Asymptote: the Vector Graphics
Language

For version 2.86git

symptote

This file documents Asymptote, version 2.86git.
https://asymptote.sourceforge.io
Copyright (©) 2004-23 Andy Hammerlindl, John Bowman, and Tom Prince.

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Lesser General Public License (see the file LICENSE in
the top-level source directory).

https://asymptote.sourceforge.io

Table of Contents

1 Description............ 1
2 Installation..................... 3
2.1 UNIX binary distributions........... ..., 3
2.2 MacOS X binary distributionso oL 3
2.3 Microsoft Windows . ..o 3
24 Configuring.o 4
2.5 Search paths ... 6
2.6 Compiling from UNIX SOUTCE cvviiiiiii i 6
2.7 Editing modes. 7
8 S (5 8
2.9 Uninstallo 8

3 Tutorial 9
3.1 Drawing in batch mode.......... 9
3.2 Drawing in interactive mode i 9
3.3 Figure size ... 10
3.4 Labels. ..o 11
3.5 Paths .o 11

4 Drawing commands............................ 14
Al drawW .o e 14
0 1 16
s B ¢) o 18
4.4 Jabel ... 18

5 Beziercurves........... ..., 22
6 Programming................. 24
6.1 Data types ..o 24
6.2 Pathsand guides......... ... i i i 31
6.3 Pens ... 38
6.4 Transforms....... oot e 46
6.5 Frames and pictures.............o i 47
6.6 Files ..o 54
6.7 Variable initializers.......... 57
6.8 StIUCTUTESottt e 58
6.9 OPEratorsttt e 62
6.9.1 Arithmetic & logical operators............................ 62

6.9.2 Self & prefix operators...... ... 63

6.9.3 User-defined operators............c.cooiiiiiiiiiiiia . 63

6.10 Implicit scaling....... ..o 64
6.11 Functions 65

6.11.1 Default arguments. ... 66

6.11.2 Named argumentsc.eeeiiiiieinieenneeennn. 67

6.11.3 Rest arguments........... ... 68

6.11.4 Mathematical functions................, 69
6.12 ATTAyS ..ot 71

6.12.1 SHCES. oottt e 77
6.13 Casts oot 79
6.14 TmpOTt . ..ot 80
6.15 SEatIC . vttt 82

LaTeX USaAZe . ..o oottt 85

Base modules........... 90
8.1 pladm ... 90
8.2 SAMPleX ... 90
8.3 Math .. e 90
8.4 interpolateiiiiiiiii 91
8.5 gEOMELIY. ..ot 91
8.6 tremblingiiiii 91
R A v v < PP 91
8.8 PAtTEIIS. ..ot 92
8.9 MATKETSt 92
.10 mMaD .ottt 94
G v o =Y = 94
8.12 binarytree..........cooiiiiiiii 94
.13 Arawtree ... e 95
814 Sy ZY Y i 95
815 feymman............. 95
8.16 roundedpath.......... i 96
.17 animationouiiin e 96
.18 embedo 96
.19 Slide ..t 97
.20 MetaPoSt .ottt 97
.21 babel 97
8.22 labelpath...... ... i 97
8.23 labelpath3....... ...t 97
8.24 annotateo 97
B 2D CAD .. 98
8.26 graph 98
8.27 paletlte ... 128
B.28 BRI e . ot e 133
820 0D i 147
8.30 graph3. ... 147

8.31 GTAdB. .. 152

ii

.32 S0LddAs . ot 153
8.33 BUDE « - ettt 154
8.34 flowchart .. .o 155
.30 COMLOUT ..ot 157
8.30 COMBOUT S ..o i 164
8.37 SmoothcontoUTr3o 164
8.38 slopefield....... ..o 165
8.3 0@ . ottt 166
9 Command-line options 167
10 Interactive mode........... 172
11 Graphical User Interface.................... 174
11.1 GUIinstallation. ...ttt e 174
11.2 GUIL USAZE « o oottt e 174
12 Command-Line Interface.................... 175
13 Language server protocol 176
14 PostScript to Asymptote..................... 177
15 Help ... 178
16 Debugger............... 179
17 Acknowledgments 180

iii

1 Description

Asymptote is a powerful descriptive vector graphics language that provides a mathematical
coordinate-based framework for technical drawing. Labels and equations are typeset with
LaTeX, for overall document consistency, yielding the same high-quality level of typesetting
that LaTeX provides for scientific text. By default it produces PostScript output, but it
can also generate OpenGL, PDF, SVG, WebGL, V3D, and PRC vector graphics, along with any
format that the ImageMagick package can produce. You can even try it out in your Web
browser without installing it, using the Asymptote Web Application

http://asymptote.ualberta.ca

It is also possible to send remote commands to this server via the curl utility (see
Chapter 12 [Command-Line Interface], page 175).

A major advantage of Asymptote over other graphics packages is that it is a high-level
programming language, as opposed to just a graphics program: it can therefore exploit the
best features of the script (command-driven) and graphical-user-interface (GUI) methods
for producing figures. The rudimentary GUI xasy included with the package allows one
to move script-generated objects around. To make Asymptote accessible to the average
user, this GUI is currently being developed into a full-fledged interface that can generate
objects directly. However, the script portion of the language is now ready for general use by
users who are willing to learn a few simple Asymptote graphics commands (see Chapter 4
[Drawing commands|, page 14).

Asymptote is mathematically oriented (e.g. one can use complex multiplication to rotate
a vector) and uses LaTeX to do the typesetting of labels. This is an important feature for
scientific applications. It was inspired by an earlier drawing program (with a weaker syntax
and capabilities) called MetaPost.

The Asymptote vector graphics language provides:

e a standard for typesetting mathematical figures, just as TEX/LaTeX is the de-facto
standard for typesetting equations.

e LaTeX typesetting of labels, for overall document consistency;
e the ability to generate and embed 3D vector WebGL graphics within HTML files;
e the ability to generate and embed 3D vector PRC graphics within PDF files;

e a natural coordinate-based framework for technical drawing, inspired by MetaPost,
with a much cleaner, powerful C++-like programming syntax;

e compilation of figures into virtual machine code for speed, without sacrificing portabil-
ity;

e the power of a script-based language coupled to the convenience of a GUI,;

e customization using its own C++-like graphics programming language;

e sensible defaults for graphical features, with the ability to override;

e a high-level mathematically oriented interface to the PostScript language for vector
graphics, including affine transforms and complex variables;

e functions that can create new (anonymous) functions;

e deferred drawing that uses the simplex method to solve overall size constraint issues
between fixed-sized objects (labels and arrowheads) and objects that should scale with
figure size;

http://asymptote.ualberta.ca

Chapter 1: Description 2

Many of the features of Asymptote are written in the Asymptote language itself. While
the stock version of Asymptote is designed for mathematics typesetting needs, one can write
Asymptote modules that tailor it to specific applications; for example, a scientific graphing
module is available (see Section 8.26 [graph], page 98). Examples of Asymptote code and
output, including animations, are available at

https://asymptote.sourceforge.io/gallery/

Clicking on an example file name in this manual, like Pythagoras, will display the PDF
output, whereas clicking on its .asy extension will show the corresponding Asymptote code
in a separate window.

Links to many external resources, including an excellent user-written Asymptote tutorial
can be found at

https://asymptote.sourceforge.io/links.html
A quick reference card for Asymptote is available at

https://asymptote.sourceforge.io/asyRefCard.pdf

https://asymptote.sourceforge.io/gallery/
https://asymptote.sourceforge.io/gallery/Pythagoras.svg
https://asymptote.sourceforge.io/gallery/Pythagoras.asy
https://asymptote.sourceforge.io/links.html
https://asymptote.sourceforge.io/asyRefCard.pdf

2 Installation

After following the instructions for your specific distribution, please see also Section 2.4
[Configuring], page 4.

We recommend subscribing to new release announcements at
https://sourceforge.net/projects/asymptote
Users may also wish to monitor the Asymptote forum:

https://sourceforge.net/p/asymptote/discussion/409349

2.1 UNIX binary distributions

We release both tgz and RPM binary distributions of Asymptote. The root user can install
the Linux x86_64 tgz distribution of version x.xx of Asymptote with the commands:

tar -C / -zxf asymptote-x.xx.x86_64.tgz
texhash

The texhash command, which installs LaTeX style files, is optional. The executable
file will be /usr/local/bin/asy) and example code will be installed by default in
/usr/share/doc/asymptote/examples.

Fedora users can easily install a recent version of Asymptote with the command
dnf --enablerepo=rawhide install asymptote

To install the latest version of Asymptote on a Debian-based distribution (e.g. Ubuntu,
Mepis, Linspire) follow the instructions for compiling from UNIX source (see Section 2.6
[Compiling from UNIX source], page 6). Alternatively, Debian users can install one of
Hubert Chan’s prebuilt Asymptote binaries from

http://ftp.debian.org/debian/pool/main/a/asymptote

2.2 MacOS X binary distributions

MacOS X users can either compile the UNIX source code (see Section 2.6 [Compiling from
UNIX source|, page 6) or install the Asymptote binary available at

https://www.macports.org/
or at
https://brew.sh/

Note that many Mac0S X (and FreeBSD) systems lack the GNU readline library. For full
interactive functionality, GNU readline version 4.3 or later must be installed.

2.3 Microsoft Windows

Users of the Microsoft Windows operating system can install the self-extracting Asymptote
executable asymptote-x.xx-setup.exe, where x.xx denotes the latest version.

A working TgX implementation (we recommend https://www.tug.org/texlive or
http://www.miktex.org) will be required to typeset labels. You will also need to install
GPL Ghostscript version 9.56 or later from https://www.ghostscript.com/.

https://sourceforge.net/projects/asymptote
https://sourceforge.net/p/asymptote/discussion/409349
http://ftp.debian.org/debian/pool/main/a/asymptote
https://www.macports.org/
https://brew.sh/
https://www.tug.org/texlive
http://www.miktex.org
https://www.ghostscript.com/

Chapter 2: Installation 4

To view PostScript output, you can install the program Sumatra PDF available from
https://www.sumatrapdfreader.org/.

The ImageMagick package from https://www.imagemagick.org/script/
binary-releases.php

is required to support output formats other than HTML, PDF, SVG, and PNG (see [convert],
page 170). The Python 3 interpreter from https://www.python.org is only required if you
wish to try out the graphical user interface (see Chapter 11 [GUI], page 174).

Example code will be installed by default in the examples subdirectory of the installation
directory (by default, C:\Program Files\Asymptote).

2.4 Configuring

In interactive mode, or when given the -V option (the default when running Asymptote on
a single file under MSDOS), Asymptote will automatically invoke your PostScript viewer
(evince under UNIX) to display graphical output. The PostScript viewer should be capable
of automatically redrawing whenever the output file is updated. The UNIX PostScript
viewer gv supports this (via a SIGHUP signal). Users of ggv will need to enable Watch file
under Edit/PostScript Viewer Preferences.

Configuration variables are most easily set as Asymptote variables in an optional con-
figuration file config.asy (see [configuration file], page 170). For example, the setting
pdfviewer specifies the location of the PDF viewer. Here are the default values of several
important configuration variables under UNIX:

import settings;
pdfviewer="acroread";
htmlviewer="google-chrome";
psviewer="evince";
display="display";
animate="animate";

gs="gs";

libgs="";

Under MSDOS, the viewer settings htmlviewer, pdfviewer, psviewer, display, and
animate default to the string cmd, requesting the application normally associated with each
file type. The (installation-dependent) default values of gs and 1libgs are determined au-
tomatically from the Microsoft Windows registry. The gs setting specifies the location of
the PostScript processor Ghostscript, available from https://www.ghostscript.com/.

The configuration variable htmlviewer specifies the browser to use to display 3D WebGL
output. The default setting is google-chrome under UNIX and cmd under Microsoft
Windows. Note that Internet Explorer does not support WebGL; Microsoft Windows
users should set their default html browser to chrome or microsoft-edge. By default,
2D and 3D HTML images expand to the enclosing canvas; this can be disabled by setting the
configuration variable absolute to true.

On UNIX systems, to support automatic document reloading of PDF files in Adobe Reader,
we recommend copying the file reload. js from the Asymptote system directory (by default,
/usr/share/asymptote under UNIX to ~/.adobe/Acrobat/x.x/JavaScripts/, where x.x

https://www.sumatrapdfreader.org/
https://www.imagemagick.org/script/binary-releases.php
https://www.imagemagick.org/script/binary-releases.php
https://www.python.org
https://www.ghostscript.com/

Chapter 2: Installation 5

represents the appropriate Adobe Reader version number. The automatic document reload
feature must then be explicitly enabled by putting

import settings;

pdfreload=true;

pdfreloadOptions="-tempFile";

in the Asymptote configuration file. This reload feature is not useful under MSDOS since the
document cannot be updated anyway on that operating system until it is first closed by
Adobe Reader.

The configuration variable dir can be used to adjust the search path (see Section 2.5

[Search paths], page 6).

By default, Asymptote attempts to center the figure on the page, assuming that the paper
typeis letter. The default paper type may be changed to a4 with the configuration variable
papertype. Alignment to other paper sizes can be obtained by setting the configuration
variables paperwidth and paperheight.

These additional configuration variables normally do not require adjustment:

config
texpath
texcommand
dvips
dvisvgm
convert
asygl

Warnings (such as "unbounded" and "offaxis") may be enabled or disabled with the
functions

warn(string s);
nowarn(string s);

or by directly modifying the string array settings.suppress, which lists all disabled warn-
ings.

Configuration variables may also be set or overwritten with a command-line option:
asy -psviewer=evince -V venn

Alternatively, system environment versions of the above configuration variables may be
set in the conventional way. The corresponding environment variable name is obtained by
converting the configuration variable name to upper case and prepending ASYMPTOTE_: for
example, to set the environment variable

ASYMPTOTE_PAPERTYPE="a4";
under Microsoft Windows XP:

1. Click on the Start button;

2. Right-click on My Computer;

3. Choose View system information;
4. Click the Advanced tab;
5

Click the Environment Variables button.

Chapter 2: Installation 6

2.5 Search paths

In looking for Asymptote files, asy will search the following paths, in the order listed:
1. The current directory;

2. A list of one or more directories specified by the configuration variable dir or environ-
ment variable ASYMPTOTE_DIR (separated by : under UNIX and ; under MSDOS);

3. The directory specified by the environment variable ASYMPTOTE_HOME; if this variable is
not set, the directory .asy in the user’s home directory (%USERPROFILE%\.asy under
MSDOS) is used;

4. The Asymptote system directory (by default, /usr/share/asymptote under UNIX and
C:\Program Files\Asymptote under MSDOS).

5. The Asymptote examples directory (by default, /usr/share/doc/asymptote/examples
under UNIX and C:\Program Files\Asymptote\examples under MSDOS).

2.6 Compiling from UNIX source

To compile and install a UNIX executable from the source release asymptote-x.xx.src.tgz
in the subdirectory x.xx under

https://sourceforge.net/projects/asymptote/files/
execute the commands:

gunzip asymptote-x.xx.src.tgz
tar -xf asymptote-x.xx.src.tar
cd asymptote-x.xx

By default the system version of the Boehm garbage collector will be used; if it is old we
recommend first putting https://github.com/ivmai/bdwgc/releases/download/v8.0.
4/gc-8.0.4.tar.gzhttps://www.ivmaisoft.com/_bin/atomic_ops/libatomic_ops-7.
6.10.tar.gz in the Asymptote source directory.

