 719, but the checksum may be ignored
by the receiver.

If the stub supports ‘QStartNoAckMode’ and prefers to operate in no-acknowledgment
mode, it should report that to gdb by including ‘QStartNoAckMode+’ in its response to
‘qSupported’; see [qSupported], page 745. If gdb also supports ‘QStartNoAckMode’ and it
has not been disabled via the set remote noack-packet off command (see Section 20.4
[Remote Configuration], page 311), gdb may then send a ‘QStartNoAckMode’ packet to the
stub. Only then may the stub actually turn off packet acknowledgments. gdb sends a final
‘+’ acknowledgment of the stub’s ‘OK’ response, which can be safely ignored by the stub.

Note that set remote noack-packet command only affects negotiation between gdb
and the stub when subsequent connections are made; it does not affect the protocol ac-
knowledgment state for any current connection. Since ‘+’/‘-’ acknowledgments are enabled
by default when a new connection is established, there is also no protocol request to re-
enable the acknowledgments for the current connection, once disabled.

E.12 Examples

Example sequence of a target being re-started. Notice how the restart does not get any
direct output:

-> R00

776 Debugging with gdb

<- +

target restarts

-> ?

<- +

<- T001:1234123412341234

-> +

Example sequence of a target being stepped by a single instruction:

-> G1445...

<- +

-> s

<- +

time passes

<- T001:1234123412341234

-> +

-> g

<- +

<- 1455...

-> +

E.13 File-I/O Remote Protocol Extension

E.13.1 File-I/O Overview

The File I/O remote protocol extension (short: File-I/O) allows the target to use the host’s
file system and console I/O to perform various system calls. System calls on the target
system are translated into a remote protocol packet to the host system, which then performs
the needed actions and returns a response packet to the target system. This simulates file
system operations even on targets that lack file systems.

The protocol is defined to be independent of both the host and target systems. It uses its
own internal representation of datatypes and values. Both gdb and the target’s gdb stub
are responsible for translating the system-dependent value representations into the internal
protocol representations when data is transmitted.

The communication is synchronous. A system call is possible only when gdb is waiting
for a response from the ‘C’, ‘c’, ‘S’ or ‘s’ packets. While gdb handles the request for a
system call, the target is stopped to allow deterministic access to the target’s memory.
Therefore File-I/O is not interruptible by target signals. On the other hand, it is possible
to interrupt File-I/O by a user interrupt (‘Ctrl-C’) within gdb.

The target’s request to perform a host system call does not finish the latest ‘C’, ‘c’, ‘S’
or ‘s’ action. That means, after finishing the system call, the target returns to continuing
the previous activity (continue, step). No additional continue or step request from gdb is
required.

(gdb) continue

<- target requests ’system call X’

target is stopped, gdb executes system call

-> gdb returns result

... target continues, gdb returns to wait for the target

<- target hits breakpoint and sends a Txx packet

The protocol only supports I/O on the console and to regular files on the host file system.
Character or block special devices, pipes, named pipes, sockets or any other communication
method on the host system are not supported by this protocol.

Appendix E: gdb Remote Serial Protocol 777

File I/O is not supported in non-stop mode.

E.13.2 Protocol Basics

The File-I/O protocol uses the F packet as the request as well as reply packet. Since a
File-I/O system call can only occur when gdb is waiting for a response from the continuing
or stepping target, the File-I/O request is a reply that gdb has to expect as a result of a
previous ‘C’, ‘c’, ‘S’ or ‘s’ packet. This F packet contains all information needed to allow
gdb to call the appropriate host system call:

• A unique identifier for the requested system call.

• All parameters to the system call. Pointers are given as addresses in the target memory
address space. Pointers to strings are given as pointer/length pair. Numerical values are
given as they are. Numerical control flags are given in a protocol-specific representation.

At this point, gdb has to perform the following actions.

• If the parameters include pointer values to data needed as input to a system call, gdb
requests this data from the target with a standard m packet request. This additional
communication has to be expected by the target implementation and is handled as any
other m packet.

• gdb translates all value from protocol representation to host representation as needed.
Datatypes are coerced into the host types.

• gdb calls the system call.

• It then coerces datatypes back to protocol representation.

• If the system call is expected to return data in buffer space specified by pointer pa-
rameters to the call, the data is transmitted to the target using a M or X packet. This
packet has to be expected by the target implementation and is handled as any other M
or X packet.

Eventually gdb replies with another F packet which contains all necessary information
for the target to continue. This at least contains

• Return value.

• errno, if has been changed by the system call.

• “Ctrl-C” flag.

After having done the needed type and value coercion, the target continues the latest
continue or step action.

E.13.3 The F Request Packet

The F request packet has the following format:

‘Fcall-id,parameter...’
call-id is the identifier to indicate the host system call to be called. This is just
the name of the function.

parameter. . . are the parameters to the system call. Parameters are hexadeci-
mal integer values, either the actual values in case of scalar datatypes, pointers
to target buffer space in case of compound datatypes and unspecified memory
areas, or pointer/length pairs in case of string parameters. These are appended

778 Debugging with gdb

to the call-id as a comma-delimited list. All values are transmitted in ASCII
string representation, pointer/length pairs separated by a slash.

E.13.4 The F Reply Packet

The F reply packet has the following format:

‘Fretcode,errno,Ctrl-C flag;call-specific attachment’
retcode is the return code of the system call as hexadecimal value.

errno is the errno set by the call, in protocol-specific representation. This
parameter can be omitted if the call was successful.

Ctrl-C flag is only sent if the user requested a break. In this case, errno must
be sent as well, even if the call was successful. The Ctrl-C flag itself consists of
the character ‘C’:

F0,0,C

or, if the call was interrupted before the host call has been performed:
F-1,4,C

assuming 4 is the protocol-specific representation of EINTR.

E.13.5 The ‘Ctrl-C’ Message

If the ‘Ctrl-C’ flag is set in the gdb reply packet (see Section E.13.4 [The F Reply Packet],
page 778), the target should behave as if it had gotten a break message. The meaning
for the target is “system call interrupted by SIGINT”. Consequentially, the target should
actually stop (as with a break message) and return to gdb with a T02 packet.

It’s important for the target to know in which state the system call was interrupted.
There are two possible cases:

• The system call hasn’t been performed on the host yet.

• The system call on the host has been finished.

These two states can be distinguished by the target by the value of the returned errno.
If it’s the protocol representation of EINTR, the system call hasn’t been performed. This
is equivalent to the EINTR handling on POSIX systems. In any other case, the target may
presume that the system call has been finished — successfully or not — and should behave
as if the break message arrived right after the system call.

gdb must behave reliably. If the system call has not been called yet, gdb may send the
F reply immediately, setting EINTR as errno in the packet. If the system call on the host
has been finished before the user requests a break, the full action must be finished by gdb.
This requires sending M or X packets as necessary. The F packet may only be sent when
either nothing has happened or the full action has been completed.

E.13.6 Console I/O

By default and if not explicitly closed by the target system, the file descriptors 0, 1 and 2
are connected to the gdb console. Output on the gdb console is handled as any other file
output operation (write(1, ...) or write(2, ...)). Console input is handled by gdb so
that after the target read request from file descriptor 0 all following typing is buffered until
either one of the following conditions is met:

• The user types Ctrl-c. The behaviour is as explained above, and the read system call
is treated as finished.

Appendix E: gdb Remote Serial Protocol 779

• The user presses RET. This is treated as end of input with a trailing newline.

• The user types Ctrl-d. This is treated as end of input. No trailing character (neither
newline nor ‘Ctrl-D’) is appended to the input.

If the user has typed more characters than fit in the buffer given to the read call, the
trailing characters are buffered in gdb until either another read(0, ...) is requested by
the target, or debugging is stopped at the user’s request.

E.13.7 List of Supported Calls

open

Synopsis:
int open(const char *pathname, int flags);

int open(const char *pathname, int flags, mode_t mode);

Request: ‘Fopen,pathptr/len,flags,mode’

flags is the bitwise OR of the following values:

O_CREAT If the file does not exist it will be created. The host rules apply as
far as file ownership and time stamps are concerned.

O_EXCL When used with O_CREAT, if the file already exists it is an error and
open() fails.

O_TRUNC If the file already exists and the open mode allows writing (O_RDWR
or O_WRONLY is given) it will be truncated to zero length.

O_APPEND The file is opened in append mode.

O_RDONLY The file is opened for reading only.

O_WRONLY The file is opened for writing only.

O_RDWR The file is opened for reading and writing.

Other bits are silently ignored.

mode is the bitwise OR of the following values:

S_IRUSR User has read permission.

S_IWUSR User has write permission.

S_IRGRP Group has read permission.

S_IWGRP Group has write permission.

S_IROTH Others have read permission.

S_IWOTH Others have write permission.

Other bits are silently ignored.

Return value:
open returns the new file descriptor or -1 if an error occurred.

Errors:

EEXIST pathname already exists and O_CREAT and O_EXCL were used.

780 Debugging with gdb

EISDIR pathname refers to a directory.

EACCES The requested access is not allowed.

ENAMETOOLONG

pathname was too long.

ENOENT A directory component in pathname does not exist.

ENODEV pathname refers to a device, pipe, named pipe or socket.

EROFS pathname refers to a file on a read-only filesystem and write access
was requested.

EFAULT pathname is an invalid pointer value.

ENOSPC No space on device to create the file.

EMFILE The process already has the maximum number of files open.

ENFILE The limit on the total number of files open on the system has been
reached.

EINTR The call was interrupted by the user.

close

Synopsis:
int close(int fd);

Request: ‘Fclose,fd’

Return value:
close returns zero on success, or -1 if an error occurred.

Errors:

EBADF fd isn’t a valid open file descriptor.

EINTR The call was interrupted by the user.

read

Synopsis:
int read(int fd, void *buf, unsigned int count);

Request: ‘Fread,fd,bufptr,count’

Return value:
On success, the number of bytes read is returned. Zero indicates end of file. If
count is zero, read returns zero as well. On error, -1 is returned.

Errors:

EBADF fd is not a valid file descriptor or is not open for reading.

EFAULT bufptr is an invalid pointer value.

EINTR The call was interrupted by the user.

Appendix E: gdb Remote Serial Protocol 781

write

Synopsis:

int write(int fd, const void *buf, unsigned int count);

Request: ‘Fwrite,fd,bufptr,count’

Return value:
On success, the number of bytes written are returned. Zero indicates nothing
was written. On error, -1 is returned.

Errors:

EBADF fd is not a valid file descriptor or is not open for writing.

EFAULT bufptr is an invalid pointer value.

EFBIG An attempt was made to write a file that exceeds the host-specific
maximum file size allowed.

ENOSPC No space on device to write the data.

EINTR The call was interrupted by the user.

lseek

Synopsis:

long lseek (int fd, long offset, int flag);

Request: ‘Flseek,fd,offset,flag’

flag is one of:

SEEK_SET The offset is set to offset bytes.

SEEK_CUR The offset is set to its current location plus offset bytes.

SEEK_END The offset is set to the size of the file plus offset bytes.

Return value:
On success, the resulting unsigned offset in bytes from the beginning of the file
is returned. Otherwise, a value of -1 is returned.

Errors:

EBADF fd is not a valid open file descriptor.

ESPIPE fd is associated with the gdb console.

EINVAL flag is not a proper value.

EINTR The call was interrupted by the user.

rename

Synopsis:

int rename(const char *oldpath, const char *newpath);

Request: ‘Frename,oldpathptr/len,newpathptr/len’

782 Debugging with gdb

Return value:
On success, zero is returned. On error, -1 is returned.

Errors:

EISDIR newpath is an existing directory, but oldpath is not a directory.

EEXIST newpath is a non-empty directory.

EBUSY oldpath or newpath is a directory that is in use by some process.

EINVAL An attempt was made to make a directory a subdirectory of itself.

ENOTDIR A component used as a directory in oldpath or new path is not a
directory. Or oldpath is a directory and newpath exists but is not
a directory.

EFAULT oldpathptr or newpathptr are invalid pointer values.

EACCES No access to the file or the path of the file.

ENAMETOOLONG

oldpath or newpath was too long.

ENOENT A directory component in oldpath or newpath does not exist.

EROFS The file is on a read-only filesystem.

ENOSPC The device containing the file has no room for the new directory
entry.

EINTR The call was interrupted by the user.

unlink

Synopsis:
int unlink(const char *pathname);

Request: ‘Funlink,pathnameptr/len’

Return value:
On success, zero is returned. On error, -1 is returned.

Errors:

EACCES No access to the file or the path of the file.

EPERM The system does not allow unlinking of directories.

EBUSY The file pathname cannot be unlinked because it’s being used by
another process.

EFAULT pathnameptr is an invalid pointer value.

ENAMETOOLONG

pathname was too long.

ENOENT A directory component in pathname does not exist.

ENOTDIR A component of the path is not a directory.

EROFS The file is on a read-only filesystem.

EINTR The call was interrupted by the user.

Appendix E: gdb Remote Serial Protocol 783

stat/fstat

Synopsis:
int stat(const char *pathname, struct stat *buf);

int fstat(int fd, struct stat *buf);

Request: ‘Fstat,pathnameptr/len,bufptr’
‘Ffstat,fd,bufptr’

Return value:
On success, zero is returned. On error, -1 is returned.

Errors:

EBADF fd is not a valid open file.

ENOENT A directory component in pathname does not exist or the path is
an empty string.

ENOTDIR A component of the path is not a directory.

EFAULT pathnameptr is an invalid pointer value.

EACCES No access to the file or the path of the file.

ENAMETOOLONG

pathname was too long.

EINTR The call was interrupted by the user.

gettimeofday

Synopsis:
int gettimeofday(struct timeval *tv, void *tz);

Request: ‘Fgettimeofday,tvptr,tzptr’

Return value:
On success, 0 is returned, -1 otherwise.

Errors:

EINVAL tz is a non-NULL pointer.

EFAULT tvptr and/or tzptr is an invalid pointer value.

isatty

Synopsis:
int isatty(int fd);

Request: ‘Fisatty,fd’

Return value:
Returns 1 if fd refers to the gdb console, 0 otherwise.

Errors:

EINTR The call was interrupted by the user.

Note that the isatty call is treated as a special case: it returns 1 to the target if the
file descriptor is attached to the gdb console, 0 otherwise. Implementing through system
calls would require implementing ioctl and would be more complex than needed.

784 Debugging with gdb

system

Synopsis:
int system(const char *command);

Request: ‘Fsystem,commandptr/len’

Return value:
If len is zero, the return value indicates whether a shell is available. A zero
return value indicates a shell is not available. For non-zero len, the value re-
turned is -1 on error and the return status of the command otherwise. Only
the exit status of the command is returned, which is extracted from the host’s
system return value by calling WEXITSTATUS(retval). In case /bin/sh could
not be executed, 127 is returned.

Errors:

EINTR The call was interrupted by the user.

gdb takes over the full task of calling the necessary host calls to perform the system

call. The return value of system on the host is simplified before it’s returned to the target.
Any termination signal information from the child process is discarded, and the return value
consists entirely of the exit status of the called command.

Due to security concerns, the system call is by default refused by gdb. The user has to
allow this call explicitly with the set remote system-call-allowed 1 command.

set remote system-call-allowed

Control whether to allow the system calls in the File I/O protocol for the
remote target. The default is zero (disabled).

show remote system-call-allowed

Show whether the system calls are allowed in the File I/O protocol.

E.13.8 Protocol-specific Representation of Datatypes

Integral Datatypes

The integral datatypes used in the system calls are int, unsigned int, long, unsigned
long, mode_t, and time_t.

int, unsigned int, mode_t and time_t are implemented as 32 bit values in this protocol.

long and unsigned long are implemented as 64 bit types.

See [Limits], page 787, for corresponding MIN and MAX values (similar to those in
limits.h) to allow range checking on host and target.

time_t datatypes are defined as seconds since the Epoch.

All integral datatypes transferred as part of a memory read or write of a structured
datatype e.g. a struct stat have to be given in big endian byte order.

Pointer Values

Pointers to target data are transmitted as they are. An exception is made for pointers to
buffers for which the length isn’t transmitted as part of the function call, namely strings.
Strings are transmitted as a pointer/length pair, both as hex values, e.g.

1aaf/12

Appendix E: gdb Remote Serial Protocol 785

which is a pointer to data of length 18 bytes at position 0x1aaf. The length is defined as the
full string length in bytes, including the trailing null byte. For example, the string "hello

world" at address 0x123456 is transmitted as
123456/d

Memory Transfer

Structured data which is transferred using a memory read or write (for example, a struct

stat) is expected to be in a protocol-specific format with all scalar multibyte datatypes
being big endian. Translation to this representation needs to be done both by the target
before the F packet is sent, and by gdb before it transfers memory to the target. Transferred
pointers to structured data should point to the already-coerced data at any time.

struct stat

The buffer of type struct stat used by the target and gdb is defined as follows:
struct stat {

unsigned int st_dev; /* device */

unsigned int st_ino; /* inode */

mode_t st_mode; /* protection */

unsigned int st_nlink; /* number of hard links */

unsigned int st_uid; /* user ID of owner */

unsigned int st_gid; /* group ID of owner */

unsigned int st_rdev; /* device type (if inode device) */

unsigned long st_size; /* total size, in bytes */

unsigned long st_blksize; /* blocksize for filesystem I/O */

unsigned long st_blocks; /* number of blocks allocated */

time_t st_atime; /* time of last access */

time_t st_mtime; /* time of last modification */

time_t st_ctime; /* time of last change */

};

The integral datatypes conform to the definitions given in the appropriate section (see
[Integral Datatypes], page 784, for details) so this structure is of size 64 bytes.

The values of several fields have a restricted meaning and/or range of values.

st_dev A value of 0 represents a file, 1 the console.

st_ino No valid meaning for the target. Transmitted unchanged.

st_mode Valid mode bits are described in Section E.13.9 [Constants], page 786. Any
other bits have currently no meaning for the target.

st_uid

st_gid

st_rdev No valid meaning for the target. Transmitted unchanged.

st_atime

st_mtime

st_ctime These values have a host and file system dependent accuracy. Especially on
Windows hosts, the file system may not support exact timing values.

The target gets a struct stat of the above representation and is responsible for coercing
it to the target representation before continuing.

Note that due to size differences between the host, target, and protocol representations
of struct stat members, these members could eventually get truncated on the target.

786 Debugging with gdb

struct timeval

The buffer of type struct timeval used by the File-I/O protocol is defined as follows:
struct timeval {

time_t tv_sec; /* second */

long tv_usec; /* microsecond */

};

The integral datatypes conform to the definitions given in the appropriate section (see
[Integral Datatypes], page 784, for details) so this structure is of size 8 bytes.

E.13.9 Constants

The following values are used for the constants inside of the protocol. gdb and target are
responsible for translating these values before and after the call as needed.

Open Flags

All values are given in hexadecimal representation.
O_RDONLY 0x0

O_WRONLY 0x1

O_RDWR 0x2

O_APPEND 0x8

O_CREAT 0x200

O_TRUNC 0x400

O_EXCL 0x800

mode t Values

All values are given in octal representation.
S_IFREG 0100000

S_IFDIR 040000

S_IRUSR 0400

S_IWUSR 0200

S_IXUSR 0100

S_IRGRP 040

S_IWGRP 020

S_IXGRP 010

S_IROTH 04

S_IWOTH 02

S_IXOTH 01

Errno Values

All values are given in decimal representation.
EPERM 1

ENOENT 2

EINTR 4

EBADF 9

EACCES 13

EFAULT 14

EBUSY 16

EEXIST 17

ENODEV 19

ENOTDIR 20

EISDIR 21

EINVAL 22

ENFILE 23

Appendix E: gdb Remote Serial Protocol 787

EMFILE 24

EFBIG 27

ENOSPC 28

ESPIPE 29

EROFS 30

ENAMETOOLONG 91

EUNKNOWN 9999

EUNKNOWN is used as a fallback error value if a host system returns any error value not
in the list of supported error numbers.

Lseek Flags
SEEK_SET 0

SEEK_CUR 1

SEEK_END 2

Limits

All values are given in decimal representation.
INT_MIN -2147483648

INT_MAX 2147483647

UINT_MAX 4294967295

LONG_MIN -9223372036854775808

LONG_MAX 9223372036854775807

ULONG_MAX 18446744073709551615

E.13.10 File-I/O Examples

Example sequence of a write call, file descriptor 3, buffer is at target address 0x1234, 6
bytes should be written:

<- Fwrite,3,1234,6

request memory read from target

-> m1234,6

<- XXXXXX

return "6 bytes written"

-> F6

Example sequence of a read call, file descriptor 3, buffer is at target address 0x1234, 6
bytes should be read:

<- Fread,3,1234,6

request memory write to target

-> X1234,6:XXXXXX

return "6 bytes read"

-> F6

Example sequence of a read call, call fails on the host due to invalid file descriptor
(EBADF):

<- Fread,3,1234,6

-> F-1,9

Example sequence of a read call, user presses Ctrl-c before syscall on host is called:
<- Fread,3,1234,6

-> F-1,4,C

<- T02

Example sequence of a read call, user presses Ctrl-c after syscall on host is called:
<- Fread,3,1234,6

-> X1234,6:XXXXXX

<- T02

788 Debugging with gdb

E.14 Library List Format

On some platforms, a dynamic loader (e.g. ld.so) runs in the same process as your appli-
cation to manage libraries. In this case, gdb can use the loader’s symbol table and normal
memory operations to maintain a list of shared libraries. On other platforms, the operating
system manages loaded libraries. gdb can not retrieve the list of currently loaded libraries
through memory operations, so it uses the ‘qXfer:libraries:read’ packet (see [qXfer li-
brary list read], page 758) instead. The remote stub queries the target’s operating system
and reports which libraries are loaded.

The ‘qXfer:libraries:read’ packet returns an XML document which lists loaded li-
braries and their offsets. Each library has either an associated name or begin and end
addresses and one or more segment or section base addresses, which report where the li-
brary was loaded in memory.

It may optionally contain a request for acknowledging that library. gdb indicates sup-
port for acknowledging libraries by supplying an appropriate ‘qSupported’ feature (see
[qSupported], page 745). The remote stub must not request acknowledgement of libraries
unless gdb indicated support for it.

For the common case of libraries that are fully linked binaries, the library should have
a list of segments. If the target supports dynamic linking of a relocatable object file, its
library XML element should instead include a list of allocated sections. The segment or
section bases are start addresses, not relocation offsets; they do not depend on the library’s
link-time base addresses.

gdb must be linked with the Expat library to support XML library lists. See [Expat],
page 697.

gdb indicates support for in-memory library elements by supplying the
qXfer:libraries:read:in-memory-library+ ‘qSupported’ feature (see [qSupported],
page 745).

A simple memory map, with one loaded library relocated by a single offset, looks like
this:

<library-list>

<library name="/lib/libc.so.6">

<segment address="0x10000000"/>

</library>

</library-list>

A corresponding memory map for an in-memory library with a request for acknowledge-
ment looks like this:

<library-list>

<in-memory-library begin="0xa000000" end="0xa001000" ack="yes">

<segment address="0x10000000"/>

</library>

</library-list>

GDB will acknowledge the library with a ‘vAck;library’ or, as in this case, a
‘vAck;in-memory-library’ packet. See [vAck packet], page 729.

Another simple memory map, with one loaded library with three allocated sections (.text,
.data, .bss), looks like this:

<library-list>

<library name="sharedlib.o">

Appendix E: gdb Remote Serial Protocol 789

<section address="0x10000000"/>

<section address="0x20000000"/>

<section address="0x30000000"/>

</library>

</library-list>

The format of a library list is described by this DTD:
<!-- library-list: Root element with versioning -->

<!ELEMENT library-list (library | in-memory-library)*>

<!ATTLIST library-list version CDATA #FIXED "1.2">

<!ELEMENT library (segment*, section*)>

<!ATTLIST library name CDATA #REQUIRED

ack (yes | no) ’no’>

<!ELEMENT in-memory-library (segment*, section*)>

<!ATTLIST in-memory-library begin CDATA #REQUIRED

end CDATA #REQUIRED

ack (yes | no) ’no’>

<!ELEMENT segment EMPTY>

<!ATTLIST segment address CDATA #REQUIRED>

<!ELEMENT section EMPTY>

<!ATTLIST section address CDATA #REQUIRED>

In addition, segments and section descriptors cannot be mixed within a single library
element, and you must supply at least one segment or section for each library.

E.15 Library List Format for SVR4 Targets

On SVR4 platforms gdb can use the symbol table of a dynamic loader (e.g. ld.so) and
normal memory operations to maintain a list of shared libraries. Still a special library list
provided by this packet is more efficient for the gdb remote protocol.

The ‘qXfer:libraries-svr4:read’ packet returns an XML document which lists loaded
libraries and their SVR4 linker parameters. For each library on SVR4 target, the following
parameters are reported:

− name, the absolute file name from the l_name field of struct link_map.

− lm with address of struct link_map used for TLS (Thread Local Storage) access.

− l_addr, the displacement as read from the field l_addr of struct link_map. For
prelinked libraries this is not an absolute memory address. It is a displacement of
absolute memory address against address the file was prelinked to during the library
load.

− l_ld, which is memory address of the PT_DYNAMIC segment

Additionally the single main-lm attribute specifies address of struct link_map used for
the main executable. This parameter is used for TLS access and its presence is optional.

gdb must be linked with the Expat library to support XML SVR4 library lists. See
[Expat], page 697.

A simple memory map, with two loaded libraries (which do not use prelink), looks like
this:

<library-list-svr4 version="1.0" main-lm="0xe4f8f8">

<library name="/lib/ld-linux.so.2" lm="0xe4f51c" l_addr="0xe2d000"

l_ld="0xe4eefc"/>

<library name="/lib/libc.so.6" lm="0xe4fbe8" l_addr="0x154000"

l_ld="0x152350"/>

790 Debugging with gdb

</library-list-svr>

The format of an SVR4 library list is described by this DTD:
<!-- library-list-svr4: Root element with versioning -->

<!ELEMENT library-list-svr4 (library)*>

<!ATTLIST library-list-svr4 version CDATA #FIXED "1.0">

<!ATTLIST library-list-svr4 main-lm CDATA #IMPLIED>

<!ELEMENT library EMPTY>

<!ATTLIST library name CDATA #REQUIRED>

<!ATTLIST library lm CDATA #REQUIRED>

<!ATTLIST library l_addr CDATA #REQUIRED>

<!ATTLIST library l_ld CDATA #REQUIRED>

E.16 Memory Map Format

To be able to write into flash memory, gdb needs to obtain a memory map from the target.
This section describes the format of the memory map.

The memory map is obtained using the ‘qXfer:memory-map:read’ (see [qXfer memory
map read], page 759) packet and is an XML document that lists memory regions.

gdb must be linked with the Expat library to support XML memory maps. See [Expat],
page 697.

The top-level structure of the document is shown below:
<?xml version="1.0"?>

<!DOCTYPE memory-map

PUBLIC "+//IDN gnu.org//DTD GDB Memory Map V1.0//EN"

"http://sourceware.org/gdb/gdb-memory-map.dtd">

<memory-map>

region...

</memory-map>

Each region can be either:

• A region of RAM starting at addr and extending for length bytes from there:
<memory type="ram" start="addr" length="length"/>

• A region of read-only memory:
<memory type="rom" start="addr" length="length"/>

• A region of flash memory, with erasure blocks blocksize bytes in length:
<memory type="flash" start="addr" length="length">

<property name="blocksize">blocksize</property>

</memory>

Regions must not overlap. gdb assumes that areas of memory not covered by the memory
map are RAM, and uses the ordinary ‘M’ and ‘X’ packets to write to addresses in such ranges.

The formal DTD for memory map format is given below:
<!-- ... -->

<!-- Memory Map XML DTD -->

<!-- File: memory-map.dtd -->

<!-- -->

<!-- memory-map.dtd -->

<!-- memory-map: Root element with versioning -->

<!ELEMENT memory-map (memory)*>

<!ATTLIST memory-map version CDATA #FIXED "1.0.0">

<!ELEMENT memory (property)*>

<!-- memory: Specifies a memory region,

Appendix E: gdb Remote Serial Protocol 791

and its type, or device. -->

<!ATTLIST memory type (ram|rom|flash) #REQUIRED

start CDATA #REQUIRED

length CDATA #REQUIRED>

<!-- property: Generic attribute tag -->

<!ELEMENT property (#PCDATA | property)*>

<!ATTLIST property name (blocksize) #REQUIRED>

E.17 Thread List Format

To efficiently update the list of threads and their attributes, gdb issues the
‘qXfer:threads:read’ packet (see [qXfer threads read], page 759) and obtains the XML
document with the following structure:

<?xml version="1.0"?>

<threads>

<thread id="id" core="0" name="name">

... description ...

</thread>

</threads>

Each ‘thread’ element must have the ‘id’ attribute that identifies the thread (see [thread-
id syntax], page 720). The ‘core’ attribute, if present, specifies which processor core the
thread was last executing on. The ‘name’ attribute, if present, specifies the human-readable
name of the thread. The content of the of ‘thread’ element is interpreted as human-readable
auxiliary information. The ‘handle’ attribute, if present, is a hex encoded representation
of the thread handle.

E.18 Traceframe Info Format

To be able to know which objects in the inferior can be examined when inspecting a trace-
point hit, gdb needs to obtain the list of memory ranges, registers and trace state variables
that have been collected in a traceframe.

This list is obtained using the ‘qXfer:traceframe-info:read’ (see [qXfer traceframe
info read], page 759) packet and is an XML document.

gdb must be linked with the Expat library to support XML traceframe info discovery.
See [Expat], page 697.

The top-level structure of the document is shown below:

<?xml version="1.0"?>

<!DOCTYPE traceframe-info

PUBLIC "+//IDN gnu.org//DTD GDB Memory Map V1.0//EN"

"http://sourceware.org/gdb/gdb-traceframe-info.dtd">

<traceframe-info>

block...

</traceframe-info>

Each traceframe block can be either:

• A region of collected memory starting at addr and extending for length bytes from
there:

<memory start="addr" length="length"/>

• A block indicating trace state variable numbered number has been collected:

<tvar id="number"/>

792 Debugging with gdb

The formal DTD for the traceframe info format is given below:
<!ELEMENT traceframe-info (memory | tvar)* >

<!ATTLIST traceframe-info version CDATA #FIXED "1.0">

<!ELEMENT memory EMPTY>

<!ATTLIST memory start CDATA #REQUIRED

length CDATA #REQUIRED>

<!ELEMENT tvar>

<!ATTLIST tvar id CDATA #REQUIRED>

E.19 Branch Trace Format

In order to display the branch trace of an inferior thread, gdb needs to obtain the list of
branches. This list is represented as list of sequential code blocks that are connected via
branches. The code in each block has been executed sequentially.

This list is obtained using the ‘qXfer:btrace:read’ (see [qXfer btrace read], page 757)
packet and is an XML document.

gdb must be linked with the Expat library to support XML traceframe info discovery.
See [Expat], page 697.

The top-level structure of the document is shown below:
<?xml version="1.0"?>

<!DOCTYPE btrace

PUBLIC "+//IDN gnu.org//DTD GDB Branch Trace V1.0//EN"

"http://sourceware.org/gdb/gdb-btrace.dtd">

<btrace>

block...