On UNIX platforms (other than MacOS X), we recommend using version 3.2.1 of the

freeglut library. To compile freeglut, download
https://prdownloads.sourceforge.net/freeglut/freeglut-3.2.1.tar.
gz

and type (as the root user):

gunzip freeglut-3.2.1.tar.gz

tar -xf freeglut-3.2.1.tar

cd freeglut-3.2.1

cmake -DCMAKE_INSTALL_PREFIX=/usr -DCMAKE_C_FLAGS=-fcommon .

make

make install

Then compile Asymptote with the commands
./configure
make all
make install
Be sure to use GNU make (on non-GNU systems this command may be called gmake). To
build the documentation, you may need to install the texinfo-tex package. If you get
errors from a broken texinfo or pdftex installation, simply put

https://sourceforge.net/projects/asymptote/files/
https://github.com/ivmai/bdwgc/releases/download/v8.0.4/gc-8.0.4.tar.gz
https://github.com/ivmai/bdwgc/releases/download/v8.0.4/gc-8.0.4.tar.gz
https://www.ivmaisoft.com/_bin/atomic_ops/libatomic_ops-7.6.10.tar.gz
https://www.ivmaisoft.com/_bin/atomic_ops/libatomic_ops-7.6.10.tar.gz
https://prdownloads.sourceforge.net/freeglut/freeglut-3.2.1.tar.gz
https://prdownloads.sourceforge.net/freeglut/freeglut-3.2.1.tar.gz

Chapter 2: Installation 7

https://asymptote.sourceforge.io/asymptote.pdf
in the directory doc and repeat the command make all.

For a (default) system-wide installation, the last command should be done as the root user.
To install without root privileges, change the ./configure command to

./configure --prefix=$HOME/asymptote

One can disable use of the Boehm garbage collector by configuring with ./configure
--disable-gc. For a list of other configuration options, say ./configure --help. For
example, under MacOS X, one can tell configure to use the clang compilers and look for
header files and libraries in nonstandard locations:

./configure CC=clang CXX=clang++ CPPFLAGS=-I/opt/local/include LDFLAGS=-L/opt/local/lib

If you are compiling Asymptote with gcc, you will need a relatively recent version (e.g.
3.4.4 or later). For full interactive functionality, you will need version 4.3 or later of the GNU
readline library. The file gcc3.3.2curses.patch in the patches directory can be used
to patch the broken curses.h header file (or a local copy thereof in the current directory) on
some AIX and IRIX systems.

The FFTW library is only required if you want Asymptote to be able to take Fourier
transforms of data (say, to compute an audio power spectrum). The GSL library is only
required if you require the special functions that it supports.

If you don’t want to install Asymptote system wide, just make sure the compiled binary
asy and GUI script xasy are in your path and set the configuration variable dir to point
to the directory base (in the top level directory of the Asymptote source code).

2.7 Editing modes

Users of emacs can edit Asymptote code with the mode asy-mode, after enabling it by
putting the following lines in their .emacs initialization file, replacing ASYDIR with the loca-
tion of the Asymptote system directory (by default, /usr/share/asymptote or C: \Program
Files\Asymptote under MSDOS):

(add-to-list 'load-path "ASYDIR")

(autoload 'asy-mode "asy-mode.el" "Asymptote major mode." t)

(autoload 'lasy-mode "asy-mode.el" "hybrid Asymptote/Latex major mode." t)
(autoload 'asy-insinuate-latex "asy-mode.el" "Asymptote insinuate LaTeX." t)
(add-to-list 'auto-mode-alist '("\\.asy$" . asy-mode))

Particularly useful key bindings in this mode are C-c C-c, which compiles and displays the
current buffer, and the key binding C-c ?, which shows the available function prototypes
for the command at the cursor. For full functionality you should also install the Apache
Software Foundation package two-mode-mode:

https://www.dedasys.com/freesoftware/files/two-mode-mode.el

Once installed, you can use the hybrid mode lasy-mode to edit a LaTeX file containing
embedded Asymptote code (see Chapter 7 [LaTeX usage|, page 85). This mode can be en-
abled within latex-mode with the key sequence M-x lasy-mode <RET>. On UNIX systems,
additional keywords will be generated from all asy files in the space-separated list of direc-
tories specified by the environment variable ASYMPTOTE_SITEDIR. Further documentation
of asy-mode is available within emacs by pressing the sequence keys C-h f asy-mode <RET>.

https://asymptote.sourceforge.io/asymptote.pdf
https://www.dedasys.com/freesoftware/files/two-mode-mode.el

Chapter 2: Installation 8

Fans of vim can customize vim for Asymptote with
cp /usr/share/asymptote/asy.vim ~/.vim/syntax/asy.vim
and add the following to their ~/.vimrc file:

augroup filetypedetect
au BufNewFile,BufRead *.asy setf asy
augroup END
filetype plugin on
If any of these directories or files don’t exist, just create them. To set vim up to run the
current asymptote script using :make just add to ~/.vim/ftplugin/asy.vim:

setlocal makeprg=asy\ %
setlocal errorformat=%f:\ %l.%c:\ %m

Syntax highlighting support for the KDE editor Kate can be enabled by running asy-
kate.shin the /usr/share/asymptote directory and putting the generated asymptote.xml
file in ~/.local/share/org.kde.syntax-highlighting/syntax/.

2.8 Git

The following commands are needed to install the latest development version of Asymptote
using git:

git clone https://github.com/vectorgraphics/asymptote

cd asymptote
./autogen.sh
./configure
make all
make install

To compile without optimization, use the command make CFLAGS=-g. On Ubuntu systems,
you may need to first install the required dependencies:

apt-get build-dep asymptote

2.9 Uninstall

To uninstall a Linux x86_64 binary distribution, use the commands

tar -zxvf asymptote-x.xx.x86_64.tgz | xargs --replace=}% rm /%
texhash

To uninstall all Asymptote files installed from a source distribution, use the command

make uninstall

3 Tutorial

A concise introduction to Asymptote is given here. For a more thorough introduction, see
the excellent Asymptote tutorial written by Charles Staats:

https://asymptote.sourceforge.io/asymptote_tutorial.pdf
Another Asymptote tutorial is available as a wiki, with images rendered by an online

Asymptote engine:
https://www.artofproblemsolving.com/wiki/?title=Asymptote_(Vector_Graphics_Language)

3.1 Drawing in batch mode
To draw a line from coordinate (0,0) to coordinate (100,100), create a text file test.asy
containing
draw((0,0)--(100,100));
Then execute the command
asy -V test
Alternatively, MSDOS users can drag and drop test.asy onto the Desktop asy icon (or make
Asymptote the default application for the extension asy).

This method, known as batch mode, outputs a PostScript file test.eps. If you prefer
PDF output, use the command line
asy -V -f pdf test

In either case, the -V option opens up a viewer window so you can immediately view the
result:

Here, the —-- connector joins the two points (0,0) and (100,100) with a line segment.

3.2 Drawing in interactive mode

Another method is interactive mode, where Asymptote reads individual commands as they
are entered by the user. To try this out, enter Asymptote’s interactive mode by clicking on
the Asymptote icon or typing the command asy. Then type

draw((0,0)--(100,100));
followed by Enter, to obtain the above image.

At this point you can type further draw commands, which will be added to the displayed
figure, erase to clear the canvas,

input test;

https://asymptote.sourceforge.io/asymptote_tutorial.pdf
https://www.artofproblemsolving.com/wiki/?title=Asymptote_(Vector_Graphics_Language)

Chapter 3: Tutorial 10

to execute all of the commands contained in the file test.asy, or quit to exit interactive
mode. You can use the arrow keys in interactive mode to edit previous lines. The tab key
will automatically complete unambiguous words; otherwise, hitting tab again will show the
possible choices. Further commands specific to interactive mode are described in Chapter 10
[Interactive mode], page 172.

3.3 Figure size

In Asymptote, coordinates like (0,0) and (100,100), called pairs, are expressed in
PostScript "big points" (1 bp = 1/72 inch) and the default line width is 0.5bp. However,
it is often inconvenient to work directly in PostScript coordinates. The next example
produces identical output to the previous example, by scaling the line (0,0)--(1,1) to fit
a rectangle of width 100.5 bp and height 100.5 bp (the extra 0.5bp accounts for the line
width):

size(100.5,100.5);
draw((0,0)--(1,1));

One can also specify the size in pt (1 pt = 1/72.27 inch), cm, mm, or inches. T'wo nonzero
size arguments (or a single size argument) restrict the size in both directions, preserving
the aspect ratio. If 0 is given as a size argument, no restriction is made in that direction;
the overall scaling will be determined by the other direction (see [size]|, page 48):

size(0,100.5);
draw((0,0)--(2,1) ,Arrow);

To connect several points and create a cyclic path, use the cycle keyword:

size(3cm);
draw((0,0)--(1,0)--(1,1)--(0,1)--cycle);

Chapter 3: Tutorial 11

For convenience, the path (0,0)--(1,0)--(1,1)--(0,1)--cycle may be replaced with
the predefined variable unitsquare, or equivalently, box ((0,0),(1,1)).

To make the user coordinates represent multiples of exactly 1cm:

unitsize(lcm);
draw(unitsquare) ;

3.4 Labels

Adding labels is easy in Asymptote; one specifies the label as a double-quoted LaTeX string,
a coordinate, and an optional alignment direction:

size(3cm);
draw(unitsquare) ;
label ("A", (0,0),SW);
label("B", (1,0),SE);
label("C", (1,1),NE);
label("D", (0,1) ,NW);

A B

Asymptote uses the standard compass directions E=(1,0), N=(0,1), NE=unit (N+E), and
ENE=unit (E+NE), etc., which along with the directions up, down, right, and left are
defined as pairs in the Asymptote base module plain (a user who has a local variable
named E may access the compass direction E by prefixing it with the name of the module
where it is defined: plain.E).

3.5 Paths

This example draws a path that approximates a quarter circle, terminated with an arrow-
head:

size(100,0);
draw((1,0){up}..{1left}(0,1),Arrow);

Chapter 3: Tutorial 12

Here the directions up and left in braces specify the outgoing and incoming directions at
the points (1,0) and (0,1), respectively.

In general, a path is specified as a list of points (or other paths) interconnected with

--, which denotes a straight line segment, or .., which denotes a cubic spline (see
Chapter 5 [Bezier curves|, page 22).

Specifying a final ..cycle creates a cyclic path that connects smoothly back to the
initial node, as in this approximation (accurate to within 0.06%) of a unit circle:

path unitcircle=E..N..W..S..cycle;

An Asymptote path, being connected, is equivalent to a PostScript subpath. The =~ bi-
nary operator, which requests that the pen be moved (without drawing or affecting endpoint
curvatures) from the final point of the left-hand path to the initial point of the right-hand
path, may be used to group several Asymptote paths into a path[] array (equivalent to a
PostScript path):

size(0,100);

path unitcircle=E..N..W..S..cycle;

path g=scale(2)*unitcircle;
filldraw(unitcircle”"g,evenodd+yellow,black) ;

The PostScript even-odd fill rule here specifies that only the region bounded between the
two unit circles is filled (see [fillrule], page 42). In this example, the same effect can be
achieved by using the default zero winding number fill rule, if one is careful to alternate the
orientation of the paths:

filldraw(unitcircle”"reverse(g),yellow,black) ;

The =~ operator is used by the box(triple, triple) function in the module three to
construct the edges of a cube unitbox without retracing steps (see Section 8.28 [three],
page 133):

import three;

Chapter 3: Tutorial 13

currentprojection=orthographic(5,4,2,center=true);

size(5cm) ;
size3(3cm,5cm,8cm) ;

draw(unitbox) ;
dot (unitbox,red);

label("0", (0,0,0) ,NW);

label("(1,0,0)",(1,0,0),3);
label("(0,1,0)",(0,1,0),E);
label("(0,0,1)",(0,0,1),Z);

(0,0,1)

| =

(170 (0,1,0)

See section Section 8.26 [graph|, page 98, (or the online Asymptote gallery and exter-
nal links posted at https://asymptote.sourceforge.io) for further examples, including
two-dimensional and interactive three-dimensional scientific graphs. Additional examples
have been posted by Philippe Ivaldi at https://web.archive.org/web/20201130113133/
http://www.piprime.fr/asymptote.

https://asymptote.sourceforge.io/gallery
https://asymptote.sourceforge.io
https://web.archive.org/web/20201130113133/http://www.piprime.fr/asymptote
https://web.archive.org/web/20201130113133/http://www.piprime.fr/asymptote

14

4 Drawing commands

All of Asymptote’s graphical capabilities are based on four primitive commands. The three
PostScript drawing commands draw, £il1l, and clip add objects to a picture in the order
in which they are executed, with the most recently drawn object appearing on top. The
labeling command label can be used to add text labels and external EPS images, which
will appear on top of the PostScript objects (since this is normally what one wants), but
again in the relative order in which they were executed. After drawing objects on a picture,
the picture can be output with the shipout function (see [shipout], page 49).

If you wish to draw PostScript objects on top of labels (or verbatim tex commands;
see [tex], page 53), the layer command may be used to start a new PostScript/LaTeX
layer:

void layer(picture pic=currentpicture);

The layer function gives one full control over the order in which objects are drawn.
Layers are drawn sequentially, with the most recent layer appearing on top. Within each
layer, labels, images, and verbatim tex commands are always drawn after the PostScript
objects in that layer.

A page break can be generated with the command
void newpage(picture pic=currentpicture);

While some of these drawing commands take many options, they all have sensible default
values (for example, the picture argument defaults to currentpicture).

4.1 draw

void draw(picture pic=currentpicture, Label L="", path g,
align align=NoAlign, pen p=currentpen,
arrowbar arrow=None, arrowbar bar=None, margin margin=NoMargin,
Label legend="", marker marker=nomarker) ;

Draw the path g on the picture pic using pen p for drawing, with optional drawing
attributes (Label L, explicit label alignment align, arrows and bars arrow and bar, margins
margin, legend, and markers marker). Only one parameter, the path, is required. For
convenience, the arguments arrow and bar may be specified in either order. The argument
legend is a Label to use in constructing an optional legend entry.

Bars are useful for indicating dimensions. The possible values of bar are None, BeginBar,
EndBar (or equivalently Bar), and Bars (which draws a bar at both ends of the path). Each
of these bar specifiers (except for None) will accept an optional real argument that denotes
the length of the bar in PostScript coordinates. The default bar length is barsize (pen).

The possible values of arrow are None, Blank (which draws no arrows or path),
BeginArrow, MidArrow, EndArrow (or equivalently Arrow), and Arrows (which draws an
arrow at both ends of the path). All of the arrow specifiers except for None and Blank may
be given the optional arguments arrowhead arrowhead (one of the predefined arrowhead
styles DefaultHead, SimpleHead, HookHead, TeXHead), real size (arrowhead size in
PostScript coordinates), real angle (arrowhead angle in degrees), filltype filltype
(one of FillDraw, Fill, NoFill, UnFill, Draw) and (except for MidArrow and Arrows)
a real position (in the sense of point(path p, real t)) along the path where the tip

Chapter 4: Drawing commands 15

of the arrow should be placed. The default arrowhead size when drawn with a pen p is
arrowsize(p). There are also arrow versions with slightly modified default values of size
and angle suitable for curved arrows: BeginArcArrow, EndArcArrow (or equivalently
ArcArrow), MidArcArrow, and ArcArrows.