</btrace>

• A block of sequentially executed instructions starting at begin and ending at end:
<block begin="begin" end="end"/>

The formal DTD for the branch trace format is given below:
<!ELEMENT btrace (block* | pt) >

<!ATTLIST btrace version CDATA #FIXED "1.0">

<!ELEMENT block EMPTY>

<!ATTLIST block begin CDATA #REQUIRED

end CDATA #REQUIRED>

<!ELEMENT pt (pt-config?, raw?)>

<!ELEMENT pt-config (cpu?)>

<!ELEMENT cpu EMPTY>

<!ATTLIST cpu vendor CDATA #REQUIRED

family CDATA #REQUIRED

model CDATA #REQUIRED

stepping CDATA #REQUIRED>

<!ELEMENT raw (#PCDATA)>

E.20 Branch Trace Configuration Format

For each inferior thread, gdb can obtain the branch trace configuration using the
‘qXfer:btrace-conf:read’ (see [qXfer btrace-conf read], page 757) packet.

Appendix E: gdb Remote Serial Protocol 793

The configuration describes the branch trace format and configuration settings for that
format. The following information is described:

bts This thread uses the Branch Trace Store (BTS) format.

size The size of the BTS ring buffer in bytes.

pt This thread uses the Intel Processor Trace (Intel PT) format.

size The size of the Intel PT ring buffer in bytes.

gdb must be linked with the Expat library to support XML branch trace configuration
discovery. See [Expat], page 697.

The formal DTD for the branch trace configuration format is given below:
<!ELEMENT btrace-conf (bts?, pt?)>

<!ATTLIST btrace-conf version CDATA #FIXED "1.0">

<!ELEMENT bts EMPTY>

<!ATTLIST bts size CDATA #IMPLIED>

<!ELEMENT pt EMPTY>

<!ATTLIST pt size CDATA #IMPLIED>

795

Appendix F The GDB Agent Expression
Mechanism

In some applications, it is not feasible for the debugger to interrupt the program’s execution
long enough for the developer to learn anything helpful about its behavior. If the program’s
correctness depends on its real-time behavior, delays introduced by a debugger might cause
the program to fail, even when the code itself is correct. It is useful to be able to observe
the program’s behavior without interrupting it.

Using GDB’s trace and collect commands, the user can specify locations in the pro-
gram, and arbitrary expressions to evaluate when those locations are reached. Later, using
the tfind command, she can examine the values those expressions had when the program
hit the trace points. The expressions may also denote objects in memory — structures or
arrays, for example — whose values GDB should record; while visiting a particular tra-
cepoint, the user may inspect those objects as if they were in memory at that moment.
However, because GDB records these values without interacting with the user, it can do so
quickly and unobtrusively, hopefully not disturbing the program’s behavior.

When GDB is debugging a remote target, the GDB agent code running on the target
computes the values of the expressions itself. To avoid having a full symbolic expression
evaluator on the agent, GDB translates expressions in the source language into a simpler
bytecode language, and then sends the bytecode to the agent; the agent then executes the
bytecode, and records the values for GDB to retrieve later.

The bytecode language is simple; there are forty-odd opcodes, the bulk of which are the
usual vocabulary of C operands (addition, subtraction, shifts, and so on) and various sizes
of literals and memory reference operations. The bytecode interpreter operates strictly on
machine-level values — various sizes of integers and floating point numbers — and requires
no information about types or symbols; thus, the interpreter’s internal data structures are
simple, and each bytecode requires only a few native machine instructions to implement
it. The interpreter is small, and strict limits on the memory and time required to evaluate
an expression are easy to determine, making it suitable for use by the debugging agent in
real-time applications.

F.1 General Bytecode Design

The agent represents bytecode expressions as an array of bytes. Each instruction is one
byte long (thus the term bytecode). Some instructions are followed by operand bytes; for
example, the goto instruction is followed by a destination for the jump.

The bytecode interpreter is a stack-based machine; most instructions pop their operands
off the stack, perform some operation, and push the result back on the stack for the next
instruction to consume. Each element of the stack may contain either a integer or a floating
point value; these values are as many bits wide as the largest integer that can be directly
manipulated in the source language. Stack elements carry no record of their type; bytecode
could push a value as an integer, then pop it as a floating point value. However, GDB will
not generate code which does this. In C, one might define the type of a stack element as
follows:

union agent_val {

LONGEST l;

DOUBLEST d;

796 Debugging with gdb

};

where LONGEST and DOUBLEST are typedef names for the largest integer and floating point
types on the machine.

By the time the bytecode interpreter reaches the end of the expression, the value of
the expression should be the only value left on the stack. For tracing applications, trace
bytecodes in the expression will have recorded the necessary data, and the value on the
stack may be discarded. For other applications, like conditional breakpoints, the value may
be useful.

Separate from the stack, the interpreter has two registers:

pc The address of the next bytecode to execute.

start The address of the start of the bytecode expression, necessary for interpreting
the goto and if_goto instructions.

Neither of these registers is directly visible to the bytecode language itself, but they are
useful for defining the meanings of the bytecode operations.

There are no instructions to perform side effects on the running program, or call the pro-
gram’s functions; we assume that these expressions are only used for unobtrusive debugging,
not for patching the running code.

Most bytecode instructions do not distinguish between the various sizes of values, and
operate on full-width values; the upper bits of the values are simply ignored, since they do
not usually make a difference to the value computed. The exceptions to this rule are:

memory reference instructions (refn)
There are distinct instructions to fetch different word sizes from memory. Once
on the stack, however, the values are treated as full-size integers. They may
need to be sign-extended; the ext instruction exists for this purpose.

the sign-extension instruction (ext n)
These clearly need to know which portion of their operand is to be extended to
occupy the full length of the word.

If the interpreter is unable to evaluate an expression completely for some reason (a mem-
ory location is inaccessible, or a divisor is zero, for example), we say that interpretation
“terminates with an error”. This means that the problem is reported back to the inter-
preter’s caller in some helpful way. In general, code using agent expressions should assume
that they may attempt to divide by zero, fetch arbitrary memory locations, and misbehave
in other ways.

Even complicated C expressions compile to a few bytecode instructions; for example, the
expression x + y * z would typically produce code like the following, assuming that x and
y live in registers, and z is a global variable holding a 32-bit int:

reg 1

reg 2

const32 address of z

ref32

ext 32

mul

add

Appendix F: The GDB Agent Expression Mechanism 797

end

In detail, these mean:

reg 1 Push the value of register 1 (presumably holding x) onto the stack.

reg 2 Push the value of register 2 (holding y).

const32 address of z

Push the address of z onto the stack.

ref32 Fetch a 32-bit word from the address at the top of the stack; replace the address
on the stack with the value. Thus, we replace the address of z with z’s value.

ext 32 Sign-extend the value on the top of the stack from 32 bits to full length. This
is necessary because z is a signed integer.

mul Pop the top two numbers on the stack, multiply them, and push their product.
Now the top of the stack contains the value of the expression y * z.

add Pop the top two numbers, add them, and push the sum. Now the top of the
stack contains the value of x + y * z.

end Stop executing; the value left on the stack top is the value to be recorded.

F.2 Bytecode Descriptions

Each bytecode description has the following form:

add (0x02): a b ⇒ a+b
Pop the top two stack items, a and b, as integers; push their sum, as an integer.

In this example, add is the name of the bytecode, and (0x02) is the one-byte value used
to encode the bytecode, in hexadecimal. The phrase “a b ⇒ a+b” shows the stack before
and after the bytecode executes. Beforehand, the stack must contain at least two values,
a and b; since the top of the stack is to the right, b is on the top of the stack, and a is
underneath it. After execution, the bytecode will have popped a and b from the stack, and
replaced them with a single value, a+b. There may be other values on the stack below those
shown, but the bytecode affects only those shown.

Here is another example:

const8 (0x22) n: ⇒ n
Push the 8-bit integer constant n on the stack, without sign extension.

In this example, the bytecode const8 takes an operand n directly from the bytecode
stream; the operand follows the const8 bytecode itself. We write any such operands imme-
diately after the name of the bytecode, before the colon, and describe the exact encoding
of the operand in the bytecode stream in the body of the bytecode description.

For the const8 bytecode, there are no stack items given before the⇒; this simply means
that the bytecode consumes no values from the stack. If a bytecode consumes no values, or
produces no values, the list on either side of the ⇒ may be empty.

If a value is written as a, b, or n, then the bytecode treats it as an integer. If a value is
written is addr, then the bytecode treats it as an address.

798 Debugging with gdb

We do not fully describe the floating point operations here; although this design can be
extended in a clean way to handle floating point values, they are not of immediate interest
to the customer, so we avoid describing them, to save time.

float (0x01): ⇒
Prefix for floating-point bytecodes. Not implemented yet.

add (0x02): a b ⇒ a+b
Pop two integers from the stack, and push their sum, as an integer.

sub (0x03): a b ⇒ a-b
Pop two integers from the stack, subtract the top value from the next-to-top
value, and push the difference.

mul (0x04): a b ⇒ a*b
Pop two integers from the stack, multiply them, and push the product on the
stack. Note that, when one multiplies two n-bit numbers yielding another n-bit
number, it is irrelevant whether the numbers are signed or not; the results are
the same.

div_signed (0x05): a b ⇒ a/b
Pop two signed integers from the stack; divide the next-to-top value by the top
value, and push the quotient. If the divisor is zero, terminate with an error.

div_unsigned (0x06): a b ⇒ a/b
Pop two unsigned integers from the stack; divide the next-to-top value by the
top value, and push the quotient. If the divisor is zero, terminate with an error.

rem_signed (0x07): a b ⇒ a modulo b
Pop two signed integers from the stack; divide the next-to-top value by the top
value, and push the remainder. If the divisor is zero, terminate with an error.

rem_unsigned (0x08): a b ⇒ a modulo b
Pop two unsigned integers from the stack; divide the next-to-top value by the
top value, and push the remainder. If the divisor is zero, terminate with an
error.

lsh (0x09): a b ⇒ a<<b
Pop two integers from the stack; let a be the next-to-top value, and b be the
top value. Shift a left by b bits, and push the result.

rsh_signed (0x0a): a b ⇒ (signed)a>>b
Pop two integers from the stack; let a be the next-to-top value, and b be the
top value. Shift a right by b bits, inserting copies of the top bit at the high
end, and push the result.

rsh_unsigned (0x0b): a b ⇒ a>>b
Pop two integers from the stack; let a be the next-to-top value, and b be the
top value. Shift a right by b bits, inserting zero bits at the high end, and push
the result.

log_not (0x0e): a ⇒ !a
Pop an integer from the stack; if it is zero, push the value one; otherwise, push
the value zero.

Appendix F: The GDB Agent Expression Mechanism 799

bit_and (0x0f): a b ⇒ a&b
Pop two integers from the stack, and push their bitwise and.

bit_or (0x10): a b ⇒ a|b
Pop two integers from the stack, and push their bitwise or.

bit_xor (0x11): a b ⇒ a^b
Pop two integers from the stack, and push their bitwise exclusive-or.

bit_not (0x12): a ⇒ ~a
Pop an integer from the stack, and push its bitwise complement.

equal (0x13): a b ⇒ a=b
Pop two integers from the stack; if they are equal, push the value one; otherwise,
push the value zero.

less_signed (0x14): a b ⇒ a<b
Pop two signed integers from the stack; if the next-to-top value is less than the
top value, push the value one; otherwise, push the value zero.

less_unsigned (0x15): a b ⇒ a<b
Pop two unsigned integers from the stack; if the next-to-top value is less than
the top value, push the value one; otherwise, push the value zero.

ext (0x16) n: a ⇒ a, sign-extended from n bits
Pop an unsigned value from the stack; treating it as an n-bit twos-complement
value, extend it to full length. This means that all bits to the left of bit n-1
(where the least significant bit is bit 0) are set to the value of bit n-1. Note
that n may be larger than or equal to the width of the stack elements of the
bytecode engine; in this case, the bytecode should have no effect.

The number of source bits to preserve, n, is encoded as a single byte unsigned
integer following the ext bytecode.

zero_ext (0x2a) n: a ⇒ a, zero-extended from n bits
Pop an unsigned value from the stack; zero all but the bottom n bits.

The number of source bits to preserve, n, is encoded as a single byte unsigned
integer following the zero_ext bytecode.

ref8 (0x17): addr ⇒ a
ref16 (0x18): addr ⇒ a
ref32 (0x19): addr ⇒ a
ref64 (0x1a): addr ⇒ a

Pop an address addr from the stack. For bytecode refn, fetch an n-bit value
from addr, using the natural target endianness. Push the fetched value as an
unsigned integer.

Note that addr may not be aligned in any particular way; the refn bytecodes
should operate correctly for any address.

If attempting to access memory at addr would cause a processor exception of
some sort, terminate with an error.

800 Debugging with gdb

ref_float (0x1b): addr ⇒ d
ref_double (0x1c): addr ⇒ d
ref_long_double (0x1d): addr ⇒ d
l_to_d (0x1e): a ⇒ d
d_to_l (0x1f): d ⇒ a

Not implemented yet.

dup (0x28): a => a a
Push another copy of the stack’s top element.

swap (0x2b): a b => b a
Exchange the top two items on the stack.

pop (0x29): a =>
Discard the top value on the stack.

pick (0x32) n: a . . . b => a . . . b a
Duplicate an item from the stack and push it on the top of the stack. n, a single
byte, indicates the stack item to copy. If n is zero, this is the same as dup; if n
is one, it copies the item under the top item, etc. If n exceeds the number of
items on the stack, terminate with an error.

rot (0x33): a b c => c a b
Rotate the top three items on the stack. The top item (c) becomes the third
item, the next-to-top item (b) becomes the top item and the third item (a)
from the top becomes the next-to-top item.

if_goto (0x20) offset: a ⇒
Pop an integer off the stack; if it is non-zero, branch to the given offset in the
bytecode string. Otherwise, continue to the next instruction in the bytecode
stream. In other words, if a is non-zero, set the pc register to start + offset.
Thus, an offset of zero denotes the beginning of the expression.

The offset is stored as a sixteen-bit unsigned value, stored immediately fol-
lowing the if_goto bytecode. It is always stored most significant byte first,
regardless of the target’s normal endianness. The offset is not guaranteed to
fall at any particular alignment within the bytecode stream; thus, on machines
where fetching a 16-bit on an unaligned address raises an exception, you should
fetch the offset one byte at a time.

goto (0x21) offset: ⇒
Branch unconditionally to offset; in other words, set the pc register to start +

offset.

The offset is stored in the same way as for the if_goto bytecode.

const8 (0x22) n: ⇒ n
const16 (0x23) n: ⇒ n
const32 (0x24) n: ⇒ n
const64 (0x25) n: ⇒ n

Push the integer constant n on the stack, without sign extension. To produce a
small negative value, push a small twos-complement value, and then sign-extend
it using the ext bytecode.

Appendix F: The GDB Agent Expression Mechanism 801

The constant n is stored in the appropriate number of bytes following the
constb bytecode. The constant n is always stored most significant byte first,
regardless of the target’s normal endianness. The constant is not guaranteed to
fall at any particular alignment within the bytecode stream; thus, on machines
where fetching a 16-bit on an unaligned address raises an exception, you should
fetch n one byte at a time.

reg (0x26) n: ⇒ a
Push the value of register number n, without sign extension. The registers are
numbered following GDB’s conventions.

The register number n is encoded as a 16-bit unsigned integer immediately fol-
lowing the reg bytecode. It is always stored most significant byte first, regard-
less of the target’s normal endianness. The register number is not guaranteed to
fall at any particular alignment within the bytecode stream; thus, on machines
where fetching a 16-bit on an unaligned address raises an exception, you should
fetch the register number one byte at a time.

getv (0x2c) n: ⇒ v
Push the value of trace state variable number n, without sign extension.

The variable number n is encoded as a 16-bit unsigned integer immediately
following the getv bytecode. It is always stored most significant byte first,
regardless of the target’s normal endianness. The variable number is not guar-
anteed to fall at any particular alignment within the bytecode stream; thus, on
machines where fetching a 16-bit on an unaligned address raises an exception,
you should fetch the register number one byte at a time.

setv (0x2d) n: v ⇒ v
Set trace state variable number n to the value found on the top of the stack.
The stack is unchanged, so that the value is readily available if the assignment
is part of a larger expression. The handling of n is as described for getv.

trace (0x0c): addr size ⇒
Record the contents of the size bytes at addr in a trace buffer, for later retrieval
by GDB.

trace_quick (0x0d) size: addr ⇒ addr
Record the contents of the size bytes at addr in a trace buffer, for later retrieval
by GDB. size is a single byte unsigned integer following the trace opcode.

This bytecode is equivalent to the sequence dup const8 size trace, but we
provide it anyway to save space in bytecode strings.

trace16 (0x30) size: addr ⇒ addr
Identical to trace quick, except that size is a 16-bit big-endian unsigned integer,
not a single byte. This should probably have been named trace_quick16, for
consistency.

tracev (0x2e) n: ⇒ a
Record the value of trace state variable number n in the trace buffer. The
handling of n is as described for getv.

802 Debugging with gdb

tracenz (0x2f) addr size ⇒
Record the bytes at addr in a trace buffer, for later retrieval by GDB. Stop
at either the first zero byte, or when size bytes have been recorded, whichever
occurs first.

printf (0x34) numargs string ⇒
Do a formatted print, in the style of the C function printf). The value of
numargs is the number of arguments to expect on the stack, while string is
the format string, prefixed with a two-byte length. The last byte of the string
must be zero, and is included in the length. The format string includes escaped
sequences just as it appears in C source, so for instance the format string
"\t%d\n" is six characters long, and the output will consist of a tab character,
a decimal number, and a newline. At the top of the stack, above the values to
be printed, this bytecode will pop a “function” and “channel”. If the function
is nonzero, then the target may treat it as a function and call it, passing the
channel as a first argument, as with the C function fprintf. If the function
is zero, then the target may simply call a standard formatted print function of
its choice. In all, this bytecode pops 2 + numargs stack elements, and pushes
nothing.

end (0x27): ⇒
Stop executing bytecode; the result should be the top element of the stack. If
the purpose of the expression was to compute an lvalue or a range of memory,
then the next-to-top of the stack is the lvalue’s address, and the top of the stack
is the lvalue’s size, in bytes.

F.3 Using Agent Expressions

Agent expressions can be used in several different ways by gdb, and the debugger can
generate different bytecode sequences as appropriate.

One possibility is to do expression evaluation on the target rather than the host, such
as for the conditional of a conditional tracepoint. In such a case, gdb compiles the source
expression into a bytecode sequence that simply gets values from registers or memory, does
arithmetic, and returns a result.

Another way to use agent expressions is for tracepoint data collection. gdb generates a
different bytecode sequence for collection; in addition to bytecodes that do the calculation,
gdb adds trace bytecodes to save the pieces of memory that were used.

• The user selects trace points in the program’s code at which GDB should collect data.

• The user specifies expressions to evaluate at each trace point. These expressions may
denote objects in memory, in which case those objects’ contents are recorded as the
program runs, or computed values, in which case the values themselves are recorded.

• GDB transmits the tracepoints and their associated expressions to the GDB agent,
running on the debugging target.

• The agent arranges to be notified when a trace point is hit.

• When execution on the target reaches a trace point, the agent evaluates the expressions
associated with that trace point, and records the resulting values and memory ranges.

Appendix F: The GDB Agent Expression Mechanism 803

• Later, when the user selects a given trace event and inspects the objects and expression
values recorded, GDB talks to the agent to retrieve recorded data as necessary to meet
the user’s requests. If the user asks to see an object whose contents have not been
recorded, GDB reports an error.

F.4 Varying Target Capabilities

Some targets don’t support floating-point, and some would rather not have to deal with
long long operations. Also, different targets will have different stack sizes, and different
bytecode buffer lengths.

Thus, GDB needs a way to ask the target about itself. We haven’t worked out the details
yet, but in general, GDB should be able to send the target a packet asking it to describe
itself. The reply should be a packet whose length is explicit, so we can add new information
to the packet in future revisions of the agent, without confusing old versions of GDB, and
it should contain a version number. It should contain at least the following information:

• whether floating point is supported

• whether long long is supported

• maximum acceptable size of bytecode stack

• maximum acceptable length of bytecode expressions

• which registers are actually available for collection

• whether the target supports disabled tracepoints

F.5 Rationale

Some of the design decisions apparent above are arguable.

What about stack overflow/underflow?
GDB should be able to query the target to discover its stack size. Given that
information, GDB can determine at translation time whether a given expression
will overflow the stack. But this spec isn’t about what kinds of error-checking
GDB ought to do.

Why are you doing everything in LONGEST?
Speed isn’t important, but agent code size is; using LONGEST brings in a bunch
of support code to do things like division, etc. So this is a serious concern.

First, note that you don’t need different bytecodes for different operand sizes.
You can generate code without knowing how big the stack elements actually
are on the target. If the target only supports 32-bit ints, and you don’t send
any 64-bit bytecodes, everything just works. The observation here is that the
MIPS and the Alpha have only fixed-size registers, and you can still get C’s
semantics even though most instructions only operate on full-sized words. You
just need to make sure everything is properly sign-extended at the right times.
So there is no need for 32- and 64-bit variants of the bytecodes. Just implement
everything using the largest size you support.

GDB should certainly check to see what sizes the target supports, so the user
can get an error earlier, rather than later. But this information is not necessary
for correctness.

804 Debugging with gdb

Why don’t you have > or <= operators?
I want to keep the interpreter small, and we don’t need them. We can combine
the less_ opcodes with log_not, and swap the order of the operands, yielding
all four asymmetrical comparison operators. For example, (x <= y) is ! (x >

y), which is ! (y < x).

Why do you have log_not?
Why do you have ext?
Why do you have zero_ext?

These are all easily synthesized from other instructions, but I expect them to be
used frequently, and they’re simple, so I include them to keep bytecode strings
short.

log_not is equivalent to const8 0 equal; it’s used in half the relational oper-
ators.

ext n is equivalent to const8 s-n lsh const8 s-n rsh_signed, where s is the
size of the stack elements; it follows refm and reg bytecodes when the value
should be signed. See the next bulleted item.

zero_ext n is equivalent to constm mask log_and; it’s used whenever we push
the value of a register, because we can’t assume the upper bits of the register
aren’t garbage.

Why not have sign-extending variants of the ref operators?
Because that would double the number of ref operators, and we need the ext
bytecode anyway for accessing bitfields.

Why not have constant-address variants of the ref operators?
Because that would double the number of ref operators again, and const32

address ref32 is only one byte longer.

Why do the refn operators have to support unaligned fetches?
GDB will generate bytecode that fetches multi-byte values at unaligned ad-
dresses whenever the executable’s debugging information tells it to. Further-
more, GDB does not know the value the pointer will have when GDB generates
the bytecode, so it cannot determine whether a particular fetch will be aligned
or not.

In particular, structure bitfields may be several bytes long, but follow no align-
ment rules; members of packed structures are not necessarily aligned either.

In general, there are many cases where unaligned references occur in correct C
code, either at the programmer’s explicit request, or at the compiler’s discretion.
Thus, it is simpler to make the GDB agent bytecodes work correctly in all
circumstances than to make GDB guess in each case whether the compiler did
the usual thing.

Why are there no side-effecting operators?
Because our current client doesn’t want them? That’s a cheap answer. I think
the real answer is that I’m afraid of implementing function calls. We should
re-visit this issue after the present contract is delivered.

805

Why aren’t the goto ops PC-relative?
The interpreter has the base address around anyway for PC bounds checking,
and it seemed simpler.

Why is there only one offset size for the goto ops?
Offsets are currently sixteen bits. I’m not happy with this situation either:

Suppose we have multiple branch ops with different offset sizes. As I generate
code left-to-right, all my jumps are forward jumps (there are no loops in ex-
pressions), so I never know the target when I emit the jump opcode. Thus, I
have to either always assume the largest offset size, or do jump relaxation on
the code after I generate it, which seems like a big waste of time.

I can imagine a reasonable expression being longer than 256 bytes. I can’t
imagine one being longer than 64k. Thus, we need 16-bit offsets. This kind of
reasoning is so bogus, but relaxation is pathetic.

The other approach would be to generate code right-to-left. Then I’d always
know my offset size. That might be fun.

Where is the function call bytecode?
When we add side-effects, we should add this.

Why does the reg bytecode take a 16-bit register number?
Intel’s IA-64 architecture has 128 general-purpose registers, and 128 floating-
point registers, and I’m sure it has some random control registers.

Why do we need trace and trace_quick?
Because GDB needs to record all the memory contents and registers an expres-
sion touches. If the user wants to evaluate an expression x->y->z, the agent
must record the values of x and x->y as well as the value of x->y->z.

Don’t the trace bytecodes make the interpreter less general?
They do mean that the interpreter contains special-purpose code, but that
doesn’t mean the interpreter can only be used for that purpose. If an expression
doesn’t use the trace bytecodes, they don’t get in its way.

Why doesn’t trace_quick consume its arguments the way everything else does?
In general, you do want your operators to consume their arguments; it’s con-
sistent, and generally reduces the amount of stack rearrangement necessary.
However, trace_quick is a kludge to save space; it only exists so we needn’t
write dup const8 SIZE trace before every memory reference. Therefore, it’s
okay for it not to consume its arguments; it’s meant for a specific context in
which we know exactly what it should do with the stack. If we’re going to have
a kludge, it should be an effective kludge.

Why does trace16 exist?
That opcode was added by the customer that contracted Cygnus for the data
tracing work. I personally think it is unnecessary; objects that large will be
quite rare, so it is okay to use dup const16 size trace in those cases.

Whatever we decide to do with trace16, we should at least leave opcode 0x30
reserved, to remain compatible with the customer who added it.

807

Appendix G Target Descriptions

One of the challenges of using gdb to debug embedded systems is that there are so many
minor variants of each processor architecture in use. It is common practice for vendors to
start with a standard processor core — ARM, PowerPC, or MIPS, for example — and then
make changes to adapt it to a particular market niche. Some architectures have hundreds
of variants, available from dozens of vendors. This leads to a number of problems:

• With so many different customized processors, it is difficult for the gdb maintainers to
keep up with the changes.

• Since individual variants may have short lifetimes or limited audiences, it may not be
worthwhile to carry information about every variant in the gdb source tree.

• When gdb does support the architecture of the embedded system at hand, the task of
finding the correct architecture name to give the set architecture command can be
error-prone.

To address these problems, the gdb remote protocol allows a target system to not
only identify itself to gdb, but to actually describe its own features. This lets gdb support
processor variants it has never seen before — to the extent that the descriptions are accurate,
and that gdb understands them.

gdb must be linked with the Expat library to support XML target descriptions. See
[Expat], page 697.

G.1 Retrieving Descriptions

Target descriptions can be read from the target automatically, or specified by the user
manually. The default behavior is to read the description from the target. gdb retrieves
it via the remote protocol using ‘qXfer’ requests (see Section E.4 [General Query Packets],
page 735). The annex in the ‘qXfer’ packet will be ‘target.xml’. The contents of the
‘target.xml’ annex are an XML document, of the form described in Section G.2 [Target
Description Format], page 807.

Alternatively, you can specify a file to read for the target description. If a file is set, the
target will not be queried. The commands to specify a file are:

set tdesc filename path

Read the target description from path.

unset tdesc filename

Do not read the XML target description from a file. gdb will use the description
supplied by the current target.

show tdesc filename

Show the filename to read for a target description, if any.

G.2 Target Description Format

A target description annex is an XML (http: / / www . w3 . org / XML /) document
which complies with the Document Type Definition provided in the gdb sources in
gdb/features/gdb-target.dtd. This means you can use generally available tools like
xmllint to check that your feature descriptions are well-formed and valid. However, to

http://www.w3.org/XML/

808 Debugging with gdb

help people unfamiliar with XML write descriptions for their targets, we also describe the
grammar here.

Target descriptions can identify the architecture of the remote target and (for some
architectures) provide information about custom register sets. They can also identify the
OS ABI of the remote target. gdb can use this information to autoconfigure for your target,
or to warn you if you connect to an unsupported target.

Here is a simple target description:

<target version="1.0">

<architecture>i386:x86-64</architecture>

</target>

This minimal description only says that the target uses the x86-64 architecture.

A target description has the following overall form, with [] marking optional elements
and . . . marking repeatable elements. The elements are explained further below.

<?xml version="1.0"?>

<!DOCTYPE target SYSTEM "gdb-target.dtd">

<target version="1.0">

[architecture]
[osabi]
[compatible]
[feature...]

</target>

The description is generally insensitive to whitespace and line breaks, under the usual
common-sense rules. The XML version declaration and document type declaration can
generally be omitted (gdb does not require them), but specifying them may be useful
for XML validation tools. The ‘version’ attribute for ‘<target>’ may also be omitted,
but we recommend including it; if future versions of gdb use an incompatible revision of
gdb-target.dtd, they will detect and report the version mismatch.

G.2.1 Inclusion

It can sometimes be valuable to split a target description up into several different annexes,
either for organizational purposes, or to share files between different possible target descrip-
tions. You can divide a description into multiple files by replacing any element of the target
description with an inclusion directive of the form:

<xi:include href="document"/>

When gdb encounters an element of this form, it will retrieve the named XML document,
and replace the inclusion directive with the contents of that document. If the current
description was read using ‘qXfer’, then so will be the included document; document will
be interpreted as the name of an annex. If the current description was read from a file, gdb
will look for document as a file in the same directory where it found the original description.

G.2.2 Architecture

An ‘<architecture>’ element has this form:

<architecture>arch</architecture>

arch is one of the architectures from the set accepted by set architecture (see
Chapter 19 [Specifying a Debugging Target], page 297).

Appendix G: Target Descriptions 809

G.2.3 OS ABI

This optional field was introduced in gdb version 7.0. Previous versions of gdb ignore it.

An ‘<osabi>’ element has this form:
<osabi>abi-name</osabi>

abi-name is an OS ABI name from the same selection accepted by set osabi (see
Section 22.7 [Configuring the Current ABI], page 356).

G.2.4 Compatible Architecture

This optional field was introduced in gdb version 7.0. Previous versions of gdb ignore it.

A ‘<compatible>’ element has this form:
<compatible>arch</compatible>

arch is one of the architectures from the set accepted by set architecture (see
Chapter 19 [Specifying a Debugging Target], page 297).

A ‘<compatible>’ element is used to specify that the target is able to run binaries
in some other than the main target architecture given by the ‘<architecture>’ element.
For example, on the Cell Broadband Engine, the main architecture is powerpc:common or
powerpc:common64, but the system is able to run binaries in the spu architecture as well.
The way to describe this capability with ‘<compatible>’ is as follows:

<architecture>powerpc:common</architecture>

<compatible>spu</compatible>

G.2.5 Features

Each ‘<feature>’ describes some logical portion of the target system. Features are currently
used to describe available CPU registers and the types of their contents. A ‘<feature>’
element has this form:

<feature name="name">

[type...]
reg...

</feature>

Each feature’s name should be unique within the description. The name of a feature does
not matter unless gdb has some special knowledge of the contents of that feature; if it does,
the feature should have its standard name. See Section G.5 [Standard Target Features],
page 813.

G.2.6 Types

Any register’s value is a collection of bits which gdb must interpret. The default interpreta-
tion is a two’s complement integer, but other types can be requested by name in the register
description. Some predefined types are provided by gdb (see Section G.3 [Predefined Target
Types], page 811), and the description can define additional composite and enum types.

Each type element must have an ‘id’ attribute, which gives a unique (within the con-
taining ‘<feature>’) name to the type. Types must be defined before they are used.

Some targets offer vector registers, which can be treated as arrays of scalar elements.
These types are written as ‘<vector>’ elements, specifying the array element type, type,
and the number of elements, count:

<vector id="id" type="type" count="count"/>

810 Debugging with gdb

If a register’s value is usefully viewed in multiple ways, define it with a union type con-
taining the useful representations. The ‘<union>’ element contains one or more ‘<field>’
elements, each of which has a name and a type:

<union id="id">

<field name="name" type="type"/>

...

</union>

If a register’s value is composed from several separate values, define it with either a
structure type or a flags type. A flags type may only contain bitfields. A structure type
may either contain only bitfields or contain no bitfields. If the value contains only bitfields,
its total size in bytes must be specified.

Non-bitfield values have a name and type.
<struct id="id">

<field name="name" type="type"/>

...

</struct>

Both name and type values are required. No implicit padding is added.

Bitfield values have a name, start, end and type.
<struct id="id" size="size">

<field name="name" start="start" end="end" type="type"/>

...

</struct>

<flags id="id" size="size">

<field name="name" start="start" end="end" type="type"/>

...

</flags>

The name value is required. Bitfield values may be named with the empty string, ‘""’, in
which case the field is “filler” and its value is not printed. Not all bits need to be specified,
so “filler” fields are optional.

The start and end values are required, and type is optional. The field’s start must be
less than or equal to its end, and zero represents the least significant bit.

The default value of type is bool for single bit fields, and an unsigned integer otherwise.

Which to choose? Structures or flags?

Registers defined with ‘flags’ have these advantages over defining them with ‘struct’:

• Arithmetic may be performed on them as if they were integers.

• They are printed in a more readable fashion.

Registers defined with ‘struct’ have one advantage over defining them with ‘flags’:

• One can fetch individual fields like in ‘C’.
(gdb) print $my_struct_reg.field3

$1 = 42

G.2.7 Registers

Each register is represented as an element with this form:
<reg name="name"

bitsize="size"

[regnum="num"]
[save-restore="save-restore"]

Appendix G: Target Descriptions 811

[type="type"]
[group="group"]/>

The components are as follows:

name The register’s name; it must be unique within the target description.

bitsize The register’s size, in bits.

regnum The register’s number. If omitted, a register’s number is one greater than that
of the previous register (either in the current feature or in a preceding feature);
the first register in the target description defaults to zero. This register number
is used to read or write the register; e.g. it is used in the remote p and P

packets, and registers appear in the g and G packets in order of increasing
register number.

save-restore
Whether the register should be preserved across inferior function calls; this must
be either yes or no. The default is yes, which is appropriate for most registers
except for some system control registers; this is not related to the target’s ABI.

type The type of the register. It may be a predefined type, a type defined in the
current feature, or one of the special types int and float. int is an integer
type of the correct size for bitsize, and float is a floating point type (in the
architecture’s normal floating point format) of the correct size for bitsize. The
default is int.

group The register group to which this register belongs. It can be one of the standard
register groups general, float, vector or an arbitrary string. Group names
should be limited to alphanumeric characters. If a group name is made up of
multiple words the words may be separated by hyphens; e.g. special-group
or ultra-special-group. If no group is specified, gdb will not display the
register in info registers.

G.3 Predefined Target Types

Type definitions in the self-description can build up composite types from basic building
blocks, but can not define fundamental types. Instead, standard identifiers are provided by
gdb for the fundamental types. The currently supported types are:

bool Boolean type, occupying a single bit.

int8

int16

int24

int32

int64

int128

int256

int512 Signed integer types holding the specified number of bits.

812 Debugging with gdb

uint8

uint16

uint24

uint32

uint64

uint128

uint256

uint512 Unsigned integer types holding the specified number of bits.

code_ptr

data_ptr Pointers to unspecified code and data. The program counter and any dedicated
return address register may be marked as code pointers; printing a code pointer
converts it into a symbolic address. The stack pointer and any dedicated address
registers may be marked as data pointers.

ieee_half

Half precision IEEE floating point.

ieee_single

Single precision IEEE floating point.

ieee_double

Double precision IEEE floating point.

bfloat16 The 16-bit brain floating point format used e.g. by x86 and ARM.

arm_fpa_ext

The 12-byte extended precision format used by ARM FPA registers.

i387_ext The 10-byte extended precision format used by x87 registers.

i386_eflags

32bit eflags register used by x86.

i386_mxcsr

32bit mxcsr register used by x86.

G.4 Enum Target Types

Enum target types are useful in ‘struct’ and ‘flags’ register descriptions. See Section G.2
[Target Description Format], page 807.

Enum types have a name, size and a list of name/value pairs.
<enum id="id" size="size">

<evalue name="name" value="value"/>

...

</enum>

Enums must be defined before they are used.
<enum id="levels_type" size="4">

<evalue name="low" value="0"/>

<evalue name="high" value="1"/>

</enum>

<flags id="flags_type" size="4">

<field name="X" start="0"/>

<field name="LEVEL" start="1" end="1" type="levels_type"/>

Appendix G: Target Descriptions 813

</flags>

<reg name="flags" bitsize="32" type="flags_type"/>

Given that description, a value of 3 for the ‘flags’ register would be printed as:
(gdb) info register flags

flags 0x3 [X LEVEL=high]

G.5 Standard Target Features

A target description must contain either no registers or all the target’s registers. If the
description contains no registers, then gdb will assume a default register layout, selected
based on the architecture. If the description contains any registers, the default layout will
not be used; the standard registers must be described in the target description, in such a
way that gdb can recognize them.

This is accomplished by giving specific names to feature elements which contain standard
registers. gdb will look for features with those names and verify that they contain the
expected registers; if any known feature is missing required registers, or if any required
feature is missing, gdb will reject the target description. You can add additional registers
to any of the standard features — gdb will display them just as if they were added to an
unrecognized feature.

This section lists the known features and their expected contents. Sample XML docu-
ments for these features are included in the gdb source tree, in the directory gdb/features.

Names recognized by gdb should include the name of the company or organization
which selected the name, and the overall architecture to which the feature applies; so e.g.
the feature containing ARM core registers is named ‘org.gnu.gdb.arm.core’.

The names of registers are not case sensitive for the purpose of recognizing standard
features, but gdb will only display registers using the capitalization used in the description.

G.5.1 AArch64 Features

The ‘org.gnu.gdb.aarch64.core’ feature is required for AArch64 targets. It should con-
tain registers ‘x0’ through ‘x30’, ‘sp’, ‘pc’, and ‘cpsr’.

The ‘org.gnu.gdb.aarch64.fpu’ feature is optional. If present, it should contain regis-
ters ‘v0’ through ‘v31’, ‘fpsr’, and ‘fpcr’.

The ‘org.gnu.gdb.aarch64.sve’ feature is optional. If present, it should contain regis-
ters ‘z0’ through ‘z31’, ‘p0’ through ‘p15’, ‘ffr’ and ‘vg’.

The ‘org.gnu.gdb.aarch64.pauth’ feature is optional. If present, it should contain
registers ‘pauth_dmask’ and ‘pauth_cmask’.

G.5.2 ARC Features

ARC processors are so configurable that even core registers and their numbers are not
predetermined completely. Moreover, flags and PC registers, which are important to gdb,
are not “core” registers in ARC. Therefore, there are two features that their presence is
mandatory: ‘org.gnu.gdb.arc.core’ and ‘org.gnu.gdb.arc.aux’.

The ‘org.gnu.gdb.arc.core’ feature is required for all targets. It must contain regis-
ters:

− ‘r0’ through ‘r25’ for normal register file targets.

814 Debugging with gdb

− ‘r0’ through ‘r3’, and ‘r10’ through ‘r15’ for reduced register file targets.

− ‘gp’, ‘fp’, ‘sp’, ‘r30’1, ‘blink’, ‘lp_count’, ‘pcl’.

In case of an ARCompact target (ARCv1 ISA), the ‘org.gnu.gdb.arc.core’ feature
may contain registers ‘ilink1’ and ‘ilink2’. While in case of ARC EM and ARC HS
targets (ARCv2 ISA), register ‘ilink’ may be present. The difference between ARCv1 and
ARCv2 is the naming of registers 29th and 30th. They are called ‘ilink1’ and ‘ilink2’ for
ARCv1 and are optional. For ARCv2, they are called ‘ilink’ and ‘r30’ and only ‘ilink’
is optional. The optionality of ‘ilink*’ registers is because of their inaccessibility during
user space debugging sessions.

Extension core registers ‘r32’ through ‘r59’ are optional and their existence depends
on the configuration. When debugging GNU/Linux applications, i.e. user space debugging,
these core registers are not available.

The ‘org.gnu.gdb.arc.aux’ feature is required for all ARC targets. Here is the list of
registers pertinent to this feature:

− mandatory: ‘pc’ and ‘status32’.

− optional: ‘lp_start’, ‘lp_end’, and ‘bta’.

G.5.3 ARM Features

The ‘org.gnu.gdb.arm.core’ feature is required for non-M-profile ARM targets. It should
contain registers ‘r0’ through ‘r13’, ‘sp’, ‘lr’, ‘pc’, and ‘cpsr’.

For M-profile targets (e.g. Cortex-M3), the ‘org.gnu.gdb.arm.core’ feature is replaced
by ‘org.gnu.gdb.arm.m-profile’. It should contain registers ‘r0’ through ‘r13’, ‘sp’, ‘lr’,
‘pc’, and ‘xpsr’.

The ‘org.gnu.gdb.arm.fpa’ feature is optional. If present, it should contain registers
‘f0’ through ‘f7’ and ‘fps’.

The ‘org.gnu.gdb.arm.m-profile-mve’ feature is optional. If present, it must contain
register ‘vpr’.

If the ‘org.gnu.gdb.arm.m-profile-mve’ feature is available, gdb will synthesize the
‘p0’ pseudo register from ‘vpr’ contents.

If the ‘org.gnu.gdb.arm.vfp’ feature is available alongside the ‘org.gnu.gdb.arm.m-profile-mve’
feature, gdb will synthesize the ‘q’ pseudo registers from ‘d’ register contents.

The ‘org.gnu.gdb.xscale.iwmmxt’ feature is optional. If present, it should contain
at least registers ‘wR0’ through ‘wR15’ and ‘wCGR0’ through ‘wCGR3’. The ‘wCID’, ‘wCon’,
‘wCSSF’, and ‘wCASF’ registers are optional.

The ‘org.gnu.gdb.arm.vfp’ feature is optional. If present, it should contain at least
registers ‘d0’ through ‘d15’. If they are present, ‘d16’ through ‘d31’ should also be included.
gdb will synthesize the single-precision registers from halves of the double-precision regis-
ters.

The ‘org.gnu.gdb.arm.neon’ feature is optional. It does not need to contain registers; it
instructs gdb to display the VFP double-precision registers as vectors and to synthesize the
quad-precision registers from pairs of double-precision registers. If this feature is present,
‘org.gnu.gdb.arm.vfp’ must also be present and include 32 double-precision registers.

1 Not necessary for ARCv1.

Appendix G: Target Descriptions 815

G.5.4 i386 Features

The ‘org.gnu.gdb.i386.core’ feature is required for i386/amd64 targets. It should de-
scribe the following registers:

− ‘eax’ through ‘edi’ plus ‘eip’ for i386

− ‘rax’ through ‘r15’ plus ‘rip’ for amd64

− ‘eflags’, ‘cs’, ‘ss’, ‘ds’, ‘es’, ‘fs’, ‘gs’

− ‘st0’ through ‘st7’

− ‘fctrl’, ‘fstat’, ‘ftag’, ‘fiseg’, ‘fioff’, ‘foseg’, ‘fooff’ and ‘fop’

The register sets may be different, depending on the target.

The ‘org.gnu.gdb.i386.sse’ feature is optional. It should describe registers:

− ‘xmm0’ through ‘xmm7’ for i386

− ‘xmm0’ through ‘xmm15’ for amd64

− ‘mxcsr’

The ‘org.gnu.gdb.i386.avx’ feature is optional and requires the ‘org.gnu.gdb.i386.sse’
feature. It should describe the upper 128 bits of ymm registers:

− ‘ymm0h’ through ‘ymm7h’ for i386

− ‘ymm0h’ through ‘ymm15h’ for amd64

The ‘org.gnu.gdb.i386.mpx’ is an optional feature representing Intel Memory Protec-
tion Extension (MPX). It should describe the following registers:

− ‘bnd0raw’ through ‘bnd3raw’ for i386 and amd64.

− ‘bndcfgu’ and ‘bndstatus’ for i386 and amd64.

The ‘org.gnu.gdb.i386.linux’ feature is optional. It should describe a single register,
‘orig_eax’.

The ‘org.gnu.gdb.i386.segments’ feature is optional. It should describe two system
registers: ‘fs_base’ and ‘gs_base’.

The ‘org.gnu.gdb.i386.avx512’ feature is optional and requires the
‘org.gnu.gdb.i386.avx’ feature. It should describe additional xmm registers:

− ‘xmm16h’ through ‘xmm31h’, only valid for amd64.

It should describe the upper 128 bits of additional ymm registers:

− ‘ymm16h’ through ‘ymm31h’, only valid for amd64.

It should describe the upper 256 bits of zmm registers:

− ‘zmm0h’ through ‘zmm7h’ for i386.

− ‘zmm0h’ through ‘zmm15h’ for amd64.

It should describe the additional zmm registers:

− ‘zmm16h’ through ‘zmm31h’, only valid for amd64.

The ‘org.gnu.gdb.i386.pkeys’ feature is optional. It should describe a single register,
‘pkru’. It is a 32-bit register valid for i386 and amd64.

The ‘org.gnu.gdb.i386.cet_u’ and ‘org.gnu.gdb.i386.pl3_ssp’ features are
optional. They should describe two user mode registers: ‘cet_u’ and ‘pl3_ssp’,

816 Debugging with gdb

respectively. These are two 64-bit registers for amd64. In case of i386, ‘pl3_ssp’ has 32
bit and ‘cet_u’ has 64 bit.

The ‘org.gnu.gdb.i386.amx’ feature is optional. It should describe one config user
mode register ‘tilecfg_raw’ that has 64 bytes and one ‘tiledata’ register that has 8192
bytes. All AMX registers are valid only for amd64.

G.5.5 LoongArch Features

The ‘org.gnu.gdb.loongarch.base’ feature is required for LoongArch targets. It should
contain the registers ‘r0’ through ‘r31’, ‘pc’, and ‘badv’. Either the architectural names
(‘r0’, ‘r1’, etc) can be used, or the ABI names (‘zero’, ‘ra’, etc).

G.5.6 MicroBlaze Features

The ‘org.gnu.gdb.microblaze.core’ feature is required for MicroBlaze targets. It should
contain registers ‘r0’ through ‘r31’, ‘rpc’, ‘rmsr’, ‘rear’, ‘resr’, ‘rfsr’, ‘rbtr’, ‘rpvr’,
‘rpvr1’ through ‘rpvr11’, ‘redr’, ‘rpid’, ‘rzpr’, ‘rtlbx’, ‘rtlbsx’, ‘rtlblo’, and ‘rtlbhi’.

The ‘org.gnu.gdb.microblaze.stack-protect’ feature is optional. If present, it
should contain registers ‘rshr’ and ‘rslr’

G.5.7 MIPS Features

The ‘org.gnu.gdb.mips.cpu’ feature is required for MIPS targets. It should contain regis-
ters ‘r0’ through ‘r31’, ‘lo’, ‘hi’, and ‘pc’. They may be 32-bit or 64-bit depending on the
target.

The ‘org.gnu.gdb.mips.cp0’ feature is also required. It should contain at least the
‘status’, ‘badvaddr’, and ‘cause’ registers. They may be 32-bit or 64-bit depending on the
target.

The ‘org.gnu.gdb.mips.fpu’ feature is currently required, though it may be optional
in a future version of gdb. It should contain registers ‘f0’ through ‘f31’, ‘fcsr’, and ‘fir’.
They may be 32-bit or 64-bit depending on the target.

The ‘org.gnu.gdb.mips.dsp’ feature is optional. It should contain registers ‘hi1’
through ‘hi3’, ‘lo1’ through ‘lo3’, and ‘dspctl’. The ‘dspctl’ register should be 32-bit
and the rest may be 32-bit or 64-bit depending on the target.

The ‘org.gnu.gdb.mips.linux’ feature is optional. It should contain a single register,
‘restart’, which is used by the Linux kernel to control restartable syscalls.

G.5.8 M68K Features

‘org.gnu.gdb.m68k.core’

‘org.gnu.gdb.coldfire.core’

‘org.gnu.gdb.fido.core’

One of those features must be always present. The feature that is present
determines which flavor of m68k is used. The feature that is present should
contain registers ‘d0’ through ‘d7’, ‘a0’ through ‘a5’, ‘fp’, ‘sp’, ‘ps’ and ‘pc’.

‘org.gnu.gdb.coldfire.fp’

This feature is optional. If present, it should contain registers ‘fp0’ through
‘fp7’, ‘fpcontrol’, ‘fpstatus’ and ‘fpiaddr’.

Appendix G: Target Descriptions 817

Note that, despite the fact that this feature’s name says ‘coldfire’, it is used
to describe any floating point registers. The size of the registers must match
the main m68k flavor; so, for example, if the primary feature is reported as
‘coldfire’, then 64-bit floating point registers are required.

G.5.9 NDS32 Features

The ‘org.gnu.gdb.nds32.core’ feature is required for NDS32 targets. It should contain
at least registers ‘r0’ through ‘r10’, ‘r15’, ‘fp’, ‘gp’, ‘lp’, ‘sp’, and ‘pc’.

The ‘org.gnu.gdb.nds32.fpu’ feature is optional. If present, it should contain 64-bit
double-precision floating-point registers ‘fd0’ through fdN, which should be ‘fd3’, ‘fd7’,
‘fd15’, or ‘fd31’ based on the FPU configuration implemented.

Note: The first sixteen 64-bit double-precision floating-point registers are overlapped
with the thirty-two 32-bit single-precision floating-point registers. The 32-bit single-
precision registers, if not being listed explicitly, will be synthesized from halves of the
overlapping 64-bit double-precision registers. Listing 32-bit single-precision registers
explicitly is deprecated, and the support to it could be totally removed some day.

G.5.10 Nios II Features

The ‘org.gnu.gdb.nios2.cpu’ feature is required for Nios II targets. It should contain the
32 core registers (‘zero’, ‘at’, ‘r2’ through ‘r23’, ‘et’ through ‘ra’), ‘pc’, and the 16 control
registers (‘status’ through ‘mpuacc’).

G.5.11 Openrisc 1000 Features

The ‘org.gnu.gdb.or1k.group0’ feature is required for OpenRISC 1000 targets. It should
contain the 32 general purpose registers (‘r0’ through ‘r31’), ‘ppc’, ‘npc’ and ‘sr’.

G.5.12 PowerPC Features

The ‘org.gnu.gdb.power.core’ feature is required for PowerPC targets. It should contain
registers ‘r0’ through ‘r31’, ‘pc’, ‘msr’, ‘cr’, ‘lr’, ‘ctr’, and ‘xer’. They may be 32-bit or
64-bit depending on the target.

The ‘org.gnu.gdb.power.fpu’ feature is optional. It should contain registers ‘f0’
through ‘f31’ and ‘fpscr’.

The ‘org.gnu.gdb.power.altivec’ feature is optional. It should contain registers ‘vr0’
through ‘vr31’, ‘vscr’, and ‘vrsave’. gdb will define pseudo-registers ‘v0’ through ‘v31’ as
aliases for the corresponding ‘vrX’ registers.

The ‘org.gnu.gdb.power.vsx’ feature is optional. It should contain registers ‘vs0h’
through ‘vs31h’. gdb will combine these registers with the floating point registers (‘f0’
through ‘f31’) and the altivec registers (‘vr0’ through ‘vr31’) to present the 128-bit wide
registers ‘vs0’ through ‘vs63’, the set of vector-scalar registers for POWER7. Therefore,
this feature requires both ‘org.gnu.gdb.power.fpu’ and ‘org.gnu.gdb.power.altivec’.

The ‘org.gnu.gdb.power.spe’ feature is optional. It should contain registers ‘ev0h’
through ‘ev31h’, ‘acc’, and ‘spefscr’. SPE targets should provide 32-bit registers in
‘org.gnu.gdb.power.core’ and provide the upper halves in ‘ev0h’ through ‘ev31h’. gdb
will combine these to present registers ‘ev0’ through ‘ev31’ to the user.

818 Debugging with gdb

The ‘org.gnu.gdb.power.ppr’ feature is optional. It should contain the 64-bit register
‘ppr’.

The ‘org.gnu.gdb.power.dscr’ feature is optional. It should contain the 64-bit register
‘dscr’.

The ‘org.gnu.gdb.power.tar’ feature is optional. It should contain the 64-bit register
‘tar’.

The ‘org.gnu.gdb.power.ebb’ feature is optional. It should contain registers ‘bescr’,
‘ebbhr’ and ‘ebbrr’, all 64-bit wide.

The ‘org.gnu.gdb.power.linux.pmu’ feature is optional. It should contain registers
‘mmcr0’, ‘mmcr2’, ‘siar’, ‘sdar’ and ‘sier’, all 64-bit wide. This is the subset of the isa 2.07
server PMU registers provided by gnu/Linux.

The ‘org.gnu.gdb.power.htm.spr’ feature is optional. It should contain registers
‘tfhar’, ‘texasr’ and ‘tfiar’, all 64-bit wide.

The ‘org.gnu.gdb.power.htm.core’ feature is optional. It should contain the check-
pointed general-purpose registers ‘cr0’ through ‘cr31’, as well as the checkpointed registers
‘clr’ and ‘cctr’. These registers may all be either 32-bit or 64-bit depending on the target.
It should also contain the checkpointed registers ‘ccr’ and ‘cxer’, which should both be
32-bit wide.

The ‘org.gnu.gdb.power.htm.fpu’ feature is optional. It should contain the check-
pointed 64-bit floating-point registers ‘cf0’ through ‘cf31’, as well as the checkpointed
64-bit register ‘cfpscr’.

The ‘org.gnu.gdb.power.htm.altivec’ feature is optional. It should contain the check-
pointed altivec registers ‘cvr0’ through ‘cvr31’, all 128-bit wide. It should also contain the
checkpointed registers ‘cvscr’ and ‘cvrsave’, both 32-bit wide.

The ‘org.gnu.gdb.power.htm.vsx’ feature is optional. It should contain registers
‘cvs0h’ through ‘cvs31h’. gdb will combine these registers with the checkpointed float-
ing point registers (‘cf0’ through ‘cf31’) and the checkpointed altivec registers (‘cvr0’
through ‘cvr31’) to present the 128-bit wide checkpointed vector-scalar registers ‘cvs0’
through ‘cvs63’. Therefore, this feature requires both ‘org.gnu.gdb.power.htm.altivec’
and ‘org.gnu.gdb.power.htm.fpu’.

The ‘org.gnu.gdb.power.htm.ppr’ feature is optional. It should contain the 64-bit
checkpointed register ‘cppr’.

The ‘org.gnu.gdb.power.htm.dscr’ feature is optional. It should contain the 64-bit
checkpointed register ‘cdscr’.

The ‘org.gnu.gdb.power.htm.tar’ feature is optional. It should contain the 64-bit
checkpointed register ‘ctar’.

G.5.13 RISC-V Features

The ‘org.gnu.gdb.riscv.cpu’ feature is required for RISC-V targets. It should contain
the registers ‘x0’ through ‘x31’, and ‘pc’. Either the architectural names (‘x0’, ‘x1’, etc)
can be used, or the ABI names (‘zero’, ‘ra’, etc).

The ‘org.gnu.gdb.riscv.fpu’ feature is optional. If present, it should contain regis-
ters ‘f0’ through ‘f31’, ‘fflags’, ‘frm’, and ‘fcsr’. As with the cpu feature, either the
architectural register names, or the ABI names can be used.

Appendix G: Target Descriptions 819

The ‘org.gnu.gdb.riscv.virtual’ feature is optional. If present, it should contain
registers that are not backed by real registers on the target, but are instead virtual, where
the register value is derived from other target state. In many ways these are like gdbs
pseudo-registers, except implemented by the target. Currently the only register expected in
this set is the one byte ‘priv’ register that contains the target’s privilege level in the least
significant two bits.

The ‘org.gnu.gdb.riscv.csr’ feature is optional. If present, it should contain all of
the target’s standard CSRs. Standard CSRs are those defined in the RISC-V specification
documents. There is some overlap between this feature and the fpu feature; the ‘fflags’,
‘frm’, and ‘fcsr’ registers could be in either feature. The expectation is that these registers
will be in the fpu feature if the target has floating point hardware, but can be moved into
the csr feature if the target has the floating point control registers, but no other floating
point hardware.

The ‘org.gnu.gdb.riscv.vector’ feature is optional. If present, it should contain reg-
isters ‘v0’ through ‘v31’, all of which must be the same size. These requirements are based
on the v0.10 draft vector extension, as the vector extension is not yet final. In the event that
the register set of the vector extension changes for the final specification, the requirements
given here could change for future releases of gdb.

G.5.14 RX Features

The ‘org.gnu.gdb.rx.core’ feature is required for RX targets. It should contain the
registers ‘r0’ through ‘r15’, ‘usp’, ‘isp’, ‘psw’, ‘pc’, ‘intb’, ‘bpsw’, ‘bpc’, ‘fintv’, ‘fpsw’,
and ‘acc’.

G.5.15 S/390 and System z Features

The ‘org.gnu.gdb.s390.core’ feature is required for S/390 and System z targets. It should
contain the PSW and the 16 general registers. In particular, System z targets should provide
the 64-bit registers ‘pswm’, ‘pswa’, and ‘r0’ through ‘r15’. S/390 targets should provide the
32-bit versions of these registers. A System z target that runs in 31-bit addressing mode
should provide 32-bit versions of ‘pswm’ and ‘pswa’, as well as the general register’s upper
halves ‘r0h’ through ‘r15h’, and their lower halves ‘r0l’ through ‘r15l’.

The ‘org.gnu.gdb.s390.fpr’ feature is required. It should contain the 64-bit registers
‘f0’ through ‘f15’, and ‘fpc’.

The ‘org.gnu.gdb.s390.acr’ feature is required. It should contain the 32-bit registers
‘acr0’ through ‘acr15’.

The ‘org.gnu.gdb.s390.linux’ feature is optional. It should contain the register
‘orig_r2’, which is 64-bit wide on System z targets and 32-bit otherwise. In addition, the
feature may contain the ‘last_break’ register, whose width depends on the addressing
mode, as well as the ‘system_call’ register, which is always 32-bit wide.

The ‘org.gnu.gdb.s390.tdb’ feature is optional. It should contain the 64-bit registers
‘tdb0’, ‘tac’, ‘tct’, ‘atia’, and ‘tr0’ through ‘tr15’.

The ‘org.gnu.gdb.s390.vx’ feature is optional. It should contain 64-bit wide registers
‘v0l’ through ‘v15l’, which will be combined by gdb with the floating point registers ‘f0’
through ‘f15’ to present the 128-bit wide vector registers ‘v0’ through ‘v15’. In addition,
this feature should contain the 128-bit wide vector registers ‘v16’ through ‘v31’.

820 Debugging with gdb

The ‘org.gnu.gdb.s390.gs’ feature is optional. It should contain the 64-bit wide
guarded-storage-control registers ‘gsd’, ‘gssm’, and ‘gsepla’.

The ‘org.gnu.gdb.s390.gsbc’ feature is optional. It should contain the 64-bit wide
guarded-storage broadcast control registers ‘bc_gsd’, ‘bc_gssm’, and ‘bc_gsepla’.

G.5.16 Sparc Features

The ‘org.gnu.gdb.sparc.cpu’ feature is required for sparc32/sparc64 targets. It should
describe the following registers:

− ‘g0’ through ‘g7’

− ‘o0’ through ‘o7’

− ‘l0’ through ‘l7’

− ‘i0’ through ‘i7’

They may be 32-bit or 64-bit depending on the target.

Also the ‘org.gnu.gdb.sparc.fpu’ feature is required for sparc32/sparc64 targets. It
should describe the following registers:

− ‘f0’ through ‘f31’

− ‘f32’ through ‘f62’ for sparc64

The ‘org.gnu.gdb.sparc.cp0’ feature is required for sparc32/sparc64 targets. It should
describe the following registers:

− ‘y’, ‘psr’, ‘wim’, ‘tbr’, ‘pc’, ‘npc’, ‘fsr’, and ‘csr’ for sparc32

− ‘pc’, ‘npc’, ‘state’, ‘fsr’, ‘fprs’, and ‘y’ for sparc64

G.5.17 TMS320C6x Features

The ‘org.gnu.gdb.tic6x.core’ feature is required for TMS320C6x targets. It should con-
tain registers ‘A0’ through ‘A15’, registers ‘B0’ through ‘B15’, ‘CSR’ and ‘PC’.

The ‘org.gnu.gdb.tic6x.gp’ feature is optional. It should contain registers ‘A16’
through ‘A31’ and ‘B16’ through ‘B31’.

The ‘org.gnu.gdb.tic6x.c6xp’ feature is optional. It should contain registers ‘TSR’,
‘ILC’ and ‘RILC’.

821

Appendix H Operating System Information

Users of gdb often wish to obtain information about the state of the operating system
running on the target—for example the list of processes, or the list of open files. This
section describes the mechanism that makes it possible. This mechanism is similar to the
target features mechanism (see Appendix G [Target Descriptions], page 807), but focuses
on a different aspect of target.

Operating system information is retrieved from the target via the remote protocol, using
‘qXfer’ requests (see [qXfer osdata read], page 760). The object name in the request should
be ‘osdata’, and the annex identifies the data to be fetched.

H.1 Process list

When requesting the process list, the annex field in the ‘qXfer’ request should be
‘processes’. The returned data is an XML document. The formal syntax of this document
is defined in gdb/features/osdata.dtd.

An example document is:
<?xml version="1.0"?>

<!DOCTYPE target SYSTEM "osdata.dtd">

<osdata type="processes">

<item>

<column name="pid">1</column>

<column name="user">root</column>

<column name="command">/sbin/init</column>

<column name="cores">1,2,3</column>

</item>

</osdata>

Each item should include a column whose name is ‘pid’. The value of that column should
identify the process on the target. The ‘user’ and ‘command’ columns are optional, and will
be displayed by gdb. The ‘cores’ column, if present, should contain a comma-separated
list of cores that this process is running on. Target may provide additional columns, which
gdb currently ignores.

823

Appendix I Trace File Format

The trace file comes in three parts: a header, a textual description section, and a trace
frame section with binary data.

The header has the form \x7fTRACE0\n. The first byte is 0x7f so as to indicate that
the file contains binary data, while the 0 is a version number that may have different values
in the future.

The description section consists of multiple lines of ascii text separated by newline
characters (0xa). The lines may include a variety of optional descriptive or context-setting
information, such as tracepoint definitions or register set size. gdb will ignore any line that
it does not recognize. An empty line marks the end of this section.

R size Specifies the size of a register block in bytes. This is equal to the size of a g

packet payload in the remote protocol. size is an ascii decimal number. There
should be only one such line in a single trace file.

status status

Trace status. status has the same format as a qTStatus remote packet reply.
There should be only one such line in a single trace file.

tp payload

Tracepoint definition. The payload has the same format as qTfP/qTsP remote
packet reply payload. A single tracepoint may take multiple lines of definition,
corresponding to the multiple reply packets.

tsv payload

Trace state variable definition. The payload has the same format as qTfV/qTsV
remote packet reply payload. A single variable may take multiple lines of defi-
nition, corresponding to the multiple reply packets.

tdesc payload

Target description in XML format. The payload is a single line of the XML
file. All such lines should be concatenated together to get the original XML file.
This file is in the same format as qXfer features payload, and corresponds to
the main target.xml file. Includes are not allowed.

The trace frame section consists of a number of consecutive frames. Each frame begins
with a two-byte tracepoint number, followed by a four-byte size giving the amount of data
in the frame. The data in the frame consists of a number of blocks, each introduced by a
character indicating its type (at least register, memory, and trace state variable). The data
in this section is raw binary, not a hexadecimal or other encoding; its endianness matches
the target’s endianness.

R bytes Register block. The number and ordering of bytes matches that of a g packet
in the remote protocol. Note that these are the actual bytes, in target order,
not a hexadecimal encoding.