Margins can be used to shrink the visible portion of a path by labelmargin(p)
to avoid overlap with other drawn objects. Typical values of margin are NoMargin,
BeginMargin, EndMargin (or equivalently Margin), and Margins (which leaves a margin
at both ends of the path). One may use Margin(real begin, real end=begin) to
specify the size of the beginning and ending margin, respectively, in multiples of
the units labelmargin(p) used for aligning labels. Alternatively, BeginPenMargin,
EndPenMargin (or equivalently PenMargin), PenMargins, PenMargin(real begin, real
end=begin) specify a margin in units of the pen line width, taking account of the pen line
width when drawing the path or arrow. For example, use DotMargin, an abbreviation
for PenMargin(-0.5*dotfactor,0.5*dotfactor), to draw from the usual beginning
point just up to the boundary of an end dot of width dotfactor*linewidth(p). The
qualifiers BeginDotMargin, EndDotMargin, and DotMargins work similarly. The qualifier
TrueMargin(real begin, real end=begin) allows one to specify a margin directly in
PostScript units, independent of the pen line width.

The use of arrows, bars, and margins is illustrated by the examples Pythagoras.asy
and sqrtx01.asy.

The legend for a picture pic can be fit and aligned to a frame with the routine:

frame legend(picture pic=currentpicture, int perline=1,
real xmargin=legendmargin, real ymargin=xmargin,
real linelength=legendlinelength,
real hskip=legendhskip, real vskip=legendvskip,
real maxwidth=0, real maxheight=0,
bool hstretch=false, bool vstretch=false, pen p=currentpen);

Here xmargin and ymargin specify the surrounding x and y margins, perline specifies
the number of entries per line (default 1; 0 means choose this number automatically),
linelength specifies the length of the path lines, hskip and vskip specify the line skip
(as a multiple of the legend entry size), maxwidth and maxheight specify optional upper
limits on the width and height of the resulting legend (0 means unlimited), hstretch and
vstretch allow the legend to stretch horizontally or vertically, and p specifies the pen used
to draw the bounding box. The legend frame can then be added and aligned about a point
on a picture dest using add or attach (see [add about], page 51).

To draw a dot, simply draw a path containing a single point. The dot command defined
in the module plain draws a dot having a diameter equal to an explicit pen line width or
the default line width magnified by dotfactor (6 by default), using the specified filltype
(see [filltype], page 50) or dotfilltype (Fill by default):

void dot(frame f, pair z, pen p=currentpen, filltype filltype=dotfilltype);
void dot(picture pic=currentpicture, pair z, pen p=currentpen,
filltype filltype=dotfilltype);
void dot(picture pic=currentpicture, Label L, pair z, align align=NoAlign,
string format=defaultformat, pen p=currentpen, filltype filltype=dotfilltype) ;
void dot(picture pic=currentpicture, Label[] L=new Label[], pair[] z,

https://asymptote.sourceforge.io/gallery/Pythagoras.svg
https://asymptote.sourceforge.io/gallery/Pythagoras.asy
https://asymptote.sourceforge.io/gallery/3Dgraphs/sqrtx01.html
https://asymptote.sourceforge.io/gallery/sqrtx01.asy

Chapter 4: Drawing commands 16

align align=NoAlign, string format=defaultformat, pen p=currentpen,
filltype filltype=dotfilltype);
void dot(picture pic=currentpicture, path[] g, pen p=currentpen,
filltype filltype=dotfilltype);
void dot(picture pic=currentpicture, Label L, pen p=currentpen,
filltype filltype=dotfilltype);

If the variable Label is given as the Label argument to the third routine, the format
argument will be used to format a string based on the dot location (here defaultformat is
"$%.4g$"). The fourth routine draws a dot at every point of a pair array z. One can also
draw a dot at every node of a path:
void dot(picture pic=currentpicture, Label[] L=new Labell[],

explicit path g, align align=RightSide, string format=defaultformat,
pen p=currentpen, filltype filltype=dotfilltype);

See [pathmarkers], page 108, and Section 8.9 [markers|, page 92, for more general meth-
ods for marking path nodes.

To draw a fixed-sized object (in PostScript coordinates) about the user coordinate
origin, use the routine
void draw(pair origin, picture pic=currentpicture, Label L="", path g,

align align=NoAlign, pen p=currentpen, arrowbar arrow=None,
arrowbar bar=None, margin margin=NoMargin, Label legend="",
marker marker=nomarker) ;

4.2 fill

void fill(picture pic=currentpicture, path g, pen p=currentpen);

Fill the interior region bounded by the cyclic path g on the picture pic, using the pen
P

There is also a convenient filldraw command, which fills the path and then draws in
the boundary. One can specify separate pens for each operation:

void filldraw(picture pic=currentpicture, path g, pen fillpen=currentpen,
pen drawpen=currentpen) ;

This fixed-size version of £ill allows one to fill an object described in PostScript
coordinates about the user coordinate origin:

void fill(pair origin, picture pic=currentpicture, path g, pen p=currentpen);
This is just a convenient abbreviation for the commands:
picture opic;
fill(opic,g,p);
add(pic,opic,origin);
The routine
void filloutside(picture pic=currentpicture, path g, pen p=currentpen);
fills the region exterior to the path g, out to the current boundary of picture pic.

Lattice gradient shading varying smoothly over a two-dimensional array of pens p, using
fill rule fillrule, can be produced with

void latticeshade(picture pic=currentpicture, path g, bool stroke=false,

Chapter 4: Drawing commands 17

pen fillrule=currentpen, pen[][] p)

If stroke=true, the region filled is the same as the region that would be drawn by
draw(pic,g,zerowinding); in this case the path g need not be cyclic. The pens in p
must belong to the same color space. One can use the functions rgb(pen) or cmyk(pen) to
promote pens to a higher color space, as illustrated in the example file latticeshading.asy.

Axial gradient shading varying smoothly from pena to penb in the direction of the line
segment a--b can be achieved with

void axialshade(picture pic=currentpicture, path g, bool stroke=false,
pen pena, pair a, bool extenda=true,
pen penb, pair b, bool extendb=true);

The boolean parameters extenda and extendb indicate whether the shading should extend
beyond the axis endpoints a and b. An example of axial shading is provided in the example
file axialshade.asy.

Radial gradient shading varying smoothly from pena on the circle with center a and
radius ra to penb on the circle with center b and radius rb is similar:

void radialshade(picture pic=currentpicture, path g, bool stroke=false,
pen pena, pair a, real ra, bool extenda=true,
pen penb, pair b, real rb, bool extendb=true);

The boolean parameters extenda and extendb indicate whether the shading should extend
beyond the radii a and b. Illustrations of radial shading are provided in the example files
shade.asy, ring.asy, and shadestroke.asy.

Gouraud shading using fill rule fillrule and the vertex colors in the pen array p on a
triangular lattice defined by the vertices z and edge flags edges is implemented with

void gouraudshade(picture pic=currentpicture, path g, bool stroke=false,
pen fillrule=currentpen, penl[] p, pair[] z,
int[] edges);

void gouraudshade(picture pic=currentpicture, path g, bool stroke=false,
pen fillrule=currentpen, pen[] p, int[] edges);

In the second form, the elements of z are taken to be successive nodes of path g. The pens
in p must belong to the same color space. Illustrations of Gouraud shading are provided
in the example file Gouraud.asy. The edge flags used in Gouraud shading are documented
here:

https://www.adobe.com/content/dam/acom/en/devnet/postscript/pdfs/
TN5600.SmoothShading.pdf
Tensor product shading using clipping path g, fill rule fillrule on patches bounded by
the n cyclic paths of length 4 in path array b, using the vertex colors specified in the n x 4
pen array p and internal control points in the n x 4 array z, is implemented with
void tensorshade(picture pic=currentpicture, path[] g, bool stroke=false,
pen fillrule=currentpen, pen[][] p, path[] b=g,
pair[]1[] z=new pair([][]);
If the array z is empty, Coons shading, in which the color control points are calculated
automatically, is used. The pens in p must belong to the same color space. A simpler
interface for the case of a single patch (n = 1) is also available:

void tensorshade(picture pic=currentpicture, path g, bool stroke=false,

https://asymptote.sourceforge.io/gallery/latticeshading.svg
https://asymptote.sourceforge.io/gallery/latticeshading.asy
https://asymptote.sourceforge.io/gallery/axialshade.svg
https://asymptote.sourceforge.io/gallery/axialshade.asy
https://asymptote.sourceforge.io/gallery/shade.svg
https://asymptote.sourceforge.io/gallery/shade.asy
https://asymptote.sourceforge.io/gallery/PDFs/ring.pdf
https://asymptote.sourceforge.io/gallery/PDFs/ring.asy
https://asymptote.sourceforge.io/gallery/PDFs/shadestroke.pdf
https://asymptote.sourceforge.io/gallery/PDFs/shadestroke.asy
https://asymptote.sourceforge.io/gallery/PDFs/Gouraud.pdf
https://asymptote.sourceforge.io/gallery/PDFs/Gouraud.asy
https://www.adobe.com/content/dam/acom/en/devnet/postscript/pdfs/TN5600.SmoothShading.pdf
https://www.adobe.com/content/dam/acom/en/devnet/postscript/pdfs/TN5600.SmoothShading.pdf

Chapter 4: Drawing commands 18

pen fillrule=currentpen, pen[] p, path b=g,
pair[] z=new pair[l);
One can also smoothly shade the regions between consecutive paths of a sequence using
a given array of pens:

void draw(picture pic=currentpicture, pen fillrule=currentpen, pathl[] g,
penl] p);

Illustrations of tensor product and Coons shading are provided in the example files

tensor.asy, Coons.asy, BezierPatch.asy, and rainbow.asy.

More general shading possibilities are available using TEX engines that produce PDF
output (see [texengines|, page 170): the routine

void functionshade(picture pic=currentpicture, path[] g, bool stroke=false,
pen fillrule=currentpen, string shader);

shades on picture pic the interior of path g according to fill rule fillrule using the
PostScript calculator routine specified by the string shader; this routine takes 2 argu-
ments, each in [0,1], and returns colors(fillrule).length color components. Function
shading is illustrated in the example functionshading.asy.

The following routine uses evenodd clipping together with the operator to unfill a
region:

void unfill(picture pic=currentpicture, path g);

4.3 clip

void clip(picture pic=currentpicture, path g, stroke=false,
pen fillrule=currentpen) ;

Clip the current contents of picture pic to the region bounded by the path g, using fill
rule fillrule (see [fillrule], page 42). If stroke=true, the clipped portion is the same as
the region that would be drawn with draw(pic,g,zerowinding); in this case the path g
need not be cyclic. While clipping has no notion of depth (it transcends layers and even
pages), one can localize clipping to a temporary picture, which can then be added to pic.
For an illustration of picture clipping, see the first example in Chapter 7 [LaTeX usage],
page 85.

4.4 label

void label(picture pic=currentpicture, Label L, pair position,
align align=NoAlign, pen p=currentpen, filltype filltype=NoFill)
Draw Label L on picture pic using pen p. If align is NoAlign, the label will be centered
at user coordinate position; otherwise it will be aligned in the direction of align and
displaced from position by the PostScript offset align*labelmargin(p).

The constant Align can be used to align the bottom-left corner of the label at position.
The Label L can either be a string or the structure obtained by calling one of the functions

Label Label(string s="", pair position, align align=NoAlign,

pen p=nullpen, embed embed=Rotate, filltype filltype=NoFill);
Label Label(string s="", align align=NoAlign,

pen p=nullpen, embed embed=Rotate, filltype filltype=NoFill);

https://asymptote.sourceforge.io/gallery/PDFs/tensor.pdf
https://asymptote.sourceforge.io/gallery/PDFs/tensor.asy
https://asymptote.sourceforge.io/gallery/PDFs/Coons.pdf
https://asymptote.sourceforge.io/gallery/PDFs/Coons.asy
https://asymptote.sourceforge.io/gallery/3Dwebgl/BezierPatch.html
https://asymptote.sourceforge.io/gallery/3Dwebgl/BezierPatch.asy
https://asymptote.sourceforge.io/gallery/PDFs/rainbow.pdf
https://asymptote.sourceforge.io/gallery/PDFs/rainbow.asy
https://asymptote.sourceforge.io/gallery/PDFs/functionshading.pdf
https://asymptote.sourceforge.io/gallery/PDFs/functionshading.asy

Chapter 4: Drawing commands 19

Label Label(Label L, pair position, align align=NoAlign,

pen p=nullpen, embed embed=L.embed, filltype filltype=NoFill);
Label Label(Label L, align align=NoAlign,

pen p=nullpen, embed embed=L.embed, filltype filltype=NoFill);

The text of a Label can be scaled, slanted, rotated, or shifted by multiplying it on
the left by an affine transform (see Section 6.4 [Transforms|, page 46). For example,
rotate(45)*xscale(2)*L first scales L in the z direction and then rotates it counter-
clockwise by 45 degrees. The final position of a Label can also be shifted by a PostScript
coordinate translation: shift(10,0)*L. An explicit pen specified within the Label over-
rides other pen arguments. The embed argument determines how the Label should transform
with the embedding picture:

Shift only shift with embedding picture;
Rotate only shift and rotate with embedding picture (default);

Rotate(pair z)
rotate with (picture-transformed) vector z.

Slant only shift, rotate, slant, and reflect with embedding picture;
Scale shift, rotate, slant, reflect, and scale with embedding picture.

To add a label to a path, use

void label(picture pic=currentpicture, Label L, path g, align align=NoAlign,
pen p=currentpen, filltype filltype=NoFill);

By default the label will be positioned at the midpoint of the path. An alternative
label position (in the sense of point(path p, real t)) may be specified as a real value
for position in constructing the Label. The position Relative(real) specifies a location
relative to the total arclength of the path. These convenient abbreviations are predefined:

position BeginPoint=Relative(0);
position MidPoint=Relative(0.5);
position EndPoint=Relative(l);

Path labels are aligned in the direction align, which may be specified as an absolute
compass direction (pair) or a direction Relative(pair) measured relative to a north axis
in the local direction of the path. For convenience LeftSide, Center, and RightSide are
defined as Relative (W), Relative((0,0)), and Relative(E), respectively. Multiplying
LeftSide and RightSide on the left by a real scaling factor will move the label further
away from or closer to the path.

A label with a fixed-size arrow of length arrowlength pointing to b from direction dir
can be produced with the routine

void arrow(picture pic=currentpicture, Label L="", pair b, pair dir,
real length=arrowlength, align align=NoAlign,
pen p=currentpen, arrowbar arrow=Arrow, margin margin=EndMargin) ;
If no alignment is specified (either in the Label or as an explicit argument), the optional
Label will be aligned in the direction dir, using margin margin.
The function string graphic(string name, string options="") returns a string that
can be used to include an encapsulated PostScript (EPS) file. Here, name is the name

Chapter 4: Drawing commands 20

of the file to include and options is a string containing a comma-separated list of op-
tional bounding box (bb=11x 11y urx ury), width (width=value), height (height=value),
rotation (angle=value), scaling (scale=factor), clipping (clip=bool), and draft mode
(draft=bool) parameters. The layer () function can be used to force future objects to be
drawn on top of the included image:

label(graphic("file.eps","width=1cm"), (0,0) ,NE);
layer();

The string baseline(string s, string template="\strut") function can be used to
enlarge the bounding box of labels to match a given template, so that their baselines will
be typeset on a horizontal line. See Pythagoras.asy for an example.