M address length bytes...

Memory block. This is a contiguous block of memory, at the 8-byte address
address, with a 2-byte length length, followed by length bytes.

824 Debugging with gdb

V number value

Trace state variable block. This records the 8-byte signed value value of trace
state variable numbered number.

Future enhancements of the trace file format may include additional types of blocks.

825

Appendix J .gdb_index section format

This section documents the index section that is created by save gdb-index (see
Section 18.5 [Index Files], page 293). The index section is DWARF-specific; some
knowledge of DWARF is assumed in this description.

The mapped index file format is designed to be directly mmapable on any architecture.
In most cases, a datum is represented using a little-endian 32-bit integer value, called an
offset_type. Big endian machines must byte-swap the values before using them. Excep-
tions to this rule are noted. The data is laid out such that alignment is always respected.

A mapped index consists of several areas, laid out in order.

1. The file header. This is a sequence of values, of offset_type unless otherwise noted:

1. The version number, currently 8. Versions 1, 2 and 3 are obsolete. Version 4 uses
a different hashing function from versions 5 and 6. Version 6 includes symbols for
inlined functions, whereas versions 4 and 5 do not. Version 7 adds attributes to
the CU indices in the symbol table. Version 8 specifies that symbols from DWARF
type units (‘DW_TAG_type_unit’) refer to the type unit’s symbol table and not the
compilation unit (‘DW_TAG_comp_unit’) using the type.

gdb will only read version 4, 5, or 6 indices by specifying set use-deprecated-

index-sections on. GDB has a workaround for potentially broken version 7
indices so it is currently not flagged as deprecated.

2. The offset, from the start of the file, of the CU list.

3. The offset, from the start of the file, of the types CU list. Note that this area can
be empty, in which case this offset will be equal to the next offset.

4. The offset, from the start of the file, of the address area.

5. The offset, from the start of the file, of the symbol table.

6. The offset, from the start of the file, of the constant pool.

2. The CU list. This is a sequence of pairs of 64-bit little-endian values, sorted by the CU
offset. The first element in each pair is the offset of a CU in the .debug_info section.
The second element in each pair is the length of that CU. References to a CU elsewhere
in the map are done using a CU index, which is just the 0-based index into this table.
Note that if there are type CUs, then conceptually CUs and type CUs form a single
list for the purposes of CU indices.

3. The types CU list. This is a sequence of triplets of 64-bit little-endian values. In a
triplet, the first value is the CU offset, the second value is the type offset in the CU,
and the third value is the type signature. The types CU list is not sorted.

4. The address area. The address area consists of a sequence of address entries. Each
address entry has three elements:

1. The low address. This is a 64-bit little-endian value.

2. The high address. This is a 64-bit little-endian value. Like DW_AT_high_pc, the
value is one byte beyond the end.

3. The CU index. This is an offset_type value.

5. The symbol table. This is an open-addressed hash table. The size of the hash table is
always a power of 2.

826 Debugging with gdb

Each slot in the hash table consists of a pair of offset_type values. The first value is
the offset of the symbol’s name in the constant pool. The second value is the offset of
the CU vector in the constant pool.

If both values are 0, then this slot in the hash table is empty. This is ok because while
0 is a valid constant pool index, it cannot be a valid index for both a string and a CU
vector.

The hash value for a table entry is computed by applying an iterative hash function to
the symbol’s name. Starting with an initial value of r = 0, each (unsigned) character
‘c’ in the string is incorporated into the hash using the formula depending on the index
version:

Version 4 The formula is r = r * 67 + c - 113.

Versions 5 to 7
The formula is r = r * 67 + tolower (c) - 113.

The terminating ‘\0’ is not incorporated into the hash.

The step size used in the hash table is computed via ((hash * 17) & (size - 1)) | 1,
where ‘hash’ is the hash value, and ‘size’ is the size of the hash table. The step size
is used to find the next candidate slot when handling a hash collision.

The names of C++ symbols in the hash table are canonicalized. We don’t currently
have a simple description of the canonicalization algorithm; if you intend to create new
index sections, you must read the code.

6. The constant pool. This is simply a bunch of bytes. It is organized so that alignment
is correct: CU vectors are stored first, followed by strings.

A CU vector in the constant pool is a sequence of offset_type values. The first value
is the number of CU indices in the vector. Each subsequent value is the index and
symbol attributes of a CU in the CU list. This element in the hash table is used to
indicate which CUs define the symbol and how the symbol is used. See below for the
format of each CU index+attributes entry.

A string in the constant pool is zero-terminated.

Attributes were added to CU index values in .gdb_index version 7. If a symbol has
multiple uses within a CU then there is one CU index+attributes value for each use.

The format of each CU index+attributes entry is as follows (bit 0 = LSB):

Bits 0-23 This is the index of the CU in the CU list.

Bits 24-27 These bits are reserved for future purposes and must be zero.

Bits 28-30 The kind of the symbol in the CU.

0 This value is reserved and should not be used. By reserving zero
the full offset_type value is backwards compatible with previous
versions of the index.

1 The symbol is a type.

2 The symbol is a variable or an enum value.

3 The symbol is a function.

827

4 Any other kind of symbol.

5,6,7 These values are reserved.

Bit 31 This bit is zero if the value is global and one if it is static.

The determination of whether a symbol is global or static is complicated. The
authorative reference is the file dwarf2read.c in gdb sources.

This pseudo-code describes the computation of a symbol’s kind and global/static at-
tributes in the index.

is_external = get_attribute (die, DW_AT_external);

language = get_attribute (cu_die, DW_AT_language);

switch (die->tag)

{

case DW_TAG_typedef:

case DW_TAG_base_type:

case DW_TAG_subrange_type:

kind = TYPE;

is_static = 1;

break;

case DW_TAG_enumerator:

kind = VARIABLE;

is_static = language != CPLUS;

break;

case DW_TAG_subprogram:

kind = FUNCTION;

is_static = ! (is_external || language == ADA);

break;

case DW_TAG_constant:

kind = VARIABLE;

is_static = ! is_external;

break;

case DW_TAG_variable:

kind = VARIABLE;

is_static = ! is_external;

break;

case DW_TAG_namespace:

kind = TYPE;

is_static = 0;

break;

case DW_TAG_class_type:

case DW_TAG_interface_type:

case DW_TAG_structure_type:

case DW_TAG_union_type:

case DW_TAG_enumeration_type:

kind = TYPE;

is_static = language != CPLUS;

break;

default:

assert (0);

}

829

Appendix K Download debugging resources with
Debuginfod

debuginfod is an HTTP server for distributing ELF, DWARF and source files.

With the debuginfod client library, libdebuginfod, gdb can query servers using the
build IDs associated with missing debug info, executables and source files in order to down-
load them on demand.

For instructions on building gdb with libdebuginfod, see Section C.5 [–with-
debuginfod], page 701. debuginfod is packaged with elfutils, starting with version
0.178. See https://sourceware.org/elfutils/Debuginfod.html for more information
regarding debuginfod.

K.1 Debuginfod Settings

gdb provides the following commands for configuring debuginfod.

set debuginfod enabled

set debuginfod enabled on

gdb will attempt to query debuginfod servers when missing debug info or
source files.

set debuginfod enabled off

gdb will not attempt to query debuginfod servers when missing debug info or
source files. By default, debuginfod enabled is set to off for non-interactive
sessions.

set debuginfod enabled ask

gdb will prompt the user to enable or disable debuginfod before attempting
to perform the next query. By default, debuginfod enabled is set to ask for
interactive sessions.

show debuginfod enabled

Display whether debuginfod enabled is set to on, off or ask.

set debuginfod urls

set debuginfod urls urls

Set the space-separated list of URLs that debuginfod will attempt to query.
Only http://, https:// and file:// protocols should be used. The default
value of debuginfod urls is copied from the DEBUGINFOD URLS environ-
ment variable.

show debuginfod urls

Display the list of URLs that debuginfod will attempt to query.

set debuginfod verbose

set debuginfod verbose n

Enable or disable debuginfod-related output. Use a non-zero value to enable
and 0 to disable. debuginfod output is shown by default.

show debuginfod verbose

Show the current verbosity setting.

https://sourceware.org/elfutils/Debuginfod.html

831

Appendix L Manual pages

gdb man

gdb [OPTIONS] [prog|prog procID|prog core]

The purpose of a debugger such as gdb is to allow you to see what is going on “inside”
another program while it executes – or what another program was doing at the moment it
crashed.

gdb can do four main kinds of things (plus other things in support of these) to help you
catch bugs in the act:

• Start your program, specifying anything that might affect its behavior.

• Make your program stop on specified conditions.

• Examine what has happened, when your program has stopped.

• Change things in your program, so you can experiment with correcting the effects of
one bug and go on to learn about another.

You can use gdb to debug programs written in C, C++, Fortran and Modula-2.

gdb is invoked with the shell command gdb. Once started, it reads commands from the
terminal until you tell it to exit with the gdb command quit or exit. You can get online
help from gdb itself by using the command help.

You can run gdb with no arguments or options; but the most usual way to start gdb is
with one argument or two, specifying an executable program as the argument:

gdb program

You can also start with both an executable program and a core file specified:

gdb program core

You can, instead, specify a process ID as a second argument or use option -p, if you
want to debug a running process:

gdb program 1234

gdb -p 1234

would attach gdb to process 1234. With option -p you can omit the program filename.

Here are some of the most frequently needed gdb commands:

break [file:][function|line]

Set a breakpoint at function or line (in file).

run [arglist]

Start your program (with arglist, if specified).

bt Backtrace: display the program stack.

print expr

Display the value of an expression.

c Continue running your program (after stopping, e.g. at a breakpoint).

next Execute next program line (after stopping); step over any function calls in the
line.

832 Debugging with gdb

edit [file:]function

look at the program line where it is presently stopped.

list [file:]function

type the text of the program in the vicinity of where it is presently stopped.

step Execute next program line (after stopping); step into any function calls in the
line.

help [name]

Show information about gdb command name, or general information about
using gdb.

quit

exit Exit from gdb.

Any arguments other than options specify an executable file and core file (or process
ID); that is, the first argument encountered with no associated option flag is equivalent to
a --se option, and the second, if any, is equivalent to a -c option if it’s the name of a file.
Many options have both long and abbreviated forms; both are shown here. The long forms
are also recognized if you truncate them, so long as enough of the option is present to be
unambiguous.

The abbreviated forms are shown here with ‘-’ and long forms are shown with ‘--’
to reflect how they are shown in --help. However, gdb recognizes all of the following
conventions for most options:

--option=value

--option value

-option=value

-option value

--o=value

--o value

-o=value

-o value

All the options and command line arguments you give are processed in sequential order.
The order makes a difference when the -x option is used.

--help

-h List all options, with brief explanations.

--symbols=file

-s file Read symbol table from file.

--write Enable writing into executable and core files.

--exec=file

-e file Use file as the executable file to execute when appropriate, and for examining
pure data in conjunction with a core dump.

--se=file

Read symbol table from file and use it as the executable file.

Appendix L: Manual pages 833

--core=file

-c file Use file as a core dump to examine.

--command=file

-x file Execute gdb commands from file.

--eval-command=command

-ex command

Execute given gdb command.

--init-eval-command=command

-iex Execute gdb command before loading the inferior.

--directory=directory

-d directory

Add directory to the path to search for source files.

--nh Do not execute commands from ~/.config/gdb/gdbinit, ~/.gdbinit,
~/.config/gdb/gdbearlyinit, or ~/.gdbearlyinit

--nx

-n Do not execute commands from any .gdbinit or .gdbearlyinit initialization
files.

--quiet

--silent

-q “Quiet”. Do not print the introductory and copyright messages. These mes-
sages are also suppressed in batch mode.

--batch Run in batch mode. Exit with status 0 after processing all the command files
specified with -x (and .gdbinit, if not inhibited). Exit with nonzero status if
an error occurs in executing the gdb commands in the command files.

Batch mode may be useful for running gdb as a filter, for example to download
and run a program on another computer; in order to make this more useful, the
message

Program exited normally.

(which is ordinarily issued whenever a program running under gdb control
terminates) is not issued when running in batch mode.

--batch-silent

Run in batch mode, just like --batch, but totally silent. All gdb output
is supressed (stderr is unaffected). This is much quieter than --silent and
would be useless for an interactive session.

This is particularly useful when using targets that give ‘Loading section’ mes-
sages, for example.

Note that targets that give their output via gdb, as opposed to writing directly
to stdout, will also be made silent.

--args prog [arglist]

Change interpretation of command line so that arguments following this option
are passed as arguments to the inferior. As an example, take the following
command:

gdb ./a.out -q

834 Debugging with gdb

It would start gdb with -q, not printing the introductory message. On the
other hand, using:

gdb --args ./a.out -q

starts gdb with the introductory message, and passes the option to the inferior.

--pid=pid

Attach gdb to an already running program, with the PID pid.

--tui Open the terminal user interface.

--readnow

Read all symbols from the given symfile on the first access.

--readnever

Do not read symbol files.

--dbx Run in DBX compatibility mode.

--return-child-result

gdb’s exit code will be the same as the child’s exit code.

--configuration

Print details about GDB configuration and then exit.

--version

Print version information and then exit.

--cd=directory

Run gdb using directory as its working directory, instead of the current direc-
tory.

--data-directory=directory

-D Run gdb using directory as its data directory. The data directory is where gdb
searches for its auxiliary files.

--fullname

-f Emacs sets this option when it runs gdb as a subprocess. It tells gdb to output
the full file name and line number in a standard, recognizable fashion each time
a stack frame is displayed (which includes each time the program stops). This
recognizable format looks like two ‘\032’ characters, followed by the file name,
line number and character position separated by colons, and a newline. The
Emacs-to-gdb interface program uses the two ‘\032’ characters as a signal to
display the source code for the frame.

-b baudrate

Set the line speed (baud rate or bits per second) of any serial interface used by
gdb for remote debugging.

-l timeout

Set timeout, in seconds, for remote debugging.

--tty=device

Run using device for your program’s standard input and output.

Appendix L: Manual pages 835

gdbserver man

gdbserver comm prog [args . . .]

gdbserver –attach comm pid

gdbserver –multi comm

gdbserver is a program that allows you to run gdb on a different machine than the one
which is running the program being debugged.

Usage (server (target) side)

First, you need to have a copy of the program you want to debug put onto the target
system. The program can be stripped to save space if needed, as gdbserver doesn’t care
about symbols. All symbol handling is taken care of by the gdb running on the host system.

To use the server, you log on to the target system, and run the gdbserver program.
You must tell it (a) how to communicate with gdb, (b) the name of your program, and (c)
its arguments. The general syntax is:

target> gdbserver comm program [args ...]

For example, using a serial port, you might say:

target> gdbserver /dev/com1 emacs foo.txt

This tells gdbserver to debug emacs with an argument of foo.txt, and to communicate
with gdb via /dev/com1. gdbserver now waits patiently for the host gdb to communicate
with it.

To use a TCP connection, you could say:

target> gdbserver host:2345 emacs foo.txt

This says pretty much the same thing as the last example, except that we are going to
communicate with the host gdb via TCP. The host:2345 argument means that we are
expecting to see a TCP connection from host to local TCP port 2345. (Currently, the host
part is ignored.) You can choose any number you want for the port number as long as it
does not conflict with any existing TCP ports on the target system. This same port number
must be used in the host gdbs target remote command, which will be described shortly.
Note that if you chose a port number that conflicts with another service, gdbserver will
print an error message and exit.

gdbserver can also attach to running programs. This is accomplished via the --attach
argument. The syntax is:

target> gdbserver --attach comm pid

pid is the process ID of a currently running process. It isn’t necessary to point gdbserver
at a binary for the running process.

To start gdbserver without supplying an initial command to run or process ID to
attach, use the --multi command line option. In such case you should connect using
target extended-remote to start the program you want to debug.

target> gdbserver --multi comm

836 Debugging with gdb

Usage (host side)

You need an unstripped copy of the target program on your host system, since gdb needs
to examine its symbol tables and such. Start up gdb as you normally would, with the
target program as the first argument. (You may need to use the --baud option if the serial
line is running at anything except 9600 baud.) That is gdb TARGET-PROG, or gdb --baud

BAUD TARGET-PROG. After that, the only new command you need to know about is target
remote (or target extended-remote). Its argument is either a device name (usually a
serial device, like /dev/ttyb), or a HOST:PORT descriptor. For example:

(gdb) target remote /dev/ttyb

communicates with the server via serial line /dev/ttyb, and:

(gdb) target remote the-target:2345

communicates via a TCP connection to port 2345 on host ‘the-target’, where you previously
started up gdbserver with the same port number. Note that for TCP connections, you
must start up gdbserver prior to using the ‘target remote’ command, otherwise you may
get an error that looks something like ‘Connection refused’.

gdbserver can also debug multiple inferiors at once, described in Section 4.9 [Inferiors
Connections and Programs], page 40. In such case use the extended-remote gdb command
variant:

(gdb) target extended-remote the-target:2345

The gdbserver option --multi may or may not be used in such case.

There are three different modes for invoking gdbserver:

• Debug a specific program specified by its program name:

gdbserver comm prog [args...]

The comm parameter specifies how should the server communicate with gdb; it is
either a device name (to use a serial line), a TCP port number (:1234), or - or stdio
to use stdin/stdout of gdbserver. Specify the name of the program to debug in prog.
Any remaining arguments will be passed to the program verbatim. When the program
exits, gdb will close the connection, and gdbserver will exit.

• Debug a specific program by specifying the process ID of a running program:

gdbserver --attach comm pid

The comm parameter is as described above. Supply the process ID of a running program
in pid; gdb will do everything else. Like with the previous mode, when the process pid
exits, gdb will close the connection, and gdbserver will exit.

• Multi-process mode – debug more than one program/process:

gdbserver --multi comm

In this mode, gdb can instruct gdbserver which command(s) to run. Unlike the other
2 modes, gdb will not close the connection when a process being debugged exits, so
you can debug several processes in the same session.

In each of the modes you may specify these options:

--help List all options, with brief explanations.

--version

This option causes gdbserver to print its version number and exit.

Appendix L: Manual pages 837

--attach gdbserver will attach to a running program. The syntax is:
target> gdbserver --attach comm pid

pid is the process ID of a currently running process. It isn’t necessary to point
gdbserver at a binary for the running process.

--multi To start gdbserver without supplying an initial command to run or process ID
to attach, use this command line option. Then you can connect using target

extended-remote and start the program you want to debug. The syntax is:
target> gdbserver --multi comm

--debug Instruct gdbserver to display extra status information about the debugging
process. This option is intended for gdbserver development and for bug reports
to the developers.

--remote-debug

Instruct gdbserver to display remote protocol debug output. This option is
intended for gdbserver development and for bug reports to the developers.

--debug-file=filename

Instruct gdbserver to send any debug output to the given filename. This option
is intended for gdbserver development and for bug reports to the developers.

--debug-format=option1[,option2,...]
Instruct gdbserver to include extra information in each line of debugging out-
put. See [Other Command-Line Arguments for gdbserver], page 308.

--wrapper

Specify a wrapper to launch programs for debugging. The option should be
followed by the name of the wrapper, then any command-line arguments to
pass to the wrapper, then -- indicating the end of the wrapper arguments.

--once By default, gdbserver keeps the listening TCP port open, so that additional
connections are possible. However, if you start gdbserver with the --once

option, it will stop listening for any further connection attempts after connecting
to the first gdb session.

gcore

gcore [-a] [-o prefix] pid1 [pid2...pidN]

Generate core dumps of one or more running programs with process IDs pid1, pid2, etc.
A core file produced by gcore is equivalent to one produced by the kernel when the process
crashes (and when ulimit -c was used to set up an appropriate core dump limit). However,
unlike after a crash, after gcore finishes its job the program remains running without any
change.

-a Dump all memory mappings. The actual effect of this option depends on the
Operating System. On gnu/Linux, it will disable use-coredump-filter (see
[set use-coredump-filter], page 178) and enable dump-excluded-mappings (see
[set dump-excluded-mappings], page 179).

-o prefix The optional argument prefix specifies the prefix to be used when composing
the file names of the core dumps. The file name is composed as prefix.pid,

838 Debugging with gdb

where pid is the process ID of the running program being analyzed by gcore.
If not specified, prefix defaults to gcore.

gdbinit

~/.config/gdb/gdbinit

~/.gdbinit

./.gdbinit

These files contain gdb commands to automatically execute during gdb startup. The
lines of contents are canned sequences of commands, described in Section 23.1 [Sequences],
page 371.

Please read more in Section 2.1.3 [Startup], page 16.

(not enabled with --with-system-gdbinit during compilation)

System-wide initialization file. It is executed unless user specified gdb option
-nx or -n. See more in

(not enabled with --with-system-gdbinit-dir during compilation)

System-wide initialization directory. All files in this directory are executed on
startup unless user specified gdb option -nx or -n, as long as they have a
recognized file extension. See more in Section C.6 [System-wide configuration],
page 705.

~/.config/gdb/gdbinit or ~/.gdbinit

User initialization file. It is executed unless user specified gdb options -nx, -n
or -nh.

.gdbinit Initialization file for current directory. It may need to be enabled with gdb
security command set auto-load local-gdbinit. See more in Section 22.8.1
[Init File in the Current Directory], page 358.

gdb-add-index

gdb-add-index filename

When gdb finds a symbol file, it scans the symbols in the file in order to construct an
internal symbol table. This lets most gdb operations work quickly–at the cost of a delay
early on. For large programs, this delay can be quite lengthy, so gdb provides a way to
build an index, which speeds up startup.

To determine whether a file contains such an index, use the command readelf -S

filename: the index is stored in a section named .gdb_index. The index file can only
be produced on systems which use ELF binaries and DWARF debug information (i.e.,
sections named .debug_*).

gdb-add-index uses gdb and objdump found in the PATH environment variable. If you
want to use different versions of these programs, you can specify them through the GDB and
OBJDUMP environment variables.

Appendix L: Manual pages 839

See more in Section 18.5 [Index Files], page 293.

841

Appendix M GNU GENERAL PUBLIC
LICENSE

Version 3, 29 June 2007

Copyright c© 2007 Free Software Foundation, Inc. http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

Preamble

The GNU General Public License is a free, copyleft license for software and other kinds of
works.

The licenses for most software and other practical works are designed to take away your
freedom to share and change the works. By contrast, the GNU General Public License is
intended to guarantee your freedom to share and change all versions of a program—to make
sure it remains free software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to any other work
released this way by its authors. You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies
of free software (and charge for them if you wish), that you receive source code or can get
it if you want it, that you can change the software or use pieces of it in new free programs,
and that you know you can do these things.

To protect your rights, we need to prevent others from denying you these rights or asking
you to surrender the rights. Therefore, you have certain responsibilities if you distribute
copies of the software, or if you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis or for a fee, you
must pass on to the recipients the same freedoms that you received. You must make sure
that they, too, receive or can get the source code. And you must show them these terms so
they know their rights.

Developers that use the GNU GPL protect your rights with two steps: (1) assert copy-
right on the software, and (2) offer you this License giving you legal permission to copy,
distribute and/or modify it.

For the developers’ and authors’ protection, the GPL clearly explains that there is no
warranty for this free software. For both users’ and authors’ sake, the GPL requires that
modified versions be marked as changed, so that their problems will not be attributed
erroneously to authors of previous versions.

Some devices are designed to deny users access to install or run modified versions of the
software inside them, although the manufacturer can do so. This is fundamentally incom-
patible with the aim of protecting users’ freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to use, which is pre-
cisely where it is most unacceptable. Therefore, we have designed this version of the GPL
to prohibit the practice for those products. If such problems arise substantially in other
domains, we stand ready to extend this provision to those domains in future versions of the
GPL, as needed to protect the freedom of users.

http://fsf.org/

842 Debugging with gdb

Finally, every program is threatened constantly by software patents. States should not
allow patents to restrict development and use of software on general-purpose computers, but
in those that do, we wish to avoid the special danger that patents applied to a free program
could make it effectively proprietary. To prevent this, the GPL assures that patents cannot
be used to render the program non-free.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS

0. Definitions.

“This License” refers to version 3 of the GNU General Public License.

“Copyright” also means copyright-like laws that apply to other kinds of works, such as
semiconductor masks.

“The Program” refers to any copyrightable work licensed under this License. Each
licensee is addressed as “you”. “Licensees” and “recipients” may be individuals or
organizations.

To “modify” a work means to copy from or adapt all or part of the work in a fashion
requiring copyright permission, other than the making of an exact copy. The resulting
work is called a “modified version” of the earlier work or a work “based on” the earlier
work.

A “covered work” means either the unmodified Program or a work based on the Pro-
gram.

To “propagate” a work means to do anything with it that, without permission, would
make you directly or secondarily liable for infringement under applicable copyright law,
except executing it on a computer or modifying a private copy. Propagation includes
copying, distribution (with or without modification), making available to the public,
and in some countries other activities as well.

To “convey” a work means any kind of propagation that enables other parties to make
or receive copies. Mere interaction with a user through a computer network, with no
transfer of a copy, is not conveying.

An interactive user interface displays “Appropriate Legal Notices” to the extent that it
includes a convenient and prominently visible feature that (1) displays an appropriate
copyright notice, and (2) tells the user that there is no warranty for the work (except
to the extent that warranties are provided), that licensees may convey the work under
this License, and how to view a copy of this License. If the interface presents a list
of user commands or options, such as a menu, a prominent item in the list meets this
criterion.

1. Source Code.

The “source code” for a work means the preferred form of the work for making modi-
fications to it. “Object code” means any non-source form of a work.

A “Standard Interface” means an interface that either is an official standard defined
by a recognized standards body, or, in the case of interfaces specified for a particular
programming language, one that is widely used among developers working in that
language.

Appendix M: GNU GENERAL PUBLIC LICENSE 843

The “System Libraries” of an executable work include anything, other than the work as
a whole, that (a) is included in the normal form of packaging a Major Component, but
which is not part of that Major Component, and (b) serves only to enable use of the
work with that Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A “Major Component”,
in this context, means a major essential component (kernel, window system, and so
on) of the specific operating system (if any) on which the executable work runs, or a
compiler used to produce the work, or an object code interpreter used to run it.

The “Corresponding Source” for a work in object code form means all the source code
needed to generate, install, and (for an executable work) run the object code and to
modify the work, including scripts to control those activities. However, it does not
include the work’s System Libraries, or general-purpose tools or generally available
free programs which are used unmodified in performing those activities but which are
not part of the work. For example, Corresponding Source includes interface definition
files associated with source files for the work, and the source code for shared libraries
and dynamically linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those subprograms
and other parts of the work.

The Corresponding Source need not include anything that users can regenerate auto-
matically from other parts of the Corresponding Source.

The Corresponding Source for a work in source code form is that same work.

2. Basic Permissions.

All rights granted under this License are granted for the term of copyright on the
Program, and are irrevocable provided the stated conditions are met. This License ex-
plicitly affirms your unlimited permission to run the unmodified Program. The output
from running a covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your rights of fair use
or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not convey, without
conditions so long as your license otherwise remains in force. You may convey covered
works to others for the sole purpose of having them make modifications exclusively
for you, or provide you with facilities for running those works, provided that you
comply with the terms of this License in conveying all material for which you do not
control copyright. Those thus making or running the covered works for you must do
so exclusively on your behalf, under your direction and control, on terms that prohibit
them from making any copies of your copyrighted material outside their relationship
with you.

Conveying under any other circumstances is permitted solely under the conditions
stated below. Sublicensing is not allowed; section 10 makes it unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological measure under
any applicable law fulfilling obligations under article 11 of the WIPO copyright treaty
adopted on 20 December 1996, or similar laws prohibiting or restricting circumvention
of such measures.

844 Debugging with gdb

When you convey a covered work, you waive any legal power to forbid circumvention of
technological measures to the extent such circumvention is effected by exercising rights
under this License with respect to the covered work, and you disclaim any intention
to limit operation or modification of the work as a means of enforcing, against the
work’s users, your or third parties’ legal rights to forbid circumvention of technological
measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an
appropriate copyright notice; keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code; keep intact all
notices of the absence of any warranty; and give all recipients a copy of this License
along with the Program.

You may charge any price or no price for each copy that you convey, and you may offer
support or warranty protection for a fee.

5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to produce it from
the Program, in the form of source code under the terms of section 4, provided that
you also meet all of these conditions:

a. The work must carry prominent notices stating that you modified it, and giving a
relevant date.

b. The work must carry prominent notices stating that it is released under this Li-
cense and any conditions added under section 7. This requirement modifies the
requirement in section 4 to “keep intact all notices”.

c. You must license the entire work, as a whole, under this License to anyone who
comes into possession of a copy. This License will therefore apply, along with any
applicable section 7 additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no permission to license
the work in any other way, but it does not invalidate such permission if you have
separately received it.

d. If the work has interactive user interfaces, each must display Appropriate Legal
Notices; however, if the Program has interactive interfaces that do not display
Appropriate Legal Notices, your work need not make them do so.

A compilation of a covered work with other separate and independent works, which
are not by their nature extensions of the covered work, and which are not combined
with it such as to form a larger program, in or on a volume of a storage or distribution
medium, is called an “aggregate” if the compilation and its resulting copyright are
not used to limit the access or legal rights of the compilation’s users beyond what the
individual works permit. Inclusion of a covered work in an aggregate does not cause
this License to apply to the other parts of the aggregate.

6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms of sections 4 and
5, provided that you also convey the machine-readable Corresponding Source under
the terms of this License, in one of these ways:

Appendix M: GNU GENERAL PUBLIC LICENSE 845

a. Convey the object code in, or embodied in, a physical product (including a phys-
ical distribution medium), accompanied by the Corresponding Source fixed on a
durable physical medium customarily used for software interchange.

b. Convey the object code in, or embodied in, a physical product (including a physi-
cal distribution medium), accompanied by a written offer, valid for at least three
years and valid for as long as you offer spare parts or customer support for that
product model, to give anyone who possesses the object code either (1) a copy of
the Corresponding Source for all the software in the product that is covered by this
License, on a durable physical medium customarily used for software interchange,
for a price no more than your reasonable cost of physically performing this con-
veying of source, or (2) access to copy the Corresponding Source from a network
server at no charge.

c. Convey individual copies of the object code with a copy of the written offer to
provide the Corresponding Source. This alternative is allowed only occasionally
and noncommercially, and only if you received the object code with such an offer,
in accord with subsection 6b.

d. Convey the object code by offering access from a designated place (gratis or for
a charge), and offer equivalent access to the Corresponding Source in the same
way through the same place at no further charge. You need not require recipients
to copy the Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source may be on
a different server (operated by you or a third party) that supports equivalent
copying facilities, provided you maintain clear directions next to the object code
saying where to find the Corresponding Source. Regardless of what server hosts
the Corresponding Source, you remain obligated to ensure that it is available for
as long as needed to satisfy these requirements.

e. Convey the object code using peer-to-peer transmission, provided you inform other
peers where the object code and Corresponding Source of the work are being offered
to the general public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Cor-
responding Source as a System Library, need not be included in conveying the object
code work.

A “User Product” is either (1) a “consumer product”, which means any tangible per-
sonal property which is normally used for personal, family, or household purposes, or
(2) anything designed or sold for incorporation into a dwelling. In determining whether
a product is a consumer product, doubtful cases shall be resolved in favor of coverage.
For a particular product received by a particular user, “normally used” refers to a
typical or common use of that class of product, regardless of the status of the par-
ticular user or of the way in which the particular user actually uses, or expects or is
expected to use, the product. A product is a consumer product regardless of whether
the product has substantial commercial, industrial or non-consumer uses, unless such
uses represent the only significant mode of use of the product.