One can prevent labels from overwriting one another with the overwrite pen attribute
(see [overwrite], page 46).

The structure object defined in plain_Label.asy allows Labels and frames to be
treated in a uniform manner. A group of objects may be packed together into single frame
with the routine

frame pack(pair align=2S ... object inset[]);

To draw or fill a box (or ellipse or other path) around a Label and return the bounding
object, use one of the routines

object draw(picture pic=currentpicture, Label L, envelope e,
real xmargin=0, real ymargin=xmargin, pen p=currentpen,
filltype filltype=NoFill, bool above=true);

object draw(picture pic=currentpicture, Label L, envelope e, pair position,
real xmargin=0, real ymargin=xmargin, pen p=currentpen,
filltype filltype=NoFill, bool above=true);

Here envelope is a boundary-drawing routine such as box, roundbox, or ellipse defined
in plain_boxes.asy (see [envelope|, page 48).

The function path[] texpath(Label L) returns the path array that TEX would fill to
draw the Label L.

The string minipage(string s, width=100pt) function can be used to format string
s into a paragraph of width width. This example uses minipage, clip, and graphic to
produce a CD label:

https://asymptote.sourceforge.io/gallery/Pythagoras.svg
https://asymptote.sourceforge.io/gallery/Pythagoras.asy

Chapter 4: Drawing commands 21

size(11.7cm,11.7cm);
asy(nativeformat(),"logo");

fill(unitcircle”"(scale(2/11.7)*unitcircle),

evenodd+rgb(124/255,205/255,124/255)) ;
label(scale(1l.1)*minipage(

"\centering\scriptsize \textbf{\LARGE {\tt Asymptote}\\

\smallskip
\small The Vector Graphics Language}\\
\smallskip
\textsc{Andy Hammerlindl, John Bowman, and Tom Prince}
https://asymptote.sourceforge.io\\
" 8cm), (0,0.6));
label(graphic("logo","height=7cm"), (0,-0.22));
clip(unitcircle”"(scale(2/11.7)*unitcircle),evenodd) ;

22

5 Bezier curves

Each interior node of a cubic spline may be given a direction prefix or suffix {dir}: the
direction of the pair dir specifies the direction of the incoming or outgoing tangent, respec-
tively, to the curve at that node. Exterior nodes may be given direction specifiers only on
their interior side.

A cubic spline between the node zy, with postcontrol point ¢y, and the node z;, with
precontrol point ¢, is computed as the Bezier curve

(1 —1)320 + 3t(1 — t)%co + 3t*(1 — t)ey + 32, 0<t < 1.

As illustrated in the diagram below, the third-order midpoint (ms) constructed from
two endpoints zg and z; and two control points ¢y and ¢y, is the point corresponding to
t = 1/2 on the Bezier curve formed by the quadruple (zg, ¢o, ¢1, z1). This allows one to
recursively construct the desired curve, by using the newly extracted third-order midpoint
as an endpoint and the respective second- and first-order midpoints as control points:

Here mg, my; and ms, are the first-order midpoints, ms; and my4 are the second-order
midpoints, and ms is the third-order midpoint. The curve is then constructed by recursively
applying the algorithm to (zo, mo, ms, ms) and (ms, my, ma, 21).

In fact, an analogous property holds for points located at any fraction ¢ in [0, 1] of each
segment, not just for midpoints (¢t = 1/2).

The Bezier curve constructed in this manner has the following properties:

e It is entirely contained in the convex hull of the given four points.
e [t starts heading from the first endpoint to the first control point and finishes heading
from the second control point to the second endpoint.

The user can specify explicit control points between two nodes like this:
draw((0,0)..controls (0,100) and (100,100)..(100,0));

However, it is usually more convenient to just use the .. operator, which tells Asymptote
to choose its own control points using the algorithms described in Donald Knuth’s mono-
graph, The MetaFontbook, Chapter 14. The user can still customize the guide (or path)
by specifying direction, tension, and curl values.

Chapter 5: Bezier curves 23

The higher the tension, the straighter the curve is, and the more it approximates a
straight line.

One can change the spline tension from its default value of 1 to any real value greater
than or equal to 0.75 (cf. John D. Hobby, Discrete and Computational Geometry 1, 1986):

draw((100,0)..tension 2 ..(100,100)..(0,100));
draw((100,0)..tension 3 and 2 ..(100,100)..(0,100));
draw((100,0)..tension atleast 2 ..(100,100)..(0,100));
In these examples there is a space between 2 and ... This is needed as 2. is interpreted
as a numerical constant.

The curl parameter specifies the curvature at the endpoints of a path (0 means straight;
the default value of 1 means approximately circular):

draw((100,0){curl 0}..(100,100)..{curl 0}(0,100));

The MetaPost ... path connector, which requests, when possible, an inflection-free
curve confined to a triangle defined by the endpoints and directions, is implemented in
Asymptote as the convenient abbreviation : : for ..tension atleast 1 .. (the ellipsis ...
is used in Asymptote to indicate a variable number of arguments; see Section 6.11.3 [Rest
arguments|, page 68). For example, compare

draw((0,0){up?}..(100,25){right}. . (200,0){down});

with

draw((0,0){up}::(100,25){right}:: (200,0){downl});

o Y

The --- connector is an abbreviation for ..tension atleast infinity.. and the &
connector concatenates two paths, after first stripping off the last node of the first path
(which normally should coincide with the first node of the second path).

24

6 Programming

Here is a short introductory example to the Asymptote programming language that high-
lights the similarity of its control structures with those of C, C++, and Java:

// This is a comment.

// Declaration: Declare x to be a real variable;
real x;

// Assignment: Assign the real variable x the value 1.
x=1.0;

// Conditional: Test if x equals 1 or not.
if(x == 1.0) {

write("x equals 1.0");
} else {

write("x is not equal to 1.0");

¥

// Loop: iterate 10 times
for(int i=0; i < 10; ++i) {
write(i);

¥

Asymptote supports while, do, break, and continue statements just as in C/C++. It
also supports the Java-style shorthand for iterating over all elements of an array:

// Iterate over an array

int[] array={1,1,2,3,5};

for(int k : array) {
write(k);

}

In addition, it supports many features beyond the ones found in those languages.

6.1 Data types
Asymptote supports the following data types (in addition to user-defined types):

void The void type is used only by functions that take or return no arguments.

bool a boolean type that can only take on the values true or false. For example:
bool b=true;

defines a boolean variable b and initializes it to the value true. If no initializer
is given:
bool b;

the value false is assumed.

Chapter 6:

bool3

int

real

pair

Programming 25

an extended boolean type that can take on the values true, default, or false.
A bool3 type can be cast to or from a bool. The default initializer for bool3 is
default.

an integer type; if no initializer is given, the implicit value 0 is assumed. The
minimum allowed value of an integer is intMin and the maximum value is
intMax.

a real number; this should be set to the highest-precision native floating-point
type on the architecture. The implicit initializer for reals is 0.0. Real numbers
have precision realEpsilon, with realDigits significant digits. The smallest
positive real number is realMin and the largest positive real number is realMax.
The variables inf and nan, along with the function bool isnan(real x) are
useful when floating-point exceptions are masked with the -mask command-line
option (the default in interactive mode).

complex number, that is, an ordered pair of real components (x,y). The real
and imaginary parts of a pair z can read as z.x and z.y. We say that x and y
are virtual members of the data element pair; they cannot be directly modified,
however. The implicit initializer for pairs is (0.0,0.0).

There are a number of ways to take the complex conjugate of a pair:

pair z=(3,4);
z=(z.%,-2.y);
z=z.x-I*z.y;
z=conj(z);

Here I is the pair (0,1). A number of built-in functions are defined for pairs:

pair conj(pair z)
returns the conjugate of z;

real length(pair z)
returns the complex modulus |z| of its argument z. For example,

pair z=(3,4);
length(z);

returns the result 5. A synonym for length(pair) is abs(pair).
The function abs2(pair z) returns |z|?;

real angle(pair z, bool warn=true)
returns the angle of z in radians in the interval [-pi,pi] or 0 if warn
is false and z=(0,0) (rather than producing an error);

real degrees(pair z, bool warn=true)
returns the angle of z in degrees in the interval [0,360) or 0 if warn
is false and z=(0,0) (rather than producing an error);

pair unit(pair z)
returns a unit vector in the direction of the pair z;

pair expi(real angle)
returns a unit vector in the direction angle measured in radians;

Chapter 6: Programming 26

triple

pair dir(real degrees)
returns a unit vector in the direction degrees measured in degrees;

real xpart(pair z)
returns z.x;

real ypart(pair z)
returns z.y;

pair realmult(pair z, pair w)
returns the element-by-element product (z.x*w.x,z.y*w.y);

real dot(explicit pair z, explicit pair w)
returns the dot product z.x*w.x+z.y*w.y;

real cross(explicit pair z, explicit pair w)
returns the 2D scalar product z.x*w.y-z.y*w.x;

real orient(pair a, pair b, pair c);

returns a positive (negative) value if a--b--c--cycle is oriented
counterclockwise (clockwise) or zero if all three points are colinear.
Equivalently, a positive (negative) value is returned if c lies to the
left (right) of the line through a and b or zero if c lies on this line.
The value returned can be expressed in terms of the 2D scalar cross
product as cross(a-c,b-c), which is the determinant

la.x a.y 1|

Ilb.x b.y 1|

lc.x c.y 1|

real incircle(pair a, pair b, pair c, pair d);

returns a positive (negative) value if d lies inside (outside) the circle
passing through the counterclockwise-oriented points a,b, ¢ or zero
if d lies on the this circle. The value returned is the determinant
la.x a.y a.x"2+a.y"2 1|

[b.x b.y b.x"2+b.y"2 1|

l[c.x c.y c.x"2+c.y"2 1|

ld.x d.y d.x"2+d.y"2 1|

pair minbound(pair z, pair w)
returns (min(z.x,w.x) ,min(z.y,w.y));

pair maxbound(pair z, pair w)
returns (max(z.x,w.x) ,max(z.y,w.y)).

an ordered triple of real components (x,y,z) used for three-dimensional draw-
ings. The respective components of a triple v can read as v.x, v.y, and v.z.
The implicit initializer for triples is (0.0,0.0,0.0).

Here are the built-in functions for triples:

real length(triple v)
returns the length |v| of its argument v. A synonym for

length(triple) is abs(triple). The function abs2(triple v)
returns |v|?;

Chapter 6: Programming 27

string

real polar(triple v, bool warn=true)
returns the colatitude of v measured from the z axis in radians or
0 if warn is false and v=0 (rather than producing an error);

real azimuth(triple v, bool warn=true)
returns the longitude of v measured from the x axis in radians or 0
if warn is false and v.x=v.y=0 (rather than producing an error);

real colatitude(triple v, bool warn=true)
returns the colatitude of v measured from the z axis in degrees or
0 if warn is false and v=0 (rather than producing an error);

real latitude(triple v, bool warn=true)
returns the latitude of v measured from the xy plane in degrees or
0 if warn is false and v=0 (rather than producing an error);

real longitude(triple v, bool warn=true)
returns the longitude of v measured from the x axis in degrees or 0
if warn is false and v.x=v.y=0 (rather than producing an error);

triple unit(triple v)
returns a unit triple in the direction of the triple v;

triple expi(real polar, real azimuth)
returns a unit triple in the direction (polar,azimuth) measured
in radians;

triple dir(real colatitude, real longitude)
returns a unit triple in the direction (colatitude,longitude)
measured in degrees;

real xpart(triple v)
returns v.x;

real ypart(triple v)
returns v.y;

real zpart(triple v)
returns v.z;

real dot(triple u, triple v)
returns the dot product u.x*v.x+u.y*v.y+u.z*v.z;

triple cross(triple u, triple v)
returns the cross product

(U.y*V.2-U.2*%V.y,U. Z¥V.X~U.X*V.2Z,U.X*XV.Y-V.X*U.V);

triple minbound(triple u, triple v)
returns (min(u.x,v.x),min(u.y,v.y) ,min(u.z,v.z));

triple maxbound(triple u, triple v)
returns (max(u.x,v.x),max(u.y,v.y),max(u.z,v.z)).

a character string, implemented using the STL string class.

Chapter 6: Programming 28

Strings delimited by double quotes (") are subject to the following mappings
to allow the use of double quotes in TEX (e.g. for using the babel package, see
Section 8.21 [babel], page 97):

e \" mapsto "

e \\ maps to \\
Strings delimited by single quotes (') have the same mappings as character
strings in ANSI C:

e \'maps to’

e \" maps to "

e \? maps to ?

e \\ maps to backslash

e \a maps to alert

e \b maps to backspace

e \f maps to form feed

e \n maps to newline

e \r maps to carriage return

e \t maps to tab

e \v maps to vertical tab

e \0-\377 map to corresponding octal byte

e \x0-\xFF map to corresponding hexadecimal byte
The implicit initializer for strings is the empty string "". Strings may be con-

catenated with the + operator. In the following string functions, position 0
denotes the start of the string:

int length(string s)
returns the length of the string s;

int find(string s, string t, int pos=0)
returns the position of the first occurrence of string t in string s at
or after position pos, or -1 if t is not a substring of s;

int rfind(string s, string t, int pos=-1)
returns the position of the last occurrence of string t in string s at
or before position pos (if pos=-1, at the end of the string s), or -1
if t is not a substring of s;

string insert(string s, int pos, string t)
returns the string formed by inserting string t at position pos in s;

string erase(string s, int pos, int n)
returns the string formed by erasing the string of length n (if n=-1,
to the end of the string s) at position pos in s;

string substr(string s, int pos, int n=-1)
returns the substring of s starting at position pos and of length n
(if n=-1, until the end of the string s);

Chapter 6: Programming 29

string reverse(string s)
returns the string formed by reversing string s;

string replace(string s, string before, string after)
returns a string with all occurrences of the string before in the
string s changed to the string after;

string replace(string s, string[][] table)
returns a string constructed by translating in string s all
occurrences of the string before in an array table of string pairs
{before,after} to the corresponding string after;

string[] split(string s, string delimiter="")
returns an array of strings obtained by splitting s into substrings
delimited by delimiter (an empty delimiter signifies a space, but
with duplicate delimiters discarded);

string[] array(string s)
returns an array of strings obtained by splitting s into individ-
ual characters. The inverse operation is provided by operator
+(...string(] a).

string format(string s, int n, string locale="")
returns a string containing n formatted according to the C-style
format string s using locale locale (or the current locale if an
empty string is specified), following the behaviour of the C function
fprintf), except that only one data field is allowed.

string format (string s=defaultformat, bool forcemath=false, string

s=defaultseparator, real x, string locale="")
returns a string containing x formatted according to the C-style
format string s using locale locale (or the current locale if an
empty string is specified), following the behaviour of the C function
fprintf), except that only one data field is allowed, trailing zeros
are removed by default (unless # is specified), and if s specifies
math mode or forcemath=true, TEX is used to typeset scientific
notation using the defaultseparator="\!\times\!";;

int hex(string s);
casts a hexadecimal string s to an integer;

int ascii(string s);
returns the ASCII code for the first character of string s;

string string(real x, int digits=realDigits)
casts x to a string using precision digits and the C locale;

string locale(string s="")
sets the locale to the given string, if nonempty, and returns the
current locale;

string time(string format="%a %b %d %T %Z %Y")
returns the current time formatted by the ANSI C routine strftime
according to the string format using the current locale. Thus

Chapter 6: Programming 30

time();
time("%a %b %d %KH:Y%M:%S %hZ %Y");

are equivalent ways of returning the current time in the default
format used by the UNIX date command;

int seconds(string t="", string format="")

returns the time measured in seconds after the Epoch (Thu Jan
01 00:00:00 UTC 1970) as determined by the ANSI C routine
strptime according to the string format using the current locale,
or the current time if t is the empty string. Note that the "%z"
extension to the POSIX strptime specification is ignored by the
current GNU C Library. If an error occurs, the value -1 is returned.
Here are some examples:

seconds("Mar 02 11:12:36 AM PST 2007","%b %d %r PST %Y");
seconds (time ("%b %d %r %z WY"),"%b %d %r %z %Y");

seconds (time("%b %d %r %Z %Y"),"%b %d %r "+time("%Z")+" %Y");
1+(seconds()-seconds("Jan 1","%b %d"))/(24%60%60) ;

The last example returns today’s ordinal date, measured from the
beginning of the year.

string time(int seconds, string format="%a %b %d %T %Z %Y")
returns the time corresponding to seconds seconds after the Epoch
(Thu Jan 01 00:00:00 UTC 1970) formatted by the ANSI C routine
strftime according to the string format using the current locale.
For example, to return the date corresponding to 24 hours ago:

time (seconds () -24*60%60) ;

int system(string s)
int system(stringl[] s)
if the setting safe is false, call the arbitrary system command s;

void asy(string format, bool overwrite=false ... stringl[] s)
conditionally process each file name in array s in a new envi-
ronment, using format format, overwriting the output file only if
overwrite is true;

void abort(string s="")
aborts execution (with a non-zero return code in batch mode); if
string s is nonempty, a diagnostic message constructed from the
source file, line number, and s is printed;

void assert(bool b, string s="")
aborts execution with an error message constructed from s if
b=false;

void exit ()
exits (with a zero error return code in batch mode);

void sleep(int seconds)
pauses for the given number of seconds;

Chapter 6: Programming 31

void usleep(int microseconds)
pauses for the given number of microseconds;

void beep()
produces a beep on the console;

As in C/C++, complicated types may be abbreviated with typedef (see the example in
Section 6.11 [Functions|, page 65).

6.2 Paths and guides

path

a cubic spline resolved into a fixed path. The implicit initializer for paths is
nullpath.

For example, the routine circle(pair c, real r), which returns a Bezier curve
approximating a circle of radius r centered on c, is based on unitcircle (see
[unitcircle], page 12):

path circle(pair c, real r)

{

return shift(c)*scale(r)*unitcircle;

}

If high accuracy is needed, a true circle may be produced with the routine
Circle defined in the module graph:

import graph;

path Circle(pair c, real r, int n=nCircle);

A circular arc consistent with circle centered on ¢ with radius r from anglel
to angle?2 degrees, drawing counterclockwise if angle2 >= anglel, can be con-
structed with

path arc(pair c, real r, real anglel, real angle2);

One may also specify the direction explicitly:

path arc(pair c, real r, real anglel, real angle2, bool direction);

Here the direction can be specified as CCW (counter-clockwise) or CW (clock-
wise). For convenience, an arc centered at ¢ from pair z1 to z2 (assuming
|z2-c|=|z1-c|) in the may also be constructed with
path arc(pair c, explicit pair zl, explicit pair z2,
bool direction=CCW)
If high accuracy is needed, true arcs may be produced with routines in the
module graph that produce Bezier curves with n control points:
import graph;
path Arc(pair c, real r, real anglel, real angle2, bool direction,
int n=nCircle);
path Arc(pair c, real r, real anglel, real angle2, int n=nCircle);
path Arc(pair c, explicit pair zl, explicit pair z2,
bool direction=CCW, int n=nCircle);
An ellipse can be drawn with the routine

path ellipse(pair c, real a, real b)

Chapter 6: Programming 49

To make the user coordinates of picture pic represent multiples of x units in
the x direction and y units in the y direction, use
void unitsize(picture pic=currentpicture, real x, real y=x);
When nonzero, these x and y values override the corresponding size parameters
of picture pic.
The routine
void size(picture pic=currentpicture, real xsize, real ysize,
pair min, pair max);
forces the final picture scaling to map the user coordinates box (min,max) to a
region of width xsize and height ysize (when these parameters are nonzero).
Alternatively, calling the routine
transform fixedscaling(picture pic=currentpicture, pair min,
pair max, pen p=nullpen, bool warn=false);

will cause picture pic to use a fixed scaling to map user coordinates in
box(min,max) to the (already specified) picture size, taking account of the
width of pen p. A warning will be issued if the final picture exceeds the
specified size.
A picture pic can be fit to a frame and output to a file prefix.format using
image format format by calling the shipout function:
void shipout(string prefix=defaultfilename, picture pic=currentpicture,

orientation orientation=orientation,

string format="", bool wait=false, bool view=true,

string options="", string script="",

light light=currentlight, projection P=currentprojection)
The default output format, PostScript, may be changed with the -f or -tex
command-line options. The options, script, and projection parameters are
only relevant for 3D pictures. If defaultfilename is an empty string, the prefix
outprefix () will be used.
A shipout() command is added implicitly at file exit if no previous shipout
commands have been executed.
The default page orientation is Portrait; this may be modified by changing the
variable orientation. To output in landscape mode, simply set the variable
orientation=Landscape or issue the command
shipout (Landscape) ;
To rotate the page by —90 degrees, use the orientation Seascape.
The orientation UpsideDown rotates the page by 180 degrees.
A picture pic can be explicitly fit to a frame by calling
frame pic.fit(real xsize=pic.xsize, real ysize=pic.ysize,

bool keepAspect=pic.keepAspect);

The default size and aspect ratio settings are those given to the size command
(which default to 0, 0, and true, respectively).

The transformation that would currently be used to fit a picture pic to a frame
is returned by the member function pic.calculateTransform().

Chapter 6: Programming 50

In certain cases (e.g. 2D graphs) where only an approximate size estimate for
pic is available, the picture fitting routine

frame pic.scale(real xsize=this.xsize, real ysize=this.ysize,
bool keepAspect=this.keepAspect);

(which scales the resulting frame, including labels and fixed-size objects) will
enforce perfect compliance with the requested size specification, but should not
normally be required.

To draw a bounding box with margins around a picture, fit the picture to a
frame using the function

frame bbox(picture pic=currentpicture, real xmargin=0,
real ymargin=xmargin, pen p=currentpen,
filltype filltype=NoFill);

Here £illtype specifies one of the following fill types:
FillDraw Fill the interior and draw the boundary.

FillDraw(real xmargin=0, real ymargin=xmargin, pen fillpen=nullpen,
pen drawpen=nullpen)

If fillpen is nullpen, fill with the drawing pen; otherwise fill with
pen fillpen. If drawpen is nullpen, draw the boundary with
fillpen; otherwise with drawpen. An optional margin of xmargin
and ymargin can be specified.

Fill Fill the interior.

Fill(real xmargin=0, real ymargin=xmargin, pen p=nullpen)
If p is nullpen, fill with the drawing pen; otherwise fill with pen p.
An optional margin of xmargin and ymargin can be specified.

NoFill Do not fill.
Draw Draw only the boundary.

Draw(real xmargin=0, real ymargin=xmargin, pen p=nullpen)
If p is nullpen, draw the boundary with the drawing pen; otherwise
draw with pen p. An optional margin of xmargin and ymargin can
be specified.

UnFill Clip the region.

UnFill(real xmargin=0, real ymargin=xmargin)
Clip the region and surrounding margins xmargin and ymargin.

RadialShade (pen penc, pen penr)
Fill varying radially from penc at the center of the bounding box
to penr at the edge.

RadialShadeDraw(real xmargin=0, real ymargin=xmargin, pen penc,
pen penr, pen drawpen=nullpen) Fill with RadialShade and draw
the boundary.

Chapter 6: Programming 51

For example, to draw a bounding box around a picture with a 0.25 cm margin
and output the resulting frame, use the command:

shipout (bbox(0.25cm)) ;

A picture may be fit to a frame with the background color pen p, using the
function bbox (p,Fill).

To pad a picture to a precise size in both directions, fit the picture to a frame
using the function

frame pad(picture pic=currentpicture, real xsize=pic.xsize,
real ysize=pic.ysize, filltype filltype=NoFill);
The functions
pair min(picture pic, user=false);
pair max(picture pic, user=false);
pair size(picture pic, user=false);
calculate the bounds that picture pic would have if it were currently fit to a
frame using its default size specification. If user is false the returned value is
in PostScript coordinates, otherwise it is in user coordinates.

The function

pair point(picture pic=currentpicture, pair dir, bool user=true);
is a convenient way of determining the point on the bounding box of pic in the
direction dir relative to its center, ignoring the contributions from fixed-size

objects (such as labels and arrowheads). If user is true the returned value is
in user coordinates, otherwise it is in PostScript coordinates.

The function
pair truepoint(picture pic=currentpicture, pair dir, bool user=true);

is identical to point, except that it also accounts for fixed-size objects, using
the scaling transform that picture pic would have if currently fit to a frame
using its default size specification. If user is true the returned value is in user
coordinates, otherwise it is in PostScript coordinates.

Sometimes it is useful to draw objects on separate pictures and add one picture
to another using the add function:

void add(picture src, bool group=true,
filltype filltype=NoFill, bool above=true);
void add(picture dest, picture src, bool group=true,
filltype filltype=NoFill, bool above=true);

The first example adds src to currentpicture; the second one adds src to
dest. The group option specifies whether or not the graphical user interface
should treat all of the elements of src as a single entity (see Chapter 11 [GUI],
page 174), £illtype requests optional background filling or clipping, and above
specifies whether to add src above or below existing objects.

There are also routines to add a picture or frame src specified in postscript
coordinates to another picture dest (or currentpicture) about the user coor-
dinate position:

void add(picture src, pair position, bool group=true,

Chapter 6: Programming 52

filltype filltype=NoFill, bool above=true);
void add(picture dest, picture src, pair position,

bool group=true, filltype filltype=NoFill, bool above=true);
void add(picture dest=currentpicture, frame src, pair position=0,

bool group=true, filltype filltype=NoFill, bool above=true);
void add(picture dest=currentpicture, frame src, pair position,

pair align, bool group=true, filltype filltype=NoFill,

bool above=true) ;

The optional align argument in the last form specifies a direction to use for
aligning the frame, in a manner analogous to the align argument of label (see
Section 4.4 [label], page 18). However, one key difference is that when align
is not specified, labels are centered, whereas frames and pictures are aligned so
that their origin is at position. Illustrations of frame alignment can be found
in the examples [errorbars], page 109, and [image], page 129. If you want to
align three or more subpictures, group them two at a time:

picture picl;

real size=50;

size(picl,size);
fill(pic1,(0,0)--(50,100)--(100,0)--cycle,red);

picture pic2;
size(pic2,size);
fill(pic2,unitcircle,green);

picture pic3;
size(pic3,size);
i1l (pic3,unitsquare,blue);

picture pic;
add (pic,picl.fit (), (0,0),N);
add(pic,pic2.fit(),(0,0),108);

add(pic.fit(), (0,0),N);
add(pic3.£fit(), (0,0),108);

Chapter 6: Programming 53

Alternatively, one can use attach to automatically increase the size of picture
dest to accommodate adding a frame src about the user coordinate position:
void attach(picture dest=currentpicture, frame src,
pair position=0, bool group=true,
filltype filltype=NoFill, bool above=true);
void attach(picture dest=currentpicture, frame src,
pair position, pair align, bool group=true,
filltype filltype=NoFill, bool above=true);
To erase the contents of a picture (but not the size specification), use the
function
void erase(picture pic=currentpicture);
To save a snapshot of currentpicture, currentpen, and currentprojection,
use the function save().
To restore a snapshot of currentpicture, currentpen, and
currentprojection, use the function restore().
Many further examples of picture and frame operations are provided in the base
module plain.
It is possible to insert verbatim PostScript commands in a picture with one
of the routines
void postscript(picture pic=currentpicture, string s);
void postscript(picture pic=currentpicture, string s, pair min,
pair max)
Here min and max can be used to specify explicit bounds associated with the
resulting PostScript code.
Verbatim TEX commands can be inserted in the intermediate LaTeX output file
with one of the functions
void tex(picture pic=currentpicture, string s);
void tex(picture pic=currentpicture, string s, pair min, pair max)
Here min and max can be used to specify explicit bounds associated with the
resulting TEX code.
To issue a global TEX command (such as a TEX macro definition) in the TEX
preamble (valid for the remainder of the top-level module) use:

Chapter 6: Programming 54

void texpreamble(string s);

The TEX environment can be reset to its initial state, clearing all macro defini-
tions, with the function

void texreset();

The routine

void usepackage(string s, string options="");

provides a convenient abbreviation for

texpreamble ("\usepackage ["+options+"]{"+s+"}");

that can be used for importing LaTeX packages.

6.6 Files

Asymptote can read and write text files (including comma-separated value) files and
portable XDR (External Data Representation) binary files.

An input file can be opened with
input (string name="", bool check=true, string comment="#", string mode="");
reading is then done by assignment:

file fin=input("test.txt");
real a=fin;

If the optional boolean argument check is false, no check will be made that the file
exists. If the file does not exist or is not readable, the function bool error(file) will
return true. The first character of the string comment specifies a comment character. If
this character is encountered in a data file, the remainder of the line is ignored. When
reading strings, a comment character followed immediately by another comment character
is treated as a single literal comment character. If Asymptote is compiled with support for
libcurl, name can be a URL.

Unless the -noglobalread command-line option is specified, one can change the current
working directory for read operations to the contents of the string s with the function
string cd(string s), which returns the new working directory. If string s is empty, the
path is reset to the value it had at program startup.

When reading pairs, the enclosing parenthesis are optional. Strings are also read by
assignment, by reading characters up to but not including a newline. In addition, Asymptote
provides the function string getc(file) to read the next character (treating the comment
character as an ordinary character) and return it as a string.

A file named name can be open for output with

file output(string name="", bool update=false, string comment="#", string mode="");

If update=false, any existing data in the file will be erased and only write operations
can be used on the file. If update=true, any existing data will be preserved, the position
will be set to the end-of-file, and both reading and writing operations will be enabled. For
security reasons, writing to files in directories other than the current directory is allowed
only if the -globalwrite (or -nosafe) command-line option is specified. Reading from files
in other directories is allowed unless the -noglobalread command-line option is specified.

Chapter 6: Programming 55

The function string mktemp (string s) may be used to create and return the name of
a unique temporary file in the current directory based on the string s.

There are two special files: stdin, which reads from the keyboard, and stdout, which
writes to the terminal. The implicit initializer for files is null.