“Installation Information” for a User Product means any methods, procedures, autho-
rization keys, or other information required to install and execute modified versions of a
covered work in that User Product from a modified version of its Corresponding Source.

846 Debugging with gdb

The information must suffice to ensure that the continued functioning of the modified
object code is in no case prevented or interfered with solely because modification has
been made.

If you convey an object code work under this section in, or with, or specifically for
use in, a User Product, and the conveying occurs as part of a transaction in which
the right of possession and use of the User Product is transferred to the recipient in
perpetuity or for a fixed term (regardless of how the transaction is characterized),
the Corresponding Source conveyed under this section must be accompanied by the
Installation Information. But this requirement does not apply if neither you nor any
third party retains the ability to install modified object code on the User Product (for
example, the work has been installed in ROM).

The requirement to provide Installation Information does not include a requirement
to continue to provide support service, warranty, or updates for a work that has been
modified or installed by the recipient, or for the User Product in which it has been
modified or installed. Access to a network may be denied when the modification itself
materially and adversely affects the operation of the network or violates the rules and
protocols for communication across the network.

Corresponding Source conveyed, and Installation Information provided, in accord with
this section must be in a format that is publicly documented (and with an implementa-
tion available to the public in source code form), and must require no special password
or key for unpacking, reading or copying.

7. Additional Terms.

“Additional permissions” are terms that supplement the terms of this License by mak-
ing exceptions from one or more of its conditions. Additional permissions that are
applicable to the entire Program shall be treated as though they were included in this
License, to the extent that they are valid under applicable law. If additional permis-
sions apply only to part of the Program, that part may be used separately under those
permissions, but the entire Program remains governed by this License without regard
to the additional permissions.

When you convey a copy of a covered work, you may at your option remove any
additional permissions from that copy, or from any part of it. (Additional permissions
may be written to require their own removal in certain cases when you modify the
work.) You may place additional permissions on material, added by you to a covered
work, for which you have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you add to a covered
work, you may (if authorized by the copyright holders of that material) supplement
the terms of this License with terms:

a. Disclaiming warranty or limiting liability differently from the terms of sections 15
and 16 of this License; or

b. Requiring preservation of specified reasonable legal notices or author attributions
in that material or in the Appropriate Legal Notices displayed by works containing
it; or

c. Prohibiting misrepresentation of the origin of that material, or requiring that mod-
ified versions of such material be marked in reasonable ways as different from the
original version; or

Appendix M: GNU GENERAL PUBLIC LICENSE 847

d. Limiting the use for publicity purposes of names of licensors or authors of the
material; or

e. Declining to grant rights under trademark law for use of some trade names, trade-
marks, or service marks; or

f. Requiring indemnification of licensors and authors of that material by anyone who
conveys the material (or modified versions of it) with contractual assumptions
of liability to the recipient, for any liability that these contractual assumptions
directly impose on those licensors and authors.

All other non-permissive additional terms are considered “further restrictions” within
the meaning of section 10. If the Program as you received it, or any part of it, con-
tains a notice stating that it is governed by this License along with a term that is a
further restriction, you may remove that term. If a license document contains a further
restriction but permits relicensing or conveying under this License, you may add to a
covered work material governed by the terms of that license document, provided that
the further restriction does not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the
relevant source files, a statement of the additional terms that apply to those files, or a
notice indicating where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the form of a sep-
arately written license, or stated as exceptions; the above requirements apply either
way.

8. Termination.

You may not propagate or modify a covered work except as expressly provided un-
der this License. Any attempt otherwise to propagate or modify it is void, and will
automatically terminate your rights under this License (including any patent licenses
granted under the third paragraph of section 11).

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, you do not qualify to receive new
licenses for the same material under section 10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or run a copy of the
Program. Ancillary propagation of a covered work occurring solely as a consequence of
using peer-to-peer transmission to receive a copy likewise does not require acceptance.

848 Debugging with gdb

However, nothing other than this License grants you permission to propagate or modify
any covered work. These actions infringe copyright if you do not accept this License.
Therefore, by modifying or propagating a covered work, you indicate your acceptance
of this License to do so.

10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically receives a license
from the original licensors, to run, modify and propagate that work, subject to this
License. You are not responsible for enforcing compliance by third parties with this
License.

An “entity transaction” is a transaction transferring control of an organization, or
substantially all assets of one, or subdividing an organization, or merging organizations.
If propagation of a covered work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever licenses to the work
the party’s predecessor in interest had or could give under the previous paragraph, plus
a right to possession of the Corresponding Source of the work from the predecessor in
interest, if the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the rights granted or
affirmed under this License. For example, you may not impose a license fee, royalty, or
other charge for exercise of rights granted under this License, and you may not initiate
litigation (including a cross-claim or counterclaim in a lawsuit) alleging that any patent
claim is infringed by making, using, selling, offering for sale, or importing the Program
or any portion of it.

11. Patents.

A “contributor” is a copyright holder who authorizes use under this License of the
Program or a work on which the Program is based. The work thus licensed is called
the contributor’s “contributor version”.

A contributor’s “essential patent claims” are all patent claims owned or controlled by
the contributor, whether already acquired or hereafter acquired, that would be infringed
by some manner, permitted by this License, of making, using, or selling its contributor
version, but do not include claims that would be infringed only as a consequence of
further modification of the contributor version. For purposes of this definition, “con-
trol” includes the right to grant patent sublicenses in a manner consistent with the
requirements of this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license
under the contributor’s essential patent claims, to make, use, sell, offer for sale, import
and otherwise run, modify and propagate the contents of its contributor version.

In the following three paragraphs, a “patent license” is any express agreement or com-
mitment, however denominated, not to enforce a patent (such as an express permission
to practice a patent or covenant not to sue for patent infringement). To “grant” such
a patent license to a party means to make such an agreement or commitment not to
enforce a patent against the party.

If you convey a covered work, knowingly relying on a patent license, and the Corre-
sponding Source of the work is not available for anyone to copy, free of charge and under
the terms of this License, through a publicly available network server or other readily
accessible means, then you must either (1) cause the Corresponding Source to be so

Appendix M: GNU GENERAL PUBLIC LICENSE 849

available, or (2) arrange to deprive yourself of the benefit of the patent license for this
particular work, or (3) arrange, in a manner consistent with the requirements of this
License, to extend the patent license to downstream recipients. “Knowingly relying”
means you have actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient’s use of the covered work in a country,
would infringe one or more identifiable patents in that country that you have reason
to believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you convey,
or propagate by procuring conveyance of, a covered work, and grant a patent license
to some of the parties receiving the covered work authorizing them to use, propagate,
modify or convey a specific copy of the covered work, then the patent license you grant
is automatically extended to all recipients of the covered work and works based on it.

A patent license is “discriminatory” if it does not include within the scope of its cover-
age, prohibits the exercise of, or is conditioned on the non-exercise of one or more of the
rights that are specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is in the business of
distributing software, under which you make payment to the third party based on the
extent of your activity of conveying the work, and under which the third party grants,
to any of the parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work conveyed by you (or
copies made from those copies), or (b) primarily for and in connection with specific
products or compilations that contain the covered work, unless you entered into that
arrangement, or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting any implied license or
other defenses to infringement that may otherwise be available to you under applicable
patent law.

12. No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or otherwise) that
contradict the conditions of this License, they do not excuse you from the conditions
of this License. If you cannot convey a covered work so as to satisfy simultaneously
your obligations under this License and any other pertinent obligations, then as a
consequence you may not convey it at all. For example, if you agree to terms that
obligate you to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this License would
be to refrain entirely from conveying the Program.

13. Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have permission to link or
combine any covered work with a work licensed under version 3 of the GNU Affero
General Public License into a single combined work, and to convey the resulting work.
The terms of this License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License, section 13,
concerning interaction through a network will apply to the combination as such.

14. Revised Versions of this License.

850 Debugging with gdb

The Free Software Foundation may publish revised and/or new versions of the GNU
General Public License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies that
a certain numbered version of the GNU General Public License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
numbered version or of any later version published by the Free Software Foundation.
If the Program does not specify a version number of the GNU General Public License,
you may choose any version ever published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the GNU
General Public License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Program.

Later license versions may give you additional or different permissions. However, no
additional obligations are imposed on any author or copyright holder as a result of your
choosing to follow a later version.

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PER-
MITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN
WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE
THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EX-
PRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE
OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFEC-
TIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.

16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MODIFIES AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, IN-
CIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO
LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUS-
TAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM
TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR
OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGES.

17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above cannot be given
local legal effect according to their terms, reviewing courts shall apply local law that
most closely approximates an absolute waiver of all civil liability in connection with
the Program, unless a warranty or assumption of liability accompanies a copy of the
Program in return for a fee.

Appendix M: GNU GENERAL PUBLIC LICENSE 851

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public,
the best way to achieve this is to make it free software which everyone can redistribute and
change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the
start of each source file to most effectively state the exclusion of warranty; and each file
should have at least the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.

Copyright (C) year name of author

This program is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or (at

your option) any later version.

This program is distributed in the hope that it will be useful, but

WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program. If not, see http://www.gnu.org/licenses/.

Also add information on how to contact you by electronic and paper mail.

If the program does terminal interaction, make it output a short notice like this when it
starts in an interactive mode:

program Copyright (C) year name of author

This program comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.

This is free software, and you are welcome to redistribute it

under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts of
the General Public License. Of course, your program’s commands might be different; for a
GUI interface, you would use an “about box”.

You should also get your employer (if you work as a programmer) or school, if any, to
sign a “copyright disclaimer” for the program, if necessary. For more information on this,
and how to apply and follow the GNU GPL, see http://www.gnu.org/licenses/.

The GNU General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may consider it more
useful to permit linking proprietary applications with the library. If this is what you want
to do, use the GNU Lesser General Public License instead of this License. But first, please
read http://www.gnu.org/philosophy/why-not-lgpl.html.

http://www.gnu.org/licenses/
http://www.gnu.org/licenses/
http://www.gnu.org/philosophy/why-not-lgpl.html

853

Appendix N GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright c© 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released

http://fsf.org/

854 Debugging with gdb

under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ascii without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF

and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Document
to the public.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING

Appendix N: GNU Free Documentation License 855

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,

856 Debugging with gdb

be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their

Appendix N: GNU Free Documentation License 857

titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

858 Debugging with gdb

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense, or
distribute it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, receipt of a copy of some or all of the
same material does not give you any rights to use it.

Appendix N: GNU Free Documentation License 859

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation. If the Document specifies that a proxy can decide which future
versions of this License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide
Web server that publishes copyrightable works and also provides prominent facilities
for anybody to edit those works. A public wiki that anybody can edit is an example of
such a server. A “Massive Multiauthor Collaboration” (or “MMC”) contained in the
site means any set of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license pub-
lished by Creative Commons Corporation, a not-for-profit corporation with a principal
place of business in San Francisco, California, as well as future copyleft versions of that
license published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part
of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works
that were first published under this License somewhere other than this MMC, and
subsequently incorporated in whole or in part into the MMC, (1) had no cover texts
or invariant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under
CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is
eligible for relicensing.

http://www.gnu.org/copyleft/

860 Debugging with gdb

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with. . .Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

861

Concept Index

!
‘!’ packet . 721

#
in Modula-2 . 242

$
$. 163
$$. 163
$_ and info breakpoints . 61
$_ and info line . 130
$_, $__, and value history . 147

&
&, background execution of commands 94

–
--annotate . 15
--args . 15
--attach, gdbserver option 307
--batch . 13
--batch-silent . 14
--baud . 15
--cd . 14
--command . 12
--configuration . 16
--core . 12
--data-directory . 14
--debug, gdbserver option . 308
--debug-file, gdbserver option 308
--debug-format, gdbserver option 308
--directory . 13
--early-init-command . 13
--early-init-eval-command 13
--eval-command . 12
--exec . 12
--fullname . 14
--init-command . 12
--init-eval-command . 12
--interpreter . 15
--multi, gdbserver option . 301
--nh . 13
--nowindows . 14
--nx . 13
--once, gdbserver option . 308
--pid . 12
--quiet . 13
--readnever, command-line option 13
--readnow . 13

--remote-debug, gdbserver option 308
--return-child-result . 14
--se . 12
--selftest . 309
--silent . 13
--statistics . 16
--symbols . 12
--tty . 15
--tui . 15
--version . 16
--windows . 14
‘--with-gdb-datadir’ . 295
‘--with-relocated-sources’ 128
‘--with-sysroot’ . 286
--wrapper, gdbserver option 309
--write . 15
-b . 15
-c . 12
-d . 13
-D . 14
-e . 12
-eiex . 13
-eix . 13
-ex . 12
-f . 14
-iex . 12
-info-gdb-mi-command . 637
-ix . 12
-l . 15
-n . 13
-nw . 14
-p . 12
-q . 13
-r . 13
-readnever, option for symbol-file command . . 280
-s . 12
-t . 15
-w . 14
-x . 12

.

., Modula-2 scope operator 241

.build-id directory . 288

.debug subdirectories . 288

.debug_gdb_scripts section 528
‘.gdb_index’ section . 293
.gdb index section format . 825
.gdbinit . 18
‘.gnu_debugdata’ section . 292
.gnu_debuglink sections . 289
.note.gnu.build-id sections 290
.o files, reading symbols from 281

862 Debugging with gdb

/
/proc . 323

:
::, context for variables/functions. 141

<
<architecture> . 808
<compatible> . 809
<feature> . 809
<flags> . 810
<not saved> values . 172
<osabi> . 809
<reg> . 810
<struct> . 810
<union> . 809
<vector> . 809
<xi:include> . 808

?
‘?’ packet . 721

_NSPrintForDebugger, and printing
Objective-C objects . 231

‘
“No symbol "foo" in current context” 142

{
{type} . 139

A
‘A’ packet . 721
AArch64 Memory Tagging Extension. 340
AArch64 Pointer Authentication. 340
AArch64 support . 340
AArch64 SVE. 340
abbreviation . 23
acknowledgment, for gdb remote 775
active targets . 297
Ada . 242
Ada exception catching . 69
Ada exception handlers catching 69
Ada mode, general . 242
Ada task switching . 248
Ada tasking and core file debugging 250
Ada, deviations from . 244
Ada, omissions from . 243
Ada, problems . 251

Ada, source character set . 251
Ada, tasking . 247
add new commands for external monitor 306
address locations . 124
address of a symbol . 254
address size for remote targets 311
addressable memory unit . 148
Advanced Matrix Extensions (AMX). 343
aggregates (Ada) . 243
AIX shared library debugging 363
AIX threads . 363
aliases for commands . 378
aliases for commands, default arguments 380
alignment of remote memory accesses 724
all-stop mode . 92
Alpha stack . 344
ambiguous expressions . 139
annotations . 649

annotations for errors, warnings
and interrupts . 651

annotations for invalidation messages 651
annotations for prompts . 650
annotations for running programs 651
annotations for source display 652
append data to a file . 177
Application Data Integrity . 346

apply a command to all frames (ignoring
errors and empty output) 118

apply a command to all frames of all threads
(ignoring errors and empty output) 50

apply command to all threads (ignoring errors
and empty output) . 50

apply command to several frames 117
apply command to several threads 49
ARC EM . 334
ARC HS . 334
ARC specific commands . 334
ARC600 . 334
ARC700 . 334
architecture debugging info 363
argument count in user-defined commands 371
arguments (to your program) 36
arguments, to gdbserver . 307
arguments, to user-defined commands 371
ARM 32-bit mode . 335
ARM AArch64 . 363
array aggregates (Ada) . 243
arrays . 143
arrays in expressions . 139
arrays slices (Fortran) . 234
artificial array . 143
assembly instructions . 130
assignment . 267
async output in gdb/mi . 549
async records in gdb/mi . 551
asynchronous execution 94, 545

asynchronous execution, and process
record and replay . 102

Concept Index 863

AT&T disassembly flavor . 133
attach . 39
attach to a program, gdbserver 307
auto-loading . 357
auto-loading extensions . 526
auto-loading init file in the current directory . . 358
auto-loading libthread db.so.1 359
auto-loading safe-path . 359
auto-loading verbose mode . 361
auto-retry, for remote TCP target 313
automatic display . 149
automatic hardware breakpoints 63
automatic overlay debugging 216
automatic symbol index cache 294
automatic thread selection . 92
auxiliary vector . 173
AVR . 339

B
‘b’ packet . 721
‘B’ packet . 721
background execution . 94, 545
backtrace beyond main function 112
backtrace limit . 113
base name differences . 287
baud rate for remote targets 312
‘bc’ packet . 721
bcache statistics . 713
bits in remote address . 311
blocks in guile . 508
blocks in python . 451
bookmark . 54
boundary violations, Intel MPX 91
branch trace configuration format 792
branch trace format . 792
branch trace store . 102
break in overloaded functions 227
break on a system call. 69
break on fork/exec . 69
BREAK signal instead of Ctrl-C 312
breakpoint address adjusted . 81
breakpoint at static probe point 123
breakpoint commands . 76
breakpoint commands for gdb/mi 561
breakpoint commands, in remote protocol 753
breakpoint conditions . 74
breakpoint kinds, ARM . 762
breakpoint kinds, MIPS . 763
breakpoint lists . 57
breakpoint numbers . 57
breakpoint on events . 57
breakpoint on memory address 57
breakpoint on variable modification 57
breakpoint ranges . 57
breakpoint subroutine, remote 319
breakpointing Ada elaboration code 246
breakpoints . 57

breakpoints and inferiors . 96
breakpoints and tasks, in Ada 249
breakpoints and threads . 95
breakpoints at functions matching a regexp 60
breakpoints in guile . 514
breakpoints in overlays . 216
breakpoints in python . 459
breakpoints, multiple locations 62
‘bs’ packet . 722
bug criteria . 661
bug reports . 661
bugs in gdb . 661
build ID sections . 290
build ID, and separate debugging files 288
building gdb, requirements for 697
built-in simulator target . 298
builtin Go functions . 230
builtin Go types . 230

C
‘c’ packet . 722
C and C++ . 223
C and C++ checks . 227
C and C++ constants . 225
C and C++ defaults . 227
C and C++ operators . 223
‘C’ packet . 722
C++ . 223
C++ compilers . 226
C++ demangling . 228
C++ exception handling . 227
C++ overload debugging info 366
C++ scope resolution . 142
C++ symbol decoding style . 159
C++ symbol display . 228
caching data of targets . 182
caching of bfd objects . 288
caching of opened files . 288
call dummy stack unwinding 271

call dummy stack unwinding on
unhandled exception. 271

call overloaded functions . 226
call stack . 109
call stack traces . 110
call-clobbered registers . 172
caller-saved registers . 172
calling functions . 271
calling functions in the program, disabling 272
calling make . 20
case sensitivity in symbol names 253
case-insensitive symbol names 253
casts, in expressions . 139
casts, to view memory . 139
catch Ada exceptions . 69
catch Ada exceptions when handled 69
catch syscalls from inferior, remote request 742
catchpoints . 57

864 Debugging with gdb

catchpoints, setting . 68
change gdb’s working directory 38
change inferior’s working directory 38
character sets . 179
charset . 179
checkpoint . 54
checkpoints and process id . 55
checks, range . 222
checks, type . 221
checksum, for gdb remote . 719
choosing target byte order . 300
circular trace buffer . 205
clearing breakpoints, watchpoints, catchpoints . . 72
CLI commands in python . 434
close, file-i/o system call . 780
closest symbol and offset for an address 254
code address and its source line 130
code compression, MIPS . 345
COFF/PE exported symbols 364
collected data discarded . 204
colon, doubled as scope operator 241
colon-colon, context for variables/functions 141
colors . 353
command editing . 665
command files . 375
command history . 350
command hooks . 374
command interpreters . 531
command line editing . 349
command options . 27
command options, boolean . 27
command options, raw input 27
command scripts, debugging 362
command tracing . 362
commands for C++ . 227
commands in guile . 497
commands in python, CLI . 434
commands in python, GDB/MI 437
commands to access guile . 475
commands to access python 381
comment . 23
common targets . 298
COMMON blocks, Fortran . 234
compatibility, gdb/mi and CLI 549
compilation directory . 126
compile C++ type conversion 275
compile command debugging info 274
compile command driver filename override 278
compile command options override 275
compiling code . 273
completion . 24
completion of Guile commands 498
completion of Python commands 435
completion of quoted strings 26
completion of structure field names 26
completion of union field names 26
compressed debug sections . 698
conditional breakpoints . 74

conditional tracepoints . 199
configure debuginfod URLs 829
configuring gdb . 699
confirmation . 362
connection timeout, for remote TCP target 314
connections in python . 466
console i/o as part of file-i/o 778
console interpreter . 531
console output in gdb/mi . 549
constants, in file-i/o protocol 786
continuing . 82
continuing threads . 92
control C, and remote debugging 320
controlling terminal . 38
convenience functions . 167
convenience functions in python 442
convenience variables . 164
convenience variables for tracepoints 210

convenience variables, and trace
state variables . 199

convenience variables, initializing 164
core dump file . 279
core dump file target . 298
crash of debugger . 661
CRC algorithm definition . 290
CRC of memory block, remote request 736
CRIS . 339
CRIS mode . 339
CRIS version . 339
Ctrl-BREAK, MS-Windows 328
ctrl-c message, in file-i/o protocol 778
current Ada task ID . 248
current directory . 126
current Go package . 230
current thread . 46
current thread, remote request 736
custom JIT debug info . 654
Cygwin DLL, debugging . 328
Cygwin-specific commands . 328

D
‘d’ packet . 722
‘D’ packet . 722
Darwin . 333
data breakpoints . 57
data manipulation, in gdb/mi 605
dcache line-size . 183
dcache size . 183
dcache, flushing . 183
dead names, gnu Hurd . 332
debug expression parser . 366
debug formats and C++ . 226
debug link sections . 289
debug remote protocol . 366
debugger crash . 661
debugging agent . 657
debugging C++ programs . 226

Concept Index 865

debugging information directory, global 288
debugging information in separate files 288
debugging libthread_db . 52
debugging multiple processes 53
debugging optimized code . 187
debugging stub, example . 318
debugging target . 297
debugging the Cygwin DLL 328
debugging threads . 52
debuginfod . 829
debuginfod verbosity . 829
decimal floating point format 229
default behavior of commands, changing 23
default collection action . 202
default data directory . 295
default settings, changing . 23
default source path substitution 128
default system root . 286
define trace state variable, remote request 765
defining macros interactively 191
definition of a macro, showing 191
delete breakpoints . 73

deleting breakpoints,
watchpoints, catchpoints . 72

deliver a signal to a program 269
demangle . 255
demangler crashes . 709, 710
demangling C++ names . 159
deprecated commands . 709
derived type of an object, printing 160
descriptor tables display . 326
detach from task, gnu Hurd 332
detach from thread, gnu Hurd 333
direct memory access (DMA) on MS-DOS 327
directories for source files . 126
directory, compilation . 126
directory, current . 126

disable address space
randomization, remote request 737

disabling calling functions in the program 272
disassembler options . 133
disconnected tracing . 204
displaced stepping debugging info 364
displaced stepping support . 708

displaced stepping, and process
record and replay . 102

display command history . 352
display derived types . 160
display disabled out of scope 150
display gdb copyright . 30
display of expressions . 149
display remote monitor communications 299
display remote packets . 366
djgpp debugging . 325
DLLs with no debugging symbols 329
do not print frame arguments 153
documentation . 695
don’t repeat command . 373

don’t repeat Guile command 498
don’t repeat Python command 434
DOS file-name semantics of file names. 286
DOS serial data link, remote debugging 327
DOS serial port status . 327
DPMI . 325
dprintf . 77
dump all data collected at tracepoint 209
dump core from inferior . 178
dump data to a file . 177
dump/restore files . 177
DVC register . 338
DWARF compilation units cache 714
DWARF DIEs . 364
DWARF frame unwinders . 714
DWARF Line Tables . 364
DWARF Reading . 364
DWARF-2 CFI and CRIS . 339
dynamic linking . 281
dynamic printf . 77
dynamic varobj . 597
D . 230

E
early initialization . 17
early initialization file . 16
editing . 349
editing command lines . 665
editing source files . 125
eight-bit characters in strings 158
elaboration phase . 33
ELinOS system-wide configuration script 706
Emacs . 541
empty response, for unsupported packets 720
enable debuginfod . 829
enable/disable a breakpoint . 73
enabling and disabling probes 80
entering numbers . 355
environment (of your program) 36
errno values, in file-i/o protocol 786
error on valid input . 661
event debugging info . 364
event designators . 689
event handling . 68
event-loop debugging . 364
examine process image . 323
examining data . 135
examining memory . 145
exception handlers . 68
exceptions, guile . 480
exceptions, python . 388
exec events, remote reply . 734
executable file . 279
executable file target . 298
executable file, for remote target 313
execute commands from a file 375
execute forward or backward in time 100

866 Debugging with gdb

execute remote command, remote request 744

execution, foreground, background
and asynchronous . 94, 545

exit status of shell commands 167
exiting gdb . 19
expand macro once . 191
expanding preprocessor macros 191
explicit locations . 123
explore type . 138
explore value . 138
exploring hierarchical data structures 137
expression debugging info . 364
expression parser, debugging info 366
expressions . 139
expressions in Ada . 242
expressions in C or C++ . 223
expressions in C++ . 226
expressions in Modula-2 . 236
extend gdb for remote targets 306
extending GDB . 371
extra signal information . 90

F
‘F’ packet . 722
F reply packet . 778
F request packet . 777
fast tracepoints . 195
fast tracepoints, setting . 197
fatal signal . 661
fatal signals . 88
features of the remote protocol 745
fetch memory tags . 741
file name canonicalization . 287
file transfer . 306
file transfer, remote protocol 770
file-i/o examples . 787
file-i/o overview . 776
file-i/o reply packet . 778
file-i/o request packet . 777
File-I/O remote protocol extension 776
filename-display . 113
find trace snapshot . 207
flinching . 362
float promotion . 356
floating point . 173
floating point registers . 171
floating point, MIPS remote 337
focus of debugging . 46
foo . 295
foreground execution . 94, 545
fork events, remote reply . 733
fork, debugging programs which call 52
format options . 151
formatted output . 144
Fortran . 1
fortran array slicing debugging info 365
Fortran Defaults . 232

Fortran Intrinsics . 233
Fortran modules, information about 262
Fortran operators and expressions 233
Fortran Types . 232
Fortran-specific support in gdb 232
FR-V shared-library debugging 367
frame debugging info . 365
frame decorator api . 408
frame filters api . 406
frame information, printing 156
frame level . 109
frame number . 109
frame pointer . 109
frame pointer register . 171
frame, definition . 109
frameless execution . 109
frames in guile . 505
frames in python . 447
free memory information (MS-DOS) 326
FreeBSD . 334
FreeBSD LWP debug messages 365
FreeBSD native target debug messages 365
fstat, file-i/o system call . 783
Fujitsu . 319
full symbol tables, listing gdb’s internal 263
function call arguments, optimized out 112

function entry/exit, wrong
values of variables . 142

functions and variables by Fortran module 262
functions without line info, and stepping 83

G
‘g’ packet . 722
g++, gnu C++ compiler . 223
‘G’ packet . 723
garbled pointers . 326
gcc and C++ . 226
gdb bugs, reporting . 661
gdb internal error . 710
gdb module . 383
gdb objects . 478
gdb reference card . 695
gdb startup . 16
gdb version number . 30
gdb.ini . 18
gdb.printing . 470
gdb.prompt . 472
gdb.ptwrite . 473
gdb.types . 471
gdb.Value . 389
gdb/mi development . 549
gdb/mi, async records . 551
gdb/mi, breakpoint commands 561
gdb/mi, compatibility with CLI 549
gdb/mi, data manipulation 605
gdb/mi, input syntax . 546
gdb/mi, its purpose . 543

Concept Index 867

gdb/mi, output syntax . 547
gdb/mi, result records . 550
gdb/mi, simple examples . 559
gdb/mi, stream records . 551
GDB/MI General Design . 543
gdbarch debugging info . 363
GDBHISTFILE, environment variable 350
GDBHISTSIZE, environment variable 351
gdbinit . 18
gdbserver, command-line arguments 307
gdbserver, connecting . 301
gdbserver, search path for libthread_db 310

gdbserver, send all debug output
to a single file . 308

gdbserver, target extended-remote mode 301
gdbserver, target remote mode 301
gdbserver, types of connections 301
GDT . 326
general initialization . 17
get thread information block address 740

get thread-local storage address,
remote request . 739

gettimeofday, file-i/o system call 783

getting structure elements using gdb.Field
objects as subscripts . 389

global debugging information directories 288
global thread identifier (GDB) 47
global thread number . 47
GNAT descriptive types . 252
GNAT encoding . 252
gnu C++ . 223
gnu Emacs . 541
gnu Hurd debugging . 331
gnu/Hurd debug messages . 365
gnu/Linux namespaces debug messages 366
gnu/Linux native target debug messages 365
Go (programming language) 230
guile api . 476
guile architectures . 519
guile auto-loading . 525
guile commands . 475, 497
guile configuration . 478
guile exceptions . 480
guile gdb module . 476
guile iterators . 523
guile modules . 525
guile pagination . 476
guile parameters . 501
guile pretty printing api . 492
guile scripting . 474
guile scripts directory . 475
guile stdout . 476
guile, working with types . 488
guile, working with values from inferior 481

H
‘H’ packet . 723
handling signals . 89
hardware breakpoints . 59
hardware debug registers . 715
hardware watchpoints . 65
hash mark while downloading 299
heuristic-fence-post (Alpha, MIPS) 344
history events . 689
history expansion . 689
history expansion, turn on/off 351
history file . 350
history number . 163
history of values printed by gdb 163
history size . 351
history substitution . 350
hooks, for commands . 374
hooks, post-command . 374
hooks, pre-command . 374
host character set . 179
Host I/O, remote protocol . 770

how many arguments
(user-defined commands) 371

HPPA support . 346

I
‘i’ packet . 723
i/o . 38
i386 . 319
i386-stub.c . 319
‘I’ packet . 723
I/O registers (Atmel AVR) . 339
ID list . 41
IDT . 326
ignore count (of breakpoint) . 76
in-process agent protocol . 657
incomplete type . 258
indentation in structure display 158
index files . 293
index section format . 825
inferior . 40
inferior breakpoints . 96
inferior debugging info . 365
inferior events in Python . 424
inferior functions, calling . 271
inferior tty . 39
inferiors in Python . 423
infinite recursion in user-defined commands . . . 373

info for known
.debug gdb scripts-loaded scripts 713

info for known object files . 712
info line, repeated calls . 130
info proc cmdline . 324
info proc cwd . 324
info proc exe . 324
info proc files . 324
information about static tracepoint markers . . . 203

868 Debugging with gdb

information about tracepoints 202
inheritance . 227
init file . 16
init file name . 17
initial frame . 109
initialization file . 17
initialization file, readline . 668
injecting code . 273
inline functions, debugging . 187
innermost frame . 109
input syntax for gdb/mi . 546
installation . 697
instructions, assembly . 130
integral datatypes, in file-i/o protocol 784
Intel . 319

Intel Control-flow Enforcement
Technology (CET). 342

Intel disassembly flavor . 133
Intel Memory Protection Extensions (MPX). . . 341
Intel MPX boundary violations 91
Intel Processor Trace . 102
interaction, readline . 665
internal commands . 707
internal errors, control of gdb behavior 710
internal gdb breakpoints . 64
interrupt . 19
interrupt debuggee on MS-Windows 328
interrupt remote programs 312, 313
interrupting remote programs 305
interrupting remote targets 320
interrupts (remote protocol) 772
invalid input . 661
invoke another interpreter . 531
ipa protocol commands . 659
ipa protocol objects . 658
isatty, file-i/o system call . 783