Data of a built-in type T can be written to an output file by calling one of the functions

write(string s="", T x, suffix suffix=endl ... T[]);
write(file file, string s="", T x, suffix suffix=none ... T[]);
write(file file=stdout, string s="", explicit T[] x ... T[[);

write(file file=stdout, T[][]);
write(file file=stdout, T[I[1[]1);
write(suffix suffix=endl);

write(file file, suffix suffix=none);

If file is not specified, stdout is used and terminated by default with a newline. If
specified, the optional identifying string s is written before the data x. An arbitrary number
of data values may be listed when writing scalars or one-dimensional arrays. The suffix
may be one of the following: none (do nothing), flush (output buffered data), endl (termi-
nate with a newline and flush), newl (terminate with a newline), DOSendl (terminate with
a DOS newline and flush), DOSnewl (terminate with a DOS newline), tab (terminate with a
tab), or comma (terminate with a comma). Here are some simple examples of data output:

file fout=output("test.txt");

write(fout,1); // Writes "1"
write(fout); // Writes a new line
write(fout,"List: ",1,2,3); // Writes "List: 1 2 3"

A file may be opened with mode="xdr", to read or write double precision (64-bit) reals
and single precision (32-bit) integers in Sun Microsystem’s XDR (External Data Repre-
sentation) portable binary format (available on all UNIX platforms). Alternatively, a file
may also be opened with mode="binary" to read or write double precision reals and sin-
gle precision integers in the native (nonportable) machine binary format, or to read the
entire file into a string. The virtual member functions file singlereal (bool b=true)
and file singleint (bool b=true) be used to change the precision of real and integer
I/O operations, respectively, for an XDR or binary file £. Similarly, the function file
signedint (bool b=true) can be used to modify the signedness of integer reads and writes
for an XDR or binary file £.

The virtual members name, mode, singlereal, singleint, and signedint may be used
to query the respective parameters for a given file.

One can test a file for end-of-file with the boolean function eof (file), end-of-line
with eol(file), and for I/O errors with error(file)

Chapter 6: Programming 56

seek(file,0) and position to the final character in the file with seek(file,-1). The
command seekeof (file) sets the position to the end of the file.

Assigning settings.scroll=n for a positive integer n requests a pause after every n
output lines to stdout. One may then press Enter to continue to the next n output lines,
s followed by Enter to scroll without further interruption, or q followed by Enter to quit
the current output operation. If n is negative, the output scrolls a page at a time (i.e. by
one less than the current number of display lines). The default value, settings.scroll=0,
specifies continuous scrolling.

The routines

string getstring(string name="", string default="", string prompt="",
bool store=true);
int getint(string name="", int default=0, string prompt=
bool store=true);
real getreal(string name="", real default=0, string prompt="",
bool store=true);
pair getpair(string name="", pair default=0, string prompt="",
bool store=true);
triple gettriple(string name="", triple default=(0,0,0), string prompt="",
bool store=true);

nn
b

defined in the module plain may be used to prompt for a value from stdin using the GNU
readline library. If store=true, the history of values for name is stored in the file ".asy_
history_"+name (see [history], page 172). The most recent value in the history will be
used to provide a default value for subsequent runs. The default value (initially default)
is displayed after prompt. These functions are based on the internal routines

string readline(string prompt="", string name="", bool tabcompletion=false);
void saveline(string name, string value, bool store=true);

Here, readline prompts the user with the default value formatted according to prompt,
while saveline is used to save the string value in a local history named name, optionally
storing the local history in a file ".asy_history_"+name.

The routine history(string name, int n=1) can be used to look up the n most recent
values (or all values up to historylines if n=0) entered for string name. The routine
history(int n=0) returns the interactive history. For example,

write(output("transcript.asy") ,history());
outputs the interactive history to the file transcript.asy.

The function int delete(string s) deletes the file named by the string s. Unless the
-globalwrite (or -nosafe) option is enabled, the file must reside in the current directory.

The function int rename (string from, string to) may be used to rename file from to
file to. Unless the -globalwrite (or -nosafe) option is enabled, this operation is restricted
to the current directory.

The functions

int convert(string args="", string file="", string format="");
int animate(string args="", string file="", string format="");

call the ImageMagick commands

Chapter 6: Programming 57

6.7 Variable initializers

A variable can be assigned a value when it is declared, as in int x=3; where the variable x
is assigned the value 3. As well as literal constants such as 3, arbitary expressions can be
used as initializers, as in real x=2*sin(pi/2);.

A variable is not added to the namespace until after the initializer is evaluated, so for
example, in
int x=2;
int x=5%x;
the x in the initializer on the second line refers to the variable x declared on the first line.

The second line, then, declares a variable x shadowing the original x and initializes it to
the value 10.

Variables of most types can be declared without an explicit initializer and they will be
initialized by the default initializer of that type:

e Variables of the numeric types int, real, and pair are all initialized to zero; variables
of type triple are initialized to 0=(0,0,0).

e boolean variables are initialized to false.

e string variables are initialized to the empty string.

e transform variables are initialized to the identity transformation.

e path and guide variables are initialized to nullpath.

e pen variables are initialized to the default pen.

e frame and picture variables are initialized to empty frames and pictures, respectively.

e file variables are initialized to null.

The default initializers for user-defined array, structure, and function types are explained

in their respective sections. Some types, such as code, do not have default initializers. When

a variable of such a type is introduced, the user must initialize it by explicitly giving it a
value.

The default initializer for any type T can be redeclared by defining the function T
operator init(). For instance, int variables are usually initialized to zero, but in

int operator init() {

return 3;
}
int y;
the variable y is initialized to 3. This example was given for illustrative purposes; redeclaring
the initializers of built-in types is not recommended. Typically, operator init is used to
define sensible defaults for user-defined types.

The special type var may be used to infer the type of a variable from its initializer. If
the initializer is an expression of a unique type, then the variable will be defined with that
type. For instance,

var x=b5;
var y=4.3;
var reddash=red+dashed;

Chapter 6: Programming 58

is equivalent to

int x=5;

real y=4.3;

pen reddash=red+dashed;

var may also be used with the extended for loop syntax.

int[] a = {1,2,3};
for (var x : a)
write(x);

6.8 Structures

Users may also define their own data types as structures, along with user-defined operators,
much as in C++. By default, structure members are public (may be read and modified
anywhere in the code), but may be optionally declared restricted (readable anywhere
but writeable only inside the structure where they are defined) or private (readable and
writable only inside the structure). In a structure definition, the keyword this can be used
as an expression to refer to the enclosing structure. Any code at the top-level scope within
the structure is executed on initialization.

Variables hold references to structures. That is, in the example:

struct T {
int x;

}

T foo;
T bar=foo;
bar.x=5;

The variable foo holds a reference to an instance of the structure T. When bar is
assigned the value of foo, it too now holds a reference to the same instance as foo does.
The assignment bar.x=5 changes the value of the field x in that instance, so that foo.x
will also be equal to 5.

The expression new T creates a new instance of the structure T and returns a reference
to that instance. In creating the new instance, any code in the body of the record definition
is executed. For example:

int Tcount=0;

struct T {
int x;
++Tcount;

}

T foo=new T;
T foo;

Here, new T produces a new instance of the class, which causes Tcount to be incremented,
tracking the number of instances produced. The declarations T foo=new T and T foo are
equivalent: the second form implicitly creates a new instance of T. That is, after the
definition of a structure T, a variable of type T is initialized to a new instance (new T) by

Chapter 6: Programming 59

default. During the definition of the structure, however, variables of type T are initialized
to null by default. This special behaviour is to avoid infinite recursion of creating new
instances in code such as

struct tree {
int wvalue;
tree left;
tree right;

}

The expression null can be cast to any structure type to yield a null reference, a reference
that does not actually refer to any instance of the structure. Trying to use a field of a null
reference will cause an error.

The function bool alias(T,T) checks to see if two structure references refer to the same
instance of the structure (or both to null). In the example at the beginning of this section,
alias(foo,bar) would return true, but alias(foo,new T) would return false, as new T
creates a new instance of the structure T. The boolean operators == and !'= are by default
equivalent to alias and !'alias respectively, but may be overwritten for a particular type
(for example, to do a deep comparison).

Here is a simple example that illustrates the use of structures:

struct S {
real a=1;
real f(real a) {return a+this.a;}
}
S s; // Initializes s with new S;
write(s.f(2)); // Outputs 3

S operator + (S s1, S s2)
{
S result;
result.a=sl.a+s2.a;
return result;

}

write((s+s).£(0)); // Outputs 2

It is often convenient to have functions that construct new instances of a structure. Say
we have a Person structure:

struct Person {
string firstname;
string lastname;

}

Person joe;
joe.firstname="Joe";

Chapter 6: Programming 60

joe.lastname="Jones";

Creating a new Person is a chore; it takes three lines to create a new instance and to
initialize its fields (that’s still considerably less effort than creating a new person in real life,
though).

We can reduce the work by defining a constructor function Person(string,string):

struct Person {
string firstname;
string lastname;

static Person Person(string firstname, string lastname) {
Person p=new Person;
p-firstname=firstname;
p-lastname=lastname;
return p;

Person joe=Person.Person("Joe", "Jones");

While it is now easier than before to create a new instance, we still have to refer to the
constructor by the qualified name Person.Person. If we add the line

from Person unravel Person;

immediately after the structure definition, then the constructor can be used without quali-
fication: Person joe=Person("Joe", "Jones") ;.

The constructor is now easy to use, but it is quite a hassle to define. If you write a lot of
constructors, you will find that you are repeating a lot of code in each of them. Fortunately,
your friendly neighbourhood Asymptote developers have devised a way to automate much
of the process.

If, in the body of a structure, Asymptote encounters the definition of a function of
the form void operator init(args), it implicitly defines a constructor function of the
arguments args that uses the void operator init function to initialize a new instance
of the structure. That is, it essentially defines the following constructor (assuming the
structure is called Foo):

static Foo Foo(args) {
Foo instance=new Foo;
instance.operator init(args);
return instance;

}

This constructor is also implicitly copied to the enclosing scope after the end of the
structure definition, so that it can used subsequently without qualifying it by the structure
name. OQur Person example can thus be implemented as:

struct Person {
string firstname;
string lastname;

Chapter 6: Programming 61

void operator init(string firstname, string lastname) {
this.firstname=firstname;
this.lastname=lastname;
}
}

Person joe=Person("Joe", "Jones");

The use of operator init to implicitly define constructors should not be confused with
its use to define default values for variables (see Section 6.7 [Variable initializers], page 57).
Indeed, in the first case, the return type of the operator init must be void while in the
second, it must be the (non-void) type of the variable.

The function cputime () returns a structure cputime with cumulative CPU times broken
down into the fields parent .user, parent.system, child.user, and child.system, along
with the cumulative wall clock time in parent.clock, all measured in seconds. For con-
venience, the incremental fields change.user, change.system, and change.clock indicate
the change in the corresponding fields since the last call to cputime (). The function

void write(file file=stdout, string s="", cputime c,
string format=cputimeformat, suffix suffix=none);

displays the incremental user cputime followed by “u”, the incremental system cputime
followed by “s”, the total user cputime followed by “U”, and the total system cputime
followed by “S”.

Much like in C++, casting (see Section 6.13 [Casts|, page 79) provides for an elegant
implementation of structure inheritance, including virtual functions:

struct parent {
real x;
void operator init(int x) {this.x=x;}
void virtual(int) {write(0);}
void £() {virtual(1l);}

void write(parent p) {write(p.x);}

struct child {
parent parent;
real y=3;
void operator init(int x) {parent.operator init(x);}
void virtual(int x) {write(x);}
parent.virtual=virtual;
void f()=parent.f;

parent operator cast(child child) {return child.parent;}

parent p=parent(1);
child c=child(2);

Chapter 6: Programming 62

write(c); // Outputs 2;
p.-fO; // Outputs 0;
c.TO; // Outputs 1;
write(c.parent.x); // Outputs 2;
write(c.y); // Outputs 3;

For further examples of structures, see Legend and picture in the Asymptote base
module plain.

6.9 Operators

6.9.1 Arithmetic & logical operators

Asymptote uses the standard binary arithmetic operators. However, when one integer is
divided by another, both arguments are converted to real values before dividing and a real
quotient is returned (since this is typically what is intended; otherwise one can use the
function int quotient (int x, int y), which returns greatest integer less than or equal to
x/y). In all other cases both operands are promoted to the same type, which will also be
the type of the result:

+ addition

- subtraction

* multiplication

/ division

integer division; equivalent to quotient (x,y). Noting that the Python3 com-

munity adopted our comment symbol (//) for integer division, we decided to
reciprocate and use their comment symbol for integer division in Asymptote!

% modulo; the result always has the same sign as the divisor. In particular, this
makes q*x(p # q)+p % q == p for all integers p and nonzero integers q.

power; if the exponent (second argument) is an int, recursive multiplication is
used; otherwise, logarithms and exponentials are used (** is a synonym for ~).

The usual boolean operators are also defined:

== equals

I= not equals

< less than

<= less than or equals

>= greater than or equals
> greater than

&& and (with conditional evaluation of right-hand argument)

Chapter 6: Programming 63

& and
[l or (with conditional evaluation of right-hand argument)
| or
XOr
! not

Asymptote also supports the C-like conditional syntax:
bool positive=(pi > 0) ? true : false;

The function T interp(T a, T b, real t) returns (1-t)*a+t*b for nonintegral built-in
arithmetic types T. If a and b are pens, they are first promoted to the same color space.

Asymptote also defines bitwise functions int AND(int,int), int OR(int,int),
int XOR(int,int), int NOT(int), int CLZ(int) (count leading zeros), int CTZ(int)
(count trailing zeros), int popcount(int) (count bits populated by ones), and int
bitreverse(int a, int bits) (reverse bits within a word of length bits).

6.9.2 Self & prefix operators

As in C, each of the arithmetic operators +, -, *, /, #, %, and ~ can be used as a self
operator. The prefix operators ++ (increment by one) and -- (decrement by one) are also
defined. For example,

int i=1;

i+= 2;

int j=++i;

is equivalent to the code

int i=1;

i=i+2;

int j=i=i+1;

However, postfix operators like i++ and i-- are not defined (because of the inherent
ambiguities that would arise with the -- path-joining operator). In the rare instances where
i++ and i-- are really needed, one can substitute the expressions (++i-1) and (--i+1),
respectively.

6.9.3 User-defined operators

The following symbols may be used with operator to define or redefine operators on struc-
tures and built-in types:
-+ x /f TV <>==l=<=>=& | 77 .. i1 -= ——= 4+
<< >> § $$ € Q@ <>
The operators on the second line have precedence one higher than the boolean operators <,
>, <=, and >=.

Guide operators like .. may be overloaded, say, to write a user function that produces
a new guide from a given guide:

guide dots(... guide[] g)=operator ..;

guide operator ..(... guide[] g) {

Chapter 6: Programming

guide G;

if(g.length > 0) {
write(g[0]);
G=g[0];

}

for(int i=1; i < g.length; ++i) {

write(gl[il);
write();
G=dots(G,gl[i]);
}
return G;

}

guide g=(0,0){up}..{SW}(100,100){NE}..{curl 3}(50,50)..(10,10);

write("g=",g);

6.10 Implicit scaling

64

If a numeric literal is in front of certain types of expressions, then the two are multiplied:

int x=2;
real y=2.0;
real cm=72/2.540005;

write(3x);
write(2.5x%);
write(3y);
write(-1.602e-19 y);
write(0.5(x,y));
write(2x72);
write(3x+2y);

write (3(x+2y));
write(3sin(x));
write(3(sin(x))"2);
write(10cm);

This produces the output
6
5
6
-3.204e-19
(1,1
8
10
18
2.72789228047704

2.48046543129542
283.464008929116

Chapter 6: Programming 65

6.11 Functions

Asymptote functions are treated as variables with a signature (non-function variables have
null signatures). Variables with the same name are allowed, so long as they have distinct
signatures.