J
JIT compilation interface . 653
JIT debug info reader . 654
just-in-time compilation . 653

just-in-time compilation,
debugging messages . 365

K
‘k’ packet . 723
kernel crash dump . 323
kernel memory image . 323
kill ring . 666
killing text . 666

L
languages . 219
last tracepoint number . 198
latest breakpoint . 58
lazy strings in guile . 518
lazy strings in python . 463
LDT . 326
leaving gdb . 19
libkvm . 323
library list format, remote protocol 788, 789
limit hardware breakpoints and watchpoints . . . 312
limit hardware watchpoints length 313
limit on number of printed array elements 153
limits, in file-i/o protocol . 787
line tables in python . 458
line tables, listing gdb’s internal 264
linespec locations . 122
Linux native targets . 365
list active threads, remote request 739
list of supported file-i/o calls 779
list output in gdb/mi . 549
list, how many lines to display 121
listing gdb’s internal line tables 264
listing gdb’s internal symbol tables 263
listing machine instructions 130
listing mapped overlays . 215
lists of breakpoints . 57
load address, overlay’s . 213
load shared library . 284
load symbols from memory . 282
local socket, target remote 303
local variables . 259
locate address . 144
location . 122
lock scheduler . 92, 93
log output in gdb/mi . 549
logging file name . 21
logging gdb output . 20
lseek flags, in file-i/o protocol 787
lseek, file-i/o system call . 781

M
‘m’ packet . 724
m680x0 . 319
m68k-stub.c . 319
‘M’ packet . 724
Mach-O symbols processing 366
machine instructions . 130
macro definition, showing . 191

macro expansion, showing the results
of preprocessor . 191

macros, example of debugging with 192
macros, from debug info . 191
macros, user-defined . 191
mailing lists . 550
maintenance commands . 707
Man pages . 831

Concept Index 869

managing frame filters . 118
manual overlay debugging . 215
map an overlay . 215
mapinfo list, QNX Neutrino 325
mapped address . 213
mapped overlays . 213
markers, static tracepoints . 195
maximum value for offset of closest symbol 152
member functions . 226
memory address space mappings 324, 711
memory map format . 790
memory region attributes . 175
memory tag types, ARM . 762
memory tracing . 57
memory transfer, in file-i/o protocol 785
memory used by commands 717
memory used for symbol tables 284

memory, alignment and size of
remote accesses . 724

memory, viewing as typed object 139
mi interpreter . 531
mi1 interpreter . 531
mi2 interpreter . 531
mi3 interpreter . 531
MI commands in python . 437
minimal language . 252
minimal symbol dump . 263
Minimal symbols and DLLs 329
MIPS addresses, masking . 345
MIPS remote floating point . 337
MIPS stack . 344
miscellaneous settings . 368
MMX registers (x86) . 172
mode t values, in file-i/o protocol 786
Modula-2 . 1
Modula-2 built-ins . 237
Modula-2 checks . 241
Modula-2 constants . 238
Modula-2 defaults . 241
Modula-2 operators . 236
Modula-2 types . 239
Modula-2, deviations from . 241
Modula-2, gdb support . 236
module functions and variables 262
modules . 262
monitor commands, for gdbserver 309
Motorola 680x0 . 319
MS Windows debugging . 328
MS-DOS system info . 326
MS-DOS-specific commands 325

multi-address-space extensions, in
remote protocol . 752

multiple locations, breakpoints 62
multiple processes . 52
multiple targets . 297
multiple threads . 45
multiple threads, backtrace 111

multiple-symbols menu . 140
multiprocess extensions, in remote protocol 752

N
name a thread . 50
names of symbols . 253
namespace in C++ . 226
native Cygwin debugging . 328
native djgpp debugging . 325
native script auto-loading . 378
native target . 299
negative breakpoint numbers 64
never read symbols . 280
New systag message . 46
new user interface . 531

Newlib OS ABI and its influence on the
longjmp handling . 356

Nios II architecture . 346
no debug info functions . 272
no debug info variables . 142
non-member C++ functions, set breakpoint in . . . 60
non-stop mode . 93

non-stop mode, and process
record and replay . 102

non-stop mode, and ‘set
displaced-stepping’ . 709

non-stop mode, remote request 742
noninvasive task options . 332
notation, readline . 665
notational conventions, for gdb/mi 543
notification packets . 772
notify output in gdb/mi . 549
null elements in arrays . 158
number of array elements to print 153
number representation . 355
numbers for breakpoints . 57

O
object files, relocatable, reading

symbols from . 281
Objective-C . 230
Objective-C, classes and selectors 262
Objective-C, print objects . 231
objfile-gdb.gdb . 527
objfile-gdb.py . 527
objfile-gdb.scm . 527
objfiles in guile . 504
objfiles in python . 445
observer debugging info . 366
octal escapes in strings . 158
online documentation . 28
opaque data types . 262
open flags, in file-i/o protocol 786
open, file-i/o system call . 779
OpenCL C . 231
OpenCL C Datatypes . 231

870 Debugging with gdb

OpenCL C Expressions . 232
OpenCL C Operators . 232
OpenRISC 1000 . 337
operate-and-get-next . 350
operating system information 821
operating system information, process list 821
optimized code, debugging . 187
optimized code, wrong values of variables 142
optimized out value in guile 483
optimized out value in Python 390
optimized out, in backtrace 112
optional debugging messages 363
optional warnings . 361
OS ABI . 356
OS information . 173
out-of-line single-stepping . 708
outermost frame . 109
output formats . 144
output syntax of gdb/mi . 547
overlay area . 213
overlay example program . 217
overlays . 213
overlays, setting breakpoints in 216
overloaded functions, calling 226
overloaded functions, overload resolution 228
overloading in C++ . 227
overloading, Ada . 245

P
‘p’ packet . 724
‘P’ packet . 724
packet acknowledgment, for gdb remote 775
packet size, remote protocol 750
packets, notification . 772
packets, reporting on stdout 366
packets, tracepoint . 763
page size . 352
page tables display (MS-DOS) 326
pagination . 352
parameters in guile . 501
parameters in python . 439
partial symbol dump . 263
partial symbol tables, listing gdb’s internal 263
Pascal . 1
Pascal objects, static members display 160
Pascal support in gdb, limitations 235
pass signals to inferior, remote request 743
patching binaries . 273
patching object files . 279
pause current task (gnu Hurd) 332
pause current thread (gnu Hurd) 332
pauses in output . 352
pending breakpoints . 62
physical address from linear address 327
physname . 363
pipe, target remote to . 305
pipes . 32

pointer values, in file-i/o protocol 784
pointer, finding referent . 152
port rights, gnu Hurd . 332
port sets, gnu Hurd . 332
PowerPC architecture . 346
prefix for data files . 295

prefix for executable and shared
library file names . 285

premature return from system calls 96

preprocessor macro expansion,
showing the results of . 191

pretty print arrays . 152
pretty print C++ virtual function tables 160
pretty-printer commands . 162
print all frame argument values 153
print an Objective-C object description 231
print array indexes . 152
print frame argument values for scalars only . . . 153

print list of auto-loaded canned sequences
of commands scripts . 378

print list of auto-loaded Guile scripts 525
print list of auto-loaded Python scripts 469
print messages on inferior start and exit 44
print messages on thread start and exit 51
print messages when symbols are loaded 263
print settings . 151
print structures in indented form 158
print/don’t print memory addresses 151
printing byte arrays . 145
printing data . 135
printing frame argument values 153
printing frame information . 156
printing memory tag violation information 157
printing nested structures . 157
printing strings . 145
probe static tracepoint marker 197
probing markers, static tracepoints 195
process detailed status information 325
process ID . 324
process info via /proc . 323
process list, QNX Neutrino 325
process record and replay . 101
process status register . 171
processes, multiple . 52
procfs API calls . 325
profiling GDB . 715
program counter register . 171
program entry point . 112
programming in guile . 476
programming in python . 383
progspaces in guile . 503
progspaces in python . 443
prompt . 349
protocol basics, file-i/o . 777
protocol, gdb remote serial 719

protocol-specific representation of
datatypes, in file-i/o protocol 784

python api . 383

Concept Index 871

Python architectures . 464
Python auto-loading . 469
python commands . 381
python commands, CLI . 434
python commands, GDB/MI 437
python convenience functions 442
python directory . 381
python exceptions . 388
python finish breakpoints . 463
python functions . 383
python module . 383
python modules . 470
python pagination . 383
python parameters . 439
python pretty printing api . 401
python scripting . 381
python stdout . 383
Python TUI Windows . 467
Python, working with types 395
python, working with values from inferior 389

Q
‘q’ packet . 725
‘Q’ packet . 725
‘QAllow’ packet . 736
‘qAttached’ packet . 760
‘qC’ packet . 736
‘QCatchSyscalls’ packet . 742
‘qCRC’ packet . 736
‘QDisableRandomization’ packet 737
‘QEnvironmentHexEncoded’ packet 737
‘QEnvironmentReset’ packet 738
‘QEnvironmentUnset’ packet 738
‘qFixedThreadList’ packet . 761
‘qfThreadInfo’ packet . 739
‘qGetTIBAddr’ packet . 740
‘qGetTLSAddr’ packet . 739
‘qMemTags’ packet . 741
‘QMemTags’ packet . 741
‘QNonStop’ packet . 742
‘qOffsets’ packet . 742
‘qP’ packet . 742
‘QPassSignals’ packet . 743
‘QProgramSignals’ packet . 743
‘qRcmd’ packet . 744
‘qSearch memory’ packet . 745
‘qSearch:memory’ packet . 745
‘QSetWorkingDir’ packet . 739
‘QStartNoAckMode’ packet . 745
‘QStartupWithShell’ packet 737
‘qsThreadInfo’ packet . 739
‘qSupported’ packet . 745
‘qSymbol’ packet . 754
‘qTBuffer’ packet . 769
‘QTBuffer size’ packet . 769
‘QTDisable’ packet . 766
‘QTDisconnected’ packet . 766

‘QTDP’ packet . 763
‘QTDPsrc’ packet . 764
‘QTDV’ packet . 765
‘QTEnable’ packet . 766
‘qTfP’ packet . 768
‘QTFrame’ packet . 765
‘qTfSTM’ packet . 768
‘qTfV’ packet . 768
‘QThreadEvents’ packet . 744
‘qThreadExtraInfo’ packet . 755
‘QTinit’ packet . 766
‘qTMinFTPILen’ packet . 765
‘QTNotes’ packet . 769
‘qTP’ packet . 768
‘QTro’ packet . 766
‘QTSave’ packet . 769
‘qTsP’ packet . 768
‘qTsSTM’ packet . 768
‘QTStart’ packet . 766
‘qTStatus’ packet . 766
‘qTSTMat’ packet . 769
‘QTStop’ packet . 766
‘qTsV’ packet . 768
‘qTV’ packet . 768
qualified thread ID . 46
query attached, remote request 760
query fixed thread list, remote request 761
quotes in commands . 26
quoting Ada internal identifiers 245
quoting names . 253
‘qXfer’ packet . 756

R
‘r’ packet . 725
‘R’ packet . 725
range checking . 222
range stepping . 86
ranged breakpoint . 338
ranges of breakpoints . 57
Ravenscar Profile . 250
Ravenscar thread . 251
raw printing . 145
read special object, remote request 756
read, file-i/o system call . 780
read-only sections . 283
reading symbols from relocatable object files . . 281
reading symbols immediately 280
readline . 349
Readline application name . 350
receive rights, gnu Hurd . 332
recent tracepoint number . 198
record aggregates (Ada) . 243
record mode . 101
record serial communications on file 312
recording a session script . 662

recording inferior’s execution
and replaying it . 101

872 Debugging with gdb

recordings in python . 430
redirection . 38
reference card . 695
reference declarations . 226
register cache, flushing . 712
register packet format, MIPS 762
registers . 171
Registers In Python . 465
regular expression . 60
reloading the overlay table . 215

relocatable object files, reading
symbols from . 281

remote async notification debugging info 366
remote connection commands 303
remote connection without stubs 306
remote debugging . 301
remote debugging, connecting 301
remote debugging, detach and program exit . . . 301
remote debugging, symbol files 302
remote debugging, types of connections 301
remote memory comparison 148
remote packets, enabling and disabling 314
remote programs, interrupting 305
remote protocol debugging . 366
remote protocol, binary data 719
remote protocol, field separator 719
remote query requests . 735
remote serial debugging summary 321
remote serial debugging, overview 318
remote serial protocol . 719
remote serial stub . 319
remote serial stub list . 318
remote serial stub, initialization 319
remote serial stub, main routine 319
remote stub, example . 318
remote stub, support routines 320
remote target . 298
remote target, file transfer . 306
remote target, limit break- and watchpoints . . . 312
remote target, limit watchpoints length 313
remote timeout . 312
remove actions from a tracepoint 200
remove duplicate history . 351
rename, file-i/o system call . 781
Renesas . 319
repeated array elements . 156
repeating command sequences 23
repeating commands . 23
replay log events, remote reply 732
replay mode . 101
reporting bugs in gdb . 661
reprint the last value . 136, 274
reset environment, remote request 738
resources used by commands 716
response time, MIPS debugging 344
restart . 54
restore data from a file . 177
restrictions on Go expressions 230

result records in gdb/mi . 550

resume threads of multiple processes
simultaneously . 93

resuming execution . 82
returning from a function . 270
reverse execution . 99
rewind program state . 54
run to first instruction . 33
run to main procedure . 33
run until specified location . 84
running . 32
running programs backward . 99

S
‘s’ packet . 725
‘S’ packet . 725
S12Z support . 347
save breakpoints to a file for future sessions 79
save command history . 350
save gdb output to a file . 20
save tracepoints for future sessions 210
scheduler locking evaluation mode 93
scheduler locking mode . 92
scope . 241
screen size . 352
scripting commands . 375
scripting with guile . 474
scripting with python . 381
search for a thread . 50
search path for libthread_db 51
searching memory . 183
searching memory, in remote debugging 745
searching source files . 126
section offsets, remote request 742
segment descriptor tables . 326
select Ctrl-C, BREAK or BREAK-g 313
select trace snapshot . 207
selected frame . 109
selecting guile pretty-printers 494
selecting python pretty-printers 402
self tests . 713
semaphores on static probe points 80
send command to remote monitor 306
send command to simulator 334
send interrupt-sequence on start 313
send rights, gnu Hurd . 332

send the output of a gdb command to
a shell command . 20

sending files to remote systems 306
separate debug sections . 292
separate debugging information files 288
sequence-id, for gdb remote 719
serial connections, debugging 366
serial line, target remote . 303
serial protocol, gdb remote 719
server prefix . 650
server, command prefix . 350

Concept Index 873

set ABI for MIPS . 344
set breakpoints in many functions 60
set breakpoints on all functions 60
set environment variable, remote request 737
set exec-file-mismatch . 39
set fast tracepoint . 197
set inferior controlling terminal 39
set static tracepoint . 197
set tdesc filename . 807
set tracepoint . 196
set working directory, remote request 739
setting variables . 267
setting watchpoints . 65
settings . 24
sh-stub.c . 319
shared libraries . 283
shared library events, remote reply 732
shell command, exit code . 167
shell command, exit signal . 167
shell escape . 19
show all convenience functions 171
show all user variables and functions 164
show exec-file-mismatch . 40
show inferior’s working directory 38
show last commands . 352
show tdesc filename . 807
SH . 319
signals . 88
signals the inferior may see, remote request 743
SIGQUIT signal, dump core of gdb 709
SingleKey keymap name . 535
size of remote memory accesses 724
size of screen . 352
skipping over files via glob-style patterns 87
skipping over functions and files 86

skipping over functions via
regular expressions . 87

snapshot of a process . 54
software watchpoints . 65
source code, caching . 712
source code, disable access . 134
source file and line of a symbol 151
source line and its code address 130
source location . 122
source path . 126
Sparc . 319
sparc-stub.c . 319
Sparc64 support . 346
sparcl-stub.c . 319
SparcLite . 319
Special Fortran commands . 234
specifying location . 122
SSE registers (x86) . 172
stack frame . 109
stack on Alpha . 344
stack on MIPS . 344
stack pointer register . 171
stacking targets . 297

standard registers . 171
start a new independent interpreter 531
start a new trace experiment 204
starting . 32
startup code, and backtrace 112
startup with shell, remote request 737
stat, file-i/o system call . 783
static members of C++ objects 160
static members of Pascal objects 160
static probe point, DTrace . 79
static probe point, SystemTap 79
static tracepoints . 195
static tracepoints, in remote protocol 753
static tracepoints, setting . 197
status of trace data collection 204
status output in gdb/mi . 549
stepping . 82
stepping and signal handlers 90
stepping into functions with no line info 83
stepping through trampoline functions 83
stop a running trace experiment 204
stop on C++ exceptions . 68
stop reply packets . 731
stopped threads . 92
store memory tags . 741
stream records in gdb/mi . 551
string tracing, in remote protocol 753
struct gdb_reader_funcs . 655
struct gdb_symbol_callbacks 655
struct gdb_unwind_callbacks 655
struct return convention . 341
struct stat, in file-i/o protocol 785
struct timeval, in file-i/o protocol 786
struct/union returned in registers 341
structure field name completion 26
stub example, remote debugging 318
stupid questions . 362
styling . 353
Super-H . 339
supported gdb/mi features, list 637
supported packets, remote query 745
switching threads . 45
switching threads automatically 92
symbol cache size . 264
symbol cache, flushing . 265
symbol cache, printing its contents 264
symbol cache, printing usage statistics 264
symbol decoding style, C++ 159
symbol dump . 263
symbol file functions . 367
symbol files, remote debugging 302
symbol from address . 254
symbol lookup . 367
symbol lookup, remote request 754
symbol names . 253
symbol table . 279
symbol table creation . 367
symbol tables in guile . 513

874 Debugging with gdb

symbol tables in python . 456
symbol tables, listing gdb’s internal 263
symbol, source file and line . 151
symbols in guile . 510
symbols in python . 453
symbols, never read . 280

symbols, reading from
relocatable object files . 281

symbols, reading immediately 280
Synopsys ARC . 334
syscall DSO . 282
system calls and thread breakpoints 96
system root, alternate . 285
system, file-i/o system call . 784
system-wide configuration scripts 705
system-wide init file . 705

T
‘t’ packet . 725
‘T’ packet . 725
‘T’ packet reply . 732
tail call frames, debugging . 188
target architecture . 297
target byte order . 300
target character set . 179
target debugging info . 367
target descriptions . 807
target descriptions, AArch64 features 813
target descriptions, ARC Features 813
target descriptions, ARM features 814
target descriptions, enum types 812
target descriptions, i386 features 815
target descriptions, inclusion 808
target descriptions, LoongArch Features 816
target descriptions, M68K features 816
target descriptions, MicroBlaze features 816
target descriptions, MIPS features 816
target descriptions, NDS32 features 817
target descriptions, Nios II features 817
target descriptions, OpenRISC 1000 features . . 817
target descriptions, PowerPC features 817
target descriptions, predefined types 811
target descriptions, RISC-V Features 818
target descriptions, RX Features 819
target descriptions, S/390 features 819
target descriptions, sparc32 features 820
target descriptions, sparc64 features 820
target descriptions, standard features 813
target descriptions, System z features 819
target descriptions, TIC6x features 820
target descriptions, TMS320C6x features 820
target descriptions, XML format 807
target memory comparison . 148
target output in gdb/mi . 549
target stack description . 713
target-assisted range stepping 86
task attributes (gnu Hurd) 332

task breakpoints, in Ada . 249
task exception port, gnu Hurd 332
task suspend count . 332

task switching with program using
Ravenscar Profile . 250

TCP port, target remote . 304
temporarily change settings . 24
terminal . 38
Text User Interface . 533
thread attributes info, remote request 755
thread breakpoints . 95
thread breakpoints and system calls 96
thread create event, remote reply 734
thread create/exit events, remote request 744
thread default settings, gnu Hurd 333
thread exit event, remote reply 734
thread ID lists . 46
thread identifier (GDB) . 46
thread identifier (system) . 46
thread info (Solaris) . 49
thread information, remote request 742
thread list format . 791
thread number, per inferior . 46
thread properties, gnu Hurd 332
thread suspend count, gnu Hurd 333
thread-id, in remote protocol 720
threads and watchpoints . 67
threads in python . 428
threads of execution . 45
threads, automatic switching 92
threads, continuing . 92
threads, stopped . 92
time of command execution 717
timeout for commands . 718
timeout for serial communications 312
timeout, for remote target connection 314
timestamping debugging info 368
trace experiment, status of . 204
trace file format . 823
trace files . 211
trace state variable value, remote request 768
trace state variables . 199
traceback . 110
traceframe info format . 791
tracepoint actions . 200
tracepoint conditions . 199
tracepoint data, display . 209
tracepoint deletion . 198
tracepoint number . 198
tracepoint packets . 763
tracepoint pass count . 198
tracepoint restrictions . 206
tracepoint status, remote request 768
tracepoint variables . 210
tracepoints . 195
tracepoints support in gdbserver 310
trailing underscore, in Fortran symbols 232
trampoline functions . 83

Concept Index 875

translating between character sets 179
TUI . 533
TUI commands . 536
TUI configuration variables 538
TUI key bindings . 534
TUI mouse support . 536
TUI single key mode . 535
type casting memory . 139
type chain of a data type . 713
type checking . 221
type conversions in C++ . 226
type printer . 405
type printing API for Python 405
types in guile . 488
types in Python . 395

U
UDP port, target remote . 305
union field name completion . 26
unions in structures, printing 159
Unix domain socket . 303
unknown address, locating . 144
unknown type . 258
unlink, file-i/o system call . 782
unlinked object files . 279
unload symbols from shared libraries 284
unmap an overlay . 215
unmapped overlays . 213
unset environment variable, remote request 738
unset tdesc filename . 807
unsupported languages . 252
unwind stack in called functions 271

unwind stack in called functions with
unhandled exceptions . 271

unwinding frames in Python 415
use only software watchpoints 66
user registers . 712
user-defined command . 371
user-defined macros . 191
user-defined variables . 164

V
‘vAck’ packet . 729
value history . 163
values from inferior, in guile 481
values from inferior, with Python 389
variable name conflict . 141
variable object debugging info 368
variable objects in gdb/mi . 595
variable values, wrong . 142
variables, readline . 668
variables, setting . 267
‘vAttach’ packet . 725
‘vCont’ packet . 726
‘vCont?’ packet . 727
‘vCtrlC’ packet . 727

vector unit . 173
vector, auxiliary . 173
verbose operation . 361
verify remote memory image 148
verify target memory image 148
‘vFile’ packet . 727
‘vFlashDone’ packet . 728
‘vFlashErase’ packet . 727
‘vFlashWrite’ packet . 727
vfork events, remote reply . 733
vforkdone events, remote reply 733
virtual functions (C++) display 160
‘vKill’ packet . 728
‘vMustReplyEmpty’ packet . 728
volatile registers . 172
‘vRun’ packet . 728
‘vStopped’ packet . 729
VTBL display . 160

W
watchdog timer . 718
watchpoints . 57
watchpoints and threads . 67
where to look for shared libraries 285
wild pointer, interpreting . 152

Wind River Linux system-wide
configuration script . 706

word completion . 24
working directory . 126
working directory (of your program) 37
working language . 219
write data into object, remote request 760
write, file-i/o system call . 781
writing a frame filter . 411
writing a Guile pretty-printer 495
writing a pretty-printer . 403
writing convenience functions 442
writing into corefiles . 273
writing into executables . 273
writing JIT debug info readers 655
writing xmethods in Python 420
wrong values . 142

X
x command, default address 130
‘X’ packet . 729
Xilinx MicroBlaze . 336
XInclude . 808
XMD, Xilinx Microprocessor Debugger 336
xmethod API . 418
xmethods in Python . 418
XML parser debugging . 368

Y
yanking text . 666

876 Debugging with gdb

Z
‘z’ packet . 729
‘z0’ packet . 730
‘z1’ packet . 730
‘z2’ packet . 731
‘z3’ packet . 731
‘z4’ packet . 731
‘Z’ packets . 729
‘Z0’ packet . 730
‘Z1’ packet . 730
‘Z2’ packet . 731
‘Z3’ packet . 731
‘Z4’ packet . 731

877

Command, Variable, and Function Index

!
! . 19

#
(a comment) . 23

$
$_, convenience variable . 165
$__, convenience variable . 165
$_ada_exception, convenience variable 69
$_any_caller_is, convenience function 170

$_any_caller_matches,
convenience function . 170

$_as_string, convenience function 170
$_caller_is, convenience function 169
$_caller_matches, convenience function 170
$_cimag, convenience function 170
$_creal, convenience function 170
$_exception, convenience variable 68
$_exitcode, convenience variable 165
$_exitsignal, convenience variable 165
$_gdb_maint_setting, convenience function . . . 169

$_gdb_maint_setting_str,
convenience function . 169

$_gdb_major, convenience variable 167
$_gdb_minor, convenience variable 167
$_gdb_setting, convenience function 168
$_gdb_setting_str, convenience function 168
$_gthread, convenience variable 47
$_inferior, convenience variable 43
$_isvoid, convenience function 167
$_memeq, convenience function 169
$_probe_arg, convenience variable 80
$_regex, convenience function 169
$_sdata, collect . 201
$_sdata, inspect, convenience variable 166
$_shell_exitcode, convenience variable. 167
$_shell_exitsignal, convenience variable 167
$_siginfo, convenience variable 166
$_simd_lane, convenience variable 47
$_streq, convenience function 169
$_strlen, convenience function 169
$_thread, convenience variable 47
$_tlb, convenience variable 166
$bpnum, convenience variable 58
$cdir, convenience variable 126
$cwd, convenience variable . 126
$tpnum . 198
$trace_file . 210
$trace_frame . 210
$trace_func . 210

$trace_line . 210
$tracepoint . 210

–
-ada-task-info . 581
-add-inferior . 643
-break-after . 561
-break-commands . 562
-break-condition . 562
-break-delete . 563
-break-disable . 563
-break-enable . 564
-break-info . 564
-break-insert . 565
-break-list . 568
-break-passcount . 569
-break-watch . 569
-catch-assert . 572
-catch-catch . 575
-catch-exception . 573
-catch-handlers . 573
-catch-load . 571
-catch-rethrow . 575
-catch-throw . 574
-catch-unload . 572
-complete . 645
-data-disassemble . 605
-data-evaluate-expression 608
-data-list-changed-registers 609
-data-list-register-names 609
-data-list-register-values 610
-data-read-memory . 611
-data-read-memory-bytes . 613
-data-write-memory-bytes 614
-device-info . 646
-dprintf-insert . 566
-enable-frame-filters . 589
-enable-pretty-printing . 596
-enable-timings . 645
-environment-cd . 576
-environment-directory . 576
-environment-path . 577
-environment-pwd . 578
-exec-arguments . 576
-exec-continue . 582
-exec-finish . 582
-exec-interrupt . 583
-exec-jump . 584
-exec-next . 584
-exec-next-instruction . 585
-exec-return . 585
-exec-run . 586
-exec-step . 587
-exec-step-instruction . 587

878 Debugging with gdb

-exec-until . 588
-file-exec-and-symbols . 627
-file-exec-file . 628
-file-list-exec-source-file 628
-file-list-exec-source-files 628
-file-list-shared-libraries 631
-file-symbol-file . 631
-gdb-exit . 639
-gdb-set . 639
-gdb-show . 639
-gdb-version . 640
-inferior-tty-set . 644
-inferior-tty-show . 644
-info-ada-exceptions . 636
-info-gdb-mi-command . 637
-info-os . 642
-interpreter-exec . 644
-list-features . 637
-list-target-features . 638
-list-thread-groups . 640
-stack-info-depth . 589
-stack-info-frame . 589
-stack-list-arguments . 590
-stack-list-frames . 591
-stack-list-locals . 593
-stack-list-variables . 594
-stack-select-frame . 594
-symbol-info-functions . 620
-symbol-info-module-functions 621
-symbol-info-module-variables 622
-symbol-info-modules . 623
-symbol-info-types . 624
-symbol-info-variables . 625
-symbol-list-lines . 627
-target-attach . 631
-target-detach . 632
-target-disconnect . 632
-target-download . 633
-target-file-delete . 636
-target-file-get . 635
-target-file-put . 635
-target-flash-erase . 634
-target-select . 635
-thread-execution-mask . 580
-thread-hit-lanes-mask . 580
-thread-info . 578
-thread-list-ids . 579
-thread-select . 579
-thread-simd-width . 580
-trace-define-variable . 615
-trace-find . 614
-trace-frame-collected . 615
-trace-list-variables . 617
-trace-save . 618
-trace-start . 618
-trace-status . 618
-trace-stop . 619
-var-assign . 602
-var-create . 597

-var-delete . 598
-var-evaluate-expression 601
-var-info-expression . 600
-var-info-num-children . 599
-var-info-path-expression 601
-var-info-type . 600
-var-list-children . 599
-var-set-format . 598
-var-set-frozen . 604
-var-set-update-range . 604
-var-set-visualizer . 604
-var-show-attributes . 601
-var-show-format . 598
-var-update . 602

:
::, in Modula-2 . 241

<
<gdb:arch> . 519
<gdb:block> . 508
<gdb:breakpoint> . 514
<gdb:iterator> . 523
<gdb:lazy-string> . 518
<gdb:objfile> . 504
<gdb:progspace> . 503
<gdb:sal> . 513
<gdb:symbol> . 510
<gdb:symtab> . 513
<gdb:type> . 488
<gdb:value> . 481

@
@, referencing memory as an array 143

^
^connected . 551
^done . 550
^error . 551
^exit . 551
^running . 551

__init__ on TypePrinter . 472

|
| . 20

Command, Variable, and Function Index 879

A
abort (C-g) . 686
accept-line (Newline or Return) 681
actions . 200
ada-task-info . 638
add-auto-load-safe-path . 360
add-auto-load-scripts-directory 528
add-inferior . 43
add-symbol-file . 281
add-symbol-file-from-memory 282
adi assign . 347
adi examine . 347
advance location . 85
alias . 379
append . 178
append-pretty-printer! . 526
apropos . 29
arch-bool-type . 520
arch-char-type . 519
arch-charset . 519
arch-disassemble . 521
arch-double-type . 520
arch-float-type . 520
arch-int-type . 519
arch-int16-type . 520
arch-int32-type . 520
arch-int64-type . 520
arch-int8-type . 520
arch-long-type . 519
arch-longdouble-type . 520
arch-longlong-type . 520
arch-name . 519
arch-schar-type . 519
arch-short-type . 519
arch-uchar-type . 519
arch-uint-type . 520
arch-uint16-type . 520
arch-uint32-type . 520
arch-uint64-type . 520
arch-uint8-type . 520
arch-ulong-type . 520
arch-ulonglong-type . 520
arch-ushort-type . 519
arch-void-type . 519
arch-wide-charset . 519
arch? . 519
Architecture.disassemble 464
Architecture.integer_type 465
Architecture.name . 464
Architecture.register_groups 465
Architecture.registers . 465
attach . 39
attach& . 95
awatch . 66