Function arguments are passed by value. To pass an argument by reference, simply
enclose it in a structure (see Section 6.8 [Structures|, page 58).

Here are some significant features of Asymptote functions:

1. Variables with signatures (functions) and without signatures (nonfunction variables)
are distinct:

int x, xO;

x=5;
x=new int() {return 17;};
x=x(); // calls x() and puts the result, 17, in the scalar x

2. Traditional function definitions are allowed:

int sqr(int x)
{

return x*x;

}

sqr=null; // but the function is still just a variable.
3. Casting can be used to resolve ambiguities:

int a, a(), b, b(); // Valid: creates four variables.

a=b; // Invalid: assignment is ambiguous.

a=(int) b; // Valid: resolves ambiguity.

(int) (a=b); // Valid: resolves ambiguity.

(int) a=b; // Invalid: cast expressions cannot be L-values.
int c(Q);

c=a; // Valid: only one possible assignment.

4. Anonymous (so-called "high-order") functions are also allowed:
typedef int intop(int);
intop adder(int m)

{

return new int(int n) {return m+n;};
}
intop addby7=adder(7);
write(addby7(1)); // Writes 8.

5. One may redefine a function £, even for calls to £ in previously declared functions, by
assigning another (anonymous or named) function to it. However, if £ is overloaded
by a new function definition, previous calls will still access the original version of f, as
illustrated in this example:

void £() {
write("hi");

}

Chapter 6: Programming 66

void g() {
£O;
}

g(); // writes "hi"

f=new void() {write("bye");};
g(); // writes "bye"

void f() {write("overloaded");};

£f(); // writes "overloaded"
g(); // writes "bye"

6. Anonymous functions can be used to redefine a function variable that has been declared
(and implicitly initialized to the null function) but not yet explicitly defined:

void f(bool b);

void g(bool b) {
if(b) £(b);
else write(b);

}

f=new void(bool b) {
write(b);
g(false);
}s

g(true); // Writes true, then writes false.

Asymptote is the only language we know of that treats functions as variables, but allows
overloading by distinguishing variables based on their signatures.

Functions are allowed to call themselves recursively. As in C++, infinite nested recursion

will generate a stack overflow (reported as a segmentation fault, unless a fully working
version of the GNU library 1ibsigsegv (e.g. 2.4 or later) is installed at configuration time).

6.11.1 Default arguments

Asymptote supports a more flexible mechanism for default function arguments than C++:
they may appear anywhere in the function prototype. Because certain data types are
implicitly cast to more sophisticated types (see Section 6.13 [Casts], page 79) one can
often avoid ambiguities by ordering function arguments from the simplest to the most
complicated. For example, given

real f(int a=1, real b=0) {return a+b;}
then £ (1) returns 1.0, but £(1.0) returns 2.0.

The value of a default argument is determined by evaluating the given Asymptote ex-
pression in the scope where the called function is defined.

Chapter 6: Programming 67

6.11.2 Named arguments

It is sometimes difficult to remember the order in which arguments appear in a function
declaration. Named (keyword) arguments make calling functions with multiple arguments
easier. Unlike in the C and C++ languages, an assignment in a function argument is inter-
preted as an assignment to a parameter of the same name in the function signature, not
within the local scope. The command-line option -d may be used to check Asymptote code
for cases where a named argument may be mistaken for a local assignment.

When matching arguments to signatures, first all of the keywords are matched, then
the arguments without names are matched against the unmatched formals as usual. For
example,
int f(int x, int y) {

return 10x+y;

}

write(f(4,x=3));

outputs 34, as x is already matched when we try to match the unnamed argument 4, so it
gets matched to the next item, y.

For the rare occasions where it is desirable to assign a value to local variable within a
function argument (generally not a good programming practice), simply enclose the assign-
ment in parentheses. For example, given the definition of f in the previous example,
int x;
write(f (4, (x=3)));
is equivalent to the statements
int x;
x=3;
write(£(4,3));
and outputs 43.

Parameters can be specified as “keyword-only” by putting keyword immediately before
the parameter name, as in int f (int keyword x) or int f (int keyword x=77). This forces
the caller of the function to use a named argument to give a value for this parameter. That
is, £ (x=42) is legal, but £ (25) is not. Keyword-only parameters must be listed after normal
parameters in a function definition.

As a technical detail, we point out that, since variables of the same name but different
signatures are allowed in the same scope, the code
int f(int x, int x()) {

return x+x();

}

int seven() {return 7;}
is legal in Asymptote, with f(2,seven) returning 9. A named argument matches the
first unmatched formal of the same name, so f(x=2,x=seven) is an equivalent call, but
f (x=seven,2) is not, as the first argument is matched to the first formal, and int ()
cannot be implicitly cast to int. Default arguments do not affect which formal a named
argument is matched to, so if £ were defined as
int f(int x=3, int x()) {

return x+x();

Chapter 6: Programming 68

}

then f (x=seven) would be illegal, even though f (seven) obviously would be allowed.

6.11.3 Rest arguments

Rest arguments allow one to write functions that take a variable number of arguments:

// This function sums its arguments.
int sum(... int[] nums) {
int total=0;
for(int i=0; i < nums.length; ++i)
total += nums[i];
return total;

}
sum(1,2,3,4); // returns 10
sum() ; // returns 0

// This function subtracts subsequent arguments from the first.

int subtract(int start ... int[] subs) {

for(int i=0; i < subs.length; ++i)

start -= subs[i];

return start;
}
subtract(10,1,2); // returns 7
subtract (10); // returns 10
subtract () ; // illegal

Putting an argument into a rest array is called packing. One can give an explicit list of
arguments for the rest argument, so subtract could alternatively be implemented as

int subtract(int start ... int[] subs) {
return start - sum(... subs);

}
One can even combine normal arguments with rest arguments:
sum(1,2,3 ... new int[] {4,5,6}); // returns 21
This builds a new six-element array that is passed to sum as nums. The opposite opera-
tion, unpacking, is not allowed:
subtract(... new int[] {10, 1, 2});
is illegal, as the start formal is not matched.

If no arguments are packed, then a zero-length array (as opposed to null) is bound to
the rest parameter. Note that default arguments are ignored for rest formals and the rest
argument is not bound to a keyword.

In some cases, keyword-only parameters are helpful to avoid arguments intended for the
rest parameter to be assigned to other parameters. For example, here the use of keyword
is to avoid pnorm(1.0,2.0,0.3) matching 1.0 to p.

real pnorm(real keyword p=2.0 ... reall[] v)

Chapter 6: Programming 69

{

return sum(vAp)*(1/p);
}

The overloading resolution in Asymptote is similar to the function matching rules used
in C++. Every argument match is given a score. Exact matches score better than matches
with casting, and matches with formals (regardless of casting) score better than packing an
argument into the rest array. A candidate is maximal if all of the arguments score as well
in it as with any other candidate. If there is one unique maximal candidate, it is chosen;
otherwise, there is an ambiguity error.

int f(path g);
int f(Quide g);
f((0,0)--(100,100)); /I matches the second; the argument is a guide

int g(int x, real y);
int g(real x, int x);

g(3,4); /I ambiguous; the first candidate is better for the first argument,
/I but the second candidate is better for the second argument

int h(... int]] rest);
int h(real x ... int]] rest);

h(1,2); /I the second definition matches, even though there is a cast,
/I because casting is preferred over packing

int i(int x ... int[] rest);
int i(real x, real y ... int[] rest);

i(3,4); // ambiguous; the first candidate is better for the first argument,
/I but the second candidate is better for the second one

6.11.4 Mathematical functions

Asymptote has built-in versions of the standard libm mathematical real(real) functions
sin, cos, tan, asin, acos, atan, exp, log, powlQ logl0, sinh, cosh, tanh, asinh,
acosh, atanh, sqrt , cbrt , fabs, expm1 loglp, as well as the identity function identity
Asymptote also de nes the ordern Bessel functions of the rst kind Jn(int n, real) and
second kindYn(int n, real) , as well as the gamma functiongammgathe error function erf ,
and the complementary error function erfc . The standard real(real, real) functions atan2,
hypot, fmod, remainder are also included.

The functions degrees(real radians) and radians(real degrees) can be used to
convert between radians and degrees. The functiomDegrees(real radians) returns the
angle in degrees in the interval [0,360).

For convenience, Asymptote de nes variants Sin, Cos Tan, aSin, aCos and aTan of
the standard trigonometric functions that use degrees rather than radians. We also de ne
complex versions of thesqgrt , sin, cos, exp, log, and gammdunctions.

https://asymptote.sourceforge.io/gallery/animations/slidemovies.pdf
https://asymptote.sourceforge.io/gallery/animations/slidemovies.asy
https://asymptote.sourceforge.io/gallery/curvedlabel.svg
https://asymptote.sourceforge.io/gallery/curvedlabel.asy
https://asymptote.sourceforge.io/gallery/3Dwebgl/curvedlabel3.html
https://asymptote.sourceforge.io/gallery/3Dwebgl/curvedlabel3.asy
https://asymptote.sourceforge.io/gallery/PDFs/annotation.pdf
https://asymptote.sourceforge.io/gallery/PDFs/annotation.asy

Chapter 8: Base modules 97

8.19 slide

This module provides a simple yet high-quality facility for making presentation slides, in-
cluding portable embedded PDF animations (see the file slidemovies.asy). A simple
example is provided in slidedemo.asy.

8.20 MetaPost

This module provides some useful routines to help MetaPost users migrate old MetaPost
code to Asymptote. Further contributions here are welcome.

Unlike MetaPost, Asymptote does not implicitly solve linear equations and therefore
does not have the notion of a whatever unknown. The routine extension (see [extension],
page 35) provides a useful replacement for a common use of whatever: finding the inter-
section point of the lines through P, Q and p, q. For less common occurrences of whatever,
one can use the built-in explicit linear equation solver solve instead.

8.21 babel

This module implements the LaTeX babel package in Asymptote. For example:

import babel;
babel ("german") ;

8.22 labelpath

This module uses the PSTricks pstextpath macro to fit labels along a path (properly
kerned, as illustrated in the example file curvedlabel.asy), using the command

void labelpath(picture pic=currentpicture, Label L, path g,
string justify=Centered, pen p=currentpen);

Here justify is one of LeftJustified, Centered, or RightJustified. The component
of a shift transform applied to the Label is interpreted as a shift along the curve, whereas
the y component is interpreted as a shift away from the curve. All other Label transforms
are ignored. This module requires the latex tex engine and inherits the limitations of the
PSTricks \pstextpath macro.

8.23 labelpath3

This module, contributed by Jens Schwaiger, implements a 3D version of labelpath that
does not require the PSTricks package. An example is provided in curvedlabel3.asy.

8.24 annotate

This module supports PDF annotations for viewing with Adobe Reader, via the function

void annotate(picture pic=currentpicture, string title, string text,
pair position);

Annotations are illustrated in the example file annotation.asy. Currently, annotations are
only implemented for the latex (default) and tex TEX engines.

Chapter 8: Base modules 98

8.25 CAD

This module, contributed by Mark Henning, provides basic pen definitions and measurement
functions for simple 2D CAD drawings according to DIN 15. It is documented separately,
in the file CAD.pdf.

8.26 graph

This module implements two-dimensional linear and logarithmic graphs, including auto-
matic scale and tick selection (with the ability to override manually). A graph is a guide
(that can be drawn with the draw command, with an optional legend) constructed with one
of the following routines:

guide graph(picture pic=currentpicture, real f(real), real a, real D,
int n=ngraph, real T(real)=identity,
interpolate join=operator --);
guide[] graph(picture pic=currentpicture, real f(real), real a, real b,
int n=ngraph, real T(real)=identity, bool3 cond(real),
interpolate join=operator --);
Returns a graph using the scaling information for picture pic (see [automatic scaling],
page 115) of the function f on the interval [T(a),T(b)], sampling at n points evenly
spaced in [a,b], optionally restricted by the bool3 function cond on [a,b]. If cond is:

e true, the point is added to the existing guide;
e default, the point is added to a new guide;

e false, the point is omitted and a new guide is begun.

The points are connected using the interpolation specified by join:
e operator —- (linear interpolation; the abbreviation Straight is also accepted);

e operator .. (piecewise Bezier cubic spline interpolation; the abbreviation Spline
is also accepted);

e Hermite (standard cubic spline interpolation using boundary condition notaknot,
natural, periodic, clamped(real slopea, real slopeb)), or monotonic. The
abbreviation Hermite is equivalent to Hermite (notaknot) for nonperiodic data
and Hermite (periodic) for periodic data).

guide graph(picture pic=currentpicture, real x(real), real y(real),
real a, real b, int n=ngraph, real T(real)=identity,
interpolate join=operator --);
guide[] graph(picture pic=currentpicture, real x(real), real y(real),
real a, real b, int n=ngraph, real T(real)=identity,
bool3 cond(real), interpolate join=operator --);

Returns a graph using the scaling information for picture pic of the parametrized
function (x(t),y(t)) for t in the interval [T(a),T(b)], sampling at n points evenly spaced
in [a,b], optionally restricted by the bool3 function cond on [a,b], using the given
interpolation type.

Chapter 8: Base modules 99

guide graph(picture pic=currentpicture, pair z(real), real a, real D,
int n=ngraph, real T(real)=identity,
interpolate join=operator --);
guide[] graph(picture pic=currentpicture, pair z(real), real a, real b,
int n=ngraph, real T(real)=identity, bool3 cond(real),
interpolate join=operator --);
Returns a graph using the scaling information for picture pic of the parametrized
function z(t) for ¢ in the interval [T(a),T(b)], sampling at n points evenly spaced in [a,b],
optionally restricted by the bool3 function cond on [a,b], using the given interpolation
type.

guide graph(picture pic=currentpicture, pair[] z,
interpolate join=operator --);
guide[] graph(picture pic=currentpicture, pair[] z, bool3[] cond,
interpolate join=operator --);
Returns a graph using the scaling information for picture pic of the elements of the
array z, optionally restricted to those indices for which the elements of the boolean
array cond are true, using the given interpolation type.

guide graph(picture pic=currentpicture, real[] x, reall] vy,
interpolate join=operator --);
guide[] graph(picture pic=currentpicture, reall] x, reall] vy,
bool3[] cond, interpolate join=operator --);

Returns a graph using the scaling information for picture pic of the elements of the
arrays (x,y), optionally restricted to those indices for which the elements of the boolean
array cond are true, using the given interpolation type.

guide polargraph(picture pic=currentpicture, real f(real), real a,
real b, int n=ngraph, interpolate join=operator --);

Returns a polar-coordinate graph using the scaling information for picture pic of the
function f on the interval [a,b], sampling at n evenly spaced points, with the given
interpolation type.

guide polargraph(picture pic=currentpicture, reall[] r, reall[] theta,
interpolate join=operator--);

Returns a polar-coordinate graph using the scaling information for picture pic of the
elements of the arrays (r,theta), using the given interpolation type.