B
b (break) . 58
backtrace . 110
backward-char (C-b) . 680
backward-delete-char (Rubout) 683
backward-kill-line (C-x Rubout) 684
backward-kill-word (M-DEL) 684
backward-word (M-b) . 680
beginning-of-history (M-<) 681
beginning-of-line (C-a) . 680
bell-style . 669
bfd caching . 288
bind-tty-special-chars . 669
blink-matching-paren . 669
block-end . 509
block-function . 509
block-global-block . 509
block-global? . 509
block-start . 509
block-static-block . 509
block-static? . 509
block-superblock . 509
block-symbols . 509
block-symbols-progress? . 509
block-valid? . 508
Block.is_valid . 452
block? . 508
BP_ACCESS_WATCHPOINT . 460
BP_BREAKPOINT . 460
BP_CATCHPOINT . 460
BP_HARDWARE_BREAKPOINT . 460
BP_HARDWARE_WATCHPOINT . 460
BP_READ_WATCHPOINT . 460
BP_WATCHPOINT . 460
bracketed-paste-begin () 683
break . 58
break ... inferior inferior-num 96
break ... task taskno (Ada) 249
break ... thread thread-id 95
break, and Objective-C . 230
break-range . 338
breakpoint annotation . 652
breakpoint-commands . 518
breakpoint-condition . 517
breakpoint-enabled? . 516
breakpoint-expression . 516
breakpoint-hit-count . 517
breakpoint-ignore-count . 517
breakpoint-location . 516
breakpoint-notifications 638
breakpoint-number . 516
breakpoint-silent? . 516
breakpoint-stop . 517
breakpoint-task . 517
breakpoint-temporary? . 516
breakpoint-thread . 517
breakpoint-type . 516
breakpoint-valid? . 516

880 Debugging with gdb

breakpoint-visible? . 516
Breakpoint.__init__ . 459, 460
Breakpoint.delete . 461
Breakpoint.is_valid . 461
Breakpoint.stop . 460
breakpoint? . 516
breakpoints . 515
breakpoints-invalid annotation 651
bt (backtrace) . 110

C
c (continue) . 82
c (SingleKey TUI key) . 535
C-L . 535
C-x 1 . 534
C-x 2 . 534
C-x a . 534
C-x A . 534
C-x C-a . 534
C-x o . 534
C-x s . 534
call . 271
call-last-kbd-macro (C-x e) 686
capitalize-word (M-c) . 683
catch . 68
catch assert . 69
catch catch . 68
catch exception . 69
catch exception unhandled 69
catch exec . 69
catch fork . 72
catch handlers . 69
catch load . 72
catch rethrow . 68
catch signal . 72
catch syscall . 69
catch throw . 68
catch unload . 72
catch vfork . 72
cd . 38
cdir . 126
character-search (C-]) . 687
character-search-backward (M-C-]) 687
checkpoint . 55
clear . 73
clear, and Objective-C . 230
clear-display (M-C-l) . 680
clear-screen (C-l) . 681
clone-inferior . 43
collect (tracepoints) . 201
colored-completion-prefix 669
colored-stats . 669
Command.__init__ . 434
Command.complete . 435
Command.dont_repeat . 434
Command.invoke . 434
command? . 498

COMMAND_BREAKPOINTS . 436

COMMAND_DATA . 435

COMMAND_FILES . 436

COMMAND_MAINTENANCE . 436

COMMAND_NONE . 435

COMMAND_OBSCURE . 436

COMMAND_RUNNING . 435

COMMAND_STACK . 435

COMMAND_STATUS . 436

COMMAND_SUPPORT . 436

COMMAND_TRACEPOINTS . 436

COMMAND_TUI . 436

COMMAND_USER . 436

commands . 76

commands annotation . 650

comment-begin . 669

compare-sections . 148

compile code . 273

compile file . 274

complete . 29

complete (TAB) . 685

COMPLETE_COMMAND . 437

COMPLETE_EXPRESSION . 437

COMPLETE_FILENAME . 437

COMPLETE_LOCATION . 437

COMPLETE_NONE . 437

COMPLETE_SYMBOL . 437

completion-display-width 669

completion-ignore-case . 669

completion-map-case . 669

completion-prefix-display-length 669

completion-query-items . 670

condition . 75

continue . 82

continue& . 95

convert-meta . 670

copy-backward-word () . 685

copy-forward-word () . 685

copy-region-as-kill () . 685

core-file . 280

ctf . 211

Ctrl-o (operate-and-get-next) 23

current-arch . 519

current-objfile . 505

current-progspace . 504
cwd . 126

Command, Variable, and Function Index 881

D
d (delete) . 73
d (SingleKey TUI key) . 535
data-directory . 478
data-disassemble-a-option 638
data-read-memory-bytes . 638
default-visualizer . 494
define . 372
define-prefix . 372
delete . 73
delete checkpoint checkpoint-id 55
delete display . 150
delete mem . 176
delete tracepoint . 198
delete tvariable . 200
delete-breakpoint! . 515
delete-char (C-d) . 682
delete-char-or-list () . 686
delete-horizontal-space () 684
demangle . 255
detach . 40
detach (remote) . 305
detach inferiors infno... 44
digit-argument (M-0, M-1, ... M--) 685
dir . 127
directory . 127
dis (disable) . 74
disable . 74
disable display . 150
disable frame-filter . 118
disable mem . 176
disable pretty-printer . 162
disable probes . 80
disable tracepoint . 198
disable type-printer . 259
disable-completion . 670
disassemble . 130
disconnect . 305
display . 149
do (down) . 114

do-lowercase-version (M-A,

M-B, M-x, ...) . 686
document . 372
dont-repeat . 373, 498
Down . 535
down . 114
down-silently . 115
downcase-word (M-l) . 683
dprintf . 78
dprintf-style agent . 78
dprintf-style call . 78
dprintf-style gdb . 78
dump . 177
dump-functions () . 687
dump-macros () . 688
dump-variables () . 687

E
e (edit) . 125

echo . 376

echo-control-characters . 670

edit . 125

editing-mode . 670

else . 376

emacs-editing-mode (C-e) 688

emacs-mode-string . 670

enable . 74

enable display . 150

enable frame-filter . 119

enable mem . 176

enable pretty-printer . 162

enable probes . 80

enable tracepoint . 198

enable type-printer . 259

enable-bracketed-paste . 670

enable-keypad . 671

end (breakpoint commands) . 76

end (if/else/while commands) 376

end (user-defined commands) 372

end-kbd-macro (C-x)) . 686

end-of-file (usually C-d) 682

end-of-history (M->) . 681

end-of-iteration . 524

end-of-iteration? . 524

end-of-line (C-e) . 680

error annotation . 651

error-begin annotation . 651

error-port . 522

eval . 378

EventRegistry.connect . 424

EventRegistry.disconnect 424

exception-args . 481

exception-key . 481

exception? . 481

exceptionHandler . 320

exchange-point-and-mark (C-x C-x) 687

exec-file . 279

exec-file-mismatch . 39

exec-run-start-option . 638

execute . 477

exit [expression] . 19

exited annotation . 651

expand-tilde . 671
explore . 137

882 Debugging with gdb

F
f (frame) . 113
f (SingleKey TUI key) . 535
faas . 118
fg (resume foreground execution) 82
field-artificial? . 492
field-base-class? . 492
field-bitpos . 492
field-bitsize . 492
field-enumval . 492
field-name . 492
field-type . 492
field? . 492
file . 279
fin (finish) . 84
find . 183
find-pc-line . 514
finish . 84
finish& . 95
FinishBreakpoint.__init__ 463
FinishBreakpoint.out_of_scope 463
flash-erase . 299
flush_i_cache . 320
flushregs . 712
fo (forward-search) . 126
focus . 537
forward-backward-delete-char () 683
forward-char (C-f) . 680
forward-search . 126
forward-search-history (C-s) 681
forward-word (M-f) . 680
frame address . 113
frame apply . 117
frame function . 114
frame level . 113
frame view . 114
frame, selecting . 113
frame-arch . 505
frame-block . 507
frame-function . 507
frame-name . 505
frame-newer . 507
frame-older . 507
frame-pc . 507
frame-read-register . 507
frame-read-var . 507
frame-sal . 507
frame-select . 507
frame-type . 505
frame-unwind-stop-reason 506
frame-valid? . 505
Frame.architecture . 448
Frame.block . 450
Frame.find_sal . 450
Frame.function . 450
Frame.is_valid . 448
Frame.level . 451
Frame.name . 448

Frame.newer . 450
Frame.older . 450
Frame.pc . 450
Frame.read_register . 450
Frame.read_var . 450
Frame.select . 451
Frame.type . 448
Frame.unwind_stop_reason 449
frame? . 505
FrameDecorator.address . 409
FrameDecorator.elided . 409
FrameDecorator.filename . 409
FrameDecorator.frame_args 409
FrameDecorator.frame_locals 410
FrameDecorator.function . 409
FrameDecorator.inferior_frame 411
FrameDecorator.line . 409
FrameFilter.filter . 407
frames-invalid annotation 651
frozen-varobjs . 638
ftrace . 197
Function . 442
Function.__init__ . 442
Function.invoke . 443

G
gcore . 178
gdb-object-kind . 478
gdb-version . 478
gdb.add_history . 385
gdb.architecture_names . 388
gdb.Block . 451
gdb.block_for_pc . 452
gdb.Breakpoint . 459
gdb.breakpoints . 384
gdb.COMMAND_BREAKPOINTS . 436
gdb.COMMAND_DATA . 435
gdb.COMMAND_FILES . 436
gdb.COMMAND_MAINTENANCE . 436
gdb.COMMAND_NONE . 435
gdb.COMMAND_OBSCURE . 436
gdb.COMMAND_RUNNING . 435
gdb.COMMAND_STACK . 435
gdb.COMMAND_STATUS . 436
gdb.COMMAND_SUPPORT . 436
gdb.COMMAND_TRACEPOINTS . 436
gdb.COMMAND_TUI . 436
gdb.COMMAND_USER . 436
gdb.connections . 388
gdb.convenience_variable 385
gdb.current_objfile . 445
gdb.current_progspace . 443
gdb.current_recording . 430
gdb.decode_line . 387
gdb.default_visualizer . 402
gdb.error . 388
gdb.execute . 383

Command, Variable, and Function Index 883

gdb.find_pc_line . 385
gdb.FinishBreakpoint . 463
gdb.flush . 386
gdb.frame_stop_reason_string 448
gdb.FrameDecorator . 408
gdb.Function . 442
gdb.GdbError . 388
gdb.history . 384
gdb.history_count . 385
gdb.host_charset . 387
gdb.Inferior . 423
gdb.InferiorCallPostEvent 427
gdb.InferiorCallPreEvent 426
gdb.inferiors . 423
gdb.InferiorThread . 428
gdb.invalidate_cached_frames 448
gdb.LazyString . 463
gdb.LineTable . 458
gdb.lookup_global_symbol 453
gdb.lookup_objfile . 445
gdb.lookup_static_symbol 453
gdb.lookup_static_symbols 454
gdb.lookup_symbol . 453
gdb.lookup_type . 395
gdb.MemoryError . 388
gdb.newest_frame . 448
gdb.Objfile . 445
gdb.objfiles . 445
gdb.PARAM_AUTO_BOOLEAN . 441
gdb.PARAM_BOOLEAN . 441
gdb.PARAM_ENUM . 442
gdb.PARAM_FILENAME . 442
gdb.PARAM_INTEGER . 442
gdb.PARAM_OPTIONAL_FILENAME 442
gdb.PARAM_STRING . 442
gdb.PARAM_STRING_NOESCAPE 442
gdb.PARAM_UINTEGER . 441
gdb.PARAM_ZINTEGER . 442
gdb.PARAM_ZUINTEGER . 442
gdb.PARAM_ZUINTEGER_UNLIMITED 442
gdb.Parameter . 439
gdb.parameter . 384
gdb.parse_and_eval . 385
gdb.post_event . 385
gdb.pretty_printers . 402
gdb.Progspace . 443
gdb.progspaces . 443
gdb.prompt_hook . 387
gdb.PYTHONDIR . 383
gdb.rbreak . 384
gdb.register_window_type 467, 468
gdb.search_memory . 424
gdb.selected_frame . 448
gdb.selected_inferior . 423
gdb.selected_thread . 428, 429
gdb.set_convenience_variable 385
gdb.set_parameter . 384
gdb.solib_name . 387
gdb.start_recording . 430

gdb.STDERR . 386
gdb.STDLOG . 386, 387
gdb.STDOUT . 386
gdb.stop_recording . 430
gdb.string_to_argv . 435
gdb.Symbol . 453
gdb.Symtab . 456
gdb.Symtab_and_line . 456
gdb.target_charset . 387
gdb.target_wide_charset . 387
gdb.Type . 395
gdb.unwinder.register_unwinder 417
gdb.UnwindInfo.add_saved_register 417
gdb.with_parameter . 384
gdb.write . 386
gdb_init_reader . 655
gdbserver . 306
generate-core-file . 178
get-basic-type . 526
getDebugChar . 320
gnu_debuglink_crc32 . 290
gr . 475
gu . 475
guile . 475
guile-data-directory . 478
guile-repl . 475

H
h (help) . 28
handle . 89
handle_exception . 319
hbreak . 59
help . 28
help function . 171
help target . 298
help user-defined . 373
history-append! . 477
history-preserve-point . 671
history-ref . 477
history-search-backward () 681
history-search-forward () 681
history-size . 671
history-substring-search-backward () 682
history-substring-search-forward () 682
hook . 374
hookpost . 374
horizontal-scroll-mode . 671
host-config . 478

884 Debugging with gdb

I
i (info) . 30
i (SingleKey TUI key) . 535
if . 376
ignore . 76
inferior . 41
inferior infno . 43
Inferior.architecture . 424
Inferior.is_valid . 423
Inferior.read_memory . 424
Inferior.search_memory . 424
Inferior.thread_from_handle 424
Inferior.thread_from_thread_handle 424
Inferior.threads . 423
Inferior.write_memory . 424
InferiorThread.handle . 430
InferiorThread.is_exited 430
InferiorThread.is_running 430
InferiorThread.is_stopped 430
InferiorThread.is_valid . 429
InferiorThread.switch . 430
info . 30
info address . 254
info all-registers . 171
info args . 115
info auto-load . 357
info auto-load gdb-scripts 378
info auto-load guile-scripts 525
info auto-load libthread-db 359
info auto-load local-gdbinit 359
info auto-load python-scripts 469
info auxv . 173
info breakpoints . 61
info checkpoints . 55
info classes . 262
info common . 234
info connections [id...] 42
info copying . 30
info dcache . 182
info devices . 42
info display . 150
info dll . 284
info dos . 326
info exceptions . 246
info extensions . 221
info f (info frame) . 115
info files . 282
info float . 173
info frame . 115
info frame, show the source language 221
info frame-filter . 118
info functions . 260
info handle . 89
info inferiors [id...] . 41
info io_registers, AVR . 339
info line . 130
info line, and Objective-C 230
info locals . 116

info macro . 191
info macros . 191
info mem . 176
info meminfo . 325
info module . 262
info modules . 262
info os . 174
info os cpus . 174
info os files . 174
info os modules . 174
info os msg . 174
info os processes . 174
info os procgroups . 174
info os semaphores . 174
info os shm . 175
info os sockets . 175
info os threads . 175
info pidlist . 325
info pretty-printer . 162
info probes . 80
info proc . 324
info program . 57
info record . 106
info registers . 171
info scope . 259
info selectors . 262
info serial . 327
info set . 30
info share . 284
info sharedlibrary . 284
info signals . 89
info skip . 88
info source . 260
info source, show the source language 221
info sources . 260, 628
info stack . 111
info static-tracepoint-markers 203
info symbol . 254
info target . 282
info task taskno . 248
info tasks . 247
info terminal . 38
info threads . 48
info tp [n...] . 202
info tracepoints [n...] . 202
info tvariables . 200
info type-printers . 259
info types . 259
info variables . 261
info vector . 173
info w32 . 328
info warranty . 30
info watchpoints [list...] 66
info win . 536
info-gdb-mi-command . 638
init-if-undefined . 164
input-meta . 671
input-port . 521

Command, Variable, and Function Index 885

insert-comment (M-#) . 687
insert-completions (M-*) 685
inspect . 135
instantiate on type_printer 405
interpreter-exec . 531
interrupt . 95
isearch-terminators . 671
iterator->list . 524
iterator-filter . 524
iterator-for-each . 524
iterator-map . 524
iterator-next! . 524
iterator-object . 524
iterator-progress . 524
iterator-until . 524
iterator? . 524

J
j (jump) . 268
jit-reader-load . 655
jit-reader-unload . 655
jump . 268
jump, and Objective-C . 230

K
KeyboardInterrupt . 388
keymap . 672
kill . 40
kill inferiors infno... 44
kill-line (C-k) . 684
kill-region () . 685
kill-whole-line () . 684
kill-word (M-d) . 684
kvm . 323

L
l (list) . 121
language-option . 638
layout . 537
lazy-string->value . 519
lazy-string-address . 518
lazy-string-encoding . 518
lazy-string-length . 518
lazy-string-type . 518
lazy-string? . 518
LazyString.value . 463
Left . 535
LineTable.has_line . 459
LineTable.line . 459
LineTable.source_lines . 459
list . 121
list, and Objective-C . 230
load filename offset . 299
lookup-block . 509
lookup-global-symbol . 511

lookup-symbol . 511
lookup-type . 488
loop_break . 376
loop_continue . 376

M
macro define . 191
macro exp1 . 191
macro expand . 191
macro list . 192
macro undef . 192
maint ada set ignore-descriptive-types 252
maint ada show ignore-descriptive-types . . . 252
maint agent . 707
maint agent-eval . 707
maint agent-printf . 707
maint btrace clear . 708
maint btrace clear-packet-history 708
maint btrace packet-history 707
maint check libthread-db 711
maint check xml-descriptions 711
maint check-psymtabs . 709
maint check-symtabs . 709
maint cplus first_component 709
maint cplus namespace . 709
maint demangler-warning . 709
maint deprecate . 709
maint dump-me . 709
maint expand-symtabs . 709
maint flush dcache . 183
maint flush register-cache 712
maint flush source-cache 712
maint flush symbol-cache 265
maint flush-symbol-cache 265
maint info bdccsr, S12Z . 347
maint info bfds . 288
maint info breakpoints . 707
maint info btrace . 707
maint info jit . 708
maint info line-table . 264
maint info program-spaces 44
maint info psymtabs . 263
maint info sections . 282
maint info selftests . 713
maint info sol-threads . 49
maint info symtabs . 263
maint info target-sections 283
maint internal-error . 709
maint internal-warning . 709
maint jit dump . 718
maint packet . 467, 710
maint print arc arc-instruction 334
maint print architecture 710
maint print c-tdesc . 710
maint print cooked-registers 711
maint print core-file-backed-mappings 711
maint print dummy-frames 711

886 Debugging with gdb

maint print msymbols . 263
maint print objfiles . 712
maint print psymbols . 263
maint print raw-registers 711
maint print reggroups . 712
maint print register-groups 711
maint print registers . 711
maint print remote-registers 711
maint print section-scripts 713
maint print statistics . 713
maint print symbol-cache 264
maint print symbol-cache-statistics 264
maint print symbols . 263
maint print target-stack 713
maint print type . 713
maint print unwind, HPPA 346
maint print user-registers 712
maint print xml-tdesc . 711
maint selftest . 713
maint set backtrace-on-fatal-signal 718
maint set bfd-sharing . 288
maint set btrace pt skip-pad 708
maint set catch-demangler-crashes 709
maint set check-libthread-db 717
maint set demangler-warning 710
maint set dwarf always-disassemble 714
maint set dwarf max-cache-age 714
maint set dwarf unwinders 714
maint set gnu-source-highlight enabled 717
maint set internal-error 710
maint set internal-warning 710
maint set per-command . 716
maint set profile . 715
maint set selftest verbose 713
maint set show-all-tib . 715
maint set show-debug-regs 715
maint set symbol-cache-size 264
maint set target-async . 715

maint set target-non-stop mode

[on|off|auto] . 715
maint set test-settings . 718
maint set tui-resize-message 716
maint set worker-threads 714
maint show backtrace-on-fatal-signal 718
maint show bfd-sharing . 288
maint show btrace pt skip-pad 708
maint show catch-demangler-crashes 709
maint show check-libthread-db 717
maint show demangler-warning 710
maint show dwarf always-disassemble 714
maint show dwarf max-cache-age 714
maint show dwarf unwinders 714
maint show gnu-source-highlight enabled . . . 717
maint show internal-error 710
maint show internal-warning 710
maint show per-command . 716
maint show profile . 715
maint show selftest verbose 713

maint show show-all-tib . 715
maint show show-debug-regs 715
maint show symbol-cache-size 264
maint show target-async . 715
maint show target-non-stop 715

maint show

test-options-completion-result 718
maint show test-settings 718
maint show tui-resize-message 716
maint show worker-threads 714
maint space . 717
maint test-options . 717
maint time . 717
maint translate-address . 717
maint undeprecate . 709
maint with . 718
make . 20
make-block-symbols-iterator 509
make-breakpoint . 514
make-command . 497
make-enum-hashtable . 526
make-exception . 481
make-field-iterator . 490
make-iterator . 523
make-lazy-value . 487
make-list-iterator . 524
make-parameter . 501
make-pretty-printer . 492
make-pretty-printer-worker 493
make-value . 482
mark-modified-lines . 672
mark-symlinked-directories 672
match-hidden-files . 672
may-insert-breakpoints . 97
may-insert-fast-tracepoints 98
may-insert-tracepoints . 98
may-interrupt . 98
may-write-memory . 97
may-write-registers . 97
mem . 175
memory-port-range . 522
memory-port-read-buffer-size 522
memory-port-write-buffer-size 522
memory-port? . 522
memory-tag check . 149
memory-tag print-allocation-tag 149
memory-tag print-logical-tag 149
memory-tag setatag . 149
memory-tag with-logical-tag 149
memset . 321
menu-complete () . 686
menu-complete-backward () 686
menu-complete-display-prefix 672
meta-flag . 671
MICommand.__init__ . 437
MICommand.invoke . 438
monitor . 306

Command, Variable, and Function Index 887

N
n (next) . 83
n (SingleKey TUI key) . 535
new-ui . 531
newest-frame . 507
next . 83
next& . 95
next-history (C-n) . 681
next-screen-line () . 680
nexti . 85
nexti& . 95
ni (nexti) . 85

non-incremental-forward-

search-history (M-n) . 681

non-incremental-reverse-

search-history (M-p) . 681
nosharedlibrary . 284

O
o (SingleKey TUI key) . 535
Objfile . 445
objfile-filename . 504
objfile-pretty-printers . 505
objfile-progspace . 505
objfile-valid? . 504
Objfile.add_separate_debug_file 447
Objfile.is_valid . 447
Objfile.lookup_global_symbol 447
Objfile.lookup_static_symbol 447
objfile? . 504
objfiles . 505
observer . 97
open-memory . 522
operate-and-get-next (C-o) 682
output . 377
output-meta . 672
output-port . 522
overlay . 215
overload-choice annotation 650
overwrite-mode () . 684

P
page-completions . 673
PARAM_AUTO_BOOLEAN . 441
PARAM_BOOLEAN . 441
PARAM_ENUM . 442
PARAM_FILENAME . 442
PARAM_INTEGER . 442
PARAM_OPTIONAL_FILENAME . 442
PARAM_STRING . 442
PARAM_STRING_NOESCAPE . 442
PARAM_UINTEGER . 441
PARAM_ZINTEGER . 442
PARAM_ZUINTEGER . 442
PARAM_ZUINTEGER_UNLIMITED 442
Parameter . 439, 501

parameter-value . 502
Parameter.__init__ . 440
Parameter.get_set_string 441
Parameter.get_show_string 441
parameter? . 502
parse-and-eval . 477
passcount . 198
path . 36
pending-breakpoints . 638
PendingFrame.architecture 416
PendingFrame.create_unwind_info 416
PendingFrame.level . 416
PendingFrame.read_register 415
PgDn . 535
PgUp . 535
pi . 381
pipe . 20
po (print-object) . 231
possible-completions (M-?) 685
post-commands annotation 650
post-overload-choice annotation 650
post-prompt annotation . 650
post-prompt-for-continue annotation 650
post-query annotation . 650
pre-commands annotation . 650
pre-overload-choice annotation 650
pre-prompt annotation . 650
pre-prompt-for-continue annotation 650
pre-query annotation . 650
prefix-meta (ESC) . 686
prepend-pretty-printer! . 525
pretty-printer-enabled? . 493
pretty-printer? . 492
pretty-printers . 493
pretty_printer.children . 401
pretty_printer.display_hint 401
pretty_printer.to_string 402
previous-history (C-p) . 681
previous-screen-line () . 680
print . 135
print-last-kbd-macro () . 686
print-object . 231
printf . 377
proc-trace-entry . 325
proc-trace-exit . 325
proc-untrace-entry . 325
proc-untrace-exit . 325
Progspace . 443
progspace-filename . 504
progspace-objfiles . 504
progspace-pretty-printers 504
progspace-valid? . 503
Progspace.block_for_pc . 444
Progspace.find_pc_line . 444
Progspace.is_valid . 444
Progspace.objfiles . 444
Progspace.solib_name . 444
progspace? . 503

888 Debugging with gdb

progspaces . 504
prompt annotation . 650
prompt-for-continue annotation 650
ptype . 258
putDebugChar . 320
pwd . 38
py . 381
python . 381, 638
python-interactive . 381

Q
q (quit) . 19
q (SingleKey TUI key) . 535
query annotation . 650
queue-signal . 269
quit [expression] . 19
quit annotation . 651
quoted-insert (C-q or C-v) 683

R
r (run) . 32
r (SingleKey TUI key) . 535
rbreak . 60
rc (reverse-continue) . 99
re-read-init-file (C-x C-r) 686
readnow . 280
rec . 101
rec btrace . 101
rec btrace bts . 101
rec btrace pt . 101
rec bts . 101
rec del . 106
rec full . 101
rec function-call-history 107
rec instruction-history . 106
rec pt . 101
rec s . 102
recognize on type_recognizer 406
record . 101
record btrace . 101
record btrace bts . 101
record btrace pt . 101
record bts . 101
record delete . 106
record full . 101
record function-call-history 107
record goto . 103
record instruction-history 106
record pt . 101
record restore . 103
record save . 103
record stop . 102
Record.clear_trace . 431
Record.goto . 431
redraw-current-line () . 681
refresh . 537

register-breakpoint! . 515
register-command! . 498
register-parameter! . 502
register_xmethod_matcher 420
RegisterDescriptorIterator.find 465
remote delete . 306
remote get . 306
remote put . 306
RemoteTargetConnection.send_packet 467
remove-inferiors . 43
remove-symbol-file . 281
restart checkpoint-id . 55
restore . 178
RET (repeat last command) . 23
return . 270
reverse-continue . 99
reverse-finish . 100
reverse-next . 100
reverse-nexti . 100
reverse-search . 126
reverse-search-history (C-r) 681
reverse-step . 99
reverse-stepi . 99
revert-all-at-newline . 673
revert-line (M-r) . 687
Right . 535
rn (reverse-next) . 100
rni (reverse-nexti) . 100
rs (step) . 99
rsi (reverse-stepi) . 99
run . 32
run& . 95
rwatch . 66

S
s (SingleKey TUI key) . 535
s (step) . 82
sal-last . 514
sal-line . 514
sal-pc . 514
sal-symtab . 514
sal-valid? . 513
sal? . 513
save breakpoints . 79
save gdb-index . 293
save tracepoints . 210
save-tracepoints . 210
search . 126
section . 282
select-frame . 115
selected-frame . 507
self . 498
self-insert (a, b, A, 1, !, ...) 683
set . 30
set ada print-signatures 246
set ada source-charset . 251
set ada trust-PAD-over-XVS 252

Command, Variable, and Function Index 889

set agent off . 657
set agent on . 657
set annotate . 649
set architecture . 297
set args . 36
set arm . 335
set auto-connect-native-target 34
set auto-load gdb-scripts 378
set auto-load guile-scripts 525
set auto-load libthread-db 359
set auto-load local-gdbinit 359
set auto-load off . 357
set auto-load python-scripts 469
set auto-load safe-path . 360
set auto-load scripts-directory 527
set auto-solib-add . 284
set backtrace . 112
set basenames-may-differ 287
set breakpoint always-inserted 64
set breakpoint auto-hw . 63
set breakpoint condition-evaluation 64
set breakpoint pending . 63
set can-use-hw-watchpoints 66
set case-sensitive . 253
set charset . 180
set check range . 222
set check type . 222
set circular-trace-buffer 205
set code-cache . 182
set coerce-float-to-double 356
set com1base . 327
set com1irq . 327
set com2base . 327
set com2irq . 327
set com3base . 327
set com3irq . 327
set com4base . 327
set com4irq . 327
set complaints . 362
set confirm . 362
set cp-abi . 356
set cwd . 38
set cygwin-exceptions . 328
set data-directory . 295
set dcache line-size . 183
set dcache size . 183
set debug . 363
set debug aarch64 . 340
set debug arc . 334
set debug auto-load . 361
set debug bfd-cache level 288
set debug darwin . 333
set debug entry-values . 188
set debug hppa . 346
set debug libthread-db . 52
set debug mach-o . 333
set debug mips . 346
set debug monitor . 299

set debug nios2 . 346
set debug py-breakpoint . 382
set debug py-unwind . 382
set debug skip . 88
set debug threads . 52
set debug-file-directory 289
set debugevents . 329
set debugexceptions . 329
set debugexec . 329
set debuginfod enabled . 829
set debuginfod urls . 829
set debuginfod verbose . 829
set debugmemory . 329
set default-collect . 202
set demangle-style . 159
set detach-on-fork . 53
set directories . 129
set disable-randomization 35
set disassemble-next-line 134
set disassembler-options 133
set disassembly-flavor . 133
set disconnected-dprintf . 79
set disconnected-tracing 205
set displaced-stepping . 708
set dump-excluded-mappings 179
set editing . 349
set endian . 300
set environment . 37
set exceptions, Hurd command 331
set exec-direction . 100
set exec-done-display . 363
set exec-wrapper . 33
set extended-prompt . 349
set extension-language . 221
set follow-exec-mode . 53
set follow-fork-mode . 52
set fortran repack-array-slices 234
set frame-filter priority 120
set gnutarget . 298
set guile print-stack . 480
set hash, for remote monitors 299
set height . 352
set history expansion . 351
set history filename . 350
set history remove-duplicates 351
set history save . 350
set history size . 351
set host-charset . 180
set index-cache . 294
set inferior-tty . 39
set input-radix . 355
set interactive-mode . 368
set language . 220
set libthread-db-search-path 51
set listsize . 121
set logging enabled . 21
set mach-exceptions . 334
set max-completions . 25
set max-user-call-depth . 373

890 Debugging with gdb

set max-value-size . 185
set may-call-functions . 272
set mem inaccessible-by-default 177
set mi-async . 545
set mips abi . 344
set mips compression . 345
set mips mask-address . 345
set mipsfpu . 337
set mpx bound . 342
set multiple-symbols . 140
set new-console . 329
set new-group . 329
set non-stop . 94
set opaque-type-resolution 262
set osabi . 356
set output-radix . 355
set overload-resolution . 228
set pagination . 352
set powerpc . 338
set print . 151
set print entry-values . 154
set print finish . 84
set print frame-arguments 153
set print frame-info . 156
set print inferior-events 44
set print symbol-loading 263
set print thread-events . 51
set print type hex . 254
set print type methods . 253
set print type nested-type-limit 253
set print type typedefs . 254
set processor . 297
set procfs-file . 325
set procfs-trace . 325
set prompt . 349
set python dont-write-bytecode 382
set python ignore-environment 382
set python print-stack . 381
set radix . 355
set range-stepping . 86
set ravenscar task-switching off 250
set ravenscar task-switching on 250
set record . 107
set record btrace . 104
set record btrace bts . 105
set record btrace pt . 105
set record full . 103
set remote . 311
set remote system-call-allowed 784
set remote-mips64-transfers-32bit-regs . . . 345
set remotecache . 182
set remoteflow . 312
set schedule-multiple . 93
set script-extension . 371
set sh calling-convention 339
set shell . 329
set signal-thread . 331
set signals, Hurd command 331
set sigs, Hurd command . 331

set sigthread . 331
set skip-trampoline-functions 83
set solib-absolute-prefix 285
set solib-search-path . 286
set source open . 134
set stack-cache . 182
set startup-quietly . 13
set startup-with-shell . 34
set step-mode . 83
set stop-on-solib-events 285
set stopped, Hurd command 331
set struct-convention . 341
set style . 353
set substitute-path . 129
set suppress-cli-notifications 368
set sysroot . 285
set target-charset . 179

set target-file-system-kind

(unix|dos-based|auto) . 286
set target-wide-charset . 180
set task, Hurd commands . 332
set tcp . 313
set thread, Hurd command 332
set trace-buffer-size . 205
set trace-commands . 362
set trace-notes . 206
set trace-stop-notes . 206
set trace-user . 206
set trust-readonly-sections 283
set tui active-border-mode 538
set tui border-kind . 538
set tui border-mode . 538
set tui compact-source . 539
set tui tab-width . 539
set unwind-on-terminating-exception 271
set unwindonsignal . 271
set use-coredump-filter . 178
set variable . 267
set verbose . 362
set watchdog . 718
set width . 352
set write . 273
set-breakpoint-condition! 517
set-breakpoint-enabled! . 516
set-breakpoint-hit-count! 517
set-breakpoint-ignore-count! 517
set-breakpoint-silent! . 517
set-breakpoint-stop! . 517
set-breakpoint-task! . 517
set-breakpoint-thread! . 517
set-iterator-progress! . 524
set-mark (C-@) . 687
set-memory-port-read-buffer-size! 522
set-memory-port-write-buffer-size! 523
set-objfile-pretty-printers! 505
set-parameter-value! . 502
set-pretty-printer-enabled! 493
set-pretty-printers! . 493

Command, Variable, and Function Index 891

set-progspace-pretty-printers! 504
set_debug_traps . 319
share . 284
sharedlibrary . 284
shell . 19
shell-transpose-words (M-C-t) 684
show . 30
show ada print-signatures 246
show ada source-charset . 251
show ada trust-PAD-over-XVS 252
show agent . 657
show annotate . 649
show architecture . 297
show args . 36
show arm . 335
show auto-load . 357
show auto-load gdb-scripts 378
show auto-load guile-scripts 525
show auto-load libthread-db 359
show auto-load local-gdbinit 359
show auto-load python-scripts 469
show auto-load safe-path 360
show auto-load scripts-directory 528
show auto-solib-add . 284
show backtrace . 112
show basenames-may-differ 288
show breakpoint always-inserted 64
show breakpoint auto-hw . 63
show breakpoint condition-evaluation 64
show breakpoint pending . 63
show can-use-hw-watchpoints 66
show case-sensitive . 253
show charset . 180
show check range . 222
show check type . 222
show circular-trace-buffer 205
show code-cache . 182
show coerce-float-to-double 356
show com1base . 327
show com1irq . 327
show com2base . 327
show com2irq . 327
show com3base . 327
show com3irq . 327
show com4base . 327
show com4irq . 327
show commands . 352
show complaints . 362
show configuration . 30
show confirm . 362
show convenience . 164
show copying . 30
show cp-abi . 356
show cwd . 38
show cygwin-exceptions . 329
show data-directory . 295
show dcache line-size . 183
show dcache size . 183
show debug . 363

show debug arc . 334
show debug auto-load . 361
show debug bfd-cache . 288
show debug darwin . 333
show debug entry-values . 189
show debug libthread-db . 52
show debug mach-o . 333
show debug mips . 346
show debug monitor . 299
show debug nios2 . 346
show debug py-breakpoint 382
show debug py-unwind . 382
show debug skip . 88
show debug threads . 52
show debug-file-directory 289
show debuginfod enabled . 829
show debuginfod urls . 829
show debuginfod verbose . 829
show default-collect . 202
show detach-on-fork . 53
show directories . 129
show disassemble-next-line 134
show disassembler-options 133
show disassembly-flavor . 133
show disconnected-dprintf 79
show disconnected-tracing 205
show displaced-stepping . 708
show editing . 350
show environment . 37
show exceptions, Hurd command 332
show exec-done-display . 363
show extended-prompt . 349
show follow-fork-mode . 53
show fortran repack-array-slices 234
show frame-filter priority 120
show gnutarget . 298
show hash, for remote monitors 299
show height . 352
show history . 351
show host-charset . 180
show index-cache . 294
show inferior-tty . 39
show input-radix . 355
show interactive-mode . 368
show language . 221
show libthread-db-search-path 52
show listsize . 121
show logging . 21
show mach-exceptions . 334
show max-completions . 25
show max-user-call-depth 373
show max-value-size . 185
show may-call-functions . 272
show mem inaccessible-by-default 177
show mi-async . 545
show mips abi . 345
show mips compression . 345
show mips mask-address . 345

892 Debugging with gdb

show mipsfpu . 337
show mpx bound . 342
show multiple-symbols . 140
show new-console . 329
show new-group . 329
show non-stop . 94
show opaque-type-resolution 263
show osabi . 356
show output-radix . 355
show overload-resolution 228
show pagination . 353
show paths . 36
show print . 151
show print finish . 84
show print inferior-events 44
show print symbol-loading 263
show print thread-events . 51
show print type hex . 254
show print type methods . 253
show print type nested-type-limit 253
show print type typedefs . 254
show processor . 297
show procfs-file . 325
show procfs-trace . 325
show prompt . 349
show radix . 355
show range-stepping . 86
show ravenscar task-switching 250
show record . 107
show record btrace . 105
show record full . 103
show remote . 311
show remote system-call-allowed 784
show remote-mips64-transfers-32bit-regs . . 345
show remotecache . 182
show remoteflow . 312
show script-extension . 371
show sh calling-convention 340
show shell . 329
show signal-thread . 331
show signals, Hurd command 331
show sigs, Hurd command . 331
show sigthread . 331
show solib-search-path . 286
show source open . 134
show stack-cache . 182
show startup-quietly . 13
show stop-on-solib-events 285
show stopped, Hurd command 331
show struct-convention . 341
show style . 353
show substitute-path . 129
show suppress-cli-notifications 369
show sysroot . 286
show target-charset . 180
show target-file-system-kind 286
show target-wide-charset 180
show task, Hurd commands 332
show tcp . 313

show thread, Hurd command 332
show trace-buffer-size . 206
show trace-notes . 206
show trace-stop-notes . 206
show trace-user . 206
show unwind-on-terminating-exception 272
show unwindonsignal . 271
show user . 373
show values . 164
show verbose . 362
show version . 30
show warranty . 30
show width . 352
show write . 273
show-all-if-ambiguous . 673
show-all-if-unmodified . 673
show-mode-in-prompt . 673
si (stepi) . 85
signal . 269
signal annotation . 652
signal-event . 328
signal-name annotation . 651
signal-name-end annotation 651
signal-string annotation 651
signal-string-end annotation 651
signalled annotation . 651
silent . 77
sim, a command . 334
skip . 86
skip delete . 88
skip disable . 88
skip enable . 88
skip file . 87
skip function . 87
skip-completed-text . 673
skip-csi-sequence () . 687
source . 375
source annotation . 652
start . 33
start-kbd-macro (C-x () . 686
starti . 33
starting annotation . 651
STDERR . 386
stdio-port? . 522
STDLOG . 386, 387
STDOUT . 386
step . 82
step& . 95
stepi . 85
stepi& . 95
stop, a pseudo-command . 374
stopping annotation . 651
strace . 197
string->argv . 498
symbol-addr-class . 510
symbol-argument? . 510
symbol-constant? . 511
symbol-file . 279

Command, Variable, and Function Index 893

symbol-function? . 511
symbol-line . 510
symbol-linkage-name . 510
symbol-name . 510
symbol-needs-frame? . 510
symbol-print-name . 510
symbol-symtab . 510
symbol-type . 510
symbol-valid? . 510
symbol-value . 511
symbol-variable? . 511
Symbol.is_valid . 455
Symbol.value . 455
symbol? . 510
SYMBOL_COMMON_BLOCK_DOMAIN 455
SYMBOL_LABEL_DOMAIN . 455
SYMBOL_LOC_ARG . 456
SYMBOL_LOC_BLOCK . 456
SYMBOL_LOC_COMMON_BLOCK . 456
SYMBOL_LOC_COMPUTED . 456
SYMBOL_LOC_CONST . 455
SYMBOL_LOC_CONST_BYTES . 456
SYMBOL_LOC_LABEL . 456
SYMBOL_LOC_LOCAL . 456
SYMBOL_LOC_OPTIMIZED_OUT 456
SYMBOL_LOC_REF_ARG . 456
SYMBOL_LOC_REGISTER . 456
SYMBOL_LOC_REGPARM_ADDR . 456
SYMBOL_LOC_STATIC . 456
SYMBOL_LOC_TYPEDEF . 456
SYMBOL_LOC_UNDEF . 455
SYMBOL_LOC_UNRESOLVED . 456
SYMBOL_MODULE_DOMAIN . 455
SYMBOL_STRUCT_DOMAIN . 455
SYMBOL_UNDEF_DOMAIN . 455
SYMBOL_VAR_DOMAIN . 455
symtab-filename . 513
symtab-fullname . 513
symtab-global-block . 513
symtab-objfile . 513
symtab-static-block . 513
symtab-valid? . 513
Symtab.fullname . 457
Symtab.global_block . 458
Symtab.is_valid . 457
Symtab.linetable . 458
Symtab.static_block . 458
symtab? . 513
Symtab_and_line.is_valid 457
sysinfo . 326

T
taas . 50
tab-insert (M-TAB) . 683
tabset . 539
target . 298
target ctf . 211
target record . 101
target record-btrace . 101
target record-full . 101
target sim . 337
target tfile . 211
target-config . 478
TargetConnection.is_valid 466
task (Ada) . 248
tbreak . 59
tcatch . 72
tdump . 209
teval (tracepoints) . 202
tfaas . 50
tfile . 211
tfind . 207
thbreak . 60
this, inside C++ member functions 226
thread apply . 49
thread find . 50
thread name . 50
thread thread-id . 49
thread-info . 638
throw-user-error . 498
tilde-expand (M-~) . 687
trace . 196
transpose-chars (C-t) . 683
transpose-words (M-t) . 683
tsave . 211
tstart [notes] . 204
tstatus . 204
tstop [notes] . 204
tty . 38
tui disable . 536
tui enable . 536
tui new-layout . 536
tui reg . 537
TuiWindow.erase . 468
TuiWindow.is_valid . 468
TuiWindow.write . 468
tvariable . 200
type-array . 489
type-code . 488
type-const . 489
type-field . 490
type-fields . 490
type-has-field-deep? . 526
type-has-field? . 490
type-name . 488
type-num-fields . 489
type-pointer . 489
type-print-name . 488
type-range . 489

894 Debugging with gdb

type-reference . 489
type-sizeof . 488
type-strip-typedefs . 488
type-tag . 488
type-target . 489
type-unqualified . 489
type-vector . 489
type-volatile . 489
Type.array . 398
Type.const . 398
Type.fields . 397
Type.optimized_out . 399
Type.pointer . 398
Type.range . 398
Type.reference . 398
Type.strip_typedefs . 399
Type.target . 399
Type.template_argument . 399
Type.unqualified . 398
Type.vector . 398
Type.volatile . 398
type? . 488
TYPE_CODE_ARRAY . 399
TYPE_CODE_BITSTRING . 400
TYPE_CODE_BOOL . 400
TYPE_CODE_CHAR . 400
TYPE_CODE_COMPLEX . 400
TYPE_CODE_DECFLOAT . 400
TYPE_CODE_ENUM . 399
TYPE_CODE_ERROR . 400
TYPE_CODE_FLAGS . 399
TYPE_CODE_FLT . 400
TYPE_CODE_FUNC . 399
TYPE_CODE_INT . 399
TYPE_CODE_INTERNAL_FUNCTION 400
TYPE_CODE_MEMBERPTR . 400
TYPE_CODE_METHOD . 400
TYPE_CODE_METHODPTR . 400
TYPE_CODE_NAMESPACE . 400
TYPE_CODE_PTR . 399
TYPE_CODE_RANGE . 400
TYPE_CODE_REF . 400
TYPE_CODE_RVALUE_REF . 400
TYPE_CODE_SET . 400
TYPE_CODE_STRING . 400
TYPE_CODE_STRUCT . 399
TYPE_CODE_TYPEDEF . 400
TYPE_CODE_UNION . 399
TYPE_CODE_VOID . 400

U
u (SingleKey TUI key) . 535
u (until) . 84
undefined-command-error-code 638
undisplay . 150
undo (C-_ or C-x C-u) . 687
universal-argument () . 685
unix-filename-rubout () . 684
unix-line-discard (C-u) . 684
unix-word-rubout (C-w) . 684
unset environment . 37
unset substitute-path . 129
until . 84
until& . 95
unwind-stop-reason-string 508
Up . 535
up . 114
up-silently . 115
upcase-word (M-u) . 683
update . 538

V
v (SingleKey TUI key) . 535
value->bool . 485
value->bytevector . 485
value->integer . 485
value->lazy-string . 486
value->real . 485
value->string . 485
value-abs . 487
value-add . 487
value-address . 483
value-call . 485
value-cast . 483
value-const-value . 485
value-dereference . 483
value-div . 487
value-dynamic-cast . 483
value-dynamic-type . 483
value-fetch-lazy! . 487
value-field . 485
value-lazy? . 486
value-logand . 487
value-logior . 487
value-lognot . 487
value-logxor . 488
value-lsh . 487
value-max . 487
value-min . 487
value-mod . 487
value-mul . 487
value-neg . 487
value-not . 487
value-optimized-out? . 483
value-pos . 487
value-pow . 487
value-print . 487

Command, Variable, and Function Index 895

value-reference-value . 485
value-referenced-value . 484
value-reinterpret-cast . 483
value-rem . 487
value-rsh . 487
value-rvalue-reference-value 485
value-sub . 487
value-subscript . 485
value-type . 483
Value.__init__ . 390, 391
Value.cast . 391
Value.const_value . 392
Value.dereference . 391
Value.dynamic_cast . 392
Value.fetch_lazy . 395
Value.format_string . 393
Value.lazy_string . 395
Value.reference_value . 392
Value.referenced_value . 392
Value.reinterpret_cast . 393
Value.string . 394
value<=? . 488
value<? . 488
value=? . 488
value>=? . 488
value>? . 488
value? . 482
vi-cmd-mode-string . 674
vi-editing-mode (M-C-j) . 688
vi-ins-mode-string . 674
visible-stats . 674

W
w (SingleKey TUI key) . 535
w (with) . 24
watch . 65
watchpoint annotation . 652
whatis . 255
where . 111

while . 376

while-stepping (tracepoints) 202

Window.click . 469

Window.close . 469

Window.hscroll . 469

Window.render . 469

Window.vscroll . 469

winheight . 538

with command . 24

WP_ACCESS . 460

WP_READ . 460
WP_WRITE . 460

X

x (examine memory) . 145

x(examine), and info line . 130

XMethod.__init__ . 419

XMethodMatcher.__init__ . 419

XMethodMatcher.match . 419

XMethodWorker.__call__ . 419

XMethodWorker.get_arg_types 419
XMethodWorker.get_result_type 419

Y

yank (C-y) . 685

yank-last-arg (M-. or M-_) 682

yank-nth-arg (M-C-y) . 682
yank-pop (M-y) . 685

896 Debugging with gdb

The body of this manual is set in
cmr10 at 10.95pt,

with headings in cmb10 at 10.95pt
and examples in cmtt10 at 10.95pt.

cmti10 at 10.95pt ,
cmb10 at 10.95pt, and

cmsl10 at 10.95pt
are used for emphasis.

	Summary of gdb
	Free Software
	Free Software Needs Free Documentation
	Contributors to gdb

	A Sample gdb Session
	Getting In and Out of gdb
	Invoking gdb
	Choosing Files
	Choosing Modes
	What gdb Does During Startup
	Initialization Files
	Home directory early initialization files
	System wide initialization files
	Home directory initialization file
	Local directory initialization file

	Quitting gdb
	Shell Commands
	Logging Output

	gdb Commands
	Command Syntax
	Command Settings
	Command Completion
	Command options
	Getting Help

	Running Programs Under gdb
	Compiling for Debugging
	Starting your Program
	Your Program's Arguments
	Your Program's Environment
	Your Program's Working Directory
	Your Program's Input and Output
	Debugging an Already-running Process
	Killing the Child Process
	Debugging Multiple Inferiors Connections and Programs
	Debugging Programs with Multiple Threads
	Debugging Forks
	Setting a Bookmark to Return to Later
	A Non-obvious Benefit of Using Checkpoints

	Stopping and Continuing
	Breakpoints, Watchpoints, and Catchpoints
	Setting Breakpoints
	Setting Watchpoints
	Setting Catchpoints
	Deleting Breakpoints
	Disabling Breakpoints
	Break Conditions
	Breakpoint Command Lists
	Dynamic Printf
	How to save breakpoints to a file
	Static Probe Points
	``Cannot insert breakpoints''
	``Breakpoint address adjusted...''

	Continuing and Stepping
	Skipping Over Functions and Files
	Signals
	Stopping and Starting Multi-thread Programs
	All-Stop Mode
	Non-Stop Mode
	Background Execution
	Thread-Specific Breakpoints
	Inferior-Specific Breakpoints
	Interrupted System Calls
	Observer Mode

	Running programs backward
	Recording Inferior's Execution and Replaying It
	Examining the Stack
	Stack Frames
	Backtraces
	Selecting a Frame
	Information About a Frame
	Applying a Command to Several Frames.
	Management of Frame Filters.

	Examining Source Files
	Printing Source Lines
	Specifying a Location
	Linespec Locations
	Explicit Locations
	Address Locations

	Editing Source Files
	Choosing your Editor

	Searching Source Files
	Specifying Source Directories
	Source and Machine Code
	Disable Reading Source Code

	Examining Data
	Expressions
	Ambiguous Expressions
	Program Variables
	Artificial Arrays
	Output Formats
	Examining Memory
	Memory Tagging
	Automatic Display
	Print Settings
	Pretty Printing
	Pretty-Printer Introduction
	Pretty-Printer Example
	Pretty-Printer Commands

	Value History
	Convenience Variables
	Convenience Functions
	Registers
	Floating Point Hardware
	Vector Unit
	Operating System Auxiliary Information
	Memory Region Attributes
	Attributes
	Memory Access Mode
	Memory Access Size
	Data Cache

	Memory Access Checking

	Copy Between Memory and a File
	How to Produce a Core File from Your Program
	Character Sets
	Caching Data of Targets
	Search Memory
	Value Sizes

	Debugging Optimized Code
	Inline Functions
	Tail Call Frames

	C Preprocessor Macros
	Tracepoints
	Commands to Set Tracepoints
	Create and Delete Tracepoints
	Enable and Disable Tracepoints
	Tracepoint Passcounts
	Tracepoint Conditions
	Trace State Variables
	Tracepoint Action Lists
	Listing Tracepoints
	Listing Static Tracepoint Markers
	Starting and Stopping Trace Experiments
	Tracepoint Restrictions

	Using the Collected Data
	tfind n
	tdump
	save tracepoints filename

	Convenience Variables for Tracepoints
	Using Trace Files

	Debugging Programs That Use Overlays
	How Overlays Work
	Overlay Commands
	Automatic Overlay Debugging
	Overlay Sample Program

	Using gdb with Different Languages
	Switching Between Source Languages
	List of Filename Extensions and Languages
	Setting the Working Language
	Having gdb Infer the Source Language

	Displaying the Language
	Type and Range Checking
	An Overview of Type Checking
	An Overview of Range Checking

	Supported Languages
	C and C++
	C and C++ Operators
	C and C++ Constants
	C++ Expressions
	C and C++ Defaults
	C and C++ Type and Range Checks
	gdb and C
	gdb Features for C++
	Decimal Floating Point format

	D
	Go
	Objective-C
	Method Names in Commands
	The Print Command With Objective-C

	OpenCL C
	OpenCL C Datatypes
	OpenCL C Expressions
	OpenCL C Operators

	Fortran
	Fortran Types
	Fortran Operators and Expressions
	Fortran Intrinsics
	Special Fortran Commands

	Pascal
	Rust
	Modula-2
	Operators
	Built-in Functions and Procedures
	Constants
	Modula-2 Types
	Modula-2 Defaults
	Deviations from Standard Modula-2
	Modula-2 Type and Range Checks
	The Scope Operators :: and .
	gdb and Modula-2

	Ada
	Introduction
	Omissions from Ada
	Additions to Ada
	Overloading support for Ada
	Stopping at the Very Beginning
	Ada Exceptions
	Extensions for Ada Tasks
	Tasking Support when Debugging Core Files
	Tasking Support when using the Ravenscar Profile
	Ada Source Character Set
	Known Peculiarities of Ada Mode

	Unsupported Languages

	Examining the Symbol Table
	Altering Execution
	Assignment to Variables
	Continuing at a Different Address
	Giving your Program a Signal
	Returning from a Function
	Calling Program Functions
	Calling functions with no debug info

	Patching Programs
	Compiling and injecting code in gdb
	Compilation options for the compile command
	Caveats when using the compile command
	Compiler search for the compile command

	gdb Files
	Commands to Specify Files
	File Caching
	Debugging Information in Separate Files
	Debugging information in a special section
	Index Files Speed Up gdb
	Automatic symbol index cache

	Errors Reading Symbol Files
	GDB Data Files

	Specifying a Debugging Target
	Active Targets
	Commands for Managing Targets
	Choosing Target Byte Order

	Debugging Remote Programs
	Connecting to a Remote Target
	Types of Remote Connections
	Host and Target Files
	Remote Connection Commands

	Sending files to a remote system
	Using the gdbserver Program
	Running gdbserver
	Attaching to a Running Program
	TCP port allocation lifecycle of gdbserver
	Other Command-Line Arguments for gdbserver

	Connecting to gdbserver
	Monitor Commands for gdbserver
	Tracepoints support in gdbserver

	Remote Configuration
	Implementing a Remote Stub
	What the Stub Can Do for You
	What You Must Do for the Stub
	Putting it All Together

	Configuration-Specific Information
	Native
	BSD libkvm Interface
	Process Information
	Features for Debugging djgpp Programs
	Features for Debugging MS Windows PE Executables
	Support for DLLs without Debugging Symbols
	DLL Name Prefixes
	Working with Minimal Symbols

	Commands Specific to gnu Hurd Systems
	Darwin
	FreeBSD

	Embedded Operating Systems
	Embedded Processors
	Synopsys ARC
	ARM
	BPF
	M68k
	MicroBlaze
	MIPS Embedded
	OpenRISC 1000
	PowerPC Embedded
	Atmel AVR
	CRIS
	Renesas Super-H

	Architectures
	AArch64
	AArch64 SVE.
	AArch64 Pointer Authentication.
	AArch64 Memory Tagging Extension.

	x86 Architecture-specific Issues
	Intel Memory Protection Extensions (MPX).
	Intel Control-flow Enforcement Technology (CET).
	Intel Advanced Matrix Extensions (AMX).

	Alpha
	MIPS
	HPPA
	PowerPC
	Nios II
	Sparc64
	ADI Support

	S12Z

	Controlling gdb
	Prompt
	Command Editing
	Command History
	Screen Size
	Output Styling
	Numbers
	Configuring the Current ABI
	Automatically loading associated files
	Automatically loading init file in the current directory
	Automatically loading thread debugging library
	Security restriction for auto-loading
	Displaying files tried for auto-load

	Optional Warnings and Messages
	Optional Messages about Internal Happenings
	Other Miscellaneous Settings

	Extending gdb
	Canned Sequences of Commands
	User-defined Commands
	User-defined Command Hooks
	Command Files
	Commands for Controlled Output
	Controlling auto-loading native gdb scripts

	Command Aliases
	Default Arguments

	Extending gdb using Python
	Python Commands
	Python API
	Basic Python
	Exception Handling
	Values From Inferior
	Types In Python
	Pretty Printing API
	Selecting Pretty-Printers
	Writing a Pretty-Printer
	Type Printing API
	Filtering Frames
	Decorating Frames
	Writing a Frame Filter
	Unwinding Frames in Python
	Xmethods In Python
	Xmethod API
	Writing an Xmethod
	Inferiors In Python
	Events In Python
	Threads In Python
	Recordings In Python
	CLI Commands In Python
	GDB/MI Commands In Python
	Parameters In Python
	Writing new convenience functions
	Program Spaces In Python
	Objfiles In Python
	Accessing inferior stack frames from Python
	Accessing blocks from Python
	Python representation of Symbols
	Symbol table representation in Python
	Manipulating line tables using Python
	Manipulating breakpoints using Python
	Finish Breakpoints
	Python representation of lazy strings
	Python representation of architectures
	Registers In Python
	Connections In Python
	Implementing new TUI windows

	Python Auto-loading
	Python modules
	gdb.printing
	gdb.types
	gdb.prompt
	gdb.ptwrite

	Extending gdb using Guile
	Guile Introduction
	Guile Commands
	Guile API
	Basic Guile
	Guile Configuration
	GDB Scheme Data Types
	Guile Exception Handling
	Values From Inferior In Guile
	Arithmetic In Guile
	Types In Guile
	Guile Pretty Printing API
	Selecting Guile Pretty-Printers
	Writing a Guile Pretty-Printer
	Commands In Guile
	Parameters In Guile
	Program Spaces In Guile
	Objfiles In Guile
	Accessing inferior stack frames from Guile.
	Accessing blocks from Guile.
	Guile representation of Symbols.
	Symbol table representation in Guile.
	Manipulating breakpoints using Guile
	Guile representation of lazy strings.
	Guile representation of architectures
	Disassembly In Guile
	I/O Ports in Guile
	Memory Ports in Guile
	Iterators In Guile

	Guile Auto-loading
	Guile Modules
	Guile Printing Module
	Guile Types Module

	Auto-loading extensions
	The objfile-gdb.ext file
	The .debug_gdb_scripts section
	Script File Entries
	Script Text Entries

	Which flavor to choose?

	Multiple Extension Languages
	Python comes first

	Command Interpreters
	gdb Text User Interface
	TUI Overview
	TUI Key Bindings
	TUI Single Key Mode
	TUI Mouse Support
	TUI-specific Commands
	TUI Configuration Variables

	Using gdb under gnu Emacs
	The gdb/mi Interface
	Function and Purpose
	Notation and Terminology
	gdb/mi General Design
	Context management
	Threads and Frames
	Language

	Asynchronous command execution and non-stop mode
	Thread groups

	gdb/mi Command Syntax
	gdb/mi Input Syntax
	gdb/mi Output Syntax

	gdb/mi Compatibility with CLI
	gdb/mi Development and Front Ends
	gdb/mi Output Records
	gdb/mi Result Records
	gdb/mi Stream Records
	gdb/mi Async Records
	gdb/mi Breakpoint Information
	gdb/mi Frame Information
	gdb/mi Thread Information
	gdb/mi Ada Exception Information

	Simple Examples of gdb/mi Interaction
	gdb/mi Command Description Format
	gdb/mi Breakpoint Commands
	gdb/mi Catchpoint Commands
	Shared Library gdb/mi Catchpoints
	Ada Exception gdb/mi Catchpoints
	C++ Exception gdb/mi Catchpoints

	gdb/mi Program Context
	gdb/mi Thread Commands
	gdb/mi Ada Tasking Commands
	gdb/mi Program Execution
	gdb/mi Stack Manipulation Commands
	gdb/mi Variable Objects
	gdb/mi Data Manipulation
	gdb/mi Tracepoint Commands
	gdb/mi Symbol Query Commands
	gdb/mi File Commands
	gdb/mi Target Manipulation Commands
	gdb/mi File Transfer Commands
	Ada Exceptions gdb/mi Commands
	gdb/mi Support Commands
	Miscellaneous gdb/mi Commands

	gdb Annotations
	What is an Annotation?
	The Server Prefix
	Annotation for gdb Input
	Errors
	Invalidation Notices
	Running the Program
	Displaying Source

	JIT Compilation Interface
	JIT Declarations
	Registering Code
	Unregistering Code
	Custom Debug Info
	Using JIT Debug Info Readers
	Writing JIT Debug Info Readers

	In-Process Agent
	In-Process Agent Protocol
	IPA Protocol Objects
	IPA Protocol Commands

	Reporting Bugs in gdb
	Have You Found a Bug?
	How to Report Bugs

	Command Line Editing
	Introduction to Line Editing
	Readline Interaction
	Readline Bare Essentials
	Readline Movement Commands
	Readline Killing Commands
	Readline Arguments
	Searching for Commands in the History

	Readline Init File
	Readline Init File Syntax
	Conditional Init Constructs
	Sample Init File

	Bindable Readline Commands
	Commands For Moving
	Commands For Manipulating The History
	Commands For Changing Text
	Killing And Yanking
	Specifying Numeric Arguments
	Letting Readline Type For You
	Keyboard Macros
	Some Miscellaneous Commands

	Readline vi Mode

	Using History Interactively
	History Expansion
	Event Designators
	Word Designators
	Modifiers

	In Memoriam
	Formatting Documentation
	Installing gdb
	Requirements for Building gdb
	Invoking the gdb configure Script
	Compiling gdb in Another Directory
	Specifying Names for Hosts and Targets
	configure Options
	System-wide configuration and settings
	Installed System-wide Configuration Scripts

	Maintenance Commands
	gdb Remote Serial Protocol
	Overview
	Packets
	Stop Reply Packets
	General Query Packets
	Architecture-Specific Protocol Details
	ARM-specific Protocol Details
	ARM Breakpoint Kinds
	ARM Memory Tag Types

	MIPS-specific Protocol Details
	MIPS Register Packet Format
	MIPS Breakpoint Kinds

	Tracepoint Packets
	Relocate instruction reply packet

	Host I/O Packets
	Interrupts
	Notification Packets
	Remote Protocol Support for Non-Stop Mode
	Packet Acknowledgment
	Examples
	File-I/O Remote Protocol Extension
	File-I/O Overview
	Protocol Basics
	The F Request Packet
	The F Reply Packet
	The Ctrl-C Message
	Console I/O
	List of Supported Calls
	open
	close
	read
	write
	lseek
	rename
	unlink
	stat/fstat
	gettimeofday
	isatty
	system

	Protocol-specific Representation of Datatypes
	Integral Datatypes
	Pointer Values
	Memory Transfer
	struct stat
	struct timeval

	Constants
	Open Flags
	mode_t Values
	Errno Values
	Lseek Flags
	Limits

	File-I/O Examples

	Library List Format
	Library List Format for SVR4 Targets
	Memory Map Format
	Thread List Format
	Traceframe Info Format
	Branch Trace Format
	Branch Trace Configuration Format

	The GDB Agent Expression Mechanism
	General Bytecode Design
	Bytecode Descriptions
	Using Agent Expressions
	Varying Target Capabilities
	Rationale

	Target Descriptions
	Retrieving Descriptions
	Target Description Format
	Inclusion
	Architecture
	OS ABI
	Compatible Architecture
	Features
	Types
	Registers

	Predefined Target Types
	Enum Target Types
	Standard Target Features
	AArch64 Features
	ARC Features
	ARM Features
	i386 Features
	LoongArch Features
	MicroBlaze Features
	MIPS Features
	M68K Features
	NDS32 Features
	Nios II Features
	Openrisc 1000 Features
	PowerPC Features
	RISC-V Features
	RX Features
	S/390 and System z Features
	Sparc Features
	TMS320C6x Features

	Operating System Information
	Process list

	Trace File Format
	.gdb_index section format
	Download debugging resources with Debuginfod
	Debuginfod Settings

	Manual pages
	GNU GENERAL PUBLIC LICENSE
	GNU Free Documentation License
	Concept Index
	Command, Variable, and Function Index