An axis can be drawn on a picture with one of the following commands:

void xaxis(picture pic=currentpicture, Label L="", axis axis=YZero,

Chapter 8: Base modules 100

real xmin=-infinity, real xmax=infinity, pen p=currentpen,

ticks ticks=NoTicks, arrowbar arrow=None, bool above=false);
Draw an x axis on picture pic from r=xmin to x=xmax using pen p, optionally labelling
it with Label L. The relative label location along the axis (a real number from [0,1])
defaults to 1 (see [Label], page 18), so that the label is drawn at the end of the axis.
An infinite value of xmin or xmax specifies that the corresponding axis limit will be
automatically determined from the picture limits. The optional arrow argument takes
the same values as in the draw command (see [arrows], page 14). The axis is drawn
before any existing objects in pic unless above=true. The axis placement is determined
by one of the following axis types:

YZero(bool extend=true)
Request an z axis at y=0 (or y=1 on a logarithmic axis) extending to the
full dimensions of the picture, unless extend=false.

YEquals(real Y, bool extend=true)
Request an x axis at y=Y extending to the full dimensions of the picture,
unless extend=false.

Bottom(bool extend=false)
Request a bottom axis.

Top(bool extend=false)
Request a top axis.

BottomTop (bool extend=false)
Request a bottom and top axis.

Custom axis types can be created by following the examples in the module graph.asy.
One can easily override the default values for the standard axis types:

import graph;

YZero=new axis(bool extend=true) {
return new void(picture pic, axisT axis) {
real y=pic.scale.x.scale.logarithmic 7 1 : O;
axis.value=I*pic.scale.y.T(y);
axis.position=1;
axis.side=right;
axis.align=2.5E;
axis.value2=Infinity;
axis.extend=extend;
};
s
YZero=YZero();

The default tick option is NoTicks. The options LeftTicks, RightTicks, or Ticks
can be used to draw ticks on the left, right, or both sides of the path, relative to the
direction in which the path is drawn. These tick routines accept a number of optional
arguments:

ticks LeftTicks(Label format="", ticklabel ticklabel=null,

Chapter 8: Base modules 101

bool beginlabel=true, bool endlabel=true,
int N=0, int n=0, real Step=0, real step=0,
bool begin=true, bool end=true, tickmodifier modify=None,
real Size=0, real size=0, bool extend=false,
pen pTick=nullpen, pen ptick=nullpen);
If any of these parameters are omitted, reasonable defaults will be chosen:

Label format
override the default tick label format (defaultformat, initially
"$%.4g$"), rotation, pen, and alignment (for example, LeftSide, Center,
or RightSide) relative to the axis. To enable LaTeX math mode fonts,
the format string should begin and end with $ see [format], page 29. If
the format string is trailingzero, trailing zeros will be added to the tick
labels; if the format string is "%", the tick label will be suppressed;

ticklabel
is a function string(real x) returning the label (by default,
format(format.s,x)) for each major tick value x;

bool beginlabel
include the first label;

bool endlabel
include the last label;

int N when automatic scaling is enabled (the default; see [automatic scaling],
page 115), divide a linear axis evenly into this many intervals, separated
by major ticks; for a logarithmic axis, this is the number of decades between
labelled ticks;

int n divide each interval into this many subintervals, separated by minor ticks;
real Step the tick value spacing between major ticks (if N=0);
real step the tick value spacing between minor ticks (if n=0);

bool begin
include the first major tick;

bool end include the last major tick;

tickmodifier modify;
an optional function that takes and returns a tickvalue structure having
real[] members major and minor consisting of the tick values (to allow
modification of the automatically generated tick values);

real Size the size of the major ticks (in PostScript coordinates);
real size the size of the minor ticks (in PostScript coordinates);

bool extend;
extend the ticks between two axes (useful for drawing a grid on the graph);

pen pTick an optional pen used to draw the major ticks;

pen ptick an optional pen used to draw the minor ticks.

Chapter 8: Base modules 102

For convenience, the predefined tickmodifiers OmitTick(... reall] x),
OmitTickInterval(real a, real b), and OmitTickIntervals(reall] a, reall]
b) can be used to remove specific auto-generated ticks and their labels. The
OmitFormat (string s=defaultformat ... real[] x) ticklabel can be wused to
remove specific tick labels but not the corresponding ticks. The tickmodifier NoZero
is an abbreviation for OmitTick (0) and the ticklabel NoZeroFormat is an abbrevation
for OmitFormat (0).

It is also possible to specify custom tick locations with LeftTicks, RightTicks, and
Ticks by passing explicit real arrays Ticks and (optionally) ticks containing the
locations of the major and minor ticks, respectively:

ticks LeftTicks(Label format="", ticklabel ticklabel=null,
bool beginlabel=true, bool endlabel=true,
real[] Ticks, reall[] ticks=new reall],
real Size=0, real size=0, bool extend=false,
pen pTick=nullpen, pen ptick=nullpen)

void yaxis(picture pic=currentpicture, Label L="", axis axis=XZero,
real ymin=-infinity, real ymax=infinity, pen p=currentpen,
ticks ticks=NoTicks, arrowbar arrow=None, bool above=false,
bool autorotate=true);
Draw a y axis on picture pic from y=ymin to y=ymax using pen p, optionally labelling
it with a Label L that is autorotated unless autorotate=false. The relative location
of the label (a real number from [0,1]) defaults to 1 (see [Label], page 18). An infinite
value of ymin or ymax specifies that the corresponding axis limit will be automatically
determined from the picture limits. The optional arrow argument takes the same values
as in the draw command (see [arrows], page 14). The axis is drawn before any existing
objects in pic unless above=true. The tick type is specified by ticks and the axis
placement is determined by one of the following axis types:

XZero(bool extend=true)
Request a y axis at =0 (or z=1 on a logarithmic axis) extending to the
full dimensions of the picture, unless extend=false.

XEquals(real X, bool extend=true)
Request a y axis at =X extending to the full dimensions of the picture,
unless extend=false.

Left(bool extend=false)
Request a left axis.

Right (bool extend=false)
Request a right axis.

LeftRight (bool extend=false)
Request a left and right axis.
e For convenience, the functions

void xequals(picture pic=currentpicture, Label L="", real x,
bool extend=false, real ymin=-infinity, real ymax=infinity,

Chapter 8: Base modules 103

pen p=currentpen, ticks ticks=NoTicks, bool above=true,
arrowbar arrow=None) ;

and

void yequals(picture pic=currentpicture, Label L="", real vy,
bool extend=false, real xmin=-infinity, real xmax=infinity,
pen p=currentpen, ticks ticks=NoTicks, bool above=true,
arrowbar arrow=None);

can be respectively used to call yaxis and xaxis with the appropriate axis types
XEquals(x,extend) and YEquals(y,extend). This is the recommended way of draw-
ing vertical or horizontal lines and axes at arbitrary locations.

void axes(picture pic=currentpicture, Label xlabel="", Label ylabel="",
bool extend=true,
pair min=(-infinity,-infinity), pair max=(infinity,infinity),
pen p=currentpen, arrowbar arrow=None, bool above=false);
This convenience routine draws both x and y axes on picture pic from min to max,
with optional labels xlabel and ylabel and any arrows specified by arrow. The axes
are drawn on top of existing objects in pic only if above=true.

void axis(picture pic=currentpicture, Label L="", path g,
pen p=currentpen, ticks ticks, ticklocate locate,
arrowbar arrow=None, int[] divisor=new int[],
bool above=false, bool opposite=false);

This routine can be used to draw on picture pic a general axis based on an arbitrary
path g, using pen p. One can optionally label the axis with Label L and add an arrow
arrow. The tick type is given by ticks. The optional integer array divisor specifies
what tick divisors to try in the attempt to produce uncrowded tick labels. A true
value for the flag opposite identifies an unlabelled secondary axis (typically drawn
opposite a primary axis). The axis is drawn before any existing objects in pic unless
above=true. The tick locator ticklocate is constructed by the routine

ticklocate ticklocate(real a, real b, autoscaleT S=defaultS,
real tickmin=-infinity, real tickmax=infinity,
real time(real)=null, pair dir(real)=zero);
where a and b specify the respective tick values at point(g,0) and
point(g,length(g)), S specifies the autoscaling transformation, the func-
tion real time(real v) returns the time corresponding to the value v, and pair
dir(real t) returns the absolute tick direction as a function of t (zero means draw
the tick perpendicular to the axis).

e These routines are useful for manually putting ticks and labels on axes (if the variable
Label is given as the Label argument, the format argument will be used to format a
string based on the tick location):
void xtick(picture pic=currentpicture, Label L="", explicit pair z,

pair dir=N, string format="",
real size=Ticksize, pen p=currentpen);

Chapter 8: Base modules 108

4. This example shows how to graph columns of data read from a file.

import graph;

size (200,150, IgnoreAspect) ;

file in=input("filegraph.dat").line();
real[][] a=in;

a=transpose(a) ;

real[] x=al[0];
reall] y=alill;

draw(graph(x,y) ,red);

xaxis ("x" ,BottomTop,LeftTicks);
yaxis("y",LeftRight ,RightTicks);

0 1 I 1 I 1 I 1
20 70 90 110

X

5. The next example draws two graphs of an array of coordinate pairs, using frame align-
ment and data markers. In the left-hand graph, the markers, constructed with
marker marker(path g, markroutine markroutine=marknodes,

pen p=currentpen, filltype filltype=NoFill,
bool above=true);

Chapter 8: Base modules 109

using the path unitcircle (see [filltype], page 50), are drawn below each node. Any
frame can be converted to a marker, using

marker marker (frame f, markroutine markroutine=marknodes,
bool above=true);

In the right-hand graph, the unit n-sided regular polygon polygon(int n) and
the unit n-point cyclic cross cross(int n, bool round=true, real r=0) (where
r is an optional “inner” radius) are used to build a custom marker frame. Here
markuniform(bool centered=false, int n, bool rotated=false) adds this frame
at n uniformly spaced points along the arclength of the path, optionally rotated by the
angle of the local tangent to the path (if centered is true, the frames will be centered
within n evenly spaced arclength intervals). Alternatively, one can use markroutine
marknodes to request that the marks be placed at each Bezier node of the path, or
markroutine markuniform(pair z(real t), real a, real b, int n) to place marks
at points z(t) for n evenly spaced values of t in [a,b].

These markers are predefined:

marker [] Mark={
marker (scale(circlescale)*unitcircle),
marker (polygon(3)) ,marker(polygon(4)),
marker (polygon(5)) ,marker (invert*polygon(3)),
marker (cross(4)) ,marker (cross(6)) ,marker (diamond) ,marker (plus);

};

marker [] MarkFill={
marker (scale(circlescale)*unitcircle,Fill) ,marker (polygon(3),Fill),
marker (polygon(4) ,Fill) ,marker (polygon(5),Fill),
marker (invert*polygon(3) ,Fill) ,marker(diamond,Fill)

};

The example also illustrates the errorbar routines:

void errorbars(picture pic=currentpicture, pair[] z, pair[] dp,
pair[] dm={}, bool[] cond={}, pen p=currentpen,
real size=0);

void errorbars(picture pic=currentpicture, reall] x, reall] y,
real[] dpx, reall] dpy, reall] dmx={}, reall] dmy={},
bool[] cond={}, pen p=currentpen, real size=0);
Here, the positive and negative extents of the error are given by the absolute values of
the elements of the pair array dp and the optional pair array dm. If dm is not specified,
the positive and negative extents of the error are assumed to be equal.

import graph;
picture pic;
real xsize=200, ysize=140;

size(pic,xsize,ysize,IgnoreAspect);

pair[] £={(5,5),(50,20),(90,90)};

Chapter 8: Base modules

100 — . . —

80 i —e—— legend ///E i
60 .
40 - 7
20 - 7

O 1 I 1 I 1 I 1 I 1
0 20 40 60 8 100

Xz

6. A custom mark routine can be also be specified:

import graph;
size (200,100, IgnoreAspect) ;

markroutine marks() {

return new void(picture pic=currentpicture, frame f, path g) {

path p=scale(lmm)*unitcircle;
for(int i=0; i <= length(g); ++i) {
pair z=point(g,i);
frame f;
if(i % 4 ==0) {
£i11(f,p);
add(pic,f,z);
} else {
if(z.y > 50) {

pic.add(new void(frame F, transform t) {

path g=shift(t*z)x*p;
unfill(F,q);
draw(F,q);
b
} else {
draw(f,p);
add(pic,f,z);
}

}
};
}

100

pair[] £={(5,5),(40,20),(55,51),(90,30)};

draw(graph(f) ,marker (marks()));

scale(true);

111

Chapter 8: Base modules 113

The calls to
xlimits(picture pic=currentpicture, real min=-infinity,
real max=infinity, bool crop=NoCrop);

and the analogous function ylimits can be uncommented to set the respective axes
limits for picture pic to the specified min and max values. Alternatively, the function

void limits(picture pic=currentpicture, pair min, pair max, bool crop=NoCrop);

can be used to limit the axes to the box having opposite vertices at the given pairs). Ex-
isting objects in picture pic will be cropped to lie within the given limits if crop

https://asymptote.sourceforge.io/gallery/2Dgraphs/diatom.svg
https://asymptote.sourceforge.io/gallery/2Dgraphs/diatom.asy
https://asymptote.sourceforge.io/gallery/2Dgraphs/westnile.svg
https://asymptote.sourceforge.io/gallery/2Dgraphs/westnile.asy
https://asymptote.sourceforge.io/gallery/2Dgraphs/diatom.csv
https://asymptote.sourceforge.io/gallery/2Dgraphs/westnile.csv

Chapter 8: Base modules 125

size (0,150, IgnoreAspect) ;

real arrowsize=4mm;
real arrowlength=2arrowsize;

typedef path vector(real);

// Return a vector interpolated linearly between a and b.
vector vector(pair a, pair b) {
return new path(real x) {
return (0,0)--arrowlength*interp(a,b,x);
3
}

real f(real x) {return 1/x;}

real epsilon=0.5;
path g=graph(f,epsilon,1/epsilon);

int n=3;
draw(g) ;
xaxis("x");
yaxis ("y");

add (vectorfield(vector (W,W),g,n,true));
add(vectorfield(vector (NE,NW), (0,0)--(point(E) .x,0) ,n,true));
add(vectorfield(vector (NE,NE), (0,0)--(0,point(N).y) ,n,true));

0

4

.

X

14. To draw a vector field of nxxny arrows in box(a,b), use the routine

picture vectorfield(path vector(pair), pair a, pair b,
int nx=nmesh, int ny=nx, bool truesize=false,
real maxlength=truesize 7 0 : maxlength(a,b,nx,ny),

https://asymptote.sourceforge.io/gallery/2Dgraphs/fillcontour.svg
https://asymptote.sourceforge.io/gallery/2Dgraphs/fillcontour.asy
https://asymptote.sourceforge.io/gallery/2Dgraphs/imagecontour.svg
https://asymptote.sourceforge.io/gallery/2Dgraphs/imagecontour.asy

Chapter 8: Base modules

sediment depth (cm)

100

200

300

400

127
A B C
@
B
&
s
$ O%a" \fl}o x® .@6\
& & <& L &
& O & F o
&) > N & X X9
> ,(’0' oﬁ’ OK> \é\ . X
& & > @v \@ 5 *17
& w\ > & > & ol &
& & & N & & &
& & & & ¢ > R &
<) 0 oM o K L
& &